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ABSTRACT 

The motivation for this research stems from the optical design problem. 

From a mathematical perspective the problem can be stated as follows: given a starting 

optical configuration and a set of variable parameters. determine the specific 

configuration which yields the global minimum of the merit function which represents 

the imaging quality of the system. Currently. no satisfactory solution to this problem 

has been found. although a process calIed "simulated annealing" has shown some 

potential. The idea behind this research is that perhaps a merit function can be 

constructed in such a way that information contained in higher order polychromatic 

aberration coefficients can be used to indicate the region of the global minimum. 

In pursuit of this. the construction of two physicalIy significant merit 

functions (the wavefront variance and the mean square ray aberration) is formulated in 

such a way as to allow the segregation of aberration coefficients by order within the 

merit function. This suggests a sequence of merit "subfunctions" can be constructed in 

such a way that each member of the sequence is associated with a particular order of 

aberration. and that the sequence itself converges to the complete merit function. 

In order to compute the polychromatic aberration coefficients needed to 

construct the merit functions. an algorithmic approach to proximate ray tracing is 

developed. This is shown to be an extension of the original form of proximate ray 

tracing and has proved highly successful in the computat;on of polychromatic aberration 

coefficients. 

The behavior of three optical systems with respect to their effective design 
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parameters is then investigated. The investigation takes the form of topographic maps 

of the merit subfunctions. A study of the maps reveals that the global topography of 

the subfunctions remains relatively invariant with respect to order. Also, any minima 

present tend to remain relatively stationary with respect to order, although any 

particular one can slowly migrate within some small region of parameter space. 



II 

CHAPTER I 

INTRODUCTION 

On October 2. 1608. the Dutch spectacle maker Hans Lippershey applied for 

a patent on his newly invented refracting telescope(l). Soon after. Johannes Kepler 

replaced its concave eyepiece with a convex lens. At about the same time. the 

compound microscope was invented. probably by the Dutchman Zacharias Janssen. It 

too was soon followed by a new design in which Francisco Fontana replaced the 

concave eyepiece with a convex lens. Then in 1611 Kepler published "Dioptrice". in 

which he presents the small angle approximation to the law of refraction. This allowed 

him to derive a first order treatment of thin lens systems which he used to explain the 

operation of both the Keplerian and Galilean telescopes. 

However. first order optics was not sufficient to describe accurately the 

behavior of optical systems. A giant step forward in addressing this problem occurred 

around 1621 when Willebrord Snell empirically discovered the exact form of the law of 

refraction. At about the same time Rene Descartes independently derived the same law 

using a propagation model in which light transmission occured as a pressure wave. 

Snell's law allowed the exact path of any light ray to be determined. Thus. deviations 

from first order optics could be determined exactly. 
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Aberration Coefficients 

The jump from first to third order calculation occured in the late I 850's(2). 

Seidel and his contemporary Petzval both expanded ray trace equations which allowed 

them to derive simple formulas for the third order aberration coefficients of the power 

series expansions of ray properties. In addition. Schwartzschild in 1905 determined the 

third order coefficients of the Seidel Eikonal. Due to the success of these developments. 

an optical system could be designed to third order before it was actually built. 

Aberration coefficients of order past the third were first calculated by 

Wachendorr(3) in 1949 when he developed a method to calculate fifth order coefficients 

(this was later extended by Hopkins(4) in 1976 to the seventh order using a concept he 

termed proximate ray tracing). Then about 195 I. Buchdahl began development of his 

treatment of aberration coefficients that in principal could be extended to arbitrary 

order. Unfortunately. its utility past the fifth order has not been demonstrated. 

In order to allow the convenient calculation of coefficients to arbitrary 

order. Andersen(5) in 1980 published a method using power series manipulations which 

efficiently utilized the computational power of the digital computer. Forbes(6) 

subsequently developed powerful extensions to Andersen's methods which greatly 

improved their utility. 

Merit Functions 

The focus of this chapter will now shift from the development of methods 

used to calculate aberration coefficients to the development of the merit function in 

optical design. With the advent of the computer in the late 1950's. the process of 

optical design became much more computationally intensive due to the convenience with 

which optical quantities could be accurately calculated. This produced a shift in 
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optical design technique. 

Prior to the introduction of the digital computer. optical design was 

commonly carried out through the elimination of appropriate third order aberration 

coefficients. and then using real ray data from a few laboriously traced rays to 

complete the design. After the computer was introduced. real ray data could be 

calculated so easily that a new method was needed in order to utilize efficiently the 

resulting mountain of data. This led to the concept of minimizing the defined 

aberrations in a least squares sense. The mountain of data was reduced to a single 

number by squaring and then summing the aberrations in a quadratic form. This form 

became known as the figure of merit. or merit function (because of its functional 

behavior with respect to the system design variables). 

Unfortunately. the merit function was (and is) usually constructed in an ad 

hoc manner using real ray data with selected first. third (and occasionally fifth) order 

aberration coefficients sometimes included. The success of this technique depends 

largely on the skill and experience of the optical designer. 

An improvement over the ad hoc technique was published by Unvaia(8) in 

196 7 when he showed how to use the wavefront aberration coefficients to construct a 

merit function in the usual quadratic form with the useful property of being of physical 

significance. namely the wavefront variance. He computed the square of the wavefront 

aberration function and then averaged over an unvignetted pupil. This yielded a 

quadratic form in the coefficients. By triangularizing the resulting matrix (the 

triangularized matrix will be termed the transformation matrix for the purposes of the 

present research). a new quadratic form resulted which was a sum of squared linear 

combinations of the coefficients. The linear combinations were termed orthonormal 

aberrations. They describe a natural balance among the wavefront aberration 
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coefficients which reduces the merit function; 

Using the methods of Unvaia. Wiese(9) in 1974 showed how to construct the 

mean square spot size merit function and included first order chromatic effects. The 

associated orthonormal aberrations could be classified by aberration type. The merit 

function was then applied to the design of the landscape and triplet lenses. 

Unfortunately, due to the inability to calculate monochromatic wavefront aberration 

coefficients past the fifth order and polychromatic coefficients past the first. his design 

technique was necessarily limited. The use of real ray data was considered a 

mandatory aid in the final stages of the design process. 

The Present Research 

The original motivation for this investigation was based on the possibility 

that the properties of aberration coefficients could be used in some way to revea) the 

global minimum of a merit function constructed from them. In other words. the 

motivation arose from the optical design problem. Some thoughts on the problem are 

presented below as a vehicle to introduce the reader to that motivation. 

The mathematical aspect of the optical design problem can be stated as 

follows: given a starting optical configuration and a set of variable parameters. 

determine the specific configuration which yields the smallest possible value for (the 

global minimum of) the error function of the system. The error function is some 

relevant measure of system performance - in the optical community. the error function 

is traditionally termed the merit function. 

The problem is generally extremely difficult to solve because of the usually 

large nonlinear behavior of the merit function with respect to the parameters. Most 

methods attack the problem by using "local" information about the merit function to 
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predict a new configuration that should reduce its value. The process is repeated until 

the merit function can be reduced no further. While this is practical and is the most 

widely used technique, the end result is usually a system that "lies" in a local, rather 

than global, minimum because only local information about the merit function is 

utilized. 

A method currently under investigation( 15) that has shown some potential to 

locate the global minimum is called "simulated annealing" after some its properties 

which resemble the annealing process of physical materials upon cooling, and is 

essentially probabilistic in nature. It is not clear that this approach will prove generally 

useful. 

This brings one to the fundamental idea behind the current research. 

Instead of relying on probability to locate the global minimum, could information of a 

global nature be extracted from the merit function itself? Perhaps the information 

contained in higher degree aberration coefficients might indicate the region of the global 

minimum. In pursuit of this, Chapter Two will present the formulation of the mean 

wavefront variance and mean square ray aberration merit functions (in a manner 

similar to that of Unvala and Wiese) from the coefficients of the polychromatic Taylor 

series expansion of wavefront aberration and squared ray aberration respectively. The 

resulting transformation matrix will be partitioned and the orthonormal aberrations 

classified by aberration order. This will be shown to have several advantages over 

partitioning and classifying by aberration type: the invariant extension of the 

transformation matrix to higher orders, the convenient identification of those partitions 

which have less significance in their contribution to the merit function, and less 

computational burden if the least significant partitions of the orthogonalization matrix 

are removed. 
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The classification according to aberration order allows the merit function to 

be written as the limit of a sequence of merit "subfunctions". each of which can be 

associated with a particular aberration order. In Chapter Five it will be demonstrated 

that measuring the merit function relative to the aberrated image centroid, not the 

Gaussian image point. will have decreasing effect with increasing order of subfunction. 

The behavior of the subfunctions (to ninth order in the aberration coefficients) with 

respect to the design parameters of three optical systems will be investigated to provide 

for the possible identification of a new optical design strategy. Finally, as a 

consequence of the investigation into the behavior of the merit subfunctions, Chapter 

Six will present suggestions for the direction of future research in this area. 

The preceding investigation is predicated upon the ability to compute the 

polychromatic aberration coefficients of wavefront aberration or squared ray aberration. 

In Chapters Three and Four the proximate ray trace approach of W achendorf and 

Hopkins will be extended to include chromatic effects and automated by showing how 

the operations of addition. multiplication. and square root can be carried out by 

programming the algorithms which implement these operations. Some advantages and 

disadvantages of this approach over the methods of Andersen and Forbes will be 

discussed as well as its relationship to real ray tracing and power series methods. 

The algorithmic approach to proximate ray tracing developed here is 

significant, since previous to this work, proximate ray tracing has been carried out 

through explicit equations laboriously derived by expanding ray trace equations. In the 

present work. application of the algorithms will be rendered more convenient through 

the development of ray trace equations appropriate to rotationally symmetric systems 

which allow the calculation of wavefront aberration or squared ray aberration. 
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CHAPTER 2 

PHYSICALLY SIGNIFICANT MERIT FUNCTIONS 

In this chapter the construction of two physically significant merit functions 

is formulated. The merit functions are the mean wavefront variance at the exit pupil 

and mean square ray aberration at the image. The expressions for these two merit 

functions are transformed from an inconvenient quadratic form to a convenient sum of 

squares form. The terms of the sum are then associated with polychromatic aberration 

coefficients and segregated by degree. The consequences of this segregation wilI be 

examined in Chapter Five. 

Wavefront Variance 

For perfect optical systems. all wavefronts exiting the system are coincident 

with spherical surfaces centered on the Gaussian image point. Real systems always 

possess aberrations. however. and for this reason the wavefronts are deformed from the 

spherical ideal. This deformation is referred to as the wavefront aberration. 

Wavefront Aberration Function 

The wavefront aberration of an axially symmetric system can be defined as 

the optical path between the aberrated wavefront and the ideal wavefront at the exit 

pupil. This aberration may be visualized with the aid of Figure J. It is a function of 

three variables: the wavelength A. a field point h. and the axial component p of a point 
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p* on the ideal reference sphere. It will be assumed for the remainder of this 
... 

dissertation that IJ is normalized with respect to the maximum fieid height and that p is 

normalized with respect to the exit pupil semi-diameter. The ii and p coordinates are 

illustrated in Figure 2. 

From simple symmetry considerations of axially symmetric systems. the 

monochromatic wavefront aberration function can be expanded as a Taylor series of the 

following form: 

00 co 00 

W = LLL ( Wjkl (i;'h~ (h·p)k (fl.p)l ) • 

j=O k .. OI=O 

(2.1 ) 

where the coefficients Wjkl are the coefficients of the Taylor series. p is the fractional 

pupil variable. and 71 is the fractional field variable. 

The wavefront aberration is also a function of wavelength. which implies 

that each coefficient Wjkl is a function of wavelength and can thus be expanded as a 

Taylor series in the wavelength. However for reasons to be explained later. the 

wavelength A is not the best variable about which to expand since this will lead to slow 

convergence of the series. A better variable is a so-called chromatic variable v. which 

is itself a function of wavelength. Forbes(lO) has considered several forms for the 

chromatic variable and has suggested the following useful form: 

v(A) = v* A - he 
X - X* • 

(2.2) 

where v* 2.48664. Xo = .489678. X* .177003. and the wavelength is measured in 
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micrometers. In addition. the chromatic variable is normalized so that v(.4) = -I and 

v(.7) = I. 

With the chromatic variable defined. one writes each coefficient Wjk1 as 

00 

Wjkl .. L [WUkl vi ]. 
i=O 

(2.3) 

Substitute Equation 2.3 into Equation 2.] and rearrange the order of summations to 

obtain the following polychromatic aberration series: 

00 00 00 00 

W = L L L L (Wijkl vi d~·h)j (h·p)k (p.p)l ] . 

i=O j=O k=O 1=0 

(2.4) 

The degree m of any term in the series is given by m = i + j + k + l. Note 

that aberrations of like degree are not grouped together in the above summation. This 

will be shown later to be inconvenient for an investigation based on classifying 

aberrations by degree. A modification of the series form which groups aberrations of 

like degl'ee together is 

W = f f t. t (Wmnpq v(m-n) (ii·h)(n-p) (h·p)(P-q) (p·P)(q)]. 

m=O n=O p=O q=O 

(2.5) 

This series contains precisely the same terms as the previous series except that they are 

labeled differently and are summed in a different order. A Jist the terms in the series 

up to degree five appears in Appendix B. 

-" 
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Definition of Wavefront Variance 

The definition of the wavefront variance for a given wavelength and field 

point is 

(2.6) 

where the angle brackets denote averaging over the unvignetted area of the pupil. To 

obtain a merit function which describes the average image quality over the entire field 

and wavelength ranges, the variance is averaged over the field and chromatic variables 

as follows: 

(2.7) 

where the inner angle brackets denote averaging over the wavelength, and the outer 

brackets denote averaging over the field variable. 

To derive a single equation which expresses the mean wavefront variance 

merit function, one substitutes Equation 2. 7 into Equation 2.6. The resulting equation is 

written in its explicit integral form as 

27T X+ I 27T 

fo L- L fo [w2 
Q(p."l...h) ~: pdp d"l.. ~ hdh J _ 
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2 

n(p }.. h) de pdp 1 dX fM 
•• 211 J 211 

hdh. (2.8) 

The weighting function n(p.}".I1) is defined as ( wp(p) w), (X) Wh (IT) ) where the three 

weighting functions wp(P). w),(X). and wh(h) have been included to increase the utility of 

the merit function. }..- and h+ define the range of the chromatic integration. 

It is important to note that the functions in the above equation are separable 

so that each integral may be evaluated independently. One should also note that the 

pupil integration assumes a circular pupil. 

The weighting function wp(P) is a radially symmetric function which allows 

portions of the pupil to be weighted differently than normal. For example. one might 

wish to design an optical system which images with high contrast. This can be 

achieved by increasing the weight of the inner portion of the pupil. wh (IT) is a radially 

symmetric field weighting function that allows portions of the field to be weighted 

differently. This might be of use in the design of an optical tracking system in which 

the center of the field may require much higher image quality than the outer portions 

of the field. Finally. W~ (}..) is a chromatic weighting function that allows different 

portions of the wavelength range to be weighted differently. w~(}..) can be used to 

tailor the image quality of the system with respect to wavelength in order to match the 

spectral response of a detector. A functional form for each of the weighting functions 

will be given during the evaluation of the averaging integrals. 

It will prove convenient to carry out the dot products in the aberration 

terms of Equation 2.5 before proceeding with the development of Equation 2.8. This 

yields 
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w .. f f t t [Wmnpq v(m-n) /h /(2n-p-q) Cos(8)(P-q) p(p+q)] . (2.9) 

m=O n=O p .. O q=O 

The obvious next step in the development of the merit function is to 

substitute the aberration series Equation 2.9 into Equation 2.8 and perform the 

integrations. Because the length of the resulting equation would be excessive if written 

down in its entirety. only the first term of Equation 2.8 will be written explicitly. 

After proceeding with the development of this term. the second term can then be 

written conveniently. 

Substitution of Equation 2.9 into the first term of Equation 2.8 yields after 

separation of the integrals 

(2.10) 

These integrals can be evaluated with the explicit forms for the weighting functions 
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Pupil Averaging 

Pupil averaging occurs as two integrations. one involving the pupil radial 

coordinate ( p ) only. and one involving the pupil angle coordinate ( e ) only. 

Pupil Angle Integration. This integral is 

21T 

SCM) = I Cos(e)(M) de o 21T 

M! if M = 0.2.4. ... 

if M = 1.3.5 .... 

and can also be evaluated according to the recursion relation 

S(M+2) = ~:~ SCM). S(O) ... ). S(I) .. 0 . 

This allows one to observe two useful properties of the function SCM): 

S(odd) '"' 0 • and 

I = S(O) > SCM) > S(M+2) > O. M=2.4.6 •... 

(2.1) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

Pupil Radial Integration. A convenient normalized weighting function for 

this ir.tegral is 

-" 
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w (P) 0: + 2 pO: 
P = I - Po(0:+2) • 

0: = -1.0.1 •.... (2.16) 

Normalization with respect to the weighting function means that the integral evaluates 

to unity when the integrand of Equation 2.17 below is a constant. 

The weighting function above provides for a centrally obscured pupil of 

radius Po and allows the outer portion of the pupil to be weighted differently than the 

inner portion. Setting a: = -I yields uniform radial weighting over the pupil while 

setting a: = 0 yields linear radial weighting. Setting 0: > I assigns heavier weighting to 

the outer portion of the pupil. 

With the above weighting function defined. the integral can be evaluated as 

I 

R(a) = I p(a) pdp • 
Po 

a = 0.1.2 •... 

0:+2 
a+a:+2 

I - po(a+0:+2) 

1 _ P (0:+2) 
• 0 

(2.17) 

(2.18) 

From the above expression for the radial pupil. one can derive the following useful 

property of R(a): 

1 = R(O) > R(a) > R(a+l) > 0 • a = 1.2.3 •... (2.19) 

Field Averaging 

The integration over the field is accomplished with the following normalized 

field weighting function: 
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(3 = -1.0.1 •... (2.20) 

where wh (11) can be used to increase the weight of the outer portions of the field by 

adjusting the power (3 of the fractional radial field variable Ii. Setting (3 = -I is used 

for uniform radial field weighting while setting (3 = 0 is used for linear radial field 

weighting. An emphasis on the outer portions of the field can be achieved by setting (3 

> o. 

The complete field integral is 

21T 

T(C) ... l M o 21T 

I 

10 h(C) wh (h) hdh. 

13+2 
c+(3+2· 

c = 0.1.2 ... (2.21) 

(2.22) 

A useful property of the field integral which is similar to that of the pupil integrals is 

I = T(O) > T(c) > T(c+l) > 0 • c = 1.2.3 •... (2.23) 

Chromatic averaging 

Uniform weighting is a common form of chromatic averaging. but often it is 

desirable to match the chromatic weighting to the response of a detector. In this case a 

weighting function that is approximately Gaussian in shaps is a common choice. But 

the functional form of Equation 2.2 makes evaluation of the chromatic integral with 

Gaussian weighting difficult. Tne "Witch of Agnesi" function (which resembles the 

Gaussian function) is a weighting function which enables evaluation of the integral. Its 



form is 

wA (A) = __ =K_-
2
,,-. 

1 + 0'2(A - X) 
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(2.24) 

where K is a normalizing constant which need n"t be explicitly determined. .).. is the 

wavelength at which the peak value of the weighting function occurs and 0' is the 

reciprocal of the width of the weighting function. The introduction of 0' as the 

reciprocal of the weighting function width allows the function to be used for uniform 

spectral weighting by setting 0' s: O. 

With the weighting function defined. the chromatic integral is 

A+ 

U(d) = I v(A)(d) w A (A) dA • 
A-

d s: 0.1.2 •... (2.25) 

An explicit analytic solution of the integral is difficult for arbitrary values of the 

chromatic coordinate power d, but a recursion relation between the intregrals for 

various values of d can be worked out. The recursion relation can then be used to 

numerically compute the integrals. 

The development of the recursion relation is easier if a transformation of 

variables from A to v is performed. One inverts the chromatic variable function 

(Equation 2.2) to give 

A(V) = A* 
v - Vo 
--*, (2.26) 
v-v 



where Vo = v· Xo / X· .. 6.87928. The differential of the above function is 

* d~ ... ~ * (vo - v ) 
1\ 1\ --:::-*- dv . 

where 

(v - V )2 

The inversion of the weighting function w). (X) is 

K2 (v - V*)2 

cv2+bv+a' 

X* Vo - A v* 

X* - A 

c = 1 - K22 

, and 

The quantity q will appear in later equations. 
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(2.27) 

(2.28) 

(2.29) 

With the above definitions, the chromatic integral transformed from X-space 

to v-space is thus found to be 
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v+ 

U(d) ... K ko L- (2.30) 

Finally. define 

(2.31) 

The preliminaries are now complete and the recursion relation for the 

integral J(d) can be determined. In doing so one is forced to deal with two distinct 

situai:ions: q < 0 (nonuniform spectral weighting. 0"2 > 0). and q = 0 (uniform spectral 

weighting. 0"2 = 0). 

Nonuniform Spectral Weighting. A perusal of a table of integrals will 

reveal the following recursion relation for J(ri) 

I(d) = (v+)(d-l) - (v-)(d-I) 
c (d - 1) 

~ led-I) - ~ I(d-2) . 

The recursion is initiated with 

... _1_ In [1 + A ] • 
4 c .J:Q 

1(0) A = • and ...;::q 1 - A b2 
- 4 c2 + q -q 

I(l) = _I In [I + B] _ b B _b_ ? 1(0) • 2 c 1 - B _ c a + c 

Finally. the desired chromatic averaging function is simply 

d = 2.3.4 ... (2.32) 

(2.33) 

(2.34) 



U !@. (d) = 1(0) . 

Uniform Spectral weighting. In this case Equation 2.30 degenerates to 

v+ 

I'(d) = J 
v-

v(d) 
--=---:-*- dv • 
(v - V )2 

and an integral table lookup gives 

I'(d) = (d 1 1) [ v+(d) * - v-Cd) * 1 + dd ~*l I'(d-l). d = 2.3.4. ... 
- v+-v v--v 

The recursion is initiated with 

1'(0) = I 
(v- - v*) 

--=--:*~ . and 
(v+ - v ) 

I'(l) = In [v+ - v: 1 + v* 1'(0) . 
v- - v 

Finally as before. one concludes with 

_ red) 
U(d) - 1'(0) • 

A useful property of V(d) is similar to that for R(a) and T(c) and is given by 
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(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

- .... --- .. _------------------------------------



.. U(O) > U(d) > U(d+2) > 0 • d = 2.4.6.... • and 

> UO) > U(d) > U(d+2) > 0 • d ~ 3.5.7 •... 

The Complete Wavefront Variance Equation 
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(2.41) 

(2.42) 

With the integral functions SCM). R(a). T(e). and U(a) defined above. one can 

write the first term of the wavefront variance (Equation 2.10) in terms of these 

functions as follows: 

The second term of Equation 2.8 can be written in the same way through 

substitution of the wavefront aberration series and the functions 

00 00 ml m 2 n l n 2 PI P2 

T2 -= L L. L. L. L L L L ( W ffilnlPlql W m 2n 2P2q2 

The complete wavefront variance merit function is then found by 

subtracting the T2 term from the Tl term. When this is done the merit function can be 

written (after some simplification by combining the summations in the two terms) 
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00 00 ml m2 n1 n2 PI P2 

~ = L L L L L L L L[WmlnlPlql Wm2n2P2q2 al 2 ]. 
(2.45) 

m1 m2 n1 D2 Pl P2 q1 q2 

where the factors a l2 are termed coupling constants because they couple W mlnlplql to 

W m2n2p2q2 in the merit function. From Equations 2.43. 2.44. and 2.45 one notices that 

they are given in terms of the averaging functions as 

(2.46) 

Mean Square Ray Aberration 

In real optical systems a ray usually does not pass through the ideal 

Gaussian image point because of aberrations in the system. The departure of the rays 

from the Gaussian image point is called the ray aberration. 

Squared Ray Aberration 

The ray aberration t is depicted in Figure 3. To obtain the squared ray 

aberration. one forms the dot product of the ray aberration with itself: 

(2.47) 

The squared ray aberration is a function of wavelength and the fractional pupil and 

field coordinates of the ray. In fact. its symmetry properties are the same as those for 
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the wavefront aberration function. For this reason the squared ray aberration can be 

expanded as 

£2 = f. f. t t (Emnpq p(m-n) (ii·h)(n-p) (h·p)(P-q) (p.p)(q) J . 
m=O naO p .. O q=O 

which upon expanding the dot products in each term becomes 

00 

L m n p [ 1 (2n-p-q) L L L Emnpq v(m-n) I h I cos(e)(p-q) p(p+q) • 

m=O n=Op=O q=O 

which is identical in form to the expansion for the wavefront aberration function. 

Definition of Mean Square Ray Aberration 

(2.48) 

(2.49) 

Averaging £2 over· the pupil yields the ray aberration for a single 

wavelength and field point. To obtain the aberration averaged over both wavelength 

and field. one writes 

4? c I I J21T I X + J I J 21T E2 
o 0 X- Po 0 

wp(p) W' (A) Wh(h) de pdp dX da'J hdh . 
1\ 21T 211' (2.50) 

The form of this equation is very similar to that of the equation for the 

wavefront variance. in fact, after substituting the squared ray aberration series into 

the above equation. the form of the integrals are identical to those in the first term of 
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Equation 2.8. For this reason the following details of the formulation of the mean 

square aberration are abbreviated since similar details have been presented in the 

derivation of the wavefront variance merit function. 

After substituting the squared ray aberration series into Equation 2.50 one 

has 

00 00 ml m2 n l n2 PI P2 

<P = L L L L L L L L [ ErnlnlPlql Em2n2P2q2 a l2 ]. (2.51) 

ml m2 n l n2 PI P2 ql q2 

where the coupling constants a l2 are given by 

(2.52) 

It is interesting to note that if the wavefront variance merit function were 

instead defined as the mean square wavefront aberration merit function. the coupling 

constants of the two merit functions would be identical. That is. Equation 2.52 would 

be identical to Equation 2.46. This would mean that any differences in the behaviors 

of the two merit functions would be independent of the coupling constants. and would 

depend solely on differences in the two sets of aberration coefficients. 
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The Quadratic Form 

A comparison of Equation 2.45 to Equation 2.51 reveals that both merit 

functions are of the identical quadratic form in the aberration coefficients. This 

quadratic form can be written in matrix notation as follows: 

<p = xt A x . (2.53) 

where A is the matrix of coupling constants al ,.. and x is the aberration vector formed 

from the aberration coefficients X mnpq' The first few elements of xt are <X 0000' X 1000' 

X llOO' X 1110• Xuw X2000 • ••• >. Note that the components of x occur in the same order as 

their occurance in the aberration series. 

The matrix A couples the aberration vector to its transpose and for this 

reason will be termed the coupling matrix. Each matrix element couples together two 

aberration coefficients through a term of the form 

(2.54) 

This can be seen in Equations 2.45 and 2.51. 

Properties of the Coupling Matrix 

The coupling matrix defines the physical meaning of the merit function and 

is not determined by the specific optical system. That is. its elements are independent 

of any characteristic of the optical system -- they depend only on the definition of the 

merit function. But on the other hand. many of the properties of the merit function are 

determined by the properties of the coupling matrix. For this reason several properties 
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are briefly discussed below. 

Matrix Elements. Each element of the coupling matrix for the wavefront 

variance is given by Equation 2.46. Each element of the coupling matrix for the mean 

square ray aberration are given by Equation 2.52. 

Matrix Symmetry. The coupling matrix is symmetric. That is 

A (2.55) 

Matrix symmetry follows from Equations 2.46 and 2.52 and the fact that R(a+b) 

R(b+a). S(a+b) = S(b+a). T(a+b) = T(b+a). and U(a+b) = U(b+a). 

Odd/Even Aberration Decoupling. One can classify an aberration as either 

even or odd in the pupil variables according to whether p-q is an even or odd integer. 

Even and odd aberrations do not interact in the merit function because the coupling 

matrix element that couples an even aberration coefficient to an odd aberration 

coefficient is zero. This follows from the property of the pupil angular integral that 

S(odd) = 0 . 

The decoupling defines two vector spaces composed of the aberration 

coefficients of the even and odd aberrations respectively. These two vector spaces 

possess a null intersection and for this reason the coupling matrix can be written as the 

sum of an even and an odd coupling matrix Ae + Ao. Although this fact will not be 

exploited here. the merit function can thus be written as a sum of even and odd merit 

functions: 
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~e + (2.56) 

Elements of the coupling matrix are non-negative. The elements of the 

coupling matrix satisfy 

I > = aij > = O. (2.57) 

This follows from the properties of the averaging functions -- Equations 2. I 4. 2.15. 

2.19, 2.23, 2.41, and 2.42. 

For the mean square ray aberration merit function, Equation 2.57 is trivially 

true since the averaging functions are all non-negative and each matrix element is 

formed as the product of averaging functions. For the wavefront variance merit 

function, Equation 2.46 indicates that one need only show that 

(2.58) 

This is easily accomplished since 

(2.59) 

(2.60) 

~. 
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Coupling Matrix Element Magnitudes. Generally the magnitude of the elements 

of A decrease with increasing distance down the diagonal and with increasing distance 

horizontally away from the diagonal. That is 

for k.l > > i.j. (2.61) 

which follows from the defining equation for the coupling matrix and the properties 

(Equations 2.14. 2. is. 2.19. 2.23. 2.41 and 2.42) of the averaging integrals. This would 

lead one to expect that the coupling between aberration coefficients of high degree 

contribute less to the merit function than coupling between lower degree coefficients. 

An interesting aspect of the wavefront variance coupling matrix is that any 

row or column that couples to a pupil independent aberration is identically zero. One 

can understand this from the fact that the variance of a constant is zero. It is 

mathmatically demonstrated by the defining equation for the wavefront variance matrix 

(Equation 2.46) and the fact that p = q = 0 for pupil independent aberrations. In this 

case one has 

R(O+a) S(O+b) - R(O) R(a) S(O) S(b) R(a) S(b) - R(a) S(b) o. (2.62) 

Another interesting property of the wavefront variance coupling matrix is 

that the value of the matrix elements for very high order coupling become almost equal 

to the value of the corresponding matrix elements for the mean square ray aberration. 

By comparing Equations 2.46 and 2.52. one sees this is true if 



I R(a+b) S(c+d) - R(a) R(b) S(c) S(d) I 
a,b -+ oo 

lim R(a+b) S(c+d) . 

The following demonstrates this (an unobscured pupil is assumed for simplicity) 

lim [ R(a) R(b) J 
a,b -+ oo R(a+b) 

lim 
a,b -+ oo 

[ 

(a:+2) (a:+2) ] 
(a+a:+2) (b+a:+2) 

(a:+2) 
0. 

(a+b+a:+2) 
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(2.63) 

(2.64) 

Thus differences in the behavior of the high order components of the two merit 

functions are independent of the coupling matrix and must depend only on differences 

in the behavior of the aberration vectors x. 

Orthogonalization of the A her rations 

The quadratic form associated with the merit function IS inconvenient 

because aberration coefficients of differing degree are coupled together -- that is, off 

diagonal elements of the coupling matrix can be nonzero. This makes classification of 

terms based on degree difficult to implement. By transforming the quadratic form into 

a sum of squared terms, one can classify each of the resulting terms according to the 

degree of that term. To accomplish this. one determines a transformation matrix R that 

transforms the aberration vector x according to 

1 R x. (2.65) 

so that the merit function is transformed to 
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4> = 7t 1 (2.66) 

(2.6 7) 

..... 
The elements /i of the vector I will be termed orthogonal aberrations 

because they occur in the merit function only in squared form. There is no cross 

coupling between orthogonal aberrations -- hence the term "orthogonal". The absence 

of cross coupling means that the coupling matrix has been transformed by the matrix 

factorization to a diagonal matrix (in fact, the identity matrix -- which makes it 

useless). 

The matrix R will be termed the transformation matrix because it 

transforms the classical aberration vector to the orthogonal aberration vector. The 

following shows how the transformation matrix R is determined from the coupling 

matrix A . 

The Cholesky Matrix Factorization 

The coupling matrix satisfies 

xt A x > = 0 (2.68) 

for all possible values of the classical aberration vector x because the merit function 

represents a physical quantity that must be non-negative. That physical quantity is 

either the wavefront variance or the mean square ray aberration. The coupling matrix 

is thus said to be positive definite and can be factored into the product of a right 

triangular matrix times its transpose 
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A = Rt R. (2.69) 

One sees that the matrix R is the transformation matrix of Equation 2.65 

through the following: 

4> =: xt A x 

xt (Rt R) x 

(Xt Rt) (R x) 

(R x)t (R x) 

.. 1t 1 . (2.70) 

The factorization of A is called the Cholesky matrix factorization. If the 

elements of R are denoted by 'ij • and the symbol := denotes the replacement operation. 

then an algorithm which implements the Cholesky factorization is 

for k = O. 1. 2 •...• n-l 

for j = k. k+l. k+2 • ...• n-I 

L'kj = akj / .Jakk 

fLi =: k+I. k+2. k+3 • ...• n-l 
~or j = k+l. k+2. k+3 • .... n-l 

aij := aij - akj aki / Qkk . 

Properties of the Transformation Matrix 

(2.71) 

Orthogonal Aberrations. Each orthogonal aberration is a linear combination 

of classical aberration coefficients where the linear combination is determined from the 

rows of the transformation matrix. This follows from Equation 2.65 which can be 

explicitly written as 



00 

fi '" L rij Xj • 

j=i 
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for i = 0.1.2 .... (2.72) 

The summation index starts at j -= because the transformation matrix is right 

triangular. 

The above equation indicates how to classify the orthogonal aberrations. 

Any particular orthogonal aberration Ii is classified as belonging to the same degree as 

its corresponding classical aberration coefficient xi. xi appears in the first term of 

Equation 2.72. and all coefficients Xj that follow in the summation must have the same 

or higher degree. For example. 16 is classified as a second degree orthogonal aberration 

because the classical aberration coefficients that appear in the summation for 16 are of 

second degree and higher. 

Elements of the Transformation Matrix are Non-negative. The elements of 

the transformation matrix satisfy 

I > rij > O. (2.73) 

This follows from the similar property of the coupling matrix (Equation 2.57) and the 

Cholesky matrix factorization algorithm 2.71. The generation of the transformation 

matrix can be viewed as a sequence of row operations on the coupling matrix. Each 

row operation preserves Equation 2.73. This is easily understood by examining the 

equations inside the j loops of the factorization algorithm. 

Transformation Matrix Element Magnitudes. The elements of the 

transformation matrix satisfy 
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for k.l > > i.j. (2.74) 

This follows from a similar property of the coupling matrix (Equation 2.61) and the 

Cholesky matrix factorization algorithm 2.71 with the same explanation as in the 

previous paragraph. 

First Degree Adjustments on the Merit Functions 

Mean Square Ray Aberration. The current definition of the mean square 

ray aberration merit function references the squared ray aberration to the Gaussian 

image point. If the optical system suffers from distortion. the centroid of the image 

spot is displaced from the Gaussian image point. which results in a large value for the 

merit function even though the image spot may be very small. For this reason a more 

appropriate reference point location is the centroid of the aberrated image spot. With 

this reference point the merit function is a measure of the aberrated spot size. which is 

usually the physical quantity of interest. 

Because of aberrations. the plane of best average image quality is usually 

not coincident with the Gaussian plane. For this reason it is appropriate to allow a 

defocus of the reference plane from the Gaussian plane to the plane which yields the 

smallest average spot size over the field. 

Wavefront Variance. The current definition of the wavefront variance 

merit function requires that the wavefront aberration be measured from a reference 

sphere centered on the Gaussian image point. A more appropriate reference sphere is 

the one which achieves a "best fit" to the aberrated wavefront (which in the presence 

of a small amount of aberration is centered on the peak of the diffraction image). This 

reference is achieved by adding the appropriate amount of tilt and defocus to the 
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reference sphere at each image point. 

The Method of Adjustment 

Locating the Image Centroid. The wavefront aberration is defined with 

respect to a reference sphere centered on the Gaussian image point. The mathematical 

description of tilting the reference sphere a small amount is achieved by adding a tilt 

term of the form 

a WlIlO I hi Cos(8) p (2.75) 

to the aberration function. The amount of the tilt is determined by the magnitude of 

the coefficient awlllO • 

If the aberration function is written as a Taylor series. then the effect of a 

tilted reference sphere can be simply incorporated into the aberration expansion of 

Equation 2.5 by replacing the tilt aberration coefficient WlllO by the sum WlllO + 

awlllO• The resultant term is then: 

( W lllO + a W lllO ) I hi Cos(e) p . (2.76) 

It is important to note that the addition of aw 1Il0 to the tilt aberration does not change 

the physical wavefront in any way -- it merely results in a description of the 

wavefront aberration function that is measured from a reference sphere that is tilted 

with respect to the ideal reference sphere. 

The above discussion associates the addition of a tilt term to the wavefront 

aberration expansion with the addition of tilt to the ideal reference sphere. In the same 
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way. the addition of a tilt term of the form 

~EllIO I h I Cos(e) p (2.77) 

to the squared ray aberration expansion associates the term with a shift of the reference 

location. That is. the squared ray aberration is measured from a reference point that is 

shifted from the Gaussian image point. 

The problem is to determine the amount of tilt term that muz! be added to 

either of the aberration expansions in order to measure the aberrations from the desired 

reference. Fortunately. the procedure which accomplishes this is relatively simple and 

is the same for both aberrations. 

Let one average the aberration over the pupil and chromatic coordinates. but 

not the field coordinate. This defines a merit function which is a measure of the image 

quality as a function of field. Following the same procedures as those outlined earlier 

in the chapter. the merit function can be written in the same quadratic form as in 

Equation 2.45: 

00 00 m1 m2 P1 P2 

4>(h) = L L L L L L [ Xm1P1q1 Xm2P2q2 " ] a 12 • (2.78) 

ffi1 m2 P1 P2 q1 q2 

were each coefficient X mpq of the reduced set of aberrations is a function of field and 

can be written 

-" 
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Xmpq f [ Xmnpq /h /(n) ] . (2.79) 

n=O 

A new coupling matrix A" is generated which will be termed the reduced 

coupling matrix because it is determined by a reduced set of aberrations. Its elements. 

a"12 • are given by 

a" 12 

for the mean square ray aberration. and by 

for the wavefront variance. 

(2.80) 

(2.81) 

The specific value for axlllO which locates the desired aberration reference 

is determined by the following procedure: Factoring the reduced coupling matrix 

generates a reduced transformation matrix R" and a set of orthogonal aberrations f"i 

which are functions of field height. However. only one of the orthogonal aberrations 

will contain the tilt aberration. The best that can be done to reduce the merit function 

by adjusting aXll10 (since only one orthogonal aberration contains a%lllO) is to adjust it 

to zero (or balance) the linear combination of reduced aberration coefficients that make 

up the orthogonal aberration. The balance is automatically accomplished by simply 

zeroing out that row of R" associated with the tilt orthogonal aberration. 

For the squared ray aberration. the physical interpretation of balancing out 
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the orthogonal aberration is moving the ray aberration reference point to the image 

centroid. For the wavefront aberration, the interpretation (for small aberrations) is 

tilting the reference sphere so that its center coincides with the peak of the diffraction 

image. For large aberrations, the balancing determines a best fit to the aberrated 

wavefront. 

Suppose, however, that distortion is important in the particular application 

under study. In this case one would not want to completely ignore its effects. If this 

is the case then the relative importance of distortion can be simply incorporated into the 

merit function. One would not simply zero the appropriate row of the transformation 

matrix R .. as suggested above, but would multiply it by a factor which is between zero 

and unity, and is proportional to the importance attached to the effects of distortion. 

The final form of the merit function is achieved by averaging over the 

field. The first step to accomplish this is to multiply the modified transformation 

matrix by its transpose to generate a modified reduced coupling matrix A' whose 

elements are denoted by a 12'. Next one multiplies out the resulting quadratic form after 

expanding each of the aberration coefficients according to Equation 2. 79. The final 

averaging over the field variable can then be performed. Operationally, this can be 

carried out in an easy way by simply forming each element of the complete coupling 

matrix from 

(2.82) 

This coupling matrix manifests the merit function with the desired aberration reference. 

It is then factored to obtain the transformation matrix which in turn defines the 

orthogonal aberrations. This completes the process. 
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Locating the Best Average Image plane. The procedure that locates the best 

average image plane is similar to the procedure which locates the image centroid as an 

::Iljerration reference. For the wavefront aberration one adds a focus shift to the ideal 

reference sphere - while for the squared ray aberration one adds a focus shift to the 

imaging plane. In either case the focus shift is manifested by adding a defocus term of 

the form: 

(2.83) 

to the aberration function. The defocus term is incorporated into the original aberration 

series expansion by replacing the coefficient X 1111 by the sum X 1111 + ~Xll11. 

As with the tilt term. the addition of the defocus term to the aberration 

function does not alter the intrinsic aberration in any way. It simply represents the 

effe·:t of measuring the aberration relative to an image plane defocused from the 

Gaussian image plane. 

The procedure which determines the amount of defocus needed to locate the 

plane of best averaging is similar to the procedure above which determines the 

appropriate amount of tilt. This procedure is simpler. however. because we wish to 

find the plane of best average imaging over the entire field. For this reason we 

average over all the variables (chromatic. pupil. and field) just as explained early in the 

chapter. and then factor the coupling matrix before doing any adjustments. The plane 

of best average imaging is then obtained by adjusting the defocus coefficient ~Xll11 to 

zero out (balance) the single orthogonal aberration in which it is contained. This is 

easi1y accomplished by simply zeroing out that row of the transformation matrix 

asso-::iated with the defocus aberration. The procedure is now complete. 

- -------------------------------------------
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As an aside, if one wishes the merit function to be a measure of the 

aberration over the surface of best imaging (not necessarily a plane surface), one would 

follow a procedure exactly analagous to the precedure which determined the amount of 

tilt for the desired aberration reference. 

It is interesting to note that the tilt and defocus adjustments are orthogonal 

in the sense that the tilt adjustment does not effect the defocus adjustment, with the 

reverse also being true. This is because the tilt and defocus terms do not couple in the 

merit function -- tilt is an odd aberration while defocus is an even aberration. Because 

of this, the two first degree adjustment procedures can be carried out concurrently and 

independently, which is a great convenience. 

Merit Subfunctions 

As explained earlier in the chapter, each orthogonal aberration can be 

associated with an aberration coefficient of a particular degree, say degree j. It is a 

linear combination of aberration coefficients of degree j and greater, but no degree less 

than j. For example, any third degree orthogonal aberration is a linear combination of 

third and higher degree classical aberration coefficients, but no zero, first, or second 

degree coefficients appear in the linear combination. This suggests how the merit 

function defined in Equation 2.6 7 may be classified into a sequence of merit 

"subfunctions" which isolate the aberration degrees. 

One starts with 

<P "{t 7 
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(2.84) 

where the elements of i are the orthogonal aberrations Ii. Collect all orthogonal 

aberration terms of degree j and denote this partial sum T/. Note that T/ contains 

aberration coefficients of degree j and greater. but no coefficients of degree less than j. 

Thus one would expect the characteristics of T/ to be dominated by the characteristics 

of P.h degree aberration coefficients. Equation 2.84 is written 

(2.85) 

where 

(2.86) 

The number of terms in the summation is different for each j. and the summation is 

carried out over all orthogonal aberrations. Ii • of degree j. The above two equations 

manifest in a fundamental way the classification scheme based on degree. 

Consider. however. the above equations in the context of optical design. 

Normally one would construct ~ (mean square ray error or wavefront variance) using 

real ray data and then attempt to minimize it with respect to the design variables of the 

system. One could also attempt to minimze Equation 2.85 with respect to the design 

variables. but this would be no more useful than attempting to minimize the merit 

function which was constructed from real rays. Any additional insight to be gained 
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lies in the study of the T j terms. In this regard it makes some sense to study each 

term independently. But notice that. taken independentiy. none of the terms to be 

studied can be directly related to the full merit function. It makes more sense to study 

a sequence of functions that converges to the full merit function. With this in mind. a 

logical sequence of functions can be constructed in the following way: 

CPo 

¢>l 

¢>2 

¢>s 

¢>4 

T02 + T12 + T12 + Tl + T/ + ...• 

T12 + T22 + TS2 + T/ + 

T22 + TS2 + T42 + 

Tl + T42 + 

T42 + 

and so on. 

Each function of the above sequence is termed a merit "subfunction". 

(2.87) 

Note that <P = ¢o • and that the ¢j define a sequence of functions that 

converges to <P. Also note that ¢j contains no aberration coefficients of degree less than 

j. Thus the characteristics of ¢j with respect to the construction variables of an optical 

system should depend on the characteristics of the aberration coefficients of degree j. 

One can think of the subfunctions as manifesting a classification of the 

merit function by aberration degree - a classification that many optical designers have 

contemplated but not attempted because of the lack of a logical approach. Some 

consequences of this classification scheme will be examined in Chapters Five and Six. 

and will constitute a preliminary investigation into possible uses of these novel merit 

subfunctions in optical design. It is also hoped that further explorations of this type 
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will yield new insight into the behavior of optical systems. 
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CHAPTER 3 

RA YTRACING APPROPRIATE TO POWER SERIES EXPANSIONS 

It was shown in the previous chapter how two physically significant merit 

functions could be expressed as the dot product of an orthogonal aberration vector with 

itself. The orthogonal aberration vector was expressed as the matrix product of the 

transformation matrix with the vector of classical aberration coefficients. Equations for 

computing the elements of the transformation matrix were developed entirely from 

considerations of the first order geometry of the optical system and the physical 

meaning of the merit function. In this Chapter. attention is directed to the development 

of a method to compute the aberration coefficients to arbitrary degree. 

There currently exist four methods used to compute aberration coefficients. 

The first is simply a brute force least squares fit of real ray data. Coefficients 

determined in this way are only an approximation to the desired Taylor series 

coefficients. The approximation improves as the degree of the fitting polynomial 

increases. but if the Taylor series of the aberration function converges slowly. then a 

great many terms must be included in the fitting polynomial to insure that acceptably 

accurate values are computed for the coefficients. 

The second method uses equations derived by algebraically expanding ray 

trace equations in the manner of Wachendorf and Hopkins. or by expanding Eikonal 

functions in the manner of Buchdahl. The equations are algebraically expanded only 

once. and the resulting equations can then be used repeatedly to trace any number of 
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rays. The difficulty with this method is that expanding to orders past the fifth is 

extremely cumbersome and subject to errors during the derivation. 

The third method is loosely related to the second method with the difference 

being that the equations are expanded numerically instead of algebraically. Each 

quantity in an equation is represented by its power series expansion. and then the 

coefficients of the expansions are computed numerically -- without explicitly expanding 

the equations (see Andersen(S). The expansion is implicit each time a ray is traced. 

This method is well suited to implementation on digital computers. 

The fourth method (which is developed and used by the author specifically 

for the present research) is closely related to the third method except that quantities are 

expanded in partially summed series form. As will be shown in the next chapter. the 

partially summed series are the proximate quantities of Hopkins. 

The purpose of this and the next chapter is to show how the polychromatic 

Taylor series coefficients (aberration coefficients) of either the wavefront aberration at 

the exit pupil or the squared ray aberration at the image plane can be calculated to 

arbitrary degree using an algorithmic approach to proximate ray tracing. It should be 

pointed out that the aberration coefficients of the two aberrations are calculated 

independently. one is not derived from the other. 

Specifically. in this chapter the formulation of an unconventional set of ray 

trace equations consistent with the partially summed power series associated with 

proximate quantities is carried out. Because of the symmetry properties of the 

aberration series (see Equation 2.5). some modifications to the familiar ray trace 

equations are necessary. To illustrate this point. consider the conventional equation 

which relates points P and P' on the ray in Figure 4. These two points are related 

through the equation, 

-' 
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P' = P + Q S . (3.1) 

-+ 
where S points in the direction of the ray and Q is a scalar related to the distance along 

-+ -+ 
the ray from P to P'. The x component of the above equation is 

p' x (3.2) 

Now. as will be shown later. Px and Sx are odd functions of the pupil and 

field variables and can not be represented by a power series of the form of Equation 

2.5. However. Q is an even function of the variables and can be represented by an 

equation of that form. To implement the above equation. one must implement power 

series algorithms which can operate on the two different power series forms. 

An alternative approach. which is used here. is to retain a single power 

series form and modify the above equation so that only operations on quantities which 

are even functions of the variables occur. For example. by incorporating the y 

component of Equation 3.1. one can form a new equation. 

( P X 2 + P y 2) + 2Q( P x Sx + P y Sy) + Q2( SX 2 + Sy 2 ) • (3.3) 

in which the quantities in parenthesis are even functions of the variables. This 

equation can be implemented by utilizing power series operations which involve a 

unique series form. thus avoiding operations on differing power series forms. 

With the above motivation. one can develop a consistent set of ray trace 

equations which involve only quantities which are even functions of the pupil and field 

variables. This is essentially equivalent to developing ray trace equations in a 
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cylindrical coordinate system. 

Ray Tracing 

Ray tracing is a process of repeated ray transfer followed by ray refraction 

operations. The propagation of a ray from a surface to the succeeding surface is 

illustrated in Figure 4. The ray is uniquely specified by a position P on the ray and 

the optical direction S at point P. The optical direction vector S is the vector which 

points in the direction of ray propagation and whose length is given by the refractive 

index of the medium in which the ray lies. The vectors P and S can be written for 

convenience in several forms 

p 

S 
< Px' Py • Pz > = < P. Pz > 

< Sx' Sy • Sz > = < S. Sz > 

where p = < Px ' Py • 0 > • and 

where s = < Sx' Sy. 0>. (3.4) 

Note that P is the three dimensional position vector and p is the component of P 

perpendicular to the optical axis (the z axis). 

Maintaining axial symmetry, one can restrict oneself to rotationally 

symmetric conic surfaces of the form: 

o . (3.5) 

where C is the vertex curvature and K. is the conic constant. 

Refering to Figure 4. the ray trace problem is stated in the following way: 

given the vectors P and S for a ray, propagate the ray to find the corresponding vectors 

pIt and S·. This is accomplished by first determining the intersection pIt of the ray 



60 

with the surface (the transfer operation). and then determining the refracted ray 

direction S (the refraction operation). 

At the start of every transfer however. the position vector is given relative 

to the vertex of the current surface. To express the position vector relative to the next 

surface. one simply subtracts the axial thickness D from the z component of the position 

vector. This yields the desired position vector P of Figure 4. 

Transfer 

The transfer of a ray from point P on the ray to an arbitrary point P* on 

the ray is given by the vector equations 

p* P + Q'$ . and 

'$* 

(3.6) 

(3.7) 

which when expressed in terms of their axial and radial components is equivalent to the 

following set of equations: 

p* = p + Qs. (3.8) 

P * z Pz + Q Sz· (3.9) 

s* S. and (3.10) 

S * z Sz • (3.11 ) 

where Q is the reduced distance (the physical distance divided by the index of 

refraction) along the ray and will be termed the transfer parameter. A new set of 

transfer equations is derived from Equations 3.8 - 3.11 whose transfer is governed by 
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the transfer parameter as follows: 

( P"P )* ( p.p) + 2Q( p.!) + Q2( s·s ) . 

( p·s >* ( p·s) + Q (s·s) . 

(s·s )* (s·s) . (3.12) 

and 

P * z Pz + Q Sz • and 

S * z Sz . (3. I 3) 

Note that in accordance with the philosphy of this chapter. all the quantities in 

parentheses are even functions of the field and pupil variables. The optical path !ength 

along the ray from point P to P* is 

OPL (3.14) 

where the refractive index N is represented by a power series in the chromatic 

variable. 

These are the general transfer equations for the proximate ray trace. All 

that remains is to determine that particular value for the transfer parameter Q which 

transfers the ray to the succeeding surface. Computationally it is convenient to carry 

out the transfer in two steps: from the surface to a point on the ray nearest the vertex 

of the next surface. and then from that point to ~~e point of intersection with the next 

surface. This is illustrated by P' and pIt in Figure 4. 

The "Perpendicular Point". The point on the ray nearest the vertex of the 

surface will be termed the "perpendicular point". It satisfies P":S = 0 from which is 
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derived 

Q (3.15) 

Note that all operations in the above equation involve only even quantities in the pupil 

and field variables. 

The Surface Intersection Point. The transfer parameter which transfers the 

ray from the perpendicular point to the surface intersection is determined by 

simultaneously solving F(P") = 0 and pOI = P' + Q S. Substituting Equation 3.6 into 

Equation 3.5 and solving for Q gives 

-Bt - J Be - At 0t 
Q 

At 

°t (3.16) 
-Bt + J 8t2 - At 0t 

where 

C [N2 + I<. SZ'2 ] • 

[ I C I<. P z· ] Sz' • and 

C [(1"1'), + (1<.+1) PZ '2] - 2 pz' . (3.17) 

The above two sets of equations complete the proximate ray transfer. 
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Refraction 

Figure 4 also illustrates the refraction operation. Given S and the point of 

intersection pOI of the ray with the surface. one wishes to determine S. For 

convenience the double prime notation for pOI in favor of single prime notation to 

represent quantities after refraction. One starts with Snell's Law in vector form: 

S' x it Sxit 

which implies that the refraction operation obeys the vector equations 

P . and 

S +rit. 

(3. I 8) 

(3.19) 

(3.20) 

where n is the surface normal vector at point P on the surface and r is termed the 

refraction parameter. The surface normal is found by taking the gradient of the 

surface function. For a conic surface the normal is easily determined to be 

< -c p, I - (1+,,) C Pz > . (3.21) 

Since 1 and p are odd functions of the pupil and field variables. one must 

express the refraction operation of Equations 3.19 and 3.20 in the following appropriate 

form 

(p.p) , 

( -C r ) (p.p) + 



($·5)' 

and 

p' z 

s . z 
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( -c r )2(jH~) + 2( -C r ) $·5) + ($·5). (3.22) 

Pz . and 

Sz + r [1 - (1+,,) C Pz ] • (3.23) 

where the quantities in parentheses are even functions of the variables. All that 

remains is to determine the refraction parameter. 

The first step in the determination of the refraction parameter r is to square 

Equation 3.20 by taking the dot product with itself: 

Recalling that (S'·S') = N'2 and (S·S) = lP. solving for r gives 

r 
[-Br ± J Br 

2 
- Ar Dr ] 

Ar 

(3.24) 

(3.25) 

where for reflection the sign of the radical is chosen to be opposite in sign to Br • For 

refraction the same sign is chosen. The quantities Ar • Br • and Dr are given by 

Ar C2 (p.p) + [I - (1+,,) C Pz ]2 • 

Br -C $·5) + [I - (1+,,) C Pz ] Sz . and 

(3.26) 
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This completes the equations needed for refracting a proximate ray. 

Note that in both the transfer and refraction operations. the basic ray 

quantities have been changed from Px ' Py • Pz • Sx' Sy. and Sz to r/F'p). cP·s). (S.'S). Pz • 

and Sz. The quantities [p'p). cP·'S). and (S's) are often called rotation invariants and 

occur in a natural way when considering the ray trace problem in a cylindrical 

coordinate system. 

Tilted Reference Spheres 

The calculation of wavefront aberration requires that a ray be traced from 

an object point (or equivalently from the ray's intersection with an object space 

reference sphere) to its intersection with the reference sphere in image space. The 

reference spheres are usually chosen to lie in the pupils of the system and to be 

centered on the Gaussian conjugate points. Because a reference sphere is not a system 

constant. but is a function of the object or image coordinate. the proximate ray trace 

must properly account for its behavior. Figure 5 illustrates the entrance and exit pupil 

reference spheres of a general optical system. Note that they are not constant. but vary 

with the object and image heights. 

The equation which represents a reference sphere can be written in the 

form: 

C-P - .5 Cv P'P o. (3.27) 

where 
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The Ideal Reference Spheres of an Optical System 
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The Gaussian object and image points are hand h' 
respectively. 
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Cv -;::===== ' and ...... 
+ (h"h') 

Cv (is + h') < C, Cz > . (3.28) 

The quantity C is the unit vector normal to the surface vertex and c is the radial 

component of C. The quantity Cv is the curvature of the sphere. If the image plane is 

at infinity then Cv = o. 

Note that for Gaussian imaging: 

h' = m h, (3.29) 

where m is the system magnification. 

In determining the wavefront aberration for a ray one must determine the 

intersection of the ray with the tilted exit pupil reference sphere. As with a conic 

surface, one must first trace the ray to the perpendicular point, then proceed to the 

surface intersection. But because the reference sphere may be tilted, the transfer 

parameter Q which gives the ray's intersection with the reference sphere is given by a 

slightly different version of Equation 3.17. In this case one replaces Equation 3.17 with 

Bt (C's) + Cz Sz ' and 

Cv [aH» + PZ 2] - 2 [(C.p) + Cz Pz ] . (3.30) 

It is important to note that the new quantities (t·s), (t.p) and Cv are even 
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functions of the pupil variable as required. Unfortunately. they cannot be expressed in 

terms of the known values for ($.p). [p·t). (t·t). Pz • and Sz at the exit pupil reference 

sphere. One must resort to transfering the new quantities from surface to surface 

starting from their known values at the start of the ray trace. This adds the following 

to the proximate transfer Equations 3.12 and 3.13: 

(C.p) + Q (C's) • and 

(C·s) • 

and the following to the proximate refraction Equations 3.22 and 3.23: 

(C.p) • and 

( -cv r ) (C.p) + (C·s). 

Opening Equations 

(3.31) 

(3.32) 

The transfer and refraction equations developed above are used to trace a 

ray sequentially from surface to surface. The process is continued until the ray 

intersection with the ideal reference sphere is reached to determine the wavefront 

aberration. or until the ray intersection with the ideal image plane is reached to 

determine the squared ray aberration. But it still remains to develop an appropriate 

method to start the ray trace. that is. a method for determining the quantities \p.p). <p·s). 

(S·s). Pz. Sz. (C.p). and (t·s) at the first surface. 

The equations for these opening quantities depend on the first order 

properties of the object space. There are three distinct situations: finite object and 

entrance pupil locations. infinite object location. and telecentric entrance pupil. The 

-_ ........ - .. _------------------------------------
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development of the opening equations for these three situations is somewhat tedious but 

necessary. It is presented below. 

Finite Object and Entrance Pupil Distances 

The case of a finite object and entrance pupil locations is shown in Figure 6 

and the ray trace is started at the entrance pupil reference sphere. Since these 

equations are to be evaluated utilizing power series methods. the association between 

the ray variables (p and 5) and the series variables (v. it. and p) must be identified. 

For this case the association is trivial. The relationship between the ray variables Po. 

PI and the series variables it. p is 

h Po. and 

(3.33) 

The chromatic variable v is independent of the geometry of the object space and is 

always specified by equation 2.2. 

The objective is to represent the quantities (J.p). (J·l). (S·1). Pz • Sz. (t.p). 

and (t·l) at the first surface in terms of the power series quantities v. (iI·Ii). (h-p). and 

One starts with expressions for Paz and P1z • Since the object is a plane 

surface. one has trivially 

o . (3.34) 
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The expression for P lZ is determined by utilizing Figure 6 and Equation 3.27. This 

yields the foliowing set of equations: 

cYl 

J Do2 + (i~·h) 

(c·P)l (h·p) Cy 1 • 

Cz -Do cYl • 

x cYl (p.p) - 2 (c·P)l • and 

PIZ 
x 

JCz2 Cz + - cYl X 
(3.35) 

The optical direction vector 51 can be written as 

(3.36) 

from which is derived the following set of proximate opening equations 

(P·ph (p.p) . 

(P·S)I 

Nl [(p.P) - (h·p) ] 

J [p.p) - 2(h·p> + (h·h) + (Do + PIZ)2 
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(S·S\l 
N/ [ cp'-m - 2(h·p) + (h·h) ] 

• and 

J <p.p) - 2(h·p) 
...... 

+ (h·h) + (Do + Pd2 

SlZ 
Nl PlZ 

(3.37) 

J <p.p> - 2(h·p> 
...... 

+ (Do + P lZ )2 + (h·h) 

Note that N 1 is a power series in v only. 

Finally. expressions for (C.p) and (C·s) are needed. At the exit pupil the 

vector expression for t is 

(3.38) 

... ... 
where h' = m hand D is the distance from the exit pupil to the image plane. Thus 

[ ... ... ... ] m Nl (h·p> - (h·h) 
(3.39) 
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Infinite Object 

Figure 7 illustrates the case of an infinite object location_ The ray trace is 

started at the entrance pupil reference sphere (which is a tilted plane in this case) and 

the relationship of the ray variables PI and Al = < al • Alz > to the power series 

variables ii and p is 

--h ~ 
<11 • 

(3.40) 

The expression for PIZ is 

(3.41) 

The vector 51 is trivially 

(3.42) 

from which is derived the following set of proximate opening equations 

(P-P)I (P-p) • 

<P-s) I Nl (h-P) • 

CS-sh NI2 (h-h) . and 

No J I -- -- (3.43) SIZ - (h-h)_ 
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The expressions for (t.p) and (t·s) are derived using the following vector 

expression: 

(3.44) 

where in this case iz' = In iz = mal. Thus 

(C.ph m (h·jD • and 

J (D· D) + m2(h· h) 

m Nld~·h) 
(3.45) 

Telecentric Entrance Pupil 

Figure 8 illustrates the telecentric entrance pupil. In this case the ray trace 

is started at the object point. The relationship of the ray variables Po and Ao = < ao. 

Aoz > to the series variables iz and p is 

h Po. and 

(3.46) 

Paz and So are trivially found to be 

o . and (3.47) 
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Fig. 8. Telecentric Entrance Pupil 

A ray is uniquely specified by its direction Ao and location 
Po in the object plane. 
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No < p, Aoz > , 

from which is derived the following set of proximate opening equations: 

(p·p)o 
-+ -+ 
(h·h) , 

$·s)o No di·p) , 

(S·s)o N02 (p.p) , and 

Soz No J 1 - (p.p). 

The expressions for (t·p)o and (t·so are derived using 

-+ 
h' 

where ii' = m ii = m Po. Thus 

-+ -+ 
m (h·h) 

----~~~----,and 

J (0·0) + m2 (ii·h) 

m No (h·p> 
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(3.48) 

(3.49) 

(3.50) 

(3.51) 
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Closing Equations 

Closing equations are needed to generate the information needed to compute 

the wavefront aberration and the squared ray aberrations. 

Wavefront Aberration 

The wavefront aberration at the exit pupil reference sphere is the 

difference in optical paths of rays from a single object point. The value for a 

particular point on the wavefront can be calculated by subtracting the optical path 

length of a real ray from the optical path of an ideal reference ray. 

The ideal wavefront at the exit pupil is simply a sphere centered on the 

ideal image point and was referred to earlier in the chapter as a reference sphere. 

Since for ideal imaging the optical path length to the ideal wavefront is a constant. one 

can determine the ideal path length by tracing a single reference ray. For a real system 

this ray is the ray along the axis traced in the reference wavelength. 

In tracing an arbitrary real ray to the reference sphere one must consider 

two cases: non-telecentric and telecentric systems. In the non-telecentric system the 

ray must be traced to a tilted reference sphere. In the telecentric system the wavefront 

aberration can be determined by tracing the ray to a specific point (to be discussed 

later) near the ideal image point. 

The Non-telecentric Case. This situation is depicted in Figure 9. The ray 

must be traced to its intersection with the tilted reference sphere. The procedure is to 

trace the ray to the perpencidular point of the exit pupil reference sphere and then use 

Equation 3.30 instead of Equation 3.17 to find the surface intersection. The wavefront 

aberration is then calculated by subtracting the reference ray optical path length from 

the optical path length of the real ray. 
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It is important to note that for this transfer the reference sphere surface 

curvature Cv and the unit vertex normal < C. Cz > are not constants of the system (as 

they are for physically existing surfaces). but are functions of the ray object variable 

-+ 
Iz' . 

The Telecentric Case. In the telecentric case the ideal reference sphere is 

located at infinity. By considering what happens to the reference sphere in the limit as 

it approaches an infinite distance from the optical system. one discovers that the 

wavefront aberration can be exactly calculated by tracing the real ray to its point of 

closest approach to the ideal image point. This is illustrated in Figure 10. Subtracting 

the resulting optical path length from the path length of the reference ray yields the 

wavefront aberration for the ray. As in the non-telecentric case. the reference ray is 

the axial ray traced to the image plane. 

To calculate the point of closest approach of the ray to the ideal image 

point. one first traces the ray to the perpendicular point of the image plane. The 

transfer equation from this point to the desired point is determined with the help of 

Figure 10. One starts with 

-+ -+ 
h' + X. (3.52) 

where ii' = m ii. Take the dot product of the above equation with S and use the fact 

that -P·S = X·S = 0 and S·S = N2 to get 

m (h·t) OPL. (3.53) 

In this case one does not need the auxiliary quantities (C.p> and (C·s). 
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To compute the wavefront aberration for the ray. determine 
its intersection with the reference sphere and then subtract 
the OPL of the reference ray from the OPL of the ray 
itself. 
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To compute the wavefront aberration for the ray, trace the 
ray to the point P and then subtract the OPL of the 
reference ray from the OPL of the ray itself. 
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Instead one carries along the auxiliary quantity J·s}. 

Squared Ray Aberration 

The squared ray aberration is the square of the distance between the ideal 

image point and the ray intersection point in the image plane. In tracing a real ray to 

the image plane one needs to consider two cases: finite and infinite image plane 

locations. The finite image plane location is the most common situation and will be 

treated first. 

Finite Image Plane Location. This situation is easily treated with the aid of 

Figure 11. One has trivially from the figure: 

p - t'. (3.54) 

... ... 
Recalling that /z' = m /z and squaring the above equation by taking the dot product with 

itself yields 

(3.55) 

The auxiliary quantities (C.p) and (C·s) are not needed to determine the 

squared ray aberration. Instead one uses the auxiliary quantity (iz·p). 

Infinite Image Plane Location. This situation is depicted in Figure 12. In 

this case the image plane is at infinity and one defines the ray aberration as the angular 

deviation of the ray from the ideal direction. One starts by tracing the ray not to the 

image plane at infinity, but to the ideal reference sphere (in this case a tilted plane) in 

the exit pupil. The ray aberration in this case is then given by 
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To determine the squared ray aberration. trace the ray to its 
intersection with the ima~ plane and then compute 1·1 = 

cp·m - 2m(i~·p) + m2(h·h). 
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siN - c . (3.56) 

Here c = h' = m 71 so that 

(t·t) (3.57) 

The necessary auxiliary quantity is (h·s). 

One now has at his disposal aH the proximate equations necessary to 

calculate either the wavefront aberration or squared ray aberration of a particular 

proximate ray in terms of quantities that are even functions of the pupil variable. The 

next chapter will contain the information needed to apply the proximate operations to 

the ray trace equations. It will also show how this leads to the computation of the 

polychromatic aberration coefficients. 
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Fig. 12. Infinite Image Plane Location 

To determine the squared ray aberration. trace the ray to its 
intersection with the ideal exit pupil reference sphere and 
then compute 1·1 = (S.'S) / N2 - 2m(h·'S) + m2(h·h). 
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CHAPTER 4 

USING PROXIMATE ALGORITHMS TO COMPUTE 
ABERRATION COEFFICIENTS 
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The formulation of a unified set of ray tracing equations which allow the 

calculation of wavefront aberration or mean square ray aberration was presented in the 

previous chapter. It was developed in a manner consistant with the use of a single 

power series form for all the quantities involved in the ray trace. This allows a 

unified set of power series manipulation algorithms to be applied to all of the equations 

involved in the ray trace. 

This chapter will present the relationship between the power series and 

proximate representations of a quantity. The relationship will then be used to develop 

numerical algorithms which implement the proximate mathematical operations necessary 

to carry out the ray trace. 

Previous to this work. proximate mathematical operations have been 

implemented by algebraically expanding ray trace equations. This allows considerable 

probability for error in the derivation of the expansions and becomes extremely 

cumbersome when carried past the fifth order. The implementation of algorithms 

instead of algebraic expansions allows compact expressions for the computation of all 

ray trace quantities. as well as trivial extension to any desired degree without the need 

to rederive equations. It will be seen that this is a great advantage. 



The Relationship Between the Power Series 
and Proximate Representation of Quantities 
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It is assumed that any ray trace quantity X is functionally represented by a 

power series of the form of Equation 2.5. which is repeated here for convenience: 

x 
00 m n ~ L L L L (xmnpq v(m-n) (h·h)(n-p) (h'p)(P-q) cp.p)(q) ] . (4.1) 

m=O n=O p=O q=O 

For the purposes of the prp.sent work. the salient property of this particular series form 

is that the terms are summed according to degree. This is extremely important because 

it allows an association between the proximate and series representations of quantities 

in the following way: assume that the power series for the quantity X is evaluated at 

v ... Ii". and p". The series summation thus becomes a sum of constant terms given by 

X* 
00 m n f 
'"' '""' '"' ( X *(m-n) (h* 'h*)(n-p) (h* .p*)(p-q) _I .. LL_ mnpqV 
m=O n=O p=O q=O 

cp* .p*)(q) ). (4.2) 

The primary concept behind the proximate representation of a quantity is introduced by 

writing the partial sum over the three inner summations of the above series as 

~ ~ ~ (x *(m-n) (-'h* '-'h*)(n-p) (-'h* .-.t*)(p-q) (:t* .-.t*)(q) ] . L L L mnpq v /J l" /J (4.3) 

n=O p=O q=O 

The complete summation is then simply 
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00 

x* L (x(m» . (4.4) 

m=O 

This is exactly Wachendorrs and Hopkins' proximate representation of an 

even quantity. A small difference from the present notation is that they label terms 

X<2m) to indicate that the quantity is an even function of the pupil and field variables. 

Using this representation (and a representation for odd proximate quantities) they derive 

a set of proximate ray trace equations by explicitly expanding ray trace equations in 

terms of proximate quantities. 

Here it wiIl be shown how to evaluate the equations presented in the 

previous chapter using algorithms which operate on even proximate quantities. As 

mentioned earlier. this offers an advantage over the explicit expansion of equations. 

Before giving the algorithms which implement the required mathematical 

operations. a vector notation for proximate quantities is presented as follows: 

x (4.5) 

This allows simpler presentation of ideas and will prove convenient later in the chapter. 

The value of a proximate quantity is simply the sum of its vector components. 

Proximate Algorithms 

The ray trace equations developed in the previous chapter involve only the 

mathematical operations of addition. subtraction. multiplication. division. and square 

root. Therefore. these are the only operations that need be implemented as proximate 

mathematical operations. 
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The algorithms which implement the operations are given below and are 

presented for simplicity and ease of understanding. For this reason they may not be 

the most efficient algorithms possible. 

Scalar Multiplication 

The multiplication of a proximate quantity X by a scalar constant k is 

written 

Y kX 

(Xl 

k L ( x(m) ) 

m=O 

(Xl 

L ( k x(m) ) . 

m=O 

(4.6) 

One wishes to determine the components of the resultant proximate vector 

Y. The algorithm which accomplishes this is easily seen to be 

for m = O. I. 2 •... 
Ly(m) = k x(m) . (4.7) 

Addition 

The addition of one proximate quantity to another is written 

(Xl (Xl 

z L ( x(k» + L ( y(n) ) . (4.8) 

k=O n=O 

where X. Y. and Z are proximate quantities. The m'th component of Z is easily 

computed by adding the components of X and Y for which In = k = n. With this in 
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mind. the algorithm which adds two proximate quantities is easily seen to be 

for m = O. I. 2 •... 
Lz(m) = x(m) + y(m) . (4.9) 

Note that the idea is to determine the algorithm which. given the vector 

components of the proximate operands. yields the vector components of the proximate 

result. 

Multiplication 

The proximate multiplication operation is more complex than the scalar 

multiplication operation. The equation is written 

z Xy (4.10) 

where the resultant proximate quantity is Z and the proximate operands are X and Y. 

The algorithm which implements proximate multiplication is 

for m = O. 1. 2 •... 

z(m) = 0 

Lfor n = O. 1. 2 •...• m 
L z(m) := z(m) + x(n) y(m-n) . 

where the operator := denotes the replacement operation. 

(4.11) 
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Division 

The proximate division operation is distinct from the proximate 

multiplication operation and is slightly more complex. It is written 

00 L (x(m) ) 

Z XjY m=O (4. 12) 
00 L( yen) ) 

n=O 

The algorithm which implements division can be determined by inverting 

the above equation and then determining the components of Z which satisfy 

Y XZ. (4.13) 

In this equation the zero degree component can be computed directly. Then the first 

degree component can be computed because the zero degree component is known. The 

second degree component can then be computed. and so on. In this way one continues 

until the component of the desired degree is computed. The algorithm is 

for m = O. 1. 2 .... 
z(m) = x(m) j yeO) 

Lfor n = 1. 2 ....• m 
L z(m) := z(m) _ yen) z(m-n) j yeO) . (4.14) 

Note that the second loop index starts at I and that the division operation is 
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undefined for f O) = o. 

Square Root 

The proximate square root algorithm is similar to the division algorithm and 

in fact is determined in much the same way. The equation is written 

00 

z L( x(m» (4.15) 

ffi=O 

To determine the algorithm, one inverts the above equation and then 

determines the elements of the proximate quantity Z which satisfy 

zz x. (4.16) 

The algorithm which implements the square root operation is 

z(O) = Jx(O) 

for m = 1. 2, ... 

z(m) = .5 x(m) / z(O) 

Lfor n = 2,3,4, ... , m 

L z(m) := z(m) _ .5 z(n-1) z(m-n+ 1) / z(O) . (4. I 7) 

Note that the outer loop index starts at 1 and the inner loop index starts at 

2. Note also that the square root operation is undefined for xf.O) < O. 
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One must recall that the purpose of using proximate algorithms to trace rays 

is to allow the computation of the power series coefficients for the wavefront aberration 

or the mean square ray aberration. Hopkins has shown how this can be accomplished 

and a similar method is presented here. 

Consider the calculation of the wavefront aberration for a particular 

proximate ray. It is determined by using the opening equations presented in the 

previous chapter followed by the ray trace equations applied on a surface by surface 

basis until the intersection of the ray with the exit pupil reference sphere is achieved. 

Each ray trace equation is implemented through proximate algorithms. 

The result of the ray trace is the proximate wavefront aberration vector W 

for that ray: 

w (w(O), W(1), W(2) , W(3), ... ). (4.18) 

Because W was computed for a particular ray (for example at v = .1, P = (.5, .5), 7i = 

(0, .7) ), each w(m) is a linear equation (given by Equation 4.3) in the unknown 

aberration coefficients W mnpq. Thus if one traces the same number of linearly 

independent rays as the number of unknown coefficients, each coefficient can be 

determined by simultaneously solving a set of linear equations. It is important to note 

at this point that the coefficients determined in this way are the true Taylor series 

coefficients for the aberration function, not an approximation to them. 

An example of the procedure which computes the first degree wavefront 

aberration coefficients is now given to help clarify the above explanation. There are 
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four first degree terms in the power series for ~he wavefront aberration. That is. the 

first degree proximate vector component of the wavefront aberration contains four 

terms. These terms are given by Equation 4.3 (with m = 1): 

W(l) 
........ ... WIOOO V + WUOO (h'h) + W1110 (h'p) + WUll <p.p) . (4.19) 

If one traces four independent proximate rays specified by vi' hi' and Pi where i = 1. 2. 

3. 4. the result of the four ray traces is four independent values for the first degree 

proximate value W(I) of the wavefront aberration. These four values are denoted by 

Wp> for i = 1. 2. 3. 4. One can then form a vector of known first degree aberrations 

d(1) = < WI(I). W 2(1). WP>. Wp> > and a vector of unknown wavefront aberration 

coefficients W(J) = <WIOOO. WUOO' W1110• WUu> as well as the matrix FI of values of 

the functional forms: 

VI [hI'hIJ [hI'PI J <PI'PI) 

v2 [h2'h2 ) [h2'P2 ] <P2'P2) 

V3 [h3'h3 ] [h3'P3 ] <P3'P3) 
F I = 

[h4'h4 ] [h4'P4] 
(4.20) 

v4 <P4'P4) 

Thus one sees that there are four equations in the four unknown aberration 

coefficients. They can be determined by solving the following matrix equation for 
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d(l) (4.21) 

The solution can be determined by any of the methods used to solve a set of linear 

simultaneous equations of the type given by the above equation. 

The aberration coefficients of any other degree are determined in the same 

way as the example above. The only difference is that there are more coefficients at 

higher orders. and thus. a larger number of independent rays in the ray set. This 

illuminates a disadvantage of the proximate ray technique: the accuracy of the solution 

of Equation 4.21 depends on the conditioning of the matrix F. An ill-conditioned 

matrix can result in values for the aberration coefficients that are not numerically 

accurate due to computational round off errors. 

Fortunately. the matrix is completely determined by the ray set. and one can 

choose a ray set that yields a well conditioned matrix. Unfortunately. the author has 

not been able to automate the selection of a ray set which yields a well conditioned 

matrix for all degrees. However. a ray set that yields well conditioned matrices for 

degrees up to the fifth has been determined by the author and is presented in Appendix 

A. 

The computation of the series coefficients for the squared ray aberration is 

accomplished by exactly the same method as for the wavefront aberration. The only 

difference is that the rays from the ray set are traced to determine the proximate 

components of the squared ray aberration instead of the wavefront aberration. In fact. 

the matrices of the functional forms are identical since the same ray set can be used to 

compute either aberration. 
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CHAPTER 5 

EXAMPLES 

This chapter begins with a brief review of some of the developments to this 

point. It was shown in Chapter Two that two physically significant merit functions 

could be constructed from polychromatic aberration coefficients in such a way that 

coefficients of a particular and higher degrees could be isolated from coefficients of 

lower degrees (see Equation 2.84). This allowed the construction of a sequence of merit 

subfunctions which converges to the complete merit function (see Equation 2.86). Each 

subfunction is associated with a particular aberration degree. 

In Chapters Three and Four it was shown how the aberration coefficients 

which make up the merit function are computed using an algorithmic approach to 

proximate ray tracing. This development allows one to actually compute the merit 

functions -- ensuring that the current research is not a purely intellectual excercise. 

In this chapter. the behavior of the merit subfunctions with respect to 

appropriate parameters of some simple optical systems are investigated by examining 

their topography. The obvious vehicle for the investigation takes the form of contour 

maps of the subfunctions. The graphical presentation of subfunction topography allows 

convenient qualitative interpretation of behavior. and will be used to investigate three 

relatively simple optical systems. 

In all of the contour maps to follow. each contour line represents a line of 

constant subfunction value and the contour interval follows logarithmic spacing. 

... 
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Specifically. each contour line represents a value ten times larger or ten times smaller 

than its neighboring lines - and each line is labeled with the power oi ten (in units of 

wavelength squared) associated with that line. 

Unfortunately. graphical presentation restricts the useful number of system 

variable parameters to two because of obvious difficulties in presenting data of more 

than three dimensions in two dimensional form. This in turn restricts the complexity of 

optical systems that can be conveniently examined in this way. But because of the 

preliminary nature of the investigation. it would be inappropriate to attempt an 

investigation of complex optical systems until the behavior of simple systems has been 

investigated. 

In order of increasing complexity. the simple systems to be studied are the 

landscape lens. the telescopic doublet. and the symmetric dual dialyte. 

Preservation of First Order Properties 

Before the investigation is begun. one must note that it is desireable to 

preserve all first order properties of the system when varying any parameter. Since the 

parameter to be varied will frequently be the bending parameter of a thick lens. 

equations are presented which allow the bending of the lens while maintaining all of its 

first order properties. 

The bending parameter X is defined 

x (S.l) 

where C1 and C2 are the curvatures of the first and second surfaces of the lens 
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respectively. 

Normally a lens is specified by its index of refraction N. its curvatures C I 

and C2• and its thickness T. However the same lens can be equally well specified by 

its power P. bending parameter X. index of refraction N. and reduced thickness T = 

TIN. 

The appropriate relationships between the two sets of parameters are 

(I+X)P 

I +J 1-( I-X)( I +X)TP 

(I-X)P 

I+JI-(I-X)(I+X)TP 

• and 

(5.2) 

where PI and P2 are the surface powers of the lens. The surface curvatures can then 

be computed from 

PI 
(N' _ N) . and 

(N - N') • (5.3) 

where N' is the index of the medium surrounding the lens. 

The above equations indicate how to calculate the curvatures of a thick lens 

given its power and bending parameter. Note that this form of bending preserves the 

thickness of the lens. 

In order to preserve the first order properties of the system in which the 

lens is a part. one must preserve the spacing between principal planes of the system 

components. The location of the principal planes of a thick lens are given by 
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01 

l' P2 • and -P-

O2 
- l' PI 

(5.4) -P-

where 01 is the reduced distance from the vertex of surface 1 to the front principal 

plane and O2 is the distance from the vertex of surface 2 to the rear principal plane. 

The relationships presented above are used to preserve the first order 

properties of all three optical sytems to be presented in this chapter. 

The Landscape Lens 

The landscape lens of Figure 13 is a moderately simple system with two 

effective design variables. These are the stop position D measured from the principal 

plane. and the lens bending parameter X. Figure 14 is a map of the design variable 

space that indicates with cross hatching those system configurations that are not 

optically realizable because rays miss a surface. are totally internally reflected. etc. 

The horizontal axis is the stop position and the vertical axis is the bending parameter. 

Figure 15 shows the contour map of the wavefront variance merit function 

accurate to the fifth degree. In this case first degree adjustments on the merit function 

have been made according to the concepts of Chapter Two. Thus. the merit function 

represents the variance of the wavefront aberration measured from a reference sphere 

centered on the peak of the difraction image and defocussed to the best average image 

plane. Figures 16 through 18 are the contour maps of the third through fifth degree 

wavefront variance subfunctions respectively. 

It is immediately obvious from the higher degree maps of Figures 16 

through 18 that the higher degree subfunctions are less linear than the lower degree 
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Fig. 14. Map of the Landscape Lens Parameter Space Showing the 
Optically Unrealizeab1e Configurations 

The cross hatched area indicates the excluded configuration 
space. The ordinate represents the pupil location and the 
abscissa represents the bending parameter. 
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Fig. 16. Third Degree 
Merit Subfunction Map 
of the Landscape Lens 
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Fig. 1 7. Fourth Degree 
Merit Subfunction Map 
of the Landscape Lens 
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Fig. 18. Fifth Degree 
Merit Subfunction Map 
of the Landscape Lens 

x 

105 

Inl 



106 

subfunctions. The maps also show that any particular merit subfunction minimum 

tends to be located in the same general region of parameter space regardless of degree. 

However, the lower minimum tends to migrate upward in the higher degree maps, while 

the behavior of the upper minimum appears to be more complex. It tends to have a 

small erratic migration with degree while developing a shallow secondary minimum in 

the same region. 

However, the general features of the merit subfunctions are the same 

regardless of degree. This feature of the subfunctions will be seen to be a general one 

that applies to other systems as well. A possible explanation for this observed behavior 

will be presented in the next chapter. 

By comparing the values of the subfunctions at any particular point in 

parameter space not near a boundary, one can see that the values differ by orders of 

magnitude per degree. This subfunction behavior will also be seen to occur in the 

examples to follow. 

As a final observation concerning the functional behavior of the landscape 

lens, the lowest degree merit function displays two minima as expected. These are the 

familiar stop-in-front and the stop-in-back solutions shown in Figure 19. 

The Gaussian Ideal 

Figures 20 through 23 illustrate the behavior of the wavefront variance 

subfunctions (for the same landscape lens as above) in which the wavefront aberration 

is defined with respect to a reference sphere centered on the Gaussian image point. 

No first degree adjustments to the merit function have been made in this case. 

One sees that the second degree subfunction of Figure 20 has a quite 

different appearance than that of Figure 15. This is the result of the difference in the 
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Stop-In-Front Solution 
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Stop-In-Back Solution 

Fig. 19. The Two Solutions for the Landscape Lens 
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definition of the reference sphere (differences in the exact meaning of the merit 

function). not any change in the intrinsic behavior of the landscape lens. The 

aberration coefficients have not changed. but the transformation matrix is different from 

the transformation matrix for the first degree adjusted matrix in the example above. 

The figures clearly demonstrate that the exact definition of the merit function can have 

a profound impact on the perceived behavior of the optical system. 

But what is the cause of the change in the merit function behavior? Or 

more precisely. why is there a minimum in Figure 15 at the point D = -1. X = -9 

when there is no minimum at the corresponding point in Figure 20? The answer to this 

question lies in the table of aberration coefficients listed in Appendix B. where the 

values of the wavefront aberration coefficients that appear there were computed for the 

landscape lens. One immediately notes that the monochromatic distortion coefficient 

W210 (the coefficient of the second degree distortion term h3 Cos(e) p ) is about two 

orders of magnitude larger than any of the other second degree coefficients. In the first 

example. the distortion terms were balanced out by first degree adjustments to the merit 

function. which allowed both minima to appear in the lowest degree subfunction map. 

But in the second example. no such balancing was carried out. so the full effect of 

distortion appears in the lowest degree subfunction map and only one minimum 

appears. 

But what about the higher degree subfunctions? If one compares the 

topography of the higher degree subfunctions illustrated in Figures 21 through 23 to the 

topography illustrated in Figures 16 through 18 respectively. one sees that the two sets 

of figures tend to resemble each other. Specifically. compare the fifth degree merit 

subfunctions of Figures 23 and 15. Note that the minima are located in approximately 

the same location in either figure. This might be an indication that the higher degree 
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Fig. 23. Fifth Degree Gaussian Merit Subfunction Map of the 
Landscape Lens 

112 



113 

subfunctions are more fundamental indicators of the imaging quality of an optical 

system than the iow order subfunctions (since it appears that the low order subfunctions 

tend to be sensitive to the exact definition of the imaging ideal while high order 

subfunctions do not). Thus in the context of optical design. the use of higher order 

subfunctions as the design criterion might be useful as a guide to a solution region not 

readily apparent with the use of the usual low order subfunctions. 

The Telescopic Doublet 

The doublet of Figure 24 is a well known system with four effective design 

parameters. These are: the bending parameter of each lens. the relative power of the 

two lenses. and the air space between the lenses. In order to reduce the number of 

parameters. the air space will be held constant because its contribution to the behavior 

of the doublet is known to be relatively small. The relative power of the two lenses 

will also be fixed because its primary effect is to control the color correction. The 

remaining variables are the two lens bendings. 

Figures 25 through 28 show the contour maps of the wavefront variance 

subfunctions where the x-axis represents the crown bending parameter Xa and the .. 
y-axis represents the flint bending parameter X b • From an examination of the maps. 

the increasing nonlinearity of the subfunctions with increasing degree is obvious (as is 

the case with the landscape lens). Also. the global topography of the subfunctions tends 

to be the same regardless of degree. However there is a noticeable difference between 

the topographies of the second and third degree subfunctions. 

With regard to minima. there are two definite minima present in the lowest 

degree map. In contrast to the landscape lens maps however. the lower minimum 

disappears in the higher degree maps. while the upper minimum remains relatively 
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Fig. 24. Sketch of the Telescopic Doublet 
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Fig. 25. Second Degree Merit SubfuDction Map of the Telescopic 
Doublet 

The ordinate is the crown bending parameter Xa . and the 
abscissa is the flint bending parameter Xb. The asterisks 
approximately locate the function minima. 
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Fig. 26. Third Degree Merit Subfunction Map of the Telescopic 
Doublet 
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Fig. 27. Fourth Degree Merit Subfunction Map of the Telescopic 
Doublet 
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Fig. 28. Fifth Degree Merit SubfunctioD Map of the Telescopic 
Doublet 
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stable in location. To help illustrate the transition from two minima to a single 

minimum. Figure 29 shows a cross section of all the subfunctions along the 

parameterized line 

Xa = 0.27 X + 0.25 • and 

Xb = -0.96 X + 0.07 (5.5) 

in variable space. The line passes through the two minima of the lowest degree map. 

One might wonder why subfunction maps using the Gaussian image ideal 

are not included for the doublet. The answer lies in the fact that thin doublets 

inherently do not possess distortion. Since the doublet considered here is both relatively 

thin and has a small field. distortion and field curvature do not play a significant role 

in its aberrational behavior. Since first degree adjustments of the merit function 

involve distortion balancing to locate the image centroid. and field curvature balancing 

to locate the best image plane. first degree adjustment of the merit function is 

unproductive. 

Before investigating the last optical system. a quick re-examination of the 

lowest degree subfunction of Figure 25 is appropriate. A vast amount of prior 

experience with telescopic doublets has shown that there can exist two minima in the 

merit· function: the Fraunhofer (upper minimum in the figure) and Gauss (lower 

minimum) solutions. Both are evident in the map. and Figure 30 illustrates the physical 

form of the two solutions. 
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Fig. 29. Cross Sectional View of the Merit Subfunctions of the 
Telescopic Doublet 

The cross section is taken through the two minima of the 
second degree subfunction (see Equation 5.5). 
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Fraunhofer Solution 

Gauss Solution 

Fig. 30. The Two Solutions for the Telescopic Doublet 
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The Symmetric Dual Dialyte 

The symmetric dual dialyte of Figure 31 is composed of two dialyte 

objectives placed symmetrically about a central stop. For the purposes of this 

dissertation. complete symmetry of the optical system about the stop is preserved in 

order to restrict the system to two effective parameters. They are the crown and flint 

bendings. X a and X b respectively. As is the case with the two previous examples. 

surface spacings are adjusted to keep all first degree system properties constant for alI 

bendings. In addition. first degree adjustments were made to the merit function. 

However. since the system is symmetric. one would expect it to have little distortion. 

This implies that balancing distortion should have little effect on the topographies of the 

subfunction maps to follow. Figure 32 illustrates the excluded regions in parameter 

space. 

The dual dialyte is not as simple as the telescopic doublet. so not as much is 

known about its behavior. From the lowest degree subfunction map of Figure 33. two 

solutions are seen. And as in the two previous optical systems. the global topography 

of the subfunction maps does not change dramatically as the higher degree maps of 

Figures 34 through 36 illustrate. With regard to minima. the upper minimum is almost 

perfectly stationary. while the lower minimum migrates slowly toward the upper 

minimum. Note that the subfunction values of the migrating minimum are smaller than 

the values of the upper minimum. This. is the opposite of the telescopic doublet case 

where the minimum with larger values disappeared. 

The final observation concerns the upward sloping walls of the subfunction 

maps near the boundaries of the physically possible system configurations. The upward 

slope seems to follow a roughly logarithmic rise as evidenced by the roughly equal 



Focal Length: 
Thickness: 

Bending Factor: 
Glass: 

F/number: 
Half Field of View: 
Wavelength Range: 
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9.99966 mm 
!.89290 mm 

6.000 
22 degrees 
0.4 to 0.7 microns 
0.58756 microns 

Fig. 31. Sketch of the Symmetric Dual Dialyte 
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Fig. 32. Map of the Symmetric Dual Dialyte s Parameter Space 
Showing the Optically Unrealizeable Configurations. 

The cross hatched region denotes the excluded regions. The 
ordinate represents the crown bending parameter. the 
abscissa represents. the flint bendin parameter. 
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Fig. 33. Second Degree Merit Subfunction Map of the Symmetric 
Dual Dialyte 
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Fig. 34. Third Degree Merit Subfunction Map of the Symmetric 
Dual Dialyte 
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Fig. 35. Fourth Degree Merit Subfunction Map of the Symmetric 
Dual Dialyte 
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Fig. 36. Fifth Degree Merit Subfunction Map of the Symmetric Dual 
Dialyte 
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spacing of the contour lines. This seems to be a general feature of all three systems 

invesiigated, and may be more an indication of divergent aberration series truncation 

error than a true indication of topographical behavior. 

The physical forms of the two solutions of the lowest degree map are 

pictured in Figure 37. The upper solution has gentle surface slopes while the lower 

solution has steeper slopes and is related to the Double Gauss lens. It seems from a 

consideration of the physical forms of the two solutions that they are influenced by the 

two solutions of the doublet that makes up each half of the system. 

As an interesting aside, the starting point for the symmetric dual dialyte 

design was taken from Kingslake's book(I4) at the point in the design process in which 

he departs from symmetry. The point to be made is that his final solution corresponds 

to the upper solution of Figure 33 while the better solution (according to the mean 

wavefront 'variance criterion) is the Double Gauss solution. 
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Fig. 37. The Two Solutions for the Symmetric Dual Dialyte 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

In the introductory chapter it was stated that the motivation for this 

investigation was to find a solution to the global minimum problem in optical design. 

Unfortunately, the results of Chapter Five show that the approach taken does not 

directly indicate a solution to the problem. However, much has been achieved on the 

road to the results of Chapter Five. The remainder of this chapter will summarize 

(following roughly the order of original development) and draw conclusions from these 

achievements. 

The Merit Functions 

We begin with the developments of Chapter Two in which two merit 

functions that are compatible with the isolation of aberration degrees are developed. 

They are: the mean square ray aberration and the wavefront variance. Because either 

merit function describes a useful physical property of optical systems, it can be applied 

advantageously to a great many systems - not merely a few specialized systems. This 

implies that many of the results of this research may apply to a broad class of optical 

systems. 

In the beginning of the chapter we saw how the wavefront aberration 

function was defined and then expanded as a power series. The inclusion of the 

chromatic variable into the series (Equation 2.2) marked its first appearance (to the 

.... 
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author's knowledge) in an aberration series which is used to construct a merit function. 

This variable expresses in a fuB and naturai way the chromatic behavior of the 

aberration function on the same level as the pupil and field variables (Equation 2.5). 

The wavefront variance merit function is developed from the power series 

expansion of the wavefront aberration by analytically carrying out the integrations over 

each aberration term. The inclusion of weighting functions in the averaging integrals 

proves advantageous because the resulting wavefront variance can be tailored somewhat 

to reflect the imaging requirements of the optical system. For example. the wavelength 

weighting can be made to match the response of a detector. image contrast can be 

emphasised. or the image quality at the center of the field can be emphasized. 

The main weakness of the merit function construction technique is that it 

does not manifest any vignetting effects. A circular pupil is assumed regardless of the 

field point. This slightly limits its potential use as an optical design tool. but not as 

much as might at first be thought. For example. excluding vignetting effects in the 

design process may naturally guide the design to a solution region in which vignetting is 

not advantageous. which could produce an intrinsically better design. Since the merit 

functions are only approximations to the true merit function (because in practice the 

aberration series must be truncated). concluding the design process using a merit 

function constructed with real -::ay data would be wise. However, the important point 

is that a design could be guided to a superior solution region. though not necessarily to 

a final design. 

At this point attention was shifted to the development of the mean square 

ray aberration merit function. The development begins with the polychromatic power 

series expansion of the squared ray aberration function. This aberration series has the 

same mathematical form as the wavefront aberration series. but the reader should note 
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that its coefficients are not assumed to have been derived from the coefficients of the 

wavefront aberration series. Tne mathematical deveiopment of the mean square ray 

aberration merit function then proceeds similarly to the development of the wavefront 

variance merit function. 

It was then shown that the mathematical forms of the two merit functions 

are formally indentical. Each merit function is a quadratic form in the polychromatic 

aberration coefficients and can be written in a quadratic matrix form (Equation 2.53). 

For this reason all unnecessary distinctions between the two merit functions are 

dropped in what follows. 

The matrix of constants in the quadratic form is termed the coupling matrix 

because it couples elements of the aberration coefficient vector. Many of its properties 

are detailed, the most important of which is the positive semidefinite property which 

allows the matrix to be diagonalized (implemented through the Cholesky factorization). 

The diagonalization defines a triangular transformation matrix which transforms the 

aberration coefficient vector to what is termed the orthogonal aberration vector. The 

term orthogonal is used because no cross terms appear when the orthogonal vectors are 

used to form the merit function. 

The utilization of orthogonal aberrations in the formation of the merit 

function is extremely important because it allows two developments which are 

fundamental to the present research. These developments are: first degree adjustments 

to the merit function and the isolation of degrees of aberrations in the merit function. 

Each orthogonal aberration is a linear combination of classical aberration 

coefficients because the orthogonal aberration vector is obtained from the classical 

aberration coefficient vector through simple matrix multiplication with the 

transformation matrix. They define define a natural balance among the aberration 
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coefficients that can be used to reduce the merit function. In particular. the two first 

degree coefficients which are the waveiength independent defocus and tilt can be used 

to locate the image centroid and the plane of best average imaging. These two first 

degree adjustments are useful becau~e the aberration function can then represent 

departures from the Gaussian ideal. which. in the presence of aberrations. is not 

necessarily the desired physically significant property of interest. The important point 

is that the aberration function can be adjusted so as to be defined relative to the image 

centroid or a defocussed image plane. 

The ability to isolate degrees of aberrations in the merit function leads to 

the concept of the merit subfunctions. They are the primary tools used in this research 

to investigate the behavior of optical systems. 

The Merit Subfunctions 

A few paragraphs above it was stated that each orthogonal aberration is a 

linear combination of classical aberration coefficients. but it was not stated which 

coefficients appear in any particular orthogonal aberration. This is were the form of 

the power series summation plays a crucial role. The particular form used in this 

research segregates aberration terms according to ascending degree - which is also the 

form that automatically segragates the coefficients within an orthogonal aberration by 

degree. Since the transformation matrix is upper triangular. each orthogonal aberration 

contains classical coefficients of a particular and all higher degrees. The orthogonal 

aberration can then be associated with that degree. 

The construction of subfunctions that can be associated with degree becames 

almost trivial at this point. Since the complete merit function is the sum of the 

squares of the orthogonal aberrations. one can collect all terms of a particular and 



135 

higher degree. The resulting sum is the merit subfunction of that degree since only 

aberration coefficients of that degree and higher occur in the subfunction (Equation 

2.87). It is seen that the complete merit function is then identical with the first degree 

subfunction since it contains all aberrations of first degree and higher. 

However. the association between a particular subfunction and its degree is 

not perfect because the subfunction associated with a particular degree contains 

classical aberration coefficients of not only that degree. but all higher degrees as well. 

For this reason there is some mixing of degrees in any particular subfunction. but the 

examples in Chapter Five demonstrate that the effects of the higher degree terms do not 

significantly impact the magnitude of the subfunction. 

Proximate Ray Tracing and the Computation of 
Polychromatic Aberration coefficients 

Since the merit subfunctions are composed of polychromatic aberration 

coefficients. it becomes necessary to actually compute the coefficients if a practical 

investigation into subfunction behavior is to be implemented. The algorithmic approach 

to proximate ray tracing developed for this purpose is the subject of Chapters Three 

and Four. 

The advantages of this approach are several: the relevant mathematical 

algorithms are relatively simple. easy to program. invariant with respect to the number 

of series variables. and trivially extendable to any degree. There is only one 

disadvantage. though it is relatively severe: the choice of a suitable ray set that can be 

used to compute high degree aberration coefficients is difficult because the solution 

matrices tend to be ill conditioned. This makes automation of the selection of a ray set 

difficult. 
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The whole of Chapter Three is devoted to the relatively straightforward but 

tedious development of ray trace equations consistent with quantities that can be 

represented as power series of the same type as that used to represent the aberration 

functions. It is shown that those quantities are related to the rotation invariants of a 

cylindrical coordinate system. 

Since the proximate representation of any quantity is in reality a partially 

summed power series. the equations developed to begin the ray trace reflect this fact. 

Also developed is a set of closing equations that are used to calculate the proximate 

values for the aberration used to form the merit function: the wavefront aberration for 

the wavefront variance or the squared ray error for the mean square ray error. This 

completes the developments of Chapter Three. 

The developments of Chapter Four reveal the relationship between the 

proximate and power series representations of a quantity. It is shown that the 

proximate representation is simply a partially summed version of the same type of 

power series used to represent the aberration functions. Thus proximate ray tracing 

involves mathematical operations on partially summed power series. The proximte 

operations necessary to carry out the proximate ray trace correspond to addition. 

multiplication. division. and square root. The algorithms which implement these 

operations are developed and presented. 

By carrying out a proximate ray trace. the proximate value for the 

aberration is obtained. However. this does not directly yield the aberration coefficients 

themselves because proximate quantities are linear combinations of the coefficients. 

The remainder of Chapter Four demonstrates how the coefficients are computed by 

tracing a set of proximate rays and then equating the set of proximate values at a 

particular degree to the power series terms at that degree. 

-------- ------------------------------------------------------------------------------------
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The summary of proximate ray tracing is concluded here with a few 

remarks of a general nature. Proximate ray tracing is the ideal vehicle for computing 

the degrees of any ray trace quantity. For example, if one wishes to compute the total 

third degree component (not just a single third degree aberration) of the optical path 

length of a particular ray at the exit pupil, one simply traces the corresponding 

proximate ray to the exit pupil. The desired information is then simply the third 

degree component of the proximate optical path length. No secondary computation is 

necessary. The alternative is to determine the full power series representation of the 

optical path length, and then sum the series over all third degree terms. The 

determination of the full series involves a much larger computational load than simply 

tracing a single proximate ray. In addition, summing the series to obtain the desired 

value is required, adding further to the computational burden. 

Thus, armed with the developments of the first four chapters, values for the 

subfunctions can actually be computed and their behavior investigated. 

Subfunction Topographies 

The vehicle for the investigation into consequences of isolating degrees of 

aberration in the merit function is the topographical map of the merit subfunctions. 

Chapter Five presents the subfunction topographies of three optical systems: the 

landscape lens, the telescopic doublet, and the symmetric dual dialyte. The maps are 

created by generating contour maps of the subfunctions as a function of the variable 

parameters, which are varied in such a way as to preserve all of the first order 

properties of the system. This ensures that the topography is not influenced by first 

degree variations in the system. 

Since Chapter Five contains detailed observations of the topographies of the 
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merit subfunctions of the three optical systems. only observations and conclusions of a 

general nature within the investigated set of optical systems will be presented here. 

As a general observation regarding the global features of the lowest degree 

maps of the landscape lens and doublet. the landscape lens map (Figure IS) correctly 

shows the stop-in-front and stop-In-back solutions. and the doublet map (Figure 25) 

correctly shows the Fraunhofer and Gauss solutions. Thus it appears that the merit 

subfunction maps accurately indicate the topography of the optical systems studied. 

However. the most striking observation is that the global topography generally does not 

change dramatically with increasing degree. In all three systems. the higher degree 

maps tend to resemble the lower degree maps. 

However. an exception to global topographical invariance can be induced by 

first degree adjustments of the merit function. For example, it was shown in Chapter 

Five that defining the wavefront aberration of the landscape lens relative to a reference 

sphere centered on the image centroid (rather than the Gaussian image point) has a 

large effect on the topography of the low degree subfunctions (compare Figure 15 to 

Figure 20). In fact, the topography of the second degree subfunction changed from 

possessing two minima to a single minimum. It was demonstrated that this is a 

consequence of the significant amount of distortion inherent in the landscape lens where 

the stop is not at the lens. 

Another observation is that minima tend to remain relatively stationary in 

position regardless of degree, although they can migrate in the same general vicinity. 

For example. the upper minimum for the symmetric dual dialyte is quite stationary, 

while the lower minimum migrates toward the upper minimum in the higher degree 

maps. The largest departUre from this general observation OCCUrS for the doublet. for 

which the details of the higher degree maps vary enough so that the two low degree 
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minima become a single minimum. Indeed, it may be that the two other systems simply 

were not investigated to a high enough degree. They may also exhibit a single 

minimum at higher degrees than those examined for this dissertation. The dialyte maps 

suggest that at approximately the eleventh degree, the migrating minimum might move 

far enough to merge with the stationary minimum. 

One will note that the sequence of magnitudes of the subfunctions converges 

toward zero fairly rapidly within the region of convergence of the aberration series. 

The subfunction maps indicate that the convergence tends to be exponential with 

degree. For example, at the D = X = 0 configuration of the landscape lens, the 

magnitude of the sufunctions decreases by approximately a factor of ten thousand per 

subfunction. 

The rapid convergence of the sequence emphasizes a puzzling aspect of the 

global topographical invariance phenomenon observed (but not expected at the beginning 

of the research) in all of the optical examples studied. This is somewhat surprising 

since the value of a particular degree subfunction can be four orders of magnitude 

different from the values of its neighboring subfunctions. If the values of neighboring 

subfunctions can be so vastly different. why are their topographies so similar? 

A possible explanation lies in the fact that aberration coefficients are the 

sum of an intrinsic term, and a term induced by lower order coefficients. The 

behavior of the induced term may explain the observed behavior. If true, then the 

topography of any subfunction map is induced by the topography of its neighboring 

lower degree map. Thus all maps, regardless of degree, could be expected to possess 

the same general topography -- or a topography which changes only slowly with degree. 

It can be demonstrated how the induced portion of an aberration occurs by 

way of an analogy with the proximate mathematical algorithms presented in Chapter 
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Four -- an appropriate analogy since the aberration coefficients are computed using 

proximate algorithms. An examination of the algorithms for proximate multiplication. 

division and the square root reveal that the resultant term of any particular degree is 

computed from lower degree terms. That is. higher degree terms are induced from 

lower degree terms just as occurs with aberration coefficients. 

Future Investigation 

The unexpected observation of global topography invariance with respect to 

degree of the subfunction suggests a line of future investigation. If the invariance is 

indeed a consequence of the induced aberration behavior dominating the intrinsic 

aberration behavior. then an obvious line of research is to investigate the consequences 

of isolating the intrinsic and induced portion of each subfunction. The intrinsic 

subfunction topography may then be examined and may reveal a topography of a more 

fundamental nature than that exhibited by the full aberration. 

The isolation of the intrinsic from the induced portion of the subfunction is 

straightforward and proceeds as follows: each aberration coefficient is written as the 

sum of induced and intrinsic parts. 

Wmnpq * W'mnpq + Wmnpq ' (6.1) 

where W'mnpq and W~npq are the induced and intrinsic parts respectively. Next. form 

the aberration coefficient vectors Wand W*. The orthogonal aberration vector is then 

easily separated into induced and intrinsic parts as shown: 
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A (W' + W* ) 

AW' + A W* .. 1*. f' + (6.2) 

The merit function is then written 

4> 1t 1 

1,t l' + 2 1,t 1* + 1*t 1* 

+ 21,t 1* + cp* • (6.3) 

The pure intrinsic part. 4>', of the merit function can be written as the limit 

of a sequence of subfunctions in the same manner as for the full merit function. 

Because the influence of the induced part of the aberrations has been removed. the 

topography of the intrinsic subfunction sequence formed from 4>' may be vastly 

different and independent of degree. This has the potential to yield new insight into 

the behavior of optical systems and seems a logical line of future investigation. 

And finally. another suggested line of future investigation stems from the 

fact that the three simple systems studied are inherently limited in performance by 

second degree aberrations. and the higher degrees are not significant. One could 

possibly observe different results during the study of more complex systems for which 

a solution region of second degree exits. 
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The following ray set has been determined by the author to yield well 

conditioned matrices to be used for the computation of polychromatic aberration 

coefficients up to degree five. 

The ray set was determined empirically to yield well conditioned solution 

matrices. An X in a particular column means that the ray specified by the ray 

coordinates in that row is to be included in the determination of that degree coefficient. 

RAY COORDINATES DEGREE 

v h ex es. 5 4 3 2 0 -
1.0 1.0 1.0 0.0 X X X X X 
1.0 0.8 0.5 0.5 X X 
1.0 1.0 0.2 0.85 X X X 
1.0 0.6 -0.4 0.2 X X 
1.0 0.75 -0.6 0.8 X X 
1.0 0.8 -0.9 0.2 X X 
1.0 0.3 0.8 0.2 X X 
1.0 0.1 0.7 0.7 X 
1.0 0.3 0.2 0.2 X X X X X 
1.0 0.3 -0.1 0.95 X X 
1.0 0.3 -0.3 0.7 X X 
1.0 0.4 -0.8 0.3 X X 
1.0 -1.0 0.95 0.15 X X 
1.0 -0.9 0.7 0.3 X X 
1.0 -0.7 0.3 0.8 X X X 
1.0 -0.9 -0.2 0.1 X 

... 
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v h ex B:.i. 5 4 3 2 0 

LO -0.8 -0.5 0.6 X X 
1.0 -1.0 -0.6 0.8 X X X 

-1.0 0.9 0.8 0.5 X X X X 
-1.0 1.0 0.6 0.2 X 
-1.0 0.8 0.4 0.5 X X 
-1.0 0.6 -0.05 0.5 X X 
-1.0 1.0 -0.2 0.3 X X 
-1.0 0.9 -0.7 0.3 X X X X 
-1.0 -0.1 0.6 0.7 X X X 
-1.0 -0.3 0.5 0.2 X 
-1.0 -0.4 0.1 0.5 X X X 
-1.0 -0.3 -0.1 0.1 X X 
-1.0 -0.2 -0.5 0.6 X 
-1.0 -0.5 -0.9 0.2 X X X 
-1.0 -0.9 0.7 0.05 X 
-1.0 -1.0 0.45 0.7 X X X 
-1.0 -0.7 0.2 0.5 X X X 
-1.0 -0.9 -0.05 0.95 X X 
-1.0 -1.0 -0.5 0.6 X X 
-1.0 -0.8 -0.95 0.05 X X 
0.1 1.0 0.8 0.3 X X X X 
0.1 0.7 0.5 0.5 X 
0.1 0.9 0.1 0.8 X X 
0.1 0.5 -0.1 0.2 X X X 
0.1 0.9 -0.4 0.6 X X 
0.1 1.0 -0.8 0.6 X X 
0.1 -0.4 0.85 0.5 X X 
0.1 0.3 0.6 0.65 X 

-0.4 0.5 0.8 0.2 X 
-0.4 0.6 -0.35 0.4 X X 
-0.4 1.0 -0.75 0.1 X X 
-0.4 0.91 -0.85 0.3 X X 
-0.4 -1.0 0.9 0.15 X X X 
-0.4 -0.9 0.35 0.1 X X 
-0.4 -0.9 0.1 0.5 X X X 
-0.4 -0.8 -0.3 0.9 X X X 
-0.4 -1.0 -0.7 0.7 X X 
-0.4 -1.0 -0.9 0.2 X X 
-0.4 0.4 0.6 0.2 X 
-0.4 0.3 -0.4 0.6 X X 
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A list of the aberration functional forms and aberration coefficients of degree up 

to five are presented in this appendix. Note that the notation for the aberration 

coefficients does not conform to the norm. 

The values given for the wavefront aberration coefficients are for the 

landscape lens of Chapter 5 (bending factor zero and stop location zero). The unit of 

measurement for the coefficients is waves at .58756 microns. 

Polychromatic Wavefront Aberration Coefficients 

Coefficient 

Coefficients of Degree 0 
WOOOO = -9.0665719314E-Ol 

Coefficients of Degree 1 
W IOOO = 1.5133026774E+00 
W llOO = -3.4720584427E-02 
WIllO = 8.416534300IE-03 
WlllI = 5.644222278IE-02 

Coefficients of Degree 2 
W2000 = 2.7056719221E-02 
W2IOO = 5.7752052664E-02 
W2ll0 = -1.3999544604E-02 
W211l = -9.4210771439E-02 
W2200 = -2.4230507962E-Ol 
W2210 = -1.5829458928E+OI 
W2211 = 8.071030702IE-OI 
W2220 = 9.8260632712E-Ol 

Functional Form 

VI hO COS(c;6)O pO 
VO h2 COS(c;6)O pO 
VO hI COS(c;6)1 pI 
VO hO COS(c;6)O p2 

v2 hO COS(c;6)O pO 
VI h2 COS(c;6)O pO 
VI hI COS(c;6)1 pI 
VI hO COS(c;6)O p2 

VO h4 COS(c;6)O pO 
VO h3 COS(c;6)1 pI 
VO h2 COS(c;6)O p2 

VO h2 COS(c;6)2 p2 



Coefficient 

W 2221 = -7.8088907800E-02 
W 2222 = 2.9604360320E-03 

Coefficients of Degree 3 
W3000 = -4.9042975133E-05 
W3100 = 1.3654292801E-03 
W 3110 = -3.3097348233E-04 
W 3111 = -1.6794142218E-03 
W3200 = -6.8612649175E-03 
W3210 = -3.8984317905E-04 
W3211 = -3.7697483558E-03 
W3220 = -3.3801449648E-02 
W 3221 = -1.2490964029E-04 
W3222 = -3.8146293339E-05 
W3300 = 5.5671711581E-02 
W3310 = -7.3570757478E-Ol 
W3311 = -9.0811168906E-02 
W3320 = 3.8098996607E-Ol 
W3321 = 1.1600138601E-02 
W 3322 = -2.9409340306E-04 
W 3330 = -1.7328251408E-02 
W 3331 = 1. IO06993795E-03 
W3332 = 2.7001647429E-05 
W3333 = 1.0670197512E-06 

Coefficients of degree 4 
W4000 = 1.1264481186E-06 
W 4100 = 1.1949350063E-05 
W4110 = -2.9053741 1 94E-06 
W4111 = 3.1973316198E-04 
W4200 = -1.4366961999E-04 
W4210 = -2.8737476054E-05 
W4211 = -8.6672388308E-05 
W4220 = -5.9730221028E-04 
W 4221 = 1. 9644893142E-05 
W4222 = -1.3287889008E-06 
W4300 = 4.IO03471978E-04 
W4310 = 2.9560335457E-04 
W4311 = 3.9259885798E-04 
W 4320 = -7.6098657884E-03 
W4321 = -6.2466611195E-04 
W432~ = 1.2315886731E-05 
',limo = -3.9637723606E-04 
W4331 = 3.0572431329E-05 
W4332 = -4.8863126215E-06 
W4333 = 7.53I0179075E-08 
W4400 = l.0447868968E-03 
W4410 = -3.2283948896E-Ol 

Functional Form 

VO hi COS(¢I)I p3 

VO hO COS(¢)O p4 

v3 hO COS(¢I)O pO 

V2 h2 COS(¢I)O pO 
v2 hi COS(¢I)I pi 
v2 hO COS(¢)O p2 
Vi h4 COS(¢I)O pO 

Vi h3 COS(¢I)I pi 
Vi h2 COS(¢I)O p2 
Vi h2 COS(¢I)2 p2 
Vi hi COS(¢I)I p3 

Vi hO COS(¢I)O p4 
VO h6 COS(¢)O pO 

VO hS COS(¢I)I pi 
VO h4 COS(¢I)O p2 
VO h4 COS(¢I)2 p2 
VO h3 COS(¢)I p3 

VO h2 COS( ¢I)O p4 
VO h3 COS(¢I)3 p3 

VO h2 COS(¢I)2 p4 
VO hi COS(¢I)I p5 

VO hO COS(¢I)O p6 

v4 hO COS(¢I)O pO 

v3 h2 COS(¢I)O pO 

v3 hi COS(¢)I pi 
v3 hO COS(¢I)O p2 
v2 h4 COS(¢I)O po 
v2 h3 COS(¢I)I pi 
v2 h2 COS(¢I)O p2 
v2 h2 COS(¢I)2 p2 

v2 hi COS(¢I)I p3 

v2 hO COS(¢I)O p4 
Vi h6 COS(¢I)O po 
Vi hS COS(¢I)I pi 
Vi h4 COS(¢I)O p2 
Vi h4 COS(¢lf p2 

Vi h 3 COS(¢I)I p3 

Vi h2 COS(¢I)O p4 
Vi h3 COS(<,b)3 p3 

Vi h2 COS(¢)2 p4 
Vi hi COS(<,b)1 p5 

Vi hO COS(<,b)O p6 

VO h8 COS(<,b)O po 
VO h7 COS(<,b)1 pi 
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Coefficient 

W4411 = 6.1957239181E-03 
W 4420 = 4.9482906422E-02 
W 4421 = 2.6500510935E-03 
W 4422 = -2.4856238448E-05 
W4430 = 4.9335157468E-03 
W 4431 = -4.0595885287E-04 
W4432 = 4.5720804730E-OS 
W4433 = -7.3579690176E-07 
W4440 = -1.3931385032E-04 
W4441 = 5.9113215501E-05 
W4442 = -3.0293013753E-06 
W4443 = 2.1280994709E-07 
W4444 = -2.5195631157E-09 

Coefficients of Degree 5 
Wsooo = 1.4580573815E-09 
WSlOO = 2.4176108647E-07 
W 5110 = -5.9211886804E-08 
W5111 = -7.0921310803E-08 
WS200 = -5.0794332854E-07 
W5210 = -9.6350741108E-07 
W 5211 = -6.7583150584E-07 
W 5220 = 1.3534386722E-06 
W 5221 = 8.1805136096E-07 
WS222 = -2.0079713145E-08 
W 5300 = 5.3908200385E-06 
W 5310 = 3.S600932427E-06 
W 5311 = 8.3S99950898E-06 
W5320 = -1.4004969519E-04 
WS321 = -7.4221606S49E-06 
W5322 = 2.3004753231E-07 
W5330 = 3.6529464493E-06 
W 5331 = -7.1317883326E-07 
WS332 = 8.9609399818E-09 
WS333 = -1. 7069243966E-09 
WS400 = -6. 1609772806E-OS 
WS410 = 1.0461728714E-04 
WS411 = -2.97970355S7E-OS 
WS420 = -1.4325508100E-03 
WS421 = -1.1384746306E-04 
WS422 = -2.26866298SSE-07 
WS430 = -4.852I07S098E-04 
WS431 = 3.3339435418E-OS 
WS432 = -2.3271712626E-06 
W 5433 = 3.5740862292E-08 
WS440 = 2.27518S5736E-OS 
WS441 = -S.807IS17S06E-06 
W 5442 '" 3.4887373878E-07 

Functional Form 

Vo h6 COS(¢)O p2 

VO h6 COS(¢)2 p2 

Vo hS COS(¢)1 p3 

Vo h4 COS(¢)O p4 
Vo hS COS(¢)3 p3 
Vo h4 COS(¢)2 p4 
Vo h3 COS(¢)l pS 
Vo h2 COS(¢)O p6 
Vo h4 COS(¢)4 p4 
Vo h3 COS(¢)3 pS 
Vo h2 COS(¢)2 p6 
Vo hI COS(¢)1 p7 
Vo hO COS(¢)O p8 

VS hO COS(¢)O po 
V4 h2 COS(¢)O po 
V4 hI COS(¢)I pI 
v4 hO COS(¢)O p2 
V3 h4 COS(¢)O po 
V3 h3 COS(¢)I pI 
V3 h2 COS(¢)o p2 
V3 h2 COS(¢)2 p2 
v3 hI COS(¢)I p3 
v3 hO COS(¢)O p4 
v2 h6 COS(¢)O po 
v2 hS COS(¢)I pI 
v2 h4 COS(¢)O p2 
v2 h4 COS(¢)2 p2 
v2 h3 COS(¢)I p3 
v2 h2 COS(¢)O p4 
v2 h3 COS(¢)3 p3 
v2 h2 COS(¢)2 p4 
v2 hi COS(¢)I pS 
v2 hO COS(¢)O p6 
vi hO COS(¢)O po 
Vi h7 COS(¢)I pi 
Vi h6 COS(¢)O p2 
Vi h6 COS(¢)2 p2 
VI hS COS(¢)I p3 
VI h4 COS(¢)O p4 
Vi hS COS(¢)3 p3 
Vi h4 COS(¢)2 p4 
VI h3 COS(¢)I pS 
Vi h2 COS(¢)O p6 
VI h4 COS(¢)4 p4 
Vi h3 COS(¢)3 pS 
Vi h2 COS(¢)2 p6 
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Coefficient 

WS443 = -1.6844041 715E-08 
WS444 = 3.4468652964E-IO 
WS500 '" 1.0621792589E-03 
W5510 '" -3.2184907004E-02 
WS51l = -1.3743324362E-03 
W 5520 '" 7 .4003196605E-03 
WS521 = 8.2727496279E-04 
WS522 = -6.31 I 5928870E-06 
Wmo = 4.1673668078E-03 
W 5531 = -2.612760 1895E-04 
WS532 = 1.5131877014E-05 
WS533 = -1.3553.669813E-07 
WS540 = -3.8960566258E-04 
W 5541 = 8.1558893046E-05 
W5542 = -4.0398220225E-06 
W 5543 = 1.5545685384E-07 
WS544 = -2.1524304759E-09 
W5550 = 2.2193851441E-05 
Wsm = -4.051 1394572E-06 
W 5552 = 4.2707736572E-07 
W5553 = -1.8260522371E-08 
WS554 = 6.3532624736E-10 
WSSSS = -9.64835532IOE-12 

Functional Form 

VI hI COS(¢)I p7 

vl hO COS(¢)O pS 

VO hID COS(¢)O pO 

VO h9 COS(¢)I pI 
VO h8 COS(¢)O p2 

VO h8 COS(¢)2 p2 

VO h7 COS(¢)I p3 

VO h6 COS(¢)O p4 

VO h7 COS(¢)3 p3 

VO h6 COS(¢)2 p4 

VO hS COS(¢)I pS 

VO h4 COS(¢)O p6 

VO h6 COS(¢)4 p4 

VO hS COS(¢)3 pS 

VO h4 COS(¢)2 p6 

VO h3 COS(¢)I p7 

VO h2 COS(¢)O p8 

VO hS COS(¢)5 pS 

VO h4 COS(¢)4 p6 

VO h3 COS(¢)3 p7 

VO h2 COS(¢)2 p8 

VO hI COS(¢)I p9 

VO hO COS(¢)O plO 

Monochromatic Wavefront Aberration coefficients 
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The monochromatic wavefront aberration coefficients were computed from the 

above polychromatic coefficients using the following equation: 

Wnpq 

5 

L [ W mnpq v(m-n) ] 

m=O 

where v .58756 . 

Ideally the summation should be from m = 0 to 00. But Since the polychromatic 

coefficients were only computed to degree five. the monochromatic coefficients are 

accurate to the fifth degree in the chromatic variable. 



Coefficient 

Coefficients of Degree 0 
Wooo = 1.75001 34594E-II 

Coefficients of Degree I 
W100 = -1.9672906063E-1O 
WUO = 4.8690824026E-12 
Wm = 8.9577456554E-12 

Coefficients of Degree 2 
W 200 = -2.4642336445E-O I 
W210 = -I.5829700347E+OI 
W211 = 8.0483758094E-OI 
W220 = 9.62357571 76E-OI 
W221 = -7.8155885158E-02 
W222 = 2.9373498867E-03 

Coefficients of Degree 3 
W300 = 5.5916694338E-02 
W3W = -7.355310758IE-OI 
W311 = -9.0575479386E-02 
W320 = 3. 7642925321 E-OI 
W321 = 1.1227198210E-02 
W322 = -2.8671 I 10612E-04 
W330 = -1.7561958764E-02 
W 331 = 1.l185735092E-03 
W332 = 2.4107958729E-05 
W 333 = 1.11106 72724E-06 

Coefficients of Degree 4 
W400 = 1.008261 6975E-OI 
W410 = -3.2277746687E-OI 
W 4ll = 6.1780588203E-03 
W 420 = 4.8633622266E-02 
W421 = 2.5825569105E-03 
W422 = -2.4990735564E-05 
W430 = 4.6458597697E-03 
W431 = -3.8619365218E-04 
W432 = 4.4341147082E-05 
W433 = -7.14608021 16E-07 
W 440 = -1.2582546969E-04 
W441 = 5.5670460147E-05 
W442 = -2.8224724541E-06 
W443 = 2.0282399919E-07 
W444 = -2.3152165709E-09 

Functional Form 

h2 COS(¢)O pO 
hI COS(¢)1 pI 
hO COS(¢)O p2 

h4 COS(¢)O pO 
h3 COS(¢)1 pI 
h2 COS( ¢)O p2 
h2 COS(¢)2 p2 
hI COS(¢)1 p3 
hO COS(¢)O p4 

h6 COS(¢)O pO 
hS COS(¢)1 pI 
h4 COS(¢)O p2 
h4 COS(¢)2 p2 
h3 COS(¢)1 p3 
h2 COS(¢)O p4 
h3 COS(¢)3 p3 
h2 COS(¢)2 p4 
hI COS(¢)1 pS 
hO COS(¢)O p6 

h8 COS(¢)O pO 
h7 COS(¢)1 pI 
h6 COS(¢)Q p2 
h6 COS(¢)2 p2 
hS COS(¢)1 p3 
h4 COS(¢)O p4 
hS COS(¢)3 p3 
h4 COS(¢)2 p4 
h3 COS(¢)1 pS 
h2 COS(¢)O p6 
h4 COS(¢)4 p4 
h3 COS(¢)3 pS 
h2 COS(¢)2 p6 
hI COS(¢)1 p7 
hO COS(¢)O p8 
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Coefficent 

Coefficients of Degree 5 
W500 = 1.0621792589E-03 
W510 = -3.2184907004E-02 
W511 = -1.3743324362E-03 
W 520 = 7.4003196605E-03 
W521 = 8.2727496279E-04 
W522 = -6.31 15928870E-06 
,\V530 = 4.1673668078E-03 
W531 = -2.6127610895E-04 
W532 = 1.5131877014E-05 
WS33 = -I.3553669813E-07 
W 540 = -3.8960566258E-04 
W 541 = 8.1558893046E-05 
W 542 = -4.0398220225E-06 
W 543 = 1.5545685384E-07 
W544 = -2.1524304759E-09 
W550 = 2.2193851441E-05 
Wm = -4.0511394572E-06 
W 552 = 4.2707736572E-07 
W553 = -1.8260522371E-08 
W554 = 6.3532624736E-I0 
WS5S = -9.6483553210E-12 

Functional Form 

h lO COS(cP)O pO 
h9 COS(cP)1 pi 
h8 COS(cP)O p2 
h8 COS(cP)2 p2 
h7 COS(cP)1 p3 
h6 COS(cP)O p4 
h7 COS(cP)3 p3 
h6 COS(cP)2 p4 
hS COS(cP)1 p5 
h4 COS(cP)O p6 
h6 COS(cP)4 p4 
hS COS(cP)3 pS 
h4 COS(cP)2 p6 
h3 COS(cP)1 p7 
h2 COS(cP)O p8 
hS COS(cP)S p5 
h4 COS(cP)4 p6 
h3 COS(cP)3 p7 
h2 COS(cP)2 p8 
hi COS(cP)1 p9 

hO COS(cP)O plO 
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