Cardiovascular Disease Risk Factors and Blood Pressure Control in Ambulatory Care Visits to Physician Offices in the U.S.

A Thesis submitted to The University of Arizona College of MedicinePhoenix in partial fulfillment of the requirements for the Degree of Doctor of Medicine

Christopher Couch

2011

Dedication

The University of Arizona College of Medicine Phoenix and its inaugural class of 2011.

Acknowledgements

Doug Campos-Outcalt, MD, MPA. Howard Silverman, MD, MS.
Suleman Hamid. Jeffrey Kriseman. Brett Overby.

Abstract

Background: Cardiovascular disease is the leading cause of mortality in the U.S. Risk factors identified for coronary artery disease, cerebrovascular disease, and kidney disease include uncontrolled blood pressure, diabetes, renal disease, hyperlipidemia, obesity, and tobacco use. The threshold for pharmacologic treatment of hypertension in patients with diabetes or chronic kidney disease is $\geq 130 / 80 \mathrm{mmHg}$. It may be of benefit to extend these criteria to individuals who have other cardiovascular disease risk factors and no diagnosis of hypertension. Blood pressure recommendations in this population have largely been unstudied. This study investigates blood pressure control in this nonhypertensive population.

Methods: We analyzed 2006 National Ambulatory Medical Care Survey (NAMCS) data to determine blood pressure control at physician office visits in the U.S. among patients with cardiovascular disease risk factors and no diagnosis of hypertension. Physician office visits with a documented diagnosis of hypertension were excluded from our study. Characteristics of the non-hypertensive population were indentified and were classified by blood pressure above or below 140/90 mmHg . Cardiovascular disease risk factors examined were diabetes,

renal disease, hyperlipidemia, obesity, tobacco use, males >55 years, and females >65 years. This population was then divided into two groups, those with blood pressure above or below 130/80 mmHg. Results: We found 22,744 records (77.4% of visits) with no diagnosis of hypertension out of 29,392 total records, with 43.2% of the nonhypertensive population having $\mathrm{BP}<140 / 90 \mathrm{mmHg}$. Males fulfilled criteria for hypertension ($\geq 140 / 90 \mathrm{mmHg}$) more frequently than females (63.5% vs. $52.3 \%, P$-value $<.001$). Patients were mostly younger than 65 years. Males >55 years was the most prevalent CVD risk factor, with 79.2% of these with $\mathrm{BP} \geq 130 / 80 \mathrm{mmHg}$. Second most prevalent risk factor was tobacco use at 10.1% of non-hypertensive visits, and BP was $\geq 130 / 80 \mathrm{mmHg}$ in 63.6% of these visits. Hyperlipidemia in 5.6% of total visits, with $\mathrm{BP} \geq 130 / 80 \mathrm{mmHg}$ in 60.5%. Obesity was documented in 5.5% of non-hypertensive population, with $\mathrm{BP} \geq 130 / 80 \mathrm{mmHg}$ in 60.0%. Visits with one risk factor with $\mathrm{BP} \geq 130 / 80 \mathrm{mmHg}$ were found in 22.8% of our nonhypertensive study population.

Conclusions: 56.8 \% of those without a diagnosis of hypertension had elevated blood pressure recorded at their physician visit. BP control rate in our non-hypertensive population was 43.2%, surprisingly
similar to hypertensive populations and demonstrating the need for improvement in awareness and onset of treatment. There were more patient office visits with $\mathrm{BP} \geq 130 / 80 \mathrm{mmHg}$ in each group of cardiovascular disease risk factors when compared to $\mathrm{BP}<130 / 80$ mmHg . At least one cardiovascular disease risk factor and $\mathrm{BP} \geq 130 / 80$ mmHg was present in 22.8% of the non-hypertensive population. A greater percentage of patients with obesity, hyperlipidemia, tobacco use, male >55 years, or female >65 years had $\mathrm{BP} \geq 130 / 80 \mathrm{mmHg}$ when compared to patients with diabetes or renal disease. It may be of benefit to extend the threshold for pharmacologic treatment of hypertension to $\geq 130 / 80 \mathrm{mmHg}$ for patients with these additional cardiovascular disease risk factors. More studies are needed that evaluate blood pressure goals amongst non-hypertensive patients with multiple cardiovascular disease risk factors.

Table of Contents

Abstract 3
List of tables 7
Introduction 8
Research materials and methods 12
Results 15
Discussion 18
Future directions. 24
Conclusions 26
References 28
Tables 31
Poster 36

List of tables

1. Table 1: Characteristics of physician office visits with no diagnosis of hypertension, NAMCS 2006.
2. Table 2: Characteristics of physician office visits with no diagnosis of hypertension by percentage of total study population, NAMCS 2006.
3. Table 3: Cardiovascular disease risk factors in physician office visits with no diagnosis of hypertension, NAMCS 2006.
4. Table 4: Blood pressure control in physician office visits by number of cardiovascular disease risk factors, NAMCS 2006.
5. Table 5: Cardiovascular disease risk factors in physician office visits with no diagnosis of hypertension by percentage of total study population, NAMCS 2006.

Introduction

Background

Cardiovascular disease is the leading cause of mortality in the United States (1). Hypertension is associated with an elevated risk for coronary artery disease, cerebrovascular disease, and kidney disease (2). Antihypertensive therapy and lifestyle modifications have been demonstrated to significantly decrease major cardiovascular events (3). Approximately one-third of the United States population has hypertension, which include both diagnosed and undiagnosed individuals (2). Approximately two-thirds of these individuals are untreated or not achieving optimal control (2).

According to the Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC-7) hypertension is defined as a systolic blood pressure above 140 mmHg or a diastolic above 90 mmHg (2). If blood pressure does not fall into the recommended range after appropriate lifestyle modifications have been made, antihypertensive pharmacologic therapy is indicated in order to achieve optimal control. According to an analysis of a 2003 and 2004 national dataset, 44% of individuals with diagnosed hypertension are achieving recommended control (4).

The National Health and Nutrition Examination Survey (NHANES) 1999-2000 reported hypertensive individuals controlled (<140/90 mmHg) in 34% of cases (5). A more recent 2007-2008 NHANES analysis demonstrated hypertension control rates of 50%, meeting the goal recommended by Healthy People $2010(6,7)$. There is still much room for improvement.

In addition to hypertension, there are a variety of risk factors for cardiovascular disease. According to JNC-7, some of the established risk factors include cigarette smoking, obesity (body mass index ≥ 30 $\mathrm{kg} / \mathrm{m}^{2}$), physical inactivity, dyslipidemia, diabetes mellitus, microalbuminuria or estimated GFR $<60 \mathrm{~mL} / \mathrm{min}$, age >55 years for men or >65 years for women, and family history of premature cardiovascular disease (men <55 years or women <65 years) (2). Antihypertensive therapy is an essential tool utilized to prevent cardiovascular events, such as a myocardial infarction or stroke. The current recommendations suggest starting pharmacologic therapy in those patients with multiple blood pressure measurements above $140 / 90 \mathrm{mmHg}(2)$.

Multiple drug trials have demonstrated the benefit of hypertension control in patients with diabetes for preventing
cardiovascular disease and minimizing the progression of diabetic nephropathy (8, 9, 10). In addition, good blood pressure control in patients with chronic kidney disease protects against worsening renal function and cardiovascular disease (14). The recommended blood pressure goal, and standard of care, for patients with diabetes or chronic kidney disease is less than $130 / 80 \mathrm{mmHg}(2,11,12,13)$.

Significance

The current criteria, which simply utilizes a blood pressure cutoff for initiating antihypertensives, does not take into account a patient's cumulative risk for cardiovascular disease. In addition to an office blood pressure measurement, it has been suggested that a patient's cardiovascular risk be assessed to identify the need for pharmacologic therapy (14). Antihypertensive therapy could be indicated in patients that do not necessarily meet the current definition of hypertension. For example, individuals with one or more cardiovascular disease risk factors without documented hypertension and considered normotensive according to the current criteria may decrease their risk for a cardiovascular event with the initiation of antihypertensive therapy. Randomized controlled studies assessing blood pressure goals in this patient population are lacking (15).

As described above, patients with diabetes or chronic kidney disease are recommended to maintain blood pressure below 130/80 mmHg . It may be of benefit to extend the threshold for antihypertensive therapy of $130 / 80 \mathrm{mmHg}$ to individuals who have the following cardiovascular disease risk factors: obesity, tobacco use, hyperlipidemia, males >55 years, and females >65 years.

Aims/Goals/Hypothesis

Using the 2006 National Ambulatory Medical Care Survey (NAMCS) data, published by the Centers of Disease Control and Prevention in 2008, we investigated blood pressure control at physician office visits in the non-hypertensive population $(16,17)$. We performed analyses of this dataset to evaluate blood pressure control rates with documented cardiovascular disease risk factors. The risk factors included in the NAMCS data are age, smoking status, obesity, diabetes, hyperlipidemia, and renal disease (16, 17). Risk factors not included in the dataset are family history of early cardiovascular disease and physical inactivity $(16,17)$.

We hypothesized that in the non-hypertensive population with one or more cardiovascular disease risk factors there would be a greater number of patient office visits with blood pressure
measurements $\geq 130 / 80 \mathrm{mmHg}$. Additionally, we hypothesized that the non-hypertensive population would have blood pressure control rates higher than national percentages which include hypertensive individuals. Given the lack of research evaluating blood pressure control in this non-hypertensive patient population our cross-sectional study provides preliminary analyses.

Research Materials and Methods

The 2006 NAMCS data was published by the CDC in August 2008, and is available for the public to utilize for research purposes. This national survey has been conducted annually since 1989, completed by nonfederal, office-based physicians in the United States. The data represents a random sampling of patient visits to physicians over a one week period. Data includes patients' symptoms, physicians' diagnoses, and medications ordered or provided. It also includes demographic characteristics of patients, services provided, information on diagnostic procedures and patient management, as well as planned future treatment. All collected data has been de-identified, and no provider or patient information is included $(16,17)$.

The NAMCS data is accessible via the National Center for Health Statistics (NCHS) website, http://www.cdc.gov/nchs/ahcd.htm (16, 17, 18). Using the downloadable 2006 NAMCS dataset we studied the aforementioned cardiovascular disease risk factors in relation to blood pressure control as documented in the patient record form. The publicly available data was loaded into SQL server tables. Microsoft Access 2007 was then utilized to link to those tables. SQL queries were then written and performed according to the criteria as outlined here.

Patient visits with a documented diagnosis of hypertension were excluded from our study. These visits were identified because the physician had checked "hypertension" under diagnosis for visit, or the diagnosis was coded as ICD-9-CM 401-405.

Cardiovascular disease risk factors including age, tobacco use, obesity, diabetes, hyperlipidemia, and renal disease were identified using the following methods. The survey includes date of birth to determine age. Tobacco use is identified if "current tobacco use", was checked, the reason for the visit was "smoking problems", or the diagnosis for the visit was coded as ICD-9-CM 305.1 for tobacco use disorder. Obesity was defined using ICD-9-CM 278, or diagnosis for
visit "obesity". (Height and weight was provided on survey for potential BMI calculation, although data completion for height value was found to be incomplete in the majority of data records.) Diabetes was defined using ICD-9-CM 250, reason for visit "diabetes mellitus", or checking "diabetes" under diagnosis for visit. Hyperlipidemia was identified using ICD-9-CM 272.0-272.2 or by checking "hyperlipidemia" under diagnosis for visit. Renal disease was defined using ICD-9-CM 585.3 (chronic kidney disease, stage III), 585.4 (chronic kidney disease, stage IV), 585.5 (chronic kidney disease, stage V), 585.6 (end stage renal disease), 585.9 (chronic kidney disease, unspecified), or 586.0 (renal failure, unspecified), reason for visit "kidney dialysis," or by checking "chronic renal failure" under diagnosis for visit. Blood pressure measurements are included in the vital signs section of the survey, with both systolic and diastolic measurements.

Using this dataset we looked at blood pressure control in physician office visits with no diagnosis of hypertension. We further characterized this group by sex, age, and ethnicity. Our second analysis included cardiovascular disease risk factors as described above in patients without a diagnosis of hypertension. This group was classified according to blood pressure measurements, $\geq 130 / 80$ and
<130/80. In addition, we performed analyses for patients with one to five risk factors, covering all appropriate combinations. These were classified according to blood pressure measurements $\geq 130 / 80$ or $<130 / 80$.

Statistical analyses performed included the use of contingency tables and chi-square tests for the specified comparisons as outlined below. These include male versus female, Hispanic versus nonHispanic, and age as described in the characteristics of our study population. Additionally, we performed comparisons of the number of cardiovascular disease risk factors present in our study population to include one versus two risk factors, one versus three risk factors, etc. as demonstrated below.

Results

As documented in the National Ambulatory Medical Care Survey, 2006 Summary, 29,392 patient record forms (PRFs) were completed (16). Hypertension related visits comprised 22.4% of visits (16). According to our criteria for hypertension as described above, we found 22,744 PRFs (table 1) without a diagnosis of hypertension, 77.4\% of total visits for 2006. Despite the fact that hypertension was not
reported, 56.8% of our study population had blood pressure measurements $\geq 140 \mathrm{mmHg}$ systolic or $\geq 90 \mathrm{mmHg}$ diastolic, meeting the criteria for hypertension. We found 43.2% of patients with adequately controlled blood pressures measuring $<140 / 90 \mathrm{mmHg}$. Amongst further classification of this population separated by sex, ethnicity and age we found more than half of visits in each sub-group to meet criteria for hypertension, (blood pressures $\geq 140 \mathrm{mmHg}$ systolic or $\geq 90 \mathrm{mmHg}$ diastolic)with a range from 52.3% (females) up to 64.1% (age ≥ 65)..

Females comprised the majority of the population without a reported diagnosis of hypertension at 59.9% of patient visits (table 2). A higher proportion of males (63.5\%) without a reported diagnosis of hypertension were found to meet the criteria for hypertension (according to documented blood pressure) than females, (52,3\%)(table 1). The non-Hispanic population comprised 85.6% of visits without a reported diagnosis of hypertension (table 2). Age distribution demonstrated patients without a reported diagnosis of hypertension were more likely to be younger than 65 , comprising 41.2% of visits for <35 years, 40.5% of visits for 35 to 64 years and 18.4% of visits for ≥ 65 years.

Further classifying our non-hypertensive population by cardiovascular disease risk factors as previously described (table 3, table 4, and table 5) we found that males >55 years was the most prevalent risk factor, found in 12.5% of all non-hypertensive visits, with 79.2% of these having blood pressure $\geq 130 / 80 \mathrm{mmHg}$. The second most prevalent risk factor was tobacco use at 10.1% of nonhypertensive visits, with blood pressure $\geq 130 / 80 \mathrm{mmHg}$ in 63.6% of these visits. Diabetes was present in 7.6% of all visits, and 57.0% of those with diabetes had blood pressure $\geq 130 / 80 \mathrm{mmHg}$. Obese individuals comprised 5.5% of the non-hypertensive population, with blood pressure $\geq 130 / 80 \mathrm{mmHg}$ in 60.0% of this population. Reported hyperlipidemia was found in 5.6% of all visits, with blood pressure $\geq 130 / 80 \mathrm{mmHg}$ in 60.5% of this population. Renal disease was the least prevalent risk factor in our non-hypertensive population at 0.8% of visits, with blood pressure $\geq 130 / 80 \mathrm{mmHg}$ found in 57.7% of visits. The final cardiovascular disease risk factor that we examined was females >65 years which comprised 9.6% of all visits, and was found to be the largest group with blood pressure $\geq 130 / 80 \mathrm{mmHg}$ at 80.2%. Patient visits with multiple cardiovascular disease risk factors were classified by blood pressure measurements (table 4 and table 5).

Visits with a minimum of one documented risk factor comprised 32.4% of non-hypertensive related visits, with blood pressure $\geq 130 / 80 \mathrm{mmHg}$ found in 70.3% of this subset. Two risk factors were present in 7.1% of visits, and blood pressure $\geq 130 / 80 \mathrm{mmHg}$ was found in 68.0% of this population. Three risk factors were found in 1.4% of visits, with blood pressure $\geq 130 / 80 \mathrm{mmHg}$ found in 62.6% of visits. Four risk factors comprised only 0.2% of visits without a diagnosis of hypertension, and blood pressure $\geq 130 / 80 \mathrm{mmHg}$ was found in 50.0% of this group. We only found one PRF out of 22,744 with five risk factors and no diagnosed hypertension.

Discussion

Our analysis demonstrates a substantial number of visits (56.8\% with blood pressure $\geq 140 \mathrm{mmHg}$ systolic or $\geq 90 \mathrm{mmHg}$ diastolic) without a documented diagnosis of hypertension, who in fact meet the current criteria, as per JNC-7 (2). Reasons for this finding may be explained by the fact that these blood pressures may have been the first documented elevated measurement. As per JNC-7, hypertension is officially diagnosed with two or more accurate measurements $\geq 140 / 90 \mathrm{mmHg}$ (2). NAMCS data captures only a single physician
office visit making it difficult to ascertain if the documented elevation had been found in previous visits. Other explanations may include the following: the physician decided not to address the elevated blood pressure at that particular visit, the elevated blood pressure was overlooked by the clinician, or a previous diagnosis of hypertension was mistakenly not included in the survey section 5b, "provider's diagnosis for this visit".

Given the fact that our population is comprised of unreported or undiagnosed hypertension, blood pressure control rates were found to be much worse than national estimates, which include patients with diagnosed hypertension. NHANES 2007-2008 demonstrated 50.1\% of hypertensive patients to have controlled blood pressure (<140/90 mmHg) (6). Surprisingly, our study, which was comprised of patient visits without a reported diagnosis of hypertension, found only 43.2% to have adequately controlled blood pressure. While this is similar to control rates for NHANES 2005-2006, which was 44.8\%, we anticipated better control rates in our non-hypertensive population (6).

Classification by sex demonstrates men to have more poorly controlled blood pressure than women (63.5% vs. 52.3% respectively, pvalue $<.001$). This is consistent with prior studies that suggest men to
be less aware of hypertension, and therefore more often undiagnosed than women (6). Women are more likely to seek medical care than men (8). This may help to explain men's lack of awareness of hypertension. Another reason for the high percentage of males with uncontrolled blood pressure may be that the data represents a greater portion of initial visits by males to a physician office, with the first evidence of elevated blood pressure. Subsequent visits may confirm the elevated blood pressure and ultimately result in a diagnosis of hypertension and the onset of treatment.

Our analysis of ethnicity demonstrates Hispanics to have marginally better blood pressure control rates than non-Hispanics, at 47.5% and 42.5% respectively (p -value $<.001$). Our findings are not consistent with NHANES 2007-2008, which demonstrates Hispanics to be less aware of hypertension and more poorly controlled when compared to non-Hispanics (6).

As described in previous studies blood pressures tends to increase with age $(2,6)$. In the NHANES 2007-2008 study patients older than 60 years of age were more aware of hypertension and more often treated, although this age group was less often controlled when compared to younger patients (6). Consistent with previous studies,
hypertension control rates for patients ≥ 65 years in our nonhypertensive population were amongst the worst, at 35.9% with blood pressures < $140 / 90 \mathrm{mmHg}$.

According to the current recommendations for blood pressure control for diabetes and chronic kidney disease of $<130 / 80 \mathrm{mmHg}$, our analysis demonstrates a significant percentage of these patients without a diagnosis of hypertension to have uncontrolled blood pressure, 57.0% and 57.7% respectively. This leaves room for much improvement. Hypertension was not diagnosed at the time of these blood pressure readings. This may be due to the clinician overlooking a marginally elevated measurement in the majority of visits. In an analysis of 2003-2004 NAMCS data by Fang and colleagues, blood pressure control rates for diabetics were 22.4% (4). As mentioned, our study found control rates for diabetics to be 43.0%, much better than this previous analysis; however, their analysis included diabetics with a diagnosis of hypertension. Our analysis excluded those with a diagnosis of hypertension which may explain the better control rates. Chronic kidney disease was not assessed in the study by Fang. Regardless of the comparison to prior studies, both groups in our
analysis demonstrate poor hypertension control rates as per current recommendations.

Our hypothesis of finding a greater number of patient office visits with blood pressure $\geq 130 / 80 \mathrm{mmHg}$ in the non-hypertensive population with one or more cardiovascular disease risk factors was verified (table 3). For visits with documented obesity, hyperlipidemia, or tobacco use, uncontrolled blood pressure as per our proposed criteria of $\geq 130 / 80 \mathrm{mmHg}$ was found in greater than 60% of visits in each group. Females >65 years were the most uncontrolled at 80.2%, while males >55 years were uncontrolled in 79.2% of visits. Proposed revisions to hypertension guidelines as mentioned here may indicate the initiation of antihypertensive medications in a considerable number of patients.

Our analysis looking at multiple cardiovascular disease risk factors demonstrates significant results. We found 22.8% of our nonhypertensive population to have at least one cardiovascular disease risk factor (diabetes, obesity, hyperlipidemia, tobacco use, renal disease, male >55 years, or female >65 years) with blood pressure ≥ 130 systolic or ≥ 80 diastolic. This represents 5,175 visits of which initiating antihypertensives would be indicated according to our
revised criteria. Those visits with at least two risk factors and blood pressure $\geq 130 / 80$ comprised 4.8% of total visits. Three risk factors comprised 0.9% of visits, and four risk factors comprised 0.1%. This downward trend probably represents that hypertension is more likely to be diagnosed as a patient has an increasing number of cardiovascular disease risk factors.

Limitations to our study include the lack of comparative analyses to the hypertensive population. Our study was intended to focus on physician office visits without a diagnosis of hypertension, and to assess blood pressure control rates. It would have been useful to have data from the hypertensive group for comparison purposes.

The method by which the blood pressure measurement was obtained at each visit was not standardized or verified. Per JNC-7 the correct method for blood pressure measurement is to take the average of two blood pressures on one arm after the patient has been seated quietly for five minutes (2). It is unlikely that this was performed at each study site.

NAMCS data is limited for a number of reasons. The data represents physician office visits, not complete patient analyses over time. The patient population represented here are those seeking
medical care, and thus do not represent the entire U.S. population. The data is not longitudinal in nature, making it difficult in our analyses to determine if the elevated blood pressures were the first documented evidence of hypertension. Per JNC-7 the diagnosis of hypertension requires "the average of two or more properly measured, seated, BP readings on each of two or more office visits" (2). It would be useful to determine if hypertension was in fact diagnosed at a subsequent visit, or if an elevated measurement had been documented previously.

Other limitations to our study include that our analyses did not assess pharmacologic therapy and blood pressure control. It is unknown whether our study population includes those already on antihypertensive medications. We could have excluded these individuals from our study and further validated our results.

Future Directions

Given the lack of studies addressing blood pressure goals amongst non-hypertensive patients with multiple cardiovascular disease risk factors, our study demonstrates the need for additional analyses. Randomized controlled studies evaluating the use of
antihypertensives in this patient population with marginally elevated blood pressures ($\geq 130 / 80 \mathrm{mmHg}$) would provide the most useful results. Our study demonstrates a large population that would meet these criteria. Patients that use tobacco, are obese, or have hyperlipidemia would most likely be affected by these studies, as they comprise the majority of this population.

Additional studies that would prove useful may also include evaluations of the timing of diagnosis of hypertension at physician offices in the U.S. Our study demonstrates a significant lack of an official diagnosis of hypertension at a single visit despite meeting established criteria. A longitudinal analysis would prove extremely useful in assessing the timing of a hypertension diagnosis. This may be a better assessment of our study population and provide valuable data concerning the effectiveness of interventions.

If new data were obtained we would redesign the survey to be more specific for our intended analyses. Blood pressure measurements would be standardized. The reporting of patient specific data would be more accurate to avoid unreported risk factors. For example, height and weight would be documented for every patient allowing an accurate BMI calculation and subsequent reporting of obesity.

Additionally, our data would be longitudinal in nature, thus allowing us to follow patients over time.

Conclusions

It has been demonstrated that the awareness, treatment, and control of hypertension in the U.S. has improved over the last decade $(6,19)$. It has been suggested that this may be explained by increased availability and tolerability of antihypertensives, increased use of electronic systems providing feedback reminders to both patients and clinicians, and the increasing use of nonphysician healthcare professionals in the management team (20). Despite the improved statistics, early diagnosis and treatment of hypertension are important for the prevention of cardiovascular events. While our study does not report blood pressure control rates meeting the Healthy People 2010 goal of 50%, the suggested explanations for improved awareness, treatment, and control may very well be reflected in future analyses of NAMCS data.

If guidelines for antihypertensive therapy included both a cardiovascular disease risk analysis and a blood pressure measurement, many more individuals would meet criteria for
treatment. Our study demonstrates a significant number of physician office visits in the U.S. in 2006 that would meet these revised guidelines for antihypertensive therapy. This would significantly impact healthcare spending, increasing the number of individuals on antihypertensive therapy. This may be viewed as an early intervention to a probable future diagnosis of hypertension in this high risk population. Additionally, this could be a preventive measure for future cardiovascular events, thus decreasing their incidence over time.

References

1. Xu J, Kochanek KD, Murphy SL, Tejada-Vera B. Deaths: Final Data for 2007. Natl Vital Stat Rep. 2007; 58(19):1-135.
2. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jones DW, Materson BJ, Oparil S, Wright JT, Roccella EJ. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42:1206-1252.
3. Blood Pressure Lowering Treatment Trialists', Collaboration, Turnbull, F, Neal, B, et al. Effects of different regimens to lower blood pressure on major cardiovascular events in older and younger adults: meta-analysis of randomised trials. BMJ 2008; 336:1121.
4. Fang J, Alderman MH, Keenan NL, Ayala C, Croft JB. Hypertension control at physicians' offices in the United States. Am J Hypertens, 2008; 21:136-142.
5. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey. http://www.cdc.gov/nchs/nhanes.htm.
6. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988-2008. JAMA 2010;303(20):2043-2050.
7. U.S. Department of Health and Human Services. Healthy People 2010 Midcourse Review. Washington, DC: U.S. Government Printing Office, 2006.
8. Hansson, L, Zanchetti, A, Carruthers, SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomised trial. HOT Study Group. Lancet 1998; 351:1755.
9. Patel, A, ADVANCE Collaborative Group, MacMahon, S, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet 2007; 370:829.
10.Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998; 317:703.
10. Bakris GL, Williams M, Dworkin L, Elliott WJ, Epstein M, Toto R, Tuttle K, Douglas J, Hsueh W, Sowers J. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36(3):646-61.
11. Executive summary: Standards of medical care in diabetes--2010. Diabetes Care 2010; 33 Suppl 1:S4.
12. Kidney Disease Outcomes Quality Initiative, (K/DOQI). K/DOQI clinical practice guidelines on hypertension and antihypertensive agents in chronic kidney disease. Am J Kidney Dis 2004; 43:S1.
13. Psaty, BM. Potential revisions to hypertension guidelines. Am J Hypertens, 2008; 21:134-135.
14. Mancia, G, De Backer, G, Dominiczak, A, et al. 2007 Guidelines for the management of arterial hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 2007; 28:1462.
15. Cherry DK, Hing E, Woodwell DA, Rechtsteiner EA. National Ambulatory Medical Care Survey: 2006 summary. National health statistics reports; no 3. Hyattsville, MD: National Center for Health Statistics. 2008
16. Centers for Disease Control and Prevention, National Center for Health Statistics. Public Use Data File Documentation: 2006 National Ambulatory Medical Care Survey. Hyattsville, MD: National Center for Health Statistics, 2008.
17. Centers for Disease Control and Prevention. National Center for Health Statistics. Ambulatory Healthcare Data. http://www.cdc.gov/nchs/ahcd.htm.
18. Hajjar I, Kotchen TA. Trends in prevalence, awareness, treatment, and control of hypertension in the United States, 1988-2000.

JAMA 2003;290:199-206.
20. Chobanian AV. Improved hypertension control. JAMA 2010;303(20):2082-2083.

hypertension by			
$\begin{aligned} & \dot{v} \\ & \ddot{\sim} \\ & 0 \\ & 0 \\ & \dot{0} \\ & \dot{\sigma} \end{aligned}$			

