
































































































































































































































































9 

g'(R1sin8) • Rl J g"(R1sinO) cosO dO 

Substitute (S.4.38) into the above to yield 

(
COS2k9 + cos2(k - 1)8)] 

k k - I 

g(R lsin9) is obtained in the same fashion as g'(R1sin9). 

9 

g(R1sin9) • Rl J g'(R1sinO) cosO dO 

Then substitute (S.4.41) into (5.4.42) to get 

bZk-S bZk-1 bZk+1 . [ ] L (k-l )(2k-1) + k(k-I) + k(2k-1) slO(2k-I)8) 
k-2 

12S 

(S.4.40) 

(S.4.41) 

(S.4.42) 

(S.4.43 ) 

Thus tPp - g(x2) is computed by letting x2 • R1sin9 and then using the above expression. 

The homogeneous solution is determined by solving 

YJo - 0 (S.4.44) 

The boundary conditions are 

tPo - - g on R - Rl (S.4.4S) 

and 

(S.4.46) 

Let G(9) denote the right hand side of (5.4.46). Then, by substituting (S.4.38) and 

(S.4.41) into (S.4.46), we get that 
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f. [[4 + k~ I ] b,. .• + k~~:) - U -4] b"+I) sin(2k-I)6) 

k-2 

(5.4.47) 

The general solution to the biharmonic equation (5.4.44) which is finite at the origin 

may be written as 

where 

for all n. 

00 

.po - L f2n- 1 (R) sin(2n - 1)8 

n-l 

(5.4.48) 

(5.4.49) 

Next, the boundary conditions are applied. By substituting (5.4.48) into (5.4.45) and 

equating coefficients we get that 

(5.4.50) 

and 

2 R1s-2n (b2n-s b2n- 1 b2n+1 ) 
A2n- 1 + Rl B2n- 1 --8- (n-I)(2n-1) + n(n-I) + n(2n-l) (5.4.51 ) 

for n > I. 

We also substitute (5.4.48) and (5.4.49) into (5.4.46) and equate coefficients. The fol-

lowing equations are obtained: 

(5.4.52) 

and 

(2n-I)(4n-3) A2n- 1 + «2n-1)2 + 2n(2n+I»R12 B2n- 1 -

(5.4.53) 

for n > I. 

Thus A2n- 1 and B2n- 1 can be determined by solving simultaneously (5.4.50) and 

(5.4.52) for n -I and (5.4.51) and (5.4.53) for n > I, once the coefficients b2n- 1 have been 
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evaluated numerically. 

The isotropic component of tension, TO, can now be evaluated since Tss is known 

on the rim of the disk: 

TO-Tss - 1. ~ 
R 8Ra6 

S.4.S Results for the infinitesimal deformation case 

(5.4.54 ) 

The solution", is obtained by adding the two solutions, "'0 and VJp ' calculated in sec­

tion 5.4.4. The coefficients, A2n- 1 and B2n- 1, of "'0 are found by solving (5.4.50)-(5.4.53). 

There is one free parameter f which is the ratio of viscous to elastic forces. The elastic 

modulus, IC, and the plasma viscosity, 1", were chosen to be the same as those used by 

Secomb et aJ. (1986): IC - 0.0042 dyn/cm; I" - I cPo The unperturbed mean velocity, u2' was 

chosen to ensure that f is small. In figures 5.4 (a) and (b), d - 1.828 I"m and 2.028 JJm res-

pectively. In both cases uJ - 0.001 cm/s so that f - 8.2 X 10-& in figure 5.4 (a) and l - 1.15 

x 10-4 in figure 5.4 (b). These figures show how an element is deformed. The streamlines 

give the direction of displacement of a membrane element, and the amount of displacement 

is inversely proportional to the spacing. The membrane is dragged backwards relative to the 

direction of cell motion, at the extremities. The deformation is greatest at the poles where 

the streamlines are closer together, since the gap width is a minimum and the stresses are 

greatest. Also, there is no membrane exchange across the line of symmetry. 

S.4.6. Finite deformations 

In this section the governing equations are analysed for the case where the the 

applied stresses are large enough so that the deformations are finite. An iterative procedure 
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is developed which could be used to obtain a solution for t: - 0( I) . 

... 
) 

--L~~~~ .. . .. 

Figure 05.4. Streamlines displaying strain of membrane in region I due to an exter-

nal stress. (a) d - 1.828 I'm and (b) d - 2.028 I'm. 

We suppose that a solution has been obtained for some to (- 0( I». Then the applied 
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stresses are incremented by a small amount so that 

(5.4.55) 

where ~E «1. Let 

c • C· + ~C, X • X. + .1X, T • T· + .1T, TO. Too +~To (5.4.56) 

where the superscript 0 refers to the solution when E • EO. Substitute (5.4.55) and (5.4.56) 

into equations (5.4.1)-(5.4.2) and (5.4.6) and (5.4.15) and linearize them. Then 

a~Tll a~Tu ~E --ax;- + ax;-. -H(x
2

) 
(5.4.57) 

(5.4.58 ) 

where 

.1T • ~C.C.T + (~C.C.T) T - tr(.1C.COT) I + ~ToI (5.4.59) 

The surface area constraint becomes 

where the following property of determinants has been used: det(I + 6 A) - + 6 tr(A) + 

0(62) for 6 « 1). Since equations (5.4.57) and (5.4.58) are in terms of the final configura-

tion x, it is more convenient to introduce a new tensor D such that 

ax· 
D··· _I 

IJ ax. 
J 

(5.4.61 ) 

Also, D • C-1 by definition. As in (5.4.56), let D • 00 + .1D. Then (5.4.59) and (5.4.60) 

become 

.1T - B + BT - trB I + .1To I (5.4.62) 

(5.4.63) 

(5.4.63) is also equivalent to 

ax10 a~x2 ax20 a~x1 ax10 a~x2 ax20 a~xl 
aX1 ax;- + aXa ~ - aXa ~ - aX1 ax;-. 0 (5.4.64) 
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which can also be written as follows: 

a [ax 0 ax 0 ] a [ax 0 ax 0 ] -a -a 1 aXI - -a I aXl + -a -a I aXl - axIl aXI • 0 
Xl Xz Xz XI Xl 

(5.4.65) 

So there exists a stream-function, VJ, such that 

EY!...a • aaXlo ax
z 
__ ax_I_o ax 

XI Xz axz 1 
(5.4.66) 

~ ax 0 ax 0 
~ __ 1_ AX __ 1_ AX 
aXl aXl ~ I aXl ~ 1 

(5.4.67) 

Then 

4X. D° .• (5.4.68) 

where .. - (-CJf/J/axz' CJf/J/ax l). In the infinitesimal deformation case, DO becomes a tensor 

with constant coefficients. 

The solution to (5.4.57)-(5.4.58) is 

aTu - -atH-lxl + aa~. aTu - aa~, aTu • - aa
l

a• XI Xl Xl Xl 
(5.4.69) 

Substitute the above into (5.4.62) and eliminate a TO to get 

a~ a~ _ 2 [axzO aaxI + axlo aaxl axzo aaxl _ axlo aaXl] 
aXIl - aXzl aXl aX l aXl ~ - aX I ax! axz ax;- = 

These three equations (5.4.68), (5.4.70) and (5.4.71) contain three unknowns: 40 and 

., and could, in principle, be solved together with the same boundary conditions as in the 

infinitesimal case. We do not solve these equations since the deformation of the disk region 

can be qualitatively described by the solutions for infinitesimal deformations. Also, the rhe-

ologicaJ parameters have been derived in section 5.3 without having to solve the above equa-

tions. 
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5.5. NUMERICAL SOLUTIONS 

The equations derived in section 5.3 are solved numerically. Cell shapes and pres-

sure distributions are computed as functions of the geometrical parameters. Figure 5.5 

shows the shape of the cell at different cross-sections perpendicular to the flow direction. 

The gap width between the cell and the wall is seen to decrease with distance from the axis 

of symmetry parallel to the flow direction. The model exhibits unrealistic behaviour since 

H(1I'/2) - 0, i.e. the gap width goes to zero at the outer extremities of region I. This occurs 

because the two-dimensional approximation used in section 5.3 for the pressure equation 

(5.3.17) is not uniformly valid at 9 - 11'/2. To model this region, an inner solution could be 

sought in the neighbourhood of 9 - ±11'/2. However, this behaviour does not affect rheologi-

cal parameters such as particle velocity since the pressure force, (5.3.59), and drag, (5.3.64), 

on the particle would not change much. 

We can also determine the particle velocity, Up' as a function of mean gap width, 

"1 by using the methods developed in sections 5.3.6 and 5.3.7. These results are compared 

with those for rigid particles of near-critical shape. Up' for rigid particles, is given by 

12 (Ra/R1)l "1 
Up - I + 6 (Ra/R1)a "1(l - Q"1) 

(5.7.1 ) 

where Q - 0 (cf. 4.3.36) when Ka - 0 and 

Q - I otherwise, and the contribution to drag 

from region III has been neglected. In figure 5.6, Up is plotted as a function of "1 for 

both zero and non-zero leakback cases. The number of terms in the Fourier series for K z(9) 

was chosen to be 10. For both cases, the rigid particle velocity given by (5.7. J) is greater 

than the corresponding values for the flexible particle. This is because the drag is a mini-

mum when "1(9) is constant. Also, the particle velocity is greater in the small leakback 

limit since the driving force is greater. But as the mean gap width tends to zero, the leak-



· :I( _.- ~ '. M...... J I . I~_-_ .. t."'!"""'_ ... _'_. "C_'~ •• t_·"_J~1 
.. ." . 

Figure 5.5. Cell shape at different cross-sections perpendicular to the flow direc-

tion. 

1.5TI----------------------------------------~ 
I 

J 1.0, 

0.0 ~ __ __.==::::::=---~----____ --.J 
2.000E-4 0.001 0.010 0.100 

Mean gop width 

Figure 5.6. Variation of Up with respect to "I' where drag from region III is neg­

lected:-, flexible; - -, rigid. 
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back becomes negligibly small, and so the two cases yield very similar results. 

Figure 5.7 shows the variation of particle velocity with "1' including the drag from 

region III. Up is lower because the drag is higher in this case. Also, it shows that there is 

close agreement between results for near-critical flexible particles and for rigid particles 

with the critical shape. 

S.6. DISCUSSION AND CONCLUSIONS 

The deformability of red blood cells allows them to squeeze through pathways with 

remarkable ease, even when the characteristic dimensions of these pathways are smaller than 

the radius of an unstressed red cell. However, in narrow conduits such as those that are 

found in the bone marrow, in the spleen and in partially occluded capillaries, the red cell 

1.2~------------------------------------~ 

0.9 

Up 0.6 

0.3 

0.0 ~===::::=--~-_____ ..---.-J 
0.001 0.010 

Mean gap width 

0.100 

Figure 5.7. Up as a function of "1' using the complete theory:-flexible particle;u 

rigid particle of critical shape. 
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approaches the limits of its defonnability. The models considered here are a continuation of 

the work on very narrow capillaries (chapter 3) and represent a first attempt at modelling 

the squeezing of red blood cells through very tight spaces with more complex geometries. 

One significant finding is that the gap width can be determined by solving the gov­

erning equations in the rim (region III). The gap width between the cell and the wall decre­

ases with distance from the axis of symmetry parallel to the flow direction. The asymptotic 

analysis applied to the transition region is very similar to that discussed in chapter 3. The 

outer solutions corresponding to the 'disk' and 'hemispherical' regions are matched through 

transition regions of hmgth scale of order Hll/2, and tensions of order Hl -3/2 are generated 

in the membrane. At the front (1(/2 < 9 < 31(/2), the transition region is monotonic, but the 

cell bulges out at the rear (-1(/2 < 9 < 1(/2). However, the similarities end here. It was 

shown in section S.3.2 that the membrane shear resultant could not be neglected and that the 

gap width is a function of y. Consequently the gap width is known everywhere by solving 

the asymptotic equations in the front transition region. Although there is no solution with 

isotropic membrane tension, the stress-strain analysis described in section S.4 shows that 

there exists an equilibrium solution. 

We also find that the cell velocity may be smaller or larger than the mean fluid vel­

ocity far from the cell, depending on the spacing of the plates, and that rigid and flexible 

particle models yield very similar results. But as in chapter 3, the pressure gradient in the 

gap for a rigid particle of critical shape can be negative for sufficiently small spacings. This 

does not occur for flexible particles. 

In summary, this simple model demonstrates that when the conduit does not have an 

axisymmetric cross-section, the viscous shear stress cannot be balanced by isotropic tension 

alone and that the reverse of the Fahraeus effect observed in circular tubes may occur for 

very small clearances. 
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CHAPTER 6 

FLOW OF RIGID PARTICLES THROUGH RECTANGULAR CHANNELS 

6.1 INTRODUCTION 

In this chapter we analyze the motion of rigid particles through rectangular channels, 

to simulate the motion of red blood cells through sIN-like geometries. As in chapter 4, we 

are particularly interested in situations in which the width of the particle is slightly less than 

the distance between the two plates. Since a red cell deforms at constant volume and sur­

face area. there is a minimum spacing between the two plates below which passage of an 

intact cell is not possible. If the span of the channel is large enough then the critical shape 

of the cell is identical to the one derived for two infinite plates: a disk with a rounded edge. 

This work is therefore an extension of the work carried out in chapter 4 where the motion 

of rigid particles between infinite parallel plates of near-critical spacing was analyzed. 

The methods of solution are similar to those used for the motion of particles of crit­

ical shape between infinite plane walls. In section 6.2, lubrication theory equations are obta­

ined for the motion of the suspending fluid in the gap. These equations are solved in 

regions I and III, the regions between the particle and the plates (as in chapters 4 and 5). 

Section 6.3 is devoted to region II. the region of constant gap width surrounding the particle. 

The equations derived in sections 6.2 and 6.3 are solved in section 6.4. In section 6.5, a 

boundary-layer analysis is performed so that the tangential flow rate at the edge of the par­

ticle can be matched. The solutions obtained in section 6.4 are then modified. There are 

also two boundary layers adjacent to the sides of the channel. These are required to satisfy 

the no-slip condition. In section 6.6, particle velocities and pressure distributions are obta-
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ined as functions of gap width and channel width using the solutions obtained in sections 6.4 

and 6.S. These results are also compared with the infinite plate case. 

6.1.1 Particle shape 

The constraints of constant red cell volume and surface area impose limitations on 

the possible shapes that red cells can have. It was shown in chapter 2 that the critical shape 

of a red cell between two infinite plates is approximately a disk with a rounded edge. In 

this chapter, we will extend the models developed for the motion of rigid particles between 

two infinite plates and investigate the motion of neutrally-buoyant partticles between parallel 

Figure 6.1. Rigid particle of critical shape in a slot of span a and spacing d. 

plates of finite span, a (figure 6.1). The spans which will be considered are much larger 

than the spacings between the plates so that the critical shape is the same as in chapter 4. 

Consequently, the methods used here are similar to those in chapter 4. The domain 
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is divided into three regions which are considered separately: region I (the flat part of the 

disk): 0 ~ r ~ r I' h - he « d; region II (outside the disk): r 2 ~ r, r sinD ~ a/2, h .. d; region 

III (the curved rim of the disk): r 1 ~ r ~ r 2' h - h(r). 

6.2 THE GOVERNING EQUA.TIONS IN REGIONS I A.ND III 

The equations of lubrication theory are formulated as in section 4.2, yielding non-

dimensional velocity components in region I and III as follows: 

and flow rates 

and 

U - 6 - Z(Z - H) + U cosO I - -ap ( z) 
aR P H 

V - 6 - - Z(Z - H) - U smD I - -I ap . ( z) 
R CJ6 P H 

I ap QR - - H U cosO - H3 -2 P aR 

Q, _ - H3 1. ap _ ! H U sinD 
R CJ6 2 P 

From the equation of continuity, the pressure satisfies 

I a ( 3 ap) H3 a2p I dH 
R aR RH aR + R2- CJ62 - 2 UpcosO dR 

(6.2.1 ) 

(6.2.2) 

(6.2.3) 

(6.2.4) 

(6.2.5) 

where H - He in region I and H - H(R) in region III. General solutions in regions I and III 

are obtained next. 

In region I equation (6.2.5) reduces to: 
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(6.2.6) 

since the gap width is constant. The solution can be obtained by separation of variables and 

is given by 

00 

pI - L C2k- 1 (:J 2k-l cos(2k - 1)8 

k-I 

(6.2.7) 

where. by symmetry about the x-axis. there are no sine terms in the Fourier series for P. 

The radial flow rate is then obtained by substituting (6.2.7) into (6.2.3): 

I H 3 ~ ( R ) 2(k-l) 
Ql R - 2 VpHccosO - ~l L (2k - 1) C2k- 1 Rl cos(2k - 1)8 

k-I 

6.2.2 Region /II: Rl ~ R ~ R J : H - H( R). 

In region III. the gap width is given by 

I 
H - i (I - ~ co~) 

(6.2.8) 

(6.2.9) 

where ~ - 2w/d and 1(12 - ~ is the angle between the axis of symmetry and the normal to 

the surface. Also. 

R - W sin~ + Rl (6.2.10) 

where W - wid. 

If the radius of the disk is large compared to the channel width (Rz » I) we may 

treat the flow at each point on the rim as approximately two-dimensional. Note that R ,. 

Rl + e where e - 0(1) in region III. Hence. equation (6.2.5) becomes to leading order 

a~ (H3 ::) - ~ Vpc0s8 ~~ 
which can be integrated once to yield the pressure gradient in region III 

8pm _ ! H-IV cosO - K (9) H-3 
8R 2 p I 

(6.2.11 ) 
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where 

(6.2.12) 

As in the case of now of a rigid particle consisting of a cylindrical body with hem-

ispheroidal ends in a circular tube, it is convenient to use ~ as the independent variable 

(Ozkaya and Skalak (1983); Ozkaya (1986». Equation (6.2.11) becomes 

apm [ Upc0s8 K 2(9) 1 
~ - .\ c~ (I _ ;\c~)J - 4 (I _ .\C~)3 (6.2.13) 

The above equation can be integrated from 0 to 1(/2 as in section 4.3.2 yielding 

(6.2.14) 

where 12 and 13 are given in (4.3.16). 

6.3 GOVERNING EQUATIONS IN REGION /I 

The lubrication theory assumptions are still valid in the region surrounding the parti-

cle since the width of the channel is very small compared to its length and span. It is more 

convenient to write the momentum and continuity equations in Cartesian coordinates. The 

momentum equations in the X and V directions are given by 

a2u ap 
aZ2 - 12 ax 
~v ap 
aZ2 - 12 av 

(6.3.1 ) 

(6.3.2) 

where U is velocity component in the direction of motion of the particle and V is the velo-

city component transverse to it, and continuity is given by 

au + av _ 0 
ax av (6.3.3) 

These equations have been non-dimensionalised using (6.2.4). In addition, X - x/d and Y '" 

y/d. The boundary conditions are 

U - Up at Z - 0, I and V - 0 at Z - 0, I and V - ta/2d (6.3.4) 
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where a is the span of the channel. Also, there is a matching condition: U -+ Up - I as X 

-+ 00, where U(X, Y) is the Z-averaged fluid velocity. 

The momentum equations are easily integrated to yield U and V: 

ap 
U - 6 ax Z(Z - I) + Up 

ap 
V - 6 ay Z(Z - I) 

The flow rates, Qx and Qy, are obtained by integrating the above velocities: 

ap 
Qx - Up - ax 

ap 
Qy - - ay 

Substitute (6.3.7) and (6.3.8) into the continuity equation to get 

aJP aJP 
aXJ + aYJ - 0 

(6.3.5) 

(0.3.6) 

(6.3.7) 

(6.3.8) 

(6.3.9) 

The above equation is solved in the next section using classical methods of potential theory. 

The conditions that V - 0 at Y - tA/2 and that U -+ Up - I as X -+ 00' yield the following 

conditions on the pressure: 

ap/ay - 0 at Y - tA/2 and ap/ax -+ I as X -+ 00 (6.3.10) 

where A - a/d. 

6.3.1 The potential 0/ a cylinder between two plates 

The potential problem given by equations (6.3.9) and (6.3.10) is very similar to that 

considered by Howland (1934), who determined the solution of Laplace's equation which has 

given values on an infinite cylinder, lying symmetrically between two parallel infinite 

planes, and has zero or constant values on these planes. The same technique will be used 

here to solve our particular problem. Consider Laplace's equation 

ft aJ
; 0 

aXJ + aYJ - (6.3.11 ) 

with the following boundary conditions: 
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~ is given on R • R:a and ~. 0 on X • tA/2, A > 2R:a (6.3.12) 

The two plane walls at Z • ±A/2, where Z - X + iY, can be replaced by an infinite set of 

circles located at (tpA, 0), where p takes all integer values. The complex potential function 

with logarithmic singularities at all these centres is 

Z 
~ 0 - log sin I" A 

~o can also be written as a converging power series in Z for Izi < A: 

~ 0 - - log ! + f ~ r 2p (! rp 

p-I 

where r 2p is the Riemann zeta-function for an integral argument, so that 

(6.3.13) 

(6.3.14) 

(6.3.15) 

Further potential functions with the desired properties are obtained by differentiating ~o 

with respect to Z since ~n' the n-th derivative of ~ with respect to Z, also satisfies the 

condition that i»n/8z - 0 on z • tA/2. ~1 is given by 

·1 · -~ + ! f>,. [~ t1 
p-I 

(6.3.16) 

~1 is an odd function and since we only require odd functions, we differentiate ~l 2n times 

to get 

~ __ J1!!lL + 
2n+1 z2n+1 

_1_ ~ (2(m + n) + I)! (AZ )2m+1 
A2n+1 L (2m + I)! r 2(m+n+1) 

m-o 
(6.3.17) 

Normalize the above harmonics by letting 

(6.3.18) 

Then 



where 

(
A)2n+l 

·'2n+l - - Z + 2m+l/L 
-.n+l 

[
p] p! and 2m+l [2(m + n) + I] 
n - n!(p - n)! ~ ... l - 2m + I {'2(m+n+l) 
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(6.3.19) 

(6.3.20) 

For our particular problem, we are only interested in the imaginary part of .' 2n+ 1 

since we require functions that are odd with respect to the X-axis and even with respect to 

the Y-axis. These functions are given by 

(
A)2n+l 

Im(.' 2n+l) - R sin(2n + 1)9 + 

00 

~ 2m+lQ L 2n+l 

m-o 
(R) 2m+l 

A sin(2m +1)9(6.3.21) 

where (R, 9) are the usual polar coordinates. The solution to (6.3.11) is a linear combina-

tion of the harmonics given by (6.3.21), whose coefficients can be obtained by applying the 

boundary condition on the circle R - Rz. The general solution for the pressure distribution 

in region II can thus be obtained using this method. This is done in the next section. 

6.3.2 General so/w;on lor region /I 

It follows from section 6.3.1 that the pressure distribution in region (I can be 

expressed as a linear superposition of the harmonics given by (6.3.21): 

00 

pO - Poo + L A 28+ l P28+l 

s-o 
where P 00 ( - Rc0s8) is the pressure far from the particle, and P28+l is given by 

(
A)2a+l P28+ l - (-I)' R cos(2s + 1)6 + 

00 L 2m+l~+l (-I)M (!) 2m+l cos(2m + 1)6 

m-o 
where 9 - 1(/2 - 9. The radial flow rate is given by 

(6.3.22) 

(6.3.23) 



apO 
QR

O 
- Up c0s8 - aR 

Substitute (6.3.22) into (6.3.24) to get 

00 

QR
O 

- (Up - 1)c0s8 - L A2I+1 

s-O 

aP2l+1 
aR 

The coefficients A2I+1 are determined by matching regions I. II and III. 

6.4 SOLUTIONS FOR RIGID PARTICLES OF NEAR-CRITICAL SHAPE 

6.4.1 Malching conditions lor the three regions 
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(6.3.24) 

(6.3.25) 

To determine the coefficients ell in (6.2.7) and All in (6.3.22) we apply the following 

matching conditions at R - Rl and R - R z: 

pi _ pm and QI R - om R at R - Rl (6.4.1 ) 

and 

pO _ pm and OUR - 20m R at R - Rz (6.4.2) 

The azimuthal flow rate cannot be matched at R - Rz but the jump in Q, from 

region III to II is 0( I). This discontinuity can be corrected by applying a boundary-layer 

analysis. This is done in section 6.5. 

First we apply the matching conditions given in (6.4.1). By matching the radial flow 

rates (6.2.8) and (6.2.12). we find that Kz(9) can be expressed as a Fourier series: 

where 

00 

K z(9) - L PZk - 1 cos(2k - 1)8 

k-I 

(6.4.3) 

(6.4.4) 
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If the pressures pI and pm are matched at R - Rl we also get that the pressure at R 

- R2• (6.2.14). can be written as a cosine series: 

where 

and 

00 

pm (R2• 9) - L 12k-l cos(2k - 1)9 

k-I 

(6.4.5) 

(6.4.6) 

(6.4.7) 

for all k. Next. we apply the matching conditions at R - R2. (6.4.5) and (6.3.22) imply that 

and 

where 

and 

00 

11 - R2 + c l Al + t L lQ2a_l A 2a-1 

s-I 

1 - (-I )k-l [C(2k-l) A + t 2k-1 ~ 2k-l Q A ] for k > I 2k-l 2k-l L 2a-l 2a-l 

s-I 

(
R ) 2k-l 

t 2k-1 • A2 

(6.4.8) 

(6.4.9) 

(6.4.10) 

Finally. we match the radial flow rates at R • R2. (6.3.29) and (6.4.3) imply that 

00 

2R~1 • (Up - I)R2 + c l Al - t L lQ2a_l A 2a-1 

s-I 

2R~2k_l • (-I)k-l (2k - I) [d2k-1) A2k-1 - t 2k-1 f 2k-l Q2a_1 A2a-1 ] 

s-I 

(6.4.11 ) 

(6.4.12) 

for k > I. 

(6.4.4). (6.4.6)-(6.4.11) yield a linear system of equations whose solution is in terms 
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of the particle velocity, Up' and the geometrical parameters He' W, Rz and A. By applying 

the zero-drag condition, the above coefficients and the non-dimensionalised particle velocity 

are uniquely determined for given spacing d, and span a. 

6.4.2 Th~ zero-drag condition 

Next, we apply the zero-drag condition to obtain an extra equation so that the parti-

cle velocity can be determined as a function of geometrical parameters. If we consider the 

forces acting on a control volume containing the particle (see 4.3.4), we obtain: 

F • - F ,. p (6.4.13) 

where 

F,. • 2 Irzfl' fxa I r dr dl and Fp. d rz JI' p(rz' I) dl 
o -I' z-o -I' (6.4.14) 

F,. gives the shear force on the walls and Fp gives the pressure force. To determine the 

shear force note that 

,",UZ aux . 
fa • d az where Ux • U cosO - V sml. 

Substitute (6.2.1) and (6.2.2) into the above to get that 

F, • - 2~u.d rf.[ ¥r + 6H [:: cosS - ~ : .inl 1] R dR d8 (6.4.15) 

Let 

(6.4.16) 

where F,. I and F,. m are the contributions from regions I and III respectively. Then 

(6.4.17) 

and 
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where the two-dimensional approximation has been used to calculate (6.4.18). Next, the 

pressure force exerted on the curved surface is calculated. (6.4.5) and (6.4.14) imply that 

(6.4.17)-(6.4.19) are now substituted into (6.4.13) to obtain the following equation: 

6H,R1C1 - 12R.lIJl1 - 6R'~1. [~:' + 5R.ll1) Up - 0 

6.4.J System 0/ eqlUll;ons 

(6.4.19) 

(6.4.20) 

The equations for the Fourier coefficients derived in the previous sections form a 

linear system of equations. These can be simplified by eliminating the coefficients .B2k - 1 and 

12k-I' Also, an iterative procedure is used. Equations (6.4.6) and (6.4.8) imply that 

00 

G1C1 + ~(Iz - 2I3Hc)Up - Cl Al - Rz + E L IQ2a_1 A2a- 1 

s-I 

and (6.4.4) and (6.4.11) that 

00 

2Hc 3 =: C1 + Rz(1 - Hc)Up + E-I Al - Rz + E L IQ2a_1 A 2a- 1 

s-I 

(6.4.21) 

(6.4.22) 

The zero-drag condition is also re-written, by substituting (6.4.4) and (6.4.8) into 

(6.4.20): 

6H, (R 1 • 21,lR.R1 -lH, .)C 1 • [~:' • R.ll 51 1 - 6H, I.) )U p 

- 6E-1RzA1 - 6Rz[Rz + E f IQ2a_1 A2a- I ] 

s-1 

Equations (6.4.6), (6.4.9), (6.4.4) and (6.4.12) imply that 

(6.4.23) 
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(6.4.24) 

and 

00 

(G2k-1 + 2RJH
C
'R1-I) C2k-1 - 2(_l)k-l f2k-l L 2k-l 02a_1 A2a- 1 (6.4.25) 

5-1 

6.4.4 The zeTo-.eiocity limit 

When the gap between the plates and the particle becomes very small, the particle 

velocity is negligibly small. If Up - 0 then equations (6.4.21) and (6.4.22) reduce to 

and 

00 

(1 + 4.AHc'I,R1-l)C1 - C 1 Al - RJ + f L 1 02a_l A2a- 1 

5-1 

00 

2Hc' :: C1 + f- 1 Al - RJ + f L 102a_l A2a- 1 

sal 

(6.4.26) 

(6.4.27 ) 

The zero-drag condition, (6.4.23), does not apply, but equations (6.4.24)-(6.2.14) still 

hold. An iterative procedure is used to solve for the A2i-1 and C2i-l' Let 

00 00 

A2i-1 - L ~A2i-l (n) and C2i-l - L ~C2i-l (n) (6.4.28) 

n-o n-o 
where the first terms (n - 0) come from the infinite-plate solution, and are given by 

2R 
~Cl(O) - : 1 ' ~C2i-l (0) - 0 for i > (6.4.29) 

G 1 + 2Hc RJR1-

and 

~Al(O) - ~ (G1 - 2Hc 'RJR1-I)~CI(0) , ~A2i-l (0) - 0 for i > 1 

(6.4.24)-(6.4.27) yield the following recurrence equations for n > 0: 

(G2k-1 + 2Hc 'R2R 1-l) ~C2k-l (n) -

(6.4.30) 



148 

00 

2( -1 yr-l t 2k- 1 ~ 2k-l~_ AA (n_l) L -.a-I 28-1 (6.4.31 ) 

s-I 

and 

(6.4.32) 

The above equations are iterated until the following convergence criterion is satisfied: 

(6.4.33) 

where 6 is chosen to be some small number. The above iterative scheme converges provided 

t < 0.5. 

Pressure contours are shown in figure 6.2 for the case where He • 0.0008 and l = 

0.2. By mass conservation, the contours are normal to the solid boundaries since the particle 

is at rest. Because of the very small gap, the pressure gradient is greatest in the disk region, 

where it is approximately constant. 

6.4.5 The ze,o-Ieakback lim;t 

A simple estimate of Up can be obtained for very narrow gaps for which the flow 

in the gap is negligible. (6.4.4) implies that 

R1 
C 1 - 2H 2 Up and C2k- 1 - 0 for k > 

c: 

and, (6.4.11) and (6.4.12) imply that 

and 

00 

R 2Up + f- 1A1 - f L 1Q28_1 A2a- 1 - R2 

5-1 

00 

A 2k - 1 - t 2(2k-l) L 2k-lo,._1 A 2a- 1 

5-1 

The pressure force, (6.4.19), is equal to 

(6.4.34) 

(6.4.35) 

(6.4.36) 
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-6 6 

Figure 6.2. Contours of the pressure field in the channel for the zero-velocity limit. 

He: - 0.0008 and € - 0.2. 

where 

00 

'1 - Ra + C1Al + € I 1Q2I_l A 2I- 1 

5-1 

The drag force. Fr. is approximately given by 

(6.4.37) 

(6.4.38) 

(6.4.39) 

since the contribution of the curved region is much smaller than region I and because a 
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linear velocity profile is assumed. The zero-drag condition, (6.4.13), and (6.4.35) and 

As in previous sections, an iterative procedure is implemented. Let 

00 

A2i-1 - L ~A2i-l (n) 

n-o 

(6.4.40) 

(6.4.41 ) 

where the first term (n - 0) is obtained by solving the infinite plates problem (chapter 4). 

From equations (6.4.35) and (6.4.40) 

~A 1 (0) - t (I - Up (0» Rz (6.4.42) 

where 

(0) _ 12 (Rz/Rl)ZHe 
Up I + 6(R

J
/R

1
)IHe 

(6.4.43) 

(6.4.35), (6.4.36) and (6.4.40) yield the following recurrence relations for the A2k-1 : 

00 

~A2k-l (n) - f 2(2k-l) L 2k-l Q2a_1 ~A2a-l (n-l) for k > (6.4.44) 

sal 

and 

00 
( ) I - 6(Rl/Rl)IHe ~ ( ) 

~Al n - fl I + 6(R
z
/R

1
)IH

e 
L lQ2a_l ~A2a-l n (6.4.45) 

sal 

Equations (6.4.44)-(6.4.45) are iterated until the following convergence criterion is 

satisfied: max II~A2i-l (n) II < & for some small &. Up is then obtained by substituting Al 

into (6.4.40). Pressure contours in region II are shown in figure 6.3 for He - 0.0008 and t -

0.2. In this case, since Up - 0.017, the contours are almost normal to the surface of the par­

ticle. As in the zero-velocity limit, they are normal to the channel walls. 
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6.5 BOUNDARY LAYER ANALfSES AT SOLID SURFACES 

In previous sections, we were able to solve the pressure equation in regions I, II and 

III and obtain expressions for the pressure distribution and flow rates in terms of some unk­

nown Fourier coefficients. These constants were determined by matching the pressure and 

-6 6 

Figure 6.3. Contours of the pressure field in the channel for the zero-Ieakback 

limit. He - 0.0008, t - 0.2 and Up - 0.017. 

radial flow rate at the edge of each region. However, these matching conditions imply that 

there is a discontinuity in tangential flow at the surface of the particle, between regions II 
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and III. There is also a jump in tangential flow at the channel walls. As in chapter 4, a 

boundary-layer analysis can be used in small regions adjacent to the solid boundaries so that 

the tangential flow can be matched. 

6.5.1 Boundary layers between region 11 and the channel walls 

There are two boundary layers adjacent to the channel walls located at Y - ±A/2. 

We only need to consider the boundary layer at one of the walls. say Y - A/2, since the 

particle is symmetrically positioned in the channel. We suppose that the flow does not vary 

rapidly in the X-direction. The momentum equation in the X-direction is then given by 

(6.5.1 ) 

where U is the fluid velocity in the X-direction. Y - A/2 - Y and a/ay »a/ax. Let U ,. 

VD + V l' where UD is the velocity in region II. which is given by 

ap 0 
VO - 6 a~ Z(Z - I) + Vp (6.5.2) 

where P 00 refers to the unperturbed pressure field derived in section 6.3. Hence the pertur-

bation V 1 satisfies Laplace's equation 

(6.5.3) 

The boundary conditions for V 1 are 

ap 0 
V 1 - 0 at Z - 0. I and V 1 - -6 a~ Z(Z - 1) at Y ,. 0 (6.5.4) 

So. by separation of variables. the solution of (6.S.3) satisfying the above boundary condi-

tions is 

I e-(2k-l).V sin(2k -1 )"'Z 
(2k - 1)3 

(6.5.5) 

The change in flow rate is obtained by integrating the above expression 
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(6.5.6) 

and by continuity, the transversal flow rate generated by the boundary layer is given by 

a2p D 
~Qy - -%ua a;2 (6.5.7) 

As in section 4.3.7, the concept of a displacement thickness can be introduced. This 

is the distance by which the solid boundary would have to be displaced in a frictionless flow 

to give the same flow deficit as exists in the boundary layer. The displacement thickness is 

given by the integral 

~Ox 
6x - - -""'1---==---

r (UD - U ) dZ Jo P 

(6.5.8) 

(6.5.19) is substituted into the above to yield . 

6X - %u, ~ 0.32 (6.5.9) 

which is of the same order as 6 for the zero particle velocity limit in chapter 4. Since poll 

satisfies Laplace's equation, ~Qy can be written as 

a2p D aQIIy 
~Qy - 6x a';2 - - 6x av (6.5.10) 

In sections 6.3 and 6.4 we applied the condition apII lav - 0 at the channel walls (cf. 

(6.3.10». The inclusion of the boundary layer implies that 

apD a2p D 
av - - ~Qy - - 6x a';2 (6.5.11 ) 

so that the normal flow rate is matched at the boundaries. Alternatively, we can match at V 

- :t: A/2 .. 6x to accommodate the presence of the boundary layers and apply the condition 

that apD I av - 0 at :t: A/2 .. 6x. The pressure field in region II is perturbed so that 

(6.5.12) 

Hence 
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- _ - 6 __ 0_ + 0(6 2) apO I aJP 0 I 
ay Y-±A/2 X aYJ Y-t.A!2 X 

(6.5.13) 

which, to leading order, is the same as (6.S.II). Hence, the boundary layers at the walls 

have the same effect on the region II solution as reducing the channel width by an amount 

26X in the "He Ie-Shaw" solution. 

6.5.2 The bowrdtuy layer between regions 11 and 111 

As in chapter 4, a boundary-layer analysis can be applied in a thin region surround-

ing the particle so that the tangential flow rate can be matched. The variations in the Rand 

Z directions dominate those in the tangential direction, and the momentum equation in the 

tangential direction reduces to 

asy aJY _ 12 _I ap 
aZJ + aRJ Rz aB (6.S.14) 

where R - Rz + Rand alaR » I/Rz a/aBo Let Y - yO + Y I' where yll is the tangential 

velocity in region II and is given by 

Hence 

yll _ 6Z(Z _ I) _I apo - U sin8 
R

J 
aB P 

aJYl aJY 
1 .0 azz + aRJ 

(6.5.IS) 

(6.5.16) 

The boundary conditions are: Y1 • 0 at Z • 0 and Z • I, and Y1 - Yj(Z, 8) - 6 Z(Z 

- I) I/RJ ap/aB at R • 0, where Yj(Z, 8) is the tangential velocity at the interface between 

region III and the boundary layer. A suitable Yi can be constructed as in section 4.3.7. 

Yi(Z, 8) • aZ(Z - I)(Z(Z - I) -I) + 6/JZ(Z - I) - Up sin8 (6.S.17) 

where 
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a _ ~ (2U sinS + 3~) and ~ _ _I apll I 
5 p Rs fJ8 R-R s 

(6.5.18) 

For a plar.e of infinite span, the velocity at the interface is proportional to sinS. Here, how-

ever, an infinite number of harmonics appear. The solution to (6.5.16) is obtained by separ-

ation of variables and is given by 

where 

00 

V 1 - L 82k-1 e-(2k-l)lrit sin(2k - 1)1I"Z 

k-I 

96a 
82k-1 - (2k - 1)'11"' 

The total flow change in the boundary layer is given by 

001 

dO, - fo fo V ,dZ dR 

where, on substituting (6.5.19) into the above double integral 

where 

°2n-l -

~Q, - 1920,.a 

I 
~n-l ! (2k - 1 )',,., 

k-I 

Thus, by continuity, the radial flow generated by the boundary layer is given by 

192°1 da 
~Qa----

Rs d8 

(6.5.19) 

(6.5.20) 

(6.5.21) 

(6.5.22) 

The matching condition on the pressure is the same as before. Hence (6.4.6)-(6.4.9) remain 

valid except that the definition of t, (6.4.10), changes to 

t 2k-1 _ s 
[ 

R ]2k-l 
A - 2cSx 

in order to account for the boundary layers at the channel walls. The matching condition on 

the normal flow rate, however, is changed to account for the contribution by the boundary 



layer surrounding the particle. (6.4.2) then becomes 

Q'lR - ~Oa - 2QID R at R - R2 

and by substituting (6.3.22) into (6.5.22), (6.4.11) and (6.4.12) are replaced by 

and 

00 

2R~1 - R:a(Up - 1) + C1Al - € L 1~_1 A2a-1 + 

s-l 

2R II - (_1)11-1 (2k - I) [C(211-1) A - €211-1 ~ 211-1 Q A ] 2"'211-1 211-1 L 21-1 21-1 

s-I 

- ~ e
7 

(2k _1)2 (_1)11-1 
2 [

d 211-1) A + €211-1 ~ 211-1 Q A ] 211-1 L 2a-l 2a-l 

s-I 

for k > I, and e7 - 1536/5 07' 
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(6.5.23) 

(6.5.24) 

The inclusion of this boundary layer also implies that the zero-drag condition, 

(6.4.13), has to be modified to 

where the additional contribution, Fb , 

fr 1 

Fb - #,u:adR:a J I ~~l 1- dZ sin6 d6 
-fr 0 R - 0 

is given by 

Fb • 2.pu,~. HR, + '-'A, +, & '0,.., A"., ]- 2R'u.l 
and where ell - 768/5 011' So (6.4.20) becomes 

(6.5.25) 

(6.5.26) 
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61\R,C, - t2R,1I"s, - 6R,~, - 3€{-'A, +, Zt: '0,._1 A,,_,] 

+ [~:' + R,(Sll, + :!e,)] Up - 3€,R, (6.5.27) 

As in section 4.3.7, a displacement thickness can be introduced, which is given by 

4Q, 
6 - - 1 

fo (VO(R,. I. Z) + Upsin') dZ 

Substitute (6.5.15), (6.5.17) and (6.5.21) into the above to get 

6 - 1920 ~ _ 4608 0 (I + ~ sin6 U ) 
7 /J 5 7 3 /J P 

(6.5.28) 

which is not very useful because of the complex interaction of the angular harmonics 6. A 

special case is when the particle is stationary. Then 6 - 4608/5 0 7 ~ 0.3, which is exactly 

the same value as the displacement thickness for a stationary particle between infinite plates. 

It was shown in chapter 4 that 6 decreased with increasing particle velocity, and the same 

applies here. 

Obviously this form of analysis breaks down when the boundary layer surrounding 

the particle approaches the boundary layer adjacent to either wall. This occurs when 

A 
6 + 6x - 2" - R2 

or, by substituting (6.5.9) into the above, 

a ~ 2r2 + (6 + 0.64) d (6.5.29) 

where, by definition, a is the span of the channel and d is the spacing between the two 

plates. Since the minimum value of d is the width of the particle, a > 9.5 ~m so that the 

above analysis can be applied. For channel widths less than this value, Stokes equations 

would have to be solved numerically using finite differences or finite elements. 
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6.5.3 Syslem 0/ eqUlllio"s 

As in section 6.4.3, (6.5.23), (6.5.24), (6.5.27), together with (6.4.6)-(6.4.9), form a 

linear system of equations for the Fourier coefficients of the pressure distribution in region 

II and the normal flow rate in region Ill. As before, these equations can be simplified by 

eliminating the coefficients Pn.-l and "7211-1' (6.4.21) remains the same since the matching 

condition for the pressure is still given by (6.4.2). (6.4.22) is replaced by (6.4.4) and (6.5.23): 

Rs - [ 3eT] 2 RI He lCl + (Rs(1 - He) + 2eT)Up + E I I - Rs Al - Rz + 3eT + 

,[I + ~:] I '0,.., A,.., 
sal 

(6.5.30) 

The zero-drag condition can also be simplified by substituting (6.4.4) and (6.4.8) into 

(6.5.27): 

6H,(R, + 2I,>.R,R,·'H,')C, + [~:' + R,.I(SI, • 6H,I,) + 2R,e.]up • 3.-'(2R, + e,)A, • 

3(2Rs + el) [Rs + E f. 1028_1 A28- 1 ] (6.5.31) 

s-I 

(6.4.6) and (6.4.9) imply that 

00 

( _I)k-l .,-(2k-l) A
2

L_l + (_I)k-l .,211-1 ~ 2k-l o AGe 
" a "L 28-1 28-1· 2k-l 2k-l 

sal 

and (6.4.4) and (6.5.24) that 

00 

_(-I)k-l t 2k-l (l + F2k- 1) L 2k-l~_1 A2I- 1 + (_I)k-l C(2k-l) (l - F2k-1) A 2k- 1 • 

sal 

for k > I, where 
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The above two equations can be further manipulated to yield 

00 

~ 2k-1 Q A L 2a-1 2a-1 (6.5.32) 

s-I 

and 

[(I F ) G 2 RJ H 3]C _ 2 (_I)k-1 .,-(2k-1) A 
+ 2k-1 211-1 - Rl e 211-1 " 2k-1 (6.5.33) 

which resemble (6.4.23) and (6.4.24). 

Solutions to the above equations are given in section 6.6 for a variety of channel 

widths. 

6.6 RESULTS 

Pressure distributions and particle velocities are obtained by solving the systems of 

algebraic equations derived in previous sections. Figure 6.4 shows the effect of including 

the boundary layers for various €, which is the ratio of distance between the two plates to 

channel width. The effect is more pronounced when the particle is moving very slowly and 

when the span of the channel is smaller. For example, when € - 0.3 and He - 0.0008, the 

difference is of the order of 50 %. In figure 6.5, the ratio of Up to Uoo ' the particle velo-

city for the infinite case, is plotted for various €. [t shows that the greatest increase occurs 

for slowly moving particles. The effect of having channels of finite span is less marked for 

larger gap widths. Figure 6.6 (a) shows some pressure contours in regions I, [[ and III for 

He - 0.0272 and € - 0.2. In this case Up - 0.44. The pressure variation is greatest in region 

III, which is the same as in chapter 4. Also, the pressure contours are normal to the two 

dashed lines which represent the location of the two boundary layers at the walls. The pres-
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sure contours for a larger gap width are shown in figure 6.6 (b), where He - 0.14 and Up -

1.05. Since the particle velocity is very close to the mean bulk velocity, the distance 

between contours near the channel walls is almost constant. In region I, the contours are 

perpendicular to the motion of the particle since the gap width is constant. 

6.7 CONCLUSIONS 

Red blood cells acquire a certain rigidity when they cross extremely narrow path­

ways such as those found in the bone marrow and in the spleen. The problem considered 

here is an extension of the work carried out in chapter 4, with the purpose of investigating 

blood rheology in non-circular geometries. 

One major finding is that the particle velocity can be smaller or larger than the 

mean bulk velocity, depending on the spacing and span of the plates. It was shown in 

chapter 3, that in a circular tube, the red cell velocity is always greater than the mean bulk 

velocity, no matter the size of the lubrication layer. But for non-circular geometries, it can 

be expected that the reverse of the Fahraeus effect is possible. This may be relevant to 

oxygen transport in some tissues. 

As was shown in the previous section, the inclusion of boundary layers at the chan­

nel walls and around the particle has a sizeable effect on quantities such as particle velocity 

and additional pressure drop. This analysis is an extension of Hele-Shaw theory in which 

flow past an obstacle at zero Reynolds number is modelled by potential equations which 

cannot satisfy the no-slip condition at the surface of the obstacle. 
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CHAPTER 7 

CONCLUSIONS 

A major characteristic of human red blood cells is their high degree of deformability 

which enables them to easily traverse pathways narrower than the diameter of freely sus­

pended red blood cells. But, in very narrow conduits, such as those found in the spleen, in 

the bone marrow and in very small or partially occluded capillaries, the red cell approaches 

the limits of its deformability due to the constraints of constant volume and surface area, 

and this leads to an abrupt rise in flow resistance. For example, the apparent viscosities at 

50% haematocrit in cylindrical tubes with diameters of 8, 4, 3 and 2.9 ~m are respectively 

1.4, 2.7, 3.3 and 7.7 cP for red blood cells with V - 90 ~m3 and A - 135 ~m%. These 

values can however change by large amounts at near-critical diameters since red blood cells 

can have a range of volumes and surface areas. 

In the preceding chapters, we considered the motion of normal adult erythrocytes 

through cylindrical tubes, infinite slots and finite-span slots. It is important to recognize 

that there is a wide variety of geometrical configurations and cell properties. For example, 

red blood cells are nucleated during formation in the bone marrow. There is also a wide 

variation in sphericity index. The critical radius of diabetic or neonatal erythrocytes is on 

average larger than the mean, and this can have severe implications in microperfusion. 

Most vessels have irregular geometries. Capillaries do not have exactly circular 

cross-sections. Some can be elliptical due to partial collapse, others have irregular cross-sec­

tions due to projecting endothelial nuclei. Pathways in the bone marrow and in the spleen 

tend to be pores and slots of finite length. Bifurcations even have more complex geomteries. 

Even so, we can draw some general conclusions from the cases considered here. In 
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cylindrical tubes, red blood cells travel faster than the mean bulk flow since they tend to 

travel along the axis of symmetry. In chapter 3, it was shown that in the near-critical limit, 

the ratio of particle to mean bulk velocity is very close to unity since the leak back in the 

thin cell free layer is very small. This ratio increases with increasing tube diameter, and 

approaches an upper limit of 2 when the dimensions of the particle are negligible compared 

to the tube diameter. Hence, the tube haematocrit is always less than the discharge haema­

tocrit (the Fahraeus effect). In slots, however, red cells can also travel slower than the mean 

bulk flow if there are large regions of very narrow gap. The particle velocity tends to zero 

as the gap width tends to zero. Therefore, in pathways with slot-like geometries, such as 

those found in the spleen, there is an increase in haematocrit. The difference lies in the 

fact that in slots, the fluid can easily bypass the particle, and consequently very large pres­

sures cannot be generated. The maximum pressure drop is twice the pressure drop in the 

absence of the particle, but in cylindrical tubes the entire driving pressure may be concen­

trated in regions of small gap width. 

It was also shown in chapter 3 that solutions for the isotropic tension model (the 

high-velocity limit) exist if the forces acting on an axisymmetric particle are axisymmetric. 

If that is not the case, as in chapter S, then the membrane shear resultant cannot be neg­

lected. Large membrane strains are then possible, and for the motion of a red blood cell 

between two plates, the membrane is dragged backwards relative to the direction of cell 

motion (akin to breast-stroke in swimming). The problem considered in chapter 5 is a spe­

cial case of the membrane deformation expected in non-axisymmetric geometries. In gen­

eral, the membrane shears rather easily. ao that large membrane shears may be generated at 

moderate cell velocities. 

There are also some general results which apply to both cylindrical tubes and parallel 

plates. In both cases, asymptotic analyses are used in transition regions which match regions 
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where the pressure gradients in the gap are very large to regions where the pressure is 

almost constant. These analyses show that the gap width in the lubrication layers is deter­

mined by the mechanics of the front transition region. The shape of the cell is always 

uniquely determined at the front. One interesting point is that for the parallel plates prob­

lem, the equations of in-plane equlibrium in the disk region did not have to be solved in 

order to compute the particle shape and its velocity. So, it can be speculated that if similar 

conditions occur in more complicated geometries, the gap width can be determined using 

this type of analysis, without solving the equations of membrane equilibrium over the entire 

surface of the particle. 

In the near-critical limit, the red cell behaves like a rigid body with the critical 

shape. The shape of a flexible particle, which is computed in chapter 3 using both the iso­

tropic and bending and shear resistance models, approaches the critical shape as the vessel 

diameter approaches the critical value. Rigid and flexible particle models yield very similar 

results for particle velocity. 

Another important aspect of models for particle motion through slots is the introduc­

tion of a boundary layer analysis to the classic Hele-Shaw problem which allows for the no­

slip condition to be applied at all solid boundaries. The boundary layers have the same 

effect as displacing the solid boundaries by an amount equal to the displacement thickness. 

This can have a significant effect on the particle velocity and pressure drop. 

In conclusion, we must be cautious about applying these results to in vivo situations. 

In most circumstances, compliance of vessel walls is small compared to red cell deformabil­

ity, but it may be important in near-critical cases. Also, there is some evidence that addi­

tional physicochemical effects may be present in vivo, leading to higher than expected 

apparent viscosity in vessels with larger than critical dimensions. 
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