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ABSTRACT 

In this paper, the problem of designing an advanced 

sensor validation system (SVS) which is robust and fault-

tolerant under faulty conditions is considered. 

Associative memories, which provide robust pattern 

recognition are investigated as an information processing 

technology that can be applied to sensor validation. Studies 

of Binary Associative Memories (BAM) and Continuous 

Associative Memories (CAM) yield many results including 1) 

the stability condition of exemplars and spurious memories 

in BAMs, 2) the formula of choosing diagonal weights and 

bias that eliminates spurious memories most effectively in 

BAMs, 3) the convergence theory of CAMs that have asymmetric 

weight matrix with non-zero diagonal elements and non-

monotonically increasing activation functions, 4) the energy 

function that explores the convergence behavior of CAMs, and 

5) the hybrid learning algorithm that reduces spurious 

memories effectively in CAMs. 

The concept of performability is introduced to the 

evaluation of SVS. A set of important performability 

variables is introduced. Stochastic Activity Networks are 

used as a modeling tool to evaluate the performability of 

SVS. An illustration example, the evaluation of the 

pressurizer SVS of a PWR, is provided. 
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CHAPTER 1 

INTRODUCTION 

In a nuclear power plant, outputs from several hundred 

instrumentation channels are used in control systems, 

protection systems and plant monitoring systems. The 

routine validation of these signals is useful in increasing 

the reliability of operator decisions, in improving the 

plant control actions and in minimizing plant downtime. 

Since the incident at Three Mile Island unit 2, 

computerized plant status display, implementation of human 

factors in control room design, and plant monitoring based 

on expert system technology have seen a tremendous growth. 

One such proposed operator aid is a plant signal validation 

system. This system is used to check the consistency of 

redundant measurements (sensors) of selected process 

variables, estimate their expected values for plant-wide 

data, and detect, isolate and characterize the type of 

anomaly in the instrument channel outputs. Automated signal 

validation is necessary because of the large amount of 

information available, and because of the operator's 

inability to validate information from many diverse sources. 
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1.1 Sensor Validation Systems and Their Evaluations 

1.1.1 Sensor Validation System 

A Sensor Validation System (SVS) is a subsystem of a 

signal validation system. It takes the sensor measurements 

as its input, checks the consistency of redundant 

measurements, and provides the status (failure or not) of 

sensors and the best estimates of those measurements. It 

helps to provide more reliable information for control 

decisions and essential information for sensor maintenance. 

A SVS has functions of fault detection, isolation and 

accommodation. Fault detection detects if there are any 

faults in a sensor system. Fault isolation identifies which 

faults have occurred. Fault accommodation recovers wrong 

outputs of a sensor system regardless of whether faults are 

detected or not. 

There are many approaches for sensor validation. In 

section 1.2, a survey of different approaches will be 

presented. As we shall see, approaches based on neural 

networks and associative memories have shown their potential 

advantages over other approaches. However, since the 

properties of neural networks are still not thoroughly 

understood, their applications are only found in limited 

scope. 

The first part of my research effort has been devoted to 

a better understanding of the properties of associative 
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memories, so that how and how far they can be applied in 

SVSs will be understood. Analysis of the limitations of 

existing neural network structures also helps the pursuit of 

a more suitable structure of associative memory for 

application to sensor validation. 

1.1.2 Evaluation of SVSs 

The second part of my research effort has been devoted 

to the evaluation of SVSs. Given a SVS, we would like to 

know how well it performs. So, quantitative evaluation of a 

SVS is important and necessary. It forms a base for 

performance comparison among different SVSs and also points 

out the improvement direction for an existing SVS. 

Traditionally, the evaluation of a system is divided 

into two aspects: 1) performance, which is the system's 

ability to perform under its normal condition (fault free), 

2) dependability, which is the system's ability to keep in 

its normal condition. However, large complex systems, like 

nuclear power plants, often operate in a degraded condition 

(in presence of faults). Therefore, the concept of 

performability, the system's ability to perform in the 

presence of faults, is more suitable to represent the real 

situation of the system. The performability of a system is 

statistically measured by the performability variables. 

A sensor system in a nuclear power plant is not simple. 

Its validation system is even more complicated. The 
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complexity of a sensor validation system requires a 

sophisticated representation to account for performance and ' 

dependability in a unified way. The modern technique used 

here is stochastic activity networks (SANs). 

In this paper, I explore the application of SANs as a 

modeling tool to evaluate SVSs in a nuclear power plant. 

1.2 Survey of Sensor Validation 

1.2.1 Introduction 

Because of the increasing demands on reliability and 

safety of increasingly sophisticated plants and their 

elements, methods for improving the supervision and 

monitoring as part of the overall control of processes are 

of increasing interest. An essential prerequisite for the 

further development of intelligent automatic supervision is 

a system for early process fault detection, isolation and 

accommodation(FDIA) . A SVS performs the functions of FDIA. 

The problem of FDIA of a dynamic system has received growing 

attention during the last 20 years, as can be seen from the 

survey papers (Willsky, 1976; Mironovski, 1980; Kligene and 

Telksnys, 1983; Isermann, 1984; Basseville, 1988; Frank, 

1990) . 

Sensor validation is based on the redundancy of signal 

measurement. There are two kinds of signal redundancy, 

physical redundancy and analytical redundancy. Physical 
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redundancy comes from multiple physical channels measuring 

the same signals. Analytical redundancy cpmes from 

quantitative relations and constraints among different 

signals in a system. Those relations and constraints usually 

have their mathematical forms based on physical laws. 

The approach based on physical redundancy was 

traditionally used in SVSs. Recent developments of sensor 

validation have introduced the approach based on analytic 

redundancy, which can be implemented without need of 

additional physical instrumentation in the plant. Usually 

this approach makes use of mathematical models of a plant. 

However, recent researches have shown some potential 

advantage in using knowledge-based models and in using 

neural-network-based models when detailed mathematical 

models of a plant are not available. 

In the rest of this section, approaches based on 

mathematical models, knowledge-based models and neural-

network-based models will be introduced. 

i.2.2 Mathematical model-based approach 

A mathematical model-based approach takes advantages of 

the existing analytical redundancy in mathematical models of 

a plant. However, there is a price to pay for this benefit 

which arises from the need for the mathematical model of the 

plant. Not only is there considerably more computational 

expenditure required for on-line modeling of the process; a 
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much more serious problem is that of the sensitivity of the 

detection system with respect to modeling errors that are by 

no means avoidable in practice. This problem increases the 

chance of malfunction of the validation system. 

The robustness issue with respect to modeling error has 

been emphasized in Frank's survey (Frank, 1990). The 

following classification of mathematical approaches follows 

his classification . Readers who are not interested in the 

detailed classification of mathematical model approaches can 

skip to section 1.2.3 without loss of continuity. 

The general procedure of model-based approaches can be 

roughly divided into two steps: 1) generation of residuals 

and 2) decision and isolation. The mathematical model-based 

approaches can be classified by the different methods of 

residual generation. 

The parity space approach was developed by Potter and 

Suman (1977), Desai and Day (1981), and the group of Willsky 

et al. (1984 and 1986). The key idea is to check the parity 

(consistency) of the mathematical equations of the system 

(analytical redundancy relations) by using the actual 

measurements. The parity space is actually a null-space of 

the system model. A fault is declared to have occurred once 

preassigned error bounds are surpassed. 

Independent from the above approach, the dedicated 

observer approach makes use of single or banks of Luenberger 
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observers or Kalman filters, see for example, Clark et al. 

(197.5 ),„ Willsky (1976), Frank (1978b; 1988). The Basic idea 

of the observer approach is to reconstruct the outputs of 

the system from the measurements or subsets of the 

measurements with the aid of observers or Kalman filters 

using the estimation error as a residual for the detection 

and isolation of the faults. 

The fault detection filter, which was first proposed by 

Beard (1971) and Jones (1973), is a full-order state 

estimator with a special choice of feedback gain H so that 

the fault residuals come to lie in some certain direction. 

All of the above approaches end up with state 

estimators. There is an alternative approach, the parameter 

identification approach (Isermann, 1984), which makes use of 

the fact that faults of a dynamic system are reflected in 

the physical parameters. This approach may be particularly 

useful for the detection of incipient faults. 

1.2.3 Knowledge-based approach 

Knowledge-based methods (expert systems) open a new 

dimension of possible fault diagnosis for complex processes 

with incomplete process knowledge, see S. Tzafestas in the 

book by Patton et at. (1989). The expert system approach 

makes use of qualitative models based on the available 

knowledge of the system instead of quantitative analytical 
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models which are used by the mathematical model-based 

approach. 

The knowledge-based validation system usually consists 

of four components, the knowledge base (knowledge of facts 

and rules), the data base (information about the present 

state of the process), the inference engine (forward or 

backward reasoning) and the explanation component (interface 

between user and the validation system). Fault diagnosis is 

done in the inference engine which has to combine heuristic 

reasoning with algorithmic operations in terms of the 

evaluation of analytical redundancy. 

1.2.4 Neural network approach 

The mathematical model-based technique is strongly 

dependent upon a reliable system model which may not always 

be attainable in a complex system. Furthermore, modeling 

errors may cause malfunction of the validation system and 

correcting these errors can be very costly. The knowledge-

based techniques are based on finite rules of a 

sophisticated system. The performance of a knowledge-based 

model is limited by its knowledge, which is usually 

incomplete and cannot be improved from experience. The 

neural network approach overcomes these shortcomings by not 

requiring a detailed model of a plant and by continuously 

improving performance during learning. 
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An artificial neural network is a data processing system 

consisting of a number of highly interconnected processing 

elements (PE) in an architecture inspired by the structure 

of the cerebral cortex portion of the brain. Hence, neural 

networks are often capable of doing things which humans or 

animals do well but which conventional computers often do 

poorly, such as pattern recognition, learning function 

mapping and so on. 

Systems of neural networks have shown great potential 

for use in environments in which robust, fault-tolerant 

pattern recognition and function mapping are necessary in a 

real-time mode, and in which the incoming data may be 

distorted or noisy. The function of SVS can be abstracted 

into fault recognition (fault detection and isolation) and 

fault-tolerant mapping (accommodation). Therefore sensor 

validation becomes one of the areas to which neural networks 

have shown great potential applications. 

Pioneer researches have shown the feasibility and 

advantages of this approaches. 

T. -H. Guo is one of the pioneers in this area. He first 

applied neural networks to sensor failure detection and 

recovery of the Space Shuttle Main Engine (1991). Belle R. 

Upadhyaya and Evren Eryurek are pioneers of neural networks 

in nuclear engineering. From 1987 to 1990, Upadhyaya, et 

al., at the University of Tennessee, developed a 
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comprehensive signal validation system with application to 

current nuclear power plants and future advanced reactors. 

Their approach combined the cross information among process 

variables, sensor redundancy, and the data base containing 

knowledge about instrumentation, plant subsystem models, and 

history of instrument and plant behavior. An on-line signal 

validation system is in operation at the Northeast Utilities 

Millstone units 2 and 3 PWR plants. Recently, they applied 

neural networks for sensor validation and nuclear power 

plant monitoring (Eryrek and Upadhyaya 1990, 1992). 

Eryrek and Upadhyaya (1990) at the University of 

Tennessee have investigated the feasibility of using neural 

networks for signal validation. The objective of these 

projects is to enhance the safety and performance of SVSs of 

nuclear plants through the use of neural networks. Both 

auto-associative and hetero-associative neural networks were 

applied for sensor and process monitoring in a Pressurized 

Water Reactor (PWR). Their report shows that neural networks 

offer several advantages over traditional methods for sensor 

validation and plantwide monitoring. 

Many national laboratories have conducted their research 

in this area too. Their approaches are similar in terms of 

two-step-validation. In the first step, use a fault-tolerant 

mapping for state estimation (accommodation). Then, in the 

second step, check the deviation between estimates and 
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corresponding sensor readings for fault detection and 

isolation. There are several significant developments, 

including development of a "universal network" (Mott et. al 

1992), application of neural networks to neutron noise 

spectra (Korsah, Damiano and Wood 1992) and incorporation of 

neural networks into automated safeguards (Whiteson and 

Howell 1992). 

A universal network is a variation of neural networks. 

It has been developed as a universal process modeling 

software which has been implemented on a dedicated computer 

system at EBR-II in Argonne National Lab., Idaho Falls (Mott 

et. al 1992). Their research has concluded that the 

universal network can provide extremely fast, accurate, and 

fault-tolerant estimation, validation, and replacement of 

signals in a real system. 

Neutron noise data reduction, analysis, and 

interpretation can be used as means to diagnose degradation 

of reactor internals. In the Oak Ridge National Laboratory, 

a neural network-based method has been developed to 

represent neutron noise spectra (Korsah, Damiano and Wood 

1992). The back-propagation learning method is applied. 

An automated safeguards system involves detection of 

anomalous events, identification of the nature of the event, 

and recommendation of a corrective action. In Los Alamos 

National Lab, a neural network model has been applied in the 
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first step: detection of anomalous events (Whiteson and 

Howell 1992). It detects anomalous events by predicting how 

a system should be behaving. 

However, the technology of applying neural networks to 

SVS is not mature yet. Lack of thorough understanding of the 

functions, properties and limitations of different 

structures have prevented application and dissemination of 

neural networks to sensor validation, as well as to other 

areas. 

As we know, Hopfield has shown that recurrent networks 

are suitable for associative memories. However, in the 

University of Tennessee approach (Eryrek E. and Upadhyaya 

B.R. 1992), the feed forward structure is still used for 

auto-associative networks and hetero-associative networks. 

In this paper, I will explore the feasibility of using 

associative memories for sensor validation systems. 

1.3 Associative Memories and Sensor Validation 

1.3.1 Redundancy checking and pattern recognition 

In order to validate sensor signals, there must be some 

redundancy between signals, either physical or analytical 

redundancy. By checking the consistency of existing 

redundancy, one should be able to validate these signals, if 

the redundancy is sufficient. From another aspect, 

redundancy can also be represented as patterns. Therefore, 



21 

consistency checking can be transformed into pattern 

recognition. 

However, in a large system, such as a nuclear power 

plant, there are hundreds of signals that need to be 

validated, in real time. The pattern recognition task is 

tedious. Making it harder, analytic redundancy usually is 

implicit. A learning machine is needed to explore the 

implicit redundancy. Since the signals are noisy and 

disturbed in a real plant, the robustness of SVSs over 

disturbed patterns is necessary. In short, a SVS must have 

the ability of self-learning and fault-tolerant pattern 

recognition. 

1.3.2 Associative memory and fault-tolerant pattern 

recognition 

An associative memory is a neural network in which 

patterns can be stored and retrieved. Patterns, in general, 

can be represented by vectors. The main function of an 

associative memory is to retrieve patterns that have been 

stored in the memory, when some input patterns are 

presented, even though the input pattern may have been 

disturbed. If the input pattern is identical or close (when 

it is disturbed) to the pattern to be retrieved, the memory 

is called an auto-associative memory. If the input pattern 

is different from the pattern to be retrieved, the memory is 

called a hetero-associative memory. 
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One important feature of an associative memory is the 

ability to retrieve patterns regardless of noisy, even 

faulty input patterns. Another feature is its ability of on

line storing (learning), which makes it possible to explore 

more implicit redundancy based on experience. These two 

features make an associative memory a suitable device for 

self-learning and fault-tolerant pattern recognition in a 

SVS. 

1.3.3 Contributions 

One of the major types of associative memory is known as 

the Hopfield net(Hopfield 1982, 1984). Detailed description 

of associative memories will be carried in section 2.1. 

One major part of this paper will be dedicated to 

theoretically analyzing the properties of the Hopfield type 

of network, so that how and how far it can be applied in the 

sensor validation system will be understood. In chapter 3, I 

will propose a series of theorems, which lead to better 

understanding of single layer associative memories. 

Furthermore, this knowledge leads to better learning 

algorithms as we shall see in chapter 3. 
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1.4 Stochastic Activity Network and 

Evaluation of Sensor Validation Systems 

1.4.1 Performability 

When we have a SVS in hand, we would like to know how it 

performs. More important, how does it perform in the 

presence of faults? Traditional performance and 

dependability modeling techniques require the separate 

evaluation of system performance and dependability, 

disregarding any dependencies that exist between them. The 

concept of "performability" overcomes the limitation (Meyer 

1980). Informally, performability quantifies a system's 

ability to perform in the presence of faults. The 

performability of a system is statistically measured by the 

performability variables. 

When a failure of a sensor is detected and isolated, it 

most likely will be repaired. Thus the SVS is closely 

related with the sensor maintenance and sensor performance. 

The evaluation of a SVS usually includes the evaluation of 

the performability of the sensor system itself, as well as 

of its validation system. 

A sensor system in a nuclear power plant is not simple. 

Its validation system is even more complicated. The 

complexity of the sensor validation system requires a 

sophisticated representation to account for performance and 
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dependability in a unified way. The modern technique used 

here is stochastic activity networks. 

1.4.2 Stochastic activity networks 

Stochastic activity networks (SANs) are a stochastic 

extension to Petri nets (Movaghar and Meyer 1984). They can 

be viewed as a modeling language which represents our 

knowledge of a sequence of random events of a complex 

system. It is machine readable so that it is feasible for 

computer application. Even more, its graphic interface makes 

it human readable so that it is easy to communicate. 

As a problem solver, a SAN has its reward variables as 

output. The reward variables are defined based on the model 

and can be computed by the SAN's solver. Performability 

variables can be further constructed as functions of reward 

variables. SANs have been used successfully to evaluate a 

wide variety of computer systems and networks. Detailed 

description of SANs will be carried in section 2.2. 

1.4.3 Contributions 

In this paper, I explore the application of SANs as a 

modeling tool to evaluate SVSs in a nuclear power plant. The 

concept of performability is introduced into the evaluation 

of SVS. In Chapter 4, a set of important performability 

variables are defined. They construct a framework for the 

evaluation of SVSs. Strategies of using SANs for evaluating 
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SVSs are developed. As illustrative examples, the SAN models 

of a pressurizer sensor system are presented. The 

performability of the system is evaluated and analyzed. 



CHAPTER 2 

ASSOCIATIVE MEMORIES AND STOCHASTIC ACTIVITY 

2.1 Associative Memories 

2.1.1 Introduction 

Through the years, two human traits have continued to 

elicit great interest among philosophers and researchers: 

the ability of humans to retrieve information on the basis 

of associated cues and the ability to recognize speech 

utterances and handwriting in a very robust manner despite 

major variations, distortions, or omissions. 

The first ability is thought to be the power of a 

human's associative memory. For example, a few bars of a 

tune can evoke memory of the entire tune; a glimpse of the 

back of a head in a crowd can be sufficient basis for 

thinking of an old friend. Such power and other related 

phenomena have fueled a continuing interest of philosophers 

and psychologists in the "human's associative memory", even 

from as early as the days of Aristotle: 

"Thus memory belongs to the faculty of the soul to which 
imagination belongs; all objects which are imaginable are 
essentially objects of memory; all those that necessarily 
involve images are objects of memory incidentally." 
(Aristotle, 384-322 BC.) 
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In nuclear a power plant, the power of human associative 

memory also helps the operators to detect and identify 

failures in the plant based on the signature of the 

failures. This inspires the idea to use artificial 

associative memories for intelligent control in safety 

systems, such as sensor validation systems, fault detectors 

and diagnostics, and fault tolerant controller. 

Since associative memories are human traits, researchers 

have looked to their limited knowledge of human neural nets 

for inspiration and guidance in computer simulation model 

building. Therefore many computer associative-memory models 

also tend to be nets of neuron like nodes functioning on the 

basis of distributed processing and storage. 

One simple version of such a neural-net model is a 

binary, discrete-time, additive model, aspects of which have 

been studied since 1943 by a number of researchers, 

including Hebb [1949] and McCulloch and Pitts [1943]. In 

1982, Hopfield first developed a network based on "two-state 

McCulloch-Pitts neurons", which will be simply called binary 

associative memory (BAM) because its input and output are 

limited to be binary numbers. Later, in 1984, he proposed 

another model based on "continuous neurons", which will be 

called continuous associative memory (CAM) because its input 

and output are real numbers. These models have received 
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considerable attention because of Hopfield's detailed 

exposition of their characteristics. 

Since the Hopfield Net was introduced, many applications 

of this type of network have been found and continuous 

research efforts have been devoted to understanding and 

developing its performance. Meany and Pimmel [1991] have 

performed a detailed analysis of how to use bias and non

zero diagonal terms to improve the performance of BAMs. 

Sudharsanan and Sundareshan [1990] recently have developed a 

special type of dynamic network (a variation of Hopfeild's 

CAM) which has its application to associative memories. 

Their simulation examples have shown that it has high 

accuracy in storing and retrieving information. 

In the rest of this section, Hopfield's associative 

memory, Meany and Pimmel's work and Sudharsanan and 

Sundareshan's contribution will be introduced in a coherent 

frame of vector space, so that the notation and the 

structure will be consistent with later development in 

Chapter Three. Therefore, some refreshment of vector space 

and introduction to some important concepts will be 

necessary to be carried out first. 

2.1.2 Vector space 

Notation: all the vectors are underlined, like x-

The inner-product of two vectors is viewed as a 

composition of two operators: the element by element product 
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and the summation of the elements of their element by 

element product. The element by element product of two 

vector z. = x*y, x, y e RN is defined as z e RN and its 

elements zL = x± y^ The sum of the elements of a vector <z>, 

z e R" is defined as <z> e R and <z> = Y. Therefore, the 

inner-product of two vector xTY can be defined as <x*y>. 

The outer-product of two vector, xvT, can be viewed as 

an operator composed of two operators. It multiplies the 

vector x by the inner-product of y and the operand. 

Therefore, the outer-product, xvT. can also be denoted as 

x<y*.>. 

In a vector space RN , the magnitude |x| of a vector x e 

RN is defined as its L-2 norm, i.e., |x|= -J<x * x > . The angle 

0 between two vectors x and y e RN is defined as 

cos(0) = <x*>j>/|x||^|. On the other hand, the inner-product of 

two vector results in the magnitude of projection of one 

vector on the other, i.e., <x*y> = |x||y| cos(0). 

A binary space is a subset of a vector space of the same 

dimension, denoted as 2N. A binary vector is a vector whose 

elements are +1 or -1. It can be shown that |x|= *J~N if x e 

2 N .  

We say that a vector x is greater than a vector y, 

denoted as x » y, if all the elements of x are greater than 

the corresponding elements of y, i.e., x » y if and only if 

xt > y1 , for all i. By analogy from two real numbers, x and 
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y, which are of the same sign if and only if xy > 0, we say 

that two vectors x and y are. of,the same sign if and only if 

x*y » 0 where 0 is a vector whose elements are all zeros. 

Let J be the unit vector whose elements are all +1. 

A hyper-quadrant is a set of all the vectors that are of 

the same sign. So, two vectors x and y are in the same 

hyper-quadrant if and only if x*y » 0. Clearly, a hyper-

quadrant is a subset of a vector space of the same 

dimension. 

Each hyper-quadrant contains one and only one binary 

vector. We call this binary vector the quadrant vector of 

the hyper-quadrant, or loosely, the quadrant vector of the 

vectors in the same hyper-quadrant. In other words, each 

binary vector denotes a quadrant vector. Clearly, a binary 

space is the set of all the quadrant vectors. 

The quadrant operator Q  is a function which maps a 

vector to its quadrant vector, i.e., Q : RN -> 2N and Q(x)*x 

» 0. 

We will find that the concepts of hyper-quadrants, 

quadrant vector and the quadrant operator are quite useful 

and handy in describing and analyzing the properties of 

associative memories. The perspective of the inner-product 

and outer-product provides insight on the behavior of 

associative memories. 
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2.1.3 Hopfield's associative memory 

In 1982, Hopfield proposed a stochastic model of 

associative memory based on McCulloch-Pitts neurons. It only 

has one recurrent layer, as depicted in Figure 2.1. 

Figure 2.1 Diagram of the Hopfield Network 

The state of the net is initialized by the input. Then 

the state in the recurrent layer will evolve until it 

reaches an equilibrium state. The output of the net is the 

equilibrium state of the net. The dynamic of the network can 

be mathematically described as follows: 
7/(0) = x 

v ( k )  =  g ( u ( k ) )  
u ( k  +  l )  =  W v ( k ) + b  [2.1] 

y=Y.s 

when vs(k) = vs{k +1) 

where k is the iteration step, x is a binary vector as 

initial input, y is a binary vector as final output, W is 

the recurrent weight matrix, b is the bias, u and v are the 

state vectors of the net vsand g(u) is the activation 

function. Hopfield used the quadrant operator Q(.) as the 
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activation function. Since the input and the output of the 

memory are binary vectors, the model is called Binary 

Associative Memory (BAM). 

The BAM stores patterns (exemplars eif i = 1, 2, . . . M), 

by forming its weight matrix using exterior-product 

formulation (EPF), the sum of outer-products of the 

exemplars, as described in the following equation. 
M  

~MI + Dw [2.2] 
i=1 

where M is the number of exemplars to be stored in the 

memory and Dw is a diagonal matrix which forms the diagonal 

term of the weight matrix. 

Hopfield prescribed zero bias (b=0) in equation 2.1 and 

zero diagonal elements (Dw=0) in equation 2.2. 

In 1984, Hopfield proposed a deterministic, continuous 

model of associative memory, which can be described as the 

following equation set. 
u{0)  =  x  

Cu — —R' ]  u+lVg(u)+b 
~ " " " [2.3] 

y = g{'i ) 

when u'=RIVg( u' ) + Rb 

where k is the iteration step, x the initial input 

vector and y is the final output vector, u is the state 

vector of the net, W is the recurrent weight matrix, C is 

the matrix representing capacitance of the cell membranes, R 

is the matrix representing the resistance of the cell 

membranes, b is bias representing some fixed input and g(u) 
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is an activation function. uB represents the stable steady 

state to which the network asymptotically evolves. Since the 

input and the output of the net are continuous vectors, the 

net is called Continuous Associative Memory (CAM). 

The convergence property of the recall process in the 

CAM is governed by the Lyapunov function. A Lyapunov 

function is a non-negative continuous function of the state 

of the system and its time derivative is not positive. The 

convergence theorem states that if there is a Lyapunov 

function existing for a dynamic system, then the dynamic is 

guaranteed to converge to its stable state. 

Hopfield introduced an energy function as follows: 

When W is a symmetric matrix with zero diagonal 

elements, the time derivative of the energy function is 

determined by the following equation: 

Since dg/du is a monotonically increasing function, 

dE/dt is always not positive during state evolution and will 

reach zero only when dui/dt=0 for all i. Therefore, the 

energy function is a Lyapunov function and the iteration 

must converge and lead to a stable state. 

If a pattern is a stable state (a minimum of the energy 

function) in the memories, then it is stored (stabilized) in 

[2.4] 

[2.5] 
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the memory. On the contrary, if a pattern is not a stable 

state in the memories, it is not stored (destabilized) in 

the memory. Since the states of the memory will converge to 

a stable state, the stable state is also called an 

attractor, which attracts its adjacent states. 

The learning procedure is an attempt to store exemplars 

in the memories, in other words, to stabilize exemplars. Any 

stabilized patterns that are not exemplars are called 

spurious memories. The objective of learning (storing 

exemplars) is to stabilize all the exemplars and to 

eliminate spurious memories at the same time. 

The Hopfield's model has three major limitations in 

performance: spurious memories, destabilized exemplars and 

limited capacity. Much research has been done to improve the 

performance of BAMs and CAMs by modifying the model or 

changing the learning algorithm. Sudharsanan and Sundareshan 

(1990) proposed to use Backwards Error Propagation (BEP) to 

store the exemplars. Meany and Pimmel (1989, 1991) 

investigated the effect of bias and non zero diagonal terms 

of the weight matrix (diagonal weights) on the performance 

of a BAM. Their work will be introduced in the following two 

sections. 

2.1.4 Sudharsanan and Sundareshan's model 

Sudharsanan and Sundareshan proposed a dynamic network 

as follows. 
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u(  0 )  =  x  

u  =  -u  +  lVg(u)+b  
[ 2 . 6 ]  y  =  u  

when u' = Wg(u') 

where x is the vector presented to the net and y is the 

output vector of the net, u is the state of the net, W is 

the weight matrix and b is the bias. uB represents the 

stable steady state to which the network asymptotically 

evolves. They used, as the activation function, the inverse 

tangent function with large gain, which is a continuous 

function providing a good approximation to the quadrant 

operator. 

Besides their use of identity matrices for the 

capacitance matrix and the resistance matrix, their network 

differed from Hopfield's in their use of uB as the final 

output of the memory, instead of g(u°) as used in Hopfield's 

model. The choice of uB as the final output lifts the 

limitation that the output is in the range of the activation 

function. 

They also used the Backwards Error Propagation (BEP) 

algorithm to form the weight matrix and bias. The error E of 

the network is defined as follows. 

where y^x*) is the desired output pattern of the net and 

y(Xj.) is the actual output pattern of the net when the input 

pattern is x̂ . 

[2.7] 
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The BEP algorithm uses the gradient descent rule to 

minimize the error. The desired..patterns (exemplars) will be 

stored (stabilized) in the net when the error of the net is 

reduced to zero. The BEP algorithm yields the following 

update of weight matrix and bias. 

A W = n ( y  - y ) g ( y ) T  

~d ~ ~ [2.8] 
A^ = riQ^ ~y)  

where |4. and t] are learning constants. Sudharsanan and 

Sundareshan have shown that the learning constants must be 

in appropriate ranges in order to get good training result. 

2.1.5 Meany and Pimmel's analysis 

Meany and Pimmel investigated the effect of bias and non 

zero diagonal terms of the weight matrix (diagonal weights) 

on the performance of a BAM (Meany 1989, Meany and Pimmel 

1992). Bias is utilized to break network symmetry, 

eliminating exemplar complements as stable states. Positive 

diagonal terms can stabilize otherwise unstable exemplars, 

but may also stabilize otherwise unstable spurious memories. 

They suggested choosing diagonal weights according to the 

following equation which guarantees the stability of every 

exemplar. 

w„ = maxf0, m a x s ( w u e /  - b , )  +  e * ) ]  +  e [2.9] 
j*< 

where s is a small positive constant. Their simulation 

suggested that let e to be 0.01. 
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2.2 Stochastic Activity Network 

2.2.1 Introduction 

Stochastic activity networks (SANs) are a stochastic 

extension to Petri nets. They can be viewed as a modeling 

language which represents our knowledge of a sequence of 

random events of a system. Movaghar and Meyer (1984), at 

University of Michigan, proposed the SAN model. The Michigan 

Evaluation Tool for the Analysis of Stochastic Activity 

Networks (METASAN) was the first SAN-based software package 

(Sanders and Meyer 1986). These studies illustrated SAN's 

usefulness in representing real systems. 

UltraSAN, (Couvillion et. al 1991) recently developed in 

University of Arizona, is new graphical, X window-based 

software package for SAN. It incorporates some innovations 

including: 1) a class of SAN-level reward variables common 

to both analytical and simulation solution methods, 2) 

methods that use the reward variable choice and the SAN 

structure to greatly reduce the size of the stochastic 

process required for an analytical solution, and 3) methods 

that use the reward variable choice and the SAN structure to 

reduce the number of activities checked on each state 

change, thus speeding the simulation. 

The following description of SAN is based on the 

documentation of the UltraSAN software package. 
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2.2.2 Primitives 

As a modeling language, SAN has its "keywords", 

primitives. There are three kinds of primitives in SAN, 

activities, places and gates. Those primitives are 

interconnected by arcs to form a network. The semantics of 

the net represents our knowledge of a sequence of random 

events. 

In a network, places are denoted by circles. They 

represent states of objects and may contain tokens. The 

number of tokens in a place represents the number of objects 

in the state. The number of tokens must be initialized when 

a place is constructed. 

For example, the SAN model of a SVS system is plotted in 

Figure 2.2. In the figure, "NORMAL", "FAILED", "DETECTED" 

and so on, are places. The place "NORMAL" represents the 

normal state of sensors. The number of tokens in place 

"NORMAL" represents the number of normal sensors and shall 

be initialized with the number of normal sensors initially 

existing. 
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REPAIRABLE REPAIR 

FAIUURE 

DETECTED FAILED ISOLATE DETECT 

DETECTING 

NOT WORKING DETECTER NORMAL 
BREAK 

Figure 2.2 the SAN Model of a Simple SVS 
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Activities represent the transitions between states and 

are connected to places by arcs. The input places of an 

activity are connected to its left hand side and the output 

places to the right hand side. On the completion of an 

activity, the number of tokens in its input places all 

decrease by one and the number of tokens in its output 

places all increase by one. 

In SANs, there are two kinds of activities, timed 

activities, denoted by ovals, and instantaneous activities, 

denoted by vertical bars. Timed activities represent the 

state transitions that complete in a considerable amount of 

time. The probability distributions of the elapsed time of 

their completion must be specified when they are 

constructed. Instantaneous activities represent the state 

transitions that complete in a negligible amount of time. 

In Figure 2.2, "FAILURE", "DETECT", "REPAIR" and so on, 

are timed activities. The activity "FAILURE" represents the 

transition of a sensor from normal to abnormal. Since the 

elapsed time of isolating a detected sensor failure is 

negligible, the isolation procedure is represented by an 

instantaneous activity, "ISOLATE". 

Cases associated with an activity are denoted by small 

circles on the right side of the activity. They divide 

output places of the activity into different groups 

according to the outcomes of the activity. On the completion 
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of the activity, one of its cases will be chosen and only 

the group of places that are connected to that case become 

active output places, that is, the number of tokens in those 

places will increase by one. In Figure 2.2, two cases in the 

activity "ISOLATE" differentiate two possible states of a 

failed sensor, repairable and irreparable. 

Gates, denoted by triangles, can be divided into input 

gates, which are connected to the input side (left) of 

activities and output gates, which are connected to the 

output side (right) of activities. Input gates enable or 

inhibit the activity to which they connected according to 

the value of their predicates. An activity will be enabled 

only when the predicates of all its input gates return TRUE 

and the number of tokens in neither of its input places are 

zero. Output gates do not have predicates, so they do not 

have the function of enabling or inhibiting activities. Both 

input and output gates have functions that may change the 

number of tokens in the places on the completion of the 

activity. In short, gates provide greater flexibility in 

specifying enabling and completion rules for activities. 

For examples, in Figure 2.2, "DETECTING" is an input 

gate. It enables activity "DETECT" when there is some 

detector available, that is, the number of tokens of place 

"DETECTER NORMAL" is not zero. 
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2.2.3 Reward Variables 

Using a SAN model, we now can represent our knowledge of 

a system in a unique form, both machine readable and human 

readable. The next question is what information we can get 

from it. As a problem solver, a SAN returns reward variables 

as its output. 

In SANs, there are two types of rewards, impulse reward 

associated with each state change and a rate reward 

associated with the duration of certain states. Activity 

completion can be assigned to impulse rewards while 

particular numbers of tokens in places are assigned to rate 

rewards. Since impulse rewards are not used in this project. 

I omit their detailed description. 

A rate reward is composed of a predicate and a function. 

The function takes the numbers of tokens in places as its 

arguments and returns a real number when its predicate is 

TRUE. Therefore, a rate reward accumulates information of 

the duration of particular states. Then evaluation of a 

system can be done by processing the information i.e., 

constructing performability variables as functions of 

appropriate reward variables. 

2.2.4 Solvers 

After our knowledge of a sequence of random events is 

represented in a SAN model, SAN will transform it into a 
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Markov chain, i.e., into a Markov state transition equation 

as follows. 

P ( k  +  \ )  =  Q ( k ) P ( k )  [2.10] 

where P(k) is the vector of state-occupancy 

probabilities and Q(k) is the state transition matrix at 

time k. 

Quite often, we would like to know the asymptotic state 

of the system, i.e., Hm P(k) • The following well known 
Ar—>00 

theorem is used: 

Theorem: If the Markov chain is irreducible and aperiodic, 

then the asymptotic state-occupancy probabilities exist and 

are equal to the steady state-occupancy probabilities which 

satisfy the steady state equation, i.e., 

lim P(k) = Ps 

[2.11] 
where QP" = P" and ^ P *  = 1 

i 

There are two type of solvers in SAN, the analytic 

solver and the simulation solver. 

The analytic solver solves the desired steady state-

occupancy probabilities from the steady state equation, 

[2.11]. Then, it computes the mean, variance, probability 

density function and probability distribution function for 

each desired reward variable from known steady state-

occupancy probabilities. 

If the condition of the above theorem is not satisfied, 

asymptotic state-occupancy probabilities either do not exist 



44 

or can not be computed from the steady state equation. Then, 

the simulation solver can be applied, instead of the 

analytic solver. 

The simulation solver uses the Markov state transition 

equation to compute the state-occupancy probabilities at 

every instance. And then, like the analytic solver, it 

computes the mean, variance, probability density function 

and probability distribution function for each desired 

reward variable from known steady state-occupancy 

probabilities. 



CHAPTER 3 

ANALYSIS OF ASSOCIATIVE MEMORIES 

3.1 Issues of Associative Memories 

In chapter 2, Hopfield's Binary Associative Memory (BAM) 

and Continuous Associative Memory (CAM) are introduced. For 

information storing, the weight matrix with zero diagonal 

weights is formed by the Exterior Product Formulation (EPF). 

Hopfield proved that the convergence of the network is 

guaranteed if 1) the weight matrix is symmetric and with 

zero diagonal terms and 2) the activation function is 

monotonically increasing. However, Hopfield's model has 

three major limitations in performance: spurious memories, 

destabilized exemplars and limited capacity. 

Much research has been done to improve the performance 

of BAMs and CAMs by modifying the model or changing the 

learning algorithm. Meany and Pimmel (1989, 1992) have 

proved that a weight matrix with non-negative diagonal 

weights still guarantees the convergence of a BAM and will 

stabilize otherwise unstable exemplars. They also use biases 

to destabilize the exemplar complements. (Complements are 

vectors with all signs reversed relative to the exemplars.) 

Sudharsanan and Sundareshan (1990, 1991) modified the 

CAM model and applied a Backwards Error Propagation (BEP) 
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algorithm to stabilize continuous patterns in their net. In 

their approach, there is no constraint on the choice of 

weight matrix. Recent research (Yoshizawa, Morita and Amari 

1992) has also shown that a non-monotonic activation 

function may increase the capacity of a CAM. However, 

convergence may not be guaranteed. 

However, during the development of associative memory, 

there are some remaining questions. Regarding the issue of 

spurious memories and unstable exemplars, the questions are: 

1) under what conditions, are exemplars stabilized and 2) 

where, or more precisely, in which hyper quadrants do 

spurious memories exist? Regarding choosing non-zero 

diagonal weights and biases, the question is: how to choose 

those parameters that can stabilize all the exemplars and, 

at the same time, most effectively eliminate spurious 

memories? Regarding the generalization and modification of 

Hopfield's model, the question is: what is the convergence 

property when Hopfield's convergence condition no longer 

holds? Regarding the convergence behavior, how do different 

initial states gradually evolve to their destines? Regarding 

the different learning algorithms, what is the effectiveness 

of EPF and BEP algorithms? 

In this chapter, both the BAM and CAM models will be 

studied analytically so that those issues are addressed and 

questions are answered. In section 3.2, vector analysis is 
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performed on BAMs and the first two issues will be 

addressed. In section 3.3, the convergence property and 

convergence condition of CAM will be discussed. In section 

3.4, the two learning algorithms, EPF and BEP, will be 

studied and a so called Normalized Exterior Product 

Formulation (NEPF) will be proposed. Finally, section 3.5 

summarizes the chapter. 

3.2 Vector Analysis of Binary Associative Memory 

3.2.2 Stability conditions of BAM 

As we know, a BAM formed by EPF often has spurious 

memories, and even worse, it sometimes may have destabilized 

exemplars. Then two questions arise: Under what conditions, 

are exemplars stabilized, and where, or more precisely, in 

which hyper quadrants, do spurious memories exist? 

Theorem 1 (original) answers those two questions by 

stating the stability condition of a binary pattern in a BAM 

formed by EPF. For detailed description of BAM and 

notations, see section 2.3. 

Theorem 1: A binary vector v is stabilized in a BAM 

constructed by EPF, if and only if the following condition 

holds. 

v * ( v  +  £ ) »  M J - D W J  

& [3-1] 
v = N^e, cos(0,.) 

iol 

where 0^ is the angle between v and ej_. 
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Proof: 

From EPF (equation 2 . 2 ) ,  we get the following equation. 

According to the property of the quadrant vector, u(k) 

and v(k) are always in the same quadrant. The quadrant 

vector v(k)=v(k+l) if and only if 

u(k+l)=u(v(k))=Wv(k)+b and v(k) are in the same 

quadrant. 

Therefore, a binary vector v is stabilized in a BAM, if 

and only if the vector u(v) is in the same quadrant as 

v, i.e. u(v)*v»0. Thus, we get the following 

inequality for a stabilized pattern: 

=  ( W v  +  b ) * v  = (iV^Te,- cos(0,)~M I v +  D w v  +  b ) * v  
/=i [3.3 

=  (v +  b ) *  v - ( M J  -  D w  J )  » 0 

Moving (MJ-DWJ) to the right hand side of the above 

inequality, we get theorem 1. 

Theorem 1 provides the general stability condition of 

all the states. As we can see, the right hand side of 

inequality 3.1 is independent of the pattern v. The larger 

are the value of diagonal weights, the smaller is the right 

hand side of inequality 3.1, so, more patterns can satisfy 

the stability condition. 

According to theorem 1, a spurious memory exists if a 

binary pattern v is not an exemplar but satisfies the 

condition. Therefore, in order to eliminate spurious 

W v  =  \  - M I  + D W  lv = N ^ e ,  cos(0, ) - M I v + D w v  [3.2] 
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memories as much as possible, we should choose diagonal 

weights as small as possible. However, the values of 

diagonal weights should not be too small to stabilize 

exemplars. 

Corollary 1 (original) provides the stability condition 

of an exemplar. 

Corollary 1: The exemplar is stabilized in a BAM 

constructed by EPF of M exemplars, if and only if the 

following inequality holds. 
( £ .  + b ) * e s  » { M - N ) J - D W J  

^ I \ [3.41 
h  = 

where 0j[j is the angle between e^ and ej. 

Proof: 

From theorem 1, we have 

( v  +  b ) * v  =  e i *  cos(0(;.)+6 | = +ef Af]T(?;co s(0j+A 
V >=' J V [3.5] 

=  N J  +  ( e i + b ) * e i  »  M J - D W J  

Moving NJ to the right hand side of the above equation, 

we get corollary 1. 

As we can see, if the diagonal weights are too small, 

some exemplars may become unstable. The smaller value of 

diagonal weights imply a larger right hand side of 

inequality 3.4. In order to keep all exemplars stable, the 

right hand side must be upper bounded. Therefore, the 

diagonal weights must be lower bounded. 
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In conclusion, if we choose the diagonal weights 

slightly greater than their lower bound, the BAM shall have 

least spurious memories while all the exemplars are 

stabilized at the same time. Now, the question is: what is 

the lower bound of the diagonal weights? In the next 

section, we will discuses how to choose the diagonal weights 

and bias so that spurious memories can be minimized. 

3.2.2 Diagonal Weights and Bias 

In Meany and Pimmel's paper, bias is used to destabilize 

the complements of exemplars. Actually, the function of bias 

can be more than that. As we will see in this section, bias 

can also eliminate other spurious memories by decreasing the 

lower bound of diagonal weights. 

Lemma 1 (original) shows the relation between the lower 

bound of diagonal weights and the bias. Theorem 2 provides 

the choice of bias that results in the lowest lower bound of 

diagonal weights. 

Lemma 1 The lower bound of the diagonal weights that 

guarantee the stability of exemplar e A  is M - N - ( e J t + b J . ) e J i , ,  

where is the jth element of e, and ei;j is the jth element 

of e£. 

Proof: 

Recall Dw in corollary 1 is a diagonal matrix whose 

diagonal elements are the diagonal weights W^. Solving 

inequality [3.4] for Wj;j, we get 
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W j j  >  M - N  - { e j j  + b J ) e I J  [3.6] 

So the lower bound of diagonal weights is the right 

hand side of the above inequality. 

The lower bound of diagonal weights that stabilizes all 

the exemplars must satisfy inequality 3.6 for all exemplars. 

Lemma 1 shows that the lower bound of the diagonal weights 

is a function of bias. In other words, different biases may 

result in a different lower bound of the diagonal weights. 

Smaller values of the diagonal weights means fewer spurious 

memories, so the bias that results in lowest lower bound of 

the diagonal weights is desirable. 

Theorem 2: (original) In a BAM constructed by EPF, by 

choosing bias and diagonal weights as follows, the diagonal 

weights have their lowest lower bound Wj:jb that keeps all the 

exemplars stable. 
+ . e  + e  

2 

W *  =  M - N -
2 

[3.7] 

where e* = mingle,, = +1} 

e~ = max{e;i|eJJ =-1} 

Proof: 

If ejjL=l in inequality 3.6, we have 

W j j  >  ( M - N ) - e j j  - b j  [3.8] 
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Let e..+ be the minimum of such that e^+l, then the 

above inequality holds if the following inequality-

holds . 

W £  >  ( M  -  N ) ~ e *  - b j  [3.9] 

For e^-l, we have the following inequality 

Wjj>(M - N) + ey + bj [3.10] 

Let e^ be the maximum of such that e^-l, then the 

above inequality holds if the following inequality 

holds. 

- N ) + e *  + b j  [3.11] 

Solving inequality 3.9 and inequality 3.11 for minimum 

Wjjf we get 

e *  + e , ~  
b ,  =  —  J —  [3.12] 

1 2 

Substituting the above equation into inequality 3.11, 

we get the lowest lower bound W^15 of Wj;j as follows 
+ + 

W „ b =  M - N -  e '  ~ C j  [3.13] m 2 

Theorem 2 shows how diagonal weights and bias should be 

chosen so that spurious memories are minimized. Notice that 

theorem 2 does not guarantee that there are no spurious 

memories. Instead, it states that given the choice of these 

parameters, that is the best that can be done to eliminate 

spurious memories while all the exemplars are kept stable. 
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3.3 The Convergence Property of 

Continuous Associative Memories 

3.3.1 The Energy Function and Convergence Theorem 

As we know, Hopfield's model has three major limitations 

in performance: spurious memories, destabilized exemplars 

and limited capacity. In order to improve the performance of 

CAM, many modified models have been proposed. These 

modifications include lifting the constraints on the weight 

matrix and using non-monotonic activation functions. 

However, under these modifications, Hopfield's convergence 

condition no longer holds. An appropriate convergence 

theorem is required. 

In this section, an energy function is introduced. The 

condition of the existence of a Lyapunov function is used as 

a sufficient condition for convergence of the CAM. For 

description of the CAM and Lyapunov function, see section 

2 . 2 .  

In order to study the convergence property of a 

recurrent layer, I introduce an energy function E which is 

defined as the magnitude of the time derivative of the state 

vector u, i.e., E=\u\. Obviously, E> 0, and E = 0 only if u = 0. 

From equation 2.6 and the definition of the magnitude of a 

vector, we have 

E  =  - y J < ( ~ «  +  l V g ( u )  +  b ) * ( - u  +  W g ( u )  +  b ) >  [3.14] 
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Theorem 3: (original) The energy function is a Lyapunov 

function if the matrix WG-I is negative definite, where 

G=dg(u)/du. 

Proof: 

First, recall that E ;> 0. 

Secondly, find d E / d u  from equation 3.14, 

From the definition of a negative definite matrix and 

the condition WG-I is negative definite, we get 

dEldt> 0, and dEldt = 0 only if u = 0 . 

Therefore, the energy function is a Lyapunov function. 

As we know, if there is a Lyapunov function existing, 

the dynamic system is guaranteed to converge to its stable 

state. Therefore, theorem 3 actually states a sufficient 

condition for the convergence of a recurrent network. 

Recall that in the Hopfield's convergence theorem, the 

convergent conditions are 1)the weight matrix must be 

symmetric and with zero diagonal weights and 2)the 

activation function must be monotonically increasing. But 

theorem 3 states the condition differently. It can be 

applied to either monotonic or non-monotonic activation 

functions. It states that there are not necessarily any 

« U W G - I ) u  
d u  E  

[3.15] 

Thirdly, according to the chain rule 

[3.16] 
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limitations on either the weight matrix or the activation 

function to guarantee the convergence of the network, as 

long as the combination of these two, i.e., (WG-I), 

satisfies the constraint. 

3.3.2 The Convergent Trajectory of the CAM 

As we know, there are many minima (attractors) that 

attract the state of the network to evolve to those 

attractors. But in a CAM, its convergence behavior, i.e., 

which and how states will evolve to attractors is usually 

still unknown. Now, with the help of the above defined 

energy function, this mystery can be unwrapped. 

Recall that in BAM, Hopfield used the quadrant operator 

Q(u) as the activation function (see section 2.1, 2.2). If 

all elements of u are not equal to zero, i.e., u^O for all 

j, then d(?/du=0. If there are some u^O, then u falls on the 

a hyper-plane that separates the hyper-quadrants. 

Quite often, in CAM, a continuous function which is 

approximate to the quadrant operator, for example, g(u) = 

acrtan( 1007iu) *2/71, is used. This type of activation function 

has two properties: 1) G=dg/du=0, when u is far from the 

axes, i.e. all its elements Uj are not close to zero, and 

2) gfujsgtu.,), when Uj and u2 are in the same quadrant and 

neither of them have elements close to zero. 

Theorem 4: (original) When the state of CAM is far away 

enough from the hyper-planes which separate hyper-quadrants 
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so that G=0, the state will evolve towards the direction of 

the steepest ..gradient descent of the energy function with 

rate E*|VE|, i.e., as specified in the following equation: 

u = -EVE [3.17] 

Proof: 

Consider the gradient of the energy function as 

follows: 

VE = ̂  = UwG-I)u [3.18] 
o u  E  

Since G = 0, Multiply both side of the above equation 

by E, we get theorem 4. 

Theorem 4 shows that the energy space determines the 

convergence trajectory of a CAM. The minima of the energy 

function correspond to the stable states of the CAM. A plot 

of an energy space can show many important properties of the 

CAM. These properties are 1) the number of minima 

constructed in a recurrent layer, 2) the location of these 

minima, 3) the watershed (discriminant) of convergence, 4) 

the convergence direction, 5) the convergence destiny and 6) 

the probability of converging to one destiny. This 

fundamental study draws some important properties of the CAM 

and makes visualizing them possible. 

Example: Now consider the net with weight matrix and 

bias as follows: 
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W  =  
-0.8 1.6 ' 

0.75 0.25_ 

b  = {0.0 0.0}r 

The energy function of the memory is plotted in the 

following figures. 

Figure 3.1 
3-D Plot of E(u) 

x axis is u2 and y axis is u2 

Figure 3.2 
Contour Plot of E(u) 

x axis is u1 and y axis is u2 

The energy function shows that there are two minima 

(attractors) located in the first quadrant and third 

quadrant respectively. The watersheds of convergence are 

close to the x axis. The convergence direction is 

perpendicular to the contour lines. The convergence 

destinies are (0.8, 1.0) and (-0.8, -1.0). The complement of 

the exemplar is also an attractor, due to the symmetry of 

the activitation function and to b=0. Four convergence 

trajectories are drawn in the contour plot. 
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3.4 Analysis of Learning Algorithms 

In this section, the CAM model proposed by Sudharsanan 

and Sundareshan is studied. The analysis shall focus on the 

effectiveness of different learning methods. For detailed 

description of the CAM model and BEP algorithms proposed by 

Sudharsanan and Sundareshan, see section 2.1. 

3.4.1 Backwards Error Propagation Algorithm 

The pattern storing procedure of the CAM model proposed 

by Sudharsanan and Sundareshan (see section 2.2) is based on 

the BEP algorithm. By minimizing the error, BEP drives the 

minima (attractors) towards the exemplars. The following 

example shows the effectiveness and limitation of the BEP 

algorithm. 

Example: The problem of storing three vectors, ej={1.7, 

-1.5, 1.7, -1.9, -1.5}T, e2={-l.7, -1.1, 1.3, 1.4, -1.2}T and 

e3={1.4, 1.1, 1.8, -1.2, 1.7}T in a network comprising 5 PEs 

described by equation 2.6 is considered. The initial weight 

matrix and bias are selected to be W=0.5I, b={0.1, 0.1, ..., 

0.1}T, which are the same as those in Sudharsanan's 

dissertation. (1990) 

The identical pattern storing (learning) procedure is 

used: The learning constant is selected to be 0.9, the same 

as that Sudharsanan used. After the net is trained 50 times 

by the BEP algorithm, the weight matrix and bias are 

converged to their converged values as follows and the error 



59 

defined in equation 2.7 reduces to zero. Thus, the three 

exemplars are stabilized in the network. 
1.11 -0.075 -0.124 -0.605 -0.075 

-0.10 0.905 -0.050 0.099 0.405 

W =  0.101 0.025 0.975 -0.099 0.025 

-0.581 0.175 -0.0002 1.08 0.175 

-0.075 0.555 0.075 0.075 1.06 

b  = {-0.025, 0.049, 0.582, 0.099, 0.175}T 

However, if we check the existing attractors over the 

entire vector space, we find there are a total of 25 

attractors, three of them are exemplars and the other 22 are 

spurious memories 1 

In conclusion, the simulation shows that the BEP 

algorithm stabilizes continuous exemplars effectively, but 

has no control of spurious memories. The BEP algorithm is 

not designed to eliminate spurious memories. 

3.4.2 Exterior Product Formulation 

There are not as many spurious memories in a BAM formed 

by EPF as those in a CAM trained by BEP algorithm. The EPF 

of pattern storing plays an important role. 

The EPF storing mechanics is based on the orthogonality 

of exemplars. If the exemplars are nearly orthogonal to each 

other, i.e., cosfG^asO, the exemplars will be stabilized. 

Those stabilized exemplars become attractors which attract 

states in the adjacent area. In other words, EPF 

destabilizes states in the area adjacent to exemplars. As a 
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consequence, it has the ability to eliminate spurious 

memories. 

However, directly using EPF in CAM sometimes does not 

work very well. The problem arises from the variation in 

magnitude of patterns. Binary patterns are of the same 

magnitude, while the magnitudes of continuous patterns are 

usually quite different. The EPF has the tendency to 

stabilize the patterns of larger magnitudes. Exemplars of 

smaller magnitude are likely to be ignored. Our desired 

learning method should store continuous patterns without 

bias on their magnitudes. 

3.4.3 Normalized Exterior-Product Formulation 

The Normalized Exterior-Product Formulation (NEPF) of 

the weight matrix is inspired by the idea of taking 

advantage of the ability of EPF to eliminate spurious 

memories, and at the same time, overcoming the problem of 

its bias on the magnitude of patterns. 

The NEPF of weight matrix W of dimension N to store M 

exemplars is defined in the following equation. 

W=^f<wrrfe> [3-19] 

As we can see, the magnitude of gfeJ/N is normalized to 

1. Theorem 5 (original) shows where are the attractors in 

the CAM whose weight matrix is formed by the NEPF. Theorem 6 
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(original) estimates the error of the NEPF of the weight 

matrix. 

Theorem 5: If the weight matrix of a CAM is initialized 

by the NEPF and b=0, and the following condition holds, then 

there is an attractor u8 in the quadrant where u locates and 

the attractor is in the neighborhood of //, i.e., U"=M . 
//*«» 0 

and u ,  u  are not close to the hyper planes 

that separete the hyper quadrants . [3.20] 
A/ 

where u = ]£<?,. cos(0f) and 0, is the angle between g(e,.) and g(uj. 
f=i 

Proof: 

Since u and il are in the same quadrant and not close 

to the hyper plane that separate the hyper-quadrant, 

according to the property of the activation function, 

we have 
1 A1  M  

W g ( £ )  S W g ( « )  =  — Y J e i g T ( e t ) g ( u )  =  ̂ e t  cos(0() = « [3.21] 
iV ,=i j=i 

Since b=0, there must be an attractor uB, such that 

uB=Wg(u") , in the neighborhood of u. 

Theorem 6: In the CAM whose matrix is initialized by the 

NEPF and b=0, if there is an attractor e^.0 in the quadrant 

of an exemplar eif then the error between them, Ei=ei8-ei is 

0,008(00) 
jv/ [3.22] 

where 0,. is the angle between g(ej) and g(ej). 
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Proof: 

. From theorem 5, we have 
M  

§.i = cosCG^) = e, + £e;- cos(0iy.) 
J=I 

[3.23] 

Moving eA to the left hand side of the above equation, 

we get theorem 6. 

3.4.4 Hybrid Learning Algorithm 

In this learning algorithm, the learning procedure is 

separated into two steps. In the first step, the bias is 

initialized to be 0,  and the weight matrix is initialized by 

the NEPF to construct attractors near the exemplars and to 

destabilize states in other regions. By doing so, a large 

number of spurious memories are eliminated. Then, in the 

second step, the BEP algorithm is used to pull the 

attractors which are not too far away from exemplars towards 

the exemplars. 

As a demonstrative example, the hybrid learning 

algorithm is used to handle the same problem as that 

described in section 3.4.1. 

In the first step, the bias and the weight matrix are 

initialized as follows. 

0.954 0.277 0.279 -0.953 0.278' 

0.139 +0.734 -0.298 -0.138 0.735 

W =  0.437 -0.239 0.954 -0.437 -0.238 

-0.894 -0.138 -0.339 0.894 -0.139 

0.278 0.873 -0.198 -0.277 0.874 
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After initialization, there are six attractors in the 

memory. Three of them are in the quadrant of the exemplars 

and the other three are their complements, due to the 

symmetry of the network. The attractors which are in the 

quadrant of the exemplars, and their errors are listed as 

follows. These results are consistent with theorem 5 and 

theorem 6. 

e *  = {1.623 -1.480 2.291 -1.840 -1.380}7" 

E ,  = {-0.077 -0.021 -0.591 -0.060 -0.120}r 

e2' = {-2.175 -2.030 0.541 1.722 -2.485}r 

E 2 =  {-0.475 0.930 0.759 -0.321 1.285}7" 

<={2.728 1.441 1.344 -2.392 2.093}7" 

E 3  ={-1.328 -0.341 0.456 1.192 -0.393}7" 

Then the net was trained by the BEP algorithm. The same 

learning constant was used as before. After the net is 

trained 50 times, the error reduces to zero. After training, 

the weight matrix and bias are converged to: 

' 0.855 -0.075 0.066 -0.855 -0.074" 

-0.100 0.654 -0.151 0.100 0.655 

W= 0.100 0.024 1.254 -0.100 0.026 

-0.830 0.176 -0.121 0.830 0.175 

-0.074 0.805 0.024 0.075 0.806 

b = {-0.214 0.149 0.304 0.219 0.226} 

There are eight attractors in the net. Three of them are 

exemplars and the other five are spurious memories. Notice, 

as shown in section 3.4.1, that if the net is trained by BEP 

alone, according to Sundarsanan's method, there are 22 
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spurious memories. Although this hybrid learning algorithm 

does not eliminate all the spurious memories, the 

performance is much improved in terms of reducing spurious 

memories. 

3.5 Summary 

Through the above analysis in this chapter, many 

properties and behaviors of BAMs and CAMs have been more 

concisely explored. The analysis results are significant in 

terms of: 1) the stability condition of exemplars and 

spurious memories in BAMs, 2) the formula of choosing 

diagonal weights and bias that eliminates spurious memories 

most effectively in BAMs, 3) the convergence theory of CAMs 

that have non-zero diagonal weights and non-monotonically 

increasing activation functions, 4) the energy function that 

explores the convergence behavior of CAMs, and 5) the hybrid 

learning algorithm that reduces spurious memories 

effectively in CAMs. 



CHAPTER 4 

APPLICATION OF STOCHASTIC ACTIVITY NETWORKS 
TO THE EVALUATION OF SENSOR VALIDATION SYSTEMS 

4.1 Sensor Validation Systems and 

their performabilitv variables 

4.1.1 Sensor Validation System 

An advanced signal system usually has a sensor system, 

which provides primary measurements from a plant, and a 

validation system, which validates sensor measurements. 

There must be some degree of redundancy in these 

measurements, on which validation is based. 

The status of a sensor can be normal or abnormal. The 

latter case implies a failure occurrence. The failure of a 

sensor can be classified into repairable and irreparable 

based on its repairability, or into recoverable and 

unrecoverable based on its recoverability, or into 

detectable or undetectable based on its detectability. If a 

failure is detectable, it can further be classified into 

isolable or unisolable based on its isolability. 

A sensor validation system (SVS) takes the sensor 

measurements as its input, checks the consistency of 

redundant measurements, and provides the status of the 

sensor system and the best estimates of sensor measurements. 
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It has the functions of fault detection, isolation and 

accommodation(FDIA). 

A robust SVS has redundant approaches for its functions. 

If one approach fails, either due to its intrinsic 

limitation or the failure of its physical devices, others 

still work, so that the validation function continues though 

its performance may degrade. The performance of the 

validation system depends on the status of not only the 

sensor system but also the sensor validation system itself. 

Therefore, recoverability, detectability, and isolability of 

a sensor usually depends on the configuration and the status 

of the whole sensor system and its validation system. 

Usually, the recoverability and the repairability also 

depend on the status of detection and isolation. 

4.1.2 Performability of Sensor Validation System 

The performability of a SVS quantifies the performance 

and effectiveness of the SVS in the presence of faults in 

the SVS. The performability of a SVS can be statistically 

measured by the following important performability 

variables. 

1. Average detection time xd : 

the average time between a failure and its 

detection. 

2. Average isolation time : 
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the average time between the detection and 

isolation of a failure. 

3. Average validation time TV 

the average time between a failure and its 

isolation. xv = xd + T̂ . 

The above three performability variables are mainly 

dependent on the configuration of a SVS. Therefore, they 

represent the performability of a SVS most concisely. 

4. Undetectability Pd: 

the probability that, at any given moment when a 

failure exists, it is not detected. 

5. Unisolability P^ 

the probability that, at any given moment when a 

failure exists, it is detected but not isolated. 

6. Unvalidatability Pv: 

the probability that, at any given moment when a 

failure exists, it is not isolated. Pv = Pd + P^ 

7. Unrecoverability Pr : 

the probability that, at any given moment, the 

error of accommodation exceeds the allowed range. 

The above four performability variables are dependent on 

the configuration of both the sensor system and the SVS. 

Therefore, they represent the performability of a SVS under 

the inferred failure frequency of the sensor system. 

8. Average number of available sensors Ek. 
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9. Probability distribution of the number of available 

sensors P[k]. 

The above two performability variables mainly are 

dependent on the failure rate and repairing time of the 

sensor system and the validation time of the SVS. They might 

more closely relate to the performability of a sensor 

system. However, they also show the effectiveness of the SVS 

on sensor maintenance. 

4.2 Sensor Validation System of a Pressurizer 

4.2.1 Pressurizer 

In a pressurized water reactor, the primary coolant is 

maintained at a pressure (around 2250 psia) greater than the 

saturation pressure corresponding to the maximum coolant 

temperature in the reactor. This avoids bulk boiling of the 

coolant and keeps it in the liquid phase throughout the 

loop. Because liquids are practically incompressible, small 

changes of volume, caused by changes in coolant temperature 

or by unforeseen expansions or contractions in the loop 

components, can cause severe or oscillatory pressure 

changes. If the pressure is too high, it may cause eruption 

of the reactor pressure relief valve. If the pressure is too 

low, it may cause flashing into steam and consequently 

melting of fuel elements. These changes may be quite unsafe. 
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It is necessary to provide a surge chamber that will 

accommodate coolant volume changes while maintaining 

pressure within acceptable limits. Such a device is called a 

pressurizer, which keeps the pressure within operating 

conditions. 

4.2.2 Pressure Sensors in a Pressurizer 

The sensor system in the pressurizer is important to 

control the pressure and to protect the reactor if the 

pressure exceeds the allowed range. 

There are fourteen pressure sensors in a typical 

pressurizer, 2 of them for Pressure Control (PC), 4 for 

Pressure Low Trip (PLT), 4 for Pressure High Trip (PHT), and 

4 for Supplemental Protection of Pressure High Trip (SPPHT). 

The two PC sensors send signals to an automatic control 

system to control the pressure. Their deviation from each 

other is checked automatically. An alarm will turn on when 

the deviation exceeds the limit. If the operator identifies 

a failure of one of the PC sensors, he will set the control 

system to access the signal of the other sensor. If both 

sensors fail, an operator will be assigned to control the 

pressure manually, using safety sensors. 

The four PLT sensors protect the reactor if pressure is 

less than the low pressure bound. Their operation rules are 

described as follows. If two of them indicate that the 

pressure is lower than the low bound at the same time, the 
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control system will trip the reactor. If one sensor's 

reading is below the low pre-trip bound, its alarm will turn 

on. If the operator identifies a failure of one PLT sensor, 

he will set a bypass on it. If the operator identifies a 

failure of another PLT sensor, he has to trip one of the 

failed sensors, and then usually will shut the reactor down 

after six hours if neither failed sensor is repaired and 

passes a retest. If he identifies a failure of a third PLT 

sensor, he has no choice but to trip the sensor and as a 

consequence, trip the reactor. 

The four PHT sensors protect the reactor pressure from 

exceeding the high pressure bound. The four SPPHT sensors 

are a redundant set of PHT sensors and do exactly the same 

job. These two groups of sensors have the same operation 

rules as the PLT sensors, except that their readings are 

compared to the high pressure bound instead of the low 

pressure bound if the reactor will be tripped, or compared 

to the high pre-trip bound if their alarm will turn on. 

4.2.3 Validation and Maintenance 

The automatic alarm system helps the operator to detect 

and to identify a failure. However, as we see above, it only 

works when the limit is exceeded. It may even malfunction by 

setting a false alarm or by a failure to alarm when it 

should alarm, due to the failure of itself. Therefore, the 

operators routinely check all the sensors visually to make 
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sure that all sensors work properly. A failure can also be 

detected and identified by operator's visual checking, 

though it usually takes more time than the automatic alarm 

system. 

The failure of a sensor can be either irreparable, which 

usually occurs in the containment building, or repairable, 

which usually occurs outside of the containment building. 

The failure of the alarm system is always repairable. Repair 

will only be activated when a failure is identified and is 

repairable. 

The information in this section is documented from 

information provided by Robert L Simmons during a series of 

interviews. He is a senior engineer of Arizona Public 

Service Company, Palo Verde Nuclear Generating Station, 

Shift Engineering Group. He also recommended the following 

data which are reasonable for a nuclear power plant 

according to his knowledge. I appreciate his help on this 

project. The details of how these data are used will be 

explained in the model description section. 

4.3 The SAN Model for Sensor Validation System of a 

Pressurizer 

I partition the sensor system into a signal system and a 

validation system. The fourteen sensors are viewed as the 

signal system while the rest, the alarm system and 

operators, are viewed as the validation system. My objective 



72 

is to evaluate the performability of the system by using SAN 

models. The SAN model can usually be divided into four 

submodels. They are signal submodel, validation submodel, 

validating submodel and resetting submodel. These submodels 

will be discussed in detail later. 

In this project, I built two SAN models, one for the PC 

sensor system and the other for the PLT sensor system. Both 

of the models include validation systems. Since the PHT and 

SPPHT systems have the same operation rules as the PLT 

system, replication of the PLT system will model the three 

sensor systems (PLT, PHT and SPPHT). 

4.3.1 SAN Model for PC Sensor Validation 

The PC sensor system consists of two sensors, which are 

the signal system, an alarm and the operators, which are the 

validation system. 

1) The signal submodel 

The states of the pressure sensors are quite simple. 

They are normal, repairable failure and irreparable failure. 

10% of failures are irreparable and 90% of failures are 

repairable. It takes a day in average to repair a sensor 

failure. 

The signal submodel models the dynamic of the signal 

system, the two pressure sensors in this case, see detailed 

model in Figure 4.1. The place "SN", which initially has 2 

tokens, stores the normal sensors. The time activity 
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"s_fail" represents the failure of a normal sensor. The 

instantaneous activity "repairability" represents the 

selection of repairable or irreparable failures. The place 

"SR" stores the repairable failures and the place SIR stores 

irreparable failures. The time activity "s_repair" 

represents the repair of the repairable failures. 
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Figure 4.1 the SAN Model of the PC SVS 
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2) The validation submodel 

In the validation system, operators are assumed to be 

always available and make routine checks. The alarm may be 

either normal or failed. If it is a false alarm, the alarm 

failure can be detected immediately. If the alarm 'fails to 

alarm', then it will be detected after about six hours. 

After it is detected, operators can isolate the failure in 5 

minutes. Then it will be repaired and be ready to be use 

again after a day on average. 

The validation submodel models the validation system, 

the operators and the alarm in this problem, see the 

detailed model in Figure 4.1. The place "AN", which 

initially has one token, stores the normal alarm. The time 

activity "a__fail" represents the failure of the normal 

alarm. The place "FA", which is connected to case 1 of 

activity "al_fail" and is followed by the instantaneous 

activity "a_dec_a", stores the failure of 'false alarm'. 

The place "SA", which is connected to case 1 of activity 

"al_fail" and is followed by the time activity "a_detect", 

stores the failure of 'failure to alarm'. The time activity 

"a_detect" represents the operators' detection of the alarm 

failure. The place AD stores the failures that have been 

detected but not yet isolated. The time activity 

"a_isolate" represents the isolation of the alarm failure. 

The place "AR" stores the isolated failure that is being 
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repaired. The time activity "a_repair" represents the repair 

of the alarm failure. 

3) The validating submodel 

According to the status of validation, a failure of the 

sensors can be at the stage of undetected, of detected but 

unisolated or of isolated but unrepaired. If there is only 

one sensor that fails and the alarm is normal, then the 

failure can be detected immediately by the alarm system. 

Otherwise, it will be detected by the operator after 6 

hours. A failure can be isolated 5 minutes after it is 

detected. 

The validating submodel models the validating procedure 

of signal failures. The place "SF" stores undetected sensor 

failures. The time activity "detect_oper" represents 

operators' detection of failures. The instantaneous 

activity "detect_alarm" represents the alarm's detection of 

sensor failures. The input gate "alarm_normal" represents 

the condition that the alarm will work. The place "SD" 

stores the detected sensor failures which have not been 

isolated yet. The time activity "s_isolate" represents the 

isolation of the failure. The place "SI", which always has 

zero tokens, is a buffer between activity "s_isolate" and 

repairability. 

4) The resetting submodel. 
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Since the irreparable failures are absorbing states, the 

SAN model ..does not have steady state solutions. Even worse, 

the server's rates are very stiff, and as a consequence, the 

transient solver does not work either. Consulting with Dr. 

Sanders in Department of Electric and Computer Engineering, 

the University of Arizona, I decided to use a stabilizing 

technique to solve this problem. 

It is reasonable to assume that there are no failures in 

the system at the beginning of the period. We are only 

interested in the performance of the system during the 

operation period, about sixteen months on average. Based on 

these, I add a time-activity connected to an output gate, 

which resets the markings of all of the places back to their 

initial markings. By doing so, I make the SAN model 

irreducible so that the direct state solver and the 

iterative state solver work on this model. 

4.3.2 SAN Model for PLT Sensor Validation 

The PLT sensor system consists of four sensors, which 

are the signal system, and of operators and four alarms, 

which are its validation system. The SAN model is shown in 

Figure 4.2. This model is also applicable to the PHT sensor 

system and the SPPHT sensor system. 
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1) The signal submodel 

The states of the pressure sensors here are more 

complicated. They are always detectable to the operators. 

However, to the alarms, 47% of failures can never be 

detected by their alarms, 33% of them will degrade on 

average one month before it is detected, and only 20% of 

them are detectable to their alarms as soon as they occur. 

Like the PC model, 10% of failures are irreparable and 90% 

of failures are repairable. It takes a day to repair a 

sensor failure. 

In addition to the signal submodel of the PC sensor 

system, the signal submodel of the PLT sensor system has 

places "SF_aa", "SD_aa", "SD_ab" and "SD_a", instantaneous 

activities "a_det" and "abrupt" and time activity "degrade", 

see the detailed model in Figure 4.2. The place "SF_aa", 

which always has zero tokens, is a buffer between activities 

"s_fail" and "a_det". The instantaneous activity "a_det" 

represents the selections of different possible failures 

that may occur in a sensor. The place "SD_aa" stores the 

degrading failure and the place "SD_ab", which is followed 

by the instantaneous activity "abrupt", stores alarm-

instantaneously-detectable failure. The time activity 

"degrade" represents the failure's degrading towards a 

failure that is detectable by its alarm. 
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Figure 4.2 the SAN Model of the PLT SVS 
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2) The validation submodel 

The validation system is the same as that of the PC 

sensor system, except that there are four alarms instead of 

one alarm. Therefore, the validation submodel is the same of 

that of the PC model, except the initial token number of 

place "AN" is four instead of one. 

3) The validating submodel 

The validating procedure is almost the same as that of 

the PC model. The difference is in the conditions under 

which a failure can be detected by its alarm. The 

possibility that the failure sensor's alarm fails is equal 

to the number of normal alarms divided by the total number 

of alarms, 4 in this case. Hence I designed the gate select 

to assign the possibility that a failed sensor's alarm is 

normal. The place "AN_a" is a buffer between the activities 

"select" and "detect_alarm". One more check is that when a 

degrading sensor is detected by a operator, there is no need 

for it to be detected by its alarm. Therefore, the gate 

"clear_a" sets the number of tokens of places "SF_aa", 

"SD_aa", "SD_ab" and "SD_a" equal to zero. 

4) The resetting submodel. 

When a reactor is restarted, all of its components are 

assumed to be in good condition. The reactor may be shut 

down at the end of its operation period, 16 months. It may 

also be shut down by the operator if it has been operated 
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for six hours under the condition that there are two sensor 

failures being isolated. If the operator .isolates three 

sensor failures, he has to trip the reactor. 

Again, there is an absorbing state in this model. There 

is a need to reset the submodel to make the entire model 

irreducible. The output gate "reset" sets the markings of 

the places back to their initial markings. The time activity 

"term" not only represents the normal period, but also acts 

as the reactor trip and the reactor shut down due to sensor 

failures. Even better, this makes the subsystem a closed 

system so that it can be solved analytically. 

4.4 Results and Analysis 

4.4.1 Performability of Pressure Control Sensor System 

In order to evaluate the performability of the PC's SVS, 

I defined the reward variables in the SAN model as shown in 

Table 4.1. 
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Table 4.1 Reward Variables of PC Sensor System 

Variable Predicator Function Mean Value 

num NS 1 MARK(SN) 1.753 

num SF 1 MARK(SF) 1.413 

num SR 1 MARK(SR) 4.498E-3 

num SIR 1 MARK(SIR) 2.423E-1 

pi an MARK(AN)==1 1 0.994 

p_SD_SF MARK(SD)1=0 II1 

MARK(SF) 1=0 

1 1.588E-4 

p_S E)_S F_SN 0 (MARK(SF)1=0 || 

MARK(SD)1=0) &&2 

MARK(SN)==0 

1 1.378E-4 

From these reward variables, we can calculate some 

performability variables of interest and importance as 

follows. 

1. The average number of available sensors, E[SN]. 

E[SN] = E[num_SN] = 1.753 

2. The probability distribution of the number of 

available sensors P[k] is listed in Table 4.2. 

P[k] = pdf[num_SN] 

1 In Unix operating system or C language, "| | " represents 
logical "or". 
2 In Unix operating system or C language, "&&" represents 
logical "and" 
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Table 4.2 
Probability Density Function 
of Reward Variable "num SN" 

k 0 1 2 

P[k] 0.026797 0.193399 0.779804 

3. The true throughput of the system, X  = the number of 

sensors failures per hour. 

X  = E[SN] * X B  = 1.753 * 1.2E-4 = 2.104e-4 

4. The average detection time of the validation system, 

xd = E[num_SF] / X = 1.4125E-4 / 2.104E-4 = 0.6715 (hour) 

5. The average isolation time of the validation system, 

V 

x£ = E[num_SD] / X  = 0.08333 (hour) = 5 (minute) 

6. The average validation time of the validation system, 

V 

Tv = Td + ta = 0.6715 + 0.08333 = 0.7548 (hour) 

7. The undetectability, Pd. 

Pd = 1 - P[num_SF=0] = 1.413E-4 

8. The unisolability, Pi. 

P. = 1 - P[num_SD=0] = 1.7529E-5 

9. The unvalidatibility, 

Pv = Pd + Pi = 1.588E-4. 

10. The unrecoverability, probability that both failed 

sensors have not been validated, Pr. 

pr = E[p_SD_SF_SN0] = 1.378E-4 

11. The average repair time, xr. 
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xr = E[num_SR] / (0. 9*A,) = 23.8 (hour) 

12. The average recovery time, xrc = xr + xv. 

xrc = 23.8 + 0.7548 = 24.55 (hour) 

From the above calculations, we find that 

1) Some benchmarks, such as x±, xr are close to our 

intuitive expectation, therefore, the simulation results are 

reasonable; 

2) The main portion of the recovery time comes from the 

repair time. The main portion of the validation time comes 

from the detection time. 

However, there are two problems. 

The first is that value of Pr is a little bit too high. 

Consider during a 16-month-operation period, there are 

1.378E-4 * 11520 = 1.58 (hour) that the automatic control 

system is based on a wrong pressure signal! 

I suppose that a reasonable operator will check the PC 

sensor more often, when he knows one of the PC sensors has 

failed. By modifying the service rate of time activity 

"detect_oper" to be marking dependent as follows, I 

calculated the detection time x^, unrecoverbility Pr, and 

time of a wrong signal being used xw, corresponding to the 

operator's checking period xc (check the signals every xc), 

when he knows that one sensor is failed. 

if(MARK(SR)1=0 || MARK(SIR)1=0) 

return (checking_rate); 
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else 

return (0.17); 

The results are listed in Table 4.3. 

Table 4.3 
The Effect of Increasing Checking rate 

Tn Pr Tw (min) TH (min) 

12 (hour) 1.38E-4 95.2 40.3 

6 (hour) 7.21E-5 49.8 21.5 

4 (hour) 4.83E-5 33.4 14.7 

2 (hour) 2.51E-5 17.4 8.1 

1 (hour) 1.35E-5 9.4 4.8 

30 (min) 7.74E-6 5.3 3.2 

10 (min) 3.87E-6 2.7 2.1 

5 (min) 2.90E-6 2.0 1.8 

2 (min) 2.23E-6 1.6 1.6 

The second problem is that the value of P[k=0] is too 

high. Considering a 16-month operation period, the operator 

has to control the pressurizer pressure manually for 11520 * 

0.026797 = 308.7 (hour). 

I think that this is because of irreparable failures. 

The modification for problem 1 does not change the 

probability distribution of the number of available sensors. 

Comparing the availability of the alarm system and the 
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sensor system and checking the average queue length both 

suggest that irreparable failures play an important role in 

determining the sensor system's availability. In short, the 

system's availability will increase if the irreparable 

failures are reduced, that is, if the reliability of the 

components which are in the containment building is 

increased. 

By adjusting the case probability to 1% irreparable 

failures and 99% repairable failures, I find the 

availability of the sensor system increases from 97.32% to 

99.953%, that is, the unavailability decreases from 2.68% to 

0.0467%. This changes the average time per cycle when manual 

control is needed to 4.38 hours. 

Intuitively, we usually know how to improve a system's 

performance. However, with a detailed model, we can not only 

verify whether an approach works, but also calculate how 

much it will improve the system's performance. Thus modeling 

may result in facilitation of performance improvement. 

4.4.2 Performability of PLT Sensor System 

In order to evaluate the performability of the PLT 

sensor system, I defined the following performance variables 

in the SAN model. See Table 4.4 
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Table 4.4 
Reward variables of PLT sensor system 

Variable Predic'ator Function Mean Value 

num NS 1 MARK(SN) 3.878 

num SF 1 MARK(SF) 2.184E-3 

num SR 1 MARK(SR) 9.166E-3 

num SIR 1 MARK(SIR) 1.109E-1 

num AN 1 MARK(AN) 0.994 

p udet MARK(SF)1=0 1 2.183E-3 

p uiso det MARK(SD)1=0 1 3.876E-5 

p_uiso MARK(SD)1=0 | | 

MARK(SF)1=0 

1 2.221E-3 

p SN 1 MARK(SN)< 2 1 3.580E-7 

p_SN_2 MARK(SN)==2 && 

MARK(SR)+MARK(SIR)<2 

1 2.075E-4 

From these performance variables, we can calculate some 

performance variables of interest and importance as follows. 

1. The average number of available sensors, E[SN]. 

E[SN] = E[num_SN] = 3.878 

2. The probability distribution of the number of 

available sensors, P[k]. See Table 4.5. 

P[k] = pdf[num_SN] 



88 

Table 4.5 
Probability Density Function 
of Reward Variable "num SN" 

k 0 1 2 3 4 

P[k] 

O
 • 

o
 0.0 0.000416 0.121485 0.8781 

3. The true throughput of the system, X  = the number of 

sensor failures per hour. 

X  = E[SN] * X B  = 3.878 * 1.2E-4 = 4.654e-4 

4. The average detection time of the validation system, 

V 

xd = E[num_SF] /  X  =  2.184E-3 / 4.654E-4 = 4.691 (hour) 

5. The average isolation time of the validation system, 

V 

xA = E[num_SD] / X = 0.08333 (hour) = 5 (minute) 

6. The average validation time of the validation system, 

V 

xv = xd + xA = 4.691 + 0.08333 = 4.774 (hour) 

7. The undetectability, Pd. 

Pd = E[p_udet] = 2.183E-3 

8. The unisolability, Pj. = E[p_uiso_det] = 3.876E-5 

9. The unvalidatibility, 

Pv = Pd + Pi = E[p_uiso] = 2.221E-3 

10. The probability that the reactor should be tripped 

but is not tripped, Pv. 

Pv = E[p_SN_l] = 3.580E-7 

11. The average repairing time, xr. 
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x r  = E[num_SR] / ( 0 . 9 * X )  =  21.9 (hour) 

12. The average recovery time, xrc = xr + xv. 

xrc = 21.9 + 4.774 = 26.67 (hour) 

Although the above values are close to reasonable 

values, more analysis is necessary in order to understand 

this system thoroughly. 

4.5 Conclusions 

In conclusion, this project is a good demonstration of 

how to apply the SAN model to evaluate the performability of 

a signal validation system. The SAN model of the PC sensor 

system and the PLT sensor system have been built. The 

stabilizing technique is applied to transfer a reducible 

model to an irreducible model. Some important performance 

variables have been defined and evaluated. Discussion of the 

improvement of the performance of the system has been 

provided. I intended that this piece of work should explore 

the application possibilities of SAN for nuclear engineering 

areas and signal validation areas. 



CHAPTER 5 

CONCLUSIONS 

In order to design an advanced sensor validation system 

(SVS) which is robust and fault-tolerant under faulty 

conditions, a promising technology which can be applied to 

SVS has been studied, and a novel approach has been explored 

and used to evaluate a SVS in a nuclear power plant. The 

promising technology studied here is an associative memory, 

one special type of neural network. The novel approach used 

here is the Stochastic Activity Network (SAN) model. 

5.1 Advances in Associative Memories 

The first objective of this work is to investigate the 

application of associative memories to fault-tolerant and 

robust sensor validation. An Associative memory provides 

fault-tolerant pattern recognition. Its robustness against 

disturbed patterns and against failures in the network 

itself makes it a promising information processing 

technology for sensor validation. However, this technology 

will not become mature for the applications to safety 

systems until significant advances that overcome its major 

limitations, especially its capacity and spurious memories, 

are made. 
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The studies of associative memories yield many results 

that help us understand them better so that they can be 

applied to the problems more effectively and appropriately. 

These results include 

1) the stability condition of exemplars and spurious 

memories in BAMs, 

2) the formula of choosing diagonal weights and bias 

that eliminates spurious memories most effectively in BAMs, 

3) the convergence theory of CAMs that have non-zero 

diagonal weights and non-monotonically increasing activation 

functions, 

4) the energy function that explores the convergence 

behavior of CAMs, and 

5) the hybrid learning algorithm that reduces spurious 

memories effectively in CAMs. 

In BAM, analysis concludes that the exemplars (patterns 

to be stored) can always be stabilized (correctly stored) in 

a BAM if non-zero diagonal weights are used. In this case, 

the capacity is not a problem in terms of destabilized 

exemplars. The actual problem is that the number of spurious 

memories may increase until unacceptable, when the number of 

exemplars increases. The formula for choosing the diagonal 

weights and bias which minimize spurious memories has been 

derived. 
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In CAM, the analysis discovered that the disadvantage of 

Backwards Error Propagation (BEP) learning is that no 

control of spurious memories is maintained. An appropriate 

weight initialization is found necessary. Both theoretical 

analysis and numerical simulation have shown the 

effectiveness of the Normalized Exterior Product Formulation 

(NEPF). 

One of the major difficulties of directly applying 

associative memories to sensor validation systems is that 

the possible outputs of the sensors span a continuous space, 

which cannot be represented by a finite number of attractors 

in a memory. In other words, a memory is only able to 

remember a finite number of patterns, but not infinite 

numbers. If the redundancy of sensor signals can be 

transformed to a finite number of patterns, then the memory 

is able to store them and then recognize them fault-

tolerantly. 

5.2 Application of Stochastic Activity Networks 

The second objective is to evaluate SVSs. The concept of 

performability, the ability of a system to perform in the 

presence of faults, has been introduced. A set of important 

performability variables have be introduced to substantiate 

that concept. A concrete example, evaluation of the 

pressurizer SVS of a PWR, has demonstrated how to apply the 

SAN model to evaluate the performability of a SVS. 
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SAN not only provides an effective evaluation tool, it 

can also be an effective analysis tool. By evaluating the 

system, it shows the deficiency of the system. Analyzing and 

testing different variations of the system, it explores the 

degree of improvement of different approaches. 

With the speed and capacity of computers increasing 

rapidly, I believe that SANs will be able to model larger 

and larger complicated systems. However, some improvements, 

such as modulation and customization, are still necessary 

before its application and dissemination in the nuclear 

industry. I think that "object oriented" coding is a nice 

feature that SANs should have. This is needed to aid in the 

validation of safety critical software. 
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