




































































































































































































































































































Alternatively, however, if we decide that is important for one reason 

or another to keep these 'individuals on the telepho'ne network, then 

alternative tariff designs could substantially meet this goal. This 

alternative design may include expansion of LMS and alternative LMS 

plans, i.e., a continum of access price/usage �p�r�i�~�e� offerings. 
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The third set is the problematic set. While some sort of 

lifeline service could be designed, it would be necessary for the. 

LEes to act as welfare agents. While the subscribers in the first set 

have been designated needy by society (through the food stamp program 

for example), the would-be subscribers in this set have not been s'o 

labelled. Therefore, for the LEes to institute a lifeline type 

program for those needy individuals in this set, it'would require the 

LEes to screen the needy from the non-needy. This is clearly an 

expensive proposition. While alternative tariff designs would also 

mitigate the impact in this set, it would work less well than on the 

optimizers since we do not know the mix of optimizers and needy in 

this set. 

Nonetheless, we have shown that of the 200,000 at least 

120,000 could be maintained on the network through innovative rate 

design. This design involves "targeting" the subsidy for those that 

need it and increasing the numbers and types of optional �~�a�r�i�f�f� plans. 

While the number of additional households without phone service may 

still seem large, it· is importa'nt to note that choices involve costs. 

Indeed, if we do not move to reduce to 11 rates (through reduced access 

charges), competitive forces will cause the subsidy to disappear any­

way. One lesson that should have been learned from the last two decades 
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is that there is no such thing as a little competition. The 

. competitive fringe that now threatens the LECs will certainly expand. 

There seems little doubt that the competitive incursion will eventually 

drive out all cross-subsidies. If we proactively move rates toward 

costs, however, then we will provide lower toll rates to all customers 

(not just the largest ones) and preserve network integrity as well. 

We view this discussion and the results of Table 7.3 as further 

evidence in line with Perl (1983), Bell Communications Research (1984) 

and Brock (1984) that a EUCL-type transition plan is preferable to 

allowing bypass to occur unchecked. 

Finally, we must note at this point that regulators are wary 

of granting large local rate increases to the LECs that are already 

performing well-above expectations. This performance is misleading, 

however, since its basis is a continuation of the pre-divestiture 

separation of toll revenues to provide the local subsidy. To convince 

the regulators otherwise, will require consistent recoITlmendations. 

These recommendations must be based on current market information on 

bypass, toll and local services, etc. Otherwise, the current trends 

will certainly continue. That is to say, we will continue to pay the 

costs of divestiture {added complexity, etc.} while the benefits 

{lower toll rates, etc.} will be delayed further into the future 

except for the largest customers. 



CHAPTER EIGHT 

CONCLUSIONS 

The focus of this research has been on determining the 

residential price elasticity of demand for access to the telephone 
. 

network. In particular, we have derived these elasticities of demand 

for distinct subscriber groups, e.g., the poor, urban versus rural, 

etc. We have approached this issue by determining an appropriate 

estimation methodology for a somewhat unique data set. The estimation 

methodology was consistently developed from a theory of demand for 

access. 

The primary contribution of this research has been the 

development of these price elasticity of demand estimates from a con­

sistent underlying economic theory. The few eXisting high quality 

empirical studies all lacked theoretic motivation and/or consistency. 

This theoretic foundation facilitates model interpretation, use and 

critique. For example, the interpretation, of the estimated co­

efficients being derived from the underlying usage equations, is new to 

studies of this type. While we were primarily interested in access to 

the network rather than the form of access (e.g., flat or measured 

service), the theoretic struct'ure also provides a'simple class-of­

service choice framework. That is, based on the size of ' the coefficient 

on the local usage price, the class-of-service (flat or measured) is 

determined for that individual census tract. While the unavailability 
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of any access/choice data set necessarily makes our class-of-service 

choice framework somewhat naive, it is a significant improvement over 

the handling of service choice in previous access studies. 

Many of the other cont.ributions of this research also flow from 

the adoption of the underlying economic theory into the empirically 

estimated model. In particular, the estimate of the subscriber 

externality flows directly from the supporting theory and is the best 

available measure. In contrast, as described in Chapter Three, the 

Perl (1983) measure is suspect due to the inclusion of the unexplained 

density variables. Furthermore, while additional assumptions and an 

approximation was required, the measure of the cross elasticity of 

access with respect to the toll price is the only available proxy. 

This estimat~ is especially valuable for policy makers since all tran­

sitional plans involve toll prices falling as local prices increase. 

The accompanying welfare analysis is also potentially valuable to 

policy makers. While previous welfare analyses have concentrated 

primarily on increases in aggregate benefits, we have also attempted 

to disaggregate the costs or expected decline in telephone development 

into three mutually exclusive sets. Viewing the expected decline in 

this way suggests rate design innovations and supporting ~rguments to 

mitigate the political opposition to prospective price changes. 

Lastly, our development of the estimation technique for 

aggregate proportion data is unique. While data of this type is 

atypical, there may well be other examples of similar data where our 

technique or one that is similar could be used. Included in this 

estimation description is a discussion of a Monte Carlo study to 
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assure reasonableness of the computing algorithm and estimation 

methodology. Furthermore, a jackknife technique was described to 

estimate the standard errors of coefficients on the left-hand-side of 

the estimating equation. Within empirical demand studies in general, 

and telecommunication studies in particular, these are somewhat novel. 

The economic expertise within the industry, however, is far 

from perfect. The incredibly political and adversarial nature of rate 

cases makes it difficult for studies of this type to be used correctly. 

This in turn leads to producing "results" rather than studies (recall 

our discussion of drop-off studies in Chapter Three). Furthermore, we 

assumed'away certain critical details in our welfare analysis. In 

particular, the marginal cost estimates required to derive optimal 

prices are unknown. Only lately, has the industr~ become interested in 

obtaining measures of economic costs (historically, costs calculated 

for regulators were the only interest). For example, despite its many 

pro-competitive rulings the FCC continues to use fully distributed cost 

studies (FOC) to set rates. Economic research into these costing 

issues within the industry has only just begun (Taylor, 1986). Much of 

our discussion on mitigating price effects centered on the increased 

availability of local measured service (lMS) and lifeline. However, 

very little is known about these choice situations. These choices must 

be well understood before economically optimal rates can be designed. 

As noted in Chapter Three, the Train, McFadden, and Ben-Akiva and 

Kling studies have started the learning process in the right direction 

with respect to service choice. The selection of lifeline service, 

however, has not been studied at all. Research into these costing and 



136 

choice areas is required before the industry can hope to achieve some 

measure of economic efficiency. 



APPENDIX A 

ESTIMATION AND PREDICTION WITH DISCRETE DATA 

In this section we will discuss some technical details of 

estimation and prediction using discrete data. We will discuss the 

limitations of using least squares and provide a brief description of 

maximum likelihood estimation. Finally we detail the methods of 

predicting aggregate market behavior with discrete choice models. 

A.l Ordinary Least Squares 

To analyze the problems. of using ordinary least squares (OLS) 

with discrete data, let us begin with the typical assumptions. That 

is, 

where 

y = X e + u 

y is the dependent variable 

X is a matrix of independent variables 

e is a vector of parameters to be estimated 

u is the stochastic error term. 

The OLS estimator of e is 

a = (X ' X)-IX'y .. 

The estimator is unbiased, consistent, and efficient under certain 

general assumptions. These standard assumptions are 

(1) E(u) = 0 

(2) E(uu ' ) = a2I 
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(3) X is fixed set of numbers with full rank or if X is 

stochastic that it is independent of u. 

The first assumption of zero mean is not a problem here. However, the 

second assumption of a non-autocorrelated and homoscedastic error term 

is important. Notice that in the case of discrete data the dependent 

variable is either zero or one. Hence, the error term u must be 

u. = -x.a if y,. = a , , (A.l) 

1-X.a ify.=I, , , 
where Xi denotes the ith row of the matrix X. Following Dhrymes 

(1978), the variance of this error term is defined as 

var(u i ) = (1 - x.a)2 F(X.a) + (x.a)2[1 - F(X.a)] , " , 
= F(X i a)[1 - F(Xia)], 

[E(U
i
)]2 

(A.2) 

where F(.) is the cdf. Thus, we clearly violate the homoscedastic 

assumption in (2). 1t has been suggested (Goldberger, 1964), that. 

Aitken estimators be used to 'solve this problem. That is, we simply 

estimate equation A.2 with 

Yi(1 - Yi), 

where Yi = Xi 6 and 6 is the standard OLS estimate. A two-step 

weighted least squares approach is used. The first step to get the 

OLS estimates of a and the second step to get the ultimate estimates 

of a. Note, however, that this approach is dependent on all estimates 

of the dependent variable being between zero and one. If any 

estimates fall outside this range, however, the two-step procedure 

will fail. The suggestion has been' made that on~ could impose 

additional constraints to guarantee that the estimates are between 

zero and one •. This suggestion is, however, typically not optimal 



since (Dhrymes, 1978, pp. 333) 1I ••• then we no longer deal with simple 

techniques; if.we are· to engage in more complicated procedures, there 

are far better methods than constrained least squares. 1I 
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Aside from these technical problems is an interpretation or 

practical problem that is at least as significant. It is intuitively 

appealing and obvious to interpret y as the probability of success 

given the observed X. However, we know probabilities must lie between 

zero and one. If any predicted value is outside this range we have an 

obvious contradiction. Notice that even if all values lIin-sample ll are 

between zero and one, there are other values (possibly of interest) 

that will violate the,condition "out-of:-sample. 1I This possibility 

makes it practically impossible to use this model in real world 

applications. 

To conclude, while OLS is simple that is its only attribute 

with discrete data. While we have presented the discussior. under the 

assumption that the dependent variable is binary, it makes little 

difference if instead, the dependent variable falls in the unit 

interval. The costs discussed a~ove significantly outweigh the 

benefit of simpllcity and hence OLS is not an optimal estimation tool 

when using discrete data. 

A.2 Maximum Likelihood Estimation 

A better analytic tool when dealing with discrete data is 

maximum likelihood estimation (MLE). In the'general case, .MLE is 

defined as follows. A sample, xl"",xn' is drawn from a distribution 



with the density function f(x I e). The parameter e is unknown. The 

likelihood function, L, is defined as 

L(x1, ••• ,xn I e) = f(x1Ie) ••• f(xnl a). 

The a, say e, that maximizes L(.) for observed xl' ••• ,xn is said to 

be the maximum likelihood estimator of a. The MLE has some powerful 

statistical properties: 1 

1. The invariance property: if,S'is the MLE of a, then u(e) 

is the MLE of u(a);2 

2. If the Cramer-Rao Lower Bound is reached by an unbiased 

estimator" then the MLE reaches it; 

3. For large sample size n, the MLE attains Cramer-Rao Lower 

Bound in an asymptotic sense and is asymptotically normal 

with mean a. 
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~dditionally, the MLE has the very intuitive property of 

maximizing the probability of observing what in fact was observed. 

However, finding the MLE may be quite 'difficult in practice - depending 

of course on the function L. In general we seek the solution to the 

following n equations: 

.!.h = 0, 
a ai 

i = 1, ... ,n. 

The solution of these first-order conditions can be quite cumbersome 

1. This list is not meant to be all inclusive. For more 
details, see Taylor (1974). 

2. This assumes u is a monotonic function in a, with a 
single-valued inverse. 



since they are typically nonlinear. Two procedures are often used to 

solve the problem: (1) Newton techniques; and (2) gradient methods. 

The Newton techniques are usually used when the second 

derivatives are able to be calculated without too much difficulty and 

L is globally concave. The algorithm for a single coefficient· 

proceeds as follows: 

1. Choose initial estimates for a sayeD; 

2. Linearize the function ~~ at aD; set this linear 

approximation equal to zero; the a1 that solves equation 

is the new estimate; 

3. Continue until ei+1 - ei is in some sense small. 
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The gradient methods differ from the Newton technique in the 

use of the matrix of second derivatives or the Hessian. Many gradient 

techniques are available (Scales, 1985). Here we briefly mention two 

of the more popular types: Modified Newton and variable metric 

methods. The Modified Newton techniques use a positive definite 

approximation to the Hessian. 'This overcomes one potentially 

dibil itating weakness of the Newton method. Variable metr'ic methods, 

the newest of the techniques, are designed to converge rapidly but 

require large storage. Details on the Hessian approximation in 

variable matrix method, differences with other gradient methods, and 

clarifying discussion may be found in Scales (1985). 

We now turn to the use of MLE techniques with discrete data. ' 

The problem could be motivated as Taylor (see Chapter 4 equations 4.1 

thr'ough 4.6 for a revi ew of thi s approach) or Perl (see Chapter 3 for 



review) did. These approaches start with consumer surplus (CS) and 

assume - either through taste or income - that this CS is related to 

an underlying distribution. Assuming some probability distribution 

then leads to a likelihood function which will then be maximized to 

yield coefficient estimates. Alternatively, one could use the 

random utility model pioneered by McFadden. 3 In either case, we 

could write the likelihood functions in general terms as follows 

L (Samp 1 e I a) 

J 
N n 'Pin 

= II . II P (i n I xn' a) p (xn), 
n=1 1 =1 

where 

L denotes the likelihood of observing the sample given a, the 

unknown parameter vector. 
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p(i n I xn' a) is the conditional probability of choosing 

alternative i, given a and xn' a vector of alternative and/ 

or individual attributes 

'P. = {I if individual n chooses alternative i for all i 
1n 0 otherwise 

p(xn) is the marginal probability of observing xn 

N is the number of individuals (or sample size) 

I n is the choice set faced by individual n. 

For computational convenience, we take logs of the likelihood function 

yielding 
N In 

log L = E E 
n=1 i=1 

3. See Train (1986) and McFadden (1986) for discussion. 



For random samples or exogenously stratified samples, the second term 

does not depend on e and hence disappears. We now have 

N In 
log L = 1: 1: 'i'i n log p ( in I xn' e). 

n=l i=1 
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At this point, specification of p(.) will lead to a specific 

likelihood function that can than be maximized to yield parameter 

estimates. The typical specifications of p(.) as logistic, normal, or 

uniform leads to the logit, probit, and linear probability choice 

models. 

A.3 Predicting with Discrete Choice Models 

In this section we will discuss the prediction problem as 

generally encountered with discrete choice models. With this as a 

backdrop, we will proceed to discuss the added difficulties presented 

by our use of census tract or aggregated data. 

Generally we are concerned with aggregate or market demand, 

e.g., what proportion ·of households have telephones. Discrete choice 

techniques, however, primarily focus on the individual, i.e., what is 

the probability that some individual will have phone service. 

Obviously, we need a mechanism that p.rovides the necessary market 

information from our sample of individual behavior. 

Five different methodologies have been used to arrive at 

aggregate predictions: 

1. Average individual; 

2. Classification; 
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3. Statistical differentials; 

4. Explicit integration; 

5. Sample enumeration. 

Before discussing these methods, we denote Wi as the proportion of the 

population that selects alternative i and it is defined as follows: 

where 

Wi = f p(ilx)p(x) dx, 
x 

p(ilx) is the probability of choosing alternative given 

characteristics x 

p(x) is the marginal density of x. 

The problem may be viewed as attempting to estimate W. in the "best" 
1 

way. We turn now to discussion of the five frequently used methods 

listed above. Ben-Akiva and Lerman (1985) provide additional 

discussion on the methods for prediction described here. 

The average individual is very easy to understand. Define a 

"representative" individual that has the average characteristics. 

Evaluate- the probabiJity for this "representative" in~ividual. That is, 

calculate p(ilx) and use this probability for the average individual 

as the average for the population. The problem with this procedure is 

that almost all of these discrete models are nonlinear and hence the 

expectation of the function is not equal to the function of the 

expectation. Figure 2 should provide visual clarification for a 

problem of this type. 

Classification may be viewed as a si~ple but logical extension 

of the average individual approach. Since the average individual 
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Figure 2: Error Associated with "Average Individual" Prediction 
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method's accuracy is negatively related with the variance of the 

characteristics (x), we can improve the approach by classifying the 

population into disjoint, homogenous subgroups. Then we need only to 

apply the average individual methodology to each subgroup. These 

subgroup predictions could then be weighted by class sizes to generate 

a market or population prediction. However, classifying individuals 

into homogenous subgro ~s may be a fonnidable task. Furthermore, 

those homogenolJs subgroups that provide accurate forecasts may not be 

the subgroups of interest with respect to policy analysis. In 

addition, the class sizes may well be unknown and thus cause the 

researcher yet another estimation problem. 

Using the equation for Wi' one could expand p{ilx) using a 

second-order Taylor's series around X. This procedure known as 

statistical differentials yields a "correction" to the average 

individual forecast or prediction. However, this method is not 

necessarily more accurate than the average individual forecast. To 

improve accuracy many higher-order terms and moments of p(x) may be 

required. Unfortunately, these items may be incredibly difficult to 

forecast and/or calculate. 

The fourth scheme involves approximating p{x) with some 

distribution and then explicitly or directly integrating to derive 

Wi' Obviously, this approach could become mathematically quite 

cumbersome. 

The fifth and final approach is sample enumeration. This 

approach is quite intuitive. We simply calculate the probability of 



selecting alternative i for each (randomly selected) individual and 

average these probabilities. That is, the equation becomes 
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This estimator of Wi is consistent assuming the underlying coefficient 

estimates are consistent. This method is easily adaptable to specific 

problems or concerns and non-random sampling situations. For example, 

it is quite straight forward to produce forecasts for specific 

subgroups. 

While none of these approaches clearly dominates the others, 

most applications have used classification or sample enumeration. 

Sample enumeration is the most flexible in analyzing the impacts of 

various policies on different subgroups of the population. Since we • 
are interested in exactly this type of analysis, we will use sample 

enumeration for our forecasts of state and subgroup development rates. 

Since our predicted probabilities for telephone access are for 

census tracts rather than individuals and population varies by tract, 

these probability estimates need to be weighted to generate a market 

forecast. Hence, the formula for Wi becomes 

where 

N H 
W. = 1. '" -.!l p(i Ix ), 

1 N L H n 
n=l 

Hn is the number of households in census tract n 

H is the total number of households 

N is the number of census tracts. 

(C.1) 
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All predictions in the text are calculated using this sample 

enumeration procedure. For example, to estimate the repression 

associated with a doubling of rates the following procedure is 

employed. First we estimate predicted developmeut rates for each 

census tract. Using equation C.l we calculate a base case development 

level. All rates are then doubled. We then simulate new predicted 

development rates for each ~ensus tract at the new prices. Once again 

using equation C.l, we estimate an aggregate development level. The 

difference between the base case and new development levels is then 

the estimate of repression. 



APPENDIX B 

TECHNICAL NOTES ON ESTIMATION 

In this section we will discuss the technical details of the 

computing algorithm us~d to estimate the coefficients of the model 

described in Chapter Five. Additionally, we will provide fairly 

detailed descriptions of the methodologies used in the Monte Carlo 

study and the jackknife technique referred to in the text. 

B.1 Computing Algorithm 

To estimate an equation of the type displayed in Table 5.1 in 

Chapter Five, our computing algorithm works as follows. The user 

supplies initial values for the unknown coefficients to be used on the 

left-hand-side of the equation (a~, a, and (l ). Given these values 

the left-hand-side' 'is calculated using equation 5.27. An ordinary 

least squares (OlS) regression is then performed on the equation, 

which is of the type presented in 5.26. Rearranging the equation by 

adding the price terms to the right-hand-side and then multiplying by 

the SQRT( a~ + a2a~) term yields an estimate of F, say FHAT. The 

correlation between F and FHAT is now calculated. This correlation 

between the actual and predicted probits or z-scores is then the 

objective function to be maximized. 

Our lack of knowledge of relevant range of a~ and observed 

flatness of the objective function led to the choice of a modified 

binary search routine. For example, the sequence of coefficients, 
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given a initial value of one and assuming that the objective function 

continues to increase, would be 1, 1.9, 2.8, 11.8, 101.8, etc. If the 

value o.f the objective function at 1.9 exceeded its values at 1 and 2.8, 

however, then the procedure checks values on each side of 1.9. Unlike 

a typical binary search that would split these intervals in half, i.e., 

evaluate the objective function at 1.45 and 2.35, our modified method 

selects these intermediate points based on objective function values. 

This selection is weighted by the value of the objective function, e.g., 

the larger the difference between objective functions values evaluated 

at two points, the closer the new evaluation point is to previous point 

with the higher objective function value. This modification leads to 

a faster solution. The procedure continues until the percent change 

in the coefficient is less than some prespecified tolerance, typically 

one half of one percent. 

This procedure is used to estimate both a~ and a. Since a 

appears only in the minimum function on the left-hand-side, additional 

estimation problems must be addressed. Note that once a obtains some 

va 1 ue, say a max' that it has no effect on the objecti ve functi on, 

i.e., ln 1T f is always less than 1n 1T m + amaxP. Furthermore, in our 

data set the value of the objective function at amax (and beyond) 

tended to be very close to the objective function value at the optimal 

a. The sequence used in the search routine noted above then could 

easily "jump over" a max. Since the objective function is non-

decreasing for all a greater than a max the sequence would'just 

continue until the maximum iteration limit was reached. To circumvent 

this problem a limit on step size could be employed. The sequence 
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could be restricted to a given maximum step si~e, e.g., 1, 1.5, 2, 

2.5, etc. Thus, the "jumping over" problem could be eliminated. during· 

estimation. While this step size limiting increased the number of 

necessary iterations it was required for most regression runs. 

The estimation of a presented new problems since it appeared on 

both sides of the equation. One could have brought a to the left-hand­

side and proceeded in the same way as with a~ and a. However, a 

direct convergent routine was selected. Given the initial value of a, 

say aO' the OLS regression provides new estimate, saya l • Now, plug 

a1 into the left-hand-side of the equation using equation 5.27, and re­

estimate the OLS regression to get another estimate a2• Continue this 

procedure until the percentage difference between the new estimate ai+1 
and the old estimate ai is less than some prespecified tolerance. This 

procedure required fewer iterations to converge and did not require 

calculation of the objective function. Hence, it was much more 

efficient in terms of required computing resources. 

8.2 Jackknife Technique 

The estimation methodology created other problems as well.· In 

addition to the problems associated with the estimation of a~, a, and 

a, we needed a mechanism to test the statistical significance of these 

parameter estimates. To estimate these standard errors associated 

with those parameter estimates, we used a jackknife technique. 

Primarily used by statisticians, the jackknife technique is a 

nonparametric method for estimating the bias and!or variance of some 

statistic of interest. The technique involves selecting g subsamples 



of size h from the total sample (of size n). Using estimators based 

on a sample size of (g-l)h ~here the ith group of size h has been 

removed, the jackknife can be used to estimate the variance of a 

statistic or reduce the bias of a statistic (see Miller (1974), pp. 1 

for an example of the latter use of the jackknife). Typically, the 

jackknife is employed by using g=n and h=l, i.e., n samples of size 

n-1. While this typical case is uprobably the best form of the 

jackknife to use in any problem U(Miller, 1974, pp.2), it may well be 

computationally infeasable with large data sets. 
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The jackknife has been used with linear regressions. In 

particular, it may be used to learn about the sampling distribution of 

the coefficient estimates (Efron, 1977). Simply stated, we remove a 

·row at a tjme from the X matrix and estimate the model on this reduced 

data set. 

As pointed out above the typical jackknife methodology involves 

selecting n random samples of size (n-1) and estimating the model co­

efficients for each data set of size (n-l). Then, with these n 

estimates of the model coefficients, a variance can be calculated. 

With 8423 observations and a highly non-linear estimation methodology 

producing average computing costs of $480 per subsample, this typical 

jackknife at a cost of 3.8 million dollars was simply computationally 

and monetarily impractical. Instead, twenty samples excl.uding flve 

percent of the total sample were used. The model shown in Table 5.1 

was estimated for each of the twenty samples. From these twenty sets 

of coefficient estimates variances were calculated in the usual 
2 fashion,i~e., E ( 6. - 1) In. The standard deviation or the square 

i 1 
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root of these variances was used to divide the coefficients and obtaOin 

t-statistics. Table B.1 presents the results of the technique. It is 

interesting to note that with exception of a the mean estimates from 

the jackknife are equal to our coefficient estimates presented in 

Table 5.2. 

B.3 Monte Carlo Study 

Monte Carlo experiments were conducted to test the 

feasibility of the estimation algorithm just described. The model· 

tested was very similar to estimating equation in Table 5.1 except 

the independent variables MILAGE, LINES, HHSIZE, and the toll price 

were not included. The first stage of the Monte Carlo study was for 

10 sets of coefficients. The coefficient range was chosen to be well 

outside the coefficient estimates we had observed in preliminary 

analysis. For example, the income coefficient (a) was varied from .4 

to 1.25 while all early estimates were between .9 and 1.05. The F's 

were generated with the following equation: 

F = 
-a* - all- fbi Xi + ln1Tf + min(ln1T f , ln1T m + ap) 

(C1~ + a2 o;)! 

where the e are randomly drawn observations from a standard (unit) 

normal distribution. 

The error term (e) is calculated using the following 

procedure. Using a linear cong~uential method (Prime Subroutines 

Reference Gu i de), a random number is genera ted from an input sOeed. 

The input seed is the time of day in centiseconds. ° Using two such 

randomly generated numbers, the following equations from Fishman 

+ e, 

·1 
i 
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Table B.1 
Jackknife Results 

Range of Mean of Variance of 
estimates estimates estimate 

Coefficient from jackknife from jackknife from jackknife 

0
2 4.95 to 5.2 5.1 .003 u 
13 .95 to .99 .97 .0002 

a .-6.81 to -8.56 -7.19 .27 

EMP 2.58 to 2.80 2.66 .003 

RENTER -1.52 to -1.61 1.56 .0008. 

RURAL -.75 to -.78 .77 .00007 

BLACK -1.01 to -1.11 1.05 .0006 

SPANISH -2.38 to -2.50 2.42 .0007 

AMINDIAN -7.06 to -7.55 7.27 .015 

INMOB .44 to .55 .50 .0012 

AVGAGE .0343 to .0416 .04 .000003 

MILAGE -.38 to -.48 -.43 .0009 

LINES .31 to .42 .39 .0005 

HHSIZE .99 to 1.15 1.10 .0019 



(1973) are used to generate two independent variates that are 

distributed normally: 

where 

Xj = lJ+ (_20 2 log Uj)i cos 21TUj+1 
Xj+1 = J.1+ (_20 2 log Uj)i sin 21TUj+1, 

Xj , Xj+1 are the returned normal variates 

Uj ' Uj +1 are the input random variables. 
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Table B.2 shows the average percent error for each coefficient 

estimate over the 10 experiments. Each e~periment was conducted with a 

sample size of 500. 100 realizations per experiment were performed. 

The purpose of this initial procedure'was to insure that, given 

a fairly wide range of coefficient values, the estimation.methodology 

yielded "reasonable" estimates. 

The second stage of the Monte Carlo study used a single set of 

coefficients. The coefficients were selected to be "near" the estimates 

obtained during preliminary analysis on the entire data set. The F's 

were generated in the same way, i.e., using the following equation: 

-a* - l3u- ~ b. x. + ln1T f + min(ln1T f , ln1T m +ap) 
F = 1 1 1 + e. 

(o~ + 132 o~)i 
Now, however, we· will drawe from a N(O, .25) in addition to a N(O,I). 

These normal variates were derived in the same manner as descrfbed 

previously. The N(O, .25) was chosen to yield R2s similar to those 

observed using the actual data. Hence, the N(O,I) experiments could be 

viewed a Ufat-tailed" experiments. Table B.3displays the results for 

the N(O,I) experiments. Table B.4 displays the results for the 
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TABLE B.2 
First Stage Monte Carlo 

Range of Actual 
Variable Coefficients Mean % Error 

0
2 3.0 to 6.0 7.8% u 

8 .4 to 1.25 3.5% 

a 5.0 to 12.5 a 0.7% 

EMP -3.0 to L5 10.5% 

RENTER 1.3 to 2.1 a 2.6% 

RURAL .25 to 1.25 a 6.3% 

BLACK .25 to 2.0 a 3.1% 

SPANISH 1.25 to 2.5 a 0.3% 

AMINO IAN 2.0 to 8.0 a 4.7% 

IMMOB .2 to 2.0 1.0% 

AVGAGE .01 to .07 6.2% 

a sign of actual coefficients is negative. 



Variable 

0
2 
u 

a 

EMP 

RENTER 

RURAL 

BLACK 

SPANISH 

AMINDIAN 

IMMOB 

AVGAGE 

TABLE B.3 
Second Stage Monte'Carlo 

N(O,l) 

Mean 
Actual Predicted Value 
Value n = 500 

4.5 3.94 
( 1.08) 

1.05 1.02 
(.14) 

6.0 6.88 
(18.0) 

-2.25 -1.98 
(1.73) 

.80 .71 
( .39) 

.75 .69 
(.07) 

.75 .66 
(.25 ) 

1.50 1038 
(.27) 

4.00 3.84 
( 4.87) 

-1.00 -.99 
(.43) 

-.04 -.04 
(.00048) 

Mean 
Predicted Value 

n = 1000 

3.95 
( .57) 

1.00 
(.07) 

6.76 
(13.1) 

-2.02 
(.83) 

.72 
(.18) 

.71 
(.04) 

.69 
(.15) 

1.42 
( .13) 

3.81 
. (2.48) 

-.97 
. ( .22) 

-.04 
(.00024) 

. Numbers in parenthesis indicate variance of estimate. 
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Actual 
Variable Value 

0
2 4.5 u 

a 1.05 

a 6.0 

EMP -2.25 

RENTER .80 

RURAL .75 

BLACK .75 

SPANISH 1.50 

AMINDIAN 4.00 

IMMOB -1.00 

AVGAGE -.04 

TABLE B.4 
Second Stage Monte Carlo 

N(0,.25) 

Mean 
Predicted Value 

n = 500 

3.90 
(.26 ) 

.98 
(.031) 

6.63 
(8.39) 

-2.06 
( .44) 

.73 
( .09) 

.70 
(.016) 

.69 
(.067) 

1.42 
(.065) 

3.72 
(1. 22) 

-.93 
( .11) 

-.04 
(.00014) 

Mean 
Predicted Value 

n = 1000 

3.94 
(.14) 

.99 
(.017) 

6.45 
(3.70) 

-2.08 
(.21) 

.73 
(.05) 

.71 
( .009) 

.70 
(.034 ) 

1.42 
( .032) 

3.75 
(.62) 

-.93 
(.05) 

-.04 
(.00007) 

Numbers in parenthesis indicate variance of estimate. 
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N(0,.25) experiments. The second stage of, the Monte Carlo study was 

s'pecifically undertaken to observe the behavior of the estimator as 

the sample size was increased and as the variance of error term 

changed. As can be seen from analyzing Table B.3, the coefficient 

estimates appear mildly biased with the bias ranging from about 1-12% 

depending on coefficient. For example, the bias in the income 

coefficient is approximately 2.8%. The bias is affected only slightly 

by increases in sample size but appears to decline moderately for most 

coefficient ~stimates. The variance of the estimates, as one might 

expect, falls by about one-half as the sample size doubles. The same 

general conclusions can be observed in Table B.4. However, the 

reduction in bias as sample'size increases is more readily observed 

here. It is also interesting to note that while the variances are 

much smaller in the N(0,.25) case, the mean estimates are virtually 

unchanged. This seems to suggest that the fatness of the tails of the 

error distribution have little degrading impact on the estimation 

methodology. We are still assuming, however, the error distribution 

is symmetric. 

The third and final stage of the Monte Carlo study used the 

same set of actual coefficients as did the second stage of the Monte 

Carlo study. 'Actual' and predic.ted development and repression rates 

were obtained for 100 realizations. This involves solving the model 

for all one thousand census tracts for the 'actual' coefficients and 

the one hundred sets of coefficient est·imates. Using sample 

enumeration as described in Appendix A, we derive an 'actual' base' 

case development level and one hundred base case predicted development 
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levels. We the~ change the appropriate prices and simulate the models 

again. At this point we have 'actual' and predicted development 

estimates at the new prices. The results of this process are displayed 

in the table below. The first row displays 'actual' development and 

repression rates. The second row provides predicted development and 

repression rates using average coefficient estimates. The third row 

displays predicted development and repression rates obtained by 

averaging the predicted development levels over the 100 realizations. 

As can be seen, the models predictions are quite close to the 'actual' 

figures. It is interesting to note that even wh~re the model over­

predicts (the second row) development, it also overpredicts repression. 

This result is somewhat surprising, but satisfying, since logit and 

probit models that overpredict development generally underpredict the 

responsiveness to changes in exogenous variables. 

Tab·le B.5 

Third Stage Monte Carlo 

Repression and Development Predictions 

Current 

actual 91.4 

predicteda 91.8 

predictedb 91.3 

acoefficients averaged. 

bpredicted values averaged. 

Double 

87.6 

87.9 

87.2 

Double Flat & 
Flat Rate Measured Rate 

(-3.8) 86.3 (-5.1) 

(-3.9) 86.6 (-5.3) . 

(-4.1) 85.9 (-5.4) 
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The Monte Carlo results suggest that the estimation technique 

provides reasonable coefficient estimates. The existence of the small 

bias and the apparent slow rate at which it disappears concerns us 

econometrically. However, development and repression estimates are 

the important items for telephone company and industry policy. The 

accuracy of these estimates - suggested both by the Monte Carlo 

studies and comparison with our current state of knowledge - should, 

nonetheless, make the study quite useful for planning and policy 

analysis. 



APPENDIX C 

LINEAR PROBABILITY MODEL 

This section describes the origi'nal linear probability model 

or OLS specification. Table C.1 displays the regression specified and 

coefficient estimates. The results of these runs were originally 

supplied to the FCC (Southwestern Bell Supplemental Filing to ,FCC 

Dockets 78-72,.Phase 1 and 80-236). All coefficients have the 

theoretically correct sign and are statistically significant. As 

noted in the discussion of our modelling efforts in Chapter Five, the 

size of the poverty coefficient was surprising. This was one of the 

key clues that eventually led us to the technique ultimately used. In 

addition to the estimation problems some of the predictions from the 

OLS model were also not satisfying. Repression estimates are provided 

in Tables C.2 and C.3 to help clarify this point. These tables are 

directly comparable to Tables 6.1 and 6.2. While the pattern of these 

estimates is quite different and counterintuitive by state, the 

aggregate SWBT repression estimate is identical (3.7 percent). In 

contrast, however, an important observation is the different impact of 

~he price structure bn certain subscriber groups (compare "POOR, 

RURAL" to "POOR, URBAN"). These results are somewhat suspect since 

they seem to suggest that lower-priced alternatives need not reduce 

repression. This result is primarily due to the fact that both flat 

and measured prices affect the development in choice areas. This 
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pricing structure, at least in linear models, produces unreasonable 

results. It is interesting to note that this is the same price 

structure which leads Perl (1983) to the inconsistent results 

discussed previously in Chapter Three. 
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TABLE C.1 
. Original OLS Specification 

Development = a + b1 '01 ~f + b2 °3 ~f + b3 °3 ~m + b4 °3 + 

b5 RURAL + b6 MEDINC + b7 POVERTY + b8 BLACK + 

b9 SPANISH + b10 AMINDIAN + b11 RENTER + b12 AVGAGE + 

b13 IMMOB + b14 EMP + b15 MILAGE + b16 LINES + e 

where MEDINC is the log of median household income 
POVERTY is the % of households that are poverty stricken 
all other variables defined as in Table 5.1 

Variable Coefficient t-statistic 

°Pf -.00280 -3.9 

°3~f -.00292 -1.7 

Q3~m -.01011 -3.2 
153 .04462 3.5 
RURAL -.03873 -18.6 
MEDINC .03379 10.3 
POVERTY -.15316 -13.7 
BLACK -.03275 -7.5 
SPANISH -.10645 -20.0 
AMINDIAN -.16746 -6.9 
RENTER -.09760 -19.7 
AVGAGE .00086 5.0 
IMMOB .02543 5.1 
EMP .10637 10.6 
MILAGE -.02228 . -4.0 
LINES .00001 2.9 
CONSTANT (a) .81631 54.7 

R2 (uncorrected) = .467 
R2 (corrected) = .466 
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Table C.2 
OLS Equation 

Predictions for Doubling of Rates by State 

100% increase 
Actual with lower priced 100% increase 

Development alternativea all pricesb 

AR 89.1 86.6 85.8 
(-2.5) (-3.3) 

KS 95.3 93.6 
(-1. 7) 

MO 95.4 93.2 93;1 
(-2.2) (-2.3) 

OK 92.7 91.0 
(-1. 7) 

TX 91.4 89.5 86.3 
(-1.9) (-5.1) 

SWBT 92.5 90.6 88.8 
(-1.9) (-3.7) 

Numbers in parenthesis are repression estimates in basis points. 

a measured service, where ~vailable, is the lower priced alternative and 
its price is unchanged 

b both flat rate and measured rate, where available, are doubled 
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Table C.3 
OLS Equation 

Prediction for Doubling of Rates -- Southwestern Bell Subgroups 

100% Increase 
Actual with lower priced 100% Increase 

DeveloEment a lternati vea all Ericesb 

ALL 92.5. 90.6 88.8 

(-1.9) (-3.7) 

RURAL 90.1 88.4 88.0 
(-1.7) (-2.1) 

URBAN 93.0 91.0 88.9 
(-2.0) (-4.1) 

POOR, 
RURAL 83.7 82.1 81.9 

( -1.6) ( -1.8) 

POOR, 
URBAN 85.0 83.0 81.2 

(-2.0) (-3.8) 

Numbers in parenthesis are repression estimates in basis points. 

a measured service, where available, is the lower priced alternative and 
its pr.ice is unchanged 

b"both flat rate and measured rate, where available, are doubled 



APPENDIX D 

RESIDENCE BASIC EXCHANGE MODEL 

This section provides an attachment that describes the SWBT 

pooled model discussed in Chapter Three. This attachment is an update 

(reflecting a model update extending the model through 1983) of the 

documentation filed in SWBT rate cases. For example, see the 

attachments in Egan's 1983 Missouri testimony. The document briefly 

describes the estimation methodology, the data used, and provides all 
. 

coefficient estimates with t-statistics. 
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SOUTHWESTERN BELL RESIDENCE BASIC LOCAL 

EXCHANGE SERVICE DEMAND ~10DEL 

Presented below are the results of ongoing research of the 

demand for residence basic local exchange service in the five 

Southwestern states-Arkansas, Kansas, Missouri, Oklahoma and Texas. 

The model specification includes the effects of the monthly recurring 

and nonrecurring prices of residence basic service, the rate of 

inflation, real per capita income, market size and seasonality. The 

specification recognizes the importance of habit persistence on the 

demand for residence basic service by incorporating dynamic lagged 

effects of the key explanatory variables. Specifically the Almon 

polynomial distributed lag technique is used to introduce dynamics. 

The model is estimated with pooled cross-sectional time-series data 

for the five Southwestern states over the period from first quarter 

1972 through fourth quarter 1983. 

The Southwestern Bell Residence Basic Exchange Service Demand 

Model is presented below. The model is linear in the logarithms of 

the variables and the specification is as follows: 

5115 
ln QTEL = E a.D. + E bk (ln .Y)t-k + E ck ln PR + d ln PN + 

i=I' " k=o k=o -P- PCPI 

where 

3 
f ln N + E 9,.S,. + e, 

i =1 

CPl
t
_k 
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QTEL = Total residence main telephones in service 

o = State-specific intercept variables 

Y = Real per capita nonfarm personal income 

P = Price index of residence "basic local 
R exchange service recurring monthly charge 

PN = Price index of residence basic local exchange 
service minimum nonrecurring charge 

PCPI = Consumer price index 

N = Population 

S = Qualitative seasonal variables 

e = Stochastic error term. 

The coefficients a, b, c, d, f, and g are the unknown 

parameters to be empirically estimated. The optimal lag structure 

utilizes second-degree polynomials with lags of 6 quarters on 

recurring price and 12 quarters on income. In each case, the effect 

of the furthermost lag on the demand for residence basic local service 

is assumed to be zero. 

, The following table presents the estimation results of the 

preferred specification. The resuitant elasticity estimates are all 

statistically significant and all have the theoretically correct sign. 

The long-run recurring price elasticity is -.039, the noncurring price 

elasticity is -.0036, and the long-run income elasticity is .62., The 

'resultant elasticities are the best unbiased estimates available and 

appear directly beneath their respective vari~ble names. 
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Table 0.1 
Southwestern Bell Residence Basic Exchange 

Service Demand Model 

Long-run Elasticities: 

ln Y ln PR ln PN 
PCPI PCPI 

ln N 

.62b -.039c -.0036 .92 
(18.4) (5.0) (2.7) (19.6) 

Seasonal Coefficients: 

Sl S2 S3 
.003 -.008 .003 
(9.6) (23.0) (9.2) 

Summary Statistics 

R2 = .999 D. W. = 1.42 S.E. = 0.811 

Individual Quarterly Elasticities: 

.095 .087 .079 .071 .063 .055 .047 .039 .032 .024 
(8.7) (11.4) (15.2) (18.7) (17.3) (13.1) (9.9) (7.8) (6.3) (5.3) 

blO 

.016 
(4.6) 

Arkansas 
Kansas 
Missouri 
Oklahoma 
Texas 

b11 
.008 
(4.0) 

Co 
-.0072 
(2.3) 

c1 

-.0080 
(4.6) 

Intercept 

7.56 (30.5) 
7.67 (30.0) 
7.71 (31.9) 
7.79 (31.3) 
7.72 (34.3) 

c2 

-.0080 
(4.6) 

c3 

-.0072 
(3.5) 

c4 
-.0056 
(2.9) 

Autocorrelation 
Coefficient 

.969 

.929 

.966 

.999 

.920 

R2 

.992 

.998 

.985 

.999 

.998 

Cs 
-.0032 
(2.5) 

Note: Numbers in parentheses are absolute values of t statistics. 
The model is corrected for autocorrelation within states, 
heteroskedascity between states, and mutual correlation 
between states. The model is estimated using generalized 
least squares (GLS). 
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DATA DESCRIPTION AND SOURCES 

QTEL - Quantity of residence main telephones in service, 

including lines terminating in customer-provided 

equipment, from Company report Monthly Report #7. 

PR - Laspeyres price index for residence basic exchange 

service recurring monthly charge. Documentation 

available upon request. 

PN - Price index for residence basic exchange service 

minimum nonrecurring charge. Documentation available 

on request. 

PCP! - Consumer price index, from the U.S. Department of 

Labor. Regional price index data are available by 

selected 5MSA ' s and by major geographical areas. 

Whenever possible the regional deflators were used. 

Y - Real nonfarm personal income per capita. The personal 

income data are from the U.S. Department of Commerce. 

The regional CPI data used for deflators are from the 

Department of Commerce, and the population data are 

from the U.5. Bureau of the Census. 

N Total resident population, from the U~S. Census Bureau. 

51, 52, 53 - Qualitative binary (OIl) variables to account for 

seasonality. 51 is assigned a value of unity in the 

first quarter of each year and zero elsewhere; 52 and 

53 are defined similarly. 
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