INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI
University Microfilms International
A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
313/761-4700 800/521-0600
The determination of cultural item bias in the California Achievement Tests

McGrogan, Harold James, Jr., Ph.D.

The University of Arizona, 1989
THE DETERMINATION OF CULTURAL ITEM BIAS IN THE
CALIFORNIA ACHIEVEMENT TESTS

BY
Harold James McGrogan, Jr.

A Dissertation Submitted to the Faculty of the
DIVISION OF EDUCATIONAL FOUNDATIONS AND ADMINISTRATION
In Partial Fulfillment of the Requirements
For the Degree of
DOCTOR OF PHILOSOPHY
WITH A MAJOR IN EDUCATIONAL PSYCHOLOGY
In the Graduate College
THE UNIVERSITY OF ARIZONA

1989
As members of the Final Examination Committee, we certify that we have read
the dissertation prepared by Harold James McGrogan, Jr.
entitled The Determination of Cultural Item Bias in the California
Achievement Tests

and recommend that it be accepted as fulfilling the dissertation requirement
for the Degree of Doctor of Philosophy.

John R. Bergan
Shitala P. Mishra
Harvey D. Christiansen

Final approval and acceptance of this dissertation is contingent upon the
candidate's submission of the final copy of the dissertation to the Graduate
College.

I hereby certify that I have read this dissertation prepared under my
direction and recommend that it be accepted as fulfilling the dissertation
requirement.

Dissertation Director

Date
This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

SIGNED: Harold James McIlroy Jr.
ACKNOWLEDGEMENTS

I wish to thank Drs. John Bergan, Shitala Mishra, Harley Christiansen, James King, and Sigmund Hsaio for their guidance and expertise in the preparation of my dissertation. Special thanks are directed at Drs. John Bergan and Shitala Mishra for their support and encouragement throughout my graduate studies.

I wish to express my sincere gratitude to Dr. James King, mentor, professor, and most of all friend, whose inexorable inspiration has convinced me that anything is possible.

I thank Mr. Mark Borgstrom for his dedication and perseverance through a difficult computer analysis.

Most of all, I wish to express my deepest appreciation to my wife, Alicia Judith, whose unconditional love has provided me with the strength to continue. I also wish to express my deepest appreciation to my children, Michael and Cynthia, for their endurance and patience throughout the preparation of this research.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF TABLES</td>
<td>7</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>8</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td>9</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td>17</td>
</tr>
<tr>
<td>REVIEW OF THE LITERATURE</td>
<td></td>
</tr>
<tr>
<td>Outcomes of Bias</td>
<td>19</td>
</tr>
<tr>
<td>Potential Sources of Bias</td>
<td>21</td>
</tr>
<tr>
<td>Bias and Unfairness</td>
<td>23</td>
</tr>
<tr>
<td>Test Bias Defined</td>
<td>24</td>
</tr>
<tr>
<td>External Indicators of Bias</td>
<td>27</td>
</tr>
<tr>
<td>Internal Indicators of Bias</td>
<td>28</td>
</tr>
<tr>
<td>Item Bias</td>
<td>31</td>
</tr>
<tr>
<td>Popular Methods of Detecting Item Bias</td>
<td>35</td>
</tr>
<tr>
<td>Judgmental Method</td>
<td>35</td>
</tr>
<tr>
<td>Group X Item Analysis of Variance</td>
<td>38</td>
</tr>
<tr>
<td>Chi-Square Method</td>
<td>39</td>
</tr>
<tr>
<td>Item Response Theory</td>
<td>41</td>
</tr>
<tr>
<td>Measurement of Bias Between Groups</td>
<td>44</td>
</tr>
<tr>
<td>IRT Computer Analyses</td>
<td>45</td>
</tr>
<tr>
<td>Limitations of Detection Methods</td>
<td>35</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

<table>
<thead>
<tr>
<th>CHAPTER 3</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>METHOD</td>
<td>48</td>
</tr>
<tr>
<td>Subjects</td>
<td>48</td>
</tr>
<tr>
<td>Instrument</td>
<td>48</td>
</tr>
<tr>
<td>General Description</td>
<td>48</td>
</tr>
<tr>
<td>Derived Scores</td>
<td>49</td>
</tr>
<tr>
<td>Standardization</td>
<td>50</td>
</tr>
<tr>
<td>Reliability</td>
<td>50</td>
</tr>
<tr>
<td>Validity</td>
<td>51</td>
</tr>
<tr>
<td>Subtest Description</td>
<td>52</td>
</tr>
<tr>
<td>Hypothesis</td>
<td>53</td>
</tr>
<tr>
<td>Statistical Procedure</td>
<td>53</td>
</tr>
<tr>
<td>Procedure</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESULTS</td>
<td>63</td>
</tr>
<tr>
<td>Anglo and Black Group Analysis</td>
<td>66</td>
</tr>
<tr>
<td>Anglo and Hispanic Group Analysis</td>
<td>68</td>
</tr>
<tr>
<td>Conclusion</td>
<td>69</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 5</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY AND DISCUSSION</td>
<td>71</td>
</tr>
<tr>
<td>Implications for Future Research</td>
<td>75</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>78</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>79</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Logist form values for the a and b parameters with and without equality constraints across items and between groups.......................... 67

Table 2. Logist form values for the a and b parameters with and without equality constraints across items and between groups.......................... 69

Table 3. Raw score means, standard deviations and z scores across groups................................. 78
ABSTRACT

A three parameter model of Item Response Theory reported by Lord (1968, 1980) was used to determine whether cultural item bias existed in the Reading Comprehension subtest of the California Achievement Tests. Item responses from 1500 second graders from Southern Arizona schools with 500 responses from each of three groups (Anglo, Black, and Hispanic) were analyzed via MULTILOG program (Thissen, 1984) using the likelihood ratio chi-square (IRT-LR) method. Results indicated that there were no significant differences in item difficulty across items and groups. However, the typical group mean differences often reported wherein Anglos usually score between .5 to 1 standard deviation above the group means of other minorities on standardized tests did appear. The results of this study were also consistent with and supportive of the notion that most standardized tests today are not biased against specific minority groups. Selected items from the Reading Comprehension subtest on the California Achievement Tests are being used to date as anchor items for newer achievement tests. As such, this study lends support and credence to those items. Other implications for future research are discussed.
CHAPTER 1

INTRODUCTION

Test bias and the serious potential consequences of bias are of great concern to test users (e.g., psychometrists, psychologists, and educators), test developers and publishers, and the general public. Whenever an individual or group is favored over another the threat of bias exists. When the results of tests indicate differences between groups, heated debates over the validity of such tests often ensues. Thus, the question of test bias has been debated by psychologists and professionals in related fields for the past eight decades (Cronbach, 1975). And, perhaps, never before has there been as much public awareness of and debate over a psychological controversy as demonstrated by the legal mandates brought about by lawsuits over bias in tests (e.g., Brown v. Board of Education, 1954; Hobson v. Hansen, 1967; Diana v. State Board of Education, 1970; Guadelupe v. Tempe Elementary School District, 1972; Laura v. Board of City of New York, 1978; Larry P. v. Riles, 1972, 1974, 1979). As a result, several court decisions have brought about legislation that require tests to be valid for all purposes which they are
applied and fairness be maintained in the use of their results.

Clearly, there have been many potentially legitimate objections regarding the use of educational and psychological tests that have been raised by black and other minority psychologists (e.g., Williams, 1970, 1974; Hilliard, 1979; Jackson, 1975), and by test developers (e.g., Mercer, 1973, 1979; Cattell, 1979). The objections often associated with bias in tests administered to minority groups have generated considerable research and have been reported and characterized by many authors (e.g., Hilliard, 1979; Rechley, 1979; Jensen, 1979, 1980; Flaugher, 1978; Wright & Isenstein, 1977). However, little consensus can be found among these authors, and, consequently, multiple explanations for test bias are abundant in the literature.

Basically, the determination of bias is and should be the result of scientific analysis that involves the use of a specific test for two or more specific populations. As such, test bias becomes a psychometric issue. To date, test bias has been psychometrically approached from two broad perspectives. In accordance with the first approach, researchers have examined bias from an external validity viewpoint. This persuasion focuses its investigations on the fairness of a test with respect to predicting a common
criterion across different cultures or ethnic groups within a culture (i.e., predictive validity). Although Jensen (1980) includes other conditions (e.g., examiner bias, inequitable social consequences, and so forth) as possible contributors to external bias, Reynolds (1982) suggests that these conditions are unacceptable from a scientific perspective because they can neither be investigated easily, nor are they generally free from moral value systems or emotional contents that could sufficiently lend themselves readily to any rational resolutions.

In agreement with the second approach, researchers have examined bias in tests from the standpoint of the test's internal validity. This position concentrates its investigations on either the appropriateness of a test for different cultures or ethnic groups within a culture by examining the underlying constructs of the test (i.e., construct validity) or the extent to which individual items or subtests of a test (i.e., internal consistency or content validity) are free from ethnic bias.

Most accusations of bias to date have been directed primarily at intelligence tests when test results seem to favor one group over another and at selected ethnocultural groups. Not surprisingly then, the preponderance of literature on differential performance among groups has focused on the observed average difference in the
performances between blacks and whites on virtually all tests of cognitive ability. Interestingly though, achievement tests are reported to be far more susceptible to cultural influence and bias than current standardized cognitive or aptitude tests (Reynolds, 1982; Sattler, 1982). Yet, these tests receive the least attention from the proponents of test bias.

Analyses from a large portion of this research indicates that the concern of these investigations has been directed at issues regarding the predictive validity of the test. Essentially, these investigative approaches to predictive validity have examined the correlations between test scores and some external criterion such as job performance or academic achievement. However, a growing and changing interest for investigations on other types of bias, such as construct and, especially, content validity bias, seems to be emerging. In addition, content validity issues are focusing in on the items of a test. For example, Berk (1982) suggests that the analysis of items is perhaps the best approach to a unified conceptualization of determining bias in tests because items are at the very root of the test. Although he admits that item analysis is not sufficient in making predictions about future performance, he adds that predictive validity analysis at the subtest or total test score levels does not preclude
potential bias at the item level. Item bias and predictive validity bias methodologies are only superficially different, and do not necessarily imply different conceptualizations of bias (Shepard, 1982).

Because the majority of accusations were aimed at intellectual assessment and, consequently, research had concentrated on intelligence and aptitude tests, empirical work on the possibility of bias in achievement tests did not really begin until the late 1970s. Thus, up to that point, test publishers had little to guide them in dealing with the current accusations of bias. However, with the emergence of more robust statistical procedures designed to determine bias even at the item level (e.g., Item Response Theory), test publishers and researchers developed and provided the opportunity to demonstrate empirically a test's freedom from bias. However, little research exists on the use of Item Response Theory (IRT) techniques with achievement tests. Existing research generally concentrated on comparison of statistical methodologies with studies using either real data (e.g., Ironson & Subkoviak, 1979; Linn, 1980; Rudner & Convey, 1978; Shepard, 1980) or simulation data (e.g., Morz & Grossen, 1979; Rudner, Getson, & Knight, 1980), or real data with implanted biased items (e.g., Craig & Ironson, 1981; Subkoviak, Mack, & Ironson, 1981).
The purpose of those studies was to design a scientific inquiry to demonstrate the superiority of the IRT model compared to other traditional methods rather than to evaluate the biasness or unbiasness of the items. Thus, because these studies had a methodological focus, no attempts were made to study the item response curves to identify differences that may have had practical significance.

Unfortunately, the controversy over test bias lingers. Perhaps the illusiveness of the definition remains in part as the problem as Reynolds (1982) suggests. However, one need only peruse the literature to gain some insight to the complexity of the term test bias and the multiple approaches (and avoidances) exercised to address the issue. Clearly, every test is susceptible to some form of bias on some level. Whether bias occurs by definition, by application, by usage of the results, or by statistical artifact, research on this topic can not and should not be impeded or ceased.

This study was based on the assumption that achievement tests are being used in educational institutions to make decisions that affect minority groups. As such, these types of tests are more threatening to minority psychologists and supporters of minority groups in terms of test bias because achievement tests are more susceptible to
cultural bias than other types of tests. For example, both Sattler (1982) and Humphreys (1971) suggest that achievement tests appear to be more culture bound than intelligence tests. Although, ideas of the possibility of culture-fair and culture-free tests have generated much research to develop intelligence type tests (e.g., Mercer, 1979; Cattell, 1979), there has been the least amount of research on bias with achievement type tests (Jensen, 1980). In addition, this study, in agreement with Berk's (1982) proposal that items are the best way to determine bias, was concerned with potential bias at the item level.

With the development of more powerful detection methods such as IRT, one would expect a proliferation of research with achievement tests as well. However, most research on item bias to date has been concerned with the comparison of methodological procedures, and no published, systematic, IRT research has focused on item bias issues beyond comparison of the black and white cultures. Thus, as test publishers admit, the determination of cultural biases is left primarily up to and dependent upon subjective, judgmental methods to determine the validity of their tests across cultures.

One purpose of this study was to fill what appears to be a gap in the literature. To date, no published research
or investigations has been directed at the use of IRT techniques to determine the extent that item bias exists in standardized achievement tests for different ethnocultural groups. This study used one such standardized achievement test, namely, the California Achievement Tests, developed by the California Testing Service. This test is still being used in many educational institutions. In addition, some of the items on the Reading Comprehension and Mathematics subtests are being used as anchor items for new tests being developed for future use. The specific objective of this study was to investigate possible biased items in the Reading Comprehension subtest of the California Achievement Tests as a function of ethnocultural group using an IRT, three parameter statistical model.
CHAPTER 2

REVIEW OF THE LITERATURE

Although the primary focus of this study was on item bias in achievement tests, any review that avoids other bias issues and detection methodologies may indeed not be useful. A framework is helpful and necessary to review the convoluted and proliferated literature available to date on test bias and to sort out the multiple contributions presented by many authors. However, it becomes evident quickly that any attempt to categorize this literature is difficult because there is considerable overlap in the conceptualizations of bias, and a plethora of studies have taken various directions to investigate the issue. For example, in some instances, such as examiner bias or inequitable social consequences, it is difficult at best to fit the bias issue neatly under any one category.

Another problem confronted immediately is to determine the number of categories. As mentioned previously, Jensen (1980) partitioned validity bias issues under the categories of predictive, internal construct, and external construct validity to study the influence of potential bias. On the other hand, Reynolds (1982) remained with what Berk (1982) referred to as the traditional trinary of
validity (i.e., content, criterion-related, and construct validity). In addition, a recent trend is emerging towards a unified conceptualization for the study of potential validity bias (Chronbach, 1980; Linn, 1980; Shepard, 1982) on the basis that compartmentalizing validity bias issues has generally led to the false notion that tests free from bias on one level (e.g., predictive validity) are free from bias on other levels (e.g., item or content validity).

Contemporary literature on test bias remains a labyrinth replete with investigations concentrating in some areas (e.g., predictive validity studies with ability tests) and deficient with investigations in other areas (e.g., item bias studies with achievement tests). Thus, there is no clear direction through the material, rather the path is often ambiguous and nebulous with significant gaps in some areas. Because this study was concerned with cultural bias at the item level and with achievement tests specifically, only a brief overview of other bias issues and methodological procedures are included for convenience. For an in depth review, the reader is referred to Jensen (1980).

Perhaps the best place to begin is at the very root of the problem of bias that provoked the investigations of tests. Minority psychologists and supporters of minority groups began to question the disproportionate placement for
different groups based on specific test results. These questions soon changed to accusations that the tests were biased. In a very general sense, these accusations can be conveniently divided into two broad classifications: the outcome of bias, which fundamentally is concerned with the use of tests, and the potential sources of bias, which essentially is concerned with the tests themselves.

Outcome of Bias

Perhaps the major thrust of the argument for the outcome of bias in tests lies with the position that biased tests result in test scores that lead to inequitable social consequences. This position holds that, as a result of bias in the tests, minority children are disproportionally relegated to dead end tracks in education; low test results often produce negative expectancies in teachers, and minorities experience the negative effects of labeling (e.g., Williams, 1970). This view, then, is concerned primarily with the fairness of the test with respect to how the results are used. This tenet has facilitated the growth of a number of selection models (see, Flaugher, 1978; Angoff, 1976, 1982; Petersen & Novick, 1976; Jensen, 1980).

Selection models fostered to date have as their philosophy three basic conceptions of fairness. Hunter and
Schmidt (1976) have summarized and described these conceptions as:

1. Unqualified individualism, in which a fair selection strategy selects from the available pool of applicants those individuals with the highest predicted criterion performance using whatever predictor variable yields the highest predictive validity. Also, the same test or other predictor variables need not be used for all applicants.

2. Qualified individualism, like unqualified individualism, advocates maximizing predictive validity for all individuals but maintains that the identification of an individual's group membership should not enter into the selection procedure.

3. Quotas, in which fair selection consists of not treating everyone alike or in trying to maximize predictive validity and minimize errors of selection, but rather it involves some degree of trade-off of the former advantages for other desired advantages deemed as having greater social importance.

When considering a particular selection model, Nichols (1978) suggests that, prior to choosing a selection model, it is essential to decide whether the ultimate goal is equality of opportunity, in which selection is based on ability; equality of outcome, in which selection is based on deficits; or representative equality, in which selection is based on the numerical representativeness of subgroups. Reynolds (1982) cautions, however, that selection models used to examine bias generally concentrate on societal decision making rather than on the tests themselves. Thus, in bias issues selection models can easily impede or preclude scientific explanations and resolutions.
Potential Sources of Bias

The objections for potential sources of bias can usually fit into one or more of the following categories:

1. Inappropriate standardization in which ethnic minorities are underrepresented in normative data. Test developers may systematically exclude nonwhite children from standardization samples. For example, prior to the 1974 edition of the Stanford-Binet Intelligence Test, no blacks were included in the standardization sample.

2. Examiner and language bias in which, for example, most school psychologists are white and English speaking, and thus, intimidate black and other minority children. In addition, some other proponents (e.g., Sattler, 1979) suggest that verbal and nonverbal cues can lead to misunderstandings between white examiners and minorities. Also, others (e.g., Williams, 1971) state that differences in dialect lead to potential interference during test administration and responding. And still others (e.g., Johnson, 1974) hold that test outcomes are affected because some minorities lack spontaneity in responding.

3. Measurements of different constructs in which standardized tests may measure different attributes in minority children than in white, middle class children (e.g., Hillard, 1979; Jackson, 1975).

4. Differential predictive validity in which standardized tests fail to predict at an acceptable level any relevant criteria for minority children (Williams, 1971; Jackson, 1975).

5. Inappropriate content because minorities have not been exposed to some material involved in the test questions (Williams, 1974). That is, test items contain information that is geared towards white, middle class homes and values and often overlook other cultural mores. Mercer (1979), for example, suggests that current tests like the Wechsler Intelligence Scale for Children-Revised (WISC-R) measure only a child's degree of anglocentrism.

On the surface, these possible sources of bias seem
well grounded and viable, however, all too frequently these objections are viewed as facts without an extensive review of any available significant empirical evidence (Jensen, 1974, 1976, 1980; Reynolds, 1982). A substantial literature base exists addressing these issues of test bias that has recently emerged over the past decade. This literature base has been reviewed and summarized extensively by many writers (e.g., Anastassi, 1976, 1982; Gutkin & Reynolds, 1981; Rechley, 1978; Jensen, 1979, 1980; Reynolds, 1982; Cronbach, 1970, 1984; Berk, 1982; Sattler, 1982). Interestingly, the overwhelming consensus of this body of literature supports the notion that the majority of standardized tests in use today are not biased against minorities. Reynolds (1982) and Jensen (1980), for example, argue that the preponderance of available evidence contradicts the belief that standardized tests used at present are culturally biased against minorities. They add that acceptable criteria of bias are necessarily based on (1) the test's validity for predicting the performance (in schools, on the job, and so forth) of individuals from majority and minority groups, (2) the test's ability to measure validly the same construct for majority and minority groups, and (3) the test's internal consistency with respect to relative item difficulty, factorial composition, and internal consistency and reliability.
They further suggest that variables in the testing situation, such as the race or language of the tester, are negligible sources of racial group differences, and that most standardized tests today include sufficient representation of minority cultures in their normative sample. Thus, evidence for potential bias has empirically been generated from studies on issues concerned with the predictive validity of tests, in which the test may potentially predict differently between groups (Cleary, 1968); issues concerned with the construct validity of tests, in which the test may potentially assess different attributes for different groups (Anastasi, 1982), and issues concerned with content validity of tests, in which individual test items may be potentially more difficult for one group over another (Jensen, 1979; 1980).

Bias and Unfairness

Critical to the understanding of bias in tests is the conviction that test bias and unfairness are separate entities of the same presenting problem. However, it is essential to distinguish between the two concepts. Jensen (1979, 1980) states that bias is an objective, statistical property of a test in relation to two or more groups. For example, predictive validity bias refers to systematic errors of measurement in which the obtained measurement (test score) consistently overestimates or underestimates
the true (error free) score of members of one group compared to members of another group. Thus, the scores have different meaning or predict differently for members of one group than members of another group. It is perhaps important to note that all measurements are subject to random errors and standard errors of measurement. Biased measurements, then, include systematic errors.

The concept of unfairness is concerned with the way the tests or test scores are used in the selection of individuals. For example, a test would be considered unfair if it resulted in overrepresentation of minorities in programs that are ineffective, or if minorities received no planned interventions at all (Reschly, 1979). Under these conditions, the tests may not be biased but there may be little benefit to the individual based on the test result. Thus, it is possible that an unbiased test may be used unfairly, and conversely a biased test might and could be used fairly (Jensen, 1980).

Test Bias Defined

Although a test may not be biased but rather used unfairly and an ample body of evidence indicates that ethnocultural groups do not differ significantly in test scores on standardized tests, the debate continues over test bias. This is perhaps in part due to the myriad of and inconsistent definitions of test bias found in the
literature to date. One needs only to peruse the literature to concur with the notion that the problem of defining test bias is yet unresolved (e.g., Berk, 1982; Reynolds, 1982).

Close examination of recent definitions of bias reveals both varying conceptions and similar criteria (Hunter & Schmidt, 1976). For examples, Flaugher (1978) identified eight separate concepts of bias in tests; Petersen and Novick (1976) and Rechley (1979) define bias in terms of enhancing fairness versus social equity in selection; and Jensen (1980) defines bias as a function of systematic errors of measurement. However, the majority of definitions rely heavily on the differential prediction of some specified criterion (Anastasi, 1980; Cleary, 1968; Hunter & Schmidt, 1976; Petersen & Novick, 1976). Other literature (e.g., Pine, 1977; Scheuneman, 1975) has focused on the differential differences in item difficulty in defining bias in tests.

According to Reynolds (1982), bias can occur within any of the three basic types of validity: construct, predictive (or criterion-referenced), and content validity. Berk (1982) refers to these validity biases as the "traditional trinary" of construct, predictive, and content bias.

Reynolds (1982) provides summative definitions of bias under these types of validity. For construct validity
bias, he suggests that:

Bias exists in regard to construct validity when a test is shown to measure different hypothetical traits (psychological constructs) for one group than another or to measure the same trait but with differing degrees of accuracy (p. 194).

For predictive validity bias, he suggests that:

A test is considered biased with respect to predictive validity when the inference drawn from the test score is not made with the smallest feasible random error or if there is consistent error in an inference or prediction as a function of membership in a particular group (p. 201).

For content validity bias, he suggests that:

An item or subscale of a test is considered to be biased in content when it is demonstrated to be relatively more difficult for members of one group than another when the general ability level of the groups being compared is held constant and no reasonable theoretical rationale exists to explain group differences on the item (or subscale) in question (p. 188).

Jensen (1980) has further divided validity biases into internal and external categories in which there can be indications of bias. Group differences in predictive validity would fit under the external category as an external indicator of bias, and group differences in construct and content validity would fit under the internal category as internal indicators of bias. The following is a brief overview of these indicators. More detailed coverage can be found in Jensen (1980).
External Indicators of Bias

External indicators of bias are concerned with correlations between test scores and other variables external to the test. That is, factors in the external testing situation interact with individuals or groups to produce systematic error in their test scores (Jensen, 1980). Jensen (1980) has identified six factors which have been examined in the literature: (1) test sophistication, such as the effects of prior practice or coaching on similar tests; (2) interpersonal effects, such as the attitude, expectancy, and dialect of the examiner, and the manner in which the test was administered, such as delivering instructions, motivating the examinee, and rewarding the examinee; (3) individual versus group administration of tests and the effects of morale and discipline on test performance; (4) timed versus untimed tests; (5) the interaction of the race and sex of the examiners with the race and sex of the examinee; and (6) biased scoring of test performance due to halo effects.

Because external indicators of bias focus on the relationship between test scores and external variables and predictive validity is concerned with the relationship between the test scores and some external criteria, it is, perhaps, safe to add, to this list, predictive validity, in which the test score predicts to some external criterion.
Thus, to the extent to which an external criterion produces differences between groups or to the extent that a test predicts differently for two groups, bias could be said to exist.

Predictive validity bias is investigated with the aid of linear regression techniques by examining the slope and the intercept of the regression lines of bivariate distributions of test scores (Anastasi, 1982). For example, when the slope of the regression line, which represents the validity coefficient of the test, is different for two groups, the difference may be described as slope bias. In this type of bias, the test predicts with unequal accuracy (Jensen, 1980). Thus, the test means different things for the two groups.

However, a test may yield the same validity coefficient for two groups but the regression line intercepts the axis at different points. This is referred to as intercept bias (Anastasi, 1982). Thus, if a test has intercept bias it will systematically underpredict or overpredict criterion performance for a particular group.

Internal Indicators of Bias

Jensen (1979) reports that internal indicators of bias are the psychometric properties of the test itself, such as the test's internal consistency which is a measure of
homogeneity (Anastasi, 1982), the factorial structure of the test or battery, the rank order of item difficulty (percent passing each item), the significance and magnitude of the items x groups interaction in the analysis of variance of the item matrix for two groups, and the relative attractiveness of distractor responses for multiple choice questions. Thus, construct and content validity can be viewed under internal indicators of bias. If differences between groups exist for these criteria, the findings could indicate that the test is bias.

Bias in construct validity is more difficult to detect than content validity. Construct validation of a test is problematic because it relies on indirect measures of an unobservable construct it purports to measure. That is, it has no single objectively measurable external referent (Jensen, 1980). It can be defined statistically as the correlation between the test score and the construct the test is intended to measure. Thus, detecting bias often involves the test's correlation with other external criterion and the test items' correlation with the test itself. One popular method used to detect construct validity bias is factor analysis (Cronbach, 1984), in which clusters of test items or subtests correlate highly with one another. Bias is said to exist if the test scores cluster or load differently for two groups.
Recently, content validity bias or item bias has become the center of attention with respect to potential test bias. Investigations of item bias in ability tests have taken two major empirical approaches (Schmeiser, 1982): statistical (e.g., Item Response Theory or group x item analysis of variance) and subjective (e.g., judgmental methods). Although some writers (e.g., Schmeiser, 1982) suggest that combining both methods would minimize bias in the content of the test, to date the emphasis has been on either the statistical or judgmental approach. In part, this may be due to the lack of detectable patterns or common characteristics of item bias in carefully written items (Reynolds, 1982).

The goal of statistical approaches is to identify which items are biased for one or more subgroups by objective systematic means. These methods are usually applied after the items had been administered, although the use of Item Response Theory (IRT) has permitted evaluation before the test is administered to the total population. The goal of judgmental methods is to detect item bias through subjective, judgmental means by having a panel of minority and majority judges rate the items as either biased or not biased. This method is generally applied before the test is administered.
On the surface, external and internal indicators of bias seem to differ only in their relationship to the test itself. That is, external indicators relate to events outside the test, and internal indicators relate to the test itself. However, Berk (1982) and Reynolds (1982) are quick to point out that these partitions are not mutually exclusive, but rather they overlap. For example, in her definition of item discrimination, Anastasi (1982) writes that items may be evaluated and selected on the basis of their relationship to the same external criterion as the test as a whole. In addition, Jensen (1980) admits that prediction from an IQ test to scholastic achievement is not unheard of, although IQ tests rely heavily on construct validity. Thus, content validity bias could reasonably be evaluated in terms of external or internal indicators. Hence, the current trend is towards developing a unified conceptualization of validity in order to assess bias (e.g., Cronbach, 1980; Linn, 1980; Messick, 1979). Such a trend would deemphasize the types of bias and concentrate on and emphasize the data gathering process and the methods to obtain the kinds of evidence essential to address bias questions (Berk, 1982).

Item Bias

Interestingly, bias in items of a test is not a novel concern. Early test pioneers (e.g., Binet, 1905; Binet &
focused on internal characteristics of tests as indicators of bias. For example, Binet and Simon (1916) were concerned that their test of general ability be as free as possible from items that required a background of schooling. In addition, Binet (1911) and others (Goddard, 1910; Terman, 1916) examined possible item bias for individuals with different socioeconomic status. These early studies addressed the issue of differential difficulty of various kinds of test items. However, these early studies had little consensus and were replete with methodological problems. Jensen (1980) suggests that one major problem with these early investigations lies in their statistical approach to item difficulty. For example, he states that, in one statistical approach, the percentage of items passed across groups was used to determine bias in the items of the test. However, he suggests that this may be problematic because the percentage passing the item cannot properly be compared at all levels of difficulty across social class because the percentage passing is not an interval scale.

The first two systematic studies on item bias occurred four decades later and were the classic studies of Eells et. al. (1951) and McGurk (1951). Both of these studies were a result from their interest in apparent differences
in performance on IQ tests, and the possibility that the
differences were a function of the test itself. Eells
concentrated on IQ differences between upper and lower
social status, and McGurk was concerned with differences
found between blacks and whites. Although the studies were
different in approach, the importance of their
contributions lies in the consideration that the test items
may be the source of the difference.

Between 1950 and 1970, research on item bias declined
and gave way to literature on the predictive validity of
tests. Nonetheless, the sporadic investigations on item
bias expanded to include aptitude (e.g., Cardall & Coffman,
1964; Cleary & Hilton, 1968) and achievement tests (e.g.,
Potthoff, 1966).

During the late 1970s, the Educational Testing Service
(ETS) and other test publishers recognized the need to pay
particular attention to certain specific segments of the
population, particularly women, blacks, Hispanics, Native
Americans, and Asian Americans, in order that they be
represented in the test passages and by items in a manner
free from negative stereotyping and offensiveness. They
commissioned several investigators to examine items of
several aptitude tests for potential bias in the form of
race (e.g., Angoff & Ford, 1973; Cardall & Coffman, 1964;
Cleary & Hilton, 1968; Humphrey, 1979; Lord, 1977; Sinnott,
1980; Spencer, 1972; Stricker, 1981; Swineford, 1976), in the form of sex (e.g., Cowell & Swineford, 1976; Donlon, 1973; Donlon, Hicks, & Wallmark, 1980; Sinnott, 1980; Strassberg-Rosenberg & Donlon, 1975), and in the form of language (e.g., Alderman & Holland, 1981; Angoff & Sharon, 1971, 1972; Sinnott, 1980). The summaries of these studies and their results are available from ETS. It is important to note, however, that the bias investigated for race, sex, and language for ETS is not the familiar bias heard today in the outcries of minority psychologists (e.g., Williams, 1970) and others (e.g., Mercer, 1979). The concern of ETS was with offensiveness and negative stereotyping. Nonetheless, these studies, although directed primarily at aptitude tests, were an important turning point in the history of item bias because the concerted effort to examine items in tests was again in the forefront.

Presently, there is growing concern for the detection and determination of item bias in virtually all types of tests as evidenced by the increase of studies on item bias presented in literature reviews (e.g., Jensen, 1980; Reynolds, 1982; Berk, 1982). Recent advances in methodological and statistical procedures have undoubtedly facilitated this rise.
Prior to the review of the empirical studies of item bias, some basic understanding of the popular methods used to detect item bias in tests is helpful. It is intended as an overview of procedures. For more detail, the reader is referred to such authors as Lord (1980), Lord and Novick (1968), and Rasch (1960).

Popular Methods for Detecting Item Bias

Fundamentally, item bias methods detect items that behave differently for different groups. The approaches are varied, but their goals are rudimentarily the same. These methods can be comfortably divided into subjective (i.e., judgmental) and objective (i.e., statistical) techniques. The subjective method has only one approach, but the statistical methods have many. Only those currently and popularly used are reviewed here. For comprehensive coverage of statistical item bias methods, the reader is referred to Berk (1982), Jensen (1980), and Lord and Novick (1968).

Judgmental Method

This method reflects a belief about the content validity or item validity of a test. The focus of the judgments includes two areas concerned with the face validity of the test (i.e., stereotyping and fair representation of the groups in question); a third area
concerned with both face validity and content validity (i.e., equal familiarity or experience of subgroups with nominal content of the items); and a fourth area concerned with content and construct validity (i.e., the opportunity to learn item content and processes). Thus, judgmental methods have an important role with respect to responding to the criticisms that items may be biased towards a specific group (Tittle, 1982).

Generally, a panel of judges or experts is selected to review the items of a proposed test. Ideally, all racial and sex groups would be represented. Items are then judged to be fair or unfair. Such information is said to be useful for two reasons. One, it can be used to eliminate from the item pool those items judged to be biased against a particular group (Tittle, 1982). Two, it can be used for rapport and public relations (Anastassi, 1982; Sandoval & Mjille, 1980).

To date, most standardized achievement tests have used this method as the sole criterion for validation (Shepard, 1982) on the basis of the notion that achievement tests are less vulnerable to bias than ability tests (Flaugher, 1978). However, measurement experts are beginning to support the idea that even achievement tests require content and construct validation through statistical methods for empirical support (Hambelton, 1980; Linn, 1979;
Messick, 1975). And, some (e.g., Green, 1980; Reynolds, 1982) argue that achievement type tests are more susceptible to cultural bias than ability tests. The debate may be clouded by the notion that, generally speaking, criterion measures do not exist for achievement tests. Thus, for the most part, only the internal characteristics of achievement tests have been examined for validity and for bias, and attempts to reduce bias in these types of tests have commonly used procedures (such as judgmental methods) which in effect assume overall validity of the test for all groups but may contain some items that are unfair or offensive to specific groups (Angoff, 1975; Green, 1975).

Research on judgmental methods has primarily focused on the comparison of this method with other traditional statistical methods. Thus, comparisons for ability tests (e.g., Jensen, 1976; Miele, 1979; Sandoval & Miille, 1980), for aptitude tests (e.g., Jensen, 1976), and for achievement tests (e.g., Plake, 1979) have appeared in the literature. The results of these studies strongly suggest that there is little relationship between items identified as biased through subjective methods and items identified as biased through objective methods (Plake, 1979); that there is little more than chance that judgmental methods are able to identify biased items with any degree of
accuracy (Jensen, 1980); and that no common characteristics of items that are found to be biased can be ascertained by either minority or nonminority expert judges (Reynolds, 1982).

Analysis of Variance: Group X Item Interaction

This objective or statistical method is concerned with the interaction effects of items by groups. Whenever the differences in variability across items are not uniform for all groups, bias is said to exist. This method is perhaps the most widely used. It involves an analysis of variance (ANOVA) procedure wherein random samples are drawn from each of the groups, and a difficulty index is calculated for each item for each sample for each group. The variance of item difficulties across samples within groups provides the estimate of error. Once a significant item by group interaction is determined, post hoc tests are used to identify the items that are principal contributors to the interaction. Several studies are available using this method (e.g., Angoff & Sharon, 1974; Cardall & Coffman, 1964; Cleary & Hilton, 1968).

One problem with the use of the ANOVA procedure is that it is sensitive to differences in dispersions of item difficulties between, or among, the groups. Thus, it may yield significant results, even when there may be no true
item by group interaction, and an item may be identified as biased for artifactual reasons (Angoff, 1982).

Jensen (1980) suggests that the interaction of items and groups can also be approached through correlations between item difficulty indices across groups. With this approach, the difficulty of each item is determined within each of the groups, followed by correlating the pairs of groups' item difficulties. If all items have nearly the same rank order of difficulty, the items are said to be unbiased.

Several studies investigating item bias using these two approaches have been reported for ability tests (e.g., Jensen, 1976; Miele, 1979; Sandoval, 1979), for aptitude tests (e.g., Angoff & Sharon, 1974; Cleary & Hilton, 1968; Jensen, 1976), and for achievement tests (e.g., Green & Draper, 1972; Jensen, 1976). Two conclusions are apparent from these data. One, factors contributing to the relative difficulties of items are the same for all groups, and, two, where interactions do occur, they are usually a product of statistical artifacts.

Chi-Square Method.

The chi-square techniques assume that a test is (1) valid, so that the total test score may be used as an estimate of ability, (2) reliable within usual standards,
and (3) homogeneous. One of the advantages of the techniques is the absence of an assumption about the shape of the distribution of observed scores. These scores do not have to be normally distributed or representative of the distribution of ability in the population of interest. Sample size, however, is constrained by the required expected cell frequency.

Two techniques have been popularized in the literature. First, chi-square correct (Scheuneman, 1975, 1979) which focuses on correct responses given to an item. Second, chi-square full (Camilli, 1979; Nungester, 1977) which focuses on both the correct and incorrect responses to a given item. Both procedures involve only two steps. First, three to five ability intervals are established, and second, the chi-square value is subsequently tested for significance.

The two methods differ in statistical distribution, in the hypotheses tested, in the degrees of freedom and power, in the sensitivity to contributions of different cells, and in sample size requirements. They also share several advantages. They are advantageous in that they are intuitively understandable to the practitioner, require smaller sample sizes than other methods, and may be subjected to significance tests that allow dichotomous biased or unbiased classifications.
According to Scheuneman (1975) an item is unbiased if, for all individuals having the same score on a homogeneous subtest containing the item, the proportion of individuals getting the item correct is the same for each population group being considered. For example, if the p-values of correct responses are higher for one culture than another the item could be said to be biased.

Both procedures, however, share disadvantages. With both procedures, there is arbitrariness in setting cutoffs for the intervals. In addition, there are problems in using the total test score as a measure of ability, especially since the chi square methods are sensitive to the distribution of total test scores (Nungester (1977)). Moreover, neither procedure uses all available information because the continuous nature of variable (i.e., ability) is treated essentially in a categorical manner.

Item Response Theory (IRT)

IRT has emerged from the family of latent trait models. Often the terms latent trait model, item characteristic curve, and IRT are used interchangeably. IRT is concerned with the probabilistic relationship between the response to some test item and the attribute of the person the test item is intended to measure. Test items may be problems on ability, aptitude, or achievement tests, questions on an
attitude scale, or behaviors on a behavioral checklist. The attribute of the person may be a cognitive ability, an attitude, or a personality construct (either state or trait). The attribute of the person is usually referred to as that person's ability or theta. (See Chapter 3 for a more extensive description.)

The major advantage IRT has over other methods is that it permits the use of all of the information included in an examinee's response to a question or test item. It can be used for tests requiring a dichotomous choice or tests requiring one of many choices (Thissen, 1984). IRT permits the use of the information in any particular choice of an item response to be used to estimate the value of that person's trait or ability.

IRT has available a one, two, and three parameter model. In the one parameter model, the probability of a correct response is a function of the examinee's ability and item difficulty. In the two parameter model, the probability of a correct response is a function of the examinee's ability, a difficulty parameter, and a discrimination parameter. In the three parameter model, a guessing parameter is added, and the probability of a correct response is a function of the examinee's ability, a discrimination parameter, a difficulty parameter and a guessing parameter. This guessing parameter addition is
beneficial because it lessens the possibility of confounding by only using the other two parameters, while considering the third parameter.

IRT makes use of an item characteristic curve (ICC). ICCs depict in mathematical functions the relationship between ability and the probability of answering the item correctly. The curves are usually described by a cumulative logistic or normal ogive curve provided by the parameters.

An unbiased item will have the same ICCs for all groups. Green and Draper (1972) introduced the notion of examining observed ICCs to indicate bias. Subsequently, several researchers (e.g., Linn & Harnish, 1981; Lord, 1977, 1980; Pine, 1975; Rudner, 1977; Thissen, 1984; Thissen, Steinberg, & Gerrard, 1986) adapted the three parameter item characteristic curve model for use in investigating item bias.

One major problem associated with the use of IRT's three parameter model is the necessity of large samples. Ironson and Subkoviak (1979) and Lord (1977) recommend a minimum group size of 100 and 300 subjects respectively for minority representation and 1000 subjects for the majority culture. Linn and Harnish (1981), however, adopted a lack of fit procedure to be used with smaller sample sizes. In addition, data analyses are usually complex and generally
require computer computation. Thus, analyses can be quite
time consuming in gathering data and quite costly in
determining if biases exist.

Sadly, the three parameter model has not been used as
often as would be expected given its flexibility and
robustness. There are virtually no published systematic
studies that have been conducted for the sole purpose of
detecting biased items in achievement tests using this
model, and a dearth of literature exists on its use with
ability and aptitude tests. The majority of available
literature exists on comparative methodology studies and
studies using simulated data for descriptive interests.

Measurement of Bias Between Groups

Green and Draper (1972) first introduced the notion of
examining observed ICCs to indicate bias. Subsequently,
several researchers (e.g., Linn & Harnish, 1981; Lord 1970,
1980; Pine, 1975; Rudner, 1977) adapted the three
parameter item characteristic curve model for use in
investigating item bias. Parameters are usually, but not
always, estimated separately for each group. Procedures
used to compare the ICCs of the two groups include the
following:

A. Difference between ICC's as measured by the area
between the curves (signed or unsigned) or summed
squared differences (e.g., Ironson & Subkoviak,
1979; Rudner, 1977);
B. A test of Parameter equality as measured by a composite test of simultaneous differences in a, b, and c parameters or an investigation of the b parameter alone or the a parameter alone (Linn et al, 1980);

C. A measure of lack of fit derived from an examination of differences between observed data and what would be expected from an estimated model (e.g., Lord, 1980);

D. An estimation of confidence intervals around ICCs; and

E. A test measuring differences in empirical response functions.

According to Lord (1980) an unbiased item should have the same item characteristic curves in both groups. One interesting advantage of the three parameter model is that the model is not limited to detecting uniform bias favoring one group over another. That is, the three parameter model can detect a biased item against group 1 at low ability and against group 2 at high ability.

IRT Computer Analyses

Several computer programs, such as LOGIST (Wood & Lord, 1976; Wood, Wingersky, & Lord, 1976), ANCILLES (Urry, 1976), CARIF (Lissak & Wytmar, 1981), and MULTILOG (Thissen, 1984), may be used to estimate the parameters for each item and an ability level for each person. LOGIST requires more time to run because it first estimates ability from the distribution and then estimates the parameters. Once the parameters are estimated, LOGIST
reestimates ability. This process continues until the data begin to fit the model (Ironson, 1982). Other programs (e.g., CARIF and ANCILLES) are used in conjunction with LOGIST when the user wishes to run a three parameter model.

MULTILOG (Thissen, 1984) has advantages over LOGIST in that the program yields maximum likelihood estimates, rather than LOGIST's conditional likelihood estimates. Ability is estimated by the relative likelihood of the observed response sequence as a function of ability.

Limitations of Detection Methods

As would be expected, methodologies for detecting item bias also have limitations. Shepard (1982) points out that these methods cannot detect pervasive bias because generally they lack an external criterion. That is, item bias methods are all based and rely upon a criterion internal to the test itself (Petersen, 1977), and by using the total test score or the average item to identify individuals of equal ability, they ultimately specify the standard of unbiasness. Thus, this defense becomes circular. Using an external criterion will not necessarily solve the problem if the criterion possesses the same type of bias that affects the items. Therefore, methodological procedures are validated only by the collective
justification of both subjective and objective evidence to verify that items measure what is purported to be measured for all groups.
CHAPTER 3

METHOD

Subjects

In 1981, the California Achievement Test was administered to approximately 203,000 Arizona State public school children (except Maricopa County) attending 1st through 10th grades. The subjects for this study were randomly selected from approximately 12,000 second graders. The sample (N=1500) was stratified to represent 500 children for each of 3 ethnic groups (Anglo, Black, and Hispanic) containing an equal number of males and females. The stratified random sampling procedure (Mason & Bramble, 1978) was accomplished by using a table of random numbers.

Instrument

Responses by the subjects to the first 15 items on the Reading Comprehension subtest from the Reading content area of the California Achievement Tests (CAT) were used to determine potential cultural item bias in this instrument. The following is a description of the California Achievement Tests:

General Description

used to assess skill development in six content areas in grades Kindergarten through twelve. The series includes measures in skill development in prereading, reading, spelling, language, mathematics, and the use of references. There are two forms of the test (CAT C and D), with ten overlapping levels (levels 10 to 19) in form C and seven in form D (levels 13 to 19). Two "locator tests" are available. These are used as pretests, and facilitate functional-level testing, that is, assessment of students at their functioning level rather than their grade level. Level 10 of the series is a prereading or readiness test, and is a revision of the earlier Comprehensive Test of Basic Skills. Although levels 11 to 19 are based on the tradition of the earlier California Achievement Test (Tiegs & Clark, 1970), the test is not considered a revision. It consists of a new structure and all new items (Technical Bulletin 1, 1979).

Derived Scores

Five kinds of derived scores are obtainable for the CAT: percentile ranks, stanines, grade equivalents, normal curve equivalents, and scale scores (ranging from 000 to 999). A variety of information systems are available including individual test records, graphic frequency distributions, summary reports, and class test records.
In addition, schools may obtain criterion-referenced data on objectives mastered by individuals or by classes, norm-referenced data comparing student performance to national norms, or demographic norm reports comparing class or school performance to the performance of schools with comparable demographic makeup (Technical Bulletin 2, 1980).

Standardization

The CAT were standardized with both Spring and Fall norms based on a sample size of approximately 200,000 students in grades K through 12 from public and Catholic schools with a stratified random sampling procedure (Technical Bulletin 1, 1979).

Reliability

Three kinds of reliability data are reported for the CAT: internal consistency and test-retest reliabilities on test scores and reliability estimates for category objectives on the criterion-referenced use of the CAT. An extensive amount of data are reported for the internal consistency of raw scores and the standard error of measurement for raw scores, scale scores and grade equivalents for each subtest at each of the ten levels. Internal consistency coefficients for subtests range from .59 to .95, with the majority between .75 and
Internal consistency coefficients for total scores (e.g., total reading, total mathematics) generally exceed .85. Two sets of data are reported on the test-retest reliability of the CAT. The authors report a test-retest reliability over a two to three week interval for grades K, 1, and 2 (levels 10 to 12). Subtest reliabilities ranged from .23 to .81 with the majority ranging from .60 to .70, and total score reliabilities ranged from .52 to .94 with most greater than .90. Reliability estimates for category objectives are reported as mastery bands, and the reliability of these scores ranged from .36 to .87 with most greater than .70 (Technical Bulletin 1, 1979; Technical Bulletin 2, 1980).

Validity

The authors report considerable support for content validity. The procedures for selection of objectives consisted of review of the State Department of Education, large city curriculum guides, and selection of objectives from two other tests (the Diagnostic Mathematics Inventory and the Prescriptive Reading Inventory). Items were also subjected to judgments by a panel of minority professionals for potential racial, ethnic, and sex biases. Items were then selected and tried to insure adequate coverage of content within each category objective, and insure adequate

Subtest Description

The Reading content area has four subtests: Phonic Analysis, in which a measure of decoding assesses skill in relating sounds to graphic illustrations of those sounds; Structural Analysis, in which recognition and understanding of compound words, syllables, contractions, base words, and affixes are assessed; Reading Vocabulary, in which the understanding of word meaning is assessed, and Reading Comprehension, in which derived meaning of written sentences and passages is assessed.

The Spelling content area has one subtest in which the skill of distinguishing correct from incorrect spellings of words is assessed.

The Language content area has two subtests: Language Mechanics, in which capitalization and punctuation skills are assessed, and Language Expression, in which written expression, word usage, and understanding of sentence structure and paragraph organization are assessed.

The Mathematics content area has two subtests: Mathematics Computation, in which the solutions to addition, subtraction, multiplication, and division problems involving whole numbers, fractions, mixed numbers,
decimals, and algebraic expressions is assessed, and Mathematics Concepts and Applications, in which the application of a wide range of mathematical concepts is assessed.

Hypothesis

The hypothesis tested in this study was that no significant differences would be found among items across groups. That is, the item difficulty parameters would remain constant for all cultural groups indicating the subtest questions to be unbiased, although population mean distributions may differ. The basic premise, then, for a biased item would be one that functions significantly different for persons of the same ability in different groups. Thus, a measure of a lack of fit derived from an examination of differences between observed data and what would be expected from an estimated model would indicate that a particular item was biased (Lord, 1980). Consistent with the notion that reading subtests of achievement and aptitude tests are more susceptible to bias than other kinds of subtests (e.g., Ironson & Subkoviak, 1979), a number of items should be found to be significantly biased across groups.

Statistical Analyses

Because this study was concerned with the detection of test bias at the item level, it used the conceptualization
offered by Item Response Theory (IRT). This conceptualization pertains to how IRT addresses the problem of how much of the observed difference in item responses between majority and minority groups is due to ability and how much is due to bias. Some basic understanding of this conceptualization is needed to understand the statistical methodology of this study.

The most common application of IRT is with dichotomous choice responses on a test (i.e., yes/no, right/wrong, and so forth), although IRT can be and has been used with other types of test item responses (i.e., multiple choice, Likert type scales, open ended responses, and so forth) (Thissen, 1986). Thus, although the majority of applications to date have focused on tests of cognitive ability, IRT applies as well to other types of tests, such as achievement, free or open response questionnaires, personality inventories, interests tests, and so forth. But perhaps the greatest attraction for its use in test construction and test evaluation lies in its ability to distinguish between true group differences in item responses and biased items (Thissen, 1986).

Basic to IRT is the concept of a latent trait. However, this label is somewhat misleading, and requires further explanation. If several tests on the same subject matter were administered to a group of examinees, in
general, some examinees would consistently score high on the tests and some examinees would consistently score low. That is, there is consistency found in the performance of examinees on different tests. One explanation of this consistency is to assume that the examinees have something inside that causes them to score consistently. In IRT that something is called a mental "trait", although the term trait, as it is used, is not to be confused with something necessarily innate. Because there is no physical referent for this mental trait, it is never observed or measured directly. Hence, it is referred to as a "latent" trait.

The scale of a latent trait is usually assigned the Greek letter theta, and exists on a continuum from minus infinity to plus infinity. It has no natural zero point or unit scale, and therefore the zero point and unit are often taken as the mean and standard deviation, respectively, of some reference sample of examinees. Thus, values of theta usually vary from -3 to +3, but may be observed outside that range, and the abilities of a sample need not be distributed normally.

Theta belongs to an individual; it is, essentially, his or her ability level. Tests are traditionally designed to assess this theta or ability level. That is, the purpose of a test is to measure the relative position of the individual on a theta scale and the test or measuring
instrument interprets the individual's theta and produces a measurement of ability (raw score, number right, etc.).

Another important characteristic of IRT is the concept of local independence. That is, an examinee's performance on one item does not affect his/her performance on other items. In addition, it implies that the probability of a correct response to a particular item depends only on the ability of the examinee not on the number of people at a particular ability level or on the number of people at other levels of ability. Hence, a change in ability does not result in a change in parameters. Stated differently, the probability of a correct response is a function of the examinee's ability and item characteristics. Thus, IRT provides a powerful tool for test construction and test evaluation especially for detecting item cultural bias.

Unlike most of the basic precepts and definitions of classical test theory, the assumptions of IRT theory are explicit and have the potential of empirical testing. That is, IRT's procedures make it possible to discover if the data meet the assumptions. The assumptions underlying IRT are that the normal ogive (cumulative normal distributions) or logistic (logarithmic relations) model adequately represents the data and that the test is unidimensional (i.e., item responses are assumed to be attributable to a single trait) in nature.
IRT can be approached through the use of a one, two, or three parameter model, and generally the probability of a correct response as a function of ability is expressed in terms of an item characteristic curve (ICC). An ICC is a mathematical function which depicts the relationship between ability (theta) and the probability of answering an item correctly. A primary distinction among the three models is in the mathematical form of the ICCs.

The one parameter logistic model (also referred to as the Rasch model) was developed by Georg Rasch (1966). It is concerned solely with the difficulty of a set of items. This model is based on the assumption that all items have equal discriminating power; guessing is negligible; and items vary only in terms of difficulty. The mathematical function for the ICC for this model can be expressed as:

\[P_g(\theta) = \frac{e^{Da(\theta - b_g)}}{1 + e^{Da(\theta - b_g)}} \]

in which \(a \) is the common level of discrimination for all the items; \(g \) is the particular item; \(b \) is the index of item difficulty; and \(D \) is a constant used to maximize the agreement between the logistic model and the normal ogive model.
The two parameter model is concerned with the difficulty of the item and item discrimination, and is used when the effects of guessing are considered negligible. Birnbaum (1968) proposed this model in which the ICC takes the form of a two parameter logistic distribution. This model can be expressed as:

\[P_g(\theta) = \frac{e^{a_g(\theta - b_g)}}{1 + e^{a_g(\theta - b_g)}} \]

In this equation, \(P_g(\theta) \) is the probability that an examinee with sufficient ability answers item \(g \) correctly and \(a \) and \(b \) are item \(g \)'s parameters. The parameter \(b \) is usually referred to as the index of item difficulty, and it represents the point on the ability scale at which the slope of the ICC is at maximum. High values of \(b \) correspond to items that are very difficult, and low values correspond to items that are easy. The parameter \(a \) is referred to as the discrimination parameter or item discrimination, and it is proportional to the slope of \(P(\theta) \) at the point \(\theta = b \). High values of the \(a \) parameter result in ICCs that are very steep. Low values lead to ICCs that increase gradually as a function of ability. As
with the one parameter model. D is the constant used to maximize the agreement between the logistic model and the normal ogive model.

The three parameter model can be obtained from the two parameter model by adding a third parameter called the guessing parameter. This model is the most theoretically sound and statistically complex procedure for measuring bias (Lord, 1980; Petersen, 1977), however this model takes full advantage of all the information available from the response to an item. The mathematical form of the three parameter logistic curve can be expressed as:

\[P_g(\theta) = C_g + (1 - C_g) \frac{e^{Dag(\theta - bg)}}{1 + e^{Dag(\theta - bg)}} \]

In this equation, the parameter c is the lower asymptote of the ICC and represents the probability of examinees with low ability correctly answering the item. Lord (1968) suggests that the purpose of adding the c parameter in the model is an attempt to account for the misfit of ICCs at the low end of the ability scale. Also, the c parameter affects the curve by squeezing it into a smaller vertical range. The c parameter typically assumes values that are smaller than the value that would result if examinees of
low ability were to guess randomly on the item. Parameter
a represents the discriminating power of the item or the
degree to which item response varies with ability level.
Parameter b represents item difficulty and determines the
position of the curve along the ability scale (i.e., the
more difficult the item the further the curve is to the
right). Parameter c represents the guessing parameter or
the probability of a person completely lacking in ability
will answer the item correctly.

In order to obtain stable, accurate estimates of the
parameters, large samples are recommended, and the specific
size depends on the parameter one wishes to estimate
accurately. For example, for estimating the a parameter
(which is less stable than estimates of the b parameter,
but more stable than estimates for the c parameter), as
many as 50 items and 1,000 subjects have been recommended.

Other major advantages accrue from the theoretical
model and focus on the difficulty parameter that
researchers' have been unable to estimate fairly well. The
major disadvantages include the possibility that some items
may not fit the model, and, in some cases, may be
identified through simpler less costly procedures.

Procedure

Selection procedures for the subjects were accomplished
by stratifying children's responses to the CAT by ethnic
PLEASE NOTE:

Page(s) not included with original material and unavailable from author or university. Filmed as received.

61

62
CHAPTER 4

RESULTS

The means and standard deviations of the raw score correct responses were computed for the Anglo group (mean = 12.71, sd = 3.12), the Black group (mean = 10.80, sd = 3.81) and the Hispanic group (mean = 10.56, sd = 4.11). These scores were converted to z scores and reported for convenience and reference in the Appendix. This data analysis shows the mean population distributions as being different across groups. This finding is consistent with research (e.g., Williams, 1970, 1974; Mercer, 1979; Jensen, 1980; Anastasi, 1982; Reynolds, 1982) demonstrating that minority groups, especially Black, consistently score at least .5 standard deviation below the mean of the white majority. However, a psychometric statistical procedure was used to determine if bias exists in the test.

The Item Response Theory, Likelihood Ratio chi square test (IRT-LR), as defined by Lord (1980) and described by Thissen (1988) was used to detect potential bias in the first 15 items of the Reading Comprehension subtest from the California Achievement Tests. The IRT-LR procedures were used to test the differences in b parameters between
Anglo and Black population distributions and Anglo and Hispanic population distributions. Essentially, IRT-LR is a test that is concerned with the investigation of equivalence of item parameters across groups. Data were run using the computer programs, INFORLOG and MULTILOG (Thissen, 1986).

Raw data were converted to binary form for the computer runs in which correct responses received a 1 and incorrect responses received a 0. The raw data were initially processed with the INFORLOG program. Basically, this program structures and prepares the data in a manner to facilitate the MULTILOG program run. The distribution of theta in both groups was unit normal with a mean of 0.0 and a standard deviation of 1.0 for the reference group. During the fit wherein $b_R = b_F$, the means and standard deviations of the focal groups (Black and Hispanic) were free to vary. During the fit wherein $b_R \neq b_F$, all group standard deviations were fixed to 1.0. Fifty cycles for maximum marginal likelihood estimates were used to converge the estimators below 0.001. The principal of maximum likelihood requires one to choose as the estimate that possible value of theta making the likelihood take on its largest value (Hays, 1973). Fundamentally, this principal suggests that given the availability of several parameter values, any of which might be the true value of the
population, the best choice would be the one which would have made the actual obtained sample have the highest prior probability. That is, the best choice for the estimator is the one which would have made the obtained result most likely.

In the IRT-LR analyses, the null hypotheses of no group differences in item difficulty parameters (b parameters) was tested across three steps for each group comparison (Anglo and Black, Anglo and Hispanic). That is, the b parameters of the Reference group (Anglo) equals the b parameters of the Focal group (Black or Hispanic). It is common knowledge (Lord, 1980; Thissen, 1982, 1986, 1988) that there is very little information about the value of the guessing parameter (c parameter) in data from relatively easy items. Because these item responses were selected from the first part of the subtest, it was assumed that they would be easier than the latter items in the subtest. Therefore, as suggested by Lord (1986), the c parameters were constrained to be equal across items, groups and fits. During Step 1, the IRT model was fitted simultaneously to the data of b_A and b_F. There were no between group equality constraints placed on the items (i.e., b_A /= b_F). Maximum likelihood estimates of the parameters were computed. During Step 2, the IRT model was refitted under the equality constraint that b_A = b_F. And
during Step 3, the difference value of the loglikelihood ratio chi squares between fits was subjected to a table of significant values for a chi square distribution.

Anglo and Black Group Analysis

Table 1 shows the a and b parameter logist form values. The a parameters were included to demonstrate that they were varying during this fit. These parameter values fitted without equality constraints (i.e., \(b_A \neq b_f \)) resulted in a negative twice the loglikelihood (loglikelihood ratio) value of -2347.0. The logist form values for the a and b parameters across items and between groups are different because these parameters were free to vary. When equality constraints were imposed (e.g., \(b_A = b_f \)), the a and b parameters were equalized between groups by items (i.e., Item 1, Group 1=Item 1, Group 2; Item 2, Group 1=Item 2, Group 2; Item 3, Group 1=Item 3, Group 2; Item 4, Group 1=Item 4, Group 2; Item 5, Group 1=Item 5, Group 2 and so forth through Item 15, Group 1=Item 15, Group 2). These results are categorized under the heading of "With Constraints". The negative twice the loglikelihood value for this fit was -2329.9. The difference value between the loglikelihood ratios was 13.1. Thus, Anglo and Black groups did not differ significantly on item difficulty parameters (\(X^2 = 13.1 \) (df=30) \(p > .05 \)), and, therefore, no biased items were found in the Black group. The mean score
for the Anglo group's distribution was set at 0.000, a value fixed by the MULTILOG program. Relative to this mean score, the Black group's distribution mean score was equal to -0.633; a value greater than half a standard deviation below the Anglo group mean.

TABLE 1. Logist form values for the a and b parameters with and without equality constraints across items and between groups.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>LOGIST FORMS WITHOUT CONSTRAINTS</th>
<th>LOGIST FORMS WITH CONSTRAINTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITEM</td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>01</td>
<td>1.383</td>
<td>-1.435</td>
</tr>
<tr>
<td>02</td>
<td>1.482</td>
<td>-1.165</td>
</tr>
<tr>
<td>03</td>
<td>1.372</td>
<td>-0.525</td>
</tr>
<tr>
<td>04</td>
<td>1.568</td>
<td>-1.476</td>
</tr>
<tr>
<td>05</td>
<td>1.228</td>
<td>-0.751</td>
</tr>
<tr>
<td>06</td>
<td>1.820</td>
<td>-0.963</td>
</tr>
<tr>
<td>07</td>
<td>0.808</td>
<td>0.048</td>
</tr>
<tr>
<td>08</td>
<td>1.270</td>
<td>-1.155</td>
</tr>
<tr>
<td>09</td>
<td>1.598</td>
<td>-1.345</td>
</tr>
<tr>
<td>10</td>
<td>0.894</td>
<td>0.894</td>
</tr>
<tr>
<td>11</td>
<td>1.787</td>
<td>-1.424</td>
</tr>
<tr>
<td>12</td>
<td>1.732</td>
<td>-1.347</td>
</tr>
<tr>
<td>13</td>
<td>1.604</td>
<td>-1.074</td>
</tr>
<tr>
<td>14</td>
<td>1.470</td>
<td>-1.500</td>
</tr>
<tr>
<td>15</td>
<td>1.771</td>
<td>-2.041</td>
</tr>
</tbody>
</table>

Negative Twice the Loglikelihood

\[-2347.0\] \[-2323.9\]

\[X^2(30) = 13.1 \ p > .05\]

Anglo Group Mean \[0.000\] **Black Group Mean** \[-0.633\]

Note: The c parameters were constrained to be equal for both fits across groups.
Anglo and Hispanic Group Analysis

In a similar fashion to the Anglo and Black group analysis, the a and b item parameters for the Anglo and Hispanic groups were allowed to vary, during the fit in which $b_A \neq b_F$. These values can be seen in Table 2 under the heading of "Without Constraints". This fit resulted in a negative twice the loglikelihood value of -2351.6. When refitted, the a and b parameters for each item were constrained to be equalized between groups by items (i.e., Item 1, Group 1=Item 1, Group 2; Item 2, Group 1=Item 2, Group 2; Item 15, Group 1=Item 15, Group 2). This fit resulted in a negative twice the loglikelihood value of -2342.6. The difference value between the loglikelihood ratios was 9.0. Thus, no significant group differences were found between the Anglo and Hispanic group item difficulty parameters ($X^2 = 9.0 \ (df=30) \ p > .05$), and therefore no biased items were found in this group analysis. The mean distribution score value for the Anglo group was set at 0.000 by the MULTILOG program. Relative to the Anglo mean distribution score value, the Hispanic group mean distribution was -.0713; a value almost three quarters of a standard deviation below the mean of the Anglo group.
Two primary conclusions were drawn from the presenting data analyses. First, the fit of the model to the data was excellent and, therefore, represented the

Table 2. Logist form values for the a and b parameters with and without equality constraints across items and between groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>ITEM</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglo</td>
<td>Hispanic</td>
<td>Anglo</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>1.488</td>
<td>-0.333</td>
<td>1.247</td>
</tr>
<tr>
<td>1.514</td>
<td>-0.225</td>
<td>1.316</td>
</tr>
<tr>
<td>1.386</td>
<td>0.355</td>
<td>1.342</td>
</tr>
<tr>
<td>1.549</td>
<td>-0.560</td>
<td>2.230</td>
</tr>
<tr>
<td>1.390</td>
<td>0.382</td>
<td>1.220</td>
</tr>
<tr>
<td>2.031</td>
<td>0.033</td>
<td>1.874</td>
</tr>
<tr>
<td>0.779</td>
<td>0.336</td>
<td>1.077</td>
</tr>
<tr>
<td>1.196</td>
<td>-0.202</td>
<td>2.006</td>
</tr>
<tr>
<td>1.558</td>
<td>-0.477</td>
<td>1.783</td>
</tr>
<tr>
<td>0.797</td>
<td>0.225</td>
<td>0.920</td>
</tr>
<tr>
<td>2.036</td>
<td>-0.463</td>
<td>1.881</td>
</tr>
<tr>
<td>1.779</td>
<td>-0.442</td>
<td>2.000</td>
</tr>
<tr>
<td>2.062</td>
<td>-0.074</td>
<td>2.058</td>
</tr>
<tr>
<td>1.628</td>
<td>-0.481</td>
<td>2.000</td>
</tr>
<tr>
<td>1.527</td>
<td>-1.206</td>
<td>1.800</td>
</tr>
</tbody>
</table>

Negative Twice the Loglikelihood

-2351.6

X²(30) = 9.0 p > .05

Anglo Group Mean = 0.000
Hispanic Group Mean = -0.713

Note: The c parameters were constrained to be equal for both fits across groups.
data. Thus, item responses seem to be attributable to a single trait, ability.

Second, data from the IRT-LR analyses indicated that there were no significant differences in the responses of Black and Hispanic groups due to item difficulty, although the means of the three populations were different. Therefore, group mean differences do not automatically mean bias in the test itself. During these analyses, the Anglo group item parameters served as the designated anchor items because the presumption was made that the Anglo items would function similarly for subjects of both groups. Although it is unimportant which group items serve as the designated group anchor items, the items from the Anglo group were chosen in order to demonstrate mean group population differences between white and nonwhite populations does not necessarily dictate bias against minority cultures as a function of the test.
Test bias continues to be an important concern to both the developers, the users and the recipients of tests. The complexity involved in the issues of test bias remains even in the face of a convincing plethora of evidence supporting the notion that most standardized tests are not culturally biased. Regardless of the purpose of a test or its validity for that purpose, a test should result in distributions that are statistically equivalent across groups in order for it to be considered nonbiased for these groups. Some difficulty is encountered with the majority of statistical procedures in that most of these methods yield results that may be artifacts of the method itself. However, the alternative of leaving the determination of validity of a test to judgmental methods seems empirically unsound.

With the development of more robust statistical procedures such as IRT, 3 parameter models, determination of bias within a test becomes a priority for psychometricians to not only demonstrate a test's freedom from bias but also to educate the public. Using these types of statistical methods, decisions about test bias can be made
with greater confidence. Current IRT methods seem to be better detectors of bias than other traditional methods. The three parameter model is, perhaps, the most effective because it uses all the information of the item by estimating all of its parameters. In addition, IRT-LR seems to be better at determining bias between groups than even LOGIST. Clearly, IRT based procedures that depend on multiple logistic calibrations do not automatically result in tests of null hypotheses or estimates of parameter differences that are optimal. Moreover, even the marginal maximum likelihood procedures are not optimal when the assumed model is wrong. Thus, when the model fits the data, as it has been shown here to do, confidence can be placed in the results. This is not necessarily the case with some other traditional tests for bias (e.g., ANOVA methods) in which results may be artifacts of the statistical procedures themselves.

Of primary importance, however, is the establishment of a clear definition of bias. Perhaps, as this study has adopted, the best approach is to define bias in scientific, psychometric terms allowing the issue to be subjected to empirical evaluation. In this respect, Jensen's (1980) conceptualization seems to meet the criteria. Thus, bias in tests can and should be viewed as systematic error, rather than be viewed as an emotional unempirical approach.
Although on a small scale, this study addressed the bias issue at the item level with achievement tests, consistent with Berk's (1982) opinion that items are at the very root of the test, and freedom from bias at a total test score does not preclude the individual items from potential bias. In addition, this study was directed at achievement tests consistent with the notion that these types of tests are more susceptible to cultural biases than cognitive ability tests. Moreover, this study was an attempt to contribute to the test bias literature base to bridge the gap between predictive validity bias with cognitive tests and item bias in achievement tests.

Despite the analyses of these data that the IRT-LR assessment of item bias did not detect differences between the item difficulty values of Anglo and Black groups or between the item difficulty values of Anglo and Hispanic groups, the study was empirically sound. As such, it contributes to the scientific literature and is of practical importance. Thus, although no group item difficulty differences were found in this study, the results are meaningful because some of the items on the Reading Comprehension subtest in the CAT are still being used as anchor items for tests being developed today. This study supports the idea that at least the first fifteen items on this subtest are not culturally biased against any
group. However, it is important to note that this study does not represent all items on the Reading Comprehension subtest or achievement tests in general. Consequently, any generalization of these results to all achievement tests should be made with caution at best. Nonetheless, this study could very well be the start of investigations designed to assess achievement tests in general, and remove some of the doubt that achievement type tests are biased against minority groups.

Interestingly, the IRT-LR mean distribution score of the Black group (-0.663) and the mean distribution score of the Hispanic group (-0.713) are consistent with the raw score means (10.80 and 10.56, respectively, see Appendix), and are in agreement with the notion that minority groups generally score between 0.5 and 1.0 standard deviation below the mean of the majority group. Given these population mean score results, this study could have easily fallen into the trap of the framework of the egalitarian fallacy, if another statistical method was used.

Test bias remains an unresolved issue; in part because group mean differences consistently appear in the results of both cognitive ability and achievement tests. One reasonable explanation for this difference in performance is that some test items may simply function differently for examinees drawn from one group or another or they may
"measure different things" for members of one group as opposed to members of another. As such, tests containing such items may have reduced validity for between-group comparisons, because their scores may be indicative of a variety of attributes other than those the test is intended to measure. Although this did not seem the case for the present study, its results should not suspend future research from investigating such claims. Another reason might be that bias in items may not be due to identifiable traits in one group over another. Biased items might exhibit a type of multidimensionality that involves small, unique effects on items in one or both groups. And, perhaps, another reason might be that item bias is simply an artifact of test construction, that is, other items may be included with items designed to measure the purported trait under investigation.

Implications for Future Research

The present study addressed potential item bias in the Reading Comprehension subtest of the CAT using a robust statistical procedure, namely IRT-LR. It was not designed to address all issues of test bias, but rather begin the contributions towards a better understanding of potential bias in achievement tests. Some modifications to the present study could yield different results. For example, sample sizes could be increased. This study used
relatively small sample sizes for the groups under study. Because the focal group sample sizes had only 500 subjects each, perhaps, smaller differences may not have been readily detected. It is likely that the detection of smaller differences may be found reliably only with larger sample sizes. However, increases in sample sizes will increase costs, and this may prevent this type of method from being conducted for large scale test analyses. In addition, an a priori assumption was made that the items from the Anglo group consisted of items that did not exhibit bias. Bias detected by IRT-LR, as performed in this study, is bias relative to the differences between groups on the anchor items. That is, the determination of bias may have been reached if the group differences for the Black and Hispanic item responses were different from the item responses from the Anglo group, provided the Anglo group responses were free of bias. Uniform group differences are not detected by such analyses as IRT-LR.

Moreover, the items used to determine bias were the first fifteen items of the Reading Comprehension subtest. It is presumed that these items were the easiest compared to items that would be found towards the latter part of the subtest. It may be that future research could find differences between groups at the higher end of the item response spectrum (i.e., the last fifteen items).
Several other implications exist for future research based on this study's methodology. IRT methods are a powerful and more sophisticated means to detect bias in items. Future research might provide support to other traditional statistical methodologies by investigating item bias in cognitive ability tests. Potential sex differences on all types of tests might prove to be interesting and used in conjunction with subjective validity measures. Determining potential bias across grade levels in achievement tests might also provide information on potential bias in items across different forms or levels of such tests. Finally, there is a need to include other minority groups (e.g., native american and asian groups).

This study and future studies are necessary for psychometric, scientific inquiry because it is objective rather than subjective. The detection methodology used in this study provides a robust procedure to determine potential bias in items apart from group mean differences. If scientific inquiry is stopped or prevented, measurement will regress to subjective choices and the result may be far greater opportunity for bias against different ethnocultural groups.
APPENDIX

Table 3 displays the means, standard deviations, and z score transformation for the raw data. It is interesting to note that the raw score distribution of scores closely resembles the IRT-LR distribution of scores on ability levels, in that the Black and Hispanic groups scored at least half a standard deviation below the mean of the Anglo group. Therefore, the nature of discrepency was not affected by the use of the IRT-LR analyses versus traditional descriptive information. Yet the IRT-LR methods clearly indicate no biased items in the sample under investigation.

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MEAN</th>
<th>STAND. DEV.</th>
<th>Z SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anglo</td>
<td>12.71</td>
<td>3.12</td>
<td>0.356</td>
</tr>
<tr>
<td>Black</td>
<td>10.80</td>
<td>3.81</td>
<td>-0.147</td>
</tr>
<tr>
<td>Hispanic</td>
<td>10.56</td>
<td>4.11</td>
<td>-0.209</td>
</tr>
</tbody>
</table>
REFERENCES

Hilliard, A. G. Standardization and cultural bias as impediments to the scientific study and validation of "intelligence". Journal of Research and Development in Education, 1979, 12, 47-58.

Humphreys, L. G. The construct of general intelligence. Intelligence, 1979, 3, 105-120.

Jensen, A. R. How biased are culture-loaded tests? Genetic Psychology Monographs, 1974, 90, 185-224.

Jensen, A. R. An examination of culture bias in the Wonderlic Personnel Test. Intelligence, 1979, 1, 51-64.

Miele, F. Cultural bias in the WISC. Intelligence, 1979, 3, 149-164.

Plake, B. An investigation of a reviewer's ability to identify items which function differently for selected groups of subjects. Paper presented at the annual meeting of the National Council of Measurement in Education. San Francisco, April 1979.

Sandoval, J. The WISC-R and internal evidence of test bias with minority groups. Journal of Consulting and Clinical Psychology. 1979, 47, 919-927.

Sattler, J. M. Standard intelligence tests are valid instruments for measuring the intellectual potential of urban children: Comments on pitfalls in the measurement of intelligence. Journal of Psychology, 1979, 102, 107-112.

Thissen, D. MULTILOG: Multiple categorical item analysis and test scoring (Users manual, Ver. 5). 1984.

