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Abstract 

We focus on the Bayesian estimation of strongly heterogeneous transmissivity fields 

conditional on data sampled at a set of locations in an aquifer. Log-transmissivity, Y, is 

modeled as a stochastic Gaussian process, parameterized through a truncated Karhunen-Loève 

(KL) expansion. We consider Y fields characterized by a short correlation scale as compared 

to the size of the observed domain. These systems are associated with a KL decomposition 

which still requires a high number of parameters, thus hampering the efficiency of the 

Bayesian estimation of the underlying stochastic field. The distinctive aim of this work is to 

present an efficient approach for the stochastic inverse modeling of fully saturated 

groundwater flow in these types of strongly heterogeneous domains. The methodology is 

grounded on the construction of an optimal sparse KL decomposition which is achieved by 

retaining only a limited set of modes in the expansion. Mode selection is driven by model 

selection criteria and is conditional on available data of hydraulic heads and (optionally) Y. 

Bayesian inversion of the optimal sparse KLE is then inferred using Markov Chain Monte 

Carlo (MCMC) samplers. As a test bed, we illustrate our approach by way of a suite of 

computational examples where noisy head and Y values are sampled from a given randomly 

generated system. Our findings suggest that the proposed methodology yields a globally 

satisfactory inversion of the stochastic head and Y fields. Comparison of reference values 

against the corresponding MCMC predictive distributions suggests that observed values are 

well reproduced in a probabilistic sense. In a few cases, reference values at some unsampled 

locations (typically far from measurements) are not captured by the posterior probability 

distributions. In these cases, the quality of the estimation could be improved, e.g., by 

increasing the number of measurements and/or the threshold for the selection of KL modes. 

Keywords: Heterogeneous porous media; Stochastic inverse modeling; Karhunen-Loève 

expansion; Markov Chain Monte Carlo 
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1. Introduction 

Prediction of flow and transport in subsurface reservoirs is typically fraught with 

diverse types of uncertainties, including imperfect knowledge of the spatial distribution of 

system parameters, types of boundary conditions and their values, as well as forcing terms 

(e.g. Lin et al. 2010; Tartakovsky et al. 2012; Tartakovsky 2013 and references therein). All 

these uncertainties should be appropriately considered and their impact on the quality of 

model predictions needs to be quantified in a rigorous way. These requirements should also 

be compatible with the operational challenges associated with the analysis and management 

of complex settings such as those characterizing natural aquifer systems. 

Bayesian inference is a convenient and flexible theoretical framework within which all 

these issues can be tackled. Bayesian approaches enable one to incorporate in a stochastic 

model inversion available data from diverse sources, relying on prior information. The latter 

is then updated through conditioning onto observations to yield posterior probability 

distributions of system parameters and responses. Recent examples involving applications of 

Bayesian characterizations of uncertain parameter fields associated with subsurface flow and 

transport settings can be found, among others, in Rubin et al. (2010), Murakami et al. (2010), 

Chen et al. (2012), and Over et al. (2013) and references therein. 

The application of the Bayesian framework to (stochastic) inverse modeling of 

groundwater flow typically requires obtaining multiple forward solutions of the mathematical 

model governing the spatial/temporal evolution of the system physics. The Markov Chain 

Monte Carlo (MCMC) method is one of the most widely employed approaches in the context 

of porous media characterization. MCMC has been applied with several degrees of success in 

hydrogeology for stochastic model calibration and uncertainty quantification (e.g., Vrugt et al. 

2003, 2008; Zanini and Kitanidis 2009; Keating et al. 2010; Schoups and Vrugt 2010; Huard 

et al. 2010; Zheng and Han 2016). Shi et al. (2012) employed MCMC for vadose zone 
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characterization and compared the ensuing results against those obtained through a nonlinear 

regression method. These authors found that MCMC (a) produces results of higher fidelity 

and (b) is more advantageous from a computational standpoint than nonlinear regression for 

problems associated with a relatively small dimensionality of the parameter space. 

Routine application of MCMC to stochastic inverse groundwater flow modeling under 

realistic conditions is hampered by practical challenges due to the usually high dimensionality 

of the parameter space. Parameterization of the spatially heterogeneous distribution of model 

attributes, such as system transmissivity, via the truncated Karhunen-Loève Expansion (KLE) 

(Loève 1977) can be considered as a viable strategy to alleviate this difficulty. In essence, the 

Karhuen-Loève representation of a random spatial field is based on the spectral expansion of 

the process covariance function. This approach has been broadly used (Li and Cirpka 2006; 

Efendiev et al. 2006; Marzouk and Najm 2009; Ray et al. 2012; Laloy et al. 2013; Mara et al. 

2015) mainly because it enables one to reduce the dimensionality of the problem while 

preserving to a given extent the key characteristics of the considered stochastic model 

(Marzouk and Najm 2009). The KLE has been recently used by Das et al. (2010) in 

conjunction with the MCMC technique to characterize the saturated hydraulic conductivity of 

a mildly heterogeneous agricultural field. These authors rely on a truncated form of KLE by 

retaining solely a reduced number of terms (or modes) in the expansion. 

The number of terms that enables the truncated KLE to be effective for a 

computationally affordable and accurate system representation depends on the functional 

format of the covariance function (e.g., exponential, Gaussian, spherical, or other) as well as 

on the degree of spatial persistence, or correlation, of the field. It can be seen that the norm of 

the eigenvalues of the covariance matrix tends to decay rapidly for heterogeneous fields 

characterized by large correlation scales (relative to a characteristic length scale of the flow 

domain). In these cases, it is seen that retaining less than 20 terms in the KLE typically allows 
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capturing more than 90% of the energy of the target spatial random field (Das et al. 2010). 

Otherwise, the number of terms to be retained in the KLE to achieve an appropriate 

representation of a random parameter field tends to increase when the correlation scale of the 

covariance function decreases. This can become a limiting factor constraining the 

effectiveness of the technique when one is confronted with short-range (with respect to the 

domain size) correlated heterogeneous fields. 

In this work, we focus on these types of strongly heterogeneous fields, for which 

Bayesian inference becomes highly challenging and computationally demanding due to the 

large number of terms required to be retained in the KLE. The main objective of this work is 

to develop an operational strategy which renders the MCMC method computationally 

affordable to be employed for the stochastic characterization of short-range random parameter 

fields. Our strategy is data-driven and is based on destructuring the stochastic inverse 

modeling procedure of fully saturated groundwater flow into the following two steps: 

1. Starting from a highly-parameterized system, a set of sparse KLEs are formed by 

progressively reducing the dimensionality of the parameter space. For each KLE, the 

MAximum a Posteriori (MAP) estimate of the eigenmodes in the expansion is obtained 

through inverse modeling of flow (against available observations of the system state, i.e., 

hydraulic heads or fluxes, and, optionally, of system parameters, i.e., hydraulic 

conductivity/transmissivity). Once this MAP estimate is obtained, a new sparse KLE is 

constructed by removing the least influential components of the expansion via an analysis 

of the spatial variance of the resulting estimated field. 

2. A model selection criterion is employed to select the optimal sparse KLE, as driven by 

the available data. The posterior statistical distribution of the corresponding eigenmodes 

is then obtained, relying on the DREAM(ZS) MCMC sampler developed by Laloy and 

Vrugt (2012). 
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The work is organized as follows: Section 2 introduces the flow problem and Section 3 

the Karhunen-Loève decomposition. In Section 4, we detail the way the Bayesian inference is 

performed for a stochastic field of the kind we consider in our computational example. 

Section 5 summarizes the main elements of the information criterion we employ for model 

selection. Section 6 illustrates our strategy to achieve dimensionality reduction of the 

parameter space. Section 7 is devoted to the presentation of an application of our technique to 

the stochastic inversion of flow through a strongly heterogeneous random porous medium. 

The key findings are then summarized in the conclusions. 

2. The flow model 

We consider two-dimensional steady-state fully saturated groundwater flow taking place 

within a spatially bounded domain, D, governed by 

    
 
    

2

0 1

0 2

0x x x

x  x

x x η xD

. T h , D

h h , D

T h . g D

   
  

   

 (1) 

Here,  x  x, y  is the vector of spatial coordinates,  xh  [L] and  T x  [L2T−1] 

respectively are hydraulic head and transmissivity fields; Dirichlet and Neumann boundary 

conditions corresponding to given pressure head, 0h , or normal flux, 0g , are respectively 

defined along the (disjoint) boundary segments 1D  and 2D , forming the domain boundary 

D; 
2

η D  is the outward unit vector normal to 2D . 

Given the spatial distribution of  T x , the numerical solution of the forward problem 

(1) is performed through the mixed-hybrid finite element method (Younes et al. 2010) upon 

discretizing D with uniform square elements. 

Observations of  xh  and  T x  are assumed to be jointly available at a set of M points 

 i i ix , yx  (i = 1, 2, ..., M) within D. We collect these data into the observation vector m. 
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For the purpose of our demonstration we assume that the functional format of the covariance 

of     Y log Tx x  is deterministically known together with its parameters. We consider 

log-transmissivity Y as a Gaussian field that can be represented by its Karhunen-Loève 

expansion (Loève 1977). 

3. Karhunen-Loève expansion 

Let     Y , log T , x x  be a Gaussian random process, where x D  and    

( being a suitable probability space). One can characterize Y through its mean, Y , and 

two-point covariance function, YC (x, x'), between locations x and x'. Covariance YC  is 

bounded, symmetric, and positive definite (assuming that  2Y L D , D  x ). The 

Karhunen-Loève Expansion (KLE) of the random field  Y ,x  is defined as 

     ,Y      




 Y i i i
i

x x
1

 (2) 

Here, i  and  i x  respectively are eigenvalues and eigenfunctions of YC (x, x'),  i i
 

1
 

being a set of statistically independent standard normal random variables. According to 

Mercer’s theorem (Mercer, 1909) YC (x, x') can be decomposed as 

     ,Y i i i
i

C λ 




  x x x x
1

 (3) 

where i  and  i x  are obtained by solving the following Fredholm equation 

     ,Y i i i

D

C d     x x x x x . (4) 

The eigenfunctions   i i





x

1
 are orthonormal and form a complete basis in  2L D , i.e., 

   i j i j

D

d   x x x   (5) 

i j  being the Kronecker delta. 
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The separability assumption is often used to characterize the covariance function 

model of Y in the context of stochastic analyses of flow and transport in randomly 

heterogeneous porous and/or fractured formations. This assumption has enabled obtaining 

analytical solutions of key moments of hydraulic head and fluxes and contaminat transport 

and facilitates basic studies of uncertainty propagation in such random porous and fractured 

media (see. e.g. Dagan 1989; Zhang 2002, and references therein). Adoption of this simplified 

format has also the practical advantage of being associated with relatively straightforward 

estimates of the model parameters through the type and quantity of data which is typically 

available (see e.g. Gneiting et al. 2007, Genton 2007). In the following, we assume that the 

covariance function of  Y ,x  has the exponential form 

 , expY

x x y y
C x x 

 
   

    
 

2  (6) 

where  2  and   respectively are the variance and correlation length of Y. The eigenvalues i

and corresponding eigenfunctions appearing in (2)-(5) can be readily computed (Zhang and 

Lu 2004) by solving a system of two coupled algebraic equations. In the most general case, 

the eigenvalue problem (4) is solved numerically (e.g., Phoon et al. 2002). Note that other 

models could be employed for the representation of YC , including, e.g., the Modified 

Exponential and the Spartan covariance (e.g. Spanos et al. 2007, Tsantili and Hristopulos 

2016, Su and Lucor 2006), which might require a smaller number of KL terms than the 

exponential covariance (Spanos et al. 2007). 

As shown in Zhang and Lu (2004), values i  monotonically decrease at the rate of 

/ i21 . One can then approximate  Y ,x  by considering a finite number of terms in (2), i.e., 

     
1

K

Y i i i
i

Y ,     


 x x  (7) 
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with  ~ , Kξ N I0 , KI  being the identity matrix of size K. We note that 

i
i

D 




 2

1

  (8) 

D  being a measure of the area of the domain. Hence, the number of terms to be retained in 

(7) can be selected in a way that the ratio 

 

K

i
i

i
i

e K













1

1

  (9) 

is larger than a given threshold. In our computational examples we follow Das et al. (2010) 

and set  e K  > 0.90, which allows to capture more than 90% of the variance of Y. 

The number of terms to be retained in (7) depends on the correlation length of the 

covariance function of Y, small values of   usually corresponding to high values of K. As 

such, strongly heterogeneous stochastic fields, which are associated with high variance and/or 

small correlation lengths, pose a clear challenge for an effective representation grounded on 

the KLE. 

The forward problem is tackled by solving (1) for several realizations of the Y spatial 

field. These are obtained by evaluating (7) through sampling of the random vector  K

i i


1
 

from the standard multi-Gaussian distribution. An uncertainty analysis of the way the 

randomness of Y propagates to the output of the flow model can then be easily performed 

through numerical Monte Carlo simulations. In the context of a stochastic inverse problem, 

one is mainly interested in characterizing a collection of Y fields that are consistent with the 

observations grouped in vector m . When the stochastic inverse problem is set in a Bayesian 

framework, the posterior (updated) probability density function (pdf) of the field  Y ,x  is 

typically inferred on the basis of available data and prior knowledge about the system. 
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4. Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling 

Characterizing the posterior pdf of  Y ,x  in the context of Bayesian inference is 

tantamount to assessing the joint posterior pdf of the entries of the random vector  K

i i



ξ

1
. 

The conditional posterior distribution of ξ  is defined as  

      ξ m m ξ ξp p p   (10) 

Here,  m ξp  is the likelihood function and  ξp  is the prior probability density function of 

ξ , which encapsulates any prior knowledge about the log-transmissivity field. As stated in 

Section 3, we consider  Y ,x  as a Gaussian process with the covariance function defined in 

(6). It then follows that    ~ ,ξ IKp N 0 . 

The conditional posterior distribution (10) can be characterized through diverse 

numerical methods. Markov Chain Monte Carlo (MCMC) samplers are particularly suited for 

this task. There are several MCMC algorithms proposed in the literature (e.g., Haario et al. 

2001; Green and Mira 2001; ter Braak and Vrugt 2008; Vrugt et al. 2009a; Laloy and Vrugt 

2012), all of which relying on the Metropolis-Hasting algorithm. In the latter, a new candidate 

value for parameter ξ i
 is generated at the ith iteration from a proposal distribution  1ξ ξi iq  . 

Acceptance or rejection of a new candidate is based on the associated Hasting ratio, defined 

as 

   
   

1

1 1
min 1,

i i i

i i i

ξ m ξ ξ

ξ m ξ ξ

p q
 

p q




 

 
 
 
 

 (11) 

Convergence of the chain to the target distribution, i.e.,   ξ mp , is typically achieved after a 

burn-in period. Considerable research efforts on improving the efficiency of MCMC samplers 

have been focused on reducing the burn-in period (see, e.g. Haario et al. 2001; Green and 

Mira 2001; Vrugt et al. 2009a among others). The choice of the proposal distribution  . .q  
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and the updating strategy are key to obtain the speed up of the algorithm convergence. A 

common strategy which is also pursued to accelerate convergence of the MCMC sampler 

relies on characterizing the modes of the posterior pdf   ξ mp  (Vrugt and Bouten 2002). 

Assuming a unimodal pdf, the mode corresponds to the MAximum A Posteriori (MAP) value, 

defined as 

  arg max p


MAPξ ξ m   (12) 

The MAP characterization enables the MCMC sampler to be initialized approximately around 

the most likely values associated with the posterior distribution of the model parameter set 

(Vrugt and Bouten 2002). 

Here, we employ the DREAM(ZS) software to generate samples from the conditional 

posterior distribution of ξ  (Laloy and Vrugt 2012). This adaptive algorithm runs multiple 

chains in parallel to explore the random parameter space. Vrugt et al. (2009b) compared the 

DREAM algorithm with the generalized likelihood uncertainty estimation (GLUE) method. 

As a key feature, DREAM(ZS) generates candidates by sampling from an archive of past states 

collected in a sample Z. Thus, only a few parallel chains are required for posterior sampling 

and a marked reduction of the burn-in period is achieved. The efficiency of the algorithm has 

been successfully tested on several highly dimensional, complex and nonlinear problems. 

These studies pointed out that the computational effort can be demanding in cases where the 

process model be associated with long simulation times. In these instances one can consider 

reducing computational costs either by resorting to a surrogate model of the process 

considered (Kennedy and O'Hagan 2001; Higdon et al. 2008; Cui et al. 2011; Laloy et al. 

2013) or by developing a strategy to reduce the dimensionality of the stochastic inverse 

problem. Here we focus on the latter strategy and explore its effectiveness by way of a suite 

of computational examples. 
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5. Model Selection Criterion 

The strong heregeoneity of the domain we consider leads to a KLE characterized by a 

high number of terms. Inferring the posterior joint pdf (10) through MCMC for these types of 

high-dimensional problems is practically unaffordable. It is then desirable to further reduce 

the dimensionality of the inverse problem before running the MCMC sampler. We propose 

doing so via the use of a model selection criterion. As an example, here we rely on the 

Kashyap information criterion, KIC (Kashyap, 1982), other alternatives (e.g., AIC (Akaike 

1974), AICc (Hurvich and Tsai 1989) or BIC (Schwarz 1978) being fully compatible with our 

procedure. 

The expression for KIC is derived from the Bayesian Model Evidence (BME) defined as 

     , m m ξ ξ ξ
k

k k k

KL

p M p M p M d   (13) 

where  , ,...,k kM k N1  is a set of competing alternative models and kM  depends on kKL  

quantities collected in vector ξ . BME (13) is a metric quantifying how likely model kM  is, 

given the data m . The competive models we consider in our framework are all the possible 

KLEs. 

The analytical evaluation of the integral in (13) is not straightforward, especially for 

high-dimensional parameter spaces. An approximate form of (13) can be obtained by 

employing the Laplace approximation. The latter assumes that the posterior distribution of the 

parameters in ξ  is Gaussian and highly peaked around its local maximum a posteriori (MAP) 

estimate ξ MAP . Expressing   m kp M  through a Taylor series expansion centered at the 

MAP, retaining terms up to second-order and taking the exponential of the resulting 

expansion yields (see Schoniger et al. 2014) 

       / /
, m  ξ m ξ H

KMAP MAP
k k kp M p M p M  

2 1 2
2  (14) 
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where H  is the Hessian matrix evaluated at the MAP, usually approximated by the Fisher 

information matrix F . One then defines KIC as 

         ln , ln ln lnMAP
k k kKIC p M p M Km ξ ξ     2 2 2 F  (15) 

Note that  ξ kp M  corresponds to the prior assigned to the KL terms denoted in (10) by 

 ξp  and  ,m ξ kp M  is the likelihood denoted  m ξp  in (10). 

6. Strategy for Dimensionality Reduction of the Inverse Problem 

As stated in Section 4, the approach we employ to reduce the dimensionality of the 

inverse problem relies on representing the Y field via a sparse truncated KL parameterization. 

The strongly heterogeneous random fields we consider are characterized by a small 

correlation scale, relative to a characteristic length scale of the flow domain. Values of Y in 

these fields tend to alternate rapidly in space in a rough rather than a smooth manner and 

treating them through KLE still requires considering a notably high-dimensional parameter 

space to capture the major details of the underlying field. This element constitutes a critical 

challenge and tends to hamper the effectiveness of characterizing the Y field through Bayesian 

inference approaches based on MCMC samplers. To alleviate this difficulty, we propose a 

strategy to further reduce the dimensionality of the parameterization of the problem. We 

construct models with different degrees of complexity through sparse KLE and evaluate their 

performance in the presence of available observations. We associate the degree of complexity 

of a model with the number of parameters which are retained in (7). Our model selection 

strategy is driven by available information content and is based on the use of model selection 

criteria of the kind illustrated in Section 5 which we employ to guide the identification of the 

eigenmodes (i.e., the number of parameters) of the sparse KLE which are most influential to 

the interpretation of the observed data. 

We start by recasting the truncated KLE (7) as 
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     ,
K

Y     


 Y i i
i

x x
1

 (16) 

where, i i i    and the parameter prior is now defined as  ~ ,N i i0 . Since the set of 

eigenfunctions   K

i i



x

1
 are orthogonal within the spatial domain D , (16) is a variance 

decomposition of  ,Y x , i.e., 

       , , d
K

D Y Y i
iD

E Y Y
D

     


       
2 2 2

1

1
x x x  (17) 

Note that the spatial variance depends on , i.e., on the random realization (or draw) 

considered. Suppose that the MAP estimate MAP  is considered. Then, (17) indicates that 

 MAP
i

2
 is a measure of the contribution of the ith eigenmode to the spatial variance of the 

stochastic field. The key idea underlying the approach is that eigenmodes with negligible 

contribution to (17) can be discarded from the expansion (16) so that dimensionality reduction 

of the inverse problem can be achieved. We do so according to the procedure detailed in the 

following where we assume, for the sake of simplicity, that the posterior pdf (10) is unimodal. 

1. Start by retaining the first K  eigenmodes of the covariance function that capture 

most of the energy of the stochastic process. As an example, in our demonstration 

examples we select 

.D 



K

i
i

2

1

0 90   (18) 

2. Find the maximum a posteriori estimate,   arg maxMAP m


  p ; here, we do so by 

relying on the Levenberg-Marquardt (LM; Levenberg 1944; Marquardt 1963) 

algorithm. 

3. Compute the value of a given model selection criterion. As a reference metric, we 

consider the KIC (Kashyap 1982) criterion (15) reformulated here as, (ANIS: what is 
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the difference between K within the parenthesis and “K at the subscript”? Are they the 

same thing?) 

         ln , ln ln lnMAPmKKIC p K p K K 2    2 2 F   (19) 

Here, K indicates the number of terms retained in the KL expansion,  ,p KMAPm   is 

the likelihood function evaluated at the MAP estimate (Schöniger et al. 2014); 

 p K  is the prior pdf of the current K KL-terms (recall that    ~ ,p K N i i0 ); 

F  is the determinant of the so-called Fisher information matrix evaluated at the MAP. 

4. Compute the contribution of the ith eigenmode to the spatial variance of the stochastic 

field, as quantified by the partial variance  MAP
i

2
 for i=1,…,K. 

5. Sort the eigenmodes   , x i i  according to their partial variance (from largest to 

smallest   MAP
i

2
; see (17)). 

6. Keep the newK  most significant eigenmodes, such that 

    .
newK K

MAP MAP
i i

i i

θ θ
 

 
2 2

1 1

0 90  (20) 

7. If newK =1 , then go to step 8 of the procedure; otherwise, set newK=K , construct a 

new sparse KLE and go to step 2. 

8. Finally, set  arg minopt
K

K
K KIC  and use DREAM(ZS) to sample the sparse KLE 

coefficients according to the target pdf  mp . 

Hence, step 8 yields the optimal sparse KLE, analyzed on the basis of the chosen 

information criterion (19). The Bayesian inference of the values of the reduced subset of 

parameters  
optK

i i


1
 is then performed with the MCMC DREAM(ZS) sampler. 
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Note that while we assume here that the target pdf (10) is unimodal, the procedure can 

be extended to the case of multimodal distributions by searching in step 2 for all optimum 

values obtained using multiple starting points in the LM algorithm. 

7. Results and discussion 

7.1 Setting of the inverse problem 

We analyze and exemplify the performance of our approach upon relying on a set of 

computational studies performed on synthetic systems. We consider a two-dimensional square 

domain of side L = 10 m discretized with a mesh formed by 10,000 uniform square elements. 

The steady-state flow problem described by (1) is solved under permeameter-like boundary 

conditions corresponding to uniform (in the average) groundwater flow driven by a given 

head drop. As a test bed for our approach, and following the discussion of Section 3, we 

consider the exponential covariance function (6) with a given correlation length /L = 0.1 and 

a variance  2 1. An unconditional realization of the heterogeneous Y field which we 

consider as reference is generated using the KLE with 400 terms. Figure 1 depicts the 

cumulative sum of the normalized eigenvalues (9) for the setting considered. These results 

suggest that a number of terms K  150 is required for the KLE to capture about 90% of the 

system variance. 

The steady-state forward flow problem is then solved for the generated reference Y field. 

Values of Y and hydraulic head are jointly sampled at 25 diverse locations randomly selected 

in the system and constitute the entries of the vector m of observation data. We assume that 

both head and Y measurements are noisy. Measurement errors are considered to be 

uncorrelated in space and are modeled as zero-mean Gaussian random variables, 

characterized by known standard deviations, denoted as h  and Y , respectively for head and 
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Y data. Figure 2 depicts the reference Y field and the 25 locations at which observations of 

both Y and hydraulic head are collected in our example. 

Following Bayes' theorem, the posterior pdf of the KLE modes is given by 

     1 2 1
2 2

1

2 2 2
m T

h Y
h Y

SS SS
p ,K, , , exp exp 

 
        

  
C C

 
    (21) 

where T is transpose and C is the covariance matrix defined by  

1 0

0

0 K





 
   
  

C


 


  (22) 

Here,  1SS θ  and  2SS θ  respectively are the sum of squared differences between observed 

and modeled (relying on K modes of the KLE) head and Y values. Measurement error 

standard deviation of pressure heads is set to .h  0 05  m, which corresponds to 5% of the 

largest head variation  max minh h  in the domain. Two scenarios corresponding to different 

values of standard deviation of measurement errors of Y are investigated, i.e., Y  = 0.1 and 

0.5, respectively corresponding to 2% and 10% of the largest Y variation  max minY Y  across 

the domain. 

Consistent with the assumptions in the approach underlying (18), the information 

matrix F embedded in KIC (19) is rendered by (Schöniger et al. 2014) 

1 1T   F J Σ J C   (23) 

where J is the Jacobian matrix evaluated at MAP and Σ  the covariance matrix defined as 

2
2

2
2

0

0
obs

obs

Y N /

h N /





 
  
  

I
Σ

I
;  (24) 

obsN  being the number of data collected in the vector m and 2obsN /I  the identity matrix of size 

Nobs/2. 
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We remark that Bayesian inversion with MCMC using the KLE of the Y field 

associated with K = 150, which allows capturing approximately 90% of the variance 

associated with the postulated exponential covariance function (6), was unaffordable due to 

the large number of parameters. The following section is devoted to the illustration of our 

application of the dimensionality reduction strategy described in Section 5. 

7.2 KLE with dimensionality reduction 

We apply the model reduction strategy described in Section 6 starting from the KLE 

associated with K = 150. The components of the MAP vector  MAP  are estimated through the 

LM algorithm and the corresponding value of KIC (19) is computed following steps 1-4 of the 

algorithm described in Section 6. The algorithm is continued until only one term remains in 

the sparse KLE. This screening phase required about 370 model calls and is computationally 

cheap as compared to the the cost required by MCMC samplers (around 50,000 model calls). 

Figure 3 depicts the dependence of KIC on the number of modes (1  K  150) retained 

in the sparse KLE and resulting from the application of the reduction procedure decribed in 

Section 6. This figure indicates that KIC identifies a minimum corresponding to the use of 

solely 19, or 12 components of the sparse KLE, respectively for Y  = 0.1 and 0.5. In other 

words, the information content embedded in the available noisy measurements allows 

identifying a sparse KLE representation of the Y field based on a reduced number of 

components, i.e., K = 19, or 12 in the cases analyzed. This result is consistent with the general 

idea that a reduced number of parameters is required to interpret data associated with large 

measurement errors. We note that we obtain results of similar quality by relying also on 

diverse quantities, such as AIC (Akaike 1974) or BIC (Schwarz 1978) criteria (not shown). 

When sorted in order of importance, the modes retained at the optimum correspond to the 

components identified by the sets of indices {i = 2, 17, 21, 49, 7, 38, 69, 8, 28, 79, 41, 33, 36, 
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20, 40, 80, 78, 13, 10} or {i = 2, 8, 36, 49, 17, 30, 21, 79, 38, 122, 129, 6}, respectively for 

Y  = 0.1 and 0.5. We recall here that modes are selected and ranked according to their 

relevance (see (17) and step 5 in the reduction algorithm). 

Finally, the resulting Y field parameterizations are employed to appraise the posterior 

pdf (21) through DREAM(ZS). Figure 4 depicts the inferred posterior marginal pdfs of the first 

three KL modes identified by the set of indices listed above and resulting from stochastic 

model calibration via MCMC for the two scenarios examined. These results reveal that the 

mode values are appropriately estimated. Their associated posterior pdfs are unimodal, with 

an approximately symmetric shape, and encompass a narrow range of values for both values 

of Y  considered. Results of similar quality are obtained for the remaining modes retained in 

these sets (not shown). 

Figure 5 depicts the results of the MCMC-based inversion evaluated at the measurement 

locations for h and Y and for both values of Y  tested. The 95% uncertainty bounds 

(corresponding to the 97.5 and 2.5 percentiles of the distributions) representing parametric 

uncertainty (narrow bounds in the figure) are depicted in Figure 5 together with the total 

predictive uncertainty (wide bounds in the figure), the latter taking into account parametric 

uncertainty as well as measurement errors. The results of Figure 5 suggest that virtually all 

observations are comprised within the 95% total uncertainty range for both values of Y . As 

expected, the total uncertainty characterizing Y estimates tends to increase with Y . The 

parametric uncertainty is slightly larger for Y  = 0.1 than for Y  = 0.5, respectively 

involving 19 and 12 modes at the optimum. 

Figure 6a, b depict the MAP estimate of the spatial field Y, respectively for Y  = 0.1, 

and 0.5. Figure 6c, d depict the spatial distribution of the width of the 95% total uncertainty 

ranges of h, respectively for Y  = 0.1, and 0.5. The corresponding graphical depiction for the 
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width of the 95% uncertainty ranges of Y is shown in Figures 6e, f. Direct comparison of 

Figures 6a, b and Figure 2 suggests that the identified (optimum) sparse KLEs yield a good 

MAP approximation of the reference log-transmissivity field, with a good quality 

representation of the spatial pattern of poorly and highly conducive regions, for both cases. It 

is nevertheless noted that, even as the MAP estimate can be deemed satisfactory, the 

predictive total uncertainty (Figure 6c-f) associated with the stochastic field tends still to be 

large at locations far from measurements. This feature is especially evident for Y  = 0.5. 

7.3 Predictive Performance 

Figure 5 suggests that the calibrated models provide a satisfactory representation of 

the observations in a probabilistic sense. We now analyze their predictive performance at 

diverse locations in the domain. The reference values at unsampled locations can be compared 

against the corresponding MCMC predictive distributions of h(x) and Y(x). The estimated 

Cumulative Distribution Functions (CDFs) obtained for h and Y are respectively depicted in 

Figures 7 and 8 together with the corresponding reference value for Y  = 0.1, 0.5. Only a set 

of selected locations in the domain are displayed, as representative of the range of results 

obtained in our simulations. It can be noted that at some locations the reference value is 

comprised within the range of values associated with non-negligible probability for the two 

CDFs depicted. Otherwise, there are locations at which this behavior can be observed for only 

one of the two posterior CDFs, which is most frequently linked to the largest variance of the 

measurement errors. Nonetheless, there are some locations (far from measurements) where 

the reference values are not captured by either of the CDFs obtained from our inversion. 

Hence, the parameterization strategy based on the identification of a reduced dimensionality 

KLE may lead to collections of solutions which do not encompass the reference solution at 

some unsampled locations (far from measurements). To improve the quality of the estimation, 

one can, for instance, increase the number of measurements and/or the threshold for the 
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selection of eigenmodes in the MAP to yield an augmented number of KL eigenmodes, thus 

contributing to improve the quality of the inverse solutions (as compared to the reference 

solution). 

8. Conclusions 

We develop an operational strategy to obtain computationally affordable and Bayesian 

estimates of satisfactory quality of heterogeneous transmissivity fields in the presence of 

sampled data available at a set of locations in an aquifer. We do so by relying on a scheme 

based on modeling the (natural) logarithm of transmissivity as a stochastic Gaussian process 

which is parameterized through a truncated KLE. We consider strongly heterogeneous 

transmissivity fields, such as those characterized by short-range (with respect to the domain 

size) correlation, for which Bayesian inference becomes highly challenging and 

computationally demanding due to the large number of terms which are required to be 

retained in the KLE. 

Our strategy starts from a highly-parameterized field and yields a set of sparse KLEs 

with reduced dimensionality, the MAP estimate of the eigenmodes in each sparse KLE being 

obtained through inverse modeling of flow against noisy data. Selection of the optimal 

number of modes to be retained in the expansion is driven by a model selection criterium, 

which is informed by available observations. The posterior statistical distribution of the 

corresponding eigenmodes is then obtained upon relying on the DREAM(ZS) MCMC sampler 

developed by Laloy and Vrugt (2012).  

The approach is illustrated by relying on a suite of computational examples where 

noisy transmissivity and head values are sampled from a given transmissivity field. The new 

methodology yields a satisfactory inversion of the stochastic field with a good representation 

of the observations in a probabilistic sense. At some unsampled locations (far from 

measurements), the collection of estimated solutions may not encompass the reference values. 
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The quality of the estimation could be improved for instance by increasing the number of 

measurements and/or the threshold for the selection of KL eigenmodes in the MAP. 
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Figure Captions 
 

Figure 1: Cumulative sum of the normalized eigenvalues (see (9)) for the exponential 

covariance with  / L = 0.1 and variance 2 1  . 

 

Figure 2. Reference spatial field of the log-transmissivity field,  Y x . Crosses indicate 

locations where head and Y values are jointly sampled. 

 

Figure 3. Selection of the optimal number of modes, Kopt, based on the KIC model selection 

criterion (16) for the values of standard deviation of data measurement errors: (left) 

.h  0 05 , Y  = 0.1 and (right) .h  0 05 , Y  = 0.5. 

 

Figure 4. Inferred posterior probability distribution of selected KL eigenmodes after statistical 

calibration with MCMC for the values of standard deviation of data measurement errors: (left 

column) .h  0 05 , Y  = 0.1 and (right column) .h  0 05 , Y  = 0.5. 

 

Figure 5. MCMC predictive uncertainty of the statistically calibrated reduced models. First 

row: data are corrupted through Gaussian errors with standard deviation .h  0 05  (for 

heads) and Y  = 0.1 (for log-transmissivity). Second row: data are corrupted with Gaussian 

errors with .h  0 05  (for heads) and Y  = 0.5 (for log-transmissivity). 

 

Figure 6. Results of the sparse KLE inversion with DREAM(ZS) MCMC. Data are 

characterized by (left column) Y  = 0.1 or (right column) Y  = 0.5. First row: MAP estimate 

of the Y field. The last two rows include the width of the 95% total predictive uncertainty 

range for (c, d) pressure head and (e, f) log-transmissivity. 
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Figure 7. Comparison between cumulative distribution functions of pressure heads at selected 

unsampled locations (red: 19 modes reduced sparse KLE ( Y  = 0.1); green: 12 modes 

reduced sparse KLE ( Y  = 0.5)). Blue dashed lines indicate reference values. Coordinate 

pairs in parenthesis correspond to the locations selected in the domain. 

 

Figure 8. Comparison between cumulative distribution functions of log-transmissivity at 

selected unsampled locations (red: 19 modes reduced sparse KLE ( Y  = 0.1); green: 12 

modes reduced sparse KLE ( Y  = 0.5)). Blue dashed lines indicate reference values. 

Coordinate pairs in parenthesis correspond to the locations selected in the domain. 
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