
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1856788

Associative memories, stochastic activity networks and their
application to sensor validation systems of nuclear power plants

Shen, Bin, M.S.

The University of Arizona, 1993

U M I
300 N. Zeeb Rd.
Ann Aitoor, MI 48106

ASSOCIATIVE MEMORIES, STOCHASTIC ACTIVITY NETWORKS

AND THEIR APPLICATION TO SENSOR VALIDATION SYSTEMS

OF NUCLEAR POWER PLANTS

by

Bin Shen

A Thesis Submitted to the Faculty of the

DEPARTMENT OF NUCLEAR AND ENERGY ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN NUCLEAR ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

19 9 3

2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of
requirements for an advanced degree at the University of
Arizona and is deposited to the University Library to be
made available to borrowers under rules of the library.

Brief quotations from this thesis are allowable without
special permission, provided that accurate acknowledgment of
source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole
or in part may be granted by the head of the major
department or the Dean of the Graduate College when in his
or her judgment the proposed use of the material is in the
interests of scholarship. In all other instances, however,
permission must be obtained from the author.

This thesis has been approved on the date shown below:

SIGNED

APPROVAL BY THESIS DIRECTOR

John G. Williams
Professor of Nuclear Engineering

Date

3

ACKNOWLEDGMENTS

This thesis would not have been possible without the

emotional, financial, and technical support of Dr. John

Williams, so I would like to first and foremost express my

great gratitude and appreciation to him.

I am very pleased with the education I received at the

University of Arizona and Shanghai Jiao Tong University. I

would therefore like to acknowledge the fine work by the

faculty at those two universities. I appreciate Dr. Wayne

Jouse's help and incisive comments on this piece of work.

Finally, the support of my family and friends throughout

my education has been of immeasurable help in attaining my

degrees and finishing this thesis. To my wife, my parents,

sister and to the many close friends I have made, I owe and

express my deepest appreciation and gratitude.

4

TABLE OF CONTENTS

ACKNOWLEDGMENTS 3

LIST OF TABLES 6

LIST OF ILLUSTRATIONS 7

ABSTRACT 8

CHAPTER 1 INTRODUCTION 9
1.1 Sensor Validation Systems and Their

Evaluations 10
1.2 Survey of Sensor Validation 12
1.3 Associative Memories and Sensor

Validation 20
1.4 Stochastic Activity Network and

Evaluation of Sensor Validation Systems 23

CHAPTER 2 ASSOCIATIVE MEMORIES AND STOCHASTIC ACTIVITY...26
2.1 Associative Memories 26
2.2 Stochastic Activity Network 37

CHAPTER 3 ANALYSIS OF ASSOCIATIVE MEMORIES 45
3.1 Issues of Associative Memories 45
3.2 Vector Analysis of Binary Associative

Memory 47
3.3 The Convergence Property of Continuous

Associative Memories 53
3.4 Analysis of Learning Algorithms 58
3.5 Summary 64

CHAPTER 4 APPLICATION OF STOCHASTIC ACTIVITY NETWORKS TO
THE EVALUATION OF SENSOR VALIDATION SYSTEMS 65
4.1 Sensor Validation Systems and their

performability variables 65
4.2 Sensor Validation System of a Pressurizer...68
4.3 The SAN Model for Sensor Validation

System of a Pressurizer 71
4.4 Results and Analysis 81
4.5 Conclusions 89

5

CHAPTER 5 CONCLUSIONS 90
5.1 Advances in Associative Memories 90
5.2 Application of Stochastic Activity

Networks 92

REFERENCES 94

6

LIST OF TABLES

Table Page

Table 4.1 Reward Variables of PC Sensor System 82

Table 4.2 Probability Density Function of Reward
Variable " num_SN " 83

Table 4.3 The Effect of Increasing Checking rate 85

Table 4.4 Reward variables of PLT sensor system 87

Table 4.5 Probability Density Function of Reward
Variable "num SN" 88

7

LIST OF ILLUSTRATIONS

Figure Page

Figure 2.1 Diagram of the Hopfield Network 31

Figure 2.2 the SAN Model of a Simple SVS 39

Figure 3.1 3-D Plot of E(u) 57

Figure 3.2 Contour Plot of E(u) 57

Figure 4.1 the SAN Model of the PC SVS 74

Figure 4.2 the SAN Model of the PLT SVS 79

8

ABSTRACT

In this paper, the problem of designing an advanced

sensor validation system (SVS) which is robust and fault-

tolerant under faulty conditions is considered.

Associative memories, which provide robust pattern

recognition are investigated as an information processing

technology that can be applied to sensor validation. Studies

of Binary Associative Memories (BAM) and Continuous

Associative Memories (CAM) yield many results including 1)

the stability condition of exemplars and spurious memories

in BAMs, 2) the formula of choosing diagonal weights and

bias that eliminates spurious memories most effectively in

BAMs, 3) the convergence theory of CAMs that have asymmetric

weight matrix with non-zero diagonal elements and non-

monotonically increasing activation functions, 4) the energy

function that explores the convergence behavior of CAMs, and

5) the hybrid learning algorithm that reduces spurious

memories effectively in CAMs.

The concept of performability is introduced to the

evaluation of SVS. A set of important performability

variables is introduced. Stochastic Activity Networks are

used as a modeling tool to evaluate the performability of

SVS. An illustration example, the evaluation of the

pressurizer SVS of a PWR, is provided.

9

CHAPTER 1

INTRODUCTION

In a nuclear power plant, outputs from several hundred

instrumentation channels are used in control systems,

protection systems and plant monitoring systems. The

routine validation of these signals is useful in increasing

the reliability of operator decisions, in improving the

plant control actions and in minimizing plant downtime.

Since the incident at Three Mile Island unit 2,

computerized plant status display, implementation of human

factors in control room design, and plant monitoring based

on expert system technology have seen a tremendous growth.

One such proposed operator aid is a plant signal validation

system. This system is used to check the consistency of

redundant measurements (sensors) of selected process

variables, estimate their expected values for plant-wide

data, and detect, isolate and characterize the type of

anomaly in the instrument channel outputs. Automated signal

validation is necessary because of the large amount of

information available, and because of the operator's

inability to validate information from many diverse sources.

10

1.1 Sensor Validation Systems and Their Evaluations

1.1.1 Sensor Validation System

A Sensor Validation System (SVS) is a subsystem of a

signal validation system. It takes the sensor measurements

as its input, checks the consistency of redundant

measurements, and provides the status (failure or not) of

sensors and the best estimates of those measurements. It

helps to provide more reliable information for control

decisions and essential information for sensor maintenance.

A SVS has functions of fault detection, isolation and

accommodation. Fault detection detects if there are any

faults in a sensor system. Fault isolation identifies which

faults have occurred. Fault accommodation recovers wrong

outputs of a sensor system regardless of whether faults are

detected or not.

There are many approaches for sensor validation. In

section 1.2, a survey of different approaches will be

presented. As we shall see, approaches based on neural

networks and associative memories have shown their potential

advantages over other approaches. However, since the

properties of neural networks are still not thoroughly

understood, their applications are only found in limited

scope.

The first part of my research effort has been devoted to

a better understanding of the properties of associative

11

memories, so that how and how far they can be applied in

SVSs will be understood. Analysis of the limitations of

existing neural network structures also helps the pursuit of

a more suitable structure of associative memory for

application to sensor validation.

1.1.2 Evaluation of SVSs

The second part of my research effort has been devoted

to the evaluation of SVSs. Given a SVS, we would like to

know how well it performs. So, quantitative evaluation of a

SVS is important and necessary. It forms a base for

performance comparison among different SVSs and also points

out the improvement direction for an existing SVS.

Traditionally, the evaluation of a system is divided

into two aspects: 1) performance, which is the system's

ability to perform under its normal condition (fault free),

2) dependability, which is the system's ability to keep in

its normal condition. However, large complex systems, like

nuclear power plants, often operate in a degraded condition

(in presence of faults). Therefore, the concept of

performability, the system's ability to perform in the

presence of faults, is more suitable to represent the real

situation of the system. The performability of a system is

statistically measured by the performability variables.

A sensor system in a nuclear power plant is not simple.

Its validation system is even more complicated. The

12

complexity of a sensor validation system requires a

sophisticated representation to account for performance and '

dependability in a unified way. The modern technique used

here is stochastic activity networks (SANs).

In this paper, I explore the application of SANs as a

modeling tool to evaluate SVSs in a nuclear power plant.

1.2 Survey of Sensor Validation

1.2.1 Introduction

Because of the increasing demands on reliability and

safety of increasingly sophisticated plants and their

elements, methods for improving the supervision and

monitoring as part of the overall control of processes are

of increasing interest. An essential prerequisite for the

further development of intelligent automatic supervision is

a system for early process fault detection, isolation and

accommodation(FDIA) . A SVS performs the functions of FDIA.

The problem of FDIA of a dynamic system has received growing

attention during the last 20 years, as can be seen from the

survey papers (Willsky, 1976; Mironovski, 1980; Kligene and

Telksnys, 1983; Isermann, 1984; Basseville, 1988; Frank,

1990) .

Sensor validation is based on the redundancy of signal

measurement. There are two kinds of signal redundancy,

physical redundancy and analytical redundancy. Physical

13

redundancy comes from multiple physical channels measuring

the same signals. Analytical redundancy cpmes from

quantitative relations and constraints among different

signals in a system. Those relations and constraints usually

have their mathematical forms based on physical laws.

The approach based on physical redundancy was

traditionally used in SVSs. Recent developments of sensor

validation have introduced the approach based on analytic

redundancy, which can be implemented without need of

additional physical instrumentation in the plant. Usually

this approach makes use of mathematical models of a plant.

However, recent researches have shown some potential

advantage in using knowledge-based models and in using

neural-network-based models when detailed mathematical

models of a plant are not available.

In the rest of this section, approaches based on

mathematical models, knowledge-based models and neural-

network-based models will be introduced.

i.2.2 Mathematical model-based approach

A mathematical model-based approach takes advantages of

the existing analytical redundancy in mathematical models of

a plant. However, there is a price to pay for this benefit

which arises from the need for the mathematical model of the

plant. Not only is there considerably more computational

expenditure required for on-line modeling of the process; a

14

much more serious problem is that of the sensitivity of the

detection system with respect to modeling errors that are by

no means avoidable in practice. This problem increases the

chance of malfunction of the validation system.

The robustness issue with respect to modeling error has

been emphasized in Frank's survey (Frank, 1990). The

following classification of mathematical approaches follows

his classification . Readers who are not interested in the

detailed classification of mathematical model approaches can

skip to section 1.2.3 without loss of continuity.

The general procedure of model-based approaches can be

roughly divided into two steps: 1) generation of residuals

and 2) decision and isolation. The mathematical model-based

approaches can be classified by the different methods of

residual generation.

The parity space approach was developed by Potter and

Suman (1977), Desai and Day (1981), and the group of Willsky

et al. (1984 and 1986). The key idea is to check the parity

(consistency) of the mathematical equations of the system

(analytical redundancy relations) by using the actual

measurements. The parity space is actually a null-space of

the system model. A fault is declared to have occurred once

preassigned error bounds are surpassed.

Independent from the above approach, the dedicated

observer approach makes use of single or banks of Luenberger

15

observers or Kalman filters, see for example, Clark et al.

(197.5),„ Willsky (1976), Frank (1978b; 1988). The Basic idea

of the observer approach is to reconstruct the outputs of

the system from the measurements or subsets of the

measurements with the aid of observers or Kalman filters

using the estimation error as a residual for the detection

and isolation of the faults.

The fault detection filter, which was first proposed by

Beard (1971) and Jones (1973), is a full-order state

estimator with a special choice of feedback gain H so that

the fault residuals come to lie in some certain direction.

All of the above approaches end up with state

estimators. There is an alternative approach, the parameter

identification approach (Isermann, 1984), which makes use of

the fact that faults of a dynamic system are reflected in

the physical parameters. This approach may be particularly

useful for the detection of incipient faults.

1.2.3 Knowledge-based approach

Knowledge-based methods (expert systems) open a new

dimension of possible fault diagnosis for complex processes

with incomplete process knowledge, see S. Tzafestas in the

book by Patton et at. (1989). The expert system approach

makes use of qualitative models based on the available

knowledge of the system instead of quantitative analytical

16

models which are used by the mathematical model-based

approach.

The knowledge-based validation system usually consists

of four components, the knowledge base (knowledge of facts

and rules), the data base (information about the present

state of the process), the inference engine (forward or

backward reasoning) and the explanation component (interface

between user and the validation system). Fault diagnosis is

done in the inference engine which has to combine heuristic

reasoning with algorithmic operations in terms of the

evaluation of analytical redundancy.

1.2.4 Neural network approach

The mathematical model-based technique is strongly

dependent upon a reliable system model which may not always

be attainable in a complex system. Furthermore, modeling

errors may cause malfunction of the validation system and

correcting these errors can be very costly. The knowledge-

based techniques are based on finite rules of a

sophisticated system. The performance of a knowledge-based

model is limited by its knowledge, which is usually

incomplete and cannot be improved from experience. The

neural network approach overcomes these shortcomings by not

requiring a detailed model of a plant and by continuously

improving performance during learning.

17

An artificial neural network is a data processing system

consisting of a number of highly interconnected processing

elements (PE) in an architecture inspired by the structure

of the cerebral cortex portion of the brain. Hence, neural

networks are often capable of doing things which humans or

animals do well but which conventional computers often do

poorly, such as pattern recognition, learning function

mapping and so on.

Systems of neural networks have shown great potential

for use in environments in which robust, fault-tolerant

pattern recognition and function mapping are necessary in a

real-time mode, and in which the incoming data may be

distorted or noisy. The function of SVS can be abstracted

into fault recognition (fault detection and isolation) and

fault-tolerant mapping (accommodation). Therefore sensor

validation becomes one of the areas to which neural networks

have shown great potential applications.

Pioneer researches have shown the feasibility and

advantages of this approaches.

T. -H. Guo is one of the pioneers in this area. He first

applied neural networks to sensor failure detection and

recovery of the Space Shuttle Main Engine (1991). Belle R.

Upadhyaya and Evren Eryurek are pioneers of neural networks

in nuclear engineering. From 1987 to 1990, Upadhyaya, et

al., at the University of Tennessee, developed a

18

comprehensive signal validation system with application to

current nuclear power plants and future advanced reactors.

Their approach combined the cross information among process

variables, sensor redundancy, and the data base containing

knowledge about instrumentation, plant subsystem models, and

history of instrument and plant behavior. An on-line signal

validation system is in operation at the Northeast Utilities

Millstone units 2 and 3 PWR plants. Recently, they applied

neural networks for sensor validation and nuclear power

plant monitoring (Eryrek and Upadhyaya 1990, 1992).

Eryrek and Upadhyaya (1990) at the University of

Tennessee have investigated the feasibility of using neural

networks for signal validation. The objective of these

projects is to enhance the safety and performance of SVSs of

nuclear plants through the use of neural networks. Both

auto-associative and hetero-associative neural networks were

applied for sensor and process monitoring in a Pressurized

Water Reactor (PWR). Their report shows that neural networks

offer several advantages over traditional methods for sensor

validation and plantwide monitoring.

Many national laboratories have conducted their research

in this area too. Their approaches are similar in terms of

two-step-validation. In the first step, use a fault-tolerant

mapping for state estimation (accommodation). Then, in the

second step, check the deviation between estimates and

19

corresponding sensor readings for fault detection and

isolation. There are several significant developments,

including development of a "universal network" (Mott et. al

1992), application of neural networks to neutron noise

spectra (Korsah, Damiano and Wood 1992) and incorporation of

neural networks into automated safeguards (Whiteson and

Howell 1992).

A universal network is a variation of neural networks.

It has been developed as a universal process modeling

software which has been implemented on a dedicated computer

system at EBR-II in Argonne National Lab., Idaho Falls (Mott

et. al 1992). Their research has concluded that the

universal network can provide extremely fast, accurate, and

fault-tolerant estimation, validation, and replacement of

signals in a real system.

Neutron noise data reduction, analysis, and

interpretation can be used as means to diagnose degradation

of reactor internals. In the Oak Ridge National Laboratory,

a neural network-based method has been developed to

represent neutron noise spectra (Korsah, Damiano and Wood

1992). The back-propagation learning method is applied.

An automated safeguards system involves detection of

anomalous events, identification of the nature of the event,

and recommendation of a corrective action. In Los Alamos

National Lab, a neural network model has been applied in the

20

first step: detection of anomalous events (Whiteson and

Howell 1992). It detects anomalous events by predicting how

a system should be behaving.

However, the technology of applying neural networks to

SVS is not mature yet. Lack of thorough understanding of the

functions, properties and limitations of different

structures have prevented application and dissemination of

neural networks to sensor validation, as well as to other

areas.

As we know, Hopfield has shown that recurrent networks

are suitable for associative memories. However, in the

University of Tennessee approach (Eryrek E. and Upadhyaya

B.R. 1992), the feed forward structure is still used for

auto-associative networks and hetero-associative networks.

In this paper, I will explore the feasibility of using

associative memories for sensor validation systems.

1.3 Associative Memories and Sensor Validation

1.3.1 Redundancy checking and pattern recognition

In order to validate sensor signals, there must be some

redundancy between signals, either physical or analytical

redundancy. By checking the consistency of existing

redundancy, one should be able to validate these signals, if

the redundancy is sufficient. From another aspect,

redundancy can also be represented as patterns. Therefore,

21

consistency checking can be transformed into pattern

recognition.

However, in a large system, such as a nuclear power

plant, there are hundreds of signals that need to be

validated, in real time. The pattern recognition task is

tedious. Making it harder, analytic redundancy usually is

implicit. A learning machine is needed to explore the

implicit redundancy. Since the signals are noisy and

disturbed in a real plant, the robustness of SVSs over

disturbed patterns is necessary. In short, a SVS must have

the ability of self-learning and fault-tolerant pattern

recognition.

1.3.2 Associative memory and fault-tolerant pattern

recognition

An associative memory is a neural network in which

patterns can be stored and retrieved. Patterns, in general,

can be represented by vectors. The main function of an

associative memory is to retrieve patterns that have been

stored in the memory, when some input patterns are

presented, even though the input pattern may have been

disturbed. If the input pattern is identical or close (when

it is disturbed) to the pattern to be retrieved, the memory

is called an auto-associative memory. If the input pattern

is different from the pattern to be retrieved, the memory is

called a hetero-associative memory.

22

One important feature of an associative memory is the

ability to retrieve patterns regardless of noisy, even

faulty input patterns. Another feature is its ability of on

line storing (learning), which makes it possible to explore

more implicit redundancy based on experience. These two

features make an associative memory a suitable device for

self-learning and fault-tolerant pattern recognition in a

SVS.

1.3.3 Contributions

One of the major types of associative memory is known as

the Hopfield net(Hopfield 1982, 1984). Detailed description

of associative memories will be carried in section 2.1.

One major part of this paper will be dedicated to

theoretically analyzing the properties of the Hopfield type

of network, so that how and how far it can be applied in the

sensor validation system will be understood. In chapter 3, I

will propose a series of theorems, which lead to better

understanding of single layer associative memories.

Furthermore, this knowledge leads to better learning

algorithms as we shall see in chapter 3.

23

1.4 Stochastic Activity Network and

Evaluation of Sensor Validation Systems

1.4.1 Performability

When we have a SVS in hand, we would like to know how it

performs. More important, how does it perform in the

presence of faults? Traditional performance and

dependability modeling techniques require the separate

evaluation of system performance and dependability,

disregarding any dependencies that exist between them. The

concept of "performability" overcomes the limitation (Meyer

1980). Informally, performability quantifies a system's

ability to perform in the presence of faults. The

performability of a system is statistically measured by the

performability variables.

When a failure of a sensor is detected and isolated, it

most likely will be repaired. Thus the SVS is closely

related with the sensor maintenance and sensor performance.

The evaluation of a SVS usually includes the evaluation of

the performability of the sensor system itself, as well as

of its validation system.

A sensor system in a nuclear power plant is not simple.

Its validation system is even more complicated. The

complexity of the sensor validation system requires a

sophisticated representation to account for performance and

24

dependability in a unified way. The modern technique used

here is stochastic activity networks.

1.4.2 Stochastic activity networks

Stochastic activity networks (SANs) are a stochastic

extension to Petri nets (Movaghar and Meyer 1984). They can

be viewed as a modeling language which represents our

knowledge of a sequence of random events of a complex

system. It is machine readable so that it is feasible for

computer application. Even more, its graphic interface makes

it human readable so that it is easy to communicate.

As a problem solver, a SAN has its reward variables as

output. The reward variables are defined based on the model

and can be computed by the SAN's solver. Performability

variables can be further constructed as functions of reward

variables. SANs have been used successfully to evaluate a

wide variety of computer systems and networks. Detailed

description of SANs will be carried in section 2.2.

1.4.3 Contributions

In this paper, I explore the application of SANs as a

modeling tool to evaluate SVSs in a nuclear power plant. The

concept of performability is introduced into the evaluation

of SVS. In Chapter 4, a set of important performability

variables are defined. They construct a framework for the

evaluation of SVSs. Strategies of using SANs for evaluating

25

SVSs are developed. As illustrative examples, the SAN models

of a pressurizer sensor system are presented. The

performability of the system is evaluated and analyzed.

CHAPTER 2

ASSOCIATIVE MEMORIES AND STOCHASTIC ACTIVITY

2.1 Associative Memories

2.1.1 Introduction

Through the years, two human traits have continued to

elicit great interest among philosophers and researchers:

the ability of humans to retrieve information on the basis

of associated cues and the ability to recognize speech

utterances and handwriting in a very robust manner despite

major variations, distortions, or omissions.

The first ability is thought to be the power of a

human's associative memory. For example, a few bars of a

tune can evoke memory of the entire tune; a glimpse of the

back of a head in a crowd can be sufficient basis for

thinking of an old friend. Such power and other related

phenomena have fueled a continuing interest of philosophers

and psychologists in the "human's associative memory", even

from as early as the days of Aristotle:

"Thus memory belongs to the faculty of the soul to which
imagination belongs; all objects which are imaginable are
essentially objects of memory; all those that necessarily
involve images are objects of memory incidentally."
(Aristotle, 384-322 BC.)

27

In nuclear a power plant, the power of human associative

memory also helps the operators to detect and identify

failures in the plant based on the signature of the

failures. This inspires the idea to use artificial

associative memories for intelligent control in safety

systems, such as sensor validation systems, fault detectors

and diagnostics, and fault tolerant controller.

Since associative memories are human traits, researchers

have looked to their limited knowledge of human neural nets

for inspiration and guidance in computer simulation model

building. Therefore many computer associative-memory models

also tend to be nets of neuron like nodes functioning on the

basis of distributed processing and storage.

One simple version of such a neural-net model is a

binary, discrete-time, additive model, aspects of which have

been studied since 1943 by a number of researchers,

including Hebb [1949] and McCulloch and Pitts [1943]. In

1982, Hopfield first developed a network based on "two-state

McCulloch-Pitts neurons", which will be simply called binary

associative memory (BAM) because its input and output are

limited to be binary numbers. Later, in 1984, he proposed

another model based on "continuous neurons", which will be

called continuous associative memory (CAM) because its input

and output are real numbers. These models have received

28

considerable attention because of Hopfield's detailed

exposition of their characteristics.

Since the Hopfield Net was introduced, many applications

of this type of network have been found and continuous

research efforts have been devoted to understanding and

developing its performance. Meany and Pimmel [1991] have

performed a detailed analysis of how to use bias and non

zero diagonal terms to improve the performance of BAMs.

Sudharsanan and Sundareshan [1990] recently have developed a

special type of dynamic network (a variation of Hopfeild's

CAM) which has its application to associative memories.

Their simulation examples have shown that it has high

accuracy in storing and retrieving information.

In the rest of this section, Hopfield's associative

memory, Meany and Pimmel's work and Sudharsanan and

Sundareshan's contribution will be introduced in a coherent

frame of vector space, so that the notation and the

structure will be consistent with later development in

Chapter Three. Therefore, some refreshment of vector space

and introduction to some important concepts will be

necessary to be carried out first.

2.1.2 Vector space

Notation: all the vectors are underlined, like x-

The inner-product of two vectors is viewed as a

composition of two operators: the element by element product

29

and the summation of the elements of their element by

element product. The element by element product of two

vector z. = x*y, x, y e RN is defined as z e RN and its

elements zL = x± y^ The sum of the elements of a vector <z>,

z e R" is defined as <z> e R and <z> = Y. Therefore, the

inner-product of two vector xTY can be defined as <x*y>.

The outer-product of two vector, xvT, can be viewed as

an operator composed of two operators. It multiplies the

vector x by the inner-product of y and the operand.

Therefore, the outer-product, xvT. can also be denoted as

x<y*.>.

In a vector space RN , the magnitude |x| of a vector x e

RN is defined as its L-2 norm, i.e., |x|= -J<x * x > . The angle

0 between two vectors x and y e RN is defined as

cos(0) = <x*>j>/|x||^|. On the other hand, the inner-product of

two vector results in the magnitude of projection of one

vector on the other, i.e., <x*y> = |x||y| cos(0).

A binary space is a subset of a vector space of the same

dimension, denoted as 2N. A binary vector is a vector whose

elements are +1 or -1. It can be shown that |x|= *J~N if x e

2 N .

We say that a vector x is greater than a vector y,

denoted as x » y, if all the elements of x are greater than

the corresponding elements of y, i.e., x » y if and only if

xt > y1 , for all i. By analogy from two real numbers, x and

30

y, which are of the same sign if and only if xy > 0, we say

that two vectors x and y are. of,the same sign if and only if

x*y » 0 where 0 is a vector whose elements are all zeros.

Let J be the unit vector whose elements are all +1.

A hyper-quadrant is a set of all the vectors that are of

the same sign. So, two vectors x and y are in the same

hyper-quadrant if and only if x*y » 0. Clearly, a hyper-

quadrant is a subset of a vector space of the same

dimension.

Each hyper-quadrant contains one and only one binary

vector. We call this binary vector the quadrant vector of

the hyper-quadrant, or loosely, the quadrant vector of the

vectors in the same hyper-quadrant. In other words, each

binary vector denotes a quadrant vector. Clearly, a binary

space is the set of all the quadrant vectors.

The quadrant operator Q is a function which maps a

vector to its quadrant vector, i.e., Q : RN -> 2N and Q(x)*x

» 0.

We will find that the concepts of hyper-quadrants,

quadrant vector and the quadrant operator are quite useful

and handy in describing and analyzing the properties of

associative memories. The perspective of the inner-product

and outer-product provides insight on the behavior of

associative memories.

31

2.1.3 Hopfield's associative memory

In 1982, Hopfield proposed a stochastic model of

associative memory based on McCulloch-Pitts neurons. It only

has one recurrent layer, as depicted in Figure 2.1.

Figure 2.1 Diagram of the Hopfield Network

The state of the net is initialized by the input. Then

the state in the recurrent layer will evolve until it

reaches an equilibrium state. The output of the net is the

equilibrium state of the net. The dynamic of the network can

be mathematically described as follows:
7/(0) = x

v (k) = g (u (k))
u (k + l) = W v (k) + b [2.1]

y=Y.s

when vs(k) = vs{k +1)

where k is the iteration step, x is a binary vector as

initial input, y is a binary vector as final output, W is

the recurrent weight matrix, b is the bias, u and v are the

state vectors of the net vsand g(u) is the activation

function. Hopfield used the quadrant operator Q(.) as the

32

activation function. Since the input and the output of the

memory are binary vectors, the model is called Binary

Associative Memory (BAM).

The BAM stores patterns (exemplars eif i = 1, 2, . . . M),

by forming its weight matrix using exterior-product

formulation (EPF), the sum of outer-products of the

exemplars, as described in the following equation.
M

~MI + Dw [2.2]
i=1

where M is the number of exemplars to be stored in the

memory and Dw is a diagonal matrix which forms the diagonal

term of the weight matrix.

Hopfield prescribed zero bias (b=0) in equation 2.1 and

zero diagonal elements (Dw=0) in equation 2.2.

In 1984, Hopfield proposed a deterministic, continuous

model of associative memory, which can be described as the

following equation set.
u{0) = x

Cu — —R'] u+lVg(u)+b
~ " " " [2.3]

y = g{'i)

when u'=RIVg(u') + Rb

where k is the iteration step, x the initial input

vector and y is the final output vector, u is the state

vector of the net, W is the recurrent weight matrix, C is

the matrix representing capacitance of the cell membranes, R

is the matrix representing the resistance of the cell

membranes, b is bias representing some fixed input and g(u)

33

is an activation function. uB represents the stable steady

state to which the network asymptotically evolves. Since the

input and the output of the net are continuous vectors, the

net is called Continuous Associative Memory (CAM).

The convergence property of the recall process in the

CAM is governed by the Lyapunov function. A Lyapunov

function is a non-negative continuous function of the state

of the system and its time derivative is not positive. The

convergence theorem states that if there is a Lyapunov

function existing for a dynamic system, then the dynamic is

guaranteed to converge to its stable state.

Hopfield introduced an energy function as follows:

When W is a symmetric matrix with zero diagonal

elements, the time derivative of the energy function is

determined by the following equation:

Since dg/du is a monotonically increasing function,

dE/dt is always not positive during state evolution and will

reach zero only when dui/dt=0 for all i. Therefore, the

energy function is a Lyapunov function and the iteration

must converge and lead to a stable state.

If a pattern is a stable state (a minimum of the energy

function) in the memories, then it is stored (stabilized) in

[2.4]

[2.5]

34

the memory. On the contrary, if a pattern is not a stable

state in the memories, it is not stored (destabilized) in

the memory. Since the states of the memory will converge to

a stable state, the stable state is also called an

attractor, which attracts its adjacent states.

The learning procedure is an attempt to store exemplars

in the memories, in other words, to stabilize exemplars. Any

stabilized patterns that are not exemplars are called

spurious memories. The objective of learning (storing

exemplars) is to stabilize all the exemplars and to

eliminate spurious memories at the same time.

The Hopfield's model has three major limitations in

performance: spurious memories, destabilized exemplars and

limited capacity. Much research has been done to improve the

performance of BAMs and CAMs by modifying the model or

changing the learning algorithm. Sudharsanan and Sundareshan

(1990) proposed to use Backwards Error Propagation (BEP) to

store the exemplars. Meany and Pimmel (1989, 1991)

investigated the effect of bias and non zero diagonal terms

of the weight matrix (diagonal weights) on the performance

of a BAM. Their work will be introduced in the following two

sections.

2.1.4 Sudharsanan and Sundareshan's model

Sudharsanan and Sundareshan proposed a dynamic network

as follows.

35

u(0) = x

u = -u + lVg(u)+b
[2 . 6] y = u

when u' = Wg(u')

where x is the vector presented to the net and y is the

output vector of the net, u is the state of the net, W is

the weight matrix and b is the bias. uB represents the

stable steady state to which the network asymptotically

evolves. They used, as the activation function, the inverse

tangent function with large gain, which is a continuous

function providing a good approximation to the quadrant

operator.

Besides their use of identity matrices for the

capacitance matrix and the resistance matrix, their network

differed from Hopfield's in their use of uB as the final

output of the memory, instead of g(u°) as used in Hopfield's

model. The choice of uB as the final output lifts the

limitation that the output is in the range of the activation

function.

They also used the Backwards Error Propagation (BEP)

algorithm to form the weight matrix and bias. The error E of

the network is defined as follows.

where y^x*) is the desired output pattern of the net and

y(Xj.) is the actual output pattern of the net when the input

pattern is x̂ .

[2.7]

36

The BEP algorithm uses the gradient descent rule to

minimize the error. The desired..patterns (exemplars) will be

stored (stabilized) in the net when the error of the net is

reduced to zero. The BEP algorithm yields the following

update of weight matrix and bias.

A W = n (y - y) g (y) T

~d ~ ~ [2.8]
A^ = riQ^ ~y)

where |4. and t] are learning constants. Sudharsanan and

Sundareshan have shown that the learning constants must be

in appropriate ranges in order to get good training result.

2.1.5 Meany and Pimmel's analysis

Meany and Pimmel investigated the effect of bias and non

zero diagonal terms of the weight matrix (diagonal weights)

on the performance of a BAM (Meany 1989, Meany and Pimmel

1992). Bias is utilized to break network symmetry,

eliminating exemplar complements as stable states. Positive

diagonal terms can stabilize otherwise unstable exemplars,

but may also stabilize otherwise unstable spurious memories.

They suggested choosing diagonal weights according to the

following equation which guarantees the stability of every

exemplar.

w„ = maxf0, m a x s (w u e / - b ,) + e *)] + e [2.9]
j*<

where s is a small positive constant. Their simulation

suggested that let e to be 0.01.

37

2.2 Stochastic Activity Network

2.2.1 Introduction

Stochastic activity networks (SANs) are a stochastic

extension to Petri nets. They can be viewed as a modeling

language which represents our knowledge of a sequence of

random events of a system. Movaghar and Meyer (1984), at

University of Michigan, proposed the SAN model. The Michigan

Evaluation Tool for the Analysis of Stochastic Activity

Networks (METASAN) was the first SAN-based software package

(Sanders and Meyer 1986). These studies illustrated SAN's

usefulness in representing real systems.

UltraSAN, (Couvillion et. al 1991) recently developed in

University of Arizona, is new graphical, X window-based

software package for SAN. It incorporates some innovations

including: 1) a class of SAN-level reward variables common

to both analytical and simulation solution methods, 2)

methods that use the reward variable choice and the SAN

structure to greatly reduce the size of the stochastic

process required for an analytical solution, and 3) methods

that use the reward variable choice and the SAN structure to

reduce the number of activities checked on each state

change, thus speeding the simulation.

The following description of SAN is based on the

documentation of the UltraSAN software package.

38

2.2.2 Primitives

As a modeling language, SAN has its "keywords",

primitives. There are three kinds of primitives in SAN,

activities, places and gates. Those primitives are

interconnected by arcs to form a network. The semantics of

the net represents our knowledge of a sequence of random

events.

In a network, places are denoted by circles. They

represent states of objects and may contain tokens. The

number of tokens in a place represents the number of objects

in the state. The number of tokens must be initialized when

a place is constructed.

For example, the SAN model of a SVS system is plotted in

Figure 2.2. In the figure, "NORMAL", "FAILED", "DETECTED"

and so on, are places. The place "NORMAL" represents the

normal state of sensors. The number of tokens in place

"NORMAL" represents the number of normal sensors and shall

be initialized with the number of normal sensors initially

existing.

39

REPAIRABLE REPAIR

FAIUURE

DETECTED FAILED ISOLATE DETECT

DETECTING

NOT WORKING DETECTER NORMAL
BREAK

Figure 2.2 the SAN Model of a Simple SVS

40

Activities represent the transitions between states and

are connected to places by arcs. The input places of an

activity are connected to its left hand side and the output

places to the right hand side. On the completion of an

activity, the number of tokens in its input places all

decrease by one and the number of tokens in its output

places all increase by one.

In SANs, there are two kinds of activities, timed

activities, denoted by ovals, and instantaneous activities,

denoted by vertical bars. Timed activities represent the

state transitions that complete in a considerable amount of

time. The probability distributions of the elapsed time of

their completion must be specified when they are

constructed. Instantaneous activities represent the state

transitions that complete in a negligible amount of time.

In Figure 2.2, "FAILURE", "DETECT", "REPAIR" and so on,

are timed activities. The activity "FAILURE" represents the

transition of a sensor from normal to abnormal. Since the

elapsed time of isolating a detected sensor failure is

negligible, the isolation procedure is represented by an

instantaneous activity, "ISOLATE".

Cases associated with an activity are denoted by small

circles on the right side of the activity. They divide

output places of the activity into different groups

according to the outcomes of the activity. On the completion

41

of the activity, one of its cases will be chosen and only

the group of places that are connected to that case become

active output places, that is, the number of tokens in those

places will increase by one. In Figure 2.2, two cases in the

activity "ISOLATE" differentiate two possible states of a

failed sensor, repairable and irreparable.

Gates, denoted by triangles, can be divided into input

gates, which are connected to the input side (left) of

activities and output gates, which are connected to the

output side (right) of activities. Input gates enable or

inhibit the activity to which they connected according to

the value of their predicates. An activity will be enabled

only when the predicates of all its input gates return TRUE

and the number of tokens in neither of its input places are

zero. Output gates do not have predicates, so they do not

have the function of enabling or inhibiting activities. Both

input and output gates have functions that may change the

number of tokens in the places on the completion of the

activity. In short, gates provide greater flexibility in

specifying enabling and completion rules for activities.

For examples, in Figure 2.2, "DETECTING" is an input

gate. It enables activity "DETECT" when there is some

detector available, that is, the number of tokens of place

"DETECTER NORMAL" is not zero.

42

2.2.3 Reward Variables

Using a SAN model, we now can represent our knowledge of

a system in a unique form, both machine readable and human

readable. The next question is what information we can get

from it. As a problem solver, a SAN returns reward variables

as its output.

In SANs, there are two types of rewards, impulse reward

associated with each state change and a rate reward

associated with the duration of certain states. Activity

completion can be assigned to impulse rewards while

particular numbers of tokens in places are assigned to rate

rewards. Since impulse rewards are not used in this project.

I omit their detailed description.

A rate reward is composed of a predicate and a function.

The function takes the numbers of tokens in places as its

arguments and returns a real number when its predicate is

TRUE. Therefore, a rate reward accumulates information of

the duration of particular states. Then evaluation of a

system can be done by processing the information i.e.,

constructing performability variables as functions of

appropriate reward variables.

2.2.4 Solvers

After our knowledge of a sequence of random events is

represented in a SAN model, SAN will transform it into a

43

Markov chain, i.e., into a Markov state transition equation

as follows.

P (k + \) = Q (k) P (k) [2.10]

where P(k) is the vector of state-occupancy

probabilities and Q(k) is the state transition matrix at

time k.

Quite often, we would like to know the asymptotic state

of the system, i.e., Hm P(k) • The following well known
Ar—>00

theorem is used:

Theorem: If the Markov chain is irreducible and aperiodic,

then the asymptotic state-occupancy probabilities exist and

are equal to the steady state-occupancy probabilities which

satisfy the steady state equation, i.e.,

lim P(k) = Ps

[2.11]
where QP" = P" and ^ P * = 1

i

There are two type of solvers in SAN, the analytic

solver and the simulation solver.

The analytic solver solves the desired steady state-

occupancy probabilities from the steady state equation,

[2.11]. Then, it computes the mean, variance, probability

density function and probability distribution function for

each desired reward variable from known steady state-

occupancy probabilities.

If the condition of the above theorem is not satisfied,

asymptotic state-occupancy probabilities either do not exist

44

or can not be computed from the steady state equation. Then,

the simulation solver can be applied, instead of the

analytic solver.

The simulation solver uses the Markov state transition

equation to compute the state-occupancy probabilities at

every instance. And then, like the analytic solver, it

computes the mean, variance, probability density function

and probability distribution function for each desired

reward variable from known steady state-occupancy

probabilities.

CHAPTER 3

ANALYSIS OF ASSOCIATIVE MEMORIES

3.1 Issues of Associative Memories

In chapter 2, Hopfield's Binary Associative Memory (BAM)

and Continuous Associative Memory (CAM) are introduced. For

information storing, the weight matrix with zero diagonal

weights is formed by the Exterior Product Formulation (EPF).

Hopfield proved that the convergence of the network is

guaranteed if 1) the weight matrix is symmetric and with

zero diagonal terms and 2) the activation function is

monotonically increasing. However, Hopfield's model has

three major limitations in performance: spurious memories,

destabilized exemplars and limited capacity.

Much research has been done to improve the performance

of BAMs and CAMs by modifying the model or changing the

learning algorithm. Meany and Pimmel (1989, 1992) have

proved that a weight matrix with non-negative diagonal

weights still guarantees the convergence of a BAM and will

stabilize otherwise unstable exemplars. They also use biases

to destabilize the exemplar complements. (Complements are

vectors with all signs reversed relative to the exemplars.)

Sudharsanan and Sundareshan (1990, 1991) modified the

CAM model and applied a Backwards Error Propagation (BEP)

46

algorithm to stabilize continuous patterns in their net. In

their approach, there is no constraint on the choice of

weight matrix. Recent research (Yoshizawa, Morita and Amari

1992) has also shown that a non-monotonic activation

function may increase the capacity of a CAM. However,

convergence may not be guaranteed.

However, during the development of associative memory,

there are some remaining questions. Regarding the issue of

spurious memories and unstable exemplars, the questions are:

1) under what conditions, are exemplars stabilized and 2)

where, or more precisely, in which hyper quadrants do

spurious memories exist? Regarding choosing non-zero

diagonal weights and biases, the question is: how to choose

those parameters that can stabilize all the exemplars and,

at the same time, most effectively eliminate spurious

memories? Regarding the generalization and modification of

Hopfield's model, the question is: what is the convergence

property when Hopfield's convergence condition no longer

holds? Regarding the convergence behavior, how do different

initial states gradually evolve to their destines? Regarding

the different learning algorithms, what is the effectiveness

of EPF and BEP algorithms?

In this chapter, both the BAM and CAM models will be

studied analytically so that those issues are addressed and

questions are answered. In section 3.2, vector analysis is

47

performed on BAMs and the first two issues will be

addressed. In section 3.3, the convergence property and

convergence condition of CAM will be discussed. In section

3.4, the two learning algorithms, EPF and BEP, will be

studied and a so called Normalized Exterior Product

Formulation (NEPF) will be proposed. Finally, section 3.5

summarizes the chapter.

3.2 Vector Analysis of Binary Associative Memory

3.2.2 Stability conditions of BAM

As we know, a BAM formed by EPF often has spurious

memories, and even worse, it sometimes may have destabilized

exemplars. Then two questions arise: Under what conditions,

are exemplars stabilized, and where, or more precisely, in

which hyper quadrants, do spurious memories exist?

Theorem 1 (original) answers those two questions by

stating the stability condition of a binary pattern in a BAM

formed by EPF. For detailed description of BAM and

notations, see section 2.3.

Theorem 1: A binary vector v is stabilized in a BAM

constructed by EPF, if and only if the following condition

holds.

v * (v + £) » M J - D W J

& [3-1]
v = N^e, cos(0,.)

iol

where 0^ is the angle between v and ej_.

48

Proof:

From EPF (equation 2 . 2) , we get the following equation.

According to the property of the quadrant vector, u(k)

and v(k) are always in the same quadrant. The quadrant

vector v(k)=v(k+l) if and only if

u(k+l)=u(v(k))=Wv(k)+b and v(k) are in the same

quadrant.

Therefore, a binary vector v is stabilized in a BAM, if

and only if the vector u(v) is in the same quadrant as

v, i.e. u(v)*v»0. Thus, we get the following

inequality for a stabilized pattern:

= (W v + b) * v = (iV^Te,- cos(0,)~M I v + D w v + b) * v
/=i [3.3

= (v + b) * v - (M J - D w J) » 0

Moving (MJ-DWJ) to the right hand side of the above

inequality, we get theorem 1.

Theorem 1 provides the general stability condition of

all the states. As we can see, the right hand side of

inequality 3.1 is independent of the pattern v. The larger

are the value of diagonal weights, the smaller is the right

hand side of inequality 3.1, so, more patterns can satisfy

the stability condition.

According to theorem 1, a spurious memory exists if a

binary pattern v is not an exemplar but satisfies the

condition. Therefore, in order to eliminate spurious

W v = \ - M I + D W lv = N ^ e , cos(0,) - M I v + D w v [3.2]

49

memories as much as possible, we should choose diagonal

weights as small as possible. However, the values of

diagonal weights should not be too small to stabilize

exemplars.

Corollary 1 (original) provides the stability condition

of an exemplar.

Corollary 1: The exemplar is stabilized in a BAM

constructed by EPF of M exemplars, if and only if the

following inequality holds.
(£ . + b) * e s » { M - N) J - D W J

^ I \ [3.41
h =

where 0j[j is the angle between e^ and ej.

Proof:

From theorem 1, we have

(v + b) * v = e i * cos(0(;.)+6 | = +ef Af]T(?;co s(0j+A
V >=' J V [3.5]

= N J + (e i + b) * e i » M J - D W J

Moving NJ to the right hand side of the above equation,

we get corollary 1.

As we can see, if the diagonal weights are too small,

some exemplars may become unstable. The smaller value of

diagonal weights imply a larger right hand side of

inequality 3.4. In order to keep all exemplars stable, the

right hand side must be upper bounded. Therefore, the

diagonal weights must be lower bounded.

50

In conclusion, if we choose the diagonal weights

slightly greater than their lower bound, the BAM shall have

least spurious memories while all the exemplars are

stabilized at the same time. Now, the question is: what is

the lower bound of the diagonal weights? In the next

section, we will discuses how to choose the diagonal weights

and bias so that spurious memories can be minimized.

3.2.2 Diagonal Weights and Bias

In Meany and Pimmel's paper, bias is used to destabilize

the complements of exemplars. Actually, the function of bias

can be more than that. As we will see in this section, bias

can also eliminate other spurious memories by decreasing the

lower bound of diagonal weights.

Lemma 1 (original) shows the relation between the lower

bound of diagonal weights and the bias. Theorem 2 provides

the choice of bias that results in the lowest lower bound of

diagonal weights.

Lemma 1 The lower bound of the diagonal weights that

guarantee the stability of exemplar e A is M - N - (e J t + b J .) e J i , ,

where is the jth element of e, and ei;j is the jth element

of e£.

Proof:

Recall Dw in corollary 1 is a diagonal matrix whose

diagonal elements are the diagonal weights W^. Solving

inequality [3.4] for Wj;j, we get

51

W j j > M - N - { e j j + b J) e I J [3.6]

So the lower bound of diagonal weights is the right

hand side of the above inequality.

The lower bound of diagonal weights that stabilizes all

the exemplars must satisfy inequality 3.6 for all exemplars.

Lemma 1 shows that the lower bound of the diagonal weights

is a function of bias. In other words, different biases may

result in a different lower bound of the diagonal weights.

Smaller values of the diagonal weights means fewer spurious

memories, so the bias that results in lowest lower bound of

the diagonal weights is desirable.

Theorem 2: (original) In a BAM constructed by EPF, by

choosing bias and diagonal weights as follows, the diagonal

weights have their lowest lower bound Wj:jb that keeps all the

exemplars stable.
+ . e + e

2

W * = M - N -
2

[3.7]

where e* = mingle,, = +1}

e~ = max{e;i|eJJ =-1}

Proof:

If ejjL=l in inequality 3.6, we have

W j j > (M - N) - e j j - b j [3.8]

52

Let e..+ be the minimum of such that e^+l, then the

above inequality holds if the following inequality-

holds .

W £ > (M - N) ~ e * - b j [3.9]

For e^-l, we have the following inequality

Wjj>(M - N) + ey + bj [3.10]

Let e^ be the maximum of such that e^-l, then the

above inequality holds if the following inequality

holds.

- N) + e * + b j [3.11]

Solving inequality 3.9 and inequality 3.11 for minimum

Wjjf we get

e * + e , ~
b , = — J — [3.12]

1 2

Substituting the above equation into inequality 3.11,

we get the lowest lower bound W^15 of Wj;j as follows
+ +

W „ b = M - N - e ' ~ C j [3.13] m 2

Theorem 2 shows how diagonal weights and bias should be

chosen so that spurious memories are minimized. Notice that

theorem 2 does not guarantee that there are no spurious

memories. Instead, it states that given the choice of these

parameters, that is the best that can be done to eliminate

spurious memories while all the exemplars are kept stable.

53

3.3 The Convergence Property of

Continuous Associative Memories

3.3.1 The Energy Function and Convergence Theorem

As we know, Hopfield's model has three major limitations

in performance: spurious memories, destabilized exemplars

and limited capacity. In order to improve the performance of

CAM, many modified models have been proposed. These

modifications include lifting the constraints on the weight

matrix and using non-monotonic activation functions.

However, under these modifications, Hopfield's convergence

condition no longer holds. An appropriate convergence

theorem is required.

In this section, an energy function is introduced. The

condition of the existence of a Lyapunov function is used as

a sufficient condition for convergence of the CAM. For

description of the CAM and Lyapunov function, see section

2 . 2 .

In order to study the convergence property of a

recurrent layer, I introduce an energy function E which is

defined as the magnitude of the time derivative of the state

vector u, i.e., E=\u\. Obviously, E> 0, and E = 0 only if u = 0.

From equation 2.6 and the definition of the magnitude of a

vector, we have

E = - y J < (~ « + l V g (u) + b) * (- u + W g (u) + b) > [3.14]

54

Theorem 3: (original) The energy function is a Lyapunov

function if the matrix WG-I is negative definite, where

G=dg(u)/du.

Proof:

First, recall that E ;> 0.

Secondly, find d E / d u from equation 3.14,

From the definition of a negative definite matrix and

the condition WG-I is negative definite, we get

dEldt> 0, and dEldt = 0 only if u = 0 .

Therefore, the energy function is a Lyapunov function.

As we know, if there is a Lyapunov function existing,

the dynamic system is guaranteed to converge to its stable

state. Therefore, theorem 3 actually states a sufficient

condition for the convergence of a recurrent network.

Recall that in the Hopfield's convergence theorem, the

convergent conditions are 1)the weight matrix must be

symmetric and with zero diagonal weights and 2)the

activation function must be monotonically increasing. But

theorem 3 states the condition differently. It can be

applied to either monotonic or non-monotonic activation

functions. It states that there are not necessarily any

« U W G - I) u
d u E

[3.15]

Thirdly, according to the chain rule

[3.16]

55

limitations on either the weight matrix or the activation

function to guarantee the convergence of the network, as

long as the combination of these two, i.e., (WG-I),

satisfies the constraint.

3.3.2 The Convergent Trajectory of the CAM

As we know, there are many minima (attractors) that

attract the state of the network to evolve to those

attractors. But in a CAM, its convergence behavior, i.e.,

which and how states will evolve to attractors is usually

still unknown. Now, with the help of the above defined

energy function, this mystery can be unwrapped.

Recall that in BAM, Hopfield used the quadrant operator

Q(u) as the activation function (see section 2.1, 2.2). If

all elements of u are not equal to zero, i.e., u^O for all

j, then d(?/du=0. If there are some u^O, then u falls on the

a hyper-plane that separates the hyper-quadrants.

Quite often, in CAM, a continuous function which is

approximate to the quadrant operator, for example, g(u) =

acrtan(1007iu) *2/71, is used. This type of activation function

has two properties: 1) G=dg/du=0, when u is far from the

axes, i.e. all its elements Uj are not close to zero, and

2) gfujsgtu.,), when Uj and u2 are in the same quadrant and

neither of them have elements close to zero.

Theorem 4: (original) When the state of CAM is far away

enough from the hyper-planes which separate hyper-quadrants

56

so that G=0, the state will evolve towards the direction of

the steepest ..gradient descent of the energy function with

rate E*|VE|, i.e., as specified in the following equation:

u = -EVE [3.17]

Proof:

Consider the gradient of the energy function as

follows:

VE = ̂ = UwG-I)u [3.18]
o u E

Since G = 0, Multiply both side of the above equation

by E, we get theorem 4.

Theorem 4 shows that the energy space determines the

convergence trajectory of a CAM. The minima of the energy

function correspond to the stable states of the CAM. A plot

of an energy space can show many important properties of the

CAM. These properties are 1) the number of minima

constructed in a recurrent layer, 2) the location of these

minima, 3) the watershed (discriminant) of convergence, 4)

the convergence direction, 5) the convergence destiny and 6)

the probability of converging to one destiny. This

fundamental study draws some important properties of the CAM

and makes visualizing them possible.

Example: Now consider the net with weight matrix and

bias as follows:

57

W =
-0.8 1.6 '

0.75 0.25_

b = {0.0 0.0}r

The energy function of the memory is plotted in the

following figures.

Figure 3.1
3-D Plot of E(u)

x axis is u2 and y axis is u2

Figure 3.2
Contour Plot of E(u)

x axis is u1 and y axis is u2

The energy function shows that there are two minima

(attractors) located in the first quadrant and third

quadrant respectively. The watersheds of convergence are

close to the x axis. The convergence direction is

perpendicular to the contour lines. The convergence

destinies are (0.8, 1.0) and (-0.8, -1.0). The complement of

the exemplar is also an attractor, due to the symmetry of

the activitation function and to b=0. Four convergence

trajectories are drawn in the contour plot.

58

3.4 Analysis of Learning Algorithms

In this section, the CAM model proposed by Sudharsanan

and Sundareshan is studied. The analysis shall focus on the

effectiveness of different learning methods. For detailed

description of the CAM model and BEP algorithms proposed by

Sudharsanan and Sundareshan, see section 2.1.

3.4.1 Backwards Error Propagation Algorithm

The pattern storing procedure of the CAM model proposed

by Sudharsanan and Sundareshan (see section 2.2) is based on

the BEP algorithm. By minimizing the error, BEP drives the

minima (attractors) towards the exemplars. The following

example shows the effectiveness and limitation of the BEP

algorithm.

Example: The problem of storing three vectors, ej={1.7,

-1.5, 1.7, -1.9, -1.5}T, e2={-l.7, -1.1, 1.3, 1.4, -1.2}T and

e3={1.4, 1.1, 1.8, -1.2, 1.7}T in a network comprising 5 PEs

described by equation 2.6 is considered. The initial weight

matrix and bias are selected to be W=0.5I, b={0.1, 0.1, ...,

0.1}T, which are the same as those in Sudharsanan's

dissertation. (1990)

The identical pattern storing (learning) procedure is

used: The learning constant is selected to be 0.9, the same

as that Sudharsanan used. After the net is trained 50 times

by the BEP algorithm, the weight matrix and bias are

converged to their converged values as follows and the error

59

defined in equation 2.7 reduces to zero. Thus, the three

exemplars are stabilized in the network.
1.11 -0.075 -0.124 -0.605 -0.075

-0.10 0.905 -0.050 0.099 0.405

W = 0.101 0.025 0.975 -0.099 0.025

-0.581 0.175 -0.0002 1.08 0.175

-0.075 0.555 0.075 0.075 1.06

b = {-0.025, 0.049, 0.582, 0.099, 0.175}T

However, if we check the existing attractors over the

entire vector space, we find there are a total of 25

attractors, three of them are exemplars and the other 22 are

spurious memories 1

In conclusion, the simulation shows that the BEP

algorithm stabilizes continuous exemplars effectively, but

has no control of spurious memories. The BEP algorithm is

not designed to eliminate spurious memories.

3.4.2 Exterior Product Formulation

There are not as many spurious memories in a BAM formed

by EPF as those in a CAM trained by BEP algorithm. The EPF

of pattern storing plays an important role.

The EPF storing mechanics is based on the orthogonality

of exemplars. If the exemplars are nearly orthogonal to each

other, i.e., cosfG^asO, the exemplars will be stabilized.

Those stabilized exemplars become attractors which attract

states in the adjacent area. In other words, EPF

destabilizes states in the area adjacent to exemplars. As a

60

consequence, it has the ability to eliminate spurious

memories.

However, directly using EPF in CAM sometimes does not

work very well. The problem arises from the variation in

magnitude of patterns. Binary patterns are of the same

magnitude, while the magnitudes of continuous patterns are

usually quite different. The EPF has the tendency to

stabilize the patterns of larger magnitudes. Exemplars of

smaller magnitude are likely to be ignored. Our desired

learning method should store continuous patterns without

bias on their magnitudes.

3.4.3 Normalized Exterior-Product Formulation

The Normalized Exterior-Product Formulation (NEPF) of

the weight matrix is inspired by the idea of taking

advantage of the ability of EPF to eliminate spurious

memories, and at the same time, overcoming the problem of

its bias on the magnitude of patterns.

The NEPF of weight matrix W of dimension N to store M

exemplars is defined in the following equation.

W=^f<wrrfe> [3-19]

As we can see, the magnitude of gfeJ/N is normalized to

1. Theorem 5 (original) shows where are the attractors in

the CAM whose weight matrix is formed by the NEPF. Theorem 6

61

(original) estimates the error of the NEPF of the weight

matrix.

Theorem 5: If the weight matrix of a CAM is initialized

by the NEPF and b=0, and the following condition holds, then

there is an attractor u8 in the quadrant where u locates and

the attractor is in the neighborhood of //, i.e., U"=M .
//*«» 0

and u , u are not close to the hyper planes

that separete the hyper quadrants . [3.20]
A/

where u =]£<?,. cos(0f) and 0, is the angle between g(e,.) and g(uj.
f=i

Proof:

Since u and il are in the same quadrant and not close

to the hyper plane that separate the hyper-quadrant,

according to the property of the activation function,

we have
1 A1 M

W g (£) S W g («) = — Y J e i g T (e t) g (u) = ̂ e t cos(0() = « [3.21]
iV ,=i j=i

Since b=0, there must be an attractor uB, such that

uB=Wg(u") , in the neighborhood of u.

Theorem 6: In the CAM whose matrix is initialized by the

NEPF and b=0, if there is an attractor e^.0 in the quadrant

of an exemplar eif then the error between them, Ei=ei8-ei is

0,008(00)
jv/ [3.22]

where 0,. is the angle between g(ej) and g(ej).

62

Proof:

. From theorem 5, we have
M

§.i = cosCG^) = e, + £e;- cos(0iy.)
J=I

[3.23]

Moving eA to the left hand side of the above equation,

we get theorem 6.

3.4.4 Hybrid Learning Algorithm

In this learning algorithm, the learning procedure is

separated into two steps. In the first step, the bias is

initialized to be 0, and the weight matrix is initialized by

the NEPF to construct attractors near the exemplars and to

destabilize states in other regions. By doing so, a large

number of spurious memories are eliminated. Then, in the

second step, the BEP algorithm is used to pull the

attractors which are not too far away from exemplars towards

the exemplars.

As a demonstrative example, the hybrid learning

algorithm is used to handle the same problem as that

described in section 3.4.1.

In the first step, the bias and the weight matrix are

initialized as follows.

0.954 0.277 0.279 -0.953 0.278'

0.139 +0.734 -0.298 -0.138 0.735

W = 0.437 -0.239 0.954 -0.437 -0.238

-0.894 -0.138 -0.339 0.894 -0.139

0.278 0.873 -0.198 -0.277 0.874

63

After initialization, there are six attractors in the

memory. Three of them are in the quadrant of the exemplars

and the other three are their complements, due to the

symmetry of the network. The attractors which are in the

quadrant of the exemplars, and their errors are listed as

follows. These results are consistent with theorem 5 and

theorem 6.

e * = {1.623 -1.480 2.291 -1.840 -1.380}7"

E , = {-0.077 -0.021 -0.591 -0.060 -0.120}r

e2' = {-2.175 -2.030 0.541 1.722 -2.485}r

E 2 = {-0.475 0.930 0.759 -0.321 1.285}7"

<={2.728 1.441 1.344 -2.392 2.093}7"

E 3 ={-1.328 -0.341 0.456 1.192 -0.393}7"

Then the net was trained by the BEP algorithm. The same

learning constant was used as before. After the net is

trained 50 times, the error reduces to zero. After training,

the weight matrix and bias are converged to:

' 0.855 -0.075 0.066 -0.855 -0.074"

-0.100 0.654 -0.151 0.100 0.655

W= 0.100 0.024 1.254 -0.100 0.026

-0.830 0.176 -0.121 0.830 0.175

-0.074 0.805 0.024 0.075 0.806

b = {-0.214 0.149 0.304 0.219 0.226}

There are eight attractors in the net. Three of them are

exemplars and the other five are spurious memories. Notice,

as shown in section 3.4.1, that if the net is trained by BEP

alone, according to Sundarsanan's method, there are 22

64

spurious memories. Although this hybrid learning algorithm

does not eliminate all the spurious memories, the

performance is much improved in terms of reducing spurious

memories.

3.5 Summary

Through the above analysis in this chapter, many

properties and behaviors of BAMs and CAMs have been more

concisely explored. The analysis results are significant in

terms of: 1) the stability condition of exemplars and

spurious memories in BAMs, 2) the formula of choosing

diagonal weights and bias that eliminates spurious memories

most effectively in BAMs, 3) the convergence theory of CAMs

that have non-zero diagonal weights and non-monotonically

increasing activation functions, 4) the energy function that

explores the convergence behavior of CAMs, and 5) the hybrid

learning algorithm that reduces spurious memories

effectively in CAMs.

CHAPTER 4

APPLICATION OF STOCHASTIC ACTIVITY NETWORKS
TO THE EVALUATION OF SENSOR VALIDATION SYSTEMS

4.1 Sensor Validation Systems and

their performabilitv variables

4.1.1 Sensor Validation System

An advanced signal system usually has a sensor system,

which provides primary measurements from a plant, and a

validation system, which validates sensor measurements.

There must be some degree of redundancy in these

measurements, on which validation is based.

The status of a sensor can be normal or abnormal. The

latter case implies a failure occurrence. The failure of a

sensor can be classified into repairable and irreparable

based on its repairability, or into recoverable and

unrecoverable based on its recoverability, or into

detectable or undetectable based on its detectability. If a

failure is detectable, it can further be classified into

isolable or unisolable based on its isolability.

A sensor validation system (SVS) takes the sensor

measurements as its input, checks the consistency of

redundant measurements, and provides the status of the

sensor system and the best estimates of sensor measurements.

66

It has the functions of fault detection, isolation and

accommodation(FDIA).

A robust SVS has redundant approaches for its functions.

If one approach fails, either due to its intrinsic

limitation or the failure of its physical devices, others

still work, so that the validation function continues though

its performance may degrade. The performance of the

validation system depends on the status of not only the

sensor system but also the sensor validation system itself.

Therefore, recoverability, detectability, and isolability of

a sensor usually depends on the configuration and the status

of the whole sensor system and its validation system.

Usually, the recoverability and the repairability also

depend on the status of detection and isolation.

4.1.2 Performability of Sensor Validation System

The performability of a SVS quantifies the performance

and effectiveness of the SVS in the presence of faults in

the SVS. The performability of a SVS can be statistically

measured by the following important performability

variables.

1. Average detection time xd :

the average time between a failure and its

detection.

2. Average isolation time :

67

the average time between the detection and

isolation of a failure.

3. Average validation time TV

the average time between a failure and its

isolation. xv = xd + T̂ .

The above three performability variables are mainly

dependent on the configuration of a SVS. Therefore, they

represent the performability of a SVS most concisely.

4. Undetectability Pd:

the probability that, at any given moment when a

failure exists, it is not detected.

5. Unisolability P^

the probability that, at any given moment when a

failure exists, it is detected but not isolated.

6. Unvalidatability Pv:

the probability that, at any given moment when a

failure exists, it is not isolated. Pv = Pd + P^

7. Unrecoverability Pr :

the probability that, at any given moment, the

error of accommodation exceeds the allowed range.

The above four performability variables are dependent on

the configuration of both the sensor system and the SVS.

Therefore, they represent the performability of a SVS under

the inferred failure frequency of the sensor system.

8. Average number of available sensors Ek.

68

9. Probability distribution of the number of available

sensors P[k].

The above two performability variables mainly are

dependent on the failure rate and repairing time of the

sensor system and the validation time of the SVS. They might

more closely relate to the performability of a sensor

system. However, they also show the effectiveness of the SVS

on sensor maintenance.

4.2 Sensor Validation System of a Pressurizer

4.2.1 Pressurizer

In a pressurized water reactor, the primary coolant is

maintained at a pressure (around 2250 psia) greater than the

saturation pressure corresponding to the maximum coolant

temperature in the reactor. This avoids bulk boiling of the

coolant and keeps it in the liquid phase throughout the

loop. Because liquids are practically incompressible, small

changes of volume, caused by changes in coolant temperature

or by unforeseen expansions or contractions in the loop

components, can cause severe or oscillatory pressure

changes. If the pressure is too high, it may cause eruption

of the reactor pressure relief valve. If the pressure is too

low, it may cause flashing into steam and consequently

melting of fuel elements. These changes may be quite unsafe.

69

It is necessary to provide a surge chamber that will

accommodate coolant volume changes while maintaining

pressure within acceptable limits. Such a device is called a

pressurizer, which keeps the pressure within operating

conditions.

4.2.2 Pressure Sensors in a Pressurizer

The sensor system in the pressurizer is important to

control the pressure and to protect the reactor if the

pressure exceeds the allowed range.

There are fourteen pressure sensors in a typical

pressurizer, 2 of them for Pressure Control (PC), 4 for

Pressure Low Trip (PLT), 4 for Pressure High Trip (PHT), and

4 for Supplemental Protection of Pressure High Trip (SPPHT).

The two PC sensors send signals to an automatic control

system to control the pressure. Their deviation from each

other is checked automatically. An alarm will turn on when

the deviation exceeds the limit. If the operator identifies

a failure of one of the PC sensors, he will set the control

system to access the signal of the other sensor. If both

sensors fail, an operator will be assigned to control the

pressure manually, using safety sensors.

The four PLT sensors protect the reactor if pressure is

less than the low pressure bound. Their operation rules are

described as follows. If two of them indicate that the

pressure is lower than the low bound at the same time, the

70

control system will trip the reactor. If one sensor's

reading is below the low pre-trip bound, its alarm will turn

on. If the operator identifies a failure of one PLT sensor,

he will set a bypass on it. If the operator identifies a

failure of another PLT sensor, he has to trip one of the

failed sensors, and then usually will shut the reactor down

after six hours if neither failed sensor is repaired and

passes a retest. If he identifies a failure of a third PLT

sensor, he has no choice but to trip the sensor and as a

consequence, trip the reactor.

The four PHT sensors protect the reactor pressure from

exceeding the high pressure bound. The four SPPHT sensors

are a redundant set of PHT sensors and do exactly the same

job. These two groups of sensors have the same operation

rules as the PLT sensors, except that their readings are

compared to the high pressure bound instead of the low

pressure bound if the reactor will be tripped, or compared

to the high pre-trip bound if their alarm will turn on.

4.2.3 Validation and Maintenance

The automatic alarm system helps the operator to detect

and to identify a failure. However, as we see above, it only

works when the limit is exceeded. It may even malfunction by

setting a false alarm or by a failure to alarm when it

should alarm, due to the failure of itself. Therefore, the

operators routinely check all the sensors visually to make

71

sure that all sensors work properly. A failure can also be

detected and identified by operator's visual checking,

though it usually takes more time than the automatic alarm

system.

The failure of a sensor can be either irreparable, which

usually occurs in the containment building, or repairable,

which usually occurs outside of the containment building.

The failure of the alarm system is always repairable. Repair

will only be activated when a failure is identified and is

repairable.

The information in this section is documented from

information provided by Robert L Simmons during a series of

interviews. He is a senior engineer of Arizona Public

Service Company, Palo Verde Nuclear Generating Station,

Shift Engineering Group. He also recommended the following

data which are reasonable for a nuclear power plant

according to his knowledge. I appreciate his help on this

project. The details of how these data are used will be

explained in the model description section.

4.3 The SAN Model for Sensor Validation System of a

Pressurizer

I partition the sensor system into a signal system and a

validation system. The fourteen sensors are viewed as the

signal system while the rest, the alarm system and

operators, are viewed as the validation system. My objective

72

is to evaluate the performability of the system by using SAN

models. The SAN model can usually be divided into four

submodels. They are signal submodel, validation submodel,

validating submodel and resetting submodel. These submodels

will be discussed in detail later.

In this project, I built two SAN models, one for the PC

sensor system and the other for the PLT sensor system. Both

of the models include validation systems. Since the PHT and

SPPHT systems have the same operation rules as the PLT

system, replication of the PLT system will model the three

sensor systems (PLT, PHT and SPPHT).

4.3.1 SAN Model for PC Sensor Validation

The PC sensor system consists of two sensors, which are

the signal system, an alarm and the operators, which are the

validation system.

1) The signal submodel

The states of the pressure sensors are quite simple.

They are normal, repairable failure and irreparable failure.

10% of failures are irreparable and 90% of failures are

repairable. It takes a day in average to repair a sensor

failure.

The signal submodel models the dynamic of the signal

system, the two pressure sensors in this case, see detailed

model in Figure 4.1. The place "SN", which initially has 2

tokens, stores the normal sensors. The time activity

73

"s_fail" represents the failure of a normal sensor. The

instantaneous activity "repairability" represents the

selection of repairable or irreparable failures. The place

"SR" stores the repairable failures and the place SIR stores

irreparable failures. The time activity "s_repair"

represents the repair of the repairable failures.

74

SIR.

s fail reparabilHy sjepar

s tsoate

a isolate
AR

ajepar

Figure 4.1 the SAN Model of the PC SVS

75

2) The validation submodel

In the validation system, operators are assumed to be

always available and make routine checks. The alarm may be

either normal or failed. If it is a false alarm, the alarm

failure can be detected immediately. If the alarm 'fails to

alarm', then it will be detected after about six hours.

After it is detected, operators can isolate the failure in 5

minutes. Then it will be repaired and be ready to be use

again after a day on average.

The validation submodel models the validation system,

the operators and the alarm in this problem, see the

detailed model in Figure 4.1. The place "AN", which

initially has one token, stores the normal alarm. The time

activity "a__fail" represents the failure of the normal

alarm. The place "FA", which is connected to case 1 of

activity "al_fail" and is followed by the instantaneous

activity "a_dec_a", stores the failure of 'false alarm'.

The place "SA", which is connected to case 1 of activity

"al_fail" and is followed by the time activity "a_detect",

stores the failure of 'failure to alarm'. The time activity

"a_detect" represents the operators' detection of the alarm

failure. The place AD stores the failures that have been

detected but not yet isolated. The time activity

"a_isolate" represents the isolation of the alarm failure.

The place "AR" stores the isolated failure that is being

76

repaired. The time activity "a_repair" represents the repair

of the alarm failure.

3) The validating submodel

According to the status of validation, a failure of the

sensors can be at the stage of undetected, of detected but

unisolated or of isolated but unrepaired. If there is only

one sensor that fails and the alarm is normal, then the

failure can be detected immediately by the alarm system.

Otherwise, it will be detected by the operator after 6

hours. A failure can be isolated 5 minutes after it is

detected.

The validating submodel models the validating procedure

of signal failures. The place "SF" stores undetected sensor

failures. The time activity "detect_oper" represents

operators' detection of failures. The instantaneous

activity "detect_alarm" represents the alarm's detection of

sensor failures. The input gate "alarm_normal" represents

the condition that the alarm will work. The place "SD"

stores the detected sensor failures which have not been

isolated yet. The time activity "s_isolate" represents the

isolation of the failure. The place "SI", which always has

zero tokens, is a buffer between activity "s_isolate" and

repairability.

4) The resetting submodel.

77

Since the irreparable failures are absorbing states, the

SAN model ..does not have steady state solutions. Even worse,

the server's rates are very stiff, and as a consequence, the

transient solver does not work either. Consulting with Dr.

Sanders in Department of Electric and Computer Engineering,

the University of Arizona, I decided to use a stabilizing

technique to solve this problem.

It is reasonable to assume that there are no failures in

the system at the beginning of the period. We are only

interested in the performance of the system during the

operation period, about sixteen months on average. Based on

these, I add a time-activity connected to an output gate,

which resets the markings of all of the places back to their

initial markings. By doing so, I make the SAN model

irreducible so that the direct state solver and the

iterative state solver work on this model.

4.3.2 SAN Model for PLT Sensor Validation

The PLT sensor system consists of four sensors, which

are the signal system, and of operators and four alarms,

which are its validation system. The SAN model is shown in

Figure 4.2. This model is also applicable to the PHT sensor

system and the SPPHT sensor system.

78

1) The signal submodel

The states of the pressure sensors here are more

complicated. They are always detectable to the operators.

However, to the alarms, 47% of failures can never be

detected by their alarms, 33% of them will degrade on

average one month before it is detected, and only 20% of

them are detectable to their alarms as soon as they occur.

Like the PC model, 10% of failures are irreparable and 90%

of failures are repairable. It takes a day to repair a

sensor failure.

In addition to the signal submodel of the PC sensor

system, the signal submodel of the PLT sensor system has

places "SF_aa", "SD_aa", "SD_ab" and "SD_a", instantaneous

activities "a_det" and "abrupt" and time activity "degrade",

see the detailed model in Figure 4.2. The place "SF_aa",

which always has zero tokens, is a buffer between activities

"s_fail" and "a_det". The instantaneous activity "a_det"

represents the selections of different possible failures

that may occur in a sensor. The place "SD_aa" stores the

degrading failure and the place "SD_ab", which is followed

by the instantaneous activity "abrupt", stores alarm-

instantaneously-detectable failure. The time activity

"degrade" represents the failure's degrading towards a

failure that is detectable by its alarm.

79

SIR

SR

s hi

SF aa

a det

cfear a SP-813 ahript

dstect_cper

SD

reset

term

AN a

select

a ctec a AR AD

AN
al fan

SA

ajepar

Figure 4.2 the SAN Model of the PLT SVS

80

2) The validation submodel

The validation system is the same as that of the PC

sensor system, except that there are four alarms instead of

one alarm. Therefore, the validation submodel is the same of

that of the PC model, except the initial token number of

place "AN" is four instead of one.

3) The validating submodel

The validating procedure is almost the same as that of

the PC model. The difference is in the conditions under

which a failure can be detected by its alarm. The

possibility that the failure sensor's alarm fails is equal

to the number of normal alarms divided by the total number

of alarms, 4 in this case. Hence I designed the gate select

to assign the possibility that a failed sensor's alarm is

normal. The place "AN_a" is a buffer between the activities

"select" and "detect_alarm". One more check is that when a

degrading sensor is detected by a operator, there is no need

for it to be detected by its alarm. Therefore, the gate

"clear_a" sets the number of tokens of places "SF_aa",

"SD_aa", "SD_ab" and "SD_a" equal to zero.

4) The resetting submodel.

When a reactor is restarted, all of its components are

assumed to be in good condition. The reactor may be shut

down at the end of its operation period, 16 months. It may

also be shut down by the operator if it has been operated

81

for six hours under the condition that there are two sensor

failures being isolated. If the operator .isolates three

sensor failures, he has to trip the reactor.

Again, there is an absorbing state in this model. There

is a need to reset the submodel to make the entire model

irreducible. The output gate "reset" sets the markings of

the places back to their initial markings. The time activity

"term" not only represents the normal period, but also acts

as the reactor trip and the reactor shut down due to sensor

failures. Even better, this makes the subsystem a closed

system so that it can be solved analytically.

4.4 Results and Analysis

4.4.1 Performability of Pressure Control Sensor System

In order to evaluate the performability of the PC's SVS,

I defined the reward variables in the SAN model as shown in

Table 4.1.

82

Table 4.1 Reward Variables of PC Sensor System

Variable Predicator Function Mean Value

num NS 1 MARK(SN) 1.753

num SF 1 MARK(SF) 1.413

num SR 1 MARK(SR) 4.498E-3

num SIR 1 MARK(SIR) 2.423E-1

pi an MARK(AN)==1 1 0.994

p_SD_SF MARK(SD)1=0 II1

MARK(SF) 1=0

1 1.588E-4

p_S E)_S F_SN 0 (MARK(SF)1=0 ||

MARK(SD)1=0) &&2

MARK(SN)==0

1 1.378E-4

From these reward variables, we can calculate some

performability variables of interest and importance as

follows.

1. The average number of available sensors, E[SN].

E[SN] = E[num_SN] = 1.753

2. The probability distribution of the number of

available sensors P[k] is listed in Table 4.2.

P[k] = pdf[num_SN]

1 In Unix operating system or C language, "| | " represents
logical "or".
2 In Unix operating system or C language, "&&" represents
logical "and"

83

Table 4.2
Probability Density Function
of Reward Variable "num SN"

k 0 1 2

P[k] 0.026797 0.193399 0.779804

3. The true throughput of the system, X = the number of

sensors failures per hour.

X = E[SN] * X B = 1.753 * 1.2E-4 = 2.104e-4

4. The average detection time of the validation system,

xd = E[num_SF] / X = 1.4125E-4 / 2.104E-4 = 0.6715 (hour)

5. The average isolation time of the validation system,

V

x£ = E[num_SD] / X = 0.08333 (hour) = 5 (minute)

6. The average validation time of the validation system,

V

Tv = Td + ta = 0.6715 + 0.08333 = 0.7548 (hour)

7. The undetectability, Pd.

Pd = 1 - P[num_SF=0] = 1.413E-4

8. The unisolability, Pi.

P. = 1 - P[num_SD=0] = 1.7529E-5

9. The unvalidatibility,

Pv = Pd + Pi = 1.588E-4.

10. The unrecoverability, probability that both failed

sensors have not been validated, Pr.

pr = E[p_SD_SF_SN0] = 1.378E-4

11. The average repair time, xr.

84

xr = E[num_SR] / (0. 9*A,) = 23.8 (hour)

12. The average recovery time, xrc = xr + xv.

xrc = 23.8 + 0.7548 = 24.55 (hour)

From the above calculations, we find that

1) Some benchmarks, such as x±, xr are close to our

intuitive expectation, therefore, the simulation results are

reasonable;

2) The main portion of the recovery time comes from the

repair time. The main portion of the validation time comes

from the detection time.

However, there are two problems.

The first is that value of Pr is a little bit too high.

Consider during a 16-month-operation period, there are

1.378E-4 * 11520 = 1.58 (hour) that the automatic control

system is based on a wrong pressure signal!

I suppose that a reasonable operator will check the PC

sensor more often, when he knows one of the PC sensors has

failed. By modifying the service rate of time activity

"detect_oper" to be marking dependent as follows, I

calculated the detection time x^, unrecoverbility Pr, and

time of a wrong signal being used xw, corresponding to the

operator's checking period xc (check the signals every xc),

when he knows that one sensor is failed.

if(MARK(SR)1=0 || MARK(SIR)1=0)

return (checking_rate);

85

else

return (0.17);

The results are listed in Table 4.3.

Table 4.3
The Effect of Increasing Checking rate

Tn Pr Tw (min) TH (min)

12 (hour) 1.38E-4 95.2 40.3

6 (hour) 7.21E-5 49.8 21.5

4 (hour) 4.83E-5 33.4 14.7

2 (hour) 2.51E-5 17.4 8.1

1 (hour) 1.35E-5 9.4 4.8

30 (min) 7.74E-6 5.3 3.2

10 (min) 3.87E-6 2.7 2.1

5 (min) 2.90E-6 2.0 1.8

2 (min) 2.23E-6 1.6 1.6

The second problem is that the value of P[k=0] is too

high. Considering a 16-month operation period, the operator

has to control the pressurizer pressure manually for 11520 *

0.026797 = 308.7 (hour).

I think that this is because of irreparable failures.

The modification for problem 1 does not change the

probability distribution of the number of available sensors.

Comparing the availability of the alarm system and the

86

sensor system and checking the average queue length both

suggest that irreparable failures play an important role in

determining the sensor system's availability. In short, the

system's availability will increase if the irreparable

failures are reduced, that is, if the reliability of the

components which are in the containment building is

increased.

By adjusting the case probability to 1% irreparable

failures and 99% repairable failures, I find the

availability of the sensor system increases from 97.32% to

99.953%, that is, the unavailability decreases from 2.68% to

0.0467%. This changes the average time per cycle when manual

control is needed to 4.38 hours.

Intuitively, we usually know how to improve a system's

performance. However, with a detailed model, we can not only

verify whether an approach works, but also calculate how

much it will improve the system's performance. Thus modeling

may result in facilitation of performance improvement.

4.4.2 Performability of PLT Sensor System

In order to evaluate the performability of the PLT

sensor system, I defined the following performance variables

in the SAN model. See Table 4.4

87

Table 4.4
Reward variables of PLT sensor system

Variable Predic'ator Function Mean Value

num NS 1 MARK(SN) 3.878

num SF 1 MARK(SF) 2.184E-3

num SR 1 MARK(SR) 9.166E-3

num SIR 1 MARK(SIR) 1.109E-1

num AN 1 MARK(AN) 0.994

p udet MARK(SF)1=0 1 2.183E-3

p uiso det MARK(SD)1=0 1 3.876E-5

p_uiso MARK(SD)1=0 | |

MARK(SF)1=0

1 2.221E-3

p SN 1 MARK(SN)< 2 1 3.580E-7

p_SN_2 MARK(SN)==2 &&

MARK(SR)+MARK(SIR)<2

1 2.075E-4

From these performance variables, we can calculate some

performance variables of interest and importance as follows.

1. The average number of available sensors, E[SN].

E[SN] = E[num_SN] = 3.878

2. The probability distribution of the number of

available sensors, P[k]. See Table 4.5.

P[k] = pdf[num_SN]

88

Table 4.5
Probability Density Function
of Reward Variable "num SN"

k 0 1 2 3 4

P[k]

O
 •

o
 0.0 0.000416 0.121485 0.8781

3. The true throughput of the system, X = the number of

sensor failures per hour.

X = E[SN] * X B = 3.878 * 1.2E-4 = 4.654e-4

4. The average detection time of the validation system,

V

xd = E[num_SF] / X = 2.184E-3 / 4.654E-4 = 4.691 (hour)

5. The average isolation time of the validation system,

V

xA = E[num_SD] / X = 0.08333 (hour) = 5 (minute)

6. The average validation time of the validation system,

V

xv = xd + xA = 4.691 + 0.08333 = 4.774 (hour)

7. The undetectability, Pd.

Pd = E[p_udet] = 2.183E-3

8. The unisolability, Pj. = E[p_uiso_det] = 3.876E-5

9. The unvalidatibility,

Pv = Pd + Pi = E[p_uiso] = 2.221E-3

10. The probability that the reactor should be tripped

but is not tripped, Pv.

Pv = E[p_SN_l] = 3.580E-7

11. The average repairing time, xr.

89

x r = E[num_SR] / (0 . 9 * X) = 21.9 (hour)

12. The average recovery time, xrc = xr + xv.

xrc = 21.9 + 4.774 = 26.67 (hour)

Although the above values are close to reasonable

values, more analysis is necessary in order to understand

this system thoroughly.

4.5 Conclusions

In conclusion, this project is a good demonstration of

how to apply the SAN model to evaluate the performability of

a signal validation system. The SAN model of the PC sensor

system and the PLT sensor system have been built. The

stabilizing technique is applied to transfer a reducible

model to an irreducible model. Some important performance

variables have been defined and evaluated. Discussion of the

improvement of the performance of the system has been

provided. I intended that this piece of work should explore

the application possibilities of SAN for nuclear engineering

areas and signal validation areas.

CHAPTER 5

CONCLUSIONS

In order to design an advanced sensor validation system

(SVS) which is robust and fault-tolerant under faulty

conditions, a promising technology which can be applied to

SVS has been studied, and a novel approach has been explored

and used to evaluate a SVS in a nuclear power plant. The

promising technology studied here is an associative memory,

one special type of neural network. The novel approach used

here is the Stochastic Activity Network (SAN) model.

5.1 Advances in Associative Memories

The first objective of this work is to investigate the

application of associative memories to fault-tolerant and

robust sensor validation. An Associative memory provides

fault-tolerant pattern recognition. Its robustness against

disturbed patterns and against failures in the network

itself makes it a promising information processing

technology for sensor validation. However, this technology

will not become mature for the applications to safety

systems until significant advances that overcome its major

limitations, especially its capacity and spurious memories,

are made.

90

91

The studies of associative memories yield many results

that help us understand them better so that they can be

applied to the problems more effectively and appropriately.

These results include

1) the stability condition of exemplars and spurious

memories in BAMs,

2) the formula of choosing diagonal weights and bias

that eliminates spurious memories most effectively in BAMs,

3) the convergence theory of CAMs that have non-zero

diagonal weights and non-monotonically increasing activation

functions,

4) the energy function that explores the convergence

behavior of CAMs, and

5) the hybrid learning algorithm that reduces spurious

memories effectively in CAMs.

In BAM, analysis concludes that the exemplars (patterns

to be stored) can always be stabilized (correctly stored) in

a BAM if non-zero diagonal weights are used. In this case,

the capacity is not a problem in terms of destabilized

exemplars. The actual problem is that the number of spurious

memories may increase until unacceptable, when the number of

exemplars increases. The formula for choosing the diagonal

weights and bias which minimize spurious memories has been

derived.

92

In CAM, the analysis discovered that the disadvantage of

Backwards Error Propagation (BEP) learning is that no

control of spurious memories is maintained. An appropriate

weight initialization is found necessary. Both theoretical

analysis and numerical simulation have shown the

effectiveness of the Normalized Exterior Product Formulation

(NEPF).

One of the major difficulties of directly applying

associative memories to sensor validation systems is that

the possible outputs of the sensors span a continuous space,

which cannot be represented by a finite number of attractors

in a memory. In other words, a memory is only able to

remember a finite number of patterns, but not infinite

numbers. If the redundancy of sensor signals can be

transformed to a finite number of patterns, then the memory

is able to store them and then recognize them fault-

tolerantly.

5.2 Application of Stochastic Activity Networks

The second objective is to evaluate SVSs. The concept of

performability, the ability of a system to perform in the

presence of faults, has been introduced. A set of important

performability variables have be introduced to substantiate

that concept. A concrete example, evaluation of the

pressurizer SVS of a PWR, has demonstrated how to apply the

SAN model to evaluate the performability of a SVS.

93

SAN not only provides an effective evaluation tool, it

can also be an effective analysis tool. By evaluating the

system, it shows the deficiency of the system. Analyzing and

testing different variations of the system, it explores the

degree of improvement of different approaches.

With the speed and capacity of computers increasing

rapidly, I believe that SANs will be able to model larger

and larger complicated systems. However, some improvements,

such as modulation and customization, are still necessary

before its application and dissemination in the nuclear

industry. I think that "object oriented" coding is a nice

feature that SANs should have. This is needed to aid in the

validation of safety critical software.

94

REFERENCES

Basseville, Michele. (1988) "Detecting Changes in Signals
and Systems — A Survey". Automatica, Vol 24, No 3, Pp 309-
326.

Beard, R. V. (1971) "Failure Accommodation in Linear Systems
Through Self-Reorganization". Dept. MVT-71-1. Man Vehicle
Laboratory. Cambridge, MA.

Clark, R. N., Fosth, D. C. and Walton, V. M. (1975)
"Detection Instrument Malfunctions in Control Systems". IEEE
Trans. Aerospace Electron. Svst.. AES-11. 465-473.

Couvillion J.A. et. al (1991) "Performability Modeling with
UltraSAN" IEEE Software September

Desai, M. and Ray, A. (1981) "A Fault Detection and
Isolation Methodology". Proc. 20th Conf. on Decision and
Control, 1363-1369.

Eryrek E. and Updahaya B.R. (1992) "Sensor Validation in
Power Plants Using Adaptive Backpropagation Neural Network".
IEEE Nuclear Science Symposium. San Francisco. CA. 15-19.

Frank, P. M. (1988) "Fault Diagnosis on the Basis of Dynamic
Process Models". Presented at 12th IMACS World Congress on
Scientific Computation. Paris. 18-22 July.

Frank, Paul M. (1990) "Fault Diagnosis in Dynamic Systems
Using Analytical and Knowledge-based Redundancy — A Survey
and Some New Results". Automatica. Nol. 26, No. 3, 459-474.

Guo, T. -H. and Nurre, J. (1991) "Sensor Failure Detection
and Recovery by Neural Networks". Report No. NASA TM-104484.

Hopfield, J. J. (1982) "Neural Networks and Physical Systems
with Emergent Collective Computational Abilities". Proc.
Natl. Acad. Sci. U.S.A.. vol. 79, pp 2554-2558.

Hopfield, J. J. (1984) "Neurons with Graded Response Have
Collective Computational Properties Like Those of Two-state
Neurons" Biophysics. Vol. 81, pp. 3088-3092.

95

Isermann, R. (1984) "Process Fault Detection Based on
Modeling and Estimation Methods — a Survey". Automatica,
20, 387-404.

Jones, H. L. (1973) "Failure Detection in Linear Systems".
Ph.D. Thesis, MIT, Cambridge. MA.

Kligene, N. I. and Telksnys, Tel'ksnys L.A. (1983) "Methods
of Detecting Instants of Change of Random Process
Properties". Automn Remote Control, 44, 1241-1283.

Korsah K., Damiano B., and Wood R.T. (1992) "Representation
of Neutron Noise Data Using Neural Networks". Power Plant
Dynamics. Control and Testing Symposium (8th), Knoxville.
TN. 27-29 May.

Meany, J.J. (1989) "Improving Convergence in Neural
Networks" Ph.D. dissertation, Dept. of Electrical and
Computer Engineering, University of Missouri-Columbia.

Meany, J.J. and Pimmel, R.L. (1991) "Associaive Memory
Networks with Bias and Nonzero Diagonal Terms". Proceedings
of the Artificial Neural Networks in Engineering (ANNIE
'91), St. Louis. Missouri. Nov.

Meyer J.E. (1980) "On Evaluating the Performability of
Degradable Computing Systems". IEEE Trans. Computers. Aug.
pp 720-731.

Mironovski, L. A. (1980) "Functional Diagnosis of Dynamic
Systems — a Survey". Automn Remote Control. 41, 1122-1143.

Mott-J.E. et. al, (1992) "Universal, Fault-tolerant, Non
linear Analytic Network for Modeling and Fault Detection",
Power Plant Dynamics, control and Testing Symposium (8th),
Knoxville. TN, 27-29 May.

Movaghar A. and Meyer J.E. (1984) "Performability Modeling
with Stochastic Activity Networks" Proc. 1984 Real-Time
Systems Svmp., CS Press. Los Alamitos, Calif..

Patton, R. J., Frank P. M. and Clark R. N. (Ed) (1989)
"Fault Diagnosis in Dynsmic Systems, Theory and
Applications". Prentice-Hall, Englewood Cliffs, NJ.

Potter, I. E. and M. C. Sumnam. (1977) "Thresholdless
Redundancy Management with Arrays of Skewed Instruments."
Integrity in Electronic Flight Control Systems. AGARDOGRAPH-
224, 15-25.

96

Sanders W.H. and Meyer J.E. (1986) "METASAN: A
Performability Evaluation Tool Based on Stochastic Activity
Networks". Proc.. ACM-IEEE Computer Soc. Fall Joint Computer
Canf.. CS Press. Los.Alamitos. Calif., pp 807-816

Sudharsanan S.I. and Sundareshan M. K. (1991) "Training of a
Three-Layer Dynamical Recurrent Neural Network for Nonlinear
Input-Output Mapping". Proceedings of the 1991 International
Joint Conference on Neural Networks (IJCNN-91). Seattle,
Washington.

Sudharsanan. S.I. (1990) "Equilibrium Characterization for a
Class of Dynamical Neural Networks With Applications to
Learning and Synthesis". Ph.D. Dissertation. Dept. of
Electrical & Computer Eng., The University of Arizona.

Whiteson R. and Howell J.A. (1992) "Anomaly Detection in an
Automated Safeguards System Using Neural Networks".
Institute of Nuclear Materials Management (INMM1 annual
Meeting. Drlando. FL. 19-22 July.

Willsky, A. S. (1976) "A Survey of Design Methods for
Failure Detection in Dynamic Systems". Automatica. 12, 601-
611.

Yoshizawa, S., Morita, M. and Amari S. (1993) "Capacity of
Associative Memory Using a Nonmontonic Neuron Model". Neural
Networks, Vol. 6, pp 167-176

