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ABSTRACT 

The properties of photo-induced gratings in germania doped glass fibers 

were studied. Permanent phase gratings in a fiber core were fabricated by the 

mixing of two contra propagating waves. Experiments are described and results 

are presented which show that the strength of a photoinduced grating is strongly 

dependent on the writing power as well as the laser writing wavelength. 

A rigorous development of linear coupled mode theory for the contra 

propagation geometry is given and used to model the experimentally observed 

grating responses as a function of fine tuning frequency of probing light. 

Measurements have been done of the amplitude and phase response of the grating 

structure and compared with theoretical models of uniform and chirped gratings. 

The theoretically predicted negative group velocity dispersion in fiber grating was 

observed interferometrically and described in detail. 

The nonlinear coupled mode theory has been fully implemented in a 

computer program and some numerical results are given in the second part of this 

thesis. The dynamics of a pulse propagating in the fiber grating is simulated and 

the results show its dependence on pulse energy, frequency detuning, and the type 

of grating geometry. A limitation is found in the dispersion property of a 

constant amplitude fiber grating so that the pulse compression ratio and the width 

of a compressible pulse is strictly limited to ==250 picoseconds. 



13 

CHAPTER I 

INTRODUCTION 

Since Alexander Graham Bell invented the photophone in 1880, scientists 

have made many advances in light wave communication, from the fabrication of a 

low-loss light transmitting medium that is capable of carrying a modulated signal 

over long distances, to the development of highly intense light sources. The 

invention of the laser in 1960 undoubtedly was a milestone in these efforts. The 

laser's unique attributes of high intensity and coherence made it a prime candidate 

as a light communication source. In parallel with the invention of the laser, an 

evolution in fiber technology took place. Since then, the losses of optical glass 

fibers have been reduced so much (they are presently less than 0.5db/km at 

1.55Jlm) that the advantages of the optical fiber for optical communications 

purposes far outnumber those of all its competitors such as lens waveguides and 

thin film wl),veguides. 

The combination of the laser with low loss optical fibers not only provides 

a basic building block for high-capacity, wide-bandwidth communication systems, 

it also introduces new possibilities such as optical nonlinear processing. Nonlinear 

optics, by its nature, requires relatively large field strengths and significent 

interaction lengths for nonlinear processes to take place with a reasonable 

efficiency. An optical fiber provides an unique medium for demostrating these 

nonlinear optical phenomena with relatively low input powers. This is a direct 

consequence of the high degree of beam confinement provided by the small cross-
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section of the core (~l OJlm2) of single mode fibers. Although the third order 

nonlinear coefficient is very small in glasses, the ultra-long coherence length 

available for collinear phase-matched interactions make several nonlinear 

interacions very efficient. This concept has been used brilliantly by Stolen 

(1972-1978), Grischkowsky (1982-1983) and other workers to demonstrate stimulated 

Brillouin and Raman scattering, four-photon parametric processes, self-phase 

modulation, pulse compression, soliton generation and other nonlinear phenomena 

(Winful, 1986). 

An equally interesting area for studying nonlinear fiber optics relates to the 

photo-induced change in the material properties of some doped glasses. Quite 

recently, efficient second harmonic generation (SHG) has been observed by 

Osterberg and Margulis (1986-1987) in phosphorous-doped fibers. It is well 

known that SHG is attributed to the second order nonlinear processes (X(2» (Hopf 

and Stegeman, 1986) and that it is normally dipole-forbidden in the 

centrosymmetric silica core of optical fibers. The high conversion efficiencies that 

have been achieved, however, indicate that an essential ingredient of the process is 

a permanent photo-induced change in the fiber. Stolen (1987) in a newly 

developed model has suggested that intense fields at the fundamental frequency 

can mix with a harmonic wave (either internally or externally seeded) by a third­

order nonlinear process to form a DC polarization at the phase-matching 

periodicity. The defects or charge traps within the fiber are then permanently 

oriented with the same periodicity as the DC polarization and hence produce a 

direct dipole-allowed nonlinear susceptibility X(2). Although the latest experimental 

test of this model (Mizrahi, 1988) shows that the formation ofaX(2) grating may 

not be due to the proposed third order process, a number of authors have verified 
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the existence of phasematched gratings. 

Another photo-induced grating phenomenon in optical fibers, known as the 

photosensitive effect, was first observed by Hill (1978), using a germania (Ge02) 

doped quasi-single mode silica fiber. When the core of such a fiber is exposed to 

two intense contra-propagating guided waves for a short period of time, a 

permanent periodic phase grating can be generated so that the fiber functions as a 

Bragg reflection filter. Although the physical mechanism responsible for the 

photosensitivity remains unclear, it is believed that the origin of the grating 

formation is linked to the photo-induced refractive index change of the fiber core 

due to the periodic standing wave structure. It has been a decade since the first 

observation of this peculiar effect. Several reports regarding the characterization 

and modeling of the grating growth process have been given by Bures and 

coworkers (1980-1981). Nevertheless, the previous work has far from exhausted 

the spectrum of interesting interactions. There are still key questions that remain 

to be answered, such as the detailed geometrical structure of the grating, and the 

spectral response of the photosensitivity. In particular. grating effects have not 

been pursued in fiber systems in combination with nonlinear optical phenomena. 

An earlier theoretical analysis (Winful. 1985) shows that gratings are especially 

interesting in the context of fibers because they introduce an additional wavelength 

dispersion in that part of the spectrum where the gratings satisfy a Bragg 

condition. This dispersive characteristic can be utilized in conjunction with the 

third order nonlinearity of an optical fiber to achieve a fiber pulse-compressor at 

visible wavelengths. 

One of the goals of this dissertation is thus devoted to the experimental 

study of the physical structure of phase gratings in a Hill fiber. This requires 
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the detailed characterization of the grating response over narrow frequency ranges 

(~l OO's of megahertz). as well as the understanding of the dependence of the 

grating amplitude on the power of the writing laser. Furthermore. there is the 

question of the wavelength response of the photosensitivity which is addressed in 

this dissertation. This leads to new insights about the photo-induced mechanism. 

The grating's anomalous dispersion was measured for the first time through an 

interferometric technique which is described in this dissertation. This direct 

observation verifies that the proposed concept of pulse compression in fiber 

gratings is possible. During the course of these experiments. it also proved 

necessary to gain a more comprehensive knowledge of how high intensity pulses 

evolve in time and space through a distributed feedback guiding structure. With 

further implementation of the nonlinear coupled mode equations presented by 

Winful. a computer code utilizing the method of characteristics was developed to 

numerically simulate the propagation of forward and backward reflected pulses in 

various grating geometries. By using this program. it was found that there exists 

an upper limit to the pulse compression ratio and the basic physics causing this 

limitation was also investigated in this thesis. 

The organization of this dissertation is as follows. Chapter 2 contains an 

overview of the linear theory of guided waves in optical fibers. Chapter 3 deals 

with the application of linear coupled mode theory to an optical fiber with a 

periodic perturbation. This is followed by a discussion of the contra-directional 

interaction produced by grating structure. Chapter 4 presents the experimental 

work on characterizing the properties of photo-induced grating in a Hill fiber. 

Chapter 5 presents the numerical modeling for pulse propagation in a nonlinear 

distributed feedback structure. The final chapter summarizes the experimental and 
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theoretical results obtained in this work and concludes with a discussion of 

possible improvement to the experiment for the eventual device application. 
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CHAPTER 2 

PRINCIPLES OF WEAKLY GUIDING OPTICAL FIBERS 

Fibers that are used for optical communications are waveguides. made of 

various glasses. whose function is to guide visible and infrared light over long 

distances. The simplest round optical fibers consist of an inner cylinder of glass. 

called the core. surrounded by a cylindrical shell of glass of lower refractive 

index. called the cladding. Optical fibers may be classified at a given wavelength 

in terms of the refractive index profile of the core and whether one mode (single­

mode fiber) or many modes (multimode fiber) are propagating in the guide. As 

shown in Fig. 2-1. the step index fiber is made with a uniform refractive index 

core which typically consists of high-silica-content glass. If the core has a 

radially nonuniform refractive index that slowly decreases from the center toward 

the core-cladding interface. the fiber is then called. a "graded-index fiber". 

Although as mentioned above several types of fiber geometries exist. only the step­

index fiber will be discussed in this chapter because it is the one relevant to the 

experiments discussed later. 

The theory of optical fibers is well understood and has been discussed in 

detail in the literature. and several excellent books about the subject exist (Kapany. 

1967; Kapany and Burke. 1972; Marcuse. 1974). However. the completely general 

description of the guided and radiation modes of optical fibers is very complicated 

and hence its application is not very practical. Simplifications in the description 

are made possible by the realization that most practical fibers use core materials 
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whose refractive index is only slightly higher than that of the surrounding 

cladding. It was Gloge (1971) who first introduced the term "weakly guiding 

fibers" for a waveguide whose core and cladding have very nearly the same 

refactive index. As an introduction to the subject. the geometrical optics approach 

to understanding the waveguiding nature of step-index fibers will be discussed 

briefly first. Next. the theory of weakly guiding fibers and guided modes will be 

derived from electromagnetic field theory by solving Maxwell's equations with 

proper boundary conditions. The dispersion characteristic of optical fibers will be 

discussed in the final section. 

Ray Propagation in Step-Index Fiber 

Unlike planar waveguides which are one dimensional. fibers confine light 

in two dimensions. which makes their analysis much more difficult. In order to 

understand how a fiber behaves like a waveguide it is really necessary to treat 

electromagnetic wave propagation in a step-index fiber as a boundary-value 

problem. But. because ray optics provides a simple physical picture which allows 

us to visualize propagation of light rays in a far simpler way than would be 

possible by solving Maxwell's equations. the ray theory is reviewed in this section. 

The rigorous construction of a ray optics approach to step-index fibers 

requires the implementation of the "Eikonal" equation. It can be derived from the 

scalar Helmholtz equation by assuming a complex wave function in space and by 

assuming that the wavelength of light is considerably smaller than the geometrical 

space in which it propagates (Born and Wolf. 1980). The Eikonal equation 

actually describes the surfaces of constant phase and is given by 

[VS(x.y.z)]2 I: n2 2.1 

where S(x.y.z) is a phase function for the propagating wave in a medium of 
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refractive index n. Because VS is a vector perpendicular to the phase front. we 

can define a light ray as the locus of points that form the orthogonal trajectory to 

the planes of constant phase. From Fig. 2-2. the gradient of the phase front can 

be incorporated into the direction of a ray by 

VS c: n dr 
ds 

where dr Ids is a unit vector tangent to the light ray. By using the identity 

.!L =: [dr] . V 
ds ds 

2.2 

it can easily be shown that the gradient of Eq.(2.1) is equal to the path derivative 

of Eq.(2.2) giving the equality. which is known as the "Ray Equation" • 

.!L rn dr] c: Vn 2 3 
ds ~ ds . 

The trajectory of a light beam is described by the position vector r(s) in the ray 

equation. In general. it can be shown that the ray trajectories will be curved 

paths in an inhomogeneous medium with a nonvanishing Vn. Because a step-

index fiber with an uniform core refractive index is used in the experiments 

described in this dissertation. we restrict ourselves to the case Vn=O which 

simplifies the ray equation to 

dr c: a 
ds 

Integrating Eq.(2.4). results in a straight line 

2.4 

2.5 

where a and b are constant vectors. This clearly means that the light ray travels 

in a straight line inside the fiber between reflections from the fiber interfaces. 

Step-index fibers made with a core diameter of the order of a few 

microns can trap light rays between its core-cladding boundary while allowing the 

ray to propagate freely along its axis. The effectiveness of the fiber as a 
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Fig. 2-2 A geometric analysis of a ray trajectory. The radius vector r is drawn 
from a fixed origin 0 to an arbitrary point on a ray path S, and a5 is a 
unit vector. 
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waveguide is based on the phenomenon of total internal reflection(TIR). Fig. 

2-3(a) shows that the light rays will undergo total internal reflection at the core-

cladding boundaries and be guided within the core without any losses, as long as 

the light ray's incidence angle onto the boundary is larger than the critical angle. 

Labeling the core index of refraction as n1' and the cladding index as n2, this 

From the geometrical point of view. there are two distinct groups of rays 

that can be launched into and propagate in a fiber. Meridional rays travel in a 

plane that includes the fiber axis, crossing it twice during one round trip in the 

transverse dimension. On the other hand, skew rays never cross the fiber axis 

during their propagation. Consider a meridional ray entering the fiber at an angle 

n! to the axis and trapped by total internal reflection as shown in Fig. 2-3(b). The 

ray will strike the fiber core at point B with an angle e = TT/2 - n!'. From Snell's 

Law. the angle of refraction n!' is equal to sin-1(sinn!/n1)' The condition for total 

internal reflection(TIR) at point B is 

n2 • , 
- ~ sme = cOSn! = 
n1 

2.6 

Thus. a meridional ray can travel in a fiber core only when its incidence angle 

satisfies sinn! ~ (n12-n22)-1/2. The half angle of the conical envelope defined by 

these guidable meridional rays is known as "the numerical aperture of the fiber". 

(N.A')m = Jn1
2-n22• Practically speaking. for an efficient launch of a meridional 

ray bundle into a step-index fiber. a focusing lens system (usually a microscrope 

objective) should have its numerical aperture identical to that of the fiber. 

As shown in Fig. 2-4. a skew ray enters the fiber core at an oblique 

angle n!s and progresses along a helical path through the fiber. The projection of 



81< 8e 
8e < 82 < 83 

(a) 

Sin a ~ (N.A.)m= .jn~- n~ 

(b) 
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Fig. 2-3 An illustration of total internal reflection for guided (meridional) rays in 
a step-index fiber. (a) The ray will leak out of the core and attenuate 
along the fiber if the incidence angle is less than critical angle 9c . (b) 
The numerical aperture of the fiber is defined from half of the maximum 
entrance angle of the guidable meridional rays. 
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Fig. 2-4 Propagation of a skew ray in a circular step-index fiber. The ray 
strikes the core-cladding interface at an oblique angle e and because of 
TIR it propagates in a helical path. 
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a skew ray path onto a cross section of the fiber is also shown. and the ray's 

distance from the fiber axis oscillates between two values. This means that the ray 

will always be tangent to an inner cylindrical envelope. known as the "caustic". 

Because of TIR. the angle of incidence onto the core-cladding interface. 6 = <OAB. 

is invariant regardless of the number of reflections. Since 6 is a function of € 

and 'Y. which lie in mutually perpendicular planes. the angle of reflection can be 

written as cos6 = COS€coS'Y = sinOl'cos'Y. The guiding condition for the angle of 

incidence becomes 

2.7 

Comparing with the N.A. of meridional rays. an effective numerical aperture can 

be defined for skew rays. namely 

2.8 

This clearly implies that the acceptance angle and launching efficiency of a fiber 

increases with the ray's distance from the fiber. As pointed out by Kapany 

(196 7). the meridional or normal N .A. really underestimates the light-collecting 

efficiency of a round uniform-core fiber. Nevertheless. Eq.(2.7) remains useful as 

a criteria for determining the launching efficiency. 
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Guided Modes of Step-Index Fiber 

Ray optics was used in the previous section to illustrate how light can be 

trapped and confined in an uniform index fiber guide. But. throughout the 

discussion. the vectorial nature of electromagnetic waves was neglected. For an 

optical waveguide. one might intuitively expect that the light ray should bounce 

back and forth between the core-cladding interfaces of the fiber with a set of 

discrete angles. Nevertheless. since the fiber is a two-dimensional waveguide with 

cylindrical symmetry. the plane wave approach associated with the ray picture is 

no longer applicable. and it is rather difficult to adopt the same arguments 

(Kogelnik. 1979) used in the simple ray theory to determine the eigenvalue 

equation of discrete guided slab modes. 

The difficulties in picturing the modal fields via the ray model can be 

overcome with another approach known as wave optics. There the electromagnetic 

wave propagation process is treated fully by the well-known Maxwell's equations 

(Jackson. 1962) 

aB VxE==- -at 
v x H == J + an at 

V·B=O 

V·D=p 

2.9(a) 

2.9(b) 

2.9(c) 

2.9(d) 

For a weakly guiding step-index fiber. both the core and the cladding are treated 

as source-free homogenous media with scalar dielectric constants. and the relative 

magnetic permeability is set to unity. As shown in any advanced text in 

electromagnectic theory. a second order wave equation which governs the time and 

space varing electric field can be obtained from Eq.(2.9). that is 
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2.10 

The wave equation is valid in all regions and at all interfaces of the fiber 

geometry (Fig. 2-4). If fields with a periodic time dependence and propagating in 

the z direction are assumed, the electric and magnetic fields can be written as 

E(x,y,z) CI E(x,y) ei(wt-fjz) 2.1 1 (a) 

H(x,y,z) = H(x,y) ei(wt-fjz) 2.1 1 (b) 

where f3 is the guided wave propagation constant. For fields of this form, the 

wave equation becomes 

[ aa;21 :;2]E(X,y) + (W2JL€-f32)E(x,y) == 0 2.12 

It has been shown by Marcuse that all of the transverse field components can be 

calculated from solutions for the longitudinal field components. Eq.(2.12) can be 

conveniently reduced to a longitudinal wave equation in cylindrical coordinates. 

aa
2

E.z2 + 1 aaE.z + 1..2 aa2~2 + (W211€_R2)P' = 0 2.13 
r r r r 'f' r '" '"""L 

" where E(x,y) is rewritten as E(r,r/J)=Er(r,r/J)r+Eq,(r,r/J)r/J+E.z(r,r/J)z. Since we are looking 

for guided wave solutions to Eq.(2.13) with a finite field component in the fiber 

core which decays exponentially into the cladding, the solutions are 

r<a 

r>a 

E.z c:: AJII (/Gr)eivq, 

Hz = BJII(IGr)eivtP 

E.z == CKII ('Yr)eivq, 

Hz = DKII('Yr)eivq, 

2.l4(a) 

2.14(b) 

2.l4(c) 

2.l4(d) 

where A,B.C,D are unknown constants, J II is a Bessel function of vth order, and 

Kv is a modified Bessel function of the first kind. 
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In addition. there is another boundary condition which requires that the 

tangential components of the field at the core-cladding interface (r=a) be 

continuous. This leads to 

E~I = E~2 

~I == ~2 

H~I == H¢l2 

2.15 

From Eqs.(2.14) and (2.15). a general eigenvalue equation can be derived which 

defines the modes in the guide and gives the allowed values of (3. K.. and 'Y 

associated with each mode. This equation is 

A further simplification of Eq.(2.l6) can be achieved under the weakly guiding 

approximation where €C€2 « I is assumed. namely 

'Y;a2 ] 
2.17 

Eq.(2.17) has been solved in detail by Cherin 1983. Kapany 1967. Okoshi 

1982. Marcuse 1974. For simplicity. only the general characteristics will be 

discussed here briefly. When v=O. the only allowed modes in the fiber are TE(E.z 

= 0) and TM(~ = 0). The general solutions for #0. however. have six field 

components with both longitudinal electric and magnetic fields present. In fact. 

these modes. known as hybrid modes. are formed from a linear combination of TE 

and TM modes in the core and another linear combination of TE and TM modes 

in the cladding which satisfy the boundary conditions at the core-cladding 

interface. Hybrid modes are further classified into EH and HE modes. where in 

EH modes the axial magnetic field (~) is large relative to the other electric field 
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components, and vice versa. 

Table 2.1 summarizes the proper eigenvalue equation for various modal 

families within the weakly guiding approximation. The first mode number (suffix 

v) identifies the periodicity of the azimuthal variation of E.z or liz, and the second 

mode number (suffix /l) means that the propagation constant of the mode is 

computed from the /lth root of the corresponding simultaneous eigenvalue equation. 

From this table, it is now easy to deduce a unified equation, namely 

IGaJm_1 (IGa) 'YaKm_1 ('Ya) 
-= -

1m (IGa) Km ('Ya) 
2.18 

where m is defined as 

I (for TE and TM modes) 

v+l (for EH modes) 2.19 

v-I (for HE modes) 

The cutoff frequency for each propagating mode can be calculated from Eq.(2.18). 

As defined in many texts, a mode is said to be cut off when its field ceases to be 

evanescent in the cladding. Hence, the phase velocity of the field becomes equal 

to that of a plane wave propagating in the cladding material. Accordingly, the 

cut-off frequencey is found by setting the previously defined exponential decay 

coefficient 'Y equal to zero, which gives 

and 

2.20(a) 

2.20(b) 

where we J/lo€o = 211/'Ao, and 'Ao is the wavelength in free space. A new parameter 

of the fiber known as the fiber V number or normalized frequency is given as 

V - " 211a J n 2 n 2 = "'e ::: - 1 - 2 'Ao 
2.21 

The Bessel function solution of Eq.(2.l8) at 'Y=O then leads to the important 

conclusion that all modes characterized by a common set of m and /l degenerate to 



Table 2.1. Traditional mode designation and numbering. 

Mode Designations Proper Equations 

Table 2.2. Relation between traditional and LP-mode designations. 

Mode Designation Number of 
Degenerating 
Modes LP Traditional 

2 

4 

4 

Proper Eigen 
Equations 

31 
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the same phase velocity and V number. at least at cut-off. regardless of their TE. 

TM. EH. or HE field configurations. 

Such degenerate modes can be regrouped into sets of "Linearly polarized 

(LP) modes". The term LP stems from the fact that a detailed investigation of the 

electromagnetic field configuration of each mode (Gloge. 1971) reveals that the 

spatial field distribution in a transverse direction (Ex or By) is identical for those 

modes which belong to the same LP mode. 

In tables 2.2 and 2.3. the general relation between the traditional and the 

LP mode designations. as well as the transverse electric field versus the 

corresponding intensity distribution for the three lowest order LP modes are given. 

The concept of the LP mode is very useful in understanding. as well as in 

analyzing. the basic transmission characteristics of weakly guiding optical fibers. 

For example. a fiber used in this dissertation had a N.A. of 0.22 and a core 

diameter of 2.2JLm resulting in V = 2.858 for ho = 532.05nm. From table 2.3. it is 

obvious that this fiber can support two LP modes(i.e. LP 01 and LP 11) at this 

particular wavelength. Indeed. the predicted intensity patterns for these two 

modes were observed during the experiments. However. for our experiments. 

which will be described later. excitation of only the fundamental LP01 mode is 

crucial. The technique to launch a specific mode in a multimode fiber has been 

discussed by Kapany (1967). Kapany and Burke (1972). For the experiments 

discussed in this dissertation. efficient excitation is achieved by focusing a 

coherent laser beam through a wavefront corrected microscope objective onto a 

carefully cleaved fiber end. If the angle between the incident beam cone and the 

fiber axis is reduced to a minimum by proper adjustment. the relative power 

distribution between the LP 01 mode and the LP 11 can be very high. 



Table 2.3. 

LP-Mode 
Designation 

LPo, 

LPn 

LPZ' 

Electric field distribution and strength pattern of Ex for the three 
lowest LP modes. 

Traditional 
Designation 

tl HEoo Jlr:al 
m...() 

f-O 
TEol Jl-I 

mIDI 

to TMol Jl-I 
mal 

t2 ~l Jllal 
m-l 

r EHll Jlat 
m-2 

t3 
HEs, Jllal 

m..,2 

Cutoff 
V 

-0 

E!!!2.40 

-3.85 

Electric 
Field 
Distribution 

0 
(J r J '...,.., 

@ 
@ 

0 
@ 

Intensity 
Distribution 
of Ex(Ey) 

0 
(') 

U 

OD 
OD 
OC:() U 
OC:() U 
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The Dispersion Characteristics 

Electromagnetic plane waves which propagate with a well-defined 

frequency and wavevector are referred to as monochromatic waves. Radiation 

from a laser operating in a CW fashion may be considered monochromatic and 

can often be represented by a plane wave. However. many important applications 

of lasers involve pulsed operation. Associated with the finite duration of a laser 

pulse is a finite spread of fre'1uency in the fourier domain. When laser pulses 

propagate in a dispersive medium such as an optical fiber. the various frequency 

components of the wave will then travel with different phase velocities leading to 

dephasing between the Fourier components. This also leads to a spreading of the 

laser pulse in the time domain (Yariv and Yeh. 1984). When designing a high-

capacity optical fiber communication system where digital information is carried 

by a series of pulse trains. the dispersing mechanisms which limit the data 

transmission rate must be identified and avoided if possible. The mechanisms for 

pulse broadening by dispersion fall into one of three catagories: the chromatic or 

so called material dispersion; the modal dispersion; and the waveguide dispersion. 

Modal dispersion is important when a laser pulse is launched into a multimode 

fiber. A large number of modes with different propagation constants will be 

excited. Because. the modes propagate with different group velocities. (Vg)v,,' the 

output pulse after a distance L will broaden to 

This kind of broadening can be eliminated if single mode fiber is used. The pulse 
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width then is dominated by chromatic dispersion. Waveguide dispersion also 

exists but usually contributes a negligible amount to the pulse broadening 

(Marcuse. 1974). 

In order to provide a theoretical background that is relevant to the 

experiments presented later. the discussion of dispersion given here departs 

somewhat from the standard analysis. A piece of straight. single mode. step-index 

fiber is considered to be a linear frequency filter with the transfer function 

(derived in the next chapter). 

T(w) := 1 T(w)1 ei¢(w). 2.23 

where 1 T(w)1 is the field amplitude transfer function and ¢(w) is the phase 

transfer function. Assuming that two in-phase modal fields with equal amplitudes 

but slightly different frequencies are launched at the input end of fiber(z:=O): 

E I ( ) E i(wot) 
in Wo = Ilt e • 

2.24 

E. 2 ( A) E i(wo+Aw)t 
In wo+-'-1w:= Ilt e 

After propagating through a fiber of length L. the output fields are given in the 

form 

2.25 

E 2 E 1 T( A)I i[(wo+Aw)t-P(wo+Aw)L+¢(wo+Aw)] 
out := Ilt wo+-'-1W e 

where (3(wo). (3(wo+~w) are the propagation constants of the corresponding modal 

fields. If we assume that these two fields will be in phase again at time 1. and 

if we expand (3(wo+~w). ¢(wo+~w) into Taylor series of first order. the specified 1. 

known as the "group delay". will be 

2.26 
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As defined in many texts, the group velocity despersion is D == L -ldr Id'A. with the 

result that 

D 21TC ft _ 21TC ft 
... L'A.2 dw2 'A.2 dw2 . 2.27 

The second term is the standard material dispersion and the first term is obviously 

a dispersion introduced by the linear filter. In this dissertation it is called the 

"grating dispersion", and its characteristic will be discussed in detail in the next 

few chapters. 
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APPLICATON OF COUPLED MODE THEORY 

TO FIBER GRATING FILTERS 
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All electromagnetic fields propagating in a fiber consist of the guided 

modes described in the previous chapter. These waves propagate undisturbed 

along the axis of the fiber. provided that the waveguide structure is free of 

imperfections. perturbations etc. However. if there exists an index inhomogeneity 

along the fiber axis. energy-exchange becomes possible between modes. This 

phonomenon. known as mode-coupling. has been studied extensively in various 

fields of integrated optics. Some examples are the scattering loss due to 

waveguide irregularities. the behaviour of grating couplers and corrugated 

waveguide filters for distributed feedback lasers. electro-optic or magneto-optic 

TE-to-TM mode coverters. nonlinear optical interactions etc. From standard 

normal mode expansions of the solutions to Maxwell's equations in deformed 

waveguides with arbitrary index perturbation. Marcuse (1974) and Kogelnik (1979) 

have developed a coupled-mode formalism of sufficient generality that it can be 

applied to a large class of dielectric waveguides, including stripe guides and 

fibers. They have used it in their analysis of optical fiber deformations and 

planar waveguides with periodic surface corrugations. In this chapter, a brief 

derivation necessary for obtaining the general set of coupled mode equations will 

be given and its application to a fiber Bragg filter will be discussed. The contra­

directional. coupled mode configuration of the fiber filter will be solved to give 
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analytic solutions for the constant priodic perturbation case. and the transfer 

function characteristics. 

The Coupled Mode Equations 

Consider a fiber waveguide with an arbitrary refractive index distribution 

n(x.y.z) in the core. The field amplitude of the guided wave fields E. H. must be 

a solution of Maxwell's equations (Eq.(2.9)). Since the fields are essentially 

monochromatic. Eq.(2.9) can be expressed in the form 

v x E ... -i/lowH 3.1(a) 

v x H ... ifo/lowE 3.l(b) 

where the magnetic properties of the fiber material are assumed to be identical to 

those of vacuum. The vector fields are expressed as a combination of transverse 

and longitudinal parts. designated by the subscripts t and z: 

and 

E = Et + Hz. 

H ... Ht + liz, 

V ." V t + :z ez • 

3.2(a) 

3.2(b) 

The relationship between the longitudinal and transverse field components are 

found from Eq.(3.1). namely 

3.3(a) 

3.3(b) 

Eq.(3.1) can then be written as 
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3.4(a) 

[if:W] V,X [[ ~,] V,XH} [~zX ~~] = -iPow~ 3.4(b) 

Eq.(3.4) are the transverse Maxwell's equations and they are valid for arbitrary n. 

Therefore they are also satisfied by an ideal normal mode solution Etu e-i
{3v

z and 

H tv e-i{3v z for a homogeneous fiber with core index no. i.e. 

- [-. _1_] Vt x(VtxEtu) - i/3v(ez xHtu ) => i€owno2 E tu IJ.LoW 

[if:W] V, x [ [ 0:2 ] V, xH w ] - ill, (9, xEw) - -iPowH w 

3.5(a) 

3.5(b) 

Since the guided and radiation modes of an ideal dielectric waveguide form a 

complete orthogonal set. arbitrary transverse fields I; and "t can be represented 

by a series expansion of the transverse normal mode field vectors; 

3.6(a) 

3.6(b) 

Substituting Eq.(3.6) into Eq.(3.4) and using Eq.(3.5). the equations 

I:[ [~~ + i~,a, J@zxHw) - ifOW(0'-Oo2)a,Ew] c 0 3.7(a), 
v 

~{[ ~~ + i~,b, J~zXEw) + [i;:W] v,x[ [~, -0:2 }v,xHw)]} c 0 3.7(b), 

are obtained. Now. if the orthogonality condition of an ideal normal mode is 

applied to Eq.(3.7) 
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00 

I (Etp xHt/)·ez dxdy = 25vp.' 

-00 

3.8 

where BVp. is the Kronecker delta function. A further simplification of Eq(3.7) can 

be achieved. namely 

dav • a b 2 'r. b dz + IfJp. P. = L~p.v V' 

V 

where 00 

foW I 2 2 101 4i (n -no )(Etp. 
-00 

·Etp) dxdy. 

As shown by Marcuse. a transformation of the form 

ap.(z) ... Cp. +(z) e-if3p.z + Cp.-(z) eif3p.z 

bp.(z) c: Cp. +(z) e-if3p.z - Cp.-(z) eif3p.z 

3.9(a) 

3.9(b) 

3.1O(a) 

3.10(b) 

can separate the variables in Eq.(3.9) resulting in the final set of coupled mode 

equations. 

dCJL+ = '[(K + R )C +ei(/3p.-f3v}z. + (K - R )C -ei(/3p.+f3v)Z] dz L p.v p.v v p.v p.v v 3.II(a) 

V 

dCJL- = '[(-K + R )C +e-i(/3p.+f3v)Z + (-K - R )C -e-i(/3p.-f3v}z.] dz L p.v p.v v p.v p.v v 3. 11 (b) 

v 

The beauty of this coupled mode formalism is that it avoids solving the 

difficult boundary value problems for which the exact field solution of an 

arbitrary index variation system should be found. It provides a basis for 

examining the change in amplidute of each mode as a function of the index 

deformation. Depending on the problem. one can usually make some simplifying 
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assumptions at this stage. A very common and usually a good assumption is that 

only two guided modes are important and that all of the other modes can be 

neglected (Kogenilk. 1979). This leads to coupled-wave interactions with 

characteristics that will be discussed further in the next section. 
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CONTRA DIRECTIONAL INTERACTION OF GUIDED WA YES 

Because it is possible to strongly excite the fundamental mode relative to 

the higher order modes of a fiber with only a few modes. we can assume that the 

modal field involved in the interaction is dominated by the lowest order mode of 

the fiber. The refractive index perturbation is assumed to be periodic. i.e. 

n(z) CI no + nl(z)cos [~ z] 3.12 

where nl « no. and A is the perturbation period. A coupling process between 

the forward and backward propagating modes is greatly enhanced when the 

incident light wavelength is tuned to satify the Bragg condition for which X is 

equal to 2A. From Eq.(3.1l). the coupled mode equations which describe this 

process are written as 

dC+ _ . [c [i ~ z -i ~ z J C [i(2f3+ ~)z i(2f3- ~)z J] dz - -1" + e + e + _ e + e • 3.l3(a) 

dC_ . [ [i 2fT z -i 2fT z J [ i( 2fT -2f3)z -i( 2fT +2f3)z J] 
dz = 1" C_ e A + e A + C+ e A + eA. 3.l3(b) 

In deriving Eq.(3.13). the coefficient R due to the coupling between the 

longitudinal field components was neglected. because it is much smaller than the 

transverse coupling coefficient K (Marcuse. 1974). Therefore 

WE i 2fT z i 2fT Z 

[ ][ J 
00 

K~ 4iononl e A +e- A LooIEt l 2 dXdY 
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i 2fT z -i 217 z] = -iIG e A + e A 

-i 2fT z] 
+ e A 
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00 

where (no/2Zo) Loo I Et l2dxdy == I is assumed for normalized power flow. Zo is 

the free space impedance. and IG=rrntlX is the newly defined coupling coefficient. 

If the perturbation n1(z) is weak. the coefficients C±(z) do not change much for 

one period of A. Hence. the higher order harmonic terms of Eq.(3.13) are 

negligible. and we finally arrive at the following set of working 

equations(APPENDIX). 

dC+ '2 A /? -- == -iIG C el l.1,..z dz -

3.14 

dC_. '2 AR - = IIG C e-I l.1,..z 
dz + 

where A{3 = (3- ~ is called the "detuning" in this dissertation. To solve these 

coupled equations. we need another transformation. namely 

3.15 

which results in 

d
2
C±' == _Q2 C+' 

dz2 -

and Q2 :: A{32-IG2 3.16 

The general solution for Eq.(3.16) is well known. 

C+' == A cos(Qz) + B sin(Qz). 3.17(a) 

C ' = 1 A. C '- M C ' 
- IG dz + IG + • 

= - [i~ sin(Qz)+ ¥ cos(Qz) ] A + [i~ cos(Qz) - ¥ sin(Qz) ] B. 3.17(b) 
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where A.B are complex constants. By imposing the boundary conditions C+ '(0) = 

C+(O) and C_ '(L) == O. where L is the length of fiber. the final solution is found 

C+ '(z) = C+ (0) iQcos[n(L-z)]-~{Isin[Q(L-z)] 
iQcos(nL)-~l3sin(nL) 

C '( ) C (0) "sinn(L-z) 
- z == - + iQcos(nL)-~l3sin(nL) 

which yields the transfer function of the fiber filter. 

where 

T() C+ (L) neiAI3L 
w '" C+ (0) '" ncos(nL)+i~l3sin(nL)' 

= 

I T(w) I 

'" ___ ~I n=+.I ____ • 
.Jn2cosh2<1 nl L)+~132sinh2<1 nl L) 

¢J(w) = ~I3L + tan-I [ ~ tan(nL)]. 

= ~I3L + tan-I [I~l tanh(1 nl L)]. 

and the reflectivity 

2 

R= 
C_(O) ,,2sin2(nq 
C+(O) = ~132sin2(nL)+n2cos2(nL)' 

~132 > ,,2 

~132 < ,,2 

~132 > ,,2 

~132 < ,,2 

3.18(a) 

3.18(b) 

3.19(a) 

3.19(b) 

3.20(a) 

3.20(b) 

3.21(a) 

3.21(b) 

3.22(a) 

3.22(b) 
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The analytical solutions obtained above are based on a constant amplitude index 

grating in the fiber filter. As shown in Fig. 3-1. the corresponding reflectivity of 

Eq.(3.22) is plotted as a function of detuning 1:::.(3/'" Noted that reflectivity is high 

inside the stop band and periodically attains a value of zero. The maximum 

reflectivity of this filter decreases with the decreasing coupling constant but it's 

bandwidth reversley gets wider. 

For the general case of an arbitrarily perturbed periodic filter. it is not 

practical to solve Eq.(3.14) analytically. A computer program written in 

FORTRAN77 (the strategy is discussed in Chapter 5) is used to simulate the 

coupled mode process numerically by sending various step-input fields into the 

filter. and examining the response when steady state is achieved. The program 

was first tested for the case of an uniformly perturbed filter. Fig. 3-2(a) shows an 

obtained numerical results for this filter. where "L=4. A small and negligible 

oscillation was noted at the edge of the stop band. Nevertheless. the simulation 

exhibited an excellent agreement with the theoretical prediction. The other test of 

the program was to check the energy conservation and its speed of convergence. 

As shown in Fig. 3-3. the deviation of the sum of transmitted and reflected power 

from the incident power is better than 1 percent. The transmitted light oscillates 

in the transient stage but soon converges to its steady state value both in 

amplitude and phase. The time it took to reach steady state depends on the 

length of the fiber: For a one meter long fiber used in our simulation. it was 

45ns. 

The fiber Bragg filter made with a so-called distributed feedback 

structure has some very interesting features. It not only acts like a selective 

narrow band pass filter with a high reflection coefficient. it also behaves as a 
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Fig. 3-1 A plot of the theoretical reflectivity response versus detuning of a fiber 
filter. The filter has uniformly perturbed amplitude and the coupling 
constant "L equals 4 for curve a, 3 for curve b, and 2 for curve c. 
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Fig. 3-2 The results of numerical calculation of a constant grating amplitude 
filter. (a) The reflectivity response versus detuning. (b) The transmitted 
phase of the probing light versus detuning. 
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Fig. 3-3 Results of the convergence test of the numerical simulation program. The 
probing field is a weak step input, and the detuning(,6.f3L) is chosen so 
that both the convergence properties of the transmitted and reflected light 
can be examined. 
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strongly dispersive medium. As shown in Fig. 3-2(b), when the incident light 

wavelength is tuned across the stop-band, the transmitted phase undergoes a rapid 

change. This phenomenon suggests that a fourier transform limited pulse 

propagated through this fiber filter will be severely broadened because of its 

various frequency components being phase shifted by the filter. To illustrate this 

broadening process, it is very helpful to examine the dispersion properties of this 

fiber filter. If material dispersion is neglected, the filter dispersion is readily 

evaluated from Eqs.(2.27) and (3.21). Fig. 3-4 shows the dispersion parameter 

d2¢/dw2 calculated for a 1m long fiber filter with K=4m-1• It is seen that the 

dispersion can be either positive or negative depending on the detuning. 

Furthermore, this anomalous dispersion has an oscillation period roughly equal to 

the period of the side lobes of the reflectivity. In Figs. 3-S and 3-6, numerical 

simulations are shown for filter amplitudes which are either linearly or 

exponentially decreasing, i.e. 

or 

nt(z) ... az+ b 

nt(z) :::z a exp(-n!z) 

where a=7, b=O.04 for the linearly tapered filter and a=IS, n!=6.S for the 

exponentially tapered filter. Obviously, the response of the filter exhibits a 

dramatic difference when the perturbation amplitude changes from spatially 

uniform to linear and then to exponentially decreasing(i.e. from Fig. 3-1 to Figs. 

3-S,3-6). First, the perodic oscillation in the reflectivity becomes more and more 

obscure and finally the response approaches that of a Lorentzian for the 

exponentially tapered filter. Second, the rapid change in the transmitted phase 

around zero detuning becomes smoother and smoother as the contribution of the 

tapering parameter is increased. This implies that the dispersion properties 
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Fig. 3-6 Response of the reflectivity and the transmitted phase for an 
exponentially tapered fiber filter. 
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of the filter have also changed. In chapter 5, the different filter geometries will 

be examined by sending pulses numerically into a fiber filter and then monitoring 

their change in shape in order to evaluate how the dispersion properties can affect 

pulse performance. 



CHAPTER 4 

PHOTOSENSITIVEITY AND GRATINGS IN 

GERMANIA DOPED GLASS FIBERS 
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During the past ten years, a significant amount of work has been done to 

develop new optical devices for switching, modulation, phase conjugation and 

bistabiIity, many of which may become important in optical data processing 

applications. Most have relied on the nonlinear or electro-optical properties of the 

crystalline materials. Besides their low losses, glasses would be very attractive for 

the devices mentioned above because of their low cost and ease of fabrication 

when compared to single crystal devices, and because they could make it possible 

to develop all fiber-based devices for fiber-optic transmission. The history of 

research and development of glasses and their applications is comparable to that of 

optics. Although high power lasers have been available for less than three 

decades, to date the utilization of glass has generally consisted of linear passive 

components whose nonlinearity to the intense laser light is extremely limited. 

Only recently, the discoveries of permanently laser-induced refractive-index 

changes in several types of doped glasses have motivated researcher's interest to 

identify the nonlinear processes involved and to explore their potential for various 

device applications. 

This chapter describes experiments aimed at characterizing the physical 

properties of photo-induced gratings in germania doped glass fibers. The first 

section of this chapter presents a review of different observations of 
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photosensitivity in doped glasses. Since the formation of photo induced-gratings in 

glass is phenomenologically similar to the photo refractive effect observed in electo­

optical crystals. a microscopic model used to describe photorefactivity will be 

introduced and comparison will be made with the observed photosensitive effects 

in glasses. The second section describes the experimental procedure and the 

equipment used in the fabrication of the fiber filter. Additional sections follow 

presenting the experimental set-up and results of the variation in the grating 

reflectivity with writing power. the spectral response of the photosensitivity. the 

frequency response of the grating amplitude. and the grating's anomalous 

dispersion. Also covered in these sections are discussions of the results and their 

comparison to theoretical predictions. 

Introduction to Photosensitivity and Photorefractivity 

The existence of photosensitivity has been reported by several groups in 

bulk glass. optical fibers and thin film glass waveguides. For example. a 

permanent induced grating was found during four wave mixing (FWM) 

experiments when bulk samples of three kinds of Eu3+ -doped glasses were exposed 

to interfering laser beams (Behrens. 1986). Specifically. the change in refractive 

index could only be induced or erased when the wavelengths of the spatially 

overlapped writing beams were tuned to a value such that Eus+ ions are 

resonantly excited. In addition to the Eu20s dopant. it was also shown that the 

host glass material had a strong influence on the photosensitivity. Similar FWM 

measurements on Eus+-doped borate. german ate. and fluoride glasses showed that 

no strong. permanent gratings were created in those materials and to date no 

explanation has yet been offered about the interplay between dopant and host 
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glasses. 

The first observations of the photosensitive effect in optical fibers were 

made by Hill and coworkers (1978). The permanent grating was formed by the 

interference between two counter propagating laser beams in a pure silica glass 

core doped with 10-15 mol% Ge02. Although the microscopic nature of the 

photosensitivity that leads to grating formation in fibers is unknown. it seems that 

gemania (Ge02) is a necessary ingredient for the fibers to exhibit photosensitivity 

(Stone. 1987). The observed strength of the induced-grating increases with 

increasing germanium dopant concentration. (Typically the Ge02 concentration in 

fibers is about 4 mol%). In fact gratings have been created with high efficiency 

in slab waveguides of sputtered Ge02 films (Yin. 1986) and in specially prepared 

Ge02 wafers (Meltz et al.. 1987). 

In many classes of nonlinear and electro-optical crystals. it is now well 

known that phase gratings can be created or erased holographically. This optical 

effect is referred to as the photorefractive effect (Glass. 1978). For observation of 

this effect in a homogeneous material. it is necessary to have some spatial 

modulation of the light intensity. Periodic grating-like perturbations are 

particularly well suited for experimental observation as well as mathematical 

modeling. Fig. 4-1 shows the basic arrangement of the holographic (or FWM) 

technique for creating a sinusoidal intensity modulation in a crystal. Information 

about the induced grating can be gained from the probe beam diffraction 

efficiency. For a peak-to-peak induced index change An. the diffraction 

efficiency (Kogelnik. 1969) is given by 

11 = e-rxd/cososin2 [ 1TAnd ] 
2Xcosf} 4.1 

where 0/ is the absorption coefficient and d is the crystal thickness. The simplest 
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Fig. 4-1 A typical setup for holographic recording of a thick volume grating in a 
photorefractive crystal. The laser beam is split into two paths by the 
beamsplitter and recombined in the crystal at an angle 28 to produce an 
sinusoidal spatial intensity variation. The weak probe beam is used to 
determine the diffraction efficiency of the grating and hence the index 
modulation. 
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basic model proposed for explaining the nature of the induced index changes has 

adopted the concept of the migration of excited free electrons (or holes) which are 

released from donors sites in the crystal by absorption of the incident light 

(Gunter. 1982). As shown in Fig. 4-2. the spatial modulation of the light intensity 

gives rise to a corresponding modulation of the electron and ionized donor 

densities. The electrons may then be displaced by diffusion or drift under the 

action of an externally applied field. and subsequently be trapped by empty 

donors away from their excitation sites. Because of the movement of the 

electrons. there is a spatial difference in the excitation rate of the ionized donors 

and the trapping rate of the electrons. resulting in a spatially modulated electrical 

charge distribution and an intrinsic space-charge field builds up internally. 

Labeled as Esc. the resulting space-charge field gives rise to a modulated index 

change .6.n via the Pockels effect (Hopf and Stegeman. 1985) 

.6.nj "" !no3rijEscj 4.2 

where rij is the linear electro-optic coefficient of the crystal. After the light is 

turned off. the space charge fields and hence the index change remain for some 

time. determined by the dark resistivity of the crystals (e.g. several months in 

LiNb03). When uniform illumination or heating is applied to the crystal. the 

photoelectrons are released again from the traps and move in the space charge 

field to regions of high ionized donor concentration where recombination take 

place. The grating can be erased and the crystal returns to its initial 

homogeneous state. 

Although the photosensitivity discovered in EU20 3 and Ge02 doped glasses 

resembles the photorefractive effect in many respects. some inconsistencies do exist 

between these two effects. First. the photorefractive effect emphasizes the concept 
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Fig. 4-2 The build up of a space charge field Esc in a photorefractive crystal 
under a modulated light intensity. Initially, the excited negative and 
positive electrical charges of the electrons and ionized donors compensate, 
so that there is no net space-charge. (a) The electron diffuse to give rise 
to a space charge field distribution modulated in phase with the light 
intensity. The resulting Esc is shifted by a quarter grating period A/4. (b) 
The electron distribution is displaced by a static field, and generates a Esc 
that is approximately shifted by half grating period A/2. 
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of excited free electrons in crystal lattices. But the energy-level schemes for Eu3+ 

and Ge4+ in their glass hosts are not compatible with an ionization transition at 

the laser wavelength used in the observation of photosensitivity. Second, there 

have been no reports to date of observations of refractive-index changes produced 

by a single laser beam in any of the photosensitive glasses, in contrast to the case 

for photorefractive crystals. Third, the fact that optical erasure in EU20 3 doped 

glasses occurs only at a wavelength where Eu3+ ions are resonantly excited 

(Durville, 1986) is not consistent with the normal erasure process used for 

photorefractive crystals, in which a uniform illumination at a wavelength other 

than the ionization wavelength can bring the crystal back to its original state. In 

addition, the uniform illumination erasing process has not been observed in any 

kind of Ge02 doped glasses. Finally, the major stumbling block in relating the 

photosensitive effect in glasses to photorefractivity is the absence of the Pockel's 

effect in glasses. Because glass is a centrosymmetric medium, no electro-optic 

coefficient can exist in amorphous glass. Even if we can assume that the 

resonantly excited electrons of the dopant can be displaced by thermal diffusion in 

the glass matrix and subsequently trapped by defects so that to a space charge 

builds up, without the coefficient rij it is still difficult to find a reasonable 

relation between the space charge field and the induced index change. 
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Apparatus and Grating Fabrication Technique 

The experiments presented in this and following sections focus on the 

fabrication and characterizion of the properties of photo-induced gratings in 

Ge02-doped fibers. The major pieces of equipment used to fabricate and 

characterize optical fiber gratings are described in the first part of this section. 

The basic techniques and experimental conditions that are important for generating 

a high quality grating are discussed in the second part. 

I. 

The experiments were all performed with a Spectra Physics 380-D Ring 

Dye laser pumped by a Spectra Physics 171 Argon Ion laser. Both lasers have 

the capability of operating on a single longitudinal cavity mode and hence 

essentially single frequency. Several spectral lines are available from the Argon 

laser and are selected by a dispersive prism mounted as part of the laser's non­

output mirror assembly. When operating on the strongest lines (488 nm or 

514.5nm), the laser normally emits 8 -+ 9 watts of power in the TEMoo mode and 

has an ~1 GHz linewidth. For single longitudinal mode operation. a thermally 

stabilized etalon is inserted inside the laser cavity both reduces the maximum 

single line laser power to 4 watts and narrows the linewidth down to 150 MHz. 

The dye laser system is pumped by the Argon Ion laser operating on one 

of its strong lines. It was supplied with an active frequency stabilizer and an 

stab i-lock controller. A typical system configuration is shown schematically in 

Fig. 4-3. This dye laser has a four-mirror ring cavity in which the beam travels 

in a "figure-eight" pattern. To achieve stable single-frequency oscillation. a 

number of passive frequency-selective elements are introduced into the laser 

cavity. These include a birefringent filter with a fine etalon and an electronically 
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Fig. 4-3 Schametic layout of the Spectra-Physics 380-D Ring Dye Laser and 
Frequency Stabilizer. 
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tunable single-frequency etalon. The frequencies of the allowed lasing modes are 

controlled by the length of the cavity. For this laser. the cavity mode spacing is 

about 200 MHz (Spectra physics 380D laser manual). To scan the output 

frequency continuously. the cavity modes are tuned by changing the length of the 

laser resonator. This change of length is achieved by rotating the PZT driven 

dual galvoplates. At the same time. the transmission peak of the scanning etalon 

is changed by scanning the inter-etalon mirror separation at the same rate as the 

dual galvoplates are scanning the cavity mode frequency. 

The linewidth of this ring dye laser is limited by instabilities in the optical 

length of the laser cavity. Instabilities caused by microphonic vibrations. ambient 

pressure fluctuations. and bubbles in the dye jet will induce laser mode-hopping 

and destabilization. In order to achieve the narrowest linewidth and make this 

laser virtually immune to mode-hops during the experiments. it was necessary to 

always use the active frequency stablizer and stabilock controller. As shown in 

Fig. 4-3. the frequency stabilizer is constructed from two Fabry-Perot 

interferometers. one of which acts as the "reference" interferometer with free 

spectral range (FSR) of 0.5 GHz. and the second. called the "slave". has a IO GHz 

FSR. Both the "reference" and "slave" are used to monitor laser frequency at the 

same time. The laser frequency is now stablilized by locking it onto a fringe of 

the reference interferometer. When a small frequency deviation «< 0.5 GHz) 

occurs. it will be detected by the reference photodiode and a corrected error signal 

is fed back from the stabilock controller to the PZT-mounted M2 mirror and the 

dual galvoplate. For large frequency excursions (e.g. a mode hop of two-cavity 

modes ~ 400 MHz). the "reference" interferometer changes by approximately one 

fringe and no difference is detected by the error circuit. However. the "slave" 
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photodiode will detect a fringe shift for the "slave" interferometer and a correction 

signal will force the laser frequency to return to the original fringe. The 

frequency control is then returned to the "reference" for fine tuning of the 

frequency adjustment. Basically. the frequency of this laser is controlled by the 

reference interferometer when the stab i-lock circuit is activated. The fine-

frequency scan is now achieved by sending a linear high voltage to rotate the 

galvo-mounted quartz plate within the interferometer cavity and the 10 GHz 

interferometer is PZT scanned to follow the frequency of the 0.5 GHz 

interferometer. 

Operated in the stabilock non-scanning mode and properly aligned. the laser 

will emit a cw beam with a 500 KHz linewidth. The reference error signal 

required to maintain this linewidth can be monitored on a real time oscilloscope. 

Tektronix TSl2 in our case. A typical single frequency stabilization signal with 

arms peak-to-peak voltage of 50 mv is shown in Fig. 4-4. 

The dye chosen for the experiments is Coumarin 6 (Kodak) which has a 

usable gain curve from 5l7nm to 580nm. Fig. 4-5 shows the experimental 

measurement of the dye gain evaluated for the ring laser. To obtain the optimum 

power with this dye. it requires 6 W pumping from the Argon laser at 488nm 

line. At best. the ring laser will emit 250mw at the peak of the dye gain curve. 

Fig. 4-6 shows an example of the output power stabilization over a 10 minute 

interval. 

In most of the experiments using the ring dye laser. the wavelength 

calibration was performed with a Burleigh WA-1O wavemeter (a modified scanning 

Michelson Interferometer). which can read out the laser wavelength (or frequency) 

to an accuracy of .001(±I)nm. A Tropel model 470 spectrum analyzer with a 2 
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Fig. 4-4 An example of the ring laser frequency stabilization signal output from 
the stabilock controller. Normally, this signal is 50mv peak to peak but at 
optimum alignment it can be reduced to 30mv peak to peak which means 
that the linewidth of the laser is further narrowed(i.e. <500 KHz). 
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GHz FSR was also used to calibrate the fine frequency tuning range of the ring 

laser. 

An IBM PC-XT computer coupled to the experiment with a Stanford 

Research SR245 computer interface module was used to control the experiment 

and to acquire and store the data. As sketched in Fig. 4-7, the computer was 

connected to the interface which received data from an EG&G FNDIOO fast 

photodiode and a Coherent model 212 power meter during the grating build-up 

process. The computer also controlled the stabilock system when it was necessary' 

to scan frequency for characterizing the frequency response of the grating. 

Signals (both digital and analog) were sent to the controller through interfaces to 

activate or deactivate the stabilock, scan the laser frequency, and monitor the ring 

laser power during the scan. Details of the procedure will be described later in 

the appropriate sections. 

II. 

The fibers used in the grating experiments have the following parameters: 

NA = 0.22, OD == 62pm, and core diameter 2.2 pm. The corresponding core­

cladding index difference is ~n :!! 1%, and the fiber is nearly saturated with OH 

(about 1000 ppm%wt). To prepare a grating, the plastic fiber jacket was first 

stripped off for 3-4 inches at each end. The fiber end was then carefully cleaved 

with a diamond scriber. Due to the limited area available on the optical table, the 

fiber length was fixed at 37-+40 em in all of the experiments. It was then 

mounted into the apparatus, a layout of which is shown in Fig. 4-8. As 

mentioned in Chapter 2, this fiber is not a truly single mode fiber for wavelengths 

< 632nm. In order to get a high quality grating, it was therefore crucial to excite 

only the fundamental mode in the fiber during alignment. Fig. 4-9 illustrates a 
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Fig. 4-7 The block diagram for the experimental control and data acquisition 
system. 
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Fig. 4-8 Experimental arrangement for grating fabrication and reflectivity-
frequency response measurement. The 30/70 beamsplitter is used to 
sample the laser beam into a spectrum analyzer for monitoring laser 
stability. and to pick off the reflected light from the grating induced in 
fiber . 



70 

------ ~~~------F-i-be_r ____ __ 

(a) 

------1~--.......... ------------------~-~---= 
(b) 

-~"---(c)--
1----~~-
1----~ (d) 

He-Ne 

Aperture 

Fig. 4-9 An illustration of some improper ways to align the fiber and a simple 
two way alignment technique. (a),(b) The beam is coming at an angle with 
respect to the input end of fiber such that high order fiber modes could 
be excited. (c) is the ideal coupling condition. (d) With an aperture stop, 
the beam can be centered at the objective by overlapping the weak 
interference fringes from the reflection of objective surfaces. After the 
centering, the fiber end can be fine adjusted to overlap the reference He­
Ne with the incoming beam to minimize the tilt angle. 
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basic two-way alignment which utilizes a (low power) He-Ne laser. The green 

writing beam (incident from the left) is initially kept at very low powers < ImW 

and is aligned parallel to the center of a lOx wavefront corrected microscope 

objective. The launching end of the fiber is clamped in a Teflon V-groove mount 

built on a 5-axis piezoelectric translation stage to allow (and stabilize) the fine 

adjustments necessary for precise coupling of the writing beam into the fiber. 

The fiber is also kept straight and strain-free inside a quartz capillary tube with 

the far end of the fiber attached to a strain-relief mount. The quartz tube 

surrounding the fiber shields it from thermal effects that could be induced by air 

currents around the fiber. Similar to holographic recording, the stability 

requirements are stringent. Shielding against thermal effects and the minimization 

of tension changes is necessary for the experiment because the growth of the 

gratings is highly sensitive to both of these parameters. To create a grating with 

high reflection effficiences, the writing source can be either a cw argon or dye 

laser with wavelengths ranging from 488nm to 540nm and operating on a single 

longitudinal mode of the cavity. A Faraday rotator with 30dB isolation is placed 

between the laser resonator and the input face of the fiber to prevent any back­

reflected light from the fiber to cause destabilization of the laser. 

After alignment is completed, the gratings are written. The incident laser 

power is raised up to several tens of mW. Typically 40-50 mW are available for 

the C6 dye, and much higher powers from the Ar+ laser itself. The grating 

formation process is initiated by a weak standing wave which is set up within the 

fiber when the incident fiber-guided beam is Fresnel-reflected the far end of the 

fiber. This periodic intensity modulation along the fiber core induces a weak but 

periodic perturbation of the refractive index by a process not still fully 
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understood. This induced grating has exactly the correct periodicity for reflecting 

backwards more of the incident beam and hence increasing the strength of the 

standing wave, which in turn increases the index modulation etc. The grating 

thus created reflects progressively more and more of the incident light in time. 

Depending on the writing power, the reflectivity of the fiber can grow from the 

initial level of about 4% to more than 60% in the course of a few minutes. Fig. 

4-10 shows a typical result for the grating reflectivity growing in time. For this 

case, the writing power launched into the fiber was 148 mW at A=514.5nm and 

the saturated reflectivity achieved was 90% after 56 seconds exposure. In 

principle, the effective length of the grating is limited primarily by the 

interference condition or coherence length of the exposing laser radiation. For an 

Argon-ion laser with a linewidth of 150 MHz, the corresponding coherence length 

is 2 m (Leoh = c/t::.v). A fiber Bragg reflection filter can thus be fabricated for 

longer lengths than 40 cm. In fact, fiber filters whose lengths vary from I cm to 

more than 1 m have been reported by Kawasaki et al. (1978). 

The high frequency noise observed during the growth process has been 

observed in every experiment. Some authors (Lapiere, 1982; Stone, 1987) suggest 

that this noise may be caused by increasing fiber temperature due to the 

absorption of energy. The ideas is that the temperature rise produces a change in 

the length of the fiber together with a variation of the refractive index of the 

core. This changes the phase condition of the standing wave which induces the 

periodical index modulation. Consequently, the Bragg condition is no longer 

satisfied for the original grating and the reflectivity drops. A new grating, 

corresponding to the new temperature and fiber length is written and the 

reflectivity rises again for the new Bragg condition, and so on. To verify that 
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Fig. 4-10 A typical growth signal of the light reflected from a photoinduced grating 
in a fiber. 
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this noise mechanism is not due to increasing absorption loss in the fiber itself or 

to the radiotion loss of mode coupling from guided mode to radiation modes, both 

the transmitted and the reflected power were monitored concurrently. As shown 

in Fig. 4-11, there is a direct one-to-one correspondence between the reflectivity 

decreasing and the transmission increasing at each recorded time, the laser stability 

is also shown in this figure. This experiment, however, does not rule out a slow 

increase in fiber temperature which may cause the previously stated noise 

mechanism. 

In addition to the high frequency noise component, a turning point was 

noticed in the shown reflectivity curve (Fig. 4-10). During this instability, the 

intensity pattern of transmitted mode has a transient change after which it returns 

to its original pattern (Le. the LPOJ mode) as the growth of reflectivity restabilizes. 

Fig. 4-12 shows an intensity pattern normally observed when the instability 

occurs. Although this mode structure is not repeatable in every experiment, it 

does possess some correlation with the transmitted mode intensity pattern 

(described later) when the reflectivity is saturated. The possibility of instability in 

the interaction of counterpropagating waves due to Stimulated Brillouin Scattering 

(SBS) in single mode fiber has been considered by Bar-Joseph et al.(1985). 

Because of the phasmatched condition, the SBS will only travel backward and 

have light frequency that is shifted from the pump frequency. This Brillouin 

shift is 32.3 GHz (Stolen, 1980) for a pump wavelength at 514 nm, and for fiber 

of 40 cm long a threshold pump power of 8.87 W would be required to initiate 

an efficient SBS. In our experiment, the possibility of SBS caused instability has 

been checked by using a 2 GHz FSR spectrum analyzer to examine the frequency 

component of back reflected light. No frequency shift correspond to the SBS was 
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resolved during the instability and in the whole growth process. Another property 

of this instability is that it will randomly occur in the growth process if the 

launching power is more than 10 mW. For lower power, it is less likely to 

happen, and it has been shown that a 5 m W launching power can produce a 

stable reflectivity growing curve up to 30% of maximum reflectivity (Lapierre, 

1982). Hence a thermal instability has been suggested as one of the causes of the 

transient destabilazation. 

In the course of the experiments, it was also observed that the mode of the 

transmitted light changed from the fundamental to the next higher order mode 

when the reflectivity is saturated. Meanwhile, the reflected light maintained the 

fundamental mode. Fig. 4-13 shows the intensity patterns observed at the 

transmitting end for starting exposure, saturated exposure, and the saturated back 

reflection pattern respectively. If the fiber is kept exposed to the laser light after 

the reflectivity first saturates, the reflectivity will gradually decrease to the 4% 

value again. With further illumination, the reflectivity will start to grow again 

with the light propagating in the new mode, and the highest reflectivity obtained 

is never as high as it was in the fundamental mode. Fig. 4-14 shows how the 

reflectivity drops decreases with the recorded transmission as well as a subsequent 

rise of the reflectivity. This phenomenon occurs because, according to the spatial 

energy distribution of the fundamental mode in the fiber, the index change is 

largest at the center of the core. Consequently, after a grating is made, the fiber 

has no longer a uniform cross-section across the waveguide and the central portion 

of the core has a greater index modulation than near the core-cladding boundary. 

Hence, the guiding condition is no longer suitable for the fundamental mode to 

propagate. Finally, when steady state is reached (usually takes about 20-30 
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minutes), the transmitted light will exhibit a structure which is different from 

fiber to fiber, and the reflectivity is usually just a little higher than the original 

4%. This is because several gratings have been created in the core, each one 

corresponding to a different propagation constant, and the final reflectivity is the 

result of the interference sum of the reflecting wave of each grating. 
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Power Dependence of the Reflectivity 

The photosensitivity of the fiber can be quantified by measuring the 

saturated fiber grating reflectivity at different incident laser power levels. If 

indeed a uniform grating with constant amplitude is written into the fiber. this 

would imply a trade-off between the length of the fiber and the strength of laser 

power. that is the longer the fiber. the less power is required to reach high 

reflectivity (Lam. 1981). If the fiber length is kept constant. as in Eq.(3.22). the 

coupling coefficient which characterizes the strength of the grating and hence 

photosensitivity can be measured. 

In this, and in fact all of the experiments. the fiber length was fixed at 37 

.... 40cm. Thirteen pieces of "fresh" fibers were used for the experiment and they 

were all nominally identical. that is they were cu.t from one long piece of fiber 

and the entrance and exit faces were prepared as identically as possible. The 

experimental set up was that shown previously in Fig. 4-8. with the exception that 

the Ar+ laser operating at A==514.5 nm was used so that the incident power could 

be varied over a large range. The reflected signal was detected by an EG&G 

FNDIOO fast photodiode which has a reponse time less than 2ns. and was 

displayed on a Fisher chart recorder to have a permanent record of the saturated 

reflectivity as well as the time for which each fiber was illuminated. The data 

taken for the reflectivity versus writing power. and time versus writing power are 

shown in Figs. 4-15 and 4-16. These two results show that the photosensitivity 

response is strongly intensity dependent. Because the Bragg condition is satisfied 

in this case, i.e. no detuning. it is easy to derive from Eq.(3.22) a relation between 

the reflectivity and the induced index change. namely 





83 

4.3 

where nl is the photo-induced index change. and L is the length of the fiber. Note 

that this expression assumes that the index modulation n1 is constant along the full 

length of the fiber. The data from Fig. 4-15 was recalculated from Eq.(4.3) to 

obtain an expression for n1 versus power. this is given in Fig. 4-17. A best fit 

curve for a dependence of n1 to the power squared is also given in this figure for 

comparison. The reasonable agreement with the power squared dependence of the 

photo-induced index change from this experiment implies that a two-photon 

process (Glass. 1978) may well be the mechanism responsible for the 

photosensitivity. 

Photosensitivity-Wavelength Dependence 

Another way to characterize the photosensitivity in the fiber is to scan the 

fiber's response over a limited wavelength region using a wavelength-tunable 

source. Until now, gratings had only been written at 488 nm and 514.5 nm and 

no attempts had been done to investigate the wavelength dependence of the 

gratings. The purpose of this experiment was therefore to investigate the 

possibility of extending the grating fabrication to longer wavelength. For this 

purpose, a coumarin 6 dye laser covering the spectrum between 517nm-580nm was 

used as the tunable writing source. With the exception of the laser source. the 

basic experimental set up is the same as the previous experiments. The Burleigh 

wavemeter was used to measure the dye laser wavelength. 

A grating created with the fundamental fiber mode with a maximum 

reflectivity of 60% was first achieved at a wavelength of 534.317nm. In order to 

verify that the same piece of fiber could be used to write a grating at a different 
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wavelength. the laser beam was immediately blocked to prevent further exposure 

of the fiber. and the laser wavelength was tuned slightly (about Inm) by adjusting 

the angle of the birefringent filter in the ring cavity. (The stab i-lock has to be 

disengaged for this step.) According to Bragg grating theory. a light wave at a 

certain wavelength will propagate in the fiber filter without interacting with a 

grating written at another wavelength as long as the second wavelength lies outside 

the bandwidth of the filter. i.e. AblihPWHM where Ah is the wavelength shift and 

lihp'WHM is the original filter bandwidth. If the photosensitivity still exists at this 

second wavelength. a new process of grating formation should occur. In fact. 

when this fiber was exposed to the new wavelength beam. the growing process 

started all over again. 

Finally. the photosensitivity response was characterized for the whole 

wavelength region covered by the C6 dye. It is important that the writing power 

at each wavelength was the same. i.e. to normalize the power dependence. 

However. because the power of the dye laser will change when it is tuned over 

its gain curve (Fig. 4-5). a variable beam attenuator was placed in the path of the 

laser beam to ensure that the same amount of power was sent into the fiber. 

regardless of the wavelength. The writing wavelength was varied in steps of 1 nm 

between 521 nm and 560nm at an average input power of 32mw. The saturated 

reflectivity was recorded for each wavelength and the corresponding index 

modulation was calculated. The results in Fig. 4-18 show that the photosensitivity 

is strongly wavelength dependent in this germania doped glass fiber. and that the 

modulated index decreases significantly when the writing wavelength is beyond 

548nm. A number of studies have been done to characterize the UV absorption 

spectrum of germanium doped silicate glass (Cohen. 1958; Rowe. 1974; Yuen. 
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1982). The overall conclusion is that the absorption peaks appearing at 185nm and 

242nm are associated with the two stable oxidation states of germania respectively. 

i.e. Ge02 and GeO. For comparison. the absorption spectra of germanium silicate 

is also shown in Fig. 4-18. It can be seen that the curve of decreasing 

photosensitive response of the germanium doped fiber follows the falling edge of 

the GeO absorption line very closely. except that the effective wavelength region 

is nearly twice as large for the fiber as it is for the GeO. It has been postulated 

that two-photon absorption in germania could be the origin of the grating 

formation and the experimental results presented in this and the previous sections 

could be interpreted as supporting this hypothesis. 

Amplitude Versus Frequency Response of Photo-Induced Gratings 

An earlier model (Bures and Lapiere. 1981) suggested that the amplitude 

coefficient (i.e. the modulation index n1) of the photo-induced grating is not 

uniform along the fiber axis. but decreases exponentially with distance from the 

entrance face. As shown in the previous chapter. the detailed geometrical 

structure of the grating is characterized by its overall reflectivity response to 

incoming light of variable frequency. From theory. it can be shown that the 

reflectivity response of an exponentially decaying grating amplitude is a Lorentzian 

function (Fig. 3-6). it has no side lobes. and it is symmetrical with respect to zero 

detuning from the Bragg condition. 

To test this model. the experiments described here have taken advantage of 

the fine frequency tuning capability of the dye laser. Prior to writing a grating 

in the fiber. precise calibration and control of the laser's frequency tuning range 

was required. Since the laser has a 30 GHz maximum scan range and the 
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accurate positioning of the dye laser frequency is determined by the voltage 

applied to the stabi-Iock controller. a computer controlled interface (which served 

as a stable voltage source) was used together with the 2 GHz FSR spectrum 

analyzer to first establish a relationship between the tuning range and the applied 

voltage. The results of the calibration showed that a two-volts peak to peak 

sweep (-IV to IV) corresponded to a 2.5 fringe shift of the spectrum analyzer. 

that is 5 GHz in terms of frequency. and that the nonlinearity in the scan was 

less than 2%. 

Next. the wavelength response of several fiber filters made at frequencies 

ranging from 532 to 537nm with an average reflectivity of 65% were measured. 

The experimental set-up was the same as that in Fig. 4-3. with the addition of a 

computer connected to the dye laser controller to activate the frequency sweep and 

to collect the data. Immediately after a particular grating was writen. the laser 

frequency was detuned 2.5 GHz from the writing frequency. and then scanned 

over 5 GHz in 1000 steps so as to cover a symmmetrical interval around the 

writing frequency. Reflectivity data was taken at the end of each step (every 5 

MHz). The overall scan time was 296 seconds. But. the integration time for each 

complete step was much shorter (~ 300msec) than the time it took to grow a 

grating thus limiting the effect of the probe beam on the grating response. Also. 

the transmitted power was kept at a high constant value (42 m W) so that the 

detectivity of the silicon photodiode was enhanced. This resulted in a relatively 

high signal to noise ratio (20: 1) in this experiment. 

A typical experimental result is shown in Fig. 4-19 where a full trace of 

forward scan is shown together with a half trace of backward scan for comparing 

the scan stability. The side lobes appearing on both sides of the main peak 
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suggest that the grating amplitude cannot decay exponentially. as one model had 

assumed. The fact that the main peak and the side lobes are not symmetrically 

distributed about the grating center frequency also indicates that this grating 

structure differs from an ideal grating of constant amplitude and periodicity. In 

addition. a frequency shift of 75 MHz of the main peak from the zero detuning 

frequency was observed in this reflectivity response curve which cannot be 

understood in terms of the ideal grating model. In order to understand better 

what kind of grating would produce such an interesting response. we further 

compared this result to theoretical frequency response functions for a nonuniform 

but almost periodic structure (Kogelnik. 1976) in which the modulated refractive 

index can be expressed as 

n "" no + nl(z) cos (2{ z + W(Z)] 4.4 

where w(z) is a phase shift function that describes a variation in the grating 

period along the length of the filter and is often referred as a "chirp". It was 

found that constant amplitude gratings with a quadratic chirp with a phase 

function of the form 

w(z) "" F[ 1:]3 
where F is a constant have an asymmetric response similar to the one in Fig. 

4-19. In Fig. 4-20. the frequency response of quadratic chirped gratings with 

various values of F are given for comparison with the response for a grating of 

constant period. As F is increased from 0 to I. the side lobes symmetry is 

broken. and the main peak is shifted to the high frequency side. Based on this 

model. the theoretical frequency shift calculated for a 40 cm fiber is 45 MHz 

when F=rr/2 and 100 MHz when Ferr. Therefore the observed 75 MHz shift 
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implies a chirp factor F e! 31T /4. In addition to this chirped grating model. there 

is another mechanism for producing a frequency shift in the peak reflectivity 

response. A DC (spatially constant) refractive index change in addition to the 

periodic photoinduced grating can cause a linear shift of the detuning factor(.6.13) 

and hence a shifted reflectivity response. Finally. measurements of the bandwidth 

of the fiber filters gave an average of 256 MHz. which can be compared with the 

bandwidth of an ideal length-limited filter given by fl.u = 2~L' For fiber lengths 

of 37.5 and 40cm. the calculated bandwidths are 274MHz and 246MHz 

respectively. The agreement between the theoretical and measured bandwidths 

confirms that the filter is formed uniformly (in amplitude) throughout the fiber. 

As stated in the previous section. multiple gratings can be created in the 

same fiber at different frequency. An experiment is repeated here to demonstrate 

that a wideband reflection filter is truly achievable. This is done by overlapping 

the reflectivity response with several gratings(5-6). each with writing frequency 

seperated by 200-300 MHz. The overall reflectivity response was again measured 

by tuning the laser frequency. As shown in Fig. 4-21. the seperated reflectivity 

response covers a range of roughly 5 GHz and the average reflectivity is 59%. 

Dispersion Measurement of The Fiber Filter 

As stated in Chapter 3. a grating will introduce anomalous dispersion in 

the vicinity of the Bragg wavelength. The experimental work dealing with the 

demonstration of the existence of such excessive dispersion in the fiber with the 

creation of a photoinduced grating is presented in this section. Since the physical 

quantity of interest is the variation with wavelength of the transmitted phase of 

the forward propagating wave in the fiber filter. a modified Mach-Zehnder 
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interferometer was constructed. Fig. 4-22 illustrates the set-up of this 

interferomenter schematically. A 93:7 beamsplitter separates the dye laser beam 

into two paths. the strong beam carrying most of the input power in path one 

(primary arm) is coupled into a straight piece of photosensitive fiber and is used 

to produce a grating of up to 60% reflectivity. The second path acts as a 

reference arm. The weak beam is transmitted through a piece of fiber identical 

to the one in the primary arm. but with a slightly shorter length (!:!: 29cm) in 

order to compensate for most of the existing material dispersion introduced by the 

fiber filter in the primary arm. Furthermore. to prevent any grating from being 

created in the reference fiber during the measurement. the weak beam has a 

power typically less than I mW. The two beams are then recombined by a 50/50 

cube beamsplitter to form an interference fringe pattern. Because the intensities 

of the two beams are unequal, a neutral density filter of ND = 0.6 is inserted 

after the primary arm to enhance the fringe contrast. A linear charge-coupled 

device (Fairchild 256) with 256 line elements in 3 mm wide strip is used produce 

an image of the fringe pattern onto an osciIlscope for visualization and counting. 

The phase information carried by the interferogram can be referenced to 

the position of an arbitrarily chosen fringe before the the wavelength (or 

frequency) scan is initiated. For example. if an initial bright fringe means that 

the phase difference between the two arms is 2N7T, and if the frequency scan 

produces motion of the fringe pattern by one additional fringe. the phase 

difference between the two arms has either increased or decreased by 27T. The 

anomalous dispersion in the fiber filter in the primary arm is presumably the only 

dispersion source which can cause a significant relative phase change during the 

frequency scan. The relation between the number of fringes scanned and the 
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M = 2" AN 
dv Av 
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4.5 

where ¢J is the phase shift introduced by the grating into the fiber as discussed in 

previous chapters. and AN is the fringe shift number. 

The experiment was performed as follows. Light into the reference arm of 

the interferometer was initially blocked off so that a grating was only created in 

the primary fiber. As soon as a grating was prepared. the input laser power was 

reduced to 15 mW. light was introduced into the reference arm and a wavelength 

scan was started. The fringe position was then recorded manually after each 50 

MHz scan step. Because the interferometric experiment is very sensitive to 

enviromental changes. the system stability is the critical factor in establishing the 

accuracy of the measurement. Precautions have to be taken to prevent air 

currents. micro-vibration and small environmental fluctuations which may generate 

high frequency jitter of the fringe pattern during the fringe counting. 

Fig. 4-23 shows the maximum resolution of the fringe counting 

measurement in which the whole fringe pattern has shifted left by 1/3 of a fringe 

between two consecutive steps. In Fig. 4-24(a). the results of the fringe 

measurements over a complete scan of 50Hz are plotted as a function of the 

scanning frequency for comparison with the theoretical predictions. Based on the 

assumption of a uniform grating with 60% reflectivity (i.e. "L=l). the theoretical 

result. derived from Eq.(3.2l). is 

aN 
av- -

no (,,2/0,) sin(o'L) cos(o'L) - A{j2L 
C 0,2 cos2 (O,2L) + A(32 sin2 (O,2L) 

4.6 





2~-------------------------------------, 

::u::: 1 

~ 
.J:: 
en 
Q) 0 
C'I 
r:: 

'1:: 
LL 

~-1 
:.p 
c 

Q) 
a::: 

-2 

JI'" " " ( ~ , , 
l' ' , 

~' ~ 1 ~ 

• '\ , \ , " , \ 

" " J\ ." "..,II • , \" II .. ' ... ' ' .. , 
\ " .... 

-5E+008 OE+OOO 5E+008 
Freq. Tune(Hz) 

1E+009 

(0) 
2.0 .,.------------------------------, 

::u::: 1.5 

~ FIBER NORMAL DISP.(NO GRATING CREATED) 
:c TOTAL FRINGE SHIFT: 3 FRINGES 
en 
Q) 
011.0 
r:: 
it 

Q) 
> :.p 
..20.5 
Q) 

a::: 

0.0 -f-r'l"1T'I"1T'I"1TI"IT'I"'M"'1I"'M"'1I'TT"1I'TT"1""""""""TT'TTT'T'TTT'TTT'I"1TrrrMTn-rnTI 

o 200 400 600 800 1200 
Freq. Tune(S GHz) 

(b) 

98 

Fig. 4-24 (a) Experimental(dashed line) and theoretical(solid line) curves of fractional 
fringe displacement versus frequency for a fiber grating. (b) Experimental 
result for the reference fringe shift without a grating created in a fiber. 
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4.7 

Since the change in the phase ¢ as a function of frequency is directly proportional 

to the fractional fringe displacement N, the curves in Fig. 4-24(a) are proportional 

to the first derivative of the phase. The dispersion is then obtained by taking the 

derivative of the measured first derivative of Eq.(4.5). This means that the 

regions where the slope of the curves in Fig. 4-24(a) is negative have negative 

GVD (group velocity dispersion). The largest frequency width over which negative 

GVD could be obtained in the experiments was 500 MHz. It is also obvious from 

Fig. 4-24(a) that the negative GVD is obtained for wavelengths different than the 

wavelength used to write the grating. The dispersion was calculated from the 

experimental curve in Fig 4-24(a) to be -5 x 10-18 S2, which is seven orders of 

magnitude larger than the material dispersion in the silicate glass fiber (10-25S2). 

As a check on this result, the experiment was repeated with a fresh 

unprepared fiber in the primary arm (i.e. no grating). Because the grating 

dispersion is absent in this case, a monotonic, slow change in fringe position 

caused by the small material dispersion of the fiber glass is expected. (If the 

fibers were of exactly equal length, no fringe shift would be expected.) As shown 

in Fig. 4-24(b), the experimental result is a straight line with a total shift of only 

3 fringes counted over the 5GHz scanning range. 



CHAPTER 5 

MODELLING OF PULSE PROPAGATION IN 

NONLINEAR DISTRIBUTED FIBER FILTER 
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For most applications. fibers are considered to be completely passive or 

linear media. As the input power is increased. one expects only a proportional 

increase in the output power. This is not strictly true and dramatic power­

dependent or nonlinear effects can occur which cause large frequency conversion. 

optical gain. and many other interesting effects generally associated with strong 

optical intensities and highly nonlinear materials. These nonlinear processes 

depend on the interaction length as well as intensity. In small-core diameter. low­

loss silica fibers. high intensities can be maintained over lengths of many 

kilometers. If this length is compared with the focal region of a Gaussian beam 

of comparable spot size. enhancements in nonlinear cross-sections of 105-108 are 

possible using fibers. Furthermore. for typical core cross-sectional areas of 10 

square microns. one watt of power produces a power density of 10 Mw /cm2 

The most common third-order processes observed in optical fibers are self­

phase modulation (SPM). stimulated Raman scattering. stimulated Brillouin 

scattering and four-photon mixing. Amongst these. SPM is especially interesting 

because of the role it plays when an optical pulse propagates through a fiber 

filter. The origin of self-phase modulation and its effect on pulse distortion etc. 

is introduced briefly in the first section of this chapter. Current techniques 

utilizing SPM in fibers to compress pulses are also addressed. The next section 
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deals with the response of a distributed fiber filter when pulses are used. There. 

a nonlinear coupled mode equation is derived to describe this process. followed by 

a detailed explanation of the special numerical method adopted for treating this 

equation. Section three presents the various results obtained in the numerical 

modeling accompanied by a discussion of their physical significance. 

Self-Phase Modulation and It's Applications 

SPM is a third order (X(3») phenomenon that occurs when the optical 

intensity varies in time in a medium characterized by an instantaneous. intensity-

dependent refractive index (Hopf and Stegeman. 1986). The first experimental 

observation of this effect was in a liquid filled cell (Shimizu. 1967). In silica 

glass fibers. however. it was not observed until 1978 by Stolen and Lin. For an 

optical pulse propagating in a fiber. the change of refractive index is 

n '" no + on 5.1 

where on is the intensity-dependent refractive index given by 

5.2 

and n2'E is the coefficient for self focusing (Chiao. 1964). In fibers. the additional 

spatial confinement usually associated with self focusing is negligible. but the small 

phase shifts caused by changes in refractive index will add up over the length of 

a fiber and have important consequences. The phase of the pulse in a fiber at 

any time t is then given by 

¢(t) = (wot - f3oz) - 2{oZ on 5.3 

where Wo is the carrier frequency of the pulse. and f30 == nowo/c. Because of the 

index change. the phase is retarded at the peak of the pulse with respect to the 

leading and trailing edges. This phase shift is cumulative in a long fiber and 
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results in a sizable phase modulation. The frequency broadening associated with 

this modulation will be 

w(t)=wo+8w(t) 5.4 

where 8w(t) is the approximate frequency shift given by the time derivative of the 

phase perturbation in Eq.(5.2). 

l:w(t)=_ 27TL d8n 5 5 
U ho dt • . 

which in turn is proportional to the instantaneous power (Shimizu. 1967). In 

glasses the refractive index increases with intensity (n2'E > 0) so that the leading 

edge of the pulse is downshifted in frequency (redshifted) and the trailing edge is 

upshifted (blueshifted). For a Gaussian input pulse. the frequency shift due to 

SPM is shown in Fig. 5-1. 

As discussed in chapter 2. a pulse propagating in an optical fiber will not 

only be subjected to SPM but also to group velocity dispersion. For normal 

dispersion in the visible. the group velocity decreases with increasing frequency so 

that the effect of both SPM and dispersion combined is to cause an additional 

pulse spreading in time. However. in the wavelength region of anomalous 

dispersion (X> 1.3JLm). a self phase modulated pulse tends to shrink (or compress) in 

the time domain. It has been shown that there exist stable solutions(i.e. soliton 

solutions) corresponding to a pulse propagating in the fiber without 

distortion(Hasegawa and Tappert.1973). Experimentally. the first observation of 

picosecond pulse narrowing and solitons in glass fibers was reported by 

Mollenauer and Stolen (1980). 

The most common technique used to compress pulses in the visible is to 

use an external grating pair which functions as an anomalously dispersive delay 

line. A typical experimental set-up for such a pulse compressor is shown in Fig. 
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Fig. 5-1 An illustration of self phase modulation causing a frequency shift. The 
gaussian input pulse has a fixed carrier frequency. 
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Fig. 5-2 A typical experimental set-up for a fiber pulse compressor using an 
external grating pair. 
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5-2. When the distance between the gratings and the incidence angle are 

carefully chosen to ensure that the optical path for red light is longer than that 

for blue light so that after the second grating all of the spectral components are 

lined up in time, the optimum compressed pulse can be as short as the reciprocal 

of the band width of the linear part of the frequency chirp produced by self 

phase modulation. 

The Nonlinear Coupled Mode Formalism 

An novel pulse compression scheme has been proposed by Winful (1985) 

in which the anomalous grating dispersion from an optical fiber filter. combined 

with its self-focusing nonlinearity, would be utilized to produce an all optical fiber 

compressor. No external grating pair is required in this method to compress the 

light pulses. The analysis of self phase modulated pulse propagation in a 

dispersive fiber filter is considerably more complex than that of self phase 

modulation of a pulse in an ordinary glass fiber. Due to the distributed feedback 

structure of the grating imbedded in the fiber, a foward propagating pulse will be 

coupled to the reflected pulse at all times, thus complicating the nonlinear 

interaction. At the begining of this dissertation it was not clear which parameters, 

besides the negative group velocity dispersion, would affect the characteristics of a 

pulse during its propagation. The numerical modeling work done in this chapter 

was aimed at a detailed investigation of this phenomenon. 

In order to reduce the complexity of the analysis of the interaction 

between forward and backward propagating pulses, several assumptions have to be 

made: 

A. The filter is assumed to be made in an ideal single mode fiber; 
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B. The fiber is a pure Kerr medium which responds instantaneously to an 

intensity change; 

c. No contradirectional coupling occurs between the two orthogonal states of 

polarization of the single mode fiber. 

With these assumptions, the coupled mode equations are relatively simple 

to derive. The total field in the filter is written as a combination of the forward 

and backward modal fields. namely 

E(z,t) = Er(z,t)ei(wt-/3z) + &,(z,t)ei(wt+/3z) 5.6 

where Er (z,t) and Eb (z,t) are in general complex field amplitudes. A scalar one 

dimensional wave equation which describes wave propagation in a nonlinear 

periodic medium can be derived from Eq.(2.10): 

82E 82E 82 NL 
8z2 - flo€o 8t2 ... flo 8t2 (P + P ) 5.7 

where P ... €0(n2-l)E is the linear polarization caused by the grating perturbation 

given by Eq.(3.12), and pNL == €0(2noon)E is the nonlinear polarization that results 

in the instantaneous, intensity dependent refractive index change. Therefore the 

wave equation can be rewritten as 

2 8
2
E 8

2 
( 2E I EI2E) 5 8 c 8z2 = 8t2 n + non2'E • • 

By sUbstituting Eqs.(3.12) and (5.5) into Eq(5.8), and making use of the slowly 

varying envelope approximation, we obtain the following set of first-order 

nonlinear coupled equations 

5.9(a) 

5.9(b) 
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where the coupling and nonlinear phase coefficients are 1<.= 1rnd'tt.. and 'Y= rrn2/'tt.. 

respectively. These are the equations which will describe the evolution of pulse 

when it enters into a nonlinear fiber grating filter. 

When compared with the linear coupled equations. Eq.(S.9) differs by the 

time dependence term and the complex terms on the right hand side. cubic in the 

fields. These terms describe phase modulation. in which the self-phase modulation 

(first term in the cubic fields) is produced by the strength of forward field or 

backward field alone and the cross-phase modulation (second term in the cubic 

fields) is induced by the mixing of the two fields. It should be noted that the 

!!()p..li!!~?rity and dispersion are strongly coupled in this case. The enhancement of 

the dispersive coupling will result in a change in the field amplitude. as well as 

the strength of SPM. and vice versa. 

For the limiting steady state case described by aErlat= 0 and aEb/at=O. 

Eq.(S.9) can be solved analytically (Winful.1979). The analytical solution describes 

the bistability and switching which can occur in nonlinear distributed feedback 

structures at appropriate detunings from the Bragg condition. 

For pulse propagation. however. these coupled equations have to be 

evaluated numerically. Since it is much easier to deal with Eq.(S.9) in 

renormalized coordinate systems. several transformations have to be made prior to 

the computer simulation. 

normalized by 

First. the fiber length and propagation time are 

z'= ~ 
L 

t'= t c noL . 5.10 

A second coordinate transformation is made into the frame of reference of the 

travelling pulse. namely 
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z" ." z' u ... z'- t' S.1I 

so that 

8 8z" 8 8u 8 8 8 
8z' -= 8z' 8z" + 8z' 8u "" 8z" + 8u 

8 8z" 8 8u 8 8 
8t' -= 8t' 8z" + 8t' 8u "" - 8u . 

Eq.(S.9a) can now be transformed into 

.~;r. ::: -iKL Eb ei2(6/3L)z" - i-yL(1 Ef 12 + 21 Eb 12)Ef • S.12(a) 

where the field amplitudes still depend on the time envelope of the pulse. In the 

same way the transformation z" ." z' • v." z'+ t' will give 

S.12(b) 

Defining the critical power as Ic"" 1 Ec 12= 2/3-yL and inserting it into Eq.(S.12). 

further normalization can be done to give a set of dimensionless equations which 

read 

8E ' 
8 

fIt ." F(Ef '. Eb '; KL. ~RL) • z fJ 

S.13 

8E ' 
8 

btl ." B(Ef '. J:i'. '; KL. ~RL) z '-'b fJ 

where 

B == i(KL)Ef 'e-i2(6/3L)z" + ~i(1 Eb '1 2 + 21 Ef '12)Eb '. 

with Ef '= Er/Ec and Eb'= Eb/Ec' Note that the forward and backward fields are 

still functions of z' and t'. namely 
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Er '= Er '(z',z'-t') 

5.14 

&"= &, '(z',z'+t1 

which means that the transformations made previously have reformulated the 

coupled nonlinear equations into the coordinate systems that are simultaneously 

moving with the forward and backward pulses. Geometrically, these new 

cordinate systems can be represented by a family of orthogonal lines with slopes 
/ 

of 1 and -1 in the z'- t' plane, and they are usually called "Characteristic Lines". 

The numerical solutions proceed as follows. Assuming a gaussian input 

pulse, the incident field amplitude takes the following form: 

[ 
t'-t ] 

/ 
-2loRe 2 _0 2 

E. = Nt 2 e T 
m 5.15 

where N is the field strength normalized to the critical power, and T is the full 

width of the pulse at half maxima. The two first order equations in Eq.(5.13) can 

be integrated numerically along the characteristic lines u and v, as is shown in 

Fig. 5-3. The integration is initiated by assigning a very small value to Er', 

corresponding to the very leading edge of the pulse, and zero to Eb ' at every grid 

point when time t' is zero. For the succeeding time increments, the fields at each 

grid point start to propagate in both directions (i.e. up and down one grid point) 

to the horizontal lines labeled by IND~2. According to Euler's Integration Method 

(Gerald and Wheately 1983), the new field values are evaluated by 

Ef '(i+ l,j+ 1) == Er '(i,j) + F[Ef '(i,j),Eb '(i,j)].!lt' 

5.16 
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with the boundary conditions 

Er '(i+ l.j) :: Ein (i+ 1). 

Et, '(i+ l.n) = O. 

where i=I.2.3 ... ··.2n indicates the index of (position on) the horizontal line. and 

j= 1.2.3.···· .n-l is the grid index. Because this is basically an integration of the 

first order Taylor's series. local (at each grid point) errors of the order of At,2 will 

be carried forwards and backwards in the numerical field values. and can 

propagate with the fields to potentially produce diverging final results. An 

iterative correction method called the "Predictor and Corrector" is therefore used 

in every step of the integration to minimize the spreading of the errors. Another 

approach to decreasing the error is. of course. to reduce the time increment. In 

the characteristic plane. the time increment At' is equal to the distance between 

the grid points of the fiber. Consequently. the more grid points assumed. the 

smaller the At'. In principle. this method is better than the Predictor-Corrector 

approach. However. the total computation time. which is approximately 

proportional to the square of the number of grid points. will be tremendously 

increased using this approach. As a rule of thumb. a partition that gives 25 

pixels in the input field envelope. namely 

At' E:!: 1 
25 

5.17 

will usually lead to a smoothly converging result if the prediction-correction 

method is applied. It is also shown in Fig. 5-3 that the field amplitude of the 

forward pulse is very significant in a narrow stripe in the upper-half of the 

characteristic plane. Thus the variation of the time dependent amplitude can be 

sampled in this channel at several sections of the filter when the iteration of 

integration is completed in order to check for computational anomalies. 
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Based on the method and the considerations discussed above. a general 

computer code was developed to simulate pulse propagation. Easy input of the 

fiber etc. parameters was included to make the program versatile for examining 

the interplay between SPM and GVD in different grating geometries. 

Results and Discussion 

I. Test of Convergency 

Various test were applied to the computer program. both to check its 

accuracy and convergence properties. When a pulse propagates in a fiber without 

a grating and without dispersion. the instantaneous phase of the pulse will depend 

on its intensity. but the shape of the pulse does not change with distance so that 

the pulse emerging out of the fiber has the same shape as the input pulse. 

Clearly. the pulse energy should be conserved as well. 

These properties can be used to test the performance of the integrations 

done in the computer simulation. To implement this test. a 1m long fiber with 

the following parameters "LcO • T=0.2(l ns). N=8 and to'=O.4 was assumed and 

calculations were performed to first compare the two error reduction methods. 

The results are shown in Fig. 5-4 and Fig. 5-5. In Fig. 5-4. the simulation is 

done without the prediction-correction method but by increasing the number of 

grid points. It is very obvious that the energy is not conserved. Although the 

pulse width remains unchanged. the field amplitude at the peak of output pulse is 

larger than the input value. and the degree of divergence decrease only slowly 

with increasing number of grid points. The situation is dramatically improved in 

Fig. 5-5. where an iteration of one prediction has been included in the integration. 

The necessary grid points needed to obtain a converging output pulse are nearly 
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Fig. 5-5 An example of fast convergence obtained with a smaller grid point 
partition. The number of iterations of Prediction-Correction applied in this 
calculation is 1. 
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five times less then the previous method. 

2. Low Intensity Pulse in a Strongly Dispersive Filter 

Since self-phase modulation is negligible at low intensities. the presence of 

group velocity dispersion alone will always lead to the temporal broadening of a 

transform limited pulse. This is illustrated in Fig. 5-6 which shows the computer 

generated pulse shape at different points along its propagation path. The 
, 

parameters used to illustrate this pulse spreading process are: GRID n=IOI. N=O.l. 

7=0.2. to'=O.4. "L=4 and A,BL"" 1 3. The pulse is sampled at several places along 

the fiber. and the group delay introduced by the filter is clearly seen. Note that 

the peak intensity decreased when the pulse broadened. This occurs partly 

because some of the input energy is being reflected into the backwards direction 

by the grating. but mainly because of the broadening due to the group velocity 

dispersion process itself. Taking into account both the transmitted and reflected 

pulse. the input pulse energy was conserved. 

3. Interplay between Dispersive Coupling and Self-Phase Modulation 

The quantity "L which determines the strength of the grating is also an 

indication of the magnitude of the negative GVD. For a pulse of given intensity. 

the variation in the output pulse shape with "L = I ~ 4 can be seen in Fig. 5-7 

for a 1m fiber. When the grating is weak. the negative group velocity dispersion 

is insufficient to balance out the group velocity dispersion due to self-phase 

modulation. leaving a net positive group velocity dispersion. Therefore as the 

pulse propagates. the different spectral components travel at different velocities 

leading to pulse broadening. However. the weak grating coupling process does 
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Fig. 5-6 A demonstration of the evolution of pulse broadening(in the time domain) 
in a distributed feedback structure. In this simulation, the pulse intensity is 
considered to be very low(i.e. « Ie) and the detuning is chosen at a value 
such that 10% of pulse energy is reflected. The pulse is sampled along each 
section of the fiber as labeled by a,b,c,d,e. 
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Fig. 5-7 The evolution of the output shape of a pulse for different coupling 
constant(KL). The pulse is labeled by Land T for its leading and trailing 
edges. The detuning factor is fixed at ~.BL=13.2. and the pulse normalized 
intensity is 10. 



introduce a small amplitude change and a slightly distorted output. 
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As the 

coupling increased. the compensation of the group velocity dispersion becomes 

more and more pronounced. For IGL=2 and 3. the trailing edge of a pulse has a 

deeper modulation than the leading edge. This asymmetry can be understood from 

a careful inspection of Eq.(5.9). According to the coupled mode process. a 

backward pulse is weakly initiated at the leading edge of the forward pulse and 

grows to a maximum before it crosses the trailing edge. as is shown in Fig. 5-8. 

Consequently. a larger SPM. which is a function of the combined intensities of the 

two pulses. occurs at the trailing edge of the forward travelling pUlse. When 

IGL=4. a good balance is obtained between negative GVD and SPM. Therefore the 

ouput is compressed to a shorter pulsewidth. Note that the compressed pulse is 

also enhanced in peak power. i.e. true compression rather than pulse truncation 

occurs. 

It was also found numerically that there exists a limit to the pulse 

compression which can be obtained with a fiber filter. As shown in Fig. 5-9. the 

temporal response of the fiber filter was tested for different pulse intensities with 

a fixed input pulse width of I ns. The output pulse reaches a minimum width of 

250 ps as the normalized intensity reaches N ~ 12. A further increase in the 

intensity only results in the broadening of the side lobes. The physics behind this 

limitation is easily understood from Fourier analysis. The range of spectral 

components associated with a pulse increases via SPM when the pulse peak 

intensity increases. However. the negative GVD in a fiber filter is a bandwidth 

limited quantity and only covers a well-defined spectral range. Therefore above a 

certain pulse intensity. there are residual spectral components which are subjected 

to positive group velocity dispersion. and therefore contribute to a further 
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:-Ml~ Forward 

Fig. 5-8 A simple illustration of the coupling process between the forward and 
backward propagating pulse in a distributed feedback structure. 
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Fig. 5-9 A plot that shows the change in pulse shape and compression ratio at 
different input intensities. The coupling constant is equal to 4 in this 
simulation. 
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broadening of the side lobes of the pulse. 

4. Detuning and Pulse Compression 

It is possible to alter the output pulse shape by varying the detuning from 

the low power Bragg condition (Am. as well as changing the pulse peak intensity. 

For the result in Fig. 5-7 discussed previously. the compressed pulse was 

broadened. but with almost symmetric side lobes. Optimum detuning was found 

in this case for a given intensity and pulse width. Fundamentally. the detuning 

should be chosen so that the largest negative GVD due to the grating is available 

to compress the pulse. As shown in Fig. 3-4. this condition is best satisfied for 

Af3L ~ 4. But. since the carrier frequency of the pulse at this detuning is now in 

the stop band of the fiber filter. a very large power loss occurs due to reflection 

so that SPM is not very efficient. To prevent this unwanted side effect. a 

compromise must be found so that the detuning of the pulse's carrier frequency 

lies in a region of both useful negative filter dispersion and relatively high 

transmission. Fig. 5-10 shows the output shape of a compressed pulse as a 

function of Af3L. The side lobes change asymmetrically when Af3L is tuned across 

the optimum value of Af3L (~13.2). This happens because the GVD is not a 

linear but rather a small oscillating quantity with respect to the detuning. 

5. Response of a Nonuniform Grating 

Gratings of constant amplitude have been assumed for the modelling in 

the previous sections. For nonuniform gratings in asymmetric geometries. one may 

expect that the response will be fundamentally different depending on whether the 

the grating modulation is strong or weak at the end of the fiber where the pulse 
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Fig. 5-10 A plot that shows the change in shape of a compressed pulse as the 
detuning parameter is varied. The input pulse has a Ins width and the 
normalized intensity is 10. 



123 

is injected. In order to illustrate this difference, a pulse was sent (numerically) 

into an exponentially tapered filter from two opposite directions. Here, the grating 

parameters were chosen to be the same as those used in the computer modeling by 

Bures and Lapierre(l980). Figs. 5-11(a) and 5-11(b) show the output pulse shape 

when the input pulse is injected into both the weak and strong grating ends of the 

fiber. It can be seen that the pulse shape is seriously modulated in the first case, 

and no significant change occurs for the second. To interpret this result, one can 

again examine the compensation of the grating dispersion with SPM. Because 

SPM is directly proportional to the input peak power as well as to the fiber 

length (Eq.( 5.5», a strong spectral displacement is achieved at the output end of 

the fiber. If this end also exhibits a large negative aVD, then the compression 

can happen even within a very short length. 



124 

2o_r----------------------~40_r------------------------_. 

(0) 

pulse propagates 
c:lirectlon 

N=20.l¥lL=30; 1 ns (0) 

~ a. 10 --------> 20 
;2 

O-+~~~~~~,-~~_T~,_" 

0.0 0.5 1.0 0.0 0.2 0.4 0.6 O.B 

20-r----------------------~ 

0.0 

(b) 

pulse propagates 
direction 
--------> 

0.5 

N=20.ApL=30; 1 ns 
(b) 

20 

\ 

O~,-~~-~~-r,-~~~~~ 

1.0 0.0 0.2 0.4 0.6 O.B 

Fig. 5-11 Modulations in the pulse output shape in a nonuniform grating structure. 
(a) The pulse was injected from the end where grating strength is weak. (b) 
The pulse was propagated from the reverse end of grating(with strong index 
modulation). 
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CHAPTER 6 

SUMMARY 

There has been considerable interest in the theoretical study and fabrication 

of optical waveguide filters for light-wave communications. The work described 

in the previous chapters has been aimed at a study of both the material and 

mechanical properties of a bandwidth limited fiber filter which is manifested by 

the periodic light-induced refractive-index changes. 

The first result revealed that the fiber filters produced at a fixed 

wavelength possessed reflectivities varing from 18% to 95%. Also. a dependence 

between the writing source and the maximum achievable index modulation was 

found to vary as the square of the writing power. Scceeding experiments 

demonstrated that the photosensitive mechanism in forming the fiber filter is in 

fact a wavelength dependent effect. Furthermore. the information extracted from 

this measured effective wavelength region can be linked with the previous 

experimental result of a power squared dependence to indicate that one of the ox i­

stable component of the Germania dopant(Le. OeO) in the glass matrix is a key 

element in producing the photo-induced refractive index change. 

In characterizing the mechanical properties of the fiber filter. experiments 

focused on finding the geometrical structure of the induced grating perturbation 

and demonstrating the existence of the grating anomalous dispersion. The 

observed reflectivity response as a function of the probing light frequency suggests 

that the grating is formed continuously along the fiber. Quantitatively. the 
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measured bandwidth (E!!:256 MHz) agreed with the theoretical prediction for the 

uniformly perturbed grating structure. However. the whole reflectivity-frequency 

response curve exhibited an average frequency shift of 75 MHz and an 

asymmetric side lobe distribution indicated that the index perturbation period is 

not a constant. Attempts to compare the experimental results with various chirped 

grating responses predicted theoretically by Kogelnik (1976) has been made and the 

comparison indicated that the grating periodicity most probably has a quadratic 

chirp. 

The first observation of the grating dispersion in fiber was performed by 

using a Mach-Zehnder interferometer to count the phase dif1'~~rence (or fringe shift) 

between light passing through a fiber filter in one arm and :i fresh fiber in the 

other arm. The negative GVO was clearly observed in the vicinity of the 

creating wavelength of the grating and quantitative agreement with the theory 

developed in Chapter 3 was found. 

In Chapter 4. it also has been shown that a controllable and selectable 

frequency bandwidth (from 200 MHz to 5 GHz) for a fiber filter could be 

achieved. This was done by taking advantage of the wide spectral response of 

the photosensitive core. Multiple gratings. each have a center frequency seperated 

by a few hundred megahertz. can be created in the core and their reflectivity 

response can overlap to construct a wide band reflection filter. The capability of 

overwriting without erasing the previously written gratings is especially important 

in the formation of such devices as comb filters for wavelength-division 

multiplexed systems in fiber optic communication network. 

In the nonlinear regime. a dynamic nonlinear-distributed-coupling theory 

was developed and evaluated numerically in Chapter 5. The self focusing 
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nonlinearity of the silica glass was included with the grating's negative GVD to 

compress the nanosecond pulse down to hundreds of picoseconds. It was shown 

that the maximum compression ratio (e!4) is not only limited by the input power 

but also by the grating itself because of the bandwidth limitation of negative 

GVD. The detuning factor also plays an important role in shaping the compressed 

pulse, and this is understood by the oscillatory characteristic of the grating's 

dispersion. Based on these considerations, an optimal condition can be predicted 

for a Ins input pulse to achieve the narrowest output as well as the highest 

transmission. Such a condition requires the grating strength (KL) equals 4, 

frequency detuning (df3L) equals 13.5, and the input normalized intensity equals 8. 

For an asymmetric grating structure, the case of pulse propagating through an 

exponentially tapered filter from the opposite input end has given a very clear 

illustration of the interplay between SPM and GVD. 

In conclusion, the results of this dissertation have revealed some interesting 

features of the photoinduced gratings in optical glass fibers that have not been 

studied before. Nevertheless, some questions in the experiment still remain that 

need to be clarified. In particular, the very unstable grating formation process 

needs to be further characterized in terms of its dependence on the writing laser 

power. For this purpose, an improvement of the grating fabrication system is 

absolute necessary to be free of thermal influences. This is because it is difficult 

to distinguish the noise mechanisms when both thermal and Brillouin instabilities 

are present. Such a system demands a highly temperature stabilized enviroment, 

for example, installing the fiber in a temperature bath or a sensitive temperature 

compensation coil. By avoiding the thermal problem, the threshold power needed 

to initiate the instability can thus be determined and compared to the critical 
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power of Stimulated Brillouin Scattering (SBS). The experiment in this thesis did 

not observe a significant change in the frequency of the back reflected light as 

expected fOl: the Brillouin instability. The possibility of SBS. however. can not be 

ruled out until a more appropriate spectrum analyzer with higher FSR (typically 

7.5 GHz) for resolving the anticipated frequency shift is applied. Furthermore. it 

has been mentioned in the previous chapters that the fiber used in this dissertation 

work is not a truly single mode fiber at the desired wavelength. Therefore. in 

order to have a more detail investigation of the dynamic mechanism of the 

photosensitivity during grating preparation process. a single mode Germania doped 

fiber with smaller core diameter is also needed to screen out the effects that may 

be caused from the higher order mode. Meanwhile. a single-mode fiber has an 

unique structure to ensure that the grating induced in the core is solely due to the 

fundamental fiber mode such that the grating structure can be more easily 

characterized. 

In the aspect of material property change in these fibers. future work 

should concentrate on looking for a model to explain the build up of "permanent" 

induced refractive index change. Recent work on SHG in glass fibers has shown 

that a permanent phasematched grating is induced by a strong pump beam and a 

seeding beam of half of the pump wavelength. It is now reasonable to speculate 

that the formation of phase gratings described in this thesis may have the same 

physical origin as the case for SHG. In principle. the second order nonlinearity 

(X(2» is not considered for the centrosymmetric fiber structure. However. the 

experimental observations described above can not find a convincing explanation 

without quoting some sort of X(2) nonlinearity (in fact. X(2) may exist at the core­

cladding boundary where symmetry is no longer valid). Therefore. it was the 
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main purpose in the begining of Chapter 4 to introduce photorefractivity in 

crystals and make comparisons with the observed photosensitivity in fibers so that 

one can try to locate their conflict and find any good experimental explanation to 

link these two effects into a unique model. 

Finally, for pulse compression purposes, the experiment on dispersion 

measurement have shown that the negative aVD does exist in a fiber filter. 

However, in order to compress the pulse further into subpicosecond regime, a fiber 

filter with a broader bandwidth negative aVD than was experimentaly observed is 

needed. To achieve such a high compression ratio, the filter(or grating) response 

needs to be tailored externally. For instance, if the I';ber is subjected to a stable 

temperature gradient along its length during grating preparation, a motonically 

chirped, and therefore broad bandwidth grating with even larger negative aVD 

could be obtained. 
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APPENDIX 

Derivation of the coupled mode equations 

under weak perturbation 

As stated in Chapter 3, the guided modes amplitude C± are functions of z, 

and they are assumed to not vary significantly over one period of the weak 

perturbation. Therefore, the general form of Eq.(3.13(a» can be integrated on both 

sides over a period to produce: 

+ ei(2{3- ~) ] dz'. 

This integration can be rewritten as 

where 27T 
'Y± :: 2(3 ± A . 

A.I 



Since 

J z+~. , 
A eJ'Y:!:z dz' = 

z--
2 

Eq.(A.l) can be expressed as 
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Assuming that A{3={3-rr/A and A{3 « 2{3 , with A{3 « 2rr/A valid for small 

detuning, the first term on the right hand side of Eq.(A.2) can be approximated as 

sin(A A(3)ei2t.{1z ~ 
2A{3 

and the second term as 

sin [+~+ :;r W2("~+ ~) 
--~------~-------~ 

2 [A{3+ ~ ] 

A.3 

b:. [.ALJ i2(t.{1+ ~)z 
2 2rr/A e . A.4 

Comparing these two terms, Eq.(A.4) represents a fast oscillating term (i.e. the 

higher order harmonics term) and has a coefficient A{3 /(2rr / A) which is much less 

than I and hence can be neglected in the final expression of Eq.(A.2). Then 



and substitution into 

the final result is 

dC+ ~ 
dz -

C+(z+~] - C+G-~] 
A 

dC+.,. -iKC ei2~f3z 
dz -

using the same philosophy, Eq.(3.13(b» can be found written as 

dC_ == iKC e-i2~f3z 
dz + 

132 
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