
Multilingual Input System for the Web - an Open Multimedia Approach of
Keyboard and Handwriting Recognition for Chinese and Japanese

Marshall C. Ramsey
MIS Department

Management
University of Arizona

McClelland Hall 430W
Tucson, Arizona 85721

Karl Eller Graduate School

Thian- Huat Ong Hsinchun Chen
MIS Department Associate Professor

of Karl Eller Graduate School MIS Department
of Management

University of Arizona Management
McClelland Hall 430W
Tucson, Arizona 85721

Karl Eller Graduate School of

University of Arizona
McClelland Hall 4302

mramsey @bpa.arizona.edu tong @bpa.arizona.edu Tucson, Arizona 85721
(520) 621-3927 (520) 621-3927 Visiting Research Scientist,

NCSA
hchen @bpa.arizona.edu

(520) 621-4153

Abstract
The basic building block of a multilingual information
retrieval system is the input system. Chinese and
Japanese characters pose great challenges for the
conventional 101 -key alphabet-based keyboard, because
they are radical-based and number in the thousands. This
paper reviews the development of various approaches and
then presents a framework and working demonstrations of
Chinese and Japanese input methods implemented in
Java, which allow open deployment over the web to any
platform, The demo includes both popular keyboard input
methods and neural network handwriting recognition
using a mouse or pen. This framework is able to
accommodate future extension to other input mediums
and languages of interest.

1 Introduction

Many commercial and shareware products to support
East Asian languages exist, but each works only on a
specific platform. None is yet able to embrace the open
standard of the web, which is destined to be the
communication channel in all information systems. The
web implementation using Java presented here will ensure
its widespread deployment, but although Java provides
multilingual internationalization support, it inherently
assumes that each user already has an input system. For
example, a computer in China or Japan will of course
have an input mechanism for the local language but may

not have input mechanisms for another language. This
Java web implementation can ensure that all platforms
will be supported.

As multilingual information retrieval becomes more
and more important, people in different parts of the world
continue to speak their own languages. While rapid
growth of the Internet connecting every corner of the
world promises a future of multilingual information
systems and non-English speaking countries participate
more and more in the Internet, information sources
become more diverse in languages.

2 Various Input Methods

Input methods can be categorized by the input
medium: keyboard, pen or mouse for handwriting, and
dictation. Keyboard input was the first to develop because
of simple implementation. However, the number of
Chinese and Japanese characters presents a great
challenge for 101-key English keyboard. There are about
48,200 Chinese characters according to a 1920 dictionary.
Several standards have evolved over time and limited
these to a smaller more commonly used set, such as
Taiwan’s BIG5 (about 13,300 characters used in Taiwan),
GB (6,800 China), Japan’s JIS (6,900 Japan), and their
variations. The general approaches to using these can be
divided into dictionary-lookup, phonetic, radical, and
mnemonic. Details will be discussed in a later section.

Handwriting recognition is gaining grounds as an
input method, and increased computing power and new

0-8186-8464-W98 $10.00 0 1998 IEEE
188

input devices such as mouse and pen have become
inexpensively available to the general public. Recent
advancement in neural networks also has helped improve
the accuracy of recognition rates. Using this method,
users can input the characters naturally as if writing on a
piece of paper. A program then attempts to map the
character into the computer’s internal code. This method
is highly desirable because users can interact with the
system with little or no training.

The last input medium is dictation, through which the
system types as the user talks. This approach is very
interesting, but voice dictation may create interference
especially in an office environment. In addition, it
requires such extensive hardware and sophisticated
software that it will not be considered here.

Java
Multilingual

Input

3 Methodology

based
Chinese

PenIMouse

Different users have different needs, and they should
be allowed to choose the input methods they prefer. For
example, hand written methods novice users prefer can be
considered too slow for advanced frequent users who may
prefer quicker mnemonic input methods. By using the
Object Oriented approach, our implementation framework
as shown in Figure 1 allows multiple media (keyboard or
pedmouse) and multiple languages. The consistent design
framework allows future extensions to incorporate other
input media and to support other languages.

-
Figure 1 : Multimedia multilingual input framework.

4 Keyboard Input Methods

Keyboard input methods can be divided into four
categories: dictionary-lookup, phonetic, radical, and
mnemonic. Dictionary-lookup works like a bilingual
dictionary. The user enters an English word, and the
system will return the corresponding Chinese or Japanese
word. It is useful sometimes when the meaning of a
particular word has been forgotten. For example,
tomorrow will return as Baa3. But generally, it is not
helpful for daily uses because the dictionary would have
to be very large to be comprehensive and many words do
not have exact correspondence.

Phonetic-based input methods are one of the first
methods to come into general use, but there are too many

repetitions of characters with the same pronunciation. An
extreme case might have up to 130 characters. For
Chinese, there are two systems of phonetic symbols:
China uses the romanized Pin Yin (##S),, while Taiwan
uses the traditional 42-symbol Zhu Yin ($38). For
example, “ming2 ri4” and ‘‘tl L 2 El 4’ both respectively
represent tomorrow (HA El), and people usually know one
but not the other. The Japanese have long adopted a
system of Romaji to write words in plain alphabet. For
example, “myonichi” represents tomorrow (HA El).

Radical-based input methods rely on a stroke
sequence in which a character is written by hand. Certain
keys are reserved to represent the basic radicals, and users
enter these basic radicals in order reproduce the
characters. However, some characters can take more than
30 radicals. Alternately, one can enter the number of
radicals to initiate the system to look up all the characters
with that number of radicals. A typical dictionary usually
has a table of common radical components and
subsequently divides the entries by the number of
remaining radicals. However, the problem of repetitions
also happens to this method.

Mnemonic input methods refer to those input
methods that rely on a set of rules that are intended to
minimize repetitions, in order to increase speed and
maximize human associative memory. These methods
usually parse characters into a particular sequence of keys
according to radicals, components, or placements. There
are more than 50 mnemonic methods, including the
widely used Cang Jie, 4Corner, and many others. Users
have recorded a speed over 300 characters per second
using improved versions, but all mnemonic input methods
require extensive training to attain top speed.

4.1 Implementation

The development of a Chinese keyboard input
method involves a three-tier architecture as shown in
Figure 2: Input Field, Input Control Module, and Input
Method Data. The advantage is that a single input control
module program can adapt to many different input
methods.

The Input Field 0 is embedded into a web browser,
such as Internet Explorer or Netscape. Its main purpose is
to be the liaison between the browser and the Input
Control Module. It appears as a regular input field, but in
fact it is a Java applet. If the browser is not able to display
Chinese fonts in the applet, it will download a bitmap font
from the server to display the Chinese characters
properly. Through simple JavaScript, the browser can
then use the input results from the applet to submit a
regular CGI form query.

189

Input Field 0 Input Control
Embedded in a web Module
browser and displays Interacts with user
current entry results and accepts different

input methods

The Input Control Module 0 is the central unit that
allows a user to choose among different input methods
available, takes keystrokes from the user, and then
translates them into Chinese characters according to the
input method selected. The user can also choose to enter
English text, which is implemented as a trivial input
method adhering to the general architecture.

Each individual input method is entirely captured in
the Input Method Data 0, which describes how each
valid key sequence is mapped to one or more
corresponding Chinese characters. The format is
compatible with the human readable Textual Input Table
(.tit) format used by CXTerm [3] , a popular Chinese X-
Term distributed with Unix. Additional .tit files are
available on the Internet [3]. Since .tit files are stored in
human readable text files, they are not space efficient, so
an alternate more compact storage file format using a trie
structure is also accepted by the Input Control Module.

0 Input Method Data
Describes input methods, eg. sample
for Pin Yin method

cai2 %!$4%%%
ca i 3 gp&~~$gp$$@jF$$g$
ca i4 ZZW%%$%

. cail $5

4.2 Input Demostration

Figure 3 shows a demo, which is also available at
http://ai.bpa.arizona.edu/mlir/, on how to use the
keyboard input method Java
applet with Netscape 4.0. The
Input Field applet 0 disguises
itself as a typical input field
which is part of the web query
form. It is in the process of
entering the word ocean @#
in Chinese.

When the user uses a
mouse to click on the input
field, it will bring up the Input
Control Module 0 as a
separate window. Currently, it
is now using the Pin Yin $#g
(romanized pronunciation)
input method. As the user keys
in, it continuously updates the
list of available choices
matching the current key
sequence. For example, the

partial list shows characters with pronunciation hai.
The user can change the input method by clicking on

the method name. Window shows a list of ten popular
input methods, including Pin Yin, Cang Jie, 4Corner, and
so on. The user can compile hidher own Data Input
Methods or download others from the Internet.

4.3 Query Demostration

To demonstrate the use of this implementation as the
front end interface to input Chinese characters to do
multilingual information retrieval, the next demo in
Figure 4 continues the previous demo and submit the
query ocean ’@# to Infoseek, a well known search
engine. Since this is a generic word, Infoseek found
67,076 pages containing the word, and the first page is
shown. To limit our search to Chinese documents, the
search domain is further limited to Taiwan.

Interestingly, the first record is about discussion of El
Nino in Taiwan and the second record is referring to the
subcategory of the Ocean University in Yam, which is
equivalent to Yahoo in Taiwan.

Figure 3: Keyboard input method demo Java applet.

190

1997

Figure 4: CGI query by keyboard input method

5 Handwriting Recognition

Research in handwriting recognition (HWR) is not
new. Many researchers are or have been building such
systems for decades. Nouboud and Plamondon provide an
excellent survey of research in on-line written character
recognition [2] . However, only recently has the
technology been incorporated in popular consumer
devices called Personal Digital Assistants (PDAs) such as
the Apple Newton and 3com Pilot. Text is entered by
drawing characters either in a special area or directly on
the display. Both PDAs only recognize Roman
alphanumeric and punctuation characters and do not
process Japanese writing. The Pilot recognizes only
character shorthand called Graffiti that must be learned
before using it. Eventually, most PDAs will have
handwritten input including those based on Microsoft's
Windows CE for which ParaGraph Software already has
released a HWR program called CalliGrapher.

The PDA run-time environment is similar to the Java
Virtual Machine used to run Web applets. Both are
relatively low memory, low processing power
environments and require parsimonious programs. The
Java Virtual Machine may be run on a wide range of
platforms with varying processor speeds. Additionally,
Java enabled Web browsers have security managers that
limit the amount of memory applets can use. Our goal is
to develop both Japanese and Chinese HWR systems that

are not only accurate, but can also be run in this
environment. In phase one of the research, we focused on
Japanese character recognition of more than 2000 Chinese
and native characters in common use.

To recognize Kanji, Chinese characters used for
Japanese, we used the technology in JavaDict, a Japanese
dictionary program written in Java that recognizes
handwritten Kanji using a stroke index. The author, Todd
David Rudick, claims a more than ninety percent
recognition rate and, although not formally tested, our
experience seems to support this. However, the program
only recognizes Kanji and cannot decipher Kana, native
Japanese characters mostly used to for inflection and
foreign words. Moreover, JavaDict does not effectively
distinguish low stroke count characters -- those with less
than five strokes. Most Kana also have low stroke counts
and are difficult to recognize with simple stroke indexing.

For our first phase, we tested a feed-forward back-
propagation neural network for effectively and efficiently
recognizing Kana. Also, we implemented the system in
Java and used it as a front-end-processor (FEP) for
Japanese search engines and dictionaries on the Web.

5.1 Sample Collection

We first created a character entry program to collect
Kana writing samples from three different people, one
native and two non-native Japanese speakers. The system
consisted of a small handwriting entry window (Le., about

191

200x200 pixels) and a text field for entering the Kana
phonetically using the keyboard. Users entered a single
character in the drawing area and typed the same
character in the text field. In all, 107 Hiragana were
entered and the data were saved to a file. A writing pad
and stylus were used to draw the characters since they
closely resemble the pen and paper normally used when
writing. The 107 Hiragana and 132 Katakana character
samples were collected from seven different people, five
native and two non-native speakers.

5.2 Recognition bv Neural Network

A three-layer feed-forward back-propagation neural
network was then created and the data converted for
input. Originally, each stroke was a set of points sampled
from the mouse input and connected by line segments.
Five points, including end-points were chosen at set
intervals. From the five points, four X and four Y
distances were calculated by subtracting each point’s X
and Y value from the first point’s values. The values were
normalized by first dividing each value by the character’s
maximum distance. This resulted in a value between -1
and 1 for each distance. The distances then had 1 added
and the result was divided by 2. The final values were
between 0 and 1.

Hiragana have a maximum of 9 strokes, which result
in a total of 72 values (Le., 9x4 X values and 9x4 Y
values). Characters with less than 9 strokes had Os
appended. The resultant vectors were then used as inputs
to the neural network.

The output layer consists of 107 nodes with each
node representing a different Hiragana character. The
network has 90 nodes in the hidden layer and utilizes a
canonical sigmoid activation function. A learning rate of
0.35 without momentum was applied. We used three
native and one non-native writing samples for training
and two native samples for tuning.

5.3 Manual Stroke Indexing

As mentioned previously, Rudick utilized another
approach to recognizing the characters in JavaDict that
uses stroke indexing and filtering. He used 13 stroke tags
as shown in Figure 5 to manually index about 2,000
Kanji. In his program, a character is drawn on the display
and converted into a vector of strokes. Each of these
strokes is represented by two vectors of X and Y points.
The index file for all the characters with the same number
of strokes is used to compute scores. The more closely the
drawn strokes match the indexed character’s stroke tags,
the lower the score. When this has been completed, an

ordered list of the top five matches, characters with the
lowest scores, is rcturned.

Direction Strokes Box Strokes Curved Strokes

x v I I
2

Figure 5: Stroke tags used for indexing.

During testing, Rudick added filters to characters that
were not recognized correctly, using seven different filters
that could be applied to any stroke in the character. His
system required the filters to be applied in subtractive
pairs (i.e., filter, - filterz). The difference was then
subtracted from the character’s score from tags to compute
the final score. The filters were then saved in the index
file.

5.4 Automatic Stroke Indexing

Manually indexing characters is a time consuming
process that we wanted to avoid. Instead, we created an
automatic indexing program that uses the same function
that scores the indexed characters to determine the index
tags. For each stroke, we scored all 13 tags and chose the
one with the lowest score. To better generalize, we used
three different handwriting samples and chose the tag
with the overall lowest score when applied to the three
samples. Filters were also applied when characters were
not properly recognized by the resultant indexes. The
difference between the score of the correct character and
the score of the top returned character was utilized to
select a filter pair. The seven filters were applied to all
the strokes in both characters and a pair was selected that
had the minimum difference between the correct
character’s filter score and the top choice’s filter score and
was greater than the difference between their tag scores. If
a filter combination matching the criteria was not found,
then the difference between the correct character’s and the
top choice’s filter scores only had to be greater than half
the tag score differences. Thus, the correct character’s
score was guaranteed to be lower than the top choice’s
score in the next round. However, the correct character’s
score was not guaranteed to be the top choice since filters
applied to other characters may have given them a lower
score.

192

5.5 Results

After automatic indexing but
without applying filters,
recognition rates of 8% (top 1) and
33% (top 5) were obtained. When
filters are applied the recognition
rates jumped to 16% and 42%. The
top rate of 42% is problematic
since users would either have had
to scroll through a long list to find
the character they entered or not be
able to select it at all. This poor
performance was expected and
suggested by Rudick.

The Hiragana neural network
was originally trained for 1,500
epochs. The greatest recognition
rate was 98% and was achieved at

,
Fonts IHelveticaA

- 7 3
/’ j I:’

Figure 6: Handwriting entry windows with recognized characters.

epoch 2,300. The network was then retrained using the
same initial weights and stopped at epoch 2,300. The
optimized network was then tested using unseen, non-
native (first year student level) Hiragana input and had a
recognition rate of 97%.

The Katakana neural network was also trained for
1,500 epochs. The best recognition rate of 96% was
reached at epoch 670. The network was retrained and
stopped at this epoch. A recognition rate of 88% for
unseen, non-native (first year student level) Katakana
writing was achieved.

5.6 Demonstration

To demonstrate the recognition system, we created a
Java applet that recognizes written Japanese input and
inserts the characters into a Web form. Users wrote a
character in the applet’s drawing area and then pressed
the button associated with the character type (Le., Kanji,
Hiragana, or Katakana) as shown in Figure 6. The top five
matches were then shown sorted in a drop-down list. The
character was inserted in the Web form when the user
wrote another character or pressed the Force button.
Figure 7 shows the entry of characters in a Web form
connected to the Yahoo! Japan Web search engine. The

results of the query are displayed in the foreground
window with the query term in bold text.

An on-line demonstration is available at
http://ai. bpa. arizona.edu/-mramsey/hwrkana2/hwr. html.
Users will need to make sure that their browsers are Java
Development Kit (JDK) 1.1 compliant and their system
has a Japanese font.

5.7 Discussion

From the results, we conclude that our back-
propagation neural network is an effective means for an
on-line HWR system for both Hiragana and Katakana.
From this we predict that the neural network will also
improve the recognition rate for Kanji with few strokes.
We are unsure if the neural networks recognition rate for
high stroke count characters will be greater than
automatic indexing results. However, since the number of
input nodes is equal to eight times the maximum number
of strokes and the number of output nodes equals the
count of unique characters, the neural network approach
currently requires too much memory and processing
resources for convenient use in low resource
environments.

193

P6T

ua

