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Fig. 22. The averaged solar cycle magnetic fields as calculated 
by Yoshimura (1976), using solar magnetograph data from 1959-1974. 

The toroidal field is on the left, and the po10idal fiel.d is on 
the right (see the discussion concerning eqs. (5.2) and (5.3) in the 
text). The contour intervals are 0.5 (0.1) Gauss with a maximum of 
6.884 (1.507) Gauss for the toroidal (poloidal) field. The heavy line 
is zero Gauss. The dotted line indicates negative polarity and the 
solid line indicates positive polarity. The ordinate of the diagram is 
the latitude which goes in a linear fashion (ignore the tic-marks) from 
-90 degrees at the bottom to +90 degrees at the top. The abscissa is 
in Carrington rotation numbers, representing the number of solar 
rotations which have elapsed (Yoshimura does a running average over 27 
rotations to obtain this diagram). The averaged poloidal field 
represents that component which is parallel to the ecliptic plane. 
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wings of the theoretically calculated butterfly diagrams as compared to 

the actual solar magnetic fields in Fig. 22. We also see a much 

steepe~ progression in latitude for the theoretical calculations 

compared to the actual magnetic fields. In fact, as noted by 

Yoshimura, the diagram for <BT(e» does not show the same progression 

in latitude as the Maunder butterfly diagram, shown in Fig. 23 for the 

same cycles (19 and 20) as the fields in Fig. 22 (being mostly cycle 

number 20). Yoshimura attributes the difference to the supposedly 

greater depth of the toroidal field which produces the sunspots of Fig. 

23 as compared to the bipolar regions which give the toroidal field of 

Fig. 22. However, varying the depth at which the toroidal field is 

sampled produces no visible change in the theoretically calculated 

butterfly diagrams (Figs. 15-17) of the dynamo model we have been 

using. 

Unless Yoshimura's diagrams are extended to cover a full 22 

year solar cycle, it is impossible to detect a dipole-type fossil 

magnetic field. However, there is a quadrupole component visible in 

the poloidal magnetic fields of Yoshimura's diagrams. The quadrupole 

component is easily visible at the high latitudes, consistent with 

observations of the polar magnetic fields. It is difficult to make a 

comparison between Yoshimura's diagrams and the theoretical diagrams, 

since the structure of the surface fields on the Sun is not very 

uniform. Nevertheless, we may notice the absence of some of the 

features predicted for the solar dynamo in the presence of a 

quadrupole-type fossil magnetic field. We saw, in Fig. 17, a shift in 
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Fig. 23. The Maunder butterfly diagram for solar cycles 19 and 20 
(from Yoshimura 1976). 

The abscissa is the time (1954 A.D. - 1974 A.D.) and the ordinate 
is the latitude from -50 degrees to +50 degrees. 
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phase and latitude of the maximum of the dynamo cycle for both the 

toroidal and poloidal magnetic fields. Such a shift is not visible for 

the toroidal magnetic fields in Fig. 22, and the interpretation of the 

poloidal fields is therefore ambiguous (at least when attempting a 

comparison with the current dynamo model of the Sun). Also, a stronger 

quadrupole component of poloidal magnetic field at the equator than is 

observed may be expected on the basis of the dynamo model (which 

produces intense surface magnetic field at the low latitudes from the 

underlying fossil magnetic field). 

Further observations and reduction of the magnetic field data 

observed on the Sun's surface are required before we can conclude that 

the quadrupole component apparent in Yoshimura's diagrams is due to a 

fossil magnetic field having quadrupole-type symmetry about the 

equator. Without further observations, it is impossible to tell 

whether or not the quadrupole component is permanent, as expected for a 

fossil field, or whether it is a temporary fluctuation which averages 

to zero over many solar cycles. In order to eliminate short term 

fluctuations, the magnetic fields should be averaged by considering 

each 22 year cycle as one realization of an ensemble of solar cycles 

(Krause and Radler 1980). Since the major limitation is the absence of 

magnetograph data extending over several solar cycles, we turn to the 

sunspot data, which is more abundant. 
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Sunspot Data 

An obvious means for detecting an asymmetry of the type 

prod.uced by a fossil field, is to use the counts of the total number of 

sunspots observed as a function of time. The search for a fossil 

magnetic field should, however, look for systematic variations in 

sunspot counts in the two hemispheres as well as systematic variations 

in the sunspot numbers from one eleven year sunspot cycle to the next 

(lumping both hemispheres together). The former type of search could 

reveal the quadrupole-type component of a possible fossil magnetic 

field, while the latter type of search could reveal the dipole-type 

component. If the sunspot counts in both hemispheres are lumped 

together, and a fossil magnetic field exists having quadrupole-type 

symmetry, then the sunspot counts will not reveal an asymmetry in the 

solar cycle due to the fossil field. 

A typical analysis of the sunspot data involves obtaining a 

Fourier spectrum of the sunspot cycle. Many modes of oscillation 

besides the 11 and 22 year cycles have been found in the spectral 

analysis of the sunspot data; an example is the 90 year cycle. A 

fossil magnetic field having dipole-type symmetry should produce a zero 

frequency component in the spectrum of the sunspot cycle. Recent 

results by Sonett (1983) may have revealed just such a zero frequency 

component. 

Other studies of the sunspot data have searched for asymmetries 

between the northern and southern hemispheres in sunspot numbers or 

activity. Although some interesting asymmetries have been observed, 
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none of the studies to date (Newton and Milsam 1955; Wolbach 1962; 

Fredga 1965) seems to have looked for or found a systematic va'dation 

of the type which may be produced by a quadrupole fossil magnetic 

field. 

The scanty results obtained so far do not establish 

conclusively that a fossil magnetic field exists, although they do seem 

to suggest that a weak fossil magnetic field may be present. Further 

reduction of the sunspot data as well as observations for more solar 

cycles would certainly be helpful in detecting the influence of a 

fossil magnetic field. 



CHAPTER 6 

IMPLICATIONS OF THE FOSSIL FIELD IN THE SUN 

In this final chapter, we shall discuss possible implications 

of a fossil magnetic field in the Sun's interior. First, let us 

consider the meaning of the symmetry about the equator of a fossil 

field. 

The Symmetry of ~ Fossil Field 

We note that, in general, a fossil magnetic field may consist 

of both even and odd symmetry components. However, if the fossil field 

is produced by an ancient dynamo in, say, the presolar nebula or during 

some formative stage of the Sun's existence [e.g., the so-called 

Hayashi phase (Hayashi 1961, 1966)], then either a quadrupole or 

dipole-type mode is expected to be excited. 

During the Hayashi phase, convection is not confined to a 

relatively thin shell as during the present epoch. For some special 

distributions of cyclonic convection and radial shear in a full sphere, 

stationary dipole or quadrupole modes may dominate for one sign or the 

other of the dynamo number (Stix 1973). It is therefore possible that 

the evenness or oddness of the fossil magnetic field will indicate 

something about the nature of the Sun's formative stage. It may also 

be possible to determine the ultimate source of the fossil magnetic 

field by a consideration of its dipole or quadrupole-type symmetry 

about the equator. For example, one possible source of the fossil 

95 
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magnetic field, besides a Hayashi phase dynamo, is the collapse of the 

magnetic field along with the rotating disk of the presolar nebula. A 

thin, differenti~lly rotating disk of plasma tends to shear only the 

radial component of the magnetic field lying in the plane of the disk. 

Assuming a neutral sheet formed in the thin disk from the poloidal 

magnetic field cannot be maintained, the differential rotation produces 

toroidal field having even symmetry about the equator. An example of a 

magnetic field in such a thin disk is the even symmetry toroidal 

magnetic field lying in the plane of the Galaxy. If a fossil magnetic 

field is formed in such a thin, differentially rotating disk and 

preserved to the present time, then dipole-type symmetry is not 

expected. 

Primordial Magnetic Fields 

Let's now consider the possible sources of a fossil magnetic 

field and try to gain an understanding as to whether such a fossil 

magnetic field may be expected to have survived to the present time or 

to have been produced in the first place. In the thin disk of the 

rotating, presolar nebula, a magnetic field can survive (without dynamo 

action) or be regenerated by a dynamo only if the atoms of the nebula 

do not all recombine to form a neutral gas. Isotopic analysis of 

meteorites shows that the short lived radioactive isotope, A126, was 

present during the meteorites' early history. Since meteorites are 

thought to be relatively untouched samples of the early solar system 

material, indicatiDns are that Al26 existed in sufficient quantity to 

maintain the conductivity of the collapsing, presolar nebula 
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(Consolmagno and Jokipii 1978). In addition to the isotopic evidence 

for a highly conducting nebula, meteorites also have a remanent 

magnetization presumably originating during the formation of the Bolar 

system. Evidence derived from the remanent magnetization suggests that 

there was indeed a magnetic field on the order of one Gauss in 

intensity which was present in the presolar nebula. Levy and Sonnet 

(1979) review the meteorite evidence for an early solar system magnetic 

field, and they discuss the various possibilities for the origin of the 

magnetizing field. Their conclusions are not inconsistent with there 

being a magnetic field regenerated by a dynamo in the presolar nebula, 

although other means for magnetizing the meteorites are certainly not 

ruled out. 

The question now becomes: Can an early solar system magnetic 

field, present in the presolar nebula, remain trapped in the Sun's 

interior and be maintained during the Hayashi phase? Since turbulent 

mixing and dissipation of magnetic fields is thought to be an important 

factor, and since the turbulent convection of the Hayashi phase lasts 

for 106 years (Hayashi 1966), we might not expect an early solar system 

magnetic field to be maintained when the turbulent conductivity of the 

large scale magnetic fields is about the same order of magnitude as in 

the solar convection zone. In addition to the effects of turbulent 

diffusion, we expect the magnetic field to break up into so-called flux 

tubes. In the Hayashi phase, the Sun is unstable to convection, and the 

magnetic flux tubes are expected to rise (due to magnetic buoyancy) at 

the local Alven speed, B/ 147TP (Parker 1979). With a gas density in the 
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Hayashi phase Sun's interior on the order of 10-1 g cm-3 , only 

insignificant field strengths, less than or on the order of 10-3 Gauss, 

can survive the 106 year lifetime of the Hayashi phase without being 

lost due to magnetic buoyancy. Regeneration of magnetic field by an 

MHD dynamo appears necessary in order to maintain a magnetic field 

during the Hayashi phase of the Sun. 

The Transition to ~ Radiative Core 

We have already suggested that a turbulently convective Hayashi 

phase may regenerate magnetic field by means of an MHD dynamo similar 

to the dynamo thought to regenerate the Earth's magnetic field. In 

that case, as long as the dynamo is operating in a regenerative mode 

with sufficiently large dynamo number, we expect a magnetic field to be 

retained. However, as the Sun moves onto the Main Sequence, its core 

reaches hydrostatic equilibrium and energy in the interior is 

transported mostly by radiation. During the transition, in which the 

dynamo must surely fail to fully regenerate the magnetic field as the 

turbulent convection dies away, does the magnetic field dissipate 

faster than the turbulence or vice versa? Since the phenomenon of 

turbulence is not well understood, no formal deductive theory exists 

which will allow us to answer the question just posed. 

In order to provide some tentative means of obtaining the 

respective rates of decay of turbulence and magnetic field (assuming no 

regeneration by the dynamo), we consider turbulence in a box in which 

the pV2 stresses of the turbulent flow are much larger than the B2/8n 
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stresses of the magnetic field at all relevant length scales. The 

magnetic field is therefore considered (at least, initially) as a 

passive contaminant and consequently, the energy of the magnetic field 

in the turbulent cascade is assumed to go from the larger scale 

magnetic fields down to the smaller scale magnetic fields where it is 

dissipated. Such assumptions must surely provide for the most rapid 

decay of the magnetic field that is possible, since an energy cascade 

toward larger scales (which is what the ~-effect is all about!), or 

equipartition of the small scale magnetic fields with the small scale 

eddies, as would be likely to occur with a large magnetic Reynold's 

number, would increase the survivability of the magnetic field during 

the transition of the Sun onto the Main Sequence. 

We begin by noting that the rate of energy loss, dE/dt, of the 

turbulent flow is proportional to the kinetic energy, V2, in the 

largest eddies, divided by the turnover time, A/V, of the largest 

eddies; A is the size of the largest eddies, which is on the order of 

the scale height in the Sun's :interior. We therefore have: 

(6.1 ) 

The solution of eq. (6.1), when the initial turbulent velocity of the 

large scale eddies at t = 0 is Vo ' is: 

(6.2) 
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Meanwhile, the large sca~e magnetic field will be dissipated by 

turbulent diffusion ~ccording to an equation of the form (for order of 

magnitude) , 

dB(t) = -nT(t)B(t)R-2 
dt 

(6.3) 

where R is the length scale of the magnetic field, on the order of 

the Sun's radius in size, and the turbulent diffusivity, nT' is given 

approximately in terms of the velocity and length scales of the large 

scale eddies as: 

nT(t) = 1/3 V(t)A (6.4) 

The large scale magnetic field, of magnitude Bo initially, therefore 

decays according to 

(6.5) 

which indicates a much smaller rate of decay for the magnetic field 

than for the turbulence since the scale height, A, is much smaller than 

the solar radius, R. Ignoring loss mechanisms unrelated to turbulent 

dissipation of magnetic field, we may expect a large scale magnetic 

field to survive as the Sun's Hayashi phase ends, even if there is no 

contribution to the magnetic field's regeneration from the cyclonic 

convection and differential rotation. A possible exception is if the 
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turbulent motiDns become subcritical for the regeneration of magnetic 

field by the dynamo, but are nevertheless still being driven as the 

Hayashi phase comes to an end. Stellar evolution calculations are 

needed in order to determine the validity of the analysis given above. 

Hayashi Phase Sun's Dynamo Number 

We shall now obtain estimates of the possible strength of the 

cyc Ionic convect ion, r, and nonuniform rO.tat ion, y, during the Sun's 

Hayashi phase, in order to determine whether or not the convection was 

capable of fully regenerating a magnetic field, and to obtain some 

estimate of the magnetic field's expected intensity. Using the models 

of the Hayashi phase calculated by Hayashi (1965), we can estimate the 

convective velocity, V, and mixing length, II, which are needed in order 

to arrive at our estimates of Y and r. Following standard mixing 

length theory, we may estimate the convective velocity by equating the 

energy flux of the convective eddies with the radiant flux of the 

proto sun, thus: 

(6.6) 

(L and R are the present luminosity and radius of the Sun, while L* and 

R* are the luminosity and radius of the protosun during its Hayashi 

phase). As the Hayashi phase nears its end, the values of the mean 

density, the luminosity and radius are: p = 0.08 g cm-3 , Log( L*/L ) = 

0.37, and R*/R ... 2.56. We therefore obtain V ... 4 X 103 cm s-l for the 

convective velocity. We obtain the mixing length by assuming it is 
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equal to the scale height kT/mg, where m = 10-24 grams is on the order 

of the average mass of the gas particles, g is the acceleration of 

gravity (set equal to the surface value), T is the temperature, and k 

is Boltzmann's constant. A typical value of the mixing length in the 

interior, where the temperature is of the order of 106 oK, is 

A = 1010cm = 10-1R*; the value at the protosun's surface is about 

108 cm = 10-3R*. 

The turbulent diffusivity is easily estimated from the values 

obtained above for the mixing length and convective velocity by using 

eq. (6.4), yielding nT = lOll cm 2 s-l at the surface and 10 13 cm 2 s-l 

in the interior, and a diffusion time of about 104 to 106 years. Such 

a diffusion time is smaller or comparable to the 106 year lifetime of 

the Hayashi phase, indicating the need for an MHD dynamo to regenerate 

magnetic field if the Sun evolved through a Hayashi phase. 

A crude estimate of the cyclonic component of the turbulent 

velocity may also be made by applying eq. (2.18). As noted in Chapter 

2, the value of r obtained from eq. (2.18) may be too large due, 

possibly, to the reaction of the magnetic field on the fluid. We also 

note that the value obtained for r depends on what value is assumed for 

the angular velocity of rotation of the Hayashi phase protosun. 

Although the Sun, prior to losing its angular momentum by, say, a solar 

wind, may have rotated about 100 times faster than its present rate, we 

shall conservatively assume that the angular velocity of rotation, Q, 

is about 10-6 s-l as is presently observed at the Sun's surface. We 

then obtain r = 10 to 103 cm s-l. 
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By assuming that the differential rotation factor, y, is on the 

order of Q, we may now estimate the dynamo number by calculating 

N = yrR3 /nT 2• The value of N so obtained, is about 104 in the 

protosun's interior, and may be as large as 106• Such a large value of 

N is more than sufficient to regenerate magnetic field, according to 

most dynamo models (e.g., Levy 1972; Stix 1973; Boyer and Levy 1981). 

A formal calcu la t ion has been made by Schus s 1er (1975) of the 

generation of magnetic field by a so-called a2-dynamo, for stars making 

the transition from the fully convective Hayashi phase to the fully 

radiative main sequence. In the a2-dynamo, differential rotation is 

neglected so that both the po10ida1 and toroidal fields are regenerated 

by r, the cyclonic convection. Schussler successfully demonstrates 

that the magnetic field does survive the transition from the Hayashi 

phase to the main sequence when there is cyclonic convection operating 

and maintaining the magnetic field against losses caused by turbulent 

diffusion. 

Schussler includes a term which represents the effect of 

magnetic stresses on the cyclonic convection, so the calculation is not 

an eigenvalue problem. The magnetic Reynolds number, rR/n, chosen by 

Schussler is 15, and is about twice as large as the magnetic Reynolds 

number, a, which is obtained for the eigenvalue calculation (marking 

the transition from damped to growing modes). For r = lOll to 

1013 cm2 s-l and R = lOll em, the formal calculations give r's of 

10 cm s-1 to 103 cm &-1, cons ist ent with the range of values we 

estimated for the Hayashi phase Sun. 
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The motivation which Schussler gives for carrying out the 

calculations is to demonstrate that magnetic field regenerated during 

the Hayashi phase of stars of spectral type A to F can be retained and 

thus seen as the apparently frozen-in magnetic field observed in these 

stars during their stay on the main sequence. He suggests that staxs 

of later spectral type, such as the Sun, which have thick outer 

convection zones, would not show the effects of a fossil magnetic 

field. With the present calculations, we have shown that this is not 

true, and such a statement (which is made throughout the literature 

from time to time) has no basis in fact and is certainly not consistent 

with predictions based on mean-field, MHD dynamo theory. Schussler, 

interestingly enough, obtains oscillating dynamo solutions when the 

convecting region is from about 0.5 to 0.3 of the star's radius. Since 

the radiative region contains virtually frozen-in magnetic field, the 

oscillating magnetic field at the surface is an oscillation about a 

non-zero mean, just as one would see if the Sun had an intense fossil 

magnetic field. Hence, a fossil magnetic field can certainly be 

obse~ed in stars of late spectral type, although this was apparently 

not recognized. It is possible that stars of late spectral type may 

produce magnetic fields which are not as intense as for the earlier 

stars of type A and Fj the angular velocity of rotation for stars of 

type A and F are usually much larger, and the turbulent velocities are 

an order of magnitude greater than for a star such as the Sun. 
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The Intensity of the Hayashi Phase Magnetic Field 

We now ask what is the intensity of the magnetic field in the 

Hayashi phase protosun. If we assume that the effect of the magnetic 

field is to produce an equilibrium between the Lorentz force and the 

Coriolis force acting on the cyclonic, turbulent eddies, we find that 

(6.7) 

which may be used to obtain 104 Gauss as the characteristic value, 

(BTBp)1/2, of the magnetic field strength. Once again, we have assumed 

that the angular velocity of rotation is on the order of the currently 

observed angular velocity at the Sun's surface. If a magnetic field as 

intense as 104 Gauss was maintained by the Hayashi phase MHD dynamo, 

then the fossil field contribution to the presently observed magnetic 

fields of the Sun, on the basis of the solar dynamo model in this work, 

may be comparable to the fields maintained by the fully regenerative, 

oscillating dynamo. 

Finally, it should be noted that the estimates obtained do not 

include all the non-linear effects which must be important in 

determining the magnetic field strengths and the mode of operation of a 

possible Hayashi phase dynamo. For example, the B2/8TI magnetic 

stresses when B = 104 Gauss, are on the order of the pV2 stresses of 

the turbulent motions, although a magnetic field intensity of 107 to 

108 Gauss is required.. before the presence of the magnetic field will 

upset the hydrostatic equilibrium of the Sun. Since a complete 
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discussion of an early Hayashi phase dynamo or some other means of 

producing a fossil field will require considerably more detailed study, 

the estimates made here should not be taken too literally, but should 

in fact be considered as a motivation driving the search for 

asymmetries in the 22-year solar cycle which may exist due to the 

presence of an underlying fossil magnetic field. 

Summary and Conclusions 

We have found that the effect of an MHD dynamo on a fossil 

magnetic field is to alter the structure of the fossil field and, in 

the case of the Sun, to decrease the fossil's intensity at the solar 

surface compared to its value beneath the convection zone. A dramatic 

change in intensity is ruled out because the dynamo with uniform shear 

and convection appears to have less effect on the fossil's intensity 

than regions of localized shear and cyclonic convection which are 

widely separated from each other. The small change in intensity means 

that a significant flux of fossil magnetic field may be visible at the 

Sun's surface. 

The fossil field at the surface of the solar dynamo model is 

nearly a pure dipole (quadrupole), with a dipole (quadrupole) moment of 

-0.35 (-0.37) times the dipole (quadrupole) moment of the underlying 

fossil field (assumed to be a pure dipole or quadrupole). The negative 

sign indicates that the moment of the surface field is reversed with 

respect to the moment of the underlying field. 
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Since a fossil magnetic field beneath the convection zone of a 

star, such as the Sun, can produce visible effects at the surface, it 

is likely that a magnetic field produced, say, in the possible Hayashi 

phase of a solar-type star may create asymmetries in the dynamo cycle. 

Detection of asymmetries in the Sun due to a possible fossil field, 

require observations over many solar cycles. Sunspot counts present 

the largest body of data for detecting long term asymmetries in the 

solar cycle, but very little has been done in regard to detecting 

fossil fields, except for the recent work by Sonett (1983) which may 

have revealed the presence of a dipole-type fossil magnetic field. 

Solar magnetograms, which provide direct information concerning the 

Sun's surface magnetic fields, reveal intense fluctuations on the order 

of 103 times larger than the mean field. Such large fluctuations make 

the interpretation of magnetogram data, in terms of the results 

predicted by dynamo theory, very difficult. Nevertheless, averaged 

magnetogram data (Yoshimura 1976) as well as observations of the polar 

magnetic fields on the Sun do provide some tantalizing hints that a 

quadrupole fossil field may be present. More observations and data 

reduction of the observations will be required in order to make 

definitive statements concerning the presence of a fossil magnetic 

field. 



APPENDIX 1 

THE IN'I'ERACTION QIt' THE 'l'URBULENT :now AND FLUCTUATING MAGNETIC FIELD 

In order to consider the term <v X ~> in more detail (see 

Chapter 1), we obtain the equation for the instantaneous, fluctuating 

part of the magnetic field, ~ by subtracting the equation for the mean 

field, <lP [eq. (1.15)], from the hydromagnetic induction equation [eq. 

0.13), also use eqs. 0.7) and (1.14)]: 

awat - nV2b = v X «,Y> X ~) + v X (y X <,!!.» + 

+ v X (y X ~ - <y X ~» (ALI) 

Equat ion (A1.l) is exact, and two approximations are usually made in 

order to obtain quantitative results: (1) the quasi-linear 

approximation and (2) the short-sudden approximation. In this 

appendix, we shall use the short-sudden approximation in the limit for 

which terms second order in y and b are negligible in order to 

calculate ~ X ~>. The calculation reveals a term proportional to <,!!.>, 

due to the cyclonic convection (or a-effect), and a term proportional 

to V X <,!!.>, which represents turbulent diffusion of the mean magnetic 

field. 

We define the magnetic Reynold's number as Rm = vAIn, where v 
. 

is the characteristic velocity of the turbulent eddies and II. (on the 

order of the size of the turbulent eddies) is the scale length of the 
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fluctuating magnetic field. In the quasi-linear approximation, neglect 

of the second order terms of eq. (A1.1) is justified when Rm « 1, 

since resistive dissipation prevents the continued growth of .Q.. 

Neglect of the second order terms may also be justified when the 

Strouhal number, defined as S = vL/A, where T is the correlation time 

of the turbulent eddies (Krause and Radler, 1980), is very small. 

However, when Rm »1, the condition S «1 does not guarantee that.Q. 

remains small as time increases, although when ~ « 1 neglect of the 

second order terms is always justified. Since Rm » 1 in most objects 

of astrophysical interest, the quasi-linear approximation may not 

produce quantitatively accurate results for such objects. 

Nevertheless, the quasi-linear approximation is adequate to demonstrate 

the basic dynamo effect in a non-trivial manner. 

The short-sudden approximation, originally used by Parker 

0955, 1970) to calculate the dynamo coefficient, r, assumes that the 

effect of turbulent motions on the magnetic field can be represented by 

sudden bursts of turbulence for a time T1 « A2/n followed by a time 

L2 »A2/n during which there is no turbulence, and the small scale 

magnetic fields, on the order of the eddy size, A, dissipate. During 

the brief time, T1' the effect of the turbulent eddies on the magnetic 

field is calculated assuming infinite electrical conductivity; in that 

case, the hydromagnetic induct ion equation may be integrated without 

dropping second order terms, yielding the Cauchy solution. On the 

other hand, when VTl/A « 1, the results of the short-sudden 

approximation reduce to the results of the quasi-linear approximation 
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in which second order terms are dropped. In fact, in the limit for 

which S goes to zero and Rm goes to infinity, neglect of the second 

order terms may be justified only for the short-sudden approximation 

and not the quasi-linear approximation (Lerche and Parker 1973). 

However, the condition S « 1 is not necessarily realistic since 

turbulent velocity fields observed in the laboratory usually obey 

VL = A, and the short-sudden approximation itself is not realistic. 

In order to demonstrate a simple approach to calculating the 

dynamo coeffic ient and turbulent diffusivity, the short-sudden 

approximation shall be applied in the limit Sand 1/Rm go to zero. A 

similar derivation, although applied in the quasi-linear approximation, 

may be found in Steenbeck and Krause (1969). 

During the brief time L1 for which the turbulent eddies are ~n 

motion, equation (Al.l) simplifies to 

a£}at = V X (~X <~» (A1.2) 

In order to integrate eq. (A1.2), we assume that .Yo is time independent 

during 1 and that <B> may be written approximately as 

<B(x» = BO + (x·V)BO -- - -- (Al.3) 

That is, <B> is independent of the time (dur ing L 1) and varies 

approximately linearly across tbe volume of mterest, V, in which the 

turbulence occurs. The derivatives in eq. (Al.3) are evaluated at the 
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center of V (which may be considered as being much larger than the 

volume of an individual eddy, but much smaller than the entire dynamo 

region). Hence, AO is a constant, and may be written 

(A1.4) 

in tensor notation, where ai = a/axi. Integrating eq. (Al.2) from 0 to 

t (t < '[1), yields 

(A1.S) 

If it is assumed that b from the previous short-sudden cycle (of length 

'[1 + '[2) has completely dissipated at the beginning of the new short 

sudden cyc Ie, then !!.<'abO) == O. 

The ith component of y X!!. is calculated from eq. (A1.S) after 

first replacing <1P with the equivalent expression in eq. (Al.3), 

yielding: 

(v X b). == t (e:. v·a·v -
- - 1 Jnp J 1 n (A1.6) 

where e:ijk is the antisymmetric Levi-Civita tensor, S~p == (aqBp)O, and 

Einstein's summation convention is applied to repeated indices. Thus 

far, we have calculated y X !!. for an isolated, turbulent eddy. Now we 

shall average over space and time coordinates and identify the result 

with the ensemb Ie average for a homogeneous and iso tropic turbu lent 
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velocity field. We also assume that the eddies of one cycle of 

duration TI + T2' are uncorre1ated with the eddies of the preceeding or 

following cycles. Define v, assumed constant, as the mean rate of 

occurrence of turbulent eddies, and V as the volume of the large region 

of space over which we average (assumed to be small compared to the 

entire dynamo region and large compared to the turbulent eddies). Then 

~ X ~> may be calculated by averaging eq. (AI.6) as follows: 

<v X ~>i = (vTi/2V) f d3x (Ejnp VjaiVn 

·(B~ + Xqe~p) , 

where the integration is carried out over the volume V. 

(A!. 7) 

Inside V, homogeneous and isotropic turbulence implies that the 

average calculated in eq. (AI.S) does not depend on the location or 

orientation of the coordinate system. In particular, isotropy requires 

that integrals of the type 

f d3x v·a·v· (no sum over i), 
1 1 J (AI.8) 

vanish since rotation about the axis, k:J. i or j, by 7T radians, leads 

to the equality 

J d3x v·a·v· 
1 1 J (A1.9 ) 
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Furthermore, integrals of the type 

(AI.IO) 

must be equal to each other under a cyc lic change of axes I, 2, and 3. 

Therefore, equations (Al.9) and (AI.IO) allow us to write 

(Al.11) 

where <y • V X v> = V-I J d3x y • V X Y is the mean helicity. 

Now, if we expand the term in equation (Al.]) which is 

proportional to the tensor S~j' we discover integrals of the form 

0
0 e: "k J d3x x V"~"Vk ~qp PJ q J01 

(AI.12) 

and 

(Al.l3) 

which vanish due to the isotropy, just like the expression in eq. 

(Al.8). The remaining terms are simplified by noting that 

(AI.14) 

where v = ( V-I J d3x vivi )1/2 is the RMS velocity of the turbulent 
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eddies, and 0jn is the usual Kronecker delta. The term proportional to 

e'? 0 = «(loB 0)0 reduces to 
~J . ~ J 

(A1.lS) 

Combining equations (Al.7) , (Al.l1), and (Al.IS) yields 

<y X h.> 
2 

= 1/2 VTl [ -1/3 <y • V X v><~> - 1/3 v2 V X <~> (A1.l6) 

where we have set <~> = lO, since the correction to ~o is assumed small 

and we are concerned only with the highest order terms. Equation 

(Al.I6) is of the same form as eq. (1.23), with 

2 
r = -1/6 VTI<Y • V X y> (Alol7) 

and 

(A1.18) 

We see that turbulence having zero mean helicity (over the volume V), 

can have no dynamo effect via the dynamo coefficient, r; the turbulence 

is only capable of dissipating the mean magnetic field at the rate 

determined by the turbulent diffusivity in eq. (AI.18). If the mean 

rate of occurrence of turbulent eddies is v = 2fTI' then eq. (AI.I8) 

reduces to the usual expression for the diffusivity of a scalar field 
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obtained from mixing length theory: 

(Al.19 ) 

Noting that V X Y = 2Q, for an eddy rotating about its axis (along 

which it is being displaced) with an angular velocity of Q, we have for 

\) = 2/Tl: 

r = -2/3 TlvQ (Al.20) 

which is also comparable to the mixing length result. 



APPENDIX 2 

THE NUMERICAL METHOD 

The solution of the dynamo equations in a spherical shell 

containing a uniform distribution of shear and cyclonic convection are 

obtained by first expanding the fields in terms of the associated 

Legendre polynomials, p~(COSS) [see eqs. (4.4,) and (4.5)]: 

00 

A~(x,S,t) = estA (x,S) = est l a (x)pl(cosS) 'f' _ n n 
x n=l 

(A2.1 ) 

and 

00 

= ~t l bn(x)pA(cosS) 
x n=l 

(A2.2) 

Also, the cyclonic convection is expanded in terms of the Pn(COSS) so 

that 

00 

rex,s) = ro I r n (x)P2n_1 (coss) 
n=l 

(A2.3) 

and the differential rotation functions yr(x,S) and ys(x,S) (x is the 

dimensionless length r/R) are then calculated using eq. (4.1) for the 

azimuthal velocity, written as 

00 

V (x,S) = Vo l Vn(x)P!(cosS) 
n=l 
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(A2.4) 



By means of the orthogonality condition 

7T 

f P~(cose)P~(cose)sinede = 2n(n + 1) 0nm 
2n + 1 

o 

the equations 

and 

7T 

= (2n + 1) J r(X,e)B~(X,e)P~(cose)sinede 
2n(n + 1) 

o 

sbn(x) - ~ bn(x) + n(n + 1)x-2bn(x) = 
dx 7T 

= (2n + 1) f [yr(x,e)er + ye(x,e)ee]' 
2n(n + 1) 

o 
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(A2.S) 

(A2.6 ) 

(A2.7) 

are obtained for the coefficients an(x) and bn(x) from the dynamo 

equations. The integrals in equations (A2.6) and (A2.7) reduce to 

integrals of the type 

7T 

Fmnp == f p~(cose)Pn(cose)p~(cose)sinede (A2.8) 

0 

and 

7T 

Hmnp == J p~(cose)pfi(co8e)p~(cose)8inede (A2.9) 

0 
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which are special cases of the so-called 'Gaunt integral [Gaunt 1929; 

see in particular, eq. (9) of that articlel. Using the general form 

which Gaunt calculated~ it is possible to integrate eqs. (A,2.8) and 

(A2.9). It is particularly important to notice that equations (A2.8) 

and (A2.9) vanish unless m, n, and p form the sides of an even 

perimeter triangle; that is, unless 1m-pi .i n.i m+n. Even perimeter 

means that the integrals vanish unless m+n+p is an even number. The 

latter requirement, together with the odd symmetry about the equator of 

rex,s) leads to the separation of the eigenmodes of the fields into 

independent modes having even and odd symmetry about the equator. The 

odd symmetry (or dipole-type) modes are modes which connect 

coefficients, an(x), having odd indices (n = 1, 3, 5, ••• ) to 

coefficients, bn(x), having even indices (n = 2, 4,6, ••• ). The even 

symmetry (or quadrupole-type) modes connect an(x) having even indices 

to bn(x) having odd indices. 

The coupled set of ordinary, differential equations for the 

an(x) and bn(x) are solved by using a second order finite differencing 

scheme for the radial direction. In the second order scheme, the 

radial coordinate, x, is divided into Ng grid points (counting the 

points at x = Xo and x = R) in the region Xo .$. x .i R (x = Xo is at the 

base of the dynamo region and x = R = 1 is at the top of the dynamo 

region). Denote the distance between grid points as h, and the value 

of a function, f(x), defined in xo .$. x.i R at the ith grid point as 

(A2.10) 
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First and second order derivatives of f(x) may be written to second 

order in h by using 

and 

df(x) I = fi+l - fi-l 
dx x=r+ih 2h 

d2f(x) I 
dx2 x=r+ih 

= fi+l - Zfi + fi-l 

h2 

(A2.11 ) 

(A2.12) 

Making use of the forms given above for the functions and their 

derivatives, the resulting equations for an(x) and bn(x) [where we 

wr ite ani for an(xo + ih) and bn i for bn(xo + ih)] are: 

san. l. - an. 1 -l.+ Zan. l. + ani+l + n(n+l) an i = 

h2 (xo + ih)Z 

00 00 

= (2n +1) L L rPi bmi Fm,2p-l,n (A2.13) 
2n(n + 1) p=l m=l 

and 

sbn . - bn . 1 -l. l.+ 2bn . l. + bni+l + n(n+l) bni = 

hZ (xo + ih)Z 

(A2.l4) 



120 

The dynamo number is labeled N in eq. (A2.14), and the boundary 

conditions must be used in order to eliminate the fictitious points at 

i = -1 and i = Ng (the fictitious points occur upon setting i = 0 or i 

== Ng - 1 in the equations above). 

For the inhomogeneous solution, which includes the effects of a 

fossil field and for which s is zero, the boundary condition at x = Xo 

is incorporated into eqs. (A2.13) and (A2.14) via the relation: 

(A2.15) 

where ml = m, the dipole moment of the fossil field, and m2 == Q, the 

quadrupole moment of the fossil field. The index, p, in eq. (A2.15) is 

chosen to be unity if a dipole fossil field is present, and p = 2 if a 

quadrupole fossil field is present. For the time dependent, 

homogeneous solution, the boundary condition at x = Xo is given by 

= an = 0 o (A2.16) 

The remaining boundary conditions (Chapter 3) are reduced to 

, (A2.l7 ) 

(A2.18) 
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and 

for either the homogeneous or inhomogeneous solution. Now we define 

the coefficient cn in the expression 

00 

= x-lest L cnx-np~(cose) 
n=l 

(A2.20) 

for the vector potential of the vacuum magnetic field. The coefficient 

cn is given in terms of anN -1 as 
g 

Equations (A2.13) and (A2.14), together with the boundary 

conditions as given above, form an infinite set of algebraic equations. 

In the limit as the grid spacing, h, goes to zero and the number of 

spherical harmonics incorporated into the equations goes to infinity, 

the solution of the algebraic equations converges exactly to the 

solution of the original equations plus boundary conditions. However, 

the question of concern to the numerical analyst is: how many spherical 

harmonics and how large a grid spacing should be chosen in order to 

obtain a solution which is a reasonably accurate approximation to the 

solution of the actual differential equations? 
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For a rapid ly varying funct ion, more harmonics and a smaller 

grid spacing is necessary. Given a mode of the dynamo which oscillates 

with a frequency s, the skin depth 

o = (n/s)1/2 (A2.22) 

is a measure of the distance over which A (x,e,t) and B (x,e,t) vary 
cp cp 

significantly. An upper limit on the size of h required to obtain a 

good approximation to the continuous equations, is found by setting 

h = o. For Ng grid points, h is written as h = (R - xo)/(Ng - 1). The 

number of grid points must therefore obey 

N > 1 + (1 - x /R)sl/2 g - 0 
(A2 .23) 

where s is in units of n/R2. For Xo = 0.7, the results of Chapter 4 

showed that s = 139 for the lowest, oscillatory dynamo mode, so that 

(A2.24) 

That is, at least 5 grid points are required in order to obtain a 

good approximation to the solution of the dynamo equations. 

The number of spherical harmonics required is determined 

similarly by noting that a fine spatial resolution in latitude requires 

the inclusion of higher harmonics. The expansion in P~(cose) is 

comparable to a Fourier expansion with larger wave numbers being 
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included in order to represent small scale contributions to Act> (x, e,t) 

and B cp (x, e,t). The number of wave crests for p~(cose) goes roughly as 

n/2, so the total number of harmonics required is 

(A2.25) 

or 

(A2.26) 

for Xo = 0.7 and s = 139. Twenty-two harmonics and 12 grid points were 

found to produce excellent convergence of the numerical results for the 

time dependent, homogeneous solution (and usually for the inhomogeneous 

solution as well). The conditions expressed in eqs. (A2.23) and 

(A2.2S) are useless for the time independent, inhomogeneous solutions 

and some care had to be taken in order to make sure the solutions were 

accurate (see below). 

Since the time dependent equations are eigenvalue equations, 

eigenvalues, s, are calculated by assuming some value for the dynamo 

number and then adjusting the dynamo number until the real part of s 

vanishes. The numerical method used for calculating eigenvalues is the 

QR algorithm applied to the matrix in Upper Hessenberg form. The 

complex eigenvectors, whose elements are the ani and bni' are 

calculated by back-substitution. When the inhomogeneous solution is to 

be calculated, the ani and bni are found by solving the algebraic 
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equations (no longer an eigenvalue problem) using Gaussian elimination 

with partial pivoting. Such a numerical method for the inhomogeneous 

solution, usually produces accurate results for 22 harmonics and 12 

g:t"id points. However, when the determinant of the matrix of 

coeffi,dents of the ani and bni vanishes, then the coefficient matrix 

is ill-conditioned. 

An ill-conditioned matrix may produce inaccurate solutions to 

the inhomogeneous problem, due to rounding off or truncation of the 

numbe:t"s stored in the computer. Such ill-conditioning might occur when 

we are near a stationary state (s = 0) of the dynamo. Since stationary 

modes are not easily excited for this kinematic dynamo model, the ill­

conditioning is not serious. The seriousness of the possible ill­

conditioning is also ameliorated by the large word size, about 12 

decimal digits, which is used by the CDC CYBER 175 on which the 

calculations were made. Further steps were taken to check the accuracy 

of the solutions by perturbing the inhomogeneous part of the equations 

to see if ill-conditioning was a factor (it was not). All the 

numerical solutions obtained for this work are therefore judged to be 

accurate. 
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