
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may

be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, cCllored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

U·M·I
University Microfilms Internallonal

A Bell & Howell Information Company
300 North Zeeb Road. Ann Arbor, M148106-1346 USA

313/761-4700 800/521-0600

Order Number 9136851

High yield and reliable sorting networks for VLSI and WSI
implementations

Liang, Sheng-Chiech, Ph.D.

The University of Arizona, 1991

U·M·I
300 N. Zeeb Rd.
Ann Arbor, MI48106

HIGH YIELD AND RELIABLE SORTING NETWORKS

FOR VLSI AND WSI IMPLEMENTATIONS

by

Sheng-Chiech Liang

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECfRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

WITH MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

199 1

THE UNIVERStTY OF ARIZONA
GRADUATE COLLEGE

As members of the Final Examination Committee, we certify that we have read

the dissertation prepared by ____ ~S~h~e~n~g_-~C~h~ie~c~h~L~i~a~n~g~ __________________ __

entitled HIGH YIELD AND RELIABLE SORTING NETWORKS FOR VLSI AND WSI

IMPLH1ENTATIONS

and recommend that it be accepted as fulfilling the dissertation requirement

Apri 1 26, 1991
Date

Apri 1 26, 1991
Date

April 26, 1991
~1fr. Ahnled Louri Date

Date

Date

Final approval and acceptance of this dissertation is contingent upon the
candidate's subnission of the final copy of the dissertation to the Graduate
College.

I hereby certify that I have read this dissertation prepared under my
direction and recommend that it be accepted as fulfilling the dissertation
requirement.

Diss~t~ r; for:ectOr
(Dr. Sy- n ~ 0)

April 26. 1991
Date

2

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an advanced
degree at The University of Arizona and is deposited in the University Library to be made
available to borrowers under the rules of the library.

Brief quotations from this dissertation are allowable without special permission, provided
that accurate acknowledgement of source is made. Requests for permission for extended quota­
tion from or reproduction of this manuscript in whole or in part may be granted by the head of
the major department or the Dean of the Graduate College when in his or her judgement the
proposed use of the material is in the interests of scholarship. In all other instances, however,
permission must be obtained from the author.

SIGNED~-~7

4

ACKNOWLEDGMENTS

The author wishes to express his deepest gratitude to his dissertation advisor, Dr. Sy-Yen

Kuo, for his support, encouragement, and insightful guidance throughout this dissertation work.

The author would also like to thank Dr. Fredrick 1. Hill and Dr. Ahmed Louri for their

advice and time, and all his colleagues in the Fault Tolerant Computing Group for their friend­

ship and intellectual stimulation. The support by the National Science Foundation under Grant

MIP-89-08648 is also gratefully acknowledged.

The author wishes to thank his parents and family whose love and support made it possi­

ble to complete this dissertation. Last but not least, he would like to express his appreciation to

his wife, Huei-Chuan, for her continual encouragement, understanding, faith, and patience

throughout his Ph.D. studies.

5

TABLE OF CONTENTS

LIST OF FIGURES ... 8

LIST OF TABLES ... 10

ABSTRACT .. 11

1. INTRODUCTION .. 13

1.1. Objective .. 13

1.2. Overview of the Fault-Tolerant Systolic Sorting Arrays .. 16

1.3. Overview of the Defect-Tolerant WSI Sorting Networks 16

1.4. Overview of the Trapezoid Sort ... 17

1.5. Overview of the Kth Smallest Value Extraction .. 18

1.6. Overview of the Modified Odd-Even Merge Procedure ... 18

2. THE FAULT-TOLERANT SYSTOLIC SORTING ARRAYS 19

2.1 Introduction 19

2.2 Array Architecture and Cell Realization ... 22

2.3. Properties of the Sorting Array.. 26

2.4. Fault Tolerance .. 34

2.5. Design of Totally Self-Checking Checkers ... 42

2.6. Evaluation and Discussion .. 47

6

2.7. Summary ... 52

3. THE DEFECT-TOLERANT WSI SORTING NETWORKS 54

3.1. Introduction ... 54

3.2. Hierarchical Modular Sorting :Networks .. 56

3.3. Optimal Decomposition 61

3.4. Easily Reconfigurable Equivalent Networks ... 68

3.5. Defect Tolerance ... 72

3.6. Yield Analysis ... 79

3.7. Summary ... 84

4. THE TRAPEZOID SORT .. 86

4.1. Introduction 86

4.2. The Trapezoid Sort ... 87

4.3. Analysis and Time Complexity.. 90

4.4. Summary .. 98

5. THE Kth SMALLEST VALUE EXTRACTION .. 99

5.1. Introduction 99

5.2. Properties of the Trapezoid Sort ... 100

5.3. Finding the Kth Smallest Element .. 109

5.4. Summary ... 121

6. THE MODIFIED ODD-EVEN MERGE PROCEDURE ... 122

6.1. Introduction 122

6.2. The Modified Odd-Even Merge .. 123

7

6.3. Analysis ... 135

6.4. Summary ... 137

7. CONCLUSIONS ... 138

7.1. Summary and Discussions .. 138

7.2. Suggested Future Research 141

APPENDIX A: NETWORK TRANSFORMATION ... 142

APPENDIX B: PERMUTATION TRANSFORMATION ... 144

REFERENCES ... 147

8

LIST OF FIGURES

2.1. Odd-even transposition sort: comparator-network representation. 23

2.2. Odd-even transposition sort: word-level structure. ... 23

2.3. Structure of a CS element and the matrix of data registers.

2.4. Structure of a compare-swap cell· and its logical functions.

25

26

2.5. Example errors. ... 28

2.6. A comparator-network representation of a faulty element at stage k. 32

2.7. On-line fault diagnosisprocedure. .. 38

2.8. Compare-swap element with bypass registers and switches. 41

2.9. System degradation scheme. ... 41

2.10. Totally self-checking data error detector. ... 43

2.11. A complete fault-tolerant sorting array with N +3 stages. 48

3.1. Hierarchical sorter. , 57

3.2. The balanced sorter. .. 60

3.3. Cost C vs. P 1 for cases 1,2,3 and 4 with p = 100 and 105. 67

3.4. Omega network and modified data manipulator. ... 69

3.5. Shuffie permutation cr and Banyan permutation r. ... 70

3.6. Balanced permutation 1: and permutation '1'. ... 71

9

3.7. Example reconfigurable structure of the odd-even transposition sorter. 72

3.8. Output functions of a switching element in the top-level. .. 73

3.9. On-line reconfigurable odd-even transposition sorter. .. 74

3.10. Example reconfiguration in the middle-level. ... 76

3.11. Butterfly interconnections with and without wrap-around wires. 78

3.12. Example yield analysis. .. 83

4.1. An example of snake-like row major indexing scheme. ... 88

4.2. The trapezoid sort algorithm. ... 89

4.3. An example output of step 2 with n=7. ... 90

4.4. The maximum number of dirty rows = 3 for Q7X1' .. 93

6.1. A compare-and-swap step in the column-sort. 124

6.2. A modified compare-and-swap step in the column-sort. .. 126

6.3. An example of the modified odd-even merge. .. 127

6.4. An example 8x8 LA' ... 128

6.5. Merge sort procedure. .. 131

6.6. Modified odd-even merge procedure. .. 133

6.7. An example of sorting 4Ninputs.. 134

10

LIST OF TABLES

2.1. Reservation table. 39

2.2. Overhead ratios. 51

3.1. The amount of redundancy for each case. 63

3.2. The cost C with p=20. .. 64

3.3. The cost C with p=100.

3.4. The cost C with p=105.

3.5. The cost C with p=200.

64

65

65

3.6. Regions covered by CRA and CRB. ... 74

5.1. AnexampJeoutputofstep2withn=7. ... 101

5.2. The maximum number of dirty rows = 3 for Q7x/. ... 104

5.3. The relationship between rp+k and k. .. 114

5.4. The distribution of zeros in each row after the second row sort. 115

11

ABSTRACT

In this dissertation, a novel approach to on-line error detection and correction for high

throughput VLSI sorting arrays is presented first. Two-level pipelining is employed in the

design which makes the proposed VLSI sorting array very efficient and suitable for real-time

applications. In addition, all the checkers are designed as totally self-checking circuits such that

the resulting sorting array is extremely reliable.

Next, in order to overcome the yield problem in WSI implementations a novel hierarchical

modular sorting network is presented. This design is based on the tradeoITs in area and time

between the odd-even transposition sort and the bitonic sort. More regularly structured

equivalent sorting networks are introduced by replacing shuffle interconnections in the original

sorting network with easily reconfigurable interconnections. Redundancy is provided at every

level of the hierarchy. Hierarchical reconfiguration is implemented by replacing the defective

cells with spare cells at the bottom level first, and goes to the next higher level. Yield analysis

is performed to demonstrate the effectiveness of our approach.

Efficient implementation of parallel sorting algorithms for mesh-connected processor

arrays are also considered in this dissertation. The trapezoid sort which has the properties of

very simple control hardware and ease of implementation for mesh-connected processor arrays

is developed. This algorithm is a combination of recursively sorting elements of two neighbor

rows into opposite directions, sorting elements in each column, and a cyclic shift after the first

row sort to rearrange the output order of each row. Its advantage is that the number of itera­

tions is improved significantly compared with the existing parallel sorting algorithms on mesh-

12

connected processor arrays.

Based on this algorithm, an efficient method is proposed to find the median value of the

input elements. The elements outside the boundary are excluded from the remaining sorting

process to reduce the time complexity and the median value can be found without completely

sorting the array. This method is then extended to finding the kth smallest element in the input

array.

Finally, if the number of clements to be sorted is larger than N, the trapezoid sort algo­

rithm can not be applied directly. Therefore, a modified odd -even merge procedure is

presented to merge m sorted input sets. The modified odd-even merge procedure can sort two

sets of data inputs concurrently by utilizing the idle processors and then merge them together.

A speedup of 0 (log2m) over the previous merge-split method is achieved.

13

CHAPTER 1.

INTRODUCTION

1.1. Objective

Many applications in real-time digital signal and image processing need a high perfor­

mance and special purpose architecture for parallel sorting on a huge amount of input data

[1,2,3]. Sorting arrays which consist of a number of identical processing elements with re!:,rular

interconnections and high concurrency factors [4], such as the odd-even transposition sort [51.

the bitonic sort [6], and the perfect shuffle sort [7], are good candidates for real-time applica­

tions. Use of these arrays has become attractive mainly due to the availability of VLSI and

WSI technologies at a reasonable cost.

Studies by Kung [8] indicate that both regular cell structures and simple interconnections

will dominate the cost in VLSI or WSI implementations. Also by considering the ratio (Aw/At)

of the wiring space to the total area as a function of the number of inputs, Horiguchi [9.10]

showed that the Aw/At ratio is approximately one for the perfect shuffle SOlt or the bitonic sort

and is a constant 0.1 for the mesh connected odd-even sort when the number of inputs N is

large.

Therefore, although both the perfect shuffle sort and the bitonic sort use less sorting cle­

ments (O(Nlog2
2N») than the odd-even transposition sort (O(N 2)) [11], the wiring complexities

of the first two sorters make them more costly to implement than the odd-even sort since. for

14

large N, the wiring space will dominate the silicon area. This is why the more regularly struc­

tured odd-even transposition sort is a better candidate for VLSI implementations than other

parallel sorting algorithms.

In addition to the area-time perfonnance, reliability, availability, and continuous operation

are important in real-time applications [12,13]. Also, the defect tolerance capability (yield), the

capability of a system to survive from defects, is also very important in manufacturing. In order

to increase the system reliability and availability, a highly reliable sorting array which can

detect multiple errors and correct a single error for on-line applications is presented. Further­

more, due to the large area and the processing technology limitation, defects seems unavoidable

in VLSI and WSI implementation. Therefore, the sorting array needs to have defect tolerance

capabilities. In this dissertation, we also present a novel hierarchical modular sorting network

(HMSN) which is based on the tradeoffs between the simple communication scheme of the

odd-even transposition sort and the fast convergent speed of the bitonic sort. Spare sorting cle­

ments are incorporated in every level of the hierarchy so that it can survive from defects in an

efficient way.

Moreover, parallel sorting algorithms for two-dimensional mesh-connected processor

arrays also have been intensively studied in [14,15,16,17] and more recently, in

[18,19,20,21,22]. These earlier efforts were adaptations of inherently parallel algorithms such

as the odd-even merge sort and the bitonic sort to the mesh-connected array in an efficient

manner such that the time complexity is D(n). However, these implementations spend most of

the time in routing data to appropriate processors, and the complicated data movements in suc­

cessive iterations result in complicated control structures and thus, offset the advantage of sim­

ple interconnections.

15

Recently, Sado and Igarashi [19], and Scherson and Sen [21] presented two similar paral­

lel sorting algorithms independently, the parallel bubble sort and the shear sort, respectively, for

two-dimensional SIMD model. These sorting algorithms are based upon a repeated application

of the bubble-sort method [5] to the rows and columns of the array to be sorted. They are

indeed two-dimensional sorting techniques and have the advantages that it is extremely simple

to implement them in any of the two-dimensional computing models and their control complex­

ity is reduced considerably due to their repetitive and nonrecursive nature. However, they have

a drawback that rlOg2nl+1 iterations are required to sort an n x n input array.

In this dissertation, we present a new two-dimensional sorting algorithm, the

trapezoid sort, which preserves the properties of simple control hardware and ease of imple-

mentation of the row-column sort, and the complexity is improved to f10g211+1 iterations

with l~. This will algorithm can be used to find the kth smallest value of the inputs without

the input sequence being completely sorted. Reduction on processing steps also means reduc­

tion in silicon area when the algorithm is implemented as a VLSI sorting network. However,

the algorithms discussed above were designed to sort N = nXn inputs only, where N is the

number of processors in the mesh array. If the number of elements to be sorted is larger than

N, they can not be applied directly. To overcome this, the method in [14,21] uses the merge­

split operation to replace the compare-interchange (or compare-and-swap in this paper) opera­

tion and 0 (mlog2m)T N time complexity is required to sort mN inputs where TN represents the

time complexity to sort N inputs. Although that method is simple, it is not efficient. A novel

modified odd -even merge method is proposed in this dissertation which can merge m sorted

sets in 0(; ·log2m)n time complexity. The other advantage of the proposed method is that it

is quite simple and regular.

16

1.2. Overview of the Fault-Tolerant Systolic Sorting Arrays

In chapter 2, a novel approach to on-line error detection and correction for high

throughput VLSI sorting arrays is presented. The error model is defined at the sorting element

level and errors generated are considered as functional errors if the outputs from a faulty sorting

element are not ordered correctly and as data errors if the output data values were modified by

the faulty sorting element. Functional errors are detected and corrected by exploiting inherent

properties as well as discovered special properties of the sorting array. Coding techniques and

an on-line fault diagnosis procedure are developed to locate data errors. All the checkers are

designed to be totally self-checking and hence the sorting array is highly reliable. Two-level

pipelining is employed in our design which makes it very efficient and suitable for real-time

application. The hardware overhead is not significant for typical array sizes and the time

penalty is only 3 clock cycles. The structure is very regular and therefore, is very attractive for

VLSI implementation.

1.3. Overview of the Defect-Tolerant WSI Sorting Networks

In order to overcome the yield problem in WSI, a novel hierarchical modular sorting net­

work is presented in chapter 3. The design is based on the tradeoffs in area and time between

the odd-even transposition sort and the bitonic sort. It uses less hardware than a single-level

odd-even transposition sorter and reduces the wire complexity problem of the bitonic sorter in

VLSI or WSI (wafer scale integration) implementation. The optimal number of levels in the

hierarchy is analyzed and sorting capability of each level is derived to minimize the hardware

complexity. More regularly structured equivalent sorting networks are introduced by replacing

17

shuffle interconnections in the original sorting network with easily reconfigurable interconnec­

tions. The hierarchical sorting network is very regular in structure after the equivalent network

transformation and hence easier to include defect tolerance capability than any existing sorting

network with the same time complexity. Redundancy is provided at every level of the hierar­

chy. Hierarchical reconfiguration is implemented by replacing the defective cells with spare

cells at the bottom level first, and goes to the next higher level to perform reconfiguration if

there is not enough redundancy at the current level. Yield analysis is performed to demonstrate

the effectiveness of our approach.

1.4. Overview of the Trapezoid Sort

A parallel sorting algorithm, the trapezoid sort, for mesh-connected processor arrays is

presented in chapter 4. Given a sequence of numbers mapped onto an n x n array, the

trapezoid sort will generate a sorted output sequence stored in the array in snake-like row

major order. This algorithm is a combination of recursively sorting clements of two neighbor

rows into opposite directions, sorting clements in each column, and a cyclic shift after the first

row sort to rearrange the output order of each row. It preserves the properties of very simple

control hardware and case of implementation, and has the advantage that the number of itera-

tions improved significantly from rlOg2nl+1 to r10g211+1 with (l2+l)/2~n«12+31+2)/2 in com­

parison with the existing parallel sorting algorithms on mesh-connected processor arrays.

18

1.5. Overview of the Kth Smallest Value Extraction

Properties of ilie trapezoid sort are derived in chapter 5. The maximum distance boun­

dary of an element in an array to be sorted after the second iteration of the trapezoid sort from

its position in the final sorted output array is determined first. An efficient method is also

developed in chapter 5 to find the median value of the input elements by exploiting the properly

that the boundary distance will be reduced by half after each successive iteration. The elements

outside the boundary are excluded from the remaining sorting process which reduces the com­

plexity and the median value can be found without completely sorting the array. This method is

then extended to find the kth smallest element in the input array.

1.6. Overview of the Modified Odd-Even Merge Procedure

The row-column sort algorithms on mesh-connected processor arrays, such as the

parallel bubble sort and the shear sort, have the properties of very simple control hardware and

ease of implementation. However, these row-column sort algorithms are based on the odd-even

transposition sort such that half of the processors are idle during each basic comparison­

interchange step. In addition, they are designed to sort N inputs only, where N is the number of

processors in the array. If the number of elements to be sorted is larger than N, the row-column

sort algorithms can not be applied directly. Therefore, a modified odd-even merge procedure is

presented in chapter 6 to sort two sets of data inputs concurrently by utilizing the idle proces­

sors and then merge them together. This procedure is further generalized to merge m sorted

input sets (m>2) where each set can be initially sorted by any algorithm. A speedup of

o (log 2m) over the previous merge-split method is achieved.

19

CHAPTER 2.

THE FAULT·TOLERANT SYSTOLIC SORTING ARRAYS

2.1 Introduction

Many applications in real-time digital signal and image processing need a high perfor­

mance and special purpose architecture for parallel sorting on a huge amount of input data.

Sorting arrays which consist of a number of identical processing elements with regular intercon­

nections and high concurrency factors [4], such as the odd-even transposition sort [5], the

bitonic sort [6], and the perfect shuffle sort [7], are good candidates for real-time applications.

Use of these arrays has become attractive mainly due to the availability of VLSI and WSI tech­

nologies at a reasonable cost. Studies by Kung [8] indicate that both regular cell structures and

simple interconnections will dominate the cost in VLSI or WSI implementations. Also by con­

sidering the ratio (Aw/At) of the wiring space to the total area as a function of the number of

inputs, Horiguchi [10] showed that the Aw/At ratio is approximately one for the perfect shuffie

sort or the bitonic sort and is a constant 0.1 for the mesh connected odd-even sort when the

number of inputs N is large. Therefore, although both the perfect shuffie sort and the bitonic

sort use less sorting elements (O(Nlog22 N)) than the odd-even transposition sort (O(N2)), the

wiring complexities of the first two sorters make them more costly to implement than the odd­

even sort since, for large N, the wiring space will dominate the silicon area. This is why the

more regularly structured odd-even transposition sort is a better candidate for VLSI implementa­

tion than other parallel sorting algorithms.

20

Reliability, availability, and continuous operation are also very important in real-time

applications. On-line error detection is the first requirement to increase the reliability. In order

to increase the system availability, off-line diagnosis after on-line error detection should be

avoided and the system should be able to automate the recovery process. In this chapter, we

present a highly reliable sorting array which can detect multiple errors and correct a single

error for on-line applications. In addition, it is highly available. As a systolic sorting array

based on the odd-even transposition sort, it has a regular structure and simple interconnection

links. Both the regularity and the simplicity are preserved by the presented fault tolerance tech­

nique so that redundancy can be included into the system easily, either to enhance the system

performance or to replace the faulty elements. Also, it can be reconfigured easily to tolerate the

faulty sorting elements located by the on-line fault diagnosis procedure and can be degraded

gracefully after redundancy is exhausted.

Recently, an algorithm-based fault-tolerant sorter was proposed in [23]. They developed

an on-line error detection method for the systolic priority queue [24] by applying the time

redundancy approach to the operation of sorting a sequence of N inputs serially. Since it is a

serial sorter which uses N/2 sorting elements and 2N clock cycles to sort N inputs, it is not suit­

able for real-time applications. Therefore, its entire structure as well as the fault tolerance tech­

niques are different from the proposed highly pipelined sorting array. Also, by comparing the

AT2 complexities of the odd-even transposition sort with the systolic priority queue, it is found

that the former is more cost effective than the latter by a factor of 2.

Extra cost incurred by bringing in fault tolerance features is minimized by exploiting the

inherent properties of the embedded sorting algorithm. Properties such as nondecreasingly or

nonincreasingly ordered output sequence is used to check the functional correctness of the sort-

21

ing array. In contrast with assuming that a faulty sorting element will transmit its inputs to the

outputs unchanged or a faulty element can be located by some external circuits and then

bypassed as in [25,26] and [27], a faulty sorting element in our error model can either pass or

swap data incorrectly. Also, we discovered an important robust property of the odd-even tran­

sposition sorting array in which a single error can be masked automatically and multiple errors

can be detected concurrently without disturbing the normal circuit operation.

In addition to checking the order of the outputs, the code-preserving property in data

manipulation is employed to check whether the output data has been modified. Errors which

violate the code-preserving property can be detected by using an appropriate coding technique.

Depending on how critical the applications are, the requirements of fault coverage as well as the

corresponding coding techniques will be different. Three example coding techniques are

evaluated and the results are shown in section 2.6.

The total overhead of the proposed approach based on our analysis is much lower than

previous fault tolerance techniques for other pipelined array processors [28,29,30], even if the

checkers in the array are designed to be totally self-checking to increase the reliability. From

the analysis in section 2.6, the overhead ratio is approximately (54 + c)/14N where c is a con­

stant determined by the data error coverage requirement as well as the adopted coding technique

for the array. For example, with the simple parity check code, c is equal to four and the over­

head ratio is less than 10% if N is greater than 42.

22

2.2 Array Architecture and Cell Realization

In order to have a high perfonnance system, the two-level pipelining technique [31] which

is frequently used in sorting arrays to achieve very high throughput [32,33] is employed in the

design here. In addition to the use of the pipelined odd-even transposition sort as the word­

level structure (section A), the systolic data flow concept [8] is used for the bit-level pipelining

(section B). In this chapter, we use the term CS element to represent a word-level compare­

swap element and the tenn cell to represent a bit-level compare-swap element. Also, without

loss of generality, we will assume that the sorted output sequence is in nonincreasing order.

A. Array Architecture

The word-level pipelines can be achieved by one of the parallel sorting algorithms such as

the odd-even transposition sort, the bitonic sort, the perfect shuffle sort, or the balanced sort.

Based on the Aw fAt ratio as discused in section 2.1, the simple and regular odd-even transposi­

tion sort is adopted. An example odd-even transposition sorter with N=5 (without loss of gen­

erality, N is assumed to be an odd number) represented by Knuth's [5] comparator-network

representation is shown in Fig. 2.1. Horizontal lines represent data paths and vertical lines

represent comparisons between data values. As shown in Fig. 2.1, the five inputs, 1, 2, 3, 4,

and 5 are nonincreasingly ordered at the outputs as 5, 4, 3, 2, and 1. The word-level implemen­

tation of the systolic sorting array based on the odd-even transposition sort is shown in Fig. 2.2

where each vertical line in Fig. 2.1 is realized by a CS element. The parallel odd-even transpo­

sition sorting array consists of a cascade of N stages with N(N-1)/2 CS elements in each stage to

sort N input data elements [5]. Each CS element in the sorting array compares two n-bit input

numbers x and y and swaps these two values if x<y. Data registers (D) in Fig. 2.2 are used as

N=5 1

2

3

4

5

--~~--~~r-~--~~~-5

__ ~~~~~~_~~~ ____ ~_4

__ ~ __ ~~ __ r-~~ __ ~~3

__ ~ __ ~~~--'-____ ~ ____ .l-_ 2

____ ~~~~ __ ~ __ ~ ______ 1

Figure 2.1. Odd-even transposition sort: comparator-network representation.

23

delay buffers so that input data sets can be synchronized by the system clock and pipelined

through stages of the sorting array.

N=5

n

p

u

t

stage 1 2 3 4 5

o
u

t

P

u

t

x--lEJ-x

D: data register

x~ max(x,y)

y ~ min(x,y)

cs: compare-swap element

Figure 2.2. Odd-even transposition sort: word-level structure.

24

B. Cell Realization

In the word-level, there are only two types of elements in the sorting array: data registers

(D) and compare-swap elements (CS). For each CS element, n bit-level comparisons are

required to compare two n-bit binary numbers. These n steps of comparisons can be imple­

mented by either a serial or a parallel method. Since the goal here is to have high throughput

systems, the systolic data flow concept is also applied in the bit-level pipelines. A matrix of

single-bit data registers (d) is cascaded before the input stage to synchronize the data flow as

shown in Fig. 2.3. (Note that this matrix of d registers is required only before the CS elemenL')

of the first stage.) These data registers are arranged as a lower right triangular matrix such that

input data bits can enter the systolic sorting array in a skewed fashion. That is, for a CS cle­

ment, when Cn has finished processing Xn and Yn the comparison results can pass to cell Cn-l

together with the two inputs xn-l and Yn-l at the same time. Therefore, cn can process the next

inputs an and bn when Cn-l is processing Xn-I and Yn-I. The n cells of each CS element are

chained together by the swap control lines r and s.

Logical operations of a cell Ci in a CS clement are described in the following: (1) Signals

Sj+1 and rj+1 from cell ci+l to cell Ci indicate whether any of the more significant bits than bit i

has been swapped or not. (2) Inputs Xj and Yi are the ith bits of the two input words x and Y to

a CS element, respectively. (3) The signal rj indicates whether (xn , ... , Xj) = (Yn' ... , Yi) or not (

rj = 0 or 1, respectively) and Sj indicates whether (xn , ... , Xj) < (Yn' ... , Yj) or not (Sj = 1 or 0,

respectively). (4) Uj and I3j are two output data bits from cell Cj with Uj ~ I3j. Therefore, we

have the bit-level cell structure and logical equations as shown in Fig. 2.4.

In the case of Sj+l = 1, it means (Yn' ... , Yj+l) > (xn , ... , Xj+l)' Both Sj and rj should then be

set to 1 and passed to cell Cj-l to indicate that x < Y and cell Cj should swap the two input bits

Pn

Xn -2

Yn-2

XI ~--­
YI ~----

Figure 2.3. Structure of a CS element and the matrix of data registers.

25

Xi and Yi. Otherwise, if Si+1 = 0 and 'i+1 = 1, (Yn' •.. , Yi+l) < (xn' ... , Xi+l) and (Si' 'i) should be

(0, 1), i.e., no swap is needed. The case in which both 'i+1 and Si+1 are zeros represents (Yn' ... ,

Yi+l) = (xn' ••. , Xi+l) and the order of X and Y will be determined by xi and Yi in the following

three cases: (1) If Xi = Yi, we have si = 'i = 0, exi = xi, and Pi = Yi. (2) If Xi < Yi, then Si =

'i = 1, exi = Yi and Pi = Xi. (3) Otherwise, Si = 0, 'i = 1, exi = Xi, and Pi = Yi·

For example, let X = (xn , ..• , X I), Y = (Yn' ... , Y I) be two inputs of a CS element in the firsL

stage. Xn and Yn are processed in cell Cn of the CS element first. Initially 'n+1 =0 and Sn+1 =0.

After the comparison of Xn and Yn in cell cn' the swap control signals Sn and 'n from Cn will be

passed to cn-I. At the next clock, Xn-I and Yn-I together with Sn and 'n are processed in Cn-I,

another input data set an and bn is processed at Cn at the same time.

26

The swap control signals S 1, r 1 from cell c 1 indicate whether the two inputs, x and y,

have been swapped (SI = 1, rl = 1) or not (SI = 0). We call sl the swap-indicator since it

alone can tell us if there is any swap operation perfonned in the corresponding stage.

2.3. Properties of the Sorting Array

In order to evaluate the fault tolerance techniques, the error model which describes the

effect of physical faults on the sorting element will be defined first in subsection A. The error

model defined here is quite general that it can cover many faults whose nature are not apparent.

Properties of the sorting array which will be exploited to introduce fault tolerance capabilities

are then derived in subsection B.

A. Error Model

The error model is defined at the CS element level. A CS element which contains physi-

cal faults can generate errors such as swapping its inputs incorrectly, modifying the data values,

or both, and can be classified as a functional error, a data error, or a hybrid error, respectively.

Xi (X.
I

Yi ~i A. = s· . y. + s· . X· 1-'1 I I I I

ri Si (Xi = Si • Xi + Si . Yi

Figure 2.4. Structure of a compare-swap cell and its logical functions.

27

For example, stuck-at faults on the two swap control lines can cause functional errors and

stuck-at faults on the communication links can cause data errors. Effect of faults on links

between stages i and i + 1 is lumped into stage i + 1 such that errors in communication links are

also representable in this word-level error model. Faults in communication links are less com­

mon [34] but more severe since, in a sorting array, a faulty communication link will cause the

entire output data useless unless a reconfiguration process followed by a recovery process is

applied.

Example errors are shown in Fig. 2.5 where x and y represent four-bit numbers. The

example in Fig. 2.5(a) shows that the element with faulty control lines performs an incorrecl

swap and thus represents a functional error. An example data error is shown in Fig. 2.5(b)

which indicates that the value y has been modified. A hybrid error is shown in Fig. 2.5(c). A

CS element with a hybrid error will generate both incorrect order and data values at the OUlpUlS

and is regarded as having multiple errors.

B. Properties

The first property is that the systolic sorting array based on the odd-even transposilion sort

with N stages and (N-l)/2 elements in each stage is a valid sorting array and a random inpul

sequence will be correctly ordered at the outputs [35]. The second property is that the sorting

array is a code-preserving sorter. This is due to the fact that the sorting array consisls of CS

elements and data registers only, no logical or arithmetic operation which can modify daLa

values is performed during normal circuit operations. Therefore, the order of input sequence

may be modified at the outputs but the coded input values should be preserved.

These two properties inherently exist in all sorting arrays and any sorter can be examined

functionally according to these two properties. In addition to these two common properties, we

x=l111

y=OOOO

's Ss

'1 S 1

(a) A functional error.

's Ss

x=l1l1

y=OOOO p(

'1 S 1

1111=x

0100;t:y

(b) A data error.

Figure 2.5. Example errors.

's Ss

x=l1l1

y=OOOO p(

'1 S 1

28

0111;t:x

lOOO;t:y

(c) A hybrid error.

derive a special property for functional error checking which can be applied to all pipelined

sorting algorithms and a robust property for the odd-even transposition sort only, in which any

single functional error can be recovered automatically. Based on these two special properties,

the sorting array can be designed with high reliability and low overhead.

It should be noted that as was discussed in subsection A, it is possible for a CS element to

swap its inputs incorrectly such that the entire output sequence from a sorting array is not

nonincreasingly ordered. From the comparator-network representation of the odd-even transpo-

sition sort (Fig. 2.1), we can see that two neighbor stages in the odd-even transposition sorting

array completely compare all pairs of adjacent inputs in two clock cycles. Therefore, if two

additional neighbor stages which include an odd-numbered stage and an even-numbered stage

are added after the last stage of any sorting array, they can be used as a checker to check

whether the outputs from the sorting array are ordered or not. If the output sequence is

correctly ordered, no swap operation will be executed in any CS element of these two additional

stages, otherwise, some of these CS elements will perform swap operations and it represents

that the output sequence from the sorting array is not correctly ordered. We call these two

29

stages the Nonincreasing-Order-Checker (NOC). and the detailed proof will be presented in

Theorem 2.1.

Let V 1 represent the input vector of N values to the sorting array (i.e.. the input of the

first stage) and Vh represent the input vector of the hth stage. Vh[i] represent the value located

at the ith input line of stage h.

THEOREM 2.1: The nonincreasing-order-checker (NO C) can detennine whether the out­

put sequence from the sorting array is correctly ordered or not.

PROOF: The outputs of the sorting array at the Nth stage will be nonincreasingly ordered

such that

VN+1 [1]~VN+l [2]~VN+l [3]~"'~VN+l [N)

if there is no faulty CS element in the array. The CS elements in stages N+l and N+2 of the

NOC will then compare VN+l[i) to VN+1[i+l). i=1 to N-l. and should not perfonn any swap

operation. If the output from the NOC which is the ~Ring of the swap -indicators in these two

stages is set to 1. it means that at least one of the CS elements of the NOC has made a swap

operation and therefore. the output sequence from stage N is not correctly ordered.
o

The second property is the robust property of the odd-even transposition sort. This robust

property is very important in on-line real-time applications. For on-line applications. the proba­

bility of a single error is much higher than multiple errors. If a single error can be recovered

automatically without interrupting the entire system. the system availability will be increased

significantly. Before we prove this property. two variables ex(i.h) and bp(i.h) are introduced

first in Definition 2.1 to represent the number of exchanges and bypasses executed. respectively.

if we compare Vh[i) with VhU). for all j>i.

30

N-i
DEFINITION 2.1: Let ex(i,h) = LC(Vh[i]:Vh[i+jD where c(Vh[i]:Vh[i+j])=l if

j=1

N-i
Vh[i]<Vh[i+j], and c(Vh[i]:Vh[i+j])=O, otherwise. Similarly, let bp(i,h)= Lc(Vh[i]:Vh [i+j])

j=1

o

N-l
LEMMA 2.1: If L ex(i,h)=O, then the input sequence to stage h is in nonincreasing order

i=1

after being processed by stages 1,2, ... , h-1.

N-l
PROOF: Since ex(i,h)7Z.0, L ex(i,h)=O means that ex(i,h)=O for all i=1 to N -1. There­

i=1

fore, Vh[l] 7Z. Vh[i] (for 1 <i:5N) since ex(1,h)=O, and Vh[2] 7Z. Vh[i] (for 2<i<5N) since

ex(2,h)=O, and so on .• Vh[N-l] 7Z. Vh[N] since ex(N-l,h)=O. That is,

o

N-l N-I [NJ N(N-l)
LEMMA 2.2: ex(i.h)+bp(i.h)=N-i and ~ ex(i,h)+ ~ bp(i,h)= 2 2

1=1 1=1

PROOF: This lemma can be proved by assuming that a bubble sort is applied to the input

vector of stage h. Thus, the values of ex(i,h) and bp(i,h) can be viewed as the number of

exchanges and bypasses, respectively, required to move the value at line i to its final position.

Hence, ex(i,h)+bp(i,h)=N-i and the total number of operations required by the bubble sort to

N-I N-I N-I [NJ N(N-I)
sort the corresponding input vector is equal to L N -i= L ex(i,h)+ L bp(i,h)= 2 2

;=1 ;=1 ;=1
o

In the following analysis, we will assume that a functional error is generated by the CS element

in stage k (k<5N) which compares two inputs on lines x and x+l(see Fig. 2.6).

31

LEMMA 2.3: For i"#x, if Vk[i)<V,Ji+l) then ex(i,k+I)=ex(i,k)-1 else

ex(i,k)=ex(i,k+I). For i=x, if Vk[x]~Vk[x+l) then e.x(x,k+I)=ex(x,k)+1 else

ex(x,k)=ex(x,k+I).

N~ N~

PROOF: For i"#x, e.x(i,k) = Lc(Vk[i):Vk[i+j)) and e.x(i,k+l) = LC(Vk+1[i):Vk+1[i+j)).
j=l j=l

From these two functions we can see that the difference between the results of ex(i,k) and

ex(i,k+l) will depend on the values of Vk[i], Vk[i+I) and the operation of the CS element

between the two lines i and i+1. Other CS elements in stage k will not affect the relationship

between ex(i,k) and ex(i,k+I). If Vk[i)<Vk[i+l) and there is a CS element between lines i and

HI then this CS element will perfonn an exchange operation on the two input values at the out-

puts. So we have Vk+1[i](=Vk[i+l]) > Vk+l[i+I)(=Vk[i)), i.e., ex(i,k+I)=ex(i,k)-1. Otherwise,

ex(i,k)=ex(i,k+I), for kgy.

For i=x, as the analysis in the above, the difference between ex(x,k) and ex(x,k+l)

depends on the values of Vk[x), Vk[x+l) and the operation of the CS element between the two

lines x and x+ 1. According to the outputs of the faulty element, this functional error can be

classified as either incorrect swapping or incorrect bypassing and the corresponding relationship

between ex(x,k) and ex(x,k+l) will be ex(x,k)+l=ex(x,k+l) for making an incorrect swapping

or ex(x,k)=ex(x,k+l) for making an incorrect bypassing, respectively.
o

From the analysis of Lemma 2.3, we know that the number of exchanges required to move

the value at line i of stage k to its final position is not affected by other CS clements that do not

compare the two values Vk[i) and Vk[i+I). That is the faulty CS element in stage k will not

increase the number of exchanges required to move the value at line i to its final position unless

i=x.

32

Vk- 1 [3] V 3 Vk+l [3]

Vk-l [x-I]

rx+lJ

x+21

stage k-l k k+l

Figure 2.6. A comparator-network representation of a faulty clement at stage k.

THEOREM 2.2: The systolic sorting array for N inputs based on the odd-even transposi-

tion sort with N +2 stages can recover from a single functional error in the first N stages

automatically.

PROOF: Depending on the number of exchanges perfonned by the faull-free CS elements in stage

k and the results derived in Lemma 2.3, we have the following two cases:

N-l N-l
(1) L exU,k)+I= L exU,k+I), that is, all the CS elements in stage k perform bypass

i=l i=l

operations except the faulty one which generates an incorrect swap. According to the

configuration of the odd-even transposition sort (as shown in Fig. 2.6), we have

ments in stages k+ 1 and k+2 will not perform any swap operation except the one that compares

Vk+2[X] and Vk+2[x+l] and it corrects the result generated by the faulty element at stage k.

Therefore,
N-l
Lex(i,h)=O
i=l

for

33

h>k+2 since

k+3 has been sorted and it will not change the order any further more in the sorting array from

stages k+3 through N +2.

N-l N-l
(2) L ex(i,k)~ L ex(i,k+l), that is, at least one CS element in stage k executes a swap

i=l i=l

operation in addition to the faulty one. Let eXb(i,h) and ex/i,h) be equivalent to ex(i,h) and

bpb(i,h) and bp/i,h) be equivalent to bp(i,h) except that the subscript "b" means that the faulty

stage k is assumed bypassed and "!' means that the faulty stage is assumed not bypassed. In

the following analysis, we will complete the proof by first showing that the number of

exchanges required for the faulty stage k is bypassed will be equal to 0 at the input of stage

N+3 (i.e., eXb(i,N+3)=O) and then showing that eXb(i,h)~ex/i,h) for h>k so that we also have

ex/i,N +3)=0.

If stage k is bypassed, the function of stage k-l will be duplicated by stage k+l so that

stage k+l can be viewed as bypassed. Thus, the normal execution of stage k is performed by

stage k+2 and the normal execution of stage k+l is performed by stage k+3, ... , and the normal

execution of N is performed by stage N +2. So the output sequence from stage N +2 is sorted.

N-l N-l N-l
From Lemma 2.1, we have L eXb(i,N+3)=O. By comparing L eXb(i,h) with L eX/i,h) for

i=l i=l i=l

N-l N-l
kgzgy +3, we can show that L eXb(i,h)~ L ex/i,h). The reason is described in the following:

i=l i=1

N-l N-I (N] N(N-l)
Due to the result from Lemma 2.2, we have L ex(i,h)+ L bp(i,h)= 2 . Since the

i=l i=l 2

input vector Vk for assuming faulty stage k is either bypassed or not is the same. So that

N-I N-l
L bp/i,k)= L bpb(i,k). Because the input vector Vk are processed by more functionally
i=l i=l

34

normal CS elements before arriving stage h (h>k) in the case of faulty stage k is not bypassed

N-l N-l
than in the case of stage k is bypassed, therefore, we have L bpf..i,h)~ L bPb(i,h) and

i=l i=l

N-l N-l N-l N-l N-l
Lexb(i,h)~Lex.t<i,h) forh~k. Since Lexb(i,N+3)?Lex.t<i,N+3) and Lexb(i,N+3)=O, we
i=l i=l i=l i=l i=l

N-l
have L ex.t<i,N +3)=0. Again from Lemma 2.1, we know that the outputs of stage N +2 have

i=l

been sorted and therefore, the single functional error is recovered by the two extra stages.
o

2.4. Fault Tolerance

Fault tolerance techniques such as recomputing in different stages or clements

[36,28,37,38], and recomputing with shifted operands [30] can detect errors in pipelined array

processors, but the requirement of 100% time overhead is not tolerable in real-time applications.

Therefore, we adopt the algorithm-based approach [39,40,41] to design a fault tolerant systolic

sorting array with the capabilities of concurrent error detection and correction and minimize the

overhead by using the properties we derived in the last section.

In subsection A, by checking the two general invariant properties, the sorting array has the

capability of concurrent error detection. By exploiting the special property we derived in

Theorem 2.2, the sorting array can correct a single functional error during the normal operation.

It is difficult to correct data errors in a sorting array during the normal operation. Even if the

faulty bits can be detected and corrected by some coding techniques [42,43,44] such as the

Hamming code and the Berger code, [45] the output sequence is no longer correctly ordered.

Therefore, with the assumption that the hardware used for off-line diagnosis and yield enhance-

ment such as the multiplexers and the bypass registers in each CS element arc fault-free, we will

35

present a fast on-line fault diagnosis procedure in subsection B to locate the faulty sorting cle­

ments. This assumption is appropriate because those additional circuits are usually included for

the purpose of off-line testing and reconfiguration [31] in the manufacturing phase and they are

fault free before operation and not activated during the normal on-line operation.

For mission-critical applications, the restart time should also be minimized and therefore,

an efficient on-line reconfiguration procedure is presented in subsection C. The presented sort­

ing array can also be degraded gracefully. As will be discussed in subsection C, it can be

degraded to sort less input data and tolerate more faulty elements if it runs out of redundancy.

A. Concurrent Error Detection and Correction

As proved in Theorem 2.1, whether the output sequence is in nonincreasing order or not

can be detected by the NOC. Error correction for a single functional error is done automatically

as shown in Theorem 2.2. Therefore, the two stages added to a sorting array can be either a

checker or a single error corrector. These two stages are sufficient for a single error. But for

multiple errors, two more stages are required to detect other errors after the first error has been

corrected by the first two added stages.

The problem of who will check the checkers is very important in mission critical applica­

tions. The two additional stages used to recover a single error in the array will not be able to

recover errors in themselves. The errors in the NOC itself will generate a useless result if the

NOC does not have a self-checking capability to check its own outputs. Therefore, from

Theorems 2.1 and 2.2, the sorting array for N inputs can be implemented with N +4 stages for

error detection and correction. The first N stages are for normal sorting functions. Stages N +3

and N +4 are used as the NOC and will be designed to be totally self -checking (TSC) [46].

(The details on implementing a TSC checker will be discussed in section 2.5). Stages N + 1 and

36

N +2 which are used to correct a single functional error do not need to be TSC circuits since

their outputs are checked by stages N +3 and N +4 (NOC). However, in the following theorem,

we will show that stage N +4 can be omitted from the sorting array if stage N +2 is implemented

by TSC circuits.

THEOREM 2.3: The systolic sorting array with a total of three additional stages, stages

N+l, N+2 and N+3, where stages N+2 and N+3 are implemented by TSC circuits can tolerate

one incorrect swap operation and check whether the output sequence is nonincreasingly ordered

or not.

PROOF: From the properties derived in Theorems 2.1 and 2.2, a systolic sorting array with a tot<11

of four additional stages has the capability to tolerate one incorrect swap operation and to check whether

the output sequence is ordered or noL In the following analysis. we will prove that if stages N +2 and

N+3 are implemented with TSC circuits. the stages N+l and N+2 can be used to correct a single func­

tional error and stage N +3 itself can be used to detect multiple functional errors in the sorting array.

According to the properties of TSC circuits [46], the checkers implemented as TSC circuit

are code disjoint, fault secure, and self-testing. If stage N+2, which compares VN+2[l] and

VN+2[2], VN+2[3] and VN+2[4], ... , VN+2[N-2] and VN+2[N-l], is implemented as TSC circuits.

we should have VN+3[l] ~ VN+3[2], VN+3[N-2] ~ VN+3[N-l] at the output of stage N+2

due to the fault secure property, otherwise, errors in this stage will be detected by the stage

itself. Therefore, if the output sequence is nonincreasingly ordered at the output of stage N +2.

then stage N+3 which takes this sequence as input and compares VN+3[2] and VN+3 [3] •

VN+3[N-l] and VN+3[N], should not do any swap operation, otherwise, the output sequence is

not ordered. This shows that stage N +4 can be omitted.
o

37

In addition to checking the correctness of the output order, we can check whether the

input data values are preserved during the nonnal operation or not by using appropriate coding

techniques. The choice of a data error detection method is very flexible depending on the pro­

perties of the sorting array, the type of errors to be detected, and the fault coverage requirement.

Arithmetic codes such as residue code[47] have good fault coverage for all kinds of errors, but

they require large devices. Coding techniques for error detection in communication lines such

as Berger code and modified Berger code [48] require less area overhead but they are efficient in

detecting unidirectional errors only. Fault coverages and overhead analysis for different options

in coding techniques will be discussed in section 2.6.

B. On-Line Fault Diagnosis

We have proved (in Theorem 2.2) that whether the fault-free CS elements in the faulty

stage k are bypassed or not, two extra stages are required any way to mask the effect of a faulty

CS element in the faulty stage k (k'5.N), i.e., the fault-free CS element in the faulty stage are use­

less. Therefore, instead of locating individual faulty elements, the on-line fault diagnosis pro­

cedure only needs to identify the location of the entire faulty stage and this makes our

reconfiguration procedure simpler.

The diagnosis procedure is described in Fig. 2.7. The input set I which generates the data

error is reapplied repeaUy to diagnose the faulty stage. A reservation table which shows an

example diagnosis for a sorting array with N = 5 and three extra stages is in Table 2.1 where

DED represents a data error detector. A marked entry at the (n, m)th position of the table indi­

cates that the stage K = n will be activated m time units later after the initiation of the fault­

diagnosis procedure. Empty spaces in the table represent idle stages that perform only bypass

operation.

Procedure On_Line _Fault_Diagnosis;
begin

roll back input data I;
/* I is the inputs which generate the data error */
k= 1;
/* k is used to control which stages should be bypassed */
for t: = 1 to N +3 do begin
/* t represents the clock sequence */

if t is odd then k = k+l;
input I and bypass stages k to N +3;

end;
for t:= N +4 to 2(N+3) do begin

end;

if data error detector is set at t
then stage t - (N +3) is faulty;

end. /* all stages process data nonnally except the stages
specified to be bypassed */

Figure 2.7. On-line fault diagnosis procedure.

38

At t = 1, the input set I is applied and processed at stage 1 (we call it III to represent that

it is reapplied into the sorting array at t = 1 and has been processed by stage 1) and will pass

through all the other stages without being processed. The bypassing capability of a CS element

and a stage will be discussed in the next section. At t = 2, the same input set I is applied again

to stage 1 (we call it 12t> and III will not be processed until t = 9. That is, III bypasses stages

2 to 8 and is then checked by DED. At t = 3, the same input set I is applied again to stage 1

(we call it / 31), and at the same time 121 enters stage 2 (we call it 122). After this, 122 will not

be processed until it is checked by DED at t = 10. Thus, for t=1, 2, ... , N+3, these reapplied

inputs are processed at stage 1, stages 1 through 2, ... , stages 1 through N+3, respectively, such

that the data set I which generates incorrect data at the outputs due to a faulty CS element in

stage m will set the data error indicator at time t = N+3+m during the on-line fault diagnosis.

39

This faulty stage m will then be bypassed by the on-line reconfiguration process (as will be dis-

cussed in subsection C) to exclude the faulty element from normal operation before the sorting

array can get back into normal operation.

Therefore, instead of a time consuming off-line diagnosis and reconfiguration, we can

restore the array back into operation with a time delay of 2(N +3) clocks (we assume that this

sorting array is used as a special chip attached to a large system and this system has buffers

large enough to store N +3 input data sets). The reconfigured sorting alTay with one faulty stage

bypassed can no longer correct a single functional error but can still detect multiple functional

errors. This procedure can be generalized to any sorting array with more than three extra stages

by simply increasing the values of the loop control variables with appropriate constants.

Table 2.1. Reservation table.

K

t 1 2 3 4 5 6 7 8 DED

1 111

2 121
3 131 122

4 141 132

5 151 142 133

6 161 152 143

7 171 162 153 144
8 lSI In 163 154
9 IS2 173 164 155 111

10 IS3 17 165 122
11 IS4 175 166 133
12 Iss 176 144
13 IS6 177 155
14 187 166

15 Iss 177

16 188

40

Although this on-line fault diagnosis procedure is designed to locate the faulty stage

which generates data errors, by adding some extra hardware this procedure can be adapted to

locate the faulty element which generates either a functional error or a data error. Since each

data word contains the check bits, if we can access these check bits we can identify the faulty

sorting element in stage m when a data error is detected at t=(N +3)+m. To locate the faulty ele­

ments generating a functional error, both swap-indicators of stage N+2 and stage N+3 should

be checked. These two stages are activated and bypassed alternately so that inputs at t=1, 3, ... ,

N are checked by stage N+2 and inputs at t=2, 4, ... , N+l are checked by stage N+3 respec­

tively. If some of the sorting clements in stage m are faulty, the corresponding sorting elements

in stage N+2 (m is odd) or N+3 (m is even) will set the swap-indicators at time t=(N+3)+m.

C. On-Line Reconfiguration and Performance Degradation

In order to achieve fast on-line reconfiguration, bypass registers (8) and multiplexers

(mux) (see Fig. 2.8) which are usually added to a processing element for manufacturing

reconfiguration [31] are utilized in our on-line reconfiguration. The multiplexer can be enabled

by two control lines, row bypass (r) or column bypass (c). In the normal operation, (r, c) is

reset as (0, 0) and outputs from the CS elements are selected. If a CS element is faulty, it is

bypassed by setting either r or c to 1. In order to reduce the cost of bypass control circuitry,

only the word-level control scheme is considered as shown in Fig. 2.9 where a CS element is

bypassed when either the corresponding bit in the row bypass control register or the column

bypass control register is set to 1. All bypass control lines of cells in the same CS element are

set or reset together. Each bit of the row bypass control register controls all CS elements in the

same row and each bit of the column bypass control register controls all CS elements in the

same column (stage). The entire sorting array can also be degraded to sort N-l, N-2 or less

x

y

max(x,y)

r~-+--- row
~~+--- col

min(x,y)

Figure 2.8. Compare-swap element with bypass registers and switches.

41

inputs as shown in Fig. 2.9. Two dotted lines in row 4 and stage 5 of Fig. 2.9 means that CS

elements are bypassed in the corresponding row and column and the sorting array can then be

used to sort N -1 inputs.

N=5

-D a
0

n u a
p t

P a u
u

t

cia a a a 1 I
Figure 2.9. System degradation scheme.

42

2.5. Design of Totally Self·Checking Checkers

We have designed a data error detector and an NOC to detect data errors and functional

errors, respectively, in the last section. It is always desirable to design checkers which can

detect errors in the checker itself as well as in its inputs. This leads us to design checkers

which are totally self-checking (TSC). The concept of a totally self-checking checker has been

introduced in [49] as a circuit which is fault secure, self-testing, and code disjoint [46].

A. Design of a Totally Self-Checking Data Error Detector

A general structure of the totally self-checking data error detector for the systolic sorting

array is shown in Fig. 2.10. Check bits from the check symbol generator (CSG) are generated

based on the coding technique used. They are attached to the corresponding data (infonnation)

and propagated through the array but are not processed by the systolic sorting array before

arriving the two-rail checker (TRC) (TRC is a two-level AND-OR circuit as in [46] and will be

described latter). At outputs, these input check symbols are compared with the outputs from the

complement check symbol generator (CSG is a combination of CSG which generates check bits

for the received data and an inverter at the output of each check bit) through a tree of two-rail

checkers. As discussed in the previous section that any input data should not be modified by

the systolic sorting array, so the check symbols generated by the CSG should be complementary

to the check symbols generated by the CSG if both the checker and the sorting array are fault­

free.

In the case that only one check bit is generated for each codeword (for example, by using

the single parity code to detect data error), since N inputs will be processed in parallcl, N 1-

out-of-2 code outputs «01) or (10) for code word outputs and (00) or (11) for noncode word

Information
&

43

Data Error Detector r---------------------------, .---__ --.1

Systolic

Sorting

Array

1
1
1
1
1

: Information
Symbol

Check

1

Check
Symbol

Complement
Check S mbo

Totally Self-Checking
Two-Rail Checker

1 Data Error Indicator

Informati n

~---------------------------

Figure 2.10. Totally self-checking data error detector.

outputs) will be generated in parallel during normal operations. Therefore, a tree of two-rail

checkers which maps N input pairs into one output pair can be used to combine these inform a-

tion together and generate a single output (10) or (01) in the normal operation and (00) or (11)

as an error message. In order to have a high fault coverage, usually more than one check bit of

each data will be generated by the CSG and CSG (for example, by using either the Berger code,

the modified berger code, or the low-cost code) and therefore, an intermediate-level two-rail

checker is required for each code word to map the outputs of check symbols and complement

check symbols into a single output pair. Sometimes, the combination of inverters of the CSG

and the intermediate-level two-rail checkers are called an equality checker [46] because it can

check whether the input check symbols are the same as the output check symbols or not.

44

Design of a TSC checker for single bit parity code is quite simple. Let x = (xn, •.. , Xl) be

the input data and the code word output from the odd parity generator is (xn , ••• , X I, X 0).

Divide the set of variables into two groups, (xn , Xn-2, ..• , Xl) and (Xn-l, Xn-3, ... , xo), and con­

nect variables of each group to the inputs of the parity checker. During the normal operation,

the number of of D's in the former group is odd and that in the latter is even, or vice versa.

Therefore, for a fault-free output data the outputs of the two parity checker will be either (10) or

(01) but never (00) and (11). Verification of the self-checking properties for this checker was

given in [49].

Designs of a totally self-checking checker for the modified Berger code and a self­

checking checker for the Berger code were presented in [48] and [50] respectively. To avoid

the problem of two legal representations of zero during the calculation of residues, either special

definitions are required for the modulo 2m_l adder in the check symbol generator [51] (where

2m-1 is the check base of the residue code) or a code translator is added between the equality

checkers and the two-rail checkers [52] to design an efficient TSC checker for the low-cost code.

It has been proved that the two-rail checker is a totally self-checking checker [46]. The

combination of the CSG and the CSG can be a totally self-checking checker for different coding

techniques such as for the simple parity code, [49] the modified Berger code, [48] the Berger

code, [50] and the low-cost code [51,52]. Since the output pair from the CSG and CSG can

generate all 0, 1 sequences needed to test the two-rail checker tree, the combination of these two

circuits preserves properties of TSC [46].

45

B. Design of a Totally Self-Checking Order Checker

To design a TSC CS element, the concept of duplication with comparison is used to gen­

erate m-variable (m= N ;1) two-rail code (or l-out-of code). Every Boolean function f(x) has a

corresponding dual function fd(x) such that fd(x)=1 (x). If we apply x to the function f and x

to the function fd' the resulting output should be complementary to each other and can be used

as inputs to a TSC two-rail checker. The dual of a Boolean function is found by replacing AND

operations with OR operations, OR operations with AND operations, 1 's with D's and D's with

1 's [53]. As described in section 2.2, all the cell elements are simple combinational circuits.

Hence it is possible to duplicate all the cells in the last two stages with complementary circui­

try. This can be further simplified since outputs Xj and Yj are checked by the data error detector.

Therefore, only the output information Sj and rj which indicate whether the cell Cj performs

swap or not should be duplicated in order to design the TSC CS elements. These CS clements

which are implemented according to the above method of designing TSC circuit will generate

paired swap-indicators in the form of the 1-out-of-2 code. That is, if a CS element has a func­

tional error, its output pair (SI,SI) will be either (00) or (11) and will be (01) or (10) if it is

fault-free.

The stage N +2 which is used to correct a functional error should be designed as TSC

checkers as proved in Theorem 2.3. All output pairs of (s I' S I) from word-level TSC CS cle­

ments in this stage will be either (01) if there is no swap operation or (10) if there is any swap

operation performed during normal operations and (00) or (11) if there is an error in a CS ele­

ment. Since these 0,1 sequences can completely test the two-rail checker (TRC) tree which arc

used to map N output pairs to form a single output pair, the combination of TSC CS elements

with TSC two-rail checker constitutes a TSC checker. The output pair from the two-rail checker

46

indicates whether there are functional errors (output pair is (11) or (00» in this stage or not

(output pair is (01) or (10».

In addition to stage N +2, CS elements in stage N +3 are also designed as TSC circuits to

generate m-variable two-rail code such that if there is no functional error in this stage, then the

paired output (s 1 ,s 1) of each CS element is either (01) or (10). In addition, if the input

sequence to this stage has been ordered correctly, then the swap-indicators of all CS elements

in this stage should be all O's and their complement signals are then all 1 's, i.e., the paired out­

put (s 1 ,s 1) for all CS elements are (01).

During normal operation, the input sequence to stage N +3 will be in correct order if there

is no functional error. Therefore, the inputs to the AND-OR pair which is used to map m­

variable two-rail code to a single output pair as an error indicator will be all D's for the OR gate

and all 1 's for the AND gate (these two gates can be viewed as a tree of two input gates if

m>2). The output pair (S, S) from the AND-OR circuit should then be (10). This AND-OR

circuit can be shown to be code disjoint (this can be proved easily by expanding the truth table

to include all possible inputs) and fault secure. The reason that it is fault secure is described in

the following. Suppose that a fault has occurred in the OR gate (or AND gate). Depending on

the input, a single fault in it may not produce an error or produce an error value which is the 1 's

complement of the correct value. In the first case, the fault will not affect the output of the

gate. In the second case, a fault in the OR gate will not affect the output from the AND gate

and a codeword will not be produced. Therefore, for single faults the output of the AND-OR

pair is either the correct output or a none codeword and consequently, it is fault secure.

It is impossible for this paired AND -OR circuit to be self-testing under the condition that

there is only one code input during the normal operation. Therefore, the NOC which includes

47

both the TSC CS elements and the AND-OR circuit will not be a totally self-checking checker

because the swap-indicators and their complements from CS elements in stage N+3 can not

generate all the input sets required to test the AND-OR circuit during the nonnal operation. But

it does have the properties of fault secure and code disjoint which will increase the system relia­

bility.

A complete word-level structure of the fault-tolerant sorting array for N=5 is presented in

Fig. 2.11. Input data can be encoded with either a parity code, a Berger code, a modified

Berger code, or a low-cost code by the check symbol generator (CSG) before entering the sort­

ing array. The output sequence is then checked by the TSC checkers which include a DED to

detect data errors in the output sequence and an NOC to check whether the output sequence is

in nonincreasing order. Stage N +2 is implemented as totally self-checking circuits in order to

check whether all the compare-and-swap functions perfonned by the CS elements in this stage

are correct. The swap error signals from stage N +2 will generate an output pair as 11 or 00 if

there is an error swapping in this stage.

2.6. Evaluation and Discussion

In this section, the impact of the proposed fault tolerance techniques on fault coverage,

area and time overhead will be evaluated. Multiple functional errors can be detected by the

NOC and any single functional error is masked by the first two additional stages as proved in

Theorem 2.1 and Theorem 2.2, respectively. Faults in the NOC will be either masked or

detected by the NOC itself due to its fault secure and code disjoint properties. Coverage of data

errors in the proposed sorting array will depend on the complexity of the specific coding tech­

nique selected to detect data errors. As mentioned earlier that there is no arithmetic operation

I

N

p

u

T

C

S C

CSG: Check Symbol Generator

DED: Data Error Detector

TRC: Two-Rail Checker

C S T

S

S

C

NOC
error

Figure 2.11. A complete fault-tolerant sorting array with N +3 stages.

D

E

48

0

U

T

p

U

T

data
error

involved in the sorting array and it was observed that some physical defects in the VLSI circuits

tend to generate unidirectional errors. Therefore, only the simple parity check code, the Berger

code, and the modified Berger code will be considered as potential coding techniques for data

error detection. By using the simple parity code, only single bit error in each data word will be

detected, however, it incurs the least hardware overhead. All unidirectional errors can be

detected by the Berger code but it requires at least 22% overhead than the modified Berger code

which has a 93% or more fault coverage of unidirectional errors [48]. Error detection for other

types of errors can be achieved by using more complicated codes such as the AN code, the

check sum code, and the low-cost code. Although they may have higher fault coverage and

lower fault masking effect, the requirement of n-bit multipliers, adders, or dividers makes them

inefficient for VLSI implementation. For example, with the same number of check bits

49

generated, the number of full adders required by the low-cost code which can detect undirec­

tional multiple errors as well as errors produced by arithmetic processors is almost twice as it

required by the modified Berger code [48].

In the following hardware overhead analysis, the calculation of overhead ratio will be on

the gate level. Since the comparison of overhead among the TSC Berger checker, the modified

Berger checker, and the TSC low-cost code checker has been discussed in [48], we will only

calculate the overhead ratio for appling the parity code and the modified Berger code. The

number of check bits in the modified Berger code in this analysis is assumed to be 2. The

number of gates in a I-bit full adder and a half adder in the check symbol generator of the

modified Berger (MB) code is 5 and 2, respectively, by assuming that the EXOR operation in

the adder is performed by an EXOR gate.

Let

Then

N = # of input words to be sorted at a time

n = # of bits in each word

gc = # of gates in each sorting cell = 14

gt = # of gates in each pair of two-rail checker = 6 (see)[46]

gj = # of extra gates required for a compare-swap cell to be TSC = 6

gd = # of gates in each pair of AND-OR gates = 2

gp = # of gates in an n-bit parity checker = (n-I) two-inputs EXOR gates

gmb = # of gates in an n-bit MB checker = (n-l)/2 full-adder

+ 2 half-adder + (n+ 1)/4 three-inputs EXOR gates = (lin + 7)/4.

A = # of gates in the original sorting array = gcN(N-I)n/2

B = # of gates in the three additional stages = gc3(N-I)n/2

50

C = # of extra gates for stages N+2 and N+3 to be TSC = 2gj(N-l)n/2

D = # of gates which map (N-l)/2 output pairs of (SI' SI) to one pair in stage N+2 =

gt[(N-l)/2 -1]

E = # of gates to put S I and S I of a CS element in stage N +3 together = gd [(N -1)/2

-1]

F = # of gates in a parity checker = 2gpN

G = # of gates which map N to one output pair in the parity checker = g,eN -1)

H = # of gates in the MB checker = 2gmhN

1=# of gates which map N to one output pair in the MB checker = g,eN -1).

Therefore, the respective overhead ratio for using the TSC NOC with either the TSC parity

checker (rp) or the TSC MB checker (r mh) is listed below:

r = (B+C+D+E+F+G) 100% = P 100%
p A A

= 42(N -1)n + 12(N -1)n +6(N -3)+2(N -3)+4N (n -1)+ 12(N -1) 100%
14N(N-l)n

= 54(N-l)n+8(N-3)+4N(n-l)+12(N-l) 100%
14N(N-l)n

::: 2L100% (N)>I)
14N

r mh = (B +C +D +E +H +1) 100% = MB 100%
A A

= 54(N-l)n+8(N-3)+NOln+7)+12(N-l) 100%
14N(N-l)n

::: ~100% (N)>I)
14N

From the above analysis, we can see that the cost B, C, D and E, are required to imple-

ment a TSC NOC. Therefore, a general overhead ratio for the proposed fault tolerance tech-

niques can be written as :

r = (B+C+D+E+T) 100%
A

= 54(N-l)n+8(N-3)+T) 100%
14N(N-l)n

::: ~~~ 100% (N)>l)

where the values of T and c will depend on the complexity of the selected coding technique.

51

Examples of overhead ratios on different values of n and N by using simple parity code

are shown in Table 2.2. From the table, it is observed that the difference between overhead

ratios for arrays with 8-bit input words and 16-bit input words is very small since n does not

dominate the equation. The overhead ratio drops in proportion to ! and therefore, the over-

head ratio is smaller for an array with a larger input set.

Table 2.2. Overhead ratios.

n N P A r

8 25 11532 67200 17.16

8 49 23052 263424 8.75

8 81 38412 725760 5.29

8 121 57612 1626240 3.54

8 169 80652 3179904 2.54

8 225 107532 5644800 1.90
16 25 22700 134400 16.89
16 49 45356 526849 8.61

16 81 75564 1451520 5.21

16 121 113324 3252480 3.48
16 169 158636 6359808 2.49

16 225 211500 11289600 1.87

52

The proposed fault-tolerant sorting array is highly pipelined. Once the pipe is filled we

can get an output for every clock cycle although the time latency required to fill the pipe was

increased by 3 clocks due to the three additional stages for error detection and correction. The

analysis shows that the hardware overhead is less than 10% if N > 42 and the time overhead

approaches zero after the pipe is filled.

If we apply the RESO [30] approach which detects errors by comparing the unshifted out-

put sequence with the shifted output sequence, it requires 100% time overhead and one extra

cell in each CS element to sort the shifted input sequence in order to detect any single data

error. Even if we do not include the shifting circuits and comparators for comparison, the

hardware overhead ratio is

14N(N-l) 1
rreso = 14N(N-l)n 100% = -; 100%.

The AT2 ratio of RESO over the proposed method is equal to

1
n 4

RAT2 = 1 = 54+c
14N

56N
(54+c)n

For N>n, RAT2 » 1 which shows that the area-time cost of RESO (with the error detection

capability only) is higher than our method.

2.7. Summary

A novel fault tolerance technique was presented for a systolic sorting array based on the

odd-even transposition sort algorithm. Functional and data errors are detected by additional

stages and a simple coding technique respectively. Based on the discovered properties and the

developed fast on-line fault diagnosis procedure, these errors can be corrected either automati-

53

cally or by bypassing and reconfiguration. Hardware overhead for fault tolerance is about

(54+c)/14N and only 3 clocks delay is incurred in the pipeline. Since the sorting array is two­

level pipelined and all the checkers are implemented to be fault secure or totally self-checking,

it is well applicable to real-time applications which require high throughput as well as high reli­

ability. The error detection techniques in this chapter can be applied to sorting arrays based on

other sorting algorithms with either two-level pipelined or bit-level serial structure [54].

54

CHAPTER 3.

THE DEFECT-TOLERANT WSI SORTING NETWORKS

3.1. Introduction

Recently, the fast growing computer vision, image processing, and digital signal process­

ing techniques [55,56,57,58] enforce the sorters to process even more input data in a shorter

period of time for real-time applications. According to Thompson's [4] analysis, only two of

the thirteen sorters discussed in his chapter were designed with high degree of concurrency and

thus suitable for real-time applications. One uses the odd-even transposition sort [5] which

requires N·(N-I)/2 basic sorting clements (N is the number of input data to be sorted) to com­

pletely sort the input sequence with the concurrency factor N. This sorting algorithm is widely

used in VLSI systems [32,59,33,60], because it has the advantages of regular cell structure and

simple communication scheme which render it easily implementable and reconfigurable in VLSI

technology [61,62]. However, this is a hardware intensive architecture since it requires O(N2)

sorting elements to sort N input data. The other one uses the Batcher's bitonic sort [6J which

requires (N/2)[log2N·(lOg2N + 1)]/2 sorting elements with the concurrency factor

[log2N·(lOg2N + 1)]/2. Although this architecture has the advantage oflogarithmic area-time2

(AT2) cost, it is difficult to implement in VLSI if N is very large, due to its complex communi­

cation scheme. Even with the modified sorting networks such as the perfect shuffle sort [7J or

the balanced sort [63], which are much more regular than the bitonic sort, they are still hard to

implement in VLSI due to their complex interconnections. The results in [64] show that the

55

minimum area required to layout an m-line perfect shuffle interconnection networks grows as

m2• This problem is even more significant when the sorter is implemented in WSI (Wafer

Scale Integration) which can have a huge number of sorting elements fabricated in a single

wafer. In addition, due to the large area and the processing technology limitation, defects seems

unavoidable in WSI implementation. Therefore, the networks need to have defect tolerance

capabilities. Although various approaches on fault tolerant interconnection networks for shared

memory multiprocessors have been proposed [65,66,67,68,43,69] , these techniques can not

be applied to sorting networks since every interconnections in the sorter are active at any given

time and the data movements are highly pipelined.

Therefore, in order to obtain a good area-time tradeoff, in section 3.2 we present a novel

sorting network which is designed to be hierarchical and modular and retains advantages of both

sorting networks discussed above. The hierarchical modular sorting network (HMSN) is based

on the tradeoffs between the simple communication scheme of the odd-even transposition sort

and the fast convergent speed of the bitonic sort. In section 3.3, an approach to determine the

optimal sorting capability at each level is proposed based on the technology constraints and the

requirement of hardware area. A cost function is derived and simulations are performed to find

the minimum cost with respect to various parameters.

Although the HMSN is highly modular, it is still difficult to exclude faulty elements in the

network and replace them by redundant elements since the connections between stages in the

bitonic sorter are irregular and complex. Therefore, in section 3.4 networks with regular inter­

connections are derived and shown to be equivalent to the bitonic network and therefore can

replace it. In section 3.5, defect tolerant structures are presented. Spare sorting elements are

incorporated in every level of the hierarchy and they not only can replace defective sorting ele-

56

ments in the corresponding level but also can be used to correct run-time errors. Detailed yield

analysis is done in section 3.6 which shows that our approach is indeed very effective in com­

parison with other structures.

3.2. Hierarchical Modular Sorting Networks

As discussed in section 3.1, the Batcher's bitonic sort has the advantage of having a loga­

rithmic area-time2 (AT2) cost over other sorters. However, if N is very large, it is dimcult to

implement the N-input bitonic sorter in a single chip VLSI [64] or WSI [70] due to the complex

and long interconnections. As shown in the middle of Fig. 3.1, both shuffle and butterfly inter­

connections are used in the bitonic sorter and the longest interconnection exists between sorting

elements which are n/2 elements away from each other if there are n clements in each stage.

Although the odd-even transposition sorter is a hardware intensive architecture (it requires

O(N2) sorting clements to sort N inputs), it has the advantage of having simpler and shorter

interconnections. As shown in the left of Fig. 3.1, every sorting clement only communicates

with its two I earest neighbors and hence the odd-even sorter is more suitable for implementa­

tion in VLSI and WSI. Therefore, in order to have advantages of fewer processing clements

(area cost) as well as less wire complexity and faster convergence in sorting, the sorting net­

work can be decomposed into a two-level structure with the bitonic sorter in the bottom level

and the odd-even transposition sorter in the top level. For example, if N = b' X p', the network

can be decomposed such that the bitonic sorter in the bottom level will sort b' inputs and the

top-level odd-even sorter will merge the p' sets of data with b ' sorted inputs in each set.

The reason why a two-level sorting network can reduce the wire complexity can be

demonstrated with the following example. If a one-level bitonic sorter has N=I024 inputs, we

57

know that 55 stages with 512 sorting elements in each stage are required to complete the sorting

process and thus, there are 1024 interconnections between two stages. Since the complexity of

shuffle and butterfly interconnections grows with the square of the number of elements to be

connected between two neighbor stages, if a bitonic sorter with 1024 shuffle or butterfly inter­

connections is decomposed into a two-level sorter with b'xp' = 256x4 or 128x16, the number

of sorting elements in each stage will be reduced significantly to 128 or 64, and the number of

interconnections is reduced from 1024 to 256 or 128. Therefore, the original wire complexity

which is in proportion to 10242 will be reduced to 2562 or 1282 , and thus simplify the wire

complexity considerably.

Although this two-level sorting network now has a good area-time cost measure, it is

difficult to incorporate redundancy and reconfigure for surviving from defects since the bottom-

Odd-even sort Multi-way odd-even merger
Multi-way bitonic merger

Figure 3.1. Hierarchical sorter.

58

level bitonic sorter has irregular shuffle and butterfly interconnections. Therefore, it is not cost

effective to use this architecture for WSI implementation where reconfiguration is necessary to

tolerate defects. To minimize the cost to survive from defects, the easily reconfigurable odd­

even transposition sorter can be used as the bottom level sorter to replace a sorting element in

each bitonic sorter (Reconfiguration on the odd-even transposition sorter and the bitonic sorter

will be discussed in section 3.5).

Therefore, the sorting network has three levels. Let N = PIX b X P2. Then, each

bottom-level odd-even sorter can sort PI inputs, each middle-level bitonic sorter can merge b

sets of sorted inputs with P 1 inputs per set, and the top-level odd-even sorter can merge P 2 sets

of inputs with b'p 1 inputs in each set. In the rest of this chapter, a sorting element will be

referred as a cell at the bottom level, a submodule at the middle level, and a module at the top

level. Each bottom-level odd-even sorter has PI stages with PI 12 cells in an odd stage and

(p 1 /2)-1 cells in an even stage if P 1 is even [5]. If PI is odd, there are (p 1-1)/2 cells in a

stage. A data register "D" in the odd-even sorter is used as a buffer to synchronize the data

movements. We refer a middle-level bitonic sorter in Fig. 3.1 as a multi -way bitonic merger.

A cell (submodule) marked with a "1" ("-") means that the outputs from it are in monotonic

decreasing order, otherwise, the outputs are in monotonic increasing order.

It can be shown by using the method similar to that in [5] for merge-sort that the multi­

way bitonic merger in the middle level with a total of (log2b+1)'(lOg2b+2)/2 stages can com­

pletely sort PI ·b inputs if there are b (b needs to be a power of two) submodules in each stage

and each module can sort PI inputs. In the top level, the odd-even sorter is referred as a

multi -way odd -even merger which can merge P 2 sets of P l'b sorted inputs into the correct

order. The multi-way odd-even merger has 2P2-1 stages with P2 modules in each stage and

59

can merge P2 sets of P l'b sorted outputs into the correct order if each module can sort P l'b

inputs. An example three-level sorter is shown in Fig. 3.1 where the four-input odd-even tran­

sposition sorter is used in the bottom level. Depending on the number of inputs to be pro­

cessed, each level can be furthermore decomposed. For example, if P2 is still very large after

the decomposition, then the top level can be further decomposed into two levels with one based

on the bitonic sort to save area and the other one based on the odd-even sort.

In addition to the bitonic sorter, the perfect shuffle sorter [5,7] can also be a good candi­

date for the middle level. In a perfect shuffle sorter, IOg2n blocks are configured as an Omega

interconnection network, i.e., interconnections between blocks are shuffle connections. Each

block of the perfect shuffle sorter is also constructed as an Omega network except that switching

elements in the original Omega network are replaced by sorting elements in the perfect shuffle

sorter. That is, with a total of (lOg2n)2 stages and nl2 elements in each stage, the perfect

shuffle sorter can completely sort n inputs. If we replace each bitonic sorter in Fig. 3.1 by a

perfect shuffle sorter, a multi -way perJect (shuffle) merger is formed.

Although the multi-way bitonic merger uses less sorting submodules and incurs less time

latency (log2n'Oog2n + 1)/2 stages) to fill the pipeline than the perfect merger ((lOg2n)2 stages),

the multi-way perfect merger has the advantage that it has the same interconnection pattern

between stages in a block and between blocks. This repetitive architecture can simplify both

the design and the operation complexity compared with the recursive architecture of the bitonic

merger. However, both the bitonic merger and the perfect merger need more than one type of

submodules which may increase the implementation complexity.

Recently, a new sorting network, the balanced sorter (as shown in Fig. 3.2), was proposed

in [63]. Although it requires the same number of blocks as the perfect shuffle sorter to sort n

60

inputs and each block is also configured as an Omega network, permutations between blocks are

different. Instead of shuffle connections, 1: permutations exist between blocks of the balanced

sorter as shown in Fig. 3.2. This balanced sorter is essentially equivalent to the bitonic sorter

[71]. If we replace each bitonic sorter in Fig. 3.2 by a balanced sorter, a

multi -way balanced merger is formed. A multi-way balanced merger has some advantages

over a multi-way bitonic merger: (1) unlike the multi-way bitonic merger which does not have

uniform sorting submodules, the multi-way balanced merger contains only one type of submo-

dules (2) interconnections between stages in each block are the same and the permutations

between blocks are all 1: connections. The uniform submodule property in (1) is also an advan-

tage over the perfect shuffle merger.

N=8

stage

permutation permutation

r-------------~!r-------------~!r-------------,

block 1

I
I
I
I
I

block 2

Figure 3.2. The balanced sorter.

block 3

61

Therefore, the multi-way balanced merger is more suitable for WSI implementation

because of its uniform submodules and regularly repeated architecture. If N is large and the

timing requirement is not very critical, we can even use only one block of the balanced sorter

and recirculate the outputs of this block to its inputs for log2N times until the sequence is

ordered. Inherent fault tolerance properties of the balanced sorting network were discussed in

[26,27]. By recirculating all output lines to the corresponding input lines or duplicating the last

block, a functional fault which generates an incorrect swap will be recovered automatically.

3.3. Optimal Decomposition

We know that the HMSN can have multiple levels for large N with odd-even transposition

sorters at both the bottom and the top level. In this section, we will present the analysis pro­

cedures for chosing an optimal sorting capability (number of inputs or sets of inputs) of each

level based on the wire complexity and the hardware cost. We will assume that the multi-way

balanced mergers are used at the intermediate levels in the analysis, however, similar analysis

can be performed if the multi-way bitonic mergers are used.

For a three-level sorter, let N = P 1 xbXP2 and therefore, the total number of cells is

(3.1)

It should be noted that PI in equation (I) should be greater than 2 to form a sorter in the

bottom-level. Otherwise, the network will be a two-level structure since a submodule of the

balanced sorter can sort two inputs directly [10,72]. The ratio rhlo of Nh over the number of

sorting clements in a single-level odd-even sorter which is N (N -1)/2 = P 1 bP2(P 1 bp2-1)/2) is

then

62

rhlo=1 when b=128. Thus, the HMSN will have less sorting elements than the single-level

odd-even sorter if b>128. From equation (2), we can see that if b~(log2b+l)2, we will have

rhlo<'1. Therefore, b should be as large as possible under the constraints imposed by the tech-

nology and wire complexity in order to reduce the number of sorting cells. Thus, the optimal b

is technology dependent. In the following analysis we will assume that b is known to be equal

to an optimal value b max which depends on the technology and the wire complexity.

After the value of b has been determined in a three-level HMSN, we can find the values

for P 1 and P2. From equation (1), since both N and b are fixed, log2b as well as P lXP2 (let it

be represented as p) are fixed, the minimization of Nh is then equivalent to minimizing

is equal to a constant P, we will have a minimum Nh• This means that PI, which is an integer

factor of P, should be as small as possible but greater than 2.

However, with redundancies included in every level, finding the minimum Nh with respect

to P 1 is very difficult. Simulation is necessary to select the minimum Nh and thus determine P 1

and P2. The reason is that the minimization procedure involves finding the minimum value of a

fourth order function of P 1 and PI not only has to be discrete (p 1 is an integer) but also must

be a factor of p. Let Nh-r be the number of sorting elements in a HMSN with redundancy and

assume that there are d, I, and n redundant rows as well as J, m, q redundant columns in each

sorter at the bottom-level, middle-level, and top-level, respectively. Then,

Pl-l
Nh-r=(-2-+d)-(P 1+.n·(b+/)·[(1og2b+l)2+m]·(P2+n)·(2P2-1+q). (3.3)

Finding the minimum Nh - r with respect to various PI is equivalent to finding the minimum C

where

63

C=(P l-l+2d)'(p l+j}(P2+n)'(2p2-l+q)

=[p IP2+(2d-l)P2+np 1 +n (2d-l)]'[2p IP2+2/P2+(q-l)p 1 +/ (q-l)]. (3.4)

Since b in equation (3) and the redundancies added to each sorter are fixed, only P2 (= pip I) is

related to PI in finding the minimum N h-r with respect to PI.

Example cases with various amounts of redundancy are used to illustrate how to find the

minimum C (or Nh- r) with respect to a given p. It should be noted that Nh - r is equal to kxC

where k can be viewed as a constant and is equal to (b+l)-[(log2b+li+m]/2. These example

cases have one or two redundant rows in a cell, submodule, or module. Redundant columns can

also be included in a cell or module since they, as will be discussed in section 3.5, can simplify

the system on-line reconfiguration process. The amount of redundancy in a level for each case

is shown in Table 3.1 where nr represents n redundant row and me represents m redundant

columns. Tables 3.2-3.5 present the results for these example cases with various P values (i.e.,

different array sizes). The C min is the minimum C and the corresponding P 1 is listed as P Imin'

For case 1, one redundant row is incorporated in a sorter at every level, then

Nh-r=(p I+l)-p 1'(b+l)-(log2b+l i'(P2+l H2P2- l)/2,

C=(P I+l)-p 1'(P2+l H2p2-l)=(P IP2+P IH2p IP2+2P2-P 1-1).

The global minimum C will occur at the value of PI which satisfies the equation p+2p 2-2p 1 =1

Table 3.1. The amount of redundancy for each case.

Case No.

level 1 2 3 4 5 6 7 8
bottom lr lr2c lr lr2c 2r 2r2c 2r 2r2c

middle lr lr lr lr 2r 2r 2r 2r

WQ Ir lr lr2c lr2c 2r 2r 2r2c 2r2c

64

(p=p I xP 2). However, since both P I and P 2 are discrete, simulation will be necessary to deter-

mine the values of P I and P2 which minimize Nh - r •

In Fig. 3.3 we also show the cost versus P I graphically for cases 1, 2, 3 and 4 with p=100

and p=105. The cost decreases rapidly before PI =P lmin for case 2 which has two redundant

columns in the bottom-level sorter and increases rapidly after PI >P lmin for case 3 which has

two redundant columns in the top-level sorter. Since case 4 has two redundant columns in both

the bottom-level and the top-level sorters, the curve in Fig. 3.3 shows the cost decreases before

Table 3.2. The cost C with p=20.

Case No.

P! 1 2 3 4 5 6 7 8
4 1080 1620 1320 1980 1764 2646 2156 3234
5 1050 1470 1350 1890 1680 2352 2160 3024
10 990 1188 1650 1980 1560 1872 2600 3120

Cmin 990 1188 1320 1890 1560 1872 2156 3024

Plmin 10 10 4 5 10 10 4 5

Table 3.3. The cost C with p=loo.

Case No.

P! 1 2 3 4 5 6 7 8
4 25480 38220 26520 39780 37044 55566 38556 57834
5 24570 34398 25830 36162 34320 48048 36080 50512
10 22990 27558 25410 30492 29640 35568 32760 39312
20 22680 24948 27720 30492 28980 31878 35420 38962
25 22750 24570 29250 31590 29400 31752 37800 40824
50 22950 23868 38250 39780 31800 33072 53000 55120

Cmin 22680 23868 25410 30492 28980 31752 32760 38962

P!min 20 50 10 10/20 20 25 10 20

65

Table 3.4. The cost C with p=105.

Case No.

PI 1 2 3 4 5 6 7 8
3 29808 49680 30672 51120 45954 76590 47286 78810
5 27060 37884 28380 39732 37720 52808 39560 55384
7 25984 33408 27776 35712 34510 44370 36890 47430
15 24960 28288 28800 32640 31590 35802 36450 41310
21 24948 27324 30492 33396 31752 34776 38808 42504
35 25200 26640 35280 37296 33250 35150 46550 49210

Cmin 24948 26640 27776 32640 31590 34776 36450 41310

PImin 21 35 7 15 15 21 15 15

Table 3.5. The cost C with p=200.

Case No.

PI 1 2 3 4 5 6 7 8
4 100980 151470 103020 154530 144144 216216 147056 220584
5 97170 136038 99630 139482 132720 185808 136080 190512
8 91728 114660 95472 119340 116424 145530 121176 151470
10 90090 108108 94710 113652 111540 133848 117260 140712
20 87780 96558 97020 106722 104880 115368 115920 127512
25 87750 94770 99450 107406 105000 113400 119000 128520
40 88560 92988 108240 113652 108360 113778 132440 139062
50 89250 92820 114750 119340 111300 115752 143100 148824
100 90900 92718 151500 154530 123600 126072 206000 210120

Cmin 87750 92718 94710 106722 104880 113400 115920 127512

Plmin 25 100 10 20 20 25 20 20

P Imin and then increases after PI =P Imin. The cost does not change significantly with respect to

P I for case 1 with no redundant columns.

Comparing case 2 with case 3 and case 6 with case 7 in Tables 3.2-3.5, we see that the

minimum cost of adding two redundant columns in the bottom-level sorter is less than that of

adding two redundant columns in the top-level sorter. Case 4 has the highest hardware cost

66

among the first four cases and it costs about 20-25% more than case 1 or 2. Case 8 has the

highest cost among all cases since it has the most redundancy in every level. However, the

optimal amount of redundancy depends not only on the area overhead but also on the yield

improvement achieved over the original structure with no redundancy. Therefore, the results on

these cases will be used in section 3.6 to determine the optimal amount of redundancy in each

level.

We also discussed in section 3.2 that depending on the number of inputs, the bottom or

the top-level sorter can be further decomposed into a sorter with two or more levels. The

bottom(top) level sorter can be decomposed with the bitonic mergers or balanced mergers in the

higher (lower) levels and a odd-even merger in the lowest (highest) level. Since P 1 and P2 can

be determined from the simulation, in the following analysis we will show that when the bot-

tom or top level sorter should be further decomposed.

There are PI(PI-l)/2 cells and P2(2P2-1) modules in a bottom-level sorter and a top-

level sorter, respectively. Let the bottom-level sorter and the top-level sorter be further decom-

posed such that PI=PI"b l ' and P2=P2'b 2'. Compare the numbers of sorting cells and

modules in these two levels before and after decomposition and let the ratios be , 1 and '2,

respectively, we have

(3.5)

P2(2p2-1)
(3.6) '2

P2' b2'(2P2' -1)log2b 2' +1l0g2b2' +1 .

For PI =64 and PI' =4 (since PI' should be greater than 2 and b I' should be as large as possi-

ble) , we have '1=63175 and if PI=128 we will have '1=127/108. This means that if PI is

further decomposed, the network will have more cells than before decomposition if P 1 ~64.

50

40

Cost/l 000

30

.
· · · · · ·

::
" " '

' -.. .' .. '
....

------ p= 1 00
....... p=105

--------~-------·2 '"--------------1
20~----~----~----_r-----r----_,

o 10 20 30 40 50
Bottom level sorting capability (pI)

Figure 3.3. Cost C Vs. PI for cases 1, 2, 3 and 4 with P = 100 and 105.

67

Since b l' should be a power of 2, we know that further decomposition is profitable in the

bottom-level if P 1 is greater than 128. Similarly, we can derive that P2 should be greater than

256 if the top-level sorter is to be decomposed. From Tables 3.2-3.5, we see that in our exam-

pIe cases every PI or P2 are less than 128 or 256, respectively. Therefore, normally a three-

level network is sufficient for most applications unless a huge number of inputs (more than

128><256><256 inputs, i.e., p=128><256 and bmax=256) is to be sorted. Practically, it may not

be possible to implement a sorting network to sort more than 128x256x256 inputs in a single

wafer. Hence, in the rest of this chapter we will concentrate on the three-level structure only.

68

3.4. Easily Reconfigurable Equivalent Networks

In the middle-level of the HMSN, both the multi-way bitonic merger and L~e multi-way

balanced merger are considered in this chapter. The balanced merger has the unique properties

of uniform cell structure and regularly repeated architecture. Advantages of the bitonic merger

are that it has the fewest submodules and the least pipeline latency among all real-time sorting

networks, and the number of submodules is approximately half of that in other mergers.

Although the bitonic merger is not a regular and repetitive architecture originally, after an

equivalent network transformation described in this section, the resulting network will have a

regular structure and simpler interconnections.

However, there still exist shuffle type interconnections in these two mergers which are

very difficult to reconfigure to exclude faulty elements and some modifications are necessary to

make these networks easily reconfigurable. It has been shown in [73] that the modified data

manipulator (see Fig. 3.4(b» is topologically equivalent to the Omega network (see Fig. 3.4(a».

In addition to the topological equivalence, these two networks are functionally equivalent [70]

such that without any modification the shuffle connected Omega network in a sorting block of

the balanced merger can be replaced by the modified data manipulator (detailed proofs will be

discussed in appendix section A.I). Since the modified data manipulator has simpler intercon­

nections, the resulting network is easier to reconfigure (will be discussed in section 3.5) around

faulty submodules.

The shuffle connections in the multi-way balanced merger can now be simplified by

replacing the Omega network in each sorting block with the modified data manipulator. The

remaining shuffle permutations (0) in the multi-way bitonic merger and 't permutations in the

multi-way balanced merger will be defined here and then replaced by the equivalent switching

N= 16
block 1 r----------------,

I
I
I

stage I 0 1 2 3: L ________________ ~

(a)

block 1 r----------------,
I I

stage I 0 1 2 3 I L ________________ ~

(b)

Figure 3.4. (a) Omega network and (b) modified data manipulator.

69

network so that these two multi-way mergers can be replaced by a more regular and

reconfigurable equivalent multi-way merger (detailed proofs will be discussed in appendix sec-

tion A.2).

Let a sequence A = {O, 1, ... , 211_1} (N = 211) be represented by Pn-l ... Po, and let 1: and

cr be two pennutations of A. The shuffie pennutation cr is defined as cr : A ~ A with cr(PlI-l ...

Po) = Pn-2 PII-3 ... PI Po PII-l' An example of cr pennutation with N = 16 is shown in Fig.

3.5(a). The pennutation 1: is defined as 1: : A ~ A with 1:(PII-l ••• Po) = Pn-l ... Po if Po = 0 and

1:(PII-l ... Po) = PII-l Pn-2 ... PI Po if Po = 1. An example of 1: pennutation with N = 16 is

70

shown in Fig. 3.6(a). The Banyan permutation r is formed by setting all switching elements in

the Banyan's interconnection network (this network can be viewed as a reverse network of the

modified data manipulator in network topology) in straight connection states (see Fig. 3.5(b)).

The,!, permutation is formed by setting every switching element in the modified data manipula­

tor either in straight or in exchange state. The switching elements in stage i (i=O to n-l) with

positions represented by Pn-l ... PI, will be in exchange state (Pn-l PI po= Pn-l PI Po)

if Pn-iPn-i-1 =01 or 10, or in straight state (Pn-l PI Po= Pn-l PI Po) if Pn-iPn-i-1 =00 or

11. An example of,!, permutation with N = 16 is shown in Fig. 3.6(b). It has been shown [70]

that: (1) the shuffle permutation a is topologically equivalent to the Banyan permutation r, (2)

The 't permutation (Fig. 3.6(a)) is topologically equivalent to 'I' permutation (Fig. 3.6(b)).

link-level 1 2 3

(a) (b)

Figure 3.5. (a) Shuffle permutation a and (b) Banyan permutation r.

71

N= 16 link-level 1 2 3

stage 0 1 2 3

(a) (b)

Figure 3.6. (a) Balanced pennutation 1: and (b) pennutation \j1 of the modified data manipulator.

Therefore, we know that a shuffle pennutation of N inputs can be replaced by a Banyan network

with log2N stages and every switching element in a stage is in the straight state. Now we can

see that the sorting networks with complex connections can be replaced by equivalent networks

which are inherently easier to reconfigure. Each switching element in the equivalent networks

is either in the bypass state or in the exchange state and therefore, is very simple to implement

such that the area and time penalty is negligible compared with the entire sorting network. The

number of cells used in the modified equivalent networks is equal to that of the original net­

works and the time latency is not changed. Therefore, the two multi-way mergers can be

replaced by a more regular and reconfigurable equivalent multi-way merger which introduces

little time overhead.

72

3.5. Defect Tolerance

A. Bottom-Level and Top-Level Reconfigurable Structures

Since the odd-even sorter is used in both the bottom-level and the top-level of the sorting

network, the reconfigurable structure will be the same and therefore, we use an example 6-stage

odd-even sorter in Fig. 3.7 to illustrate our approach. In this section, a cell can be a bottom cell

or a top-level module. Two redundant cells are added to each stage with one at the bottom and

the other at the top of the stage. Two switching elements are associated with each cell to con-

trol input/output to and from the cell. The input and output functions of a switching element

100 10 100 11 100 10 I
eRA

G
I

R -
II II

CRB

100 10 100 It 100 10 I
Figure 3.7. Example rcconfigurable structure of the odd-even transposition sorter.

73

are shown in Fig. 3.8 which are controlled by the reconfiguration control registers (eRA and

eRB) where S is a control bit for a cell. Each field in a reconfiguration control register controls

a stage. The number of bits in each field for a stage with 1 cells is r (where 2r ~ 1-2). Cells in

a stage are numbered from 1 to I. The bit patterns in eRA and eRB determine whether a faulty

cell will be replaced by a redundant cell in the top row or the bottom row. Table 3.6 illustrates

the meaning of a field in eRA and eRB. The switches of a delay cell is activated when its

neighbor cell in the same stage is activated. For example, in Fig. 3.7 there are two faulty cells

in stage 4 and the corresponding switch settings after reconfiguration are eRA= 1 and eRB= 1,

i.e., switches of cells 1 and 2 in this stage are activated by eRA, switches of cells 3 and 4 are

activated by eRB. Two switches are also associated with each "0" registers, one is a 2-to-l

multiplexer and the other is a I-to-2 demultiplexer. This structure can tolerate up to two faulty

cells in each stage.

It has been shown shown in [74] that by adding two extra stages in an odd-even transposi-

tion sorter as shown in Fig. 3.9, any single fault which makes a sorting cell perform an

incorrect swap (we call this a functional fault) can be recovered automatically. In addition to

CRA CRB

switch S=O S=1 S=O S=1

input =§= Jur- =§= port

output =§= =€F port

Figure 3.8. Output functions of a switching clement in the top-level.

74

Table 3.6. Regions covered by CRA and CRB.

1=5(r=2) 1=4(r=l)

CRA CRB CRA CRB
00 nonnal nonnal 0 nonnal nonnal
01 cells 1-2 cells 3-5 1 cells 1-2 cells 3-4

10 cell 1-3 cell 4-5

the fault masking property for the single functional fault, each sorting cell in Fig. 20 includes

bypass registers such that the faulty cells generating nonfunctional errors can be bypassed

without affecting system synchronization. The bypassed cells can be viewed as faulty cells

which do not swap at all, and these errors will be recovered by the two extra stages [74].

Therefore, the odd-even transposition sorter can tolerate up to two faulty stages by simply

bypassing the faulty cells without the need to restructuring the entire sorter.

Since the sorting network is a pipelined structure, increasing the number of extra stages

will increase the pipeline latency only. After the pipeline has been filled, a set of N outputs will

redundant

stages

CS: compare-swap cell

d: bypass register

0: multiplexer or

fusible switch

Figure 3.9. On-line reconfigurable odd-even transposition sorter.

75

be generated at every clock period. For the top-level sorter, since the bottom-level sorter in

each submodule can be bypassed, each module can also be bypassed by setting all sorters in the

submodules of this module bypassed. Therefore, the same reconfigurable structure with redun­

dant rows and columns of modules or cells can be applied to both levels.

B. Middle-Level Reconfigurable Structure

However, with clustered defects, it is possible that there are more than two faulty stages in

a bottom-level sorter. If the number of faults in a bottom-level sorter is larger than the amount

of redundancy it has or if any physical defect causes a faulty cell unable to be bypassed, this

sorter will be declared as unrepairable and switched out by the reconfiguration scheme described

in the following and replaced by a redundant submodule.

Input lines and output lines of a submodule in this level are connected to three submo­

dules in the preceding stage and succeeding stage, but not all of them are the nearest neighbors

of that submodule. Each submodule has two switches, one in the input port to select two out of

three inputs and the other in the output port to direct data to two of the three output lines. It

should be noted that after the transformation to the equivalent network, the shume interconnec­

tions in the bitonic merger are replaced by the Banyan permutation and therefore, the bitonic

merger is now like a modified data manipulator. The Omega network in a sorting block of the

balanced merger and the 't permutation between sorting blocks are replaced by the modified data

manipulator. Therefore, the balanced merger is now connected by a series of modified data

manipulators.

The reconfigurable structure of the multi-way balanced merger is shown in Fig. 3.1O(a).

In Fig. 3.10(b) we show an example after reconfiguration. The reconfiguration strategy in Fig.

21 includes a redundant row of submodules which can either the bottom row or the top row.

[[]: switch

(a)

(b)

o
o
o
o
o

£8J: faulty submodule

0: switching element
(c)

Figure 3.10. Example reconfiguration in the middle-level.

76

Note that the switching elements in the pennutation networks should also be reprogrammed

since the setting of switching elements in the equivalent network to perfonn the 't pennutations

are different and depend on the positions of these switching elements. Similarly, after restruc-

turing the system, a sorting clement in the equivalent multi-way bitonic merger should be repro-

grammed according to its position in the new structure due to the nonunifonn cell structure in

the bitonic merger.

However, the reconfigurable structure in Fig. 3.10(a) can tolerate faulty submodules in the

same row only, any two faulty submodules in two different rows will cause the submodule

77

unrepairable. This problem can be solved by modifying the two switches at the input and out­

put ports as shown in Fig. 3.1O(c). Excluding a faulty submodule and replacing by a redundant

submodule in the same column can be completed with the same control scheme as that in Fig.

3.7 and the same switch functions as those in Fig. 3.8.

The major drawback of the defect tolerant multi-way merger in Fig. 3.10 is that the

reconfigurable butterfly interconnections between two stages have wrap-around connections. An

example butterfly interconnection between two stages is shown in Fig. 3.11(a), where each stage

has k=8 sorting elements and one redundant element (R=I). If each element has n=3 outputs

with m=1 bit line per output, then there will be 8 (=(/c+r-l)mn/3) warp-around interconnec­

tions. Let a represent the wire width of an interconnection and b the space between two inter­

connections as shown in Fig. 3.11. Then the distance between two stages in a butterfly inter­

connections is kl(2x-ff)x(h+b) since dl=d2. The length on the longest interconnection due to

wrap-around will be about (kI2+k+l)x(h+b) which is 3x-ff times longer than the shortest inter­

connection. Therefore, in addition to increasing the wiring complexity, the wrap-around inter­

connections will slow down the system clock significantly and thus, reduce the system

throughput.

However, this drawback can be avoided by replacing the wrap-around interconnections

with interconnections directly from the source to the destination. Let the submodules in a stage

be numbered from 0 to k. As shown in Fig. 3.11(b), the three wires of a sorting element s

(O~~) connect respectively to the sorting elements s, k12, and k12+ 1 in the next stage, if

s~kI2, otherwise, they connect to the sorting elements s, s-kl2 and s-kI2-1 in the next stage.

The configuration of Fig. 3.11(b) is then equivalent to Fig. 3.11(a). The length of the longest

interconnection in Fig. 3.11(b) becomes 2(kI2+1)(h+b)/-ff which is approximately 2/(3-ff) that

78

/:J k (h +b)/2-f3

I.- .., ..L (k 12+ 1)(h +b)1-f3

k(f+b)/2

(kI2+1)(h+b)

h(k+l)+kb

_t

(a) (b)

Figure 3.11. Bunerfly interconnections with and without wrap-around wires.

of the longest interconnection in the wrap-around structure.

The advantage of Fig. 3.11(b) over Fig. 3.11(a) in the total interconnection area is illus-

trated as follows. The total wire area for the original butterfly interconnections can be derived

79

to be

k (h+b)
Ab-o = [(k+1)-h+k'b + k'(a+b)] x [2''' T3 + k'(a+b)]

and the total wire area of the modified butterfly is

k (h+b)
Ab-m = [(k+1)'h+k'b] x [("2+1)' T3]. (3.7)

Since Ab-o>Ab-m' not only the wrap-around connections are eliminated, but also the area is

reduced.

3.6. Yield Analysis

The yield of a WSI array processor is defined as the probability that during the manufac-

turing process, defects are distributed into cells, switches, and wires of the array in such a way

that all defective elements can be tolerated [75]. In order to evaluate the improvements on yield

after redundancies are introduced in each level, yield modeling and analysis are developed in

this section. Our approach is to start the analysis at a stage of the bottom-level odd-even sorter.

If the defects are randomly distributed, the yield Y=e-DA where D is the average defect

density and A is the area of the chip or wafer. However, in the real manufacturing environment,

the defects have a tendency towards clustering. Therefore, the yield Y follows the more accu-

rate negative binomial distribution, i.e., Y = (1 + DA lafa. [76]. a is a parameter representing

the level of clustering, which usually takes a value around I or 2 [77]. The probability of hav-

ing k defects in a stage is then [76]

r(k+a)(DA i
a

Pw(k) = --------
k !r(a)(1+ DA)a.+k

a

The yield Ybs of a stage at the bottom-level with n-r nonnal cells and r redundant cells can

80

then be derived as

r r(k+IX)(DA l
IX

Ybs = L X Pknr ·
k={J k !r(IX)(l+ DA)a+k

IX

(3.8)

where Pknr is the recon!1guration coverage which represents the probability of successfully

reconfiguring a stage of n cells with r redundant cells and k defects. For our reconfiguration

scheme, Pknr=l if k$.r, and in order to simplify the analysis we will assume that Pkn,={) for k>r

to obtain the lower bound of Ybs ' Actually, our scheme can tolerate more than k defects if some

of the defects fall on the same cell.

Defective wires or switches between two stages can also be tolerated by using alternative

paths and bypassing the corresponding cell which can be viewed as a faulty cell and replaced by

a redundant cell. Therefore, the effect of defects in wires and switching elements on the yield

can be included into the model Ybs by adding the area of switches and interconnections to the

total area A in equation (3.8). This is different from the model in [78] where the effect of wires

on the yield is calculated independently because no faulty interconnection can be tolerated.

Therefore, the yield of a bottom-level sorter, Yb , is equal to Y bs m, if there are m stages and

no redundant stage in the sorter. If two redundant stages are included, the bottom-level sorter

can tolerate up to two consecutive faulty stages, and the yield is

Since a submodule is an odd-even sorter, the yield of a stage in the middle-level sorter is

Yis = Ybi+2+(i+2)Ybi+l (l-Yb)+(i+2)(i+l)Yb m(l_yb)2/2

assuming there are i submodules plus two redundant submodules in each stage.

Let Aiw represent the area of the interconnections and the switching elements between two

neighbor stages of a middle-level sorter as shown in Fig. 3.1O(c). The yield Yiw of the

81

interconnection area can be derived by using equation (8). The yield of a stage including the

interconnection area is then Y is' =Y ~xYiw' Therefore, the yield of a middle-level sorter, Yi' will

be (Y ~')q if there are q stages.

Similarly, the yield, YISt of a stage in the top-level sorter is

YIS = y/+2+(t+2)y/+1(I-Yi)+U+2)U+l)Yim(l-Yi)2/2

if there are j rows plus two redundant rows in each stage and YI=Y tsXYIW where YIW is the yield

of the interconnection area between two top-level stages. Then, Y, the yield of the top-level

sorter (i.e., the yield of the HMSN) is

Y = y/+2+(1+2)y/+1(1-YI)+(I+I)Y/(l-yl)2, (3.9)

if there are I stages plus two redundant stages in the top-level odd-even sorter.

An example sorting cell in[74] is used in the following simulation to evaluate how much

yield improvement can be achieved by various redundancies in each level. The height of a cell

is assumed to be between 5 Ilm (micrometers) and 50 Ilm. From equation (3.7), the area Aiw of

the butterfly interconnections in the middle-level is proportional to (khi where k=b max and

therefore, the larger the Aiw is the smaller the Yiw will be. Since Y~' =Y ~xYjw' any small

decrease of the value of Yiw will reduce the value of Y is' and thus, drop the yield of the

middle-level sorter significantly. This is due to the fact that Yj=(Y ~,)q, where q is the number

of stages in a sorter at this level and is no less than 64 (i.e., b max=128).

Yield with respect to p for the example cases in Table 3.1 are shown in Fig. 3.12 (a), (b)

and (c). The defect density D in the cell area is assumed to be two defects per cm 2 and <X. is 2.

However, since the wires and switches are much simpler and more regular than the cells, they

are less vulnerable to defects and hence we assume that defect density in the interconnection

area is one tenth of D. If no redundancy is included in an HMSN, the yield is zero for all cases

82

100

80

60
..... b=128

Yield(%)
----- b=256

40

20

0
0 10 20 30 40 50

Cell Height (in microns)
(a)

100

80

60

Yield(%)

40

20

0
0 10 20 30 40 50

Cell Height (in microns)
(b)

100

80

60

Yield(%)

40

20

o 10 20 30
Cell Height (in microns)

(c)

Figure 3.12. Example yield analysis.

83

40 50

in Tables 3.2-3.5. From Fig. 23(a), we see that the HMSN perfonns well in every case with

p=20 and bmax=256 (the solid lines) for cell heights less than 25 J.lm. The dotted line in Fig.

3.12 (a) shows the yield when bmax=128. We only show cases 1 and 2 which have about 92%

yield even if the cell height = 50 J.lm. For cases 3 to 8, the yields are always close to 100%.

In Fig. 3.12 (b), bmax=256 and p=100, the yield drops quickly when only one redundant

row is incorporated in every level for case 1. Also, we can see that case 7 perfonns better than

case 8 even case 8 has two more redundant columns in the bottom-level sorter. The reason is

that when two redundant rows are included in the bottom level, the yield of a bottom level

sorter will be almost 1, and two more redundant columns cannot generate any further significant

improvement on yield. Therefore, the difference on yield between case 7 and case 8 depends on

the value p 1. Since Aiw grows with (p 1 xcell-height)2, a difference in PI can generate a large

difference in Yiw ' From Table 3.3, since P 1 =10 for case 7 and PI =20 for cases 6 and 8, case 7

84

has a higher yield than cases 6 and 8. The yield of case 5 with PI =25 is less than that of case

6, but it is not significant. The same reason can be applied for the differences among cases 2, 3,

and 4.

If p=200 and b max=256, the yield does not improve for cases 1 and 2 , and for other cases

the yield drops sharply when the cell height increases past a certain value as shown in Fig.

3.12(c). For example, let us look at case 7 with a cell height of 20 or 25 J.lm, respectively. Our

simulation results show that Yis is 1 for both heights and Yjw=0.999 if height=20 J.lm and

Yjw=0.997 if height=25 J.lm. However, since Yj=(Yjw)81 for this case, we have Yj=O.9527 if

height=20 J.lffi and Yj=0.8495 if height=25 J.lm. The two redundant rows in the top level make

Y1s=O.983 if height=20 J.lffi and YIs=O.73 if height=25 J.lffi and therefore, we have Y=O.9559 and

Y=O.017. respectively. This case shows how the wire complexity can decrease the yield so

significantly when both bmax and P 1 are large.

3.7. Summary

A novel hierarchical modular sorting network is presented in this chapter. It uses less

hardware and converges faster than a single-level odd-even transposition sorter and the wire

complexity problem of the bitonic sorter in VLSI or WSI is alleviated. A cost function is

derived to determine the optimal sorting capability at each level and minimize the hardware

complexity when redundancy is provided at every level of the hierarchy. The hierarchical sort­

ing network is very regular in structure and hence easier to reconfigure than any existing sorting

network with the same time complexity. Hierarchical reconfiguration strategy is proposed to

tolerate the defective elements in an efficient manner. Detailed yield analysis is performed on

the hierarchical sorting networks. Yield improvements for cases with various number of spares

85

are evaluated. The simulation results show that the defect tolerant HMSN achieves a significant

yield increase over a nonredundant sorting network.

86

CHAPTER 4.

THE TRAPEZOID SORT

4.1. Introduction

Parallel sorting algorithms for two-dimensional mesh-connected processor arrays have

been intensively studied in [16, 15, 14] and more recently, in [19, 21, 3]. Efficient implementa­

tions of these sorting algorithms in two-dimensional VLSI models are shown in [33, 60]. One

of the earliest results on sorting rectangular arrays of numbers was presented by Thompson and

Kung [14]. By mapping the odd-even merge sort and the bitonic sort [6] onto an n x n mesh­

connected array, it takes (6n+O(n 213 log2n))tr+(n+O(n 213 log2n))tc and (14(n-1)-

8log2n)tr+(2log22n)+log2n)tc, respectively, to sort n2 data items. The notation tr represents the

time for routing a value in a processor to one of its neighbor processors and tc represents the

time for comparing two values. Their efforts were improved by Nassimi and Sahni [15], and

Kumar and Hirschberg [16] with improved constant factors. These earlier efforts were adapta­

tions of inherently parallel algorithms such as the odd-even merge sort and the bitonic sort to

the mesh-connected array in an efficient manner such that the time complexity is O(n). How­

ever, these implementations spend most of the time in routing data to appropriate processors,

and the complicated data movements in successive iterations result in complicated control struc­

tures and thus, offset the advantage of simple interconnections.

Recently, Sado and Igarashi [19], and Scherson and Sen [21] presented two similar paral-

87

leI sorting algorithms independently, the parallel bubble sort and the shear sort, respectively, for

two-dimensional SIMD model. These sorting algorithms are based upon a repeated application

of the bubble-sort method [5] to the rows and columns of the array to be sorted. In this chapter

we will refer either of these two as the row-column sort algorithm since it consists of two

basic operations: the row sort and the column sort. It is a true two-dimensional sorting tech­

nique and has the advantages that it is extremely simple to implement in any of the two­

dimensional computing models and its control complexity is reduced considerably due to its

repetitive and nonrecursive nature. Its major drawback is that it requires flog2nl + 1 iterations

to sort an n x n input sequence where each iteration includes one row sort and one column sort.

In section 4.2, we present a new two-dimensional sorting algorithm, the trapezoid sort,

which preserves Ille properties of simple control hardware and ease of implementation of the

row-column sort, and the complexity is improved to f10g211+1 iterations with l={fi. Further

analysis in section 4.3 gives the proof of convergence and some special properties of the algo­

rithm.

4.2. The Trapezoid Sort

Let Q=[Qij] be an n x n mesh-connected array of identical processors as in [79], onto

which we have mapped an input sequence S. Sorting the sequence S is then equivalent to sort­

ing the elements of Q in some predetermined indexing scheme. Here, we use the

snake-like row major (SLRM) indexing scheme as shown in Fig. 4.1 to order a two­

dimensional array of elements.

88

1 2 3 4 5 6 7
14 13 12 11 10 9 8
15 16 17 18 19 20 21
28 27 26 25 24 23 22
29 30 31 32 33 34 35
42 41 40 39 38 37 36
43 44 45 46 47 48 49

Figure 4.1. An example of snake-like row major indexing scheme.

The trapezoid sort is presented in Fig. 4.2 with PASCAL-like notations. In this procedure,

the ith row and the jth column of the matrix Q are denoted by Q[i, 1 ... n] and Q[1 ... n, j],

respectively. A row vector is sorted in nondecreasing order from left to right by the procedure

row-sort and a column vector is sorted in nondecreasing order from top to bottom by the

column-sort procedure. Both the row-sort and the column-sort procedures are implemented

based on the odd-even transposition sort [5] which compares two neighbor values in a regular

and alternating manner. The procedure row-sort sorts a row vector of Q in an opposite way to

the row-sort procedure, i.e., nonincreasingly from left to right. The parameter I which will be

determined in the next section is used to control the number of iterations required of the

row-column sort module (step 4) in the procedure to obtain a snake-like row major ordered

output sequence.

The trapezoid sort can be decomposed into five steps. In the first step, all rows are sorted

in the same direction from left to right and then these sorted rows are shifted right cyclicly by

(t-1) elements from row t=1 to n in step 2. An example output right after steps 1 and 2 are

executed is shown in Fig. 4.3, where the values 1 to 7 are randomly distributed in each row of

the 7 x 7 matrix initially. After step 2 has been executed, the values 1, 2, 3, ... , 7 are also dis-

tributed uniformly in each column. The configuration in Fig. 4.3 will be referred as Q' in

Procedure Trapezoid Sort (Q, I);
begin

end.

for all t := 1 to n do in parallel /* step 1 */
row-sort Q[t, 1 ... n];

for all t := 1 to n do in parallel /* step 2 */
cyclic shift right Q[t, 1 '" n] by (t-l) positions;

for all t := 1 to n do in parallel /* step 3 */
column-sort Q[l ... n, t];

for i := 1 to rlOgzll do /* step 4 */
begin

end;

for all t := 1 to n do in parallel
if odd(t)

then row-sort Q[t, 1 ... n]

else row-sort Q[t, 1 ... n];
for all t := 1 to n do in parallel

column-sort Q[1 ... n, t];

for all t := 1 to n do in parallel /* step 5 */
if odd(t)

then row-sort Q[t, 1 ... n]

else row-sort Q[t, 1 ... n];

Figure 4.2. The trapezoid sort algorithm.

89

90

1 2 3 4 5 6 7
7 1 2 3 4 5 6
6 7 1 2 3 4 5
5 6 7 1 2 3 4
4 5 6 7 1 2 3
3 4 5 6 7 1 2
2 3 4 5 6 7 1

Figure 4.3. An example output of step 2 with n=7.

section 4.3 to describe the orders of rows after the cyclic shift right operation. Step 3 is a

column-sort to sort values of each column nondecreasingly. The statements in steps 4 and 5

together can be viewed as an independent module (row-column sort module) which is

equivalent to the shear sort in [21] or the parallel bubble sort in [19] except that it requires

less iterations of the row sort and the column sort.

4.3. Analysis and Time Complexity

Let i represent the number of iterations of the row-column sort which has been executed

on Q, Q i represent the matrix after i iterations of the row-column sort (a row sort followed by a

column sort) except that a cyclic shift operation is performed between the row sort and the

column sort in the first iteration (steps 1 to 3), Properties of the trapezoid sort and the amount

of improvement on the number of iterations over the suboptimal shear sort and

parallel bubble sort will be analyzed by applying the zero-one ({0-1}) principle [5]. For com-

pleteness, the {O-I} principle is restated in Theorem 4.1.

THEOREM 4.1: If a network with n input lines sorts all 2n sequences of O's and 1 's

into nondecreasing order, it will sort any sequence of n numbers into nondecreasing order. 0

91

For the purpose of applying the {0-1} principle, Q is assumed to contain only O's and l's

,
and a row is said to be clean if it contains identical elements, i.e., only O's or only 1 's, other-

wise it is dirty. In Theorem 4.2, we will show that the maximum number of dirty rows after the

first iteration of row-column sort can be detennined by an equation similar to that of calculating

the area of a trapezoid. This is the reason why we call it the trapezoid sort. By using the {O-

I} principle, we will prove in Theorem 4.3 that the trapezoid sort is a complete sorting algo-

rithm with the variable" l" in step 4 being equal to the maximum number of dirty rows after the

first iteration when there are initiall::tn zeros in the matrix Q.

A. Finding the Maximum Number of Dirty Rows

In our analysis, the relationship between row j and row j + 1 in Q i will be obtained first in

Lemma 4.1 based on the number of zeros in Qi. A method is then derived in Theorem 4.2 to

fmd the maximum number of dirty rows in the matrix Q after the first iteration of the row-

column sort.

LEMMA 4.1: Let the number of zeros in row j after i iterations be represented by 'Yj(i).

For all j, k, l~j<k~n, the number of zeros in the jth row of Qi is no less than that in the kth

row.

PROOF: If the number of zeros in row j of Q i is less than that of row k, then there will be

at least a zero in Qi[k, m] and a one in QiU, m], l~~n. This is in contradiction to our

assumption that all columns are sorted in nondecreasing order after a column sort. Thus, the . '

zero in Q i [k, m] should pop up to Q i U, m]. Therefore, for all j, k, l~j <k~n, there are at least

as many zeros in the jth row as in the kth row. That is, 'Yj(i)~k(i), for all l~j<k~n. o

In step 5 of the trapezoid sort algorithm, a final row sort is used to sort the output

sequence into the SLRM order after all elements are in their final row positions following step 4

92

(this will be shown in Theorem 4.3). That is, if the sorting algorithm can sort an input

sequence with pn zeros or (p+ l)n zeros, then it can sort any input sequence with the number of

zeros between pn and (p+l)n. Therefore, without loss of generality, in the following analysis

we will consider input sequences wilh pn zeros only where p can be any integer and p ~n.

THEOREM 4.2: Let lhe maximum number of dirty rows in Q i be IpCi). If there are ini-

tially pn zeros in Q, the relationship between lhe maximum number of dirty rows in Q 1 and pn

will follow an equation similar to that of calculating the area of a trapezoid. That is,

of remaining zems which do not increase the height of the trapezoid is represented by rp

(~lp(1)) in the above equation.

PROOF: Since the operation of the first column sort (i.e., step 3 of Fig. 4.2) is just to

move zeros in each column of Q' to the top of Q 1 , the maximum number of dirty rows in Q 1

can be regarded as the maximum number of zeros allowed in any column of Q'.

To have a zero located at Q'[l, m], from Fig. 4.3 we know that at least n-[l-(m+l)] and

m-l+l zeros are required in row I for l>m and l~, respectively. For Q' to have the max-

imum number h of dirty rows with the least total number of zeros, there should be h zeros in

the same column and in continuous rows, i.e., located in Q'[l, I], Q'[l-l, I], Q'[l-2, 1], "',

Q'[l-h+l, I] for I-h~O or in Q'[l, l], Q'[l-l, 1], "', Q'[l, I] Q'[n, l], Q'[n-l, 1], "',

Q' [n -(h -l), I] for l-h <0. Therefore, wilh a total of 1 +2+"'+h zeros and arranged in the

matrix Q' according to the above restrictions (Le., topologically equivalent to a trapezoid), we

can have the maximum number of h dirty rows in Q' by having the least number of total

h(h+l)
2 zeros.

93

In the case of having pn zeros in Q, h will be equal to Ip(1) and

That is, and

-1-M/1+8(p·n-r)
P p(1)+lp(1)-2[(p+1)·n-rp]<0. In other words, Ip(1)= 2 p. o

An example with p =1 is shown in Fig. 4.4, where n 1 =7, 11 (1)=3 'Yl (1)=4 and r 1 =1.

Also, from Fig. 4.4 we can see that with the maximum number of dirty rows in Q 1 or Q', the

number of zeros in row 1 of Q 1 will be at least as large as the maximum number of dirty rows

B. Proof of Convergence

From Corollary 1 in [8], we know that the number of iterations in the row-column sort for

any 0/1 input sequence is determined by the number of dirty rows initially in the matrix. For

example, if there are initially d dirty rows in the matrix, then rlOg2dl + 1 iterations are required

to sort the sequence. Based on this property and Theorem 4.2, counting the maximum number

of dirty rows in the array after step 3 has been executed is equivalent to that of calculating the

the maximum height of a trapezoid which can be generated by the input sequence. Therefore,

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 0 0 0 0 1

1 1 1 0 0 1 1

1 1 1 1 0 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

Figure 4.4. The maximum number of dirty rows = 3 for Q 7x7. .1Ia "

94

the maximum number of iterations of the row-column sort to sort any input sequence is equal to

flog2(n-I)1+1 since the maximum number of dirty rows after the first row-column sort (steps

1 to 3) is equal to n -1 which is generated by input sequences with n (n -1)/2 or more zeros.

However, in the following theorem we will prove that any input sequence can be sorted by the

trapezoid sort algorithm with the maximum number of iterations equal to flOg2/1 (1)1 + 1, where

II (1):::."Jn is the maximum number of dirty rows which can be generated by step 3 for an input

sequence with n zeros.

THEOREM 4.3: The trapezoid sort is a complete sorting algorithm.

PROOF: In the following analysis, we will first prove that the trapezoid sort algorithm can

sort any input sequence with n zeros, and then prove that if this sorting algorithm can sort an

input sequence with n zeros, it can sort any input sequence with up to n2 zeros.

The process of convergence in sorting the matrix Q with n zeros can be regarded as a pro­

cess of recursive merging. Let h=/1 (I). In order to have the maximum number of dirty rows in

the matrix, we have 'YI (1)~2(1)~ ... ~h(I), and 'Yj(I)=O for all j>h. Since there are n zeros in

the matrix, 'YI(1)+Y2(l)+'" +'Yh(l)=n and 'Yj(I);eO for 15:j5:h. In addition, from the proof of

Theorem 4.2 we have 'YI (l)+Y2(l)<n, 'Y3(l)+Y4(l)<n, "', 'Yn-I (1)+Yn(l)<n. Therefore, after the

second row sort, all zeros in 'Y2b-1 (1) are packed at the left and all zeros in 'Y2b(1) are packed at

the right (l5:b<n/2). Then, all zeros in 'Y2b(l) are moved up b rows and so are all zeros in

'Y2b-I(1) after the second column sort and therefore, two dirty rows, j and j+l, are merged

together.

According to Lemma 4.1 and Theorem 4.2, for an input sequence with n zeros and max­

imum number of dirty rows, 'Y2b-1 (i)+Y2b(i) should be less than n, unless after the ith row sort

all zeros are moved to row 1. After each repetition of the row-sort in step 4, since all zeros in

95

an odd row are moved to the left and all zeros in an even row are moved to the right, 'Y2b-l (i)

and 'Y2b(i) will be combined together to form a new row. That is, after each row-column sort,

half of the remaining dirty rows become clean. Then, after i iterations of the row-column sort,

I, (i) will not be greater than r I, (~-I) 1- Therefore, in addition to the first iteration of ti,e

row-column sort, rlOg211 (1)1 iterations are required to clean the dirty rows and one last row

sort is required to order zeros in the same row. Hence, the trapezoid sort can sort any input

sequence with n zeros.

Assume that the input sequence with pn zeros has the maximum number of n 12 dirty

rows, i.e., lp(1)=nI2. Then, ~ +k:5;lp+k(1):5; ~ +2k if there are kn more zeros in the sequence.

n
From Lemma 4.1 and Theorem 4.2, we have 1'1 (1)~2 (1)~ ... ~2k+l (1), and 1'1 (1)~2+k,

1'2(1) will be merged as 1'1 (2),1'3(1) and 1'4(1) will be merged as 1'2(2), and so on. Therefore, we

have 1'1 (2)~n+2k-l, 'Y2(2)~n+2k-5, "', 1'1+1 (2)~n+2k-4t-1. For k=l, since n+2-1>n, we will

have one clean row after the second row-column sort. For k=2, although n+2k-5<n, since

n+2k-l-n=3, we know that in addition to that row 1 will become clean after the second row-

column sort, three zeros will be moved up to row 2. These three extra zeros will be merged

with 1'3(1) and 1'4(1) at row 2 and we have 2k-1+2k-5=2 zeros left after row 2 becomes clean.

In the same way, if there are kn zeros, k>2, at least k rows will be clean and after these k rows

become clean, at least k extra zeros will be popped up to rows k+ 1 through n. This means that

after the second row-column sort at least k clean rows will be generated and therefore, only

rlp+~(I) l-k dirty rows will exist after the second row-column sort if there are initially (p+k)n

96

n n r1p+k(1)1 r 1p(1)1 zeros in the matrix Q. Since 2"+kgp+k(1)=::;2"+2k, 2 -k=::; -2- -0 (0 represents that

no clean row is generated), we know that if this sorting algorithm can sort an input sequence

with pn zeros and a maximum of n12 dirty rows, it can sort any input sequence with up to n 2

zeros.

Similarly, assume that the input sequence with qn zeros has the maximum number of n 14

dirty rows, i.e., [q (1)=n 14. Then, : +3k=::;lq+k(1)=::;: +4k if there are kn more zeros in the

n n n
sequence, and "(1 (1)~4+3k, "(2(1)~4+3k-l, ... , 11+1 (1)~4+3k-t. After the second row-column

sort, "(I (1) and "(2(1) will be merged as "(I (2), "(3(1) and "(4(1) will be merged as "(2(2), and so on.

n n n
Therefore, we have "(I (2~2"+6k-l, "(2(2)~2"+6k-5, ... , "(1(2)~2"+6k-(4t-3). Then, after the

third row-column sort, "(I (2) and "(2 (2) will be merged as "(I (3) , "(3 (2) and "(4(2) will be merged

as "(2(3), and so on. We have "(1(3)~n+12k-6, "(2(3)~n+12k-22, ... , "(,(3)~n+12k-16t-l0.

Since n+12k-6>n for k=l and n+12k-22>n for k=2, we will have one and two clean rows,

respectively, after the third row-column sort. For k=3, although n+12k-38<n, since

n+12k-6-n=30 and n+12k-22-n=14, that is, in addition to that row 1 and row 2 will become

clean after the third row-column sort, at least 44 extra zeros will be popped up to row 3 and row

4. Two of these extra zeros will be merged with "(5(2) and "(6(2) at row 3 and we ,will have 42

zeros left after row 3 becomes clean. In the same way, if there are kn zeros, k>3, at least k

rows will be clean and after these k rows become clean, at least 42 extra zeros will be moved up

to rows k+ 1 through n. That is, after the third row-column sort, at least k clean rows will be

generated and only r 1,+:(1) 1-k dirty rows will exist after the third row-column sort if there

are initially (p+k)n zeros in the matrix Q_ Since rl,~(l) 1-k'; r I,~l) 1-0. we know that if

97

this sorting algorithm can sort an input sequence with qn zeros and a maximum of nl4 dirty

rows, it can sort any input sequence with up to n 2 zeros.

These results can be generalized to an input sequence with zn zeros and a maximum of

n/2m dirty rows, i.e., Iz(1)=nI2m. Then, ..!!....+(2m-1)k~/z+k(1)~..!!....+2mk if there are kn more
2m 2m

zeros in the sequence. After the (m+ l)th row-column sort at least k clean rows will be created,

therefore, only r 1,~~I) l-k dirty rows will exist after the third row-column sort if there are ini-

·all (k) . th . Q S· f/Z+
k(1)l k r/z(1)1-o kn th ·f tho tl Y z+ n zeros m e matrix . mce 2m - ~ ~ , we ow at I IS sort-

ing algorithm can sort an input sequence with zn zeros and a maximum of nl2m dirty rows, it

can sort any input sequence with up to n2 zeros. Thus, if the sorting algorithm can sort an

input sequence with n zeros it can sort any input sequence with up to n 2 zeros. Based on this

result and Theorem 4.1, we know that the trapezoid sort is a complete sorting algorithm. 0

From the analysis in Theorem 4.3, the number of iterations in step 4 of the trapezoid sort

(Fig. 4.2) is determined by the maximum number of dirty rows that can be generated after step

3 (i.e., the first iteration) by an input sequence with n zeros. The following corollary follows

immediately.

COROLLARY 4.1: The number of iterations 1 in the trapezoid sort to sort any 0/1 input

sequence is equal to the maximum height of a trapezoid that can exist with n zeros in the matrix

initially, i.e., 1=/ 1 (1). o

98

4.4. Summary

This chapter presents an improved algorithm for sorting on two-dimensional SIMD arrays.

Like the "parallel bubble sort" of Sado and Igarashi [19] and the "shear sort" of Scherson and

Sen [21], the "trapezoid sort" is suboptimal for this architecture. However, the justification of

the algorithm is in its data movements simplicity. The major result is a reduction in the time

complexity over these schemes, by a constant factor of approximately two. For practical sized

arrays, there is a significant advantage of this scheme.

An advantage of this algorithm over a straightforward mapping of bitonic sort is the

reduction in the time complexity by the same constant factor. It should be noted that the com­

plicated data movements in mapping bitonic sort arise only if O(n) performance is attempted.

Simple column transfers alternating with individual column sorts will achieve O(nlog2n) per­

formance, while preserving simplicity in data movements. However, the proposed algorithm

improves over this scheme by a factor of two.

99

CHAPTER 5.

THE Kth SMALLEST VALUE EXTRACTION

5.1. Introduction

A new two-dimensional sorting algorithm, the trapezoid sort [80], has been proposed in

chapter 4. It preserves the properties of simple control hardware and ease of implementation.

Moreover, the complexity is improved to FOg2l1 + I iterations with l=:;{fi. Similar to the

parallel bubble sort and the shear sort, this algorithm is based upon a repeated application of

the bubble sort technique to the rows and columns of the array. In addition, a simple

cyclic shift operation is incorporated into the algorithm to improve the time complexity. In this

chapter, we will refer anyone of the above three algorithms as the parallel row -column sort

algorithm since they all contain the two basic operations: the row-sort and the column-sort.

In this chapter, based on the {0-1} principle, the relationship between two rows in the

array will be derived in section 5.2. From the results in [81,21,82], the number of zeros in the

jth row of the array after each iteration has been shown to be no less than that in the kth row,

for all 1 '5:j<k'5:n. However, we can further show that the number of zeros in the jth row of the

array after each iteration is always greater than that in the kth row unless it is equal to 0 or n.

In addition, the relationship between the numbers of maximum dirty rows generated by input

sequences with arbitrary number of zeros is also derived in section 5.2. This will be used in

section 5.3 to determine the minimum number of clean rows generated after each iteration and

100

derive a more efficient method to find the kth smallest value of the inputs. The proposed

method preserves the properties of the parallel row-column sort such as simple control

hardware and ease of implementation. In addition, it requires less time complexity than the

algorithms in [19,21] and [80]. As will be derived in section 5.3, approximately ! n process­

ing steps are reduced in the first column-sort after the second iteration and the remaining steps

will be reduced further by half after every successive iteration. Reduction on processing steps

also means reduction in silicon area when the algorithm is implemented as a VLSI sorting net­

work.

5.2. Properties of the Trapezoid Sort

Let i represent the number of iterations of the row-column sort which has already been

applied on Q, Q i represent the array after i iterations of the row-column sort with a cyclic shift

operation inserted between the row-sort and the column-sort in the first iteration which includes

steps 1 to 3. Let Q' represent the array after the cyclic shift which follows the first row-sort.

The configuration of Q' is shown in Table 5.1 Properties of the trapezoid sort will be analyzed

by applying the zero -one ({ 0-1 }) principle [5]. For completeness, the {O-I} principle is res­

tated in Theorem 5.1.

THEOREM 5.1: If a network with n input lines sorts all 2n sequences of D's and l's

into nondecreasing order, it will sort any sequence of n numbers into nondecreasing order.

For the purpose of applying the {O-l} principle, Q is assumed to contain only D's and l's

and a row is said to be clean if it contains identical elements, i.e., only D's or only 1 's, other­

wise it is dirty. Without loss of generality, in the following analysis we will consider input

101

Table 5.1. An example output of step 2 with n=7.

1 2 3 4 5 6 7
7 1 2 3 4 5 6
6 7 1 2 3 4 5
5 6 7 1 2 3 4

4 5 6 7 1 2 3
3 4 5 6 7 1 2
2 3 4 5 6 7 1

sequences with pn zeros only where p can be any integer and p ~n. Since in step 5 of the

trapezoid sort algorithm, a final row-sort is used to sort the output sequence into the SLRM

order after all elements are in their final row positions following step 4. Therefore, if the sort-

ing algorithm can sort an input sequence with pn zeros or (p+l)n zeros, then it can sort any

input sequence with the number of zeros between pn and (p+l)n. The following theorem

shows how to fmd the maximum number of dirty rows in the matrix Q after the first iteration of

the row-column sort.

THEOREM 5.2: Let the maximum number of dirty rows in Q i be lp(i). If there are ini­

tially pn zeros in Q, the relationship between the maximum number of dirty rows in Q 1 and pll

will follow an equation similar to that of calculating the area of a trapezoid. That is,

of remaining zeros which do not increase the height of the trapezoid is represented by rp

(~lp(1)) in the above equation.

PROOF: Since the operation of the first column-sort (i.e., step 3 in Fig. 4.2) is just to

move zeros in each column of Q' to the top of Q 1, the maximum number of dirty rows in Q 1

102

can be regarded as the maximum number of zeros allowed in any column of Q'.

To have a zero located at Q'[l, m], from Table 5.1 we know that at least n-[l-(m+l)]

and m-I+l zeros are required in row I for l>m and I~, respectively. For Q' to have the

maximum number h of dirty rows with the least total number of zeros, there should be h zeros

in the same column and in continuous rows, i.e., located in Q'[l, I], Q'[/-l, I), Q'[l-2, I], ... ,

Q'[l-h+l, I) for l-h~O or in Q'[l, I], Q'[I-I, I), ... , Q'[I, I] Q'[n, I], Q'[n-l, I], ... ,

Q'[n-(h-/), I] for l-h<O. Therefore, with a total of 1+2+···+h zeros and arranged in the

matrix Q' according to the above restrictions (i.e., topologically equivalent to a trapezoid), we

can have the maximum number of h dirty rows in Q' by having the least number of total

In the case of having pn zeros in Q, h will be equal to Ip(1) and

That is, and

-1-h/1+8(p·n-r)
12/1)+lp(1)-2[(p+l)·n-rp]<O. In other words,lp(1)= 2 p.

o

An example with p=1 is shown in Table 5.2, where nl=7, 11(1)=3 11(1)=4 and rl=1.

Also, from Table 5.2 we can see that with the maximum number of dirty rows in Q 1 or Q', the

number of zeros in row 1 of Q 1 will be at least as large as the maximum number of dirty rows

(i.e., 11 (1)~/p(I)).

In the following analysis, the relationship between row j and row j + 1 in Q i will be

obtained first in subsection A based on the number of zeros in Q i. From the results in

[81,21,82], the number of zeros in the jth row of Qi has been shown to be no less than that in

the kth row, for all 1 '5:j<k'5:n. However, due to step 2 in the algorithm we can further show that

103

the number of zeros in the jth row of Q i is always greater than that in the kth row unless the

number of zeros in it is equal to 0 or n. In subsection B, the relationship between the numbers

of maximum dirty rows generated by input sequences with arbitrary number of zeros is derived.

In section V, this will be used to determine the minimum number of clean rows generated after

each iteration of the row-column sort and to derive a more efficient method to find the kth smal­

lest value of the inputs.

A. Relationship Between Two Rows

LEMMA 5.1: Let the number of zeros in row j after i iterations be represented by Y/O.

For any j and k such that l~j<k~n, the number of zeros in the jth row of Qi is no less than

that in the kth row.

PROOF: If the number of zeros in row j of Qi is less than that of row k, then there will be at least

a zero in Qi[k, m] and a one in Q iU, m], l~m~n. This is in contradiction to our assumption that all

columns are sorted in nondecreasing order after a column-sort. Thus, the zero in Q i [k, m] should move

up to Q i U, m]. Therefore, for l~j <k~n, there are at least as many zeros in the jth row as in the kth

row. That is, y/i)~k(i), for l~j<k~n.
o

From Lemma 5.1, we have Y/O~j+l(i). For i=l, i.e., after the first iteration which

includes a cyclic shift operation, we can further have the following lemma.

LEMMA 5.2: In Q 1, the number of zeros in row j is greater than that of row j+1, unless

y/1)=Yj+l (1)=0 or n. That is, Yl (1)=Y2(1)="'=Yj(1)=n>Yj+l (l»Yj+2(1»···>Yj+k(l)="·=Yn(1)=O.

PROOF: For Yj(1) to be equal to Yj+l (1), every zero in row j of Q 1 must have a corresponding

zero in the same column of row j+1, otherwise, YjCl) will be greater than Yj+l (1). Since the operation

of the first column-sort is to move zeros in each column of Q I to the top of Q 1 , this means that if a

column of Q 1 has no less than j zeros, there will be at least j + 1 zeros in that column and at least j + 1

104

Table 5.2. The maximum number of dirty rows = 3 for Q7X7.

1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 0 0 0 0 1
1 1 1 0 0 1 1
1 1 1 1 0 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1

zeros in those columns of Q' with no less than j zeros. But this situation can exist only when all the

columns in Q' have at least j + 1 zeros or are all empty (the word empty means a column or a row with

no zero in it). The reason is detailed in the following paragraphs.

After the first row-sort and the cyclic right shift, the array is represented as Q'. If there is

a zero in Q'[l, m], there are at least n-[l-(m+l)] zeros in row 1 if I>m, and m-I+1 zeros in

row I, otherwise. These zeros are located at Q'[l, 1] "', Q'[I, n], Q'[l, 1], "', Q'[1, m], if

I>m, and Q'[I, I], "', Q'[I, m], otherwise. For 'Yl(1)=Y2(1) to be true, every zero in row lof

Q' should be covered (a zero is covered by another zero if for a zero in Q' [1, m], there is also

a zero in Q'[d, m], d-:t=l) by another zero in the corresponding column. So there will be at least

another zero in column m. Let it be located at Q' [d, m]. We have the following three cases.

Case 1: for m~1 and m~, (a) I<d, the number of zeros in Q'[1,I], "', Q'[l,m] will be

greater than that in Q'[d,d], "', Q'[d,m] unless row d contains all zeros, because

l-m+1 > d-m+1. (b) I>d, the number of zeros in row d will be greater than that in row 1

unless row 1 contains all zeros, because l-m+1 < d-m+1. Case2: for m<1 and m<d, (a) I<d,

the number of zeros in Q'[l,I], "', Q'[I,n] and Q'[l, 1], ''', Q'[l,m] will be greater than that in

Q'[d,d], "', Q'[d,n] and Q'[d, 1], "', Q'[d,m] unless row d contains all zeros, since

m-l+l>m-d+1. (b) I>d, the number of zeros in row d will be greater than that in row 1

105

unless row 1 contains all zeros, since m -I + 1 < m -d + 1. In the same way, we can show that

Case3: for m>1 and m<d, (a) 1:t:1, the number of zeros in row d will be greater than that in row

I. (b) 1=1, the number of zeros in row d will be greater than that in row l. Case 4: for m<1 and

m>d, (a) d:t:1, the number of zeros in row 1 will be greater than that in row d. (b) d=l, the

number of zeros in row 1 and right of column m will be greater than that in row d.

From the above discussion, we know that if we add a zero to column m (i.e., Q' [d, m]) to

cover the zero at Q'[/, m], another column with only one zero at either row lor row d which

need to be covered again is generated. Hence, columns that need to be filled with zeros will be

generated recursively, unless every column in Q' has either two zeros or is empty. In the same

way, if there are more than j zeros in column m of Q', then there will be at least j + 1 zeros in

each column of Q' in order to have 'Yj(l)=yj+l (1). Therefore, we have

o

Two neighbor rows are sorted in opposite directions by the row-sort in steps 4 and 5 of

the trapezoid sort algorithm. After the first row-sort in step 4, all zeros in an odd row are

moved to the left and all zeros in an even row are moved to the right. From Lemma 5.2, we

have 'Yj(l»'Yj+1 (1). In the following theorem, it is shown that 'Yj(1) and 'Yj+1 (1) as well as

'Yj+2(1) and 'Yj+3(1) are combined together to form new rows after the second iteration of the

row-column sort. Therefore, we can further show that 'Yj(i)+Yj+l (i)~'Yj+2(i)+Yj+3(i) based on the

fact that 'Yj(1)+Yj+1 (1)~j+2(1)+yj+3(1).

THEOREM 5.3: The number of zeros in row j of Q i is greater than that in row j + 1,

unless 'Yj(i)=Yj+l (i)=O or n. That is,

'YI (i)=Y2(i)="'='YjCi)=n>'Yj+1 (i»'Yj+2(i»"·>'Yj+k(i)="·='Yn(i)=O.

106

PROOF: After executing the second row-sort (the first row-sort in step 4), all zeros in row

2b-1 arc on the left and all zeros in row 2b are on the right (1::;b::;;). Depending on the

values of 'Y2b-l (1) and 'Y2b(1), sorting the columns will result in one of the two cases: (a)

j<b::; ~. In (a), all zeros in row 2b-1 will move up b-1 rows and zeros in row 2b will move

up b rows. Therefore, zeros in rows 2b -1 and 2b will be merged at row b after the second

column-sort (the first column-sort in step 4). As proved in Lemma 5.2, we have

'YI (1»'Y2(1»···>'Yn(1) (since 'Y2b-l (1)+'Y2b(l)::;n for l::;b::; ;), and therefore,

That is,

'YI (2»'Y2 (2»··· >'Yj/2 (2)=· ··='Yn (2)=0.

In case (b), if j=1 and 'YI (1)+Y2(1)=n+c>n (c~O), there will be c overlapped zeros between row

1 and row 2 after the second row-sort. Since we assume that all columns are sorted in nonde-

creasing order, these overlapped zeros will be moved down to row 2 and combined with two

merged rows 3 and 4 after the second column-sort. They will first be used to fill the vacancies

of row 2 after the merging, then moved down to row 3 if there is already a zero in the same

column. (The number of vacancies of a row represents the number of 1 's in a dirty row since

they can accept D's moved down from the upper row.) If j> 1, the situation will be the same as

that of Case(b) if 'Y2b-1 (l)+Y2b(1»n, and the same as that of Case(a) if 'Y2b-1 (l)+r2b(1)<n.

Therefore, we have 'Yl (2)='Y2(2)=···='Yj-l (2)=n>'Y/2»···>'Yj+k(2)=···='Yn(2)=O. Similarly, the

result can be generalized to i>2, i.e.,

'YI (i)=Y2(i)=···='Y/i)=n>'Yj+1 (i»'Yj+2(i»···>'Yj+k(i)=···='Yn(i)=O.

107

o

B. Relationship Between the Numbers of Maximum Dirty Rows

In order to have maximum number of dirty rows, from the proof of Theorem 5.2 we know

that "{I (l)=lp(l) only if rp=O, otherwise, 11 (l»lp(l), and 1j(1)~j+1 (1)+ 1 for all 1/1)#0 or n.

From the proof of Theorem 5.3, we know that one clean row can be generated after the second

row-column sort if 11 (l)+y2(l)~n, after the third row-column sort if 11 (2)+Y2(2» ~ , and so on.

Therefore, in the following analysis, we will derive the relationship between lp and the number

of zeros in the input.

LEMMA 5.3: If lp(l)~ n
l

, then p> n+~ 2 •
2 2x(2)

PROOF: Let since we have

n I n 1
Therefore, n·[(2/)2 + 2/ -2p]<0 (rp>O), and n·[(2/)2 + 2/ -2p]=O (rp=O). Since n>O,

n+21
we havep> 12.

2x(2)
o

If f=l, Ip(1)= ~ and p~ n;2. Since both p and Ip(1) are integers, we can assume that

Ii 1)= r ~ 1 and p= r n ;21- This means that if there are initially more than (n ;2) x n zeros in

the n x n 0/1 input array, the maximum number of dirty rows generated after the first iteration

of row-column sort will not be less than ~ and at least one clean row will be generated at the

top of Q2 after the second iteration of row-column sort (this will be proved in Lemma 5.5).

108

If there are more than pn zeros in the array, in order to determine the number of extra

clean rows generated, we should derive the relationship between lp(l) and lp+k(l) first.

rn+21 LEMMA S.4: For any z=p+k and p= -8- ,lz(l)~I/I)+k and Iz(l)~lp(I)+2ko

n (n+2k) -Vn 2+4kn+4k2
Ip(l)+k="2+k 2 2

For Iz2(l)+lz(l}-2(p+k)n~O,

I (P'> -1+~1+8(p+k)on > -1+~1+8[(n+2)/8+kJon
z ~ 2 2 0

Hence,

Iz(I)-(lp(1)+k)~ ~1+~1+8[(~+2)/8+k]On -vn2+4~n+4k2

To prove that Iz(l}-(lp(1)+k)~O, we can check whether -1+~1+(n+2+8k)n--Vn2+4kn+4k2 ~Oo

Because

and

~1+(n+2+8k)n=-Vn2+4kn+2n+4kn+l ,

if -1 +~ 1 +(n + 2+8k)n - -V n 2 +4kn+4k 2 ~O is to be satisfied, 4kn + 1 should not be less than (2k + 1)2

or equivalently, n~+ 1.

Since p+k$n, we have k+l$n-r n;21- This implies that n~+J. Therefore,

n 0 (n+4k) -Vn 2+8kn+16k2
Iz(1)~lp(1)+ko In addition, Ip(1)+2k="2+2k 2 2 Therefore,

Ip(1)+2k-Iz(I)=-vn 2+8kn+ 16k2 + 1-~1+8[(n +2)/8+k Jon

=-Vn2+8kn+ 16k2 + I--Vn2+8kn+2n+ 1

109

(2)

The only difference between the two polynomials inside the two square roots of Equation (2) is

the term (4k+li in the first square root and the term 2n+1 in the second square root. Since n

can be viewed as a constant, the first polynomial is then an increasing function with respect to

k2• Therefore, if the equation is greater than zero for k=O, then it is also greater than zero for

k>O. For k=O, Equation (2) is equal to n+l-(n+I)=O, and for k=l it is equal to

-Vn2+lOn+25 --Vn2+lOn+l which is greater than O. Therefore, lz (1)::;;lp (1)+2k.
o

5.3. Finding the Kth Smallest Element

In the analysis of speech data and in image processing, many linear filters have been used

to enhance the data by smoothing the signal and removing noise. However, they have some

disadvantages such as complicating the detection of edges and attributing some significance to

widely spurious values. In recent years, median filters have been suggested in digital signal

processing [83,84] and image processing [85] as simple nonlinear filters to remove noise from

the input signal without these disadvantages. In order statistic analysis or selection [86], the

median value extractor is widely used in statistic analysis such as a descriptive measure of the

center of a set of data or testing the randomness of samples consisting of numerical data [87].

A straightforward way to implement the median value extraction is to use a mesh­

connected processor array to sort the input numbers Xj first, i = I, 2, ... , N. Then the median

value is extracted from the N; I th largest output if N is odd and the mean of the ~ th and

N ;2 th largest outputs if N is even. However, from the following analysis we will show that a

more efficient way can be derived to find the median value of the array without all inputs being

110

sorted in correct order and this result is then generalized to find the kth smallest element in an

input sequence S for solving order statistic or selection problems.

A. Generating Clean Rows

To determine the number of clean rows generated at the top of Q 2 for an input array with

arbitrary number of zeros, we will first find the smallest number of zeros required to generate a

clean row at the top of Q2 and then the number of extra clean rows generated if there are more

zeros. For 11 (1)< ~ , we know from Lemma 5.2, 12(1) will be less than ~ - 1 and there will

be no clean row generated after the second row-column sort since the total number of zeros is

less than n, i.e., 11 (2)=Yl (1)+"f2(1)<n. Therefore, to generate one clean row at the top of Q2,

11 (1) should be greater than ~. For 11 (1» ~ , we know from Theorem 5.2 that to obtain the

maximum number of dirty rows after the first row-column sort, Ip(1) at least should not be less

than ~, and from Lemma 5.3 we know that more than n ;2 xn zeros should be in the array ini­

tially. If there are more than pn zeros in the array, in order to determine the number of extra

clean rows generated, we need the following lemma.

LEMMA 5.5: If there are initially pn zeros in the array Q where p is equal to rn+8
21

and r p >0, at least one clean row exists at the top of Q 2 .

PROOF: Since we have p= r n; 21-lp(l)=~ and 1/(1)+Ip(l)--2(p' n-r p)=O. According [0

Lemma 5.2,

13 (1)=lp(1)-2+C3 ,

111-1 (l)=2+CII_l,

III

n
where h=lp(1)="2' The values of Cj'S depend on the value of rp and Cj~Cj+l since

'Yl (1»'Y2(1»"·>'Yh(1). By assuming that rp=l (the worst case), the distribution of these pn zeros is

shown in Table 5.3(a), where

After the second row-sort, all zeros in the odd rows and even rows will be packed to the

left and right respectively, as shown in Table 5.4(a). The zeros in row 1 and row 2 will be

merged at row 1 after the second column-sort. Therefore, 'Yl (2)="(1 (1)-1-"(2(1) or

'Yl (2)= ; + 1 + ; -l=n. That is, these pn zeros can generate a clean row after the second row-

column sort.

It is impossible to let 'Yl(2)=Yl(1)+"(2(1)<n, since at least ; -1 zeros in column m-l

(assuming that the position of the rightmost zero of 'Yl (1) is in column m) should be removed

from row 2 to row ; to make 'Y2(1)<; -1 and 'Yl (1)-I-"(2(1)<n. According to Theorem 5.3, the

only way to restore these zeros is to put them in row 1 and this will cause the number of zeros

in row 1 to be equal to n. The value of Cj when rp>1 will be at least equal to that when rp=l,

so that more zeros should be removed from columns m and m-l. Hence, in the case of rp>l,

'Yl (1)+"(2(1»n.

In general, if the number of dirty rows is not maximum (for example, with only d dirty

rows in Q 1 and d<lp(l», then those zeros in rows d+l through h in Table S.3(a) should be

deleted since these rows are not dirty any more. These deleted zeros can only be restored in

row 1 to row d based on the condition in Theorem 5.3. That is, the numbers of zeros in row 1,

112

row 2, ... , and row d will be greater than those of the case having the maximum number of dirty

rows. Therefore, Yl (1) + Y2(1) will always be greater than n. That is, if there are initially pn

zeros in Q and p is equal to r n; 21 ' atleast one clean row exists at the top of Q 2 .

o

Furthermore, if there are initially (p+k)n zeros in Q, k:t:O, then in the following theorem we will

prove that at least the first k+l rows in Q2 are clean rows.

THEOREM 5.4: If there are initially (p+k)n zeros in Q where p is equal to rn+8
21 and

k>O, then at least k+l clean rows exist at the top of Q2.

PROOF: Let z=p+k and k>O. To show that (p+k)n zeros can generate at least k+l clean

rows, we begin with the case of k=1 and rp=l as shown in Table 5.3(b), and then the case of

k>1 as shown in Table 5.3(c). For k=l, rp=l, there will be n more zeros to be added in Table

5.3(a). To have maximum number of dirty rows, ~ of these n zeros should be used to fill the

column m until there are lp(1)+l zeros in column m (i.e., lp(1)+k=lp+k(1)=lp(I)+l) and put the

remaining ~ zeros in column m+1. As shown in Table 5.3(b), with h= ~ +1, we have

n n
Yl(1)="2+2,Y2(1)="2+1,· .. ,Yh-l(1)=3 and YhO)=I. A "<\>" in Table 5.3 represents a newly

added zero.

After the second row-sort, zeros in odd rows will be moved to the left of the rows and

zeros in even rows will be moved to the right of the rows as shown in Table 5.4(b). From this

figure we also know that since there are three overlapped zeros between rows 1 and 2, therefore,

there will be three extra zeros left after row 1 is fully filled in the second column-sort. These

overlapped zeros in columns ~, ~ +1, and ~ +2 will be moved up to row 2 after the second

113

Table 5.3. The relationship between 'p+k and k.

0 0 0 0 0 0
0 0 0 0

0 0 0
0 0

0

0 0 0 0 0 0 I\>
0 0 0 0 I\> I\>

0 0 0 I\> I\>
0 0 I\> I\>

0 I\> I\>

I\>

0 0 0 0 0 0 I\> 0
0 0 0 0 I\> I\> 0

0 0 0 I\> I\> 0
0 0 I\> I\> 0

0 I\> I\> 0

I\> 0 0
0 0

0

114

Table 5.4. The distribution of zeros in each row after the second row sort.

0 0 0 0 0 0
0 0 0 0

0 0 0
0 0

0

(a) k=O

0 0 0 0 0 0 <P

~ ~ 0 0 0 0
0 0 0 <P <P --

<P <P 0 0
0 <P <P

<P

(b) k=l

0 0 0 0 0 0 <P 0
0 <P <P 0 0 0 0

0 0 0 <P <P_ O
0 ~ ~ 0 0

0 <P <P 0
0 0 .!

0 0
0

(c) k=2

115

column-sort. Also, after the second column-sort zeros in rows 3 and 4 will be merged in row 2.

Since the total number of zeros in rows 3 and 4 is equal to n-l, only one vacancy will be avail-

able to accept the overlapped zeros from rows 1 and 2. Therefore, these overlapped zeros in

columns ~ and ~ +2 will be moved up to row 3 again and the overlapped zero in column ~ +1

will fIll the vacancy in row 2 after the second row-sort to create another clean row. From the

above discussion, we can see that two pairs of rows in Table 5.4(b), (YI, Y4) and (Y2, Y3), contri-

bute to the generation of two clean rows.

Also, from Table 5.3(b), we see that at least two zeros should be removed from row 4 to

make the array Q unable to generate two clean rows after the second row-column sort. Accord-

ing to Theorem 5.3, those zeros in columns ~ +2 and ~ + 1 of Table 5.3(b) should be removed

n n
from row 4 to row h so that 2'-3 and '2+1-3 zeros should be removed. These removed zeros

can only be restored in rows 1,2, and 3 according to Theorem 5.3. Suppose that rows 1,2, and

3 have a, band c more zeros to be removed, respectively. Then, YI+'Y2=n+a+b+3. These extra

a+b+3 zeros will be moved down to row 2 and merged with Y3(1)+Y4(I)=n-I+a+b+c+3.

Therefore, row 2 will also be cleaned since a+b+c+3> 1.

For rp>I, as discussed in Lemma 5.5, the number of zeros in each row after the first row-

column sort will be greater than that if rp=1. Therefore, they will generate k+I clean rows after

the second row-column sort. In general, the number of dirty rows is less than Ip(I)+k and in the

same way as proved in the case of k={), these general cases will also generate at least k+ 1 clean

rows after the second row-column sort.

If k=2, as shown in Table 5.3(c), lp+2(1)=lp(1)+2+I=lp(I)+k+1. This means that at least

there will be one more zero in Yj(1), for all j such that YiI»O, in addition to what it should

have (as the analysis we did for k=1). That is, for h= ~ +k+1,

n
Ys(1)='2+k- 3+cs ,

116

Since Cj~Cj+1 and Cj~O (according to Theorem 5.3), we know at least k+ 1 clean rows can be

generated by the pairs (Yk+1 (1), Yk+3(1)), ... , (YI (1), Y2k+3(1)). Similarly, it is impossible that

the array generates less than k+ 1 clean rows as proved for k=1. For rp> 1 or when the number

of dirty rows is not maximum, the proof is similar to that for the k=1 case. Therefore, at least

k+ 1 clean rows will be generated after the second row-column sort.
o

B. Finding the median value

From the above derived properties of the trapezoid sort, we know that once a row is clean

it will remain clean during the succeeding iterations. That is, the number of iterations of the

row-column sort to sort the array depends on the number of remaining dirty rows [21]. (How-

ever, this does not mean that the clean rows can be excluded from the remaining row-column

sort operations.) Therefore, the property of the trapezoid sort in Theorem 5.4 will be further

developed to find the median value from the mesh-connected processor arrays in a fast and

efficient way.

Without loss of generality, in the following analysis we assume that n is an odd number

and there are initially r ~ 1 XII ordered O's in Q and represented by 0, for l"i,;m< r ~ 1 xn and

117

m nxn+1
2

They are ordered as 0;<0;+1, so that after the process of median filtering, the

largest n zeros among these O's will be extracted and the median value among these n zeros is

the median value of the n2 input clements.

Since we have z= r ; 1 and p= r n; 21- acconting to Theorem 5.4, there will be at least

rn1 rn+21 . rn1 rn+21 2 . ('2 - -8-)+1 (z.e., kc= '2 - -8-) clean rows at the top of Q . Also the clements In

a column are sorted in nondecreasing order after each column-sort and therefore, the largest n

zeros in the input sequence will not be on the top kc rows of Q2. Similarly, we can assume that

there are initially r; 1xn ordered I's in Q and represented by I,. They arc ordered as 1,<11+1,

so that after the process of median filtering, the smallest n ones among these l's will be

extracted and the median value among these n ones is the median value of the n2 input ele-

ments. From the {0-1} principle, the result derived by counting the number of O's is comple-

mentary to what is derived by counting the number of l's. Hence, according to Theorem 5.4,

there will be at least (r ; 1-r n ;21 }t I clean rows at the bottom of Q 2• Therefore, in the third

iteration of the row-column sort, only the clements of the n-2kc rows in the middle of Q2

should be considered, that is, only n-2kc steps of the odd-even transposition sort are required in

the column-sort. For example, if n=29, we have z=15, p=4, kc=15-4 and 1=7. After the

second iteration of the row-column sort, there will be 22 clean rows in Q2 and the largest n

2OroS will then be located between rows 12 and 18 (i.e., r n; 21-1 rows above and bellow the

center row, respectively). Therefore, instead of sorting 29x29 clements, we can sort the middle

7x29 elements after the second row-column sort.

118

C. Finding the Kth Smallest Value

The kth smallest value among the n2 inputs can also be obtained in a fast and efficient

way similar to that of extracting the median value in subsection B. Assuming that there are ini-

tially en zeros in Q with (e-l)n<k~en, the kth smallest value will be among the largest n zeros.

Similarly, assuming that there arc initially (n-e+ l)n ones in Q, the kth smallest value will be

among the smallest n ones. Then, according to Theorem 5.4, we can count the number of clean

rows containing zeros at the top of Q 2 and the number of clean rows containing ones at the bot-

tom of Q2. Again from the {O-I} principle, since the result derived by counting the number of

D's is complementary to that derived by counting the number of 1 's, there will always be i and j

clean rows at the top and boltom of Q 2• respectively. with ;=c- r n; 21 + I and

j=n-c+l- r n;21+1. For the same reason as discussed in subsection B. the kth smallest value

will not be at the top i-I clean rows or the bottom j -1 clean rows.

From the results in subsections B and the following analysis, a more efficient way can be

obtained in finding the kth smallest value by modifying the trapezoid sort. This is achieved by

reducing the number of steps in each column-sort after the second iteration of the row-column

sort to n-(c-r n;21}-(n-c+I-r n;21) steps. where c= r ~ 1 for fmding the median value in

the array and c= r: 1 for fmding the kth smallest value. Therefore. the number of steps

required by the column-sort after the second iteration to find the kth smallest value from n 2

inputs can be reduced to

. . rn
+

21 rn
+

21 rn+21 rnl n-(l+J)+2 = n-(e- -8-)-(n-e+l- -8-) = 2x -8- -1 = n-2kc ~ '4 +2. That is,

119

after the second column-sort, only the elements of the n -2kc consecutive rows (starting from

row c-(r n;21-1) to row c+(r n;21-1)) should be considered in the remaining row-column

sort.

D. Reduction on Processing Steps

In the following we will compare the result with the parallel bubble sort and the

shear sort first, and then discuss further reduction on processing steps. Although no discussion

was made in [19,21] for finding the kth smallest value, based on the properties of their sorting

algorithms, we know that there will be l~ J clean rows after the first iteration of the row-sort

and the column-sort and only r: 1 rows will be dirty after the second iteration [211. That is

after the second iteration, each element in the array will be at most r: 1-1 rows away from iIE

final row position [811. However, the median value in the array can be either r: 1-1 rows

above or bellow its final position. The r: 1-1 rows above and bellow the center row in the

array should all then be considered in finding the median value after the second iteration.

Therefore, instead of having 2x r n;21-1 rows left to be processed after the second iteration as

in the trapezoid sort, 2x r: 1-1 rows remain to be processed after the second iteration in the

shear sort or the parallel bubble sort.

Further reduction on processing steps can be achieved for each column-sort after the

second row-column sort. In the proof of Theorem 5.4, it is shown that every two neighbor rows

120

are merged to form a new clean row so that only half of the initial dirty rows will remain after

each row-column sort. This means that the num ber of rows needs to be processed are reduced

by half after each iteration. That is. half of the r n; 21-1 rows above and below the c-th row

can be discarded in the fourth row-column sort. Let d~ r n;21-1. then only rows from

c-r ~ 1 to c+ r ~ 1 should be processed in the fourth row·column sort. In general. only rows

from c- r 2~31 to c+ r 2~31 should be processed in the ith row·column sort. However. in the

original trapezoid sort, after i = 1+log21 iterations, all elements in the array are in its final row

position [80]. Therefore, only the c-th row should be considered in the final row-sort in order

to find the kth smallest value. For example, if n=29, kc=15-4 and 1=7. Based on the above

analysis, only rows between 12 and 18 are processed in the third row-column sort and rows

between 13 and 17 are processed in the fourth iteration. Since 1+10g21 = 4, only the fifth row

should be processed in the final row-sort in order to find the median value.

Reduction on processing steps also means reduction in silicon area when the algorithm is

implemented as a VLSI sorting network. The sorting network will have 1+ rlOg211 stages

where in each stage an iteration of the row-column sort is included except that a cyclic shift

operation is added between row-sort and column-sort in the first stage. Originally, for sorting

n x n inputs, there will be n submodules to sort n rows independently and another n submo­

dules to sort n columns. Each submodule is an odd-even transposition sorter which includes n

steps with n;1 sorting elements per step. However, according to the above analysis, about

! n x n data elements are eliminated from the sorting process after the second row-column sort

121

and the remaining data elements will be reduce by half after every successive iteration. There­

fore, instead of using n submodules in the third row-sort, : submodules are sufficient and the

number of steps in each submodule required in the third column-column sort can be reduced

from n to : and then half of the submodules can be reduced from every successive row-sort

and half of the steps in each submodule can be reduced from every successive column-sort.

5.4. Summary

We have derived several properties for the trapezoid sort. The relationship between two

rows in the array after each iteration of the trapezoid sort are derived first based on the {D-l}

principle. The number of zeros in the jlh row of the array after each iteration which was shown

in [21,82] to be no less than that in the kth row, has been further shown to be always greater

than that in the kth row unless it is equal to D or n, for all l~j <k~n. The relationship between

the numbers of maximum dirty rows generated by input sequences with arbitrary number of

zeros is also obtained. This result is then used to derive a more efficient method to find the

kth-smallest value mesh-connected processor arrays. The proposed method not only preserves

the properties of the row-column sort such as simple control hardware and ease of implementa-

tion but also has less time complexity that approximately ! n processing steps are reduced in

the first column-sort after the second iteration and the remaining steps will be reduced further

by half after every successive iteration.

122

CHAPTER 6.

THE MODIFIED ODD·EVEN MERGE PROCEDURE

6.1. Introduction

The row-column sort algorithms on mesh-connected processor arrays, such as the

parallel bubble sort and the shear sort, have the properties of very simple control hardware and

ease of implementation. However, these row-column sort algorithms are based on the odd-even

transposition sort such that half of the processors are idle during each basic comparison­

interchange step. In addition, they are designed to sort N inputs only, where N is the number of

processors in the array. If the number of elements to be sorted is larger than N, the row-column

sort algorithm can not be applied directly. To overcome this, the method in [14,21] uses the

merge-split operation to replace the compare-interchange (or compare-and-swap in this chapter)

operation and 0 (mlog2m)T N time complexity is required to sort mN inputs where TN represents

the time complexity to sort N inputs. Although that method is simple, it is not efficient. We

will show that instead of requiring 2xTN steps to sort 2N inputs by the merge-split method, only

TN+n+3 steps are sufficient by the proposed merge sort algorithm. An O(log2m) order of

improvement is achieved by further generalizing the merge sort to sort mN inputs with

o (;)T N time complexity. A novel modified odd -even merge method is proposed here which

can merge m sorted sets in 0(; 'log2m)n time complexity. The other advantage of the pro­

posed method is that it is quite simple and regular. Each processor only needs to communicate

with its nearest neighbor processors and concurrent data movements are restricted in a single

row (column) within a time period and hence, simplifies the control structure. Therefore, it is

123

very suitable for sorting more than two sets of data inputs in a mesh-connected processor array.

Details of the merge sort and modified odd -even merge algorithms are in section 6.2. Analysis

of the time complexity will be performed in section 6.3.

6.2. The Modified Odd-Even Merge

The row-column sort algorithm can only handle N input elements which is equal to the

number of processors. If the number of elements to be sorted is larger than N, the row-column

sort algorithm can not be applied directly. To overcome this, the method in [14,21] distributes

the elements evenly among the processors and apply the merge-split operation instead of the

compare-interchange (or compare-and-swap in this chapter) operation. The "merge-split" opera­

tion is described as follows. First, processor P I sends its largest element to P 2 and P 2 sends

its smallest element to P I' Then this process repeats until the largest element in P I is not

greater than the smallest element in P 2 [35]. For example, if there are only two elements in

each processor, this process can be implemented by the following substeps: (1) sort the cle­

ments in each processor, (2) route the largest element in PI to its neighbor processor P2, and

P 2 routes its smallest element to PI, (3) sort the clements in each processor, (4) route the larg­

est element in PI to P 2 and P 2 routes its smallest element to PI. As discussed in chapter 4, a

compare-and-swap operation on two data elements in adjacent processors can be implemented

by the following sequence: route left, compare, and route right. The time for a compare-and­

swap is tes=2tr+te where tr is the time to route and te is the time to compare. Thereforc, 2tes is

required to exccute a merge-split operation if there are two elements in each proccssor. If there

are m elements in each processor, O(mlog2m) compare-and-swap steps are requircd if an

optimal sequcntial sorting algorithm is used in substeps (1) and (3) of the "mcrge-split" opcra-

124

tion. In the following analysis, we will show that instead of having twice the time complexity

to merge two sets of N sorted inputs by the merge-split operation, only n+3 extra steps are

sufficient to merge two sets of N sorted inputs by the proposed merge sort.

As di~cussed in chapter 4, the row-column sort type of algorithms are implemented by

applying the row-sort and the column-sort repetitively. In each row-sort (column-sort), n steps

of the odd-even transposition sort are executed to sort elements in the same row (column). The

advantages of the row-column sort algorithms are the simple data routing required and con­

current data movements allowed only in the same direction which simplifies the control struc­

tures. However, for sorting algorithms on mesh-connected processor arrays [14, 19,21], during

each compare-swap operation half of the processors are idle as shown in Fig. 6.1. This

inefficiency can be improved based on the fact that all the clements move in the same direction

at a time and processors are idle in an alternating manner, i.e., in odd (even) steps of the row­

sort or column-sort, all processors in the even (odd) rows or columns are idle. With some

modification on the substeps of a compare-swap operation, the idle processors can sort another

Figure 6.1. A comparc-and-swap step in the column-sort.

125

set of input data at the same time. That is, assuming that there are two registers, RA and Rn, in

each processor and two sets of input data, N 1 and N 2, are preloaded in the array, then instead of

routing right and left in the row-sort (or up and down in the column-sort), an exchange (or

swap) operation is performed between two neighbor processors and this is referred as the

modified compare -and -swap operation. As shown in Fig. 6.2, in every data routing substep of

a modified compare-and-swap step, the content in Rn of the upper (left) processor is exchanged

with the content in RA of the lower (right) processor in the column (row) sort and all processors

execute the same instruction at the same time. That is, in a row-sort (column-sort) operation, if

processors in the odd-numbered rows (columns) are processing N 1, processors in the even­

numbered rows (columns) are processing N 2 at the same time.

Therefore, at the time when the first input data set N 1 is being sorted and stored in RA

registers of the processors in snake-like row major order by using the trapezoid sort, the second

input data set N 2 is also being sorted into snake-like row major order but stored in Rn registers

of the processors. These two sorted data set can than be merged together into a sorted output

sequence of 2N elements with only n+3 extra steps based on the merge sort method which will

be described in subsection A. If there are more than 2N clements in the input array, the

merge sort will be generalized in subsection B to sort mN inputs with 0 (;)-TN time complex­

ity, where TN is the time to sort N inputs. Compared with the merge-split operation, an

O(IOg2m) order of improvement in time complexity is achieved.

A. Sorting 2N Inputs

Let the two sorted sequences N 1 and N 2 be stored in RA registers and Rn registers,

respectively, of the processors in snake-like row major order. Let the processor in the (i, j)

position of the array be represented by PEj,j' li, jn. There are three steps in the process. In

126

processors: fNt~

Figure 6.2. A modified compare-and-swap step in the column-sort

the first step, the "interleaving" of the odd-even merge is executed as shown in Fig. 6.3(a). If i

is odd, the content in RB of PEj.i is swapped with the content in RA of PEj.i+l, the content in

RB of PEj.i+2 is swapped with the content in RA of PEj.i +3, and there is no swapping between

PEj•j +1 and PEj•j +2, for all odd j. If i is even, the content in RA of PEj.j is swapped with the

content in RB of PEj.i+l, the content in RA of PEj•j +2 is swapped with the content in RB of

PEj.i+3, and there is no swapping between PEj.i+l and PEj.i+2, for all odd j. The configuration

after the interleaving process is shown in Fig. 6.3(b), where the two interleaved sequences are

stored in RA registers and RB registers of the processors, respectively. Let these two interleaved

sequences be represented by LA and L8.

In the second step, "sorting the two interleaved sequences" is performed. This scenario can be

viewed as that the two random input sequences, LA and LB, are preloaded in the array. In this case, an

efficient method to sort these two interleaved sequences is to sort these two sequences concurrently by the

trapezoid sort which will require 2x(rlOg211 + l)n+n compare-and-swap steps to complete the sorting.

However, these two sequences LA and LB are not random input sequences, since they have already been

sorted in some order. For example, for the sequence LA, if i is odd, the content in RA of PEj•j is no

10

11

40

41

26

27

12

13

38 36

39 37

Cd)

Figure 6.3. An example of the modified odd-even merge.

28

29

34

35

127

greater than the content in RA of PEj,j+2, and if i is even, the content in RA of PEj,j is no less than the

content in RA of PEj,j+2' Furthermore, LA (or Ln) itself is generated by two shuffied sorted sequences.

Let the two sorted sequences which fonn LA be represented as M 1 and M 2. Using the serial bubble

sort, the worst case scenario to sort LA is that the largest clement in M 1 is less than the smallest clement

in M 2, since M 1 and M 2 are shuffied to fonn LA and this case has the maximum distance (~) to move

an clement to its final position. This is also the worst case in the row-column sort which is implemented

128

based on the odd-even transposition sort The detail reasoning is in the following.

If the largest element in M 1 is less than the smallest element in M 2, then M 1 can be assumed to

have all zeros and the largest element of M 1 will be in PEn,n-l and M 2 can be assumed to have all

ones and the smallest element of M 2 will be in PE 1,2' In this situation, instead of using rlOg2Ll + 1

iterations of row-column sort followed by a row-sort, a single column-sort followed by a single row-sort

is sufficient to sort the sequence. We designate the operation of a single column-sort followed by a row-

sort as a singLe-coLumn-row sort. An example worst case of an 8x8 LA is shown in Fig. 6.4. Any

change of an element from 1 to 0 in make LA such that it is no longer a worst case should be performed

at PE 1,2 first. Similarly, any change of an element from 0 to 1 should be done at PEn,n-l first, since

M 1 and M 2 are two sorted sequences. As shown in Fig. 6.4, any change from 0 to 1 or 1 to 0 will not

increase the number of steps required to sort LA, that is, 2n steps of the odd-even transposition sort are

sufficient to sort the sequence LA' These 2n steps include n steps of compare-and-swap in the column-

sort and n steps of compare-and-swap in the row-sort. However, based on the fact that M 1 and M 2 are

interleaved to form LA, ~ steps are sufficient to clean a column in the column-sort since the maximum

distance required for any 0 or 1 to move to its final destination is ~ -1. Similarly, ~ steps in the fol-

lowing row-sort can clean every row after the column sort. We call this operation the

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

Figure 6.4. An example 8x8 LA.

129

reduced single -column-row sort to represent the fact that instead of using n steps of the odd-even

transposition sort for each of the column-sort and the following row-sort, only ~ steps are sufficient for

each.

In the third step, "merging of the two sorted sequences" is executed. This process is

implemented by two compare-and-swap steps as shown in Fig. 6.3(c). Since concurrent data

movements are allowed in the same direction only, the compare-and-swap step that compares

two neighbor processors in the same column can not be executed until the two neighbor proces-

sors in the same row finish sorting. It should be noted that in the original odd-even merge

method, another interleaving step is required between step 2 and step 3. However, for the

current application, this step can be combined with the merging operation and implemented

directly by comparing Rn of PEj,j with RA of PEj,j+l (Fig. 6.3(c)). In the following, we will

refer steps 1 to 3 as the modified odd -even merge procedure and the procedure merge sort

describes the process of sorting the two sets of inputs at the same time first and then, perform-

ing the modified odd -even merge.

Therefore, with one step to perform the interleaving operation, 11- + 11- steps to sort the
2 2

interleaved sequence, and two more steps to complete the merging, the two sorted sequences N 1

and N 2 can be merged as a sorted 2N-output sequence. Thus, instead of using

2x[2x(fIOg211+1)n+n] compare-and-swap steps to sort the 2N-input sequence based on the tra-

pezoid sort and the merge-split operation, only [2x(flOg211 + l)n+n]+n+3 steps are required by

the merge sort.

130

B. Sorting mN Inputs

In this subsection, the merge sort procedure will be further generalized to m input

sequences where m>2 and each sequence has N elements. In order to simplify the analysis, we

will assume that (1) instead of only two registers RA and Rn as in subsection A, there are m

registers, R 10 R 2 , ••• , Rm , in each processor (or each processor has a local memory that can store

m elements) and m is a power of two, (2) each processor can access its registers (or memory)

with the same speed, and (3) the mN inputs are equally distributed among processors.

Let an input sequence S with mN elements be represented as m N-element sequences. The

first sequence stored in R 1 registers of the processors is represented as Q 1, the second sequence

stored in R 2 registers is represented as Q2, ... , and the mth sequence stored in Rm registers is

represented as Qm. From the last subsection, we know that two sets of inputs can be sorted

concurrently and then merged together to form a sorted 2N-element sequence. Therefore, there

will be ; sorted 2N-element sequences generated after the first merge. These ; sequences

can be merged again based on the modified odd-even merge to form ~ sorted 4N-element

sequences, and so on until the sequence S is sorted. That is, the modified odd -even merge is

applied recursively to merge the m sorted sequences two at a time until all of them are merged.

The generalized merge sort and modified odd -even merge procedures are described in

Fig. 6.5 and Fig. 6.6, respectively. Let I S I represent the number of elements in the input

sequence S and it is equal to mN. (If I S I <mN, some values larger (smaller) than the largest

(smallest) entry in the array can be used to fill S.) If there are more than 2N input clements in

I S I, i.e., I S I >2N, the sequence S will be equally divided into two subsequences S 1 and S 2.

The subsequence S 1 which includes Q 1 to Q.!!!. will be sorted first by recursively calling the
2

131

Procedure Merge Sort (S);
begin

end

/* divide S into two subsequences, S 1 and S 2, of equal sizes */
S 1 = contents in R 1 registers through Rml2 registers of all processors; /* m = IS liN */
S 2 = contents in Rm/2+1 registers through Rm registers of all processors;
if IS I >2N then

else

begin

end

/* sort the two subsequences recursively one after another */
Merge Sort (S 1);
Merge Sort (S 2);
/* merge the two sorted subsequences S 1 and S 2 into a sorted sequence S */
Modified Odd-Even Merge (S);

begin

end

do in parallel
begin

end

Row-Column Sort (S 1);
Row-Column Sort (S 2);

/* merge the two sorted subsequences S 1 and S 2 into a sorted sequence S */
Modified Odd-Even Merge (S);

Figure 6.5. Merge sort procedure.

procedure and then followed by sorting the subsequence S2 which includes Q.E!.+l to Qm. After
2

the two subsequences are sorted, the procedure modified odd -even merge in Fig. 6.6 is used to

merge these two sorted subsequences.

If there are only 2N inputs, as described in subsection A, the procedure will completely

sort these 2N inputs. Since two sets of inputs can be sorted concurrently, two

Row-Column Sort processes are executed in parallel. The Row-Column Sort procedure can be

132

implemented by any of the row-column sort algorithms, and the trapezoid sort is used here

since it requires the least number of compare-and-swap steps. After each set of the data inputs

are sorted, the procedure modified odd -even merge again is performed to merge the two sorted

sets.

The modified odd -even merge procedure first interleaves (or shuffles) the two sorted

sequences to be merged. When implemented in a mesh-connected array, this step means that the

contents in Rml4+1 to Rml2 are exchanged with the contents in Rm/2+1 to R 3m14 • Thus, the

subsequence formed by Ql to Q.E!.. can be further decomposed into two sorted subsequences,
2

Q 1 to Q.E!.. and Q.E!..+l to Q.E!... Therefore, the modified odd -even merge can be executed again
4 4 2

to sort the two interleaved sequences in Q 1 to Q.E!.. and Q.E!..+l to Qm' separately. The function
2 2

Reduced Single -Column -Row Sort in Fig. 6.6, as described in subsection A, is implemented

by a column-sort with only ; steps followed by a row-sort with the same number of steps.

If m=2, the two sorted sequences to be merged are interleaved first, as shown in Fig.

6.3(a), and then follow the steps described in subsection A to merge them as a sorted 2N-output

sequence. An example of sorting 4N inputs is shown in Fig. 6.7. The random input sequence

with 4N inputs are sorted two subsequences at a time.

At the beginning, the two subsequences in R 1 registers and R 2 registers of all processors,

respectively, are sorted concurrently and merged into a sorted 2N-output sequence. Then the

next two subsequences in R 3 registers and R 4 registers are processed. Two sorted sequences,

S 1 and S 2, with 2N elements each are stored in the processor array as shown in Fig. 6.7(a).

The sequence S 1 consisting of 10, 11, 12, ... , 40, 41 is stored in R 1 and R 2 registers of all pro·

cessors and ordered by the merge sort in snake-like row major ordering. In the same way,

133

Procedure Modified Odd-Even Merge (S);
begin

end

/* divide S into two subsequences, S 1 and S 2, of equal sizes */
S 1 = contents in R 1 registers through Rml2 registers of all processors; /* m = f S f / N * /
S 2 = contents in Rml2+1 registers through Rm registers of all processors;
if f Sf> 2N then

else

begin

end

interleave S 1 and S 2; 1* as shown in Fig. 6.7(b) */
Modified Odd-Even Merge (S I);
Modified Odd-Even Merge (S 2);
merge the two sorted sequence S 1 and S2 into S; /* as shown in Fig. 6.7(d) */

begin

end

interleave the two sorted sequence SI and S2; /* as shown in Fig. 6.3(a) */
do in parallel

begin
Reduced Single-Column-Row Sort (S 1);
Reduced Single-Column-Row Sort (S2);

end
merge the two sorted sequence S 1 and S 2 into S; /* as shown in Fig. 6.3 (c) */

Figure 6.6. Modified odd-even merge procedure.

the sequence S 2 with 42, 43, ... , 73 is stored in R 3 and R 4 registers.

In the second step, "interleaving" (or shuilling) of the two sequences is performed as

shown in Fig. 6.7(b). By exchanging the contents in each pair of R2 and R 3 , the two sequences

in R 1 registers and R 2 registers can be viewed as two sorted sequences and the combination of

these two sequences is an interleaved sequence. An example of this interleaved sequence is

shown in Fig. 6.7(b) as 10, 42, 12, 44, ... , 38, 70, 40, 72.

134

In the third step, the modified odd -even merge procedure merges 2N elements. The con­

tents in R 1 registers and R 2 registers are interleaved again as the process in Fig. 6.3(a). Then

the contents in R 1 registers and R 2 registers are sorted by the modified column-row sort con­

currently and rearranged in snake-like row major order as the process in Fig. 6.3(c). Let these

two sorted sequences be represented as Ll and L 2. Ll and L2 are then merged to form a sorted

2N-output sequence. The ordered 2N-output sequence, 10, 12, 14, ... , 70, 72, is stored in the R 1

and R 2 registers of the processors. After L 1 and L2 have been merged, the same sorting and

merging process can be repeated on contents in R 3 and R 4 registers. Therefore, two sorted

sequences, 10, 12, ... , 72 and 11, 13, ... , 73 are stored in the array as shown in Fig. 6.7(c).

Finally, merging of these two sorted sequences is done by comparing (and exchange if neces­

sary) the contents in each pair of R 2 and R 3 with no interleaving required before merging.

(c) sort 2N

Figure 6.7. An example of sorting 4N inputs.

135

6.3. Analysis

Let T mN represent the number of modified compare-and-swap steps required to sort mN

inputs, i.e., the time complexity of the procedure merge sort, and CmN represent the time com-

plexity of the procedure modified odd -even merge. Then, from Fig. 6.5 and Fig. 6.6, we have

(6.1)

and

(6.2)

which implies

(6.3)

The first ; in (2) represents the number of exchange steps (it should be noted that the amount

of time required by an exchange step is less than that of a compare-and-swap step) required to

exchange the contents in Rml4+1 through Rm/2 with the contents in Rml2+1 through R 3m14 ,

respectively. An example is shown in Fig. 6.7(b). Since m=4, one step is required to exchange

the content in R2 with that in R 3• The second ; in (2) represents the number of compare-

and-swap steps required in the last merging step (as shown in Fig. 6.7(d» to compare and

exchange the contents in Rml4+1 through Rml2 with the contents in R m12+1 through R 3m14 ,

respectively. If there are only 2N inputs, from section 6.2 we know that two sets of data can be

processed concurrently by the mesh-connected processors array and therefore,

TN=2(rIOg2z1+1)n+n and CN= ~ + ~,

This implies that

136

When n is large and m <t::.n, we have

TN~log2m·CN~m·log2m

since 2(llog2 ll+l)n+n>>n·log2m. Also we know that T 2N=TN+CN and therefore,

m m
T mN = 2(T ~ N+C ~) = 2x[T 2N+(log2m - 1)-C 2N] = 2x[TN+(log2m - l)·CN]. (6.5)

That is, instead of an O(mlog2m)·TN time complexity to sort mN data inputs with the "merge-

split" operation, only 0 (;)-(TN+n·log2m) (TN>n·log2m) time complexity is sufficient to sort

mN data inputs by the modified odd -even merge procedure. Therefore, we have achieved an

0 (log2m) order improvement.

The proposed method can be modified by replacing the Row-Column Sort procedure in

Fig. 6.5 with any sorting algorithm for the mesh-connected processors array. However, the data

movements in these algorithms are not as simple as those in the class of row-column sort algo-

rithms and thus, complex control schemes are required in these algorithms to synchronize the

data movements in order to sort two sets of data inputs. To reduce the complexity of the con-

trol scheme, the "do in parallel" operation is Fig. 6.5 can be replaced by two consecutive opera-

tions and thus, T2N = 2TN+C2N and C2N = CN+3. Therefore, the time complexity required to

sort m sets of N data inputs is

(6.6)

which is about twice the time complexity when two sets of data inputs are sorted concurrently.

137

6.4. Summary

A novel merge sort method for the mesh-connected processor arrays is presented in this

chapter. Instead of an O(mlog2m)TN time complexity to sort mN input elements by the previ-

ous merge-split operation, only 0(;)TN time complexity is sufficient to sort mN random

inputs where TN is the time complexity of the row-column sort algorithm. Therefore, we have

achieved an 0 (log 2m) order of improvement in time complexity to sort mN inputs. Other

advantages of the proposed method include the simplicity of the architecture and efficient data

movements with only ncar-neighbor communications. Therefore, it is very suitable for sorting

more than two sets of input elements in mesh-connected processor arrays.

138

CHAPTER 7.

CONCLUSIONS

7.1. Summary and Discussions

Many applications in real-time digital signal and image processing need a high perfor­

mance parallel computer. Parallel sorting algorithms for two-dimensional mesh-connected pro­

cessor arrays including efficient implementations of these sorting algorithms in two-dimensional

VLSI models have been intensively studied. Due to the availability of VLSI and WSI technolo­

gies at a reasonable cost, use of special purpose architecture for parallel sorting on a huge

amount of input data has become attractive recently.

In chapter 2, I have presented a highly reliable sorting array. It can detect multiple

errors and correct a single error for on-line applications. As a systolic sorting array based on

the odd-even transposition sort, it has a regular structure and simple interconnection links. Both

the regularity and the simplicity of the odd-even transposition sorting array are preserved by the

presented fault tolerance technique so that redundancy can fit into the system nicely, either to

enhance the system performance or to replace the faulty elements. In addition, it can be

reconfigured easily to tolerate the faulty sorting elements located by the on-line fault diagnosis

procedure and can be degraded gracefully after redundancy is exhausted. Also, I discovered an

important robust property of the odd-even transposition sorting array in which a single error can

be masked automatically and multiple errors can be detected concurrently without disturbing the

normal circuit operation. Therefore, extra cost incurred by bringing in fault tolerance features

139

can be minimized by exploiting the inherent properties of the embedded sorting algorithm.

According to the analysis in section 2.6, hardware overhead for fault tolerance i·sabout

(54+c)/14N and only 3 clocks delay is incurred in the pipeline. Since the sorting array is two­

level pipelined and all the checkers are implemented to be fault secure or totally self-checking,

it is well applicable to real-time applications which require high throughput as well as high reli­

ability. The error detection techniques in this dissertation can be applied to sorting arrays based

on other sorting algorithms with either two-level pipelined or bit-level serial structure.

Due to the large area and the processing technology limitation, defects seems unavoidable

in WSI implementation. Therefore, the networks need to have defect tolerance capabilities. A

novel hierarchical modular sorting network (HMSN) is presented in chapter 3. Since it is a

comprise between the simple communication scheme of the odd-even transposition sort and the

fast convergent speed of the bitonic sort, it has a good area-time performance. It uses less

hardware and converges faster than a single-level odd-even transposition sorter and the wire

complexity problem of the bitonic sorter in VLSI or wsr is alleviated. Networks with regular

interconnections have been shown to be equivalent to the bitonic network and used to replace it.

Spare sorting elements are incorporated in every level of the hierarchy and they not only can

replace defective sorting elements in the corresponding level but also can be used to correct

run-time errors. Detailed yield analysis is performed on the hierarchical sorting networks.

Yield improvements for cases with various number of spares are evaluated. The simulation

results show that the defect tolerant HMSN achieves a significant yield increase over a non­

redundant sorting network.

In chapter 4, a new two-dimensional sorting algorithm, the trapezoid sort was presented.

It is an improved algorithm over time complexity for sorting on two-dimensional SIMD arrays.

140

In addition, it preserves the properties of simple control hardware and ease of implementation of

the row-column sort, and the complexity is improved to f10g211+1 iterations with l={ii for an

n x n processor array. Like the "parallel bubble sort" of Sado and Igarashi and the "shear sort"

of Scherson and Sen, the "trapezoid sort" is suboptimal for this architecture. However, the

justification of the algorithm is on the simplicity of its data movements. The complicated data

movements in mapping bitonic sort arise if O(n) performance is attempted.

In chapter 5, several properties for the trapezoid sort were derived. The relationship

between two rows in the array after each iteration of the trapezoid sort are derived based on the

{O-I} principle. The relationship between the numbers of maximum dirty rows generated by

input sequences with arbitrary number of zeros is also obtained. These results are then used to

derive a more efficient method to find the kth-smallest value on mesh-cormected processor

arrays. The proposed method not only preserves the properties of the row-column sort such as

simple control hardware and ease of implementation but also has less time complexity that

approximately ! n processing steps are reduced in the first column-sort after the second itera­

tion and the remaining steps will be reduced further by half after every successive iteration.

A novel merge sort method for the mesh-connected processor arrays was also presented in

this chapter. Instead of an 0 (mlog2m)TN time complexity to sort mN input elements by the

previous merge-split operation, only 0(;)TN time complexity is sufficient to sort mN random

inputs where TN is the time complexity of the row-column sort algorithm. Therefore, we have

achieved an 0 (log 2m) order of improvement in time complexity to sort mN inputs. Other

advantages of the proposed method include the simplicity of the architecture and efficient data

movements with only ncar-neighbor communications. Therefore, it is very suitable for sorting

141

more than two sets of input elements in mesh-connected processor arrays.

7.2. Suggested Future Research

In this dissertation, I have concentrated on the developments of fault-tolerant VLSI sys­

tolic sorting arrays, defect-tolerant WSI sorting networks as well as sorting and merging algo­

rithms on two-dimensional mesh connected processor arrays. Suggested future research issues

include: (1) in addition to the analysis method, gate-level simulation can be perfonned to evalu­

ate the actual fault coverage of the fault-tolerant systolic sorting array, (2) optimization in tenns

of the number of sorting elements in each level of the hierarchical modular sorting network may

be generalized to a flexible HMSN which has more than three levels, and (3) in addition to

using the merge-split method, the trapezoid sort algorithm can be further extended to k­

dimensional mesh-connected processor arrays based on the modified odd-even merging algo­

rithm.

142

APPENDIX A.

NETWORK TRANSFORMATION

Before we derive equivalent networks, some definitions based on those proposed by Wu

and Feng [73] are introduced first. The physical names (or notations) for components inside an

interconnection network T are defined as follows: (1) The stages in T are labeled from 0 to 1=

log2N - 1. (2) The levels of links are labeled from 1 to I. (3) In a stage, each sorting element is

denoted by binary bits PI... PI representing its location in the stage and a link connected to the

sorting element is represented by PI ... PIP 0 where Po = 0 for the link connected to the top

input and Po = 1 for the link connected to the bottom input of the sorting element. The

configuration of an interconnection network T is described by its describing rules.

THEOREM 1: A sorting block interconnected as a modified data manipulator is function-

ally equivalent to a sorting block interconnected as an Omega network.

PROOF: The topology equivalence between the Omega network and the modified data

manipulator was shown in [73, 10] where the mapping function 'Yi was derived as:

'Yi[(PIPI-1 ... Pl);]=(PI-i'" PIPIPI-l .. , PI-i+l)i.

To further prove that these two networks are functionally equivalent, we exploit the property

that if the input lines i and j from stage k-l are processed by sorting element (PI." PI) in stage

k of the Omega network, they will be processed by 'Yk(P1 ... PI) for k=O to n-l in the modified

data manipulator. The reason why k is from 0 to I=n -1 instead of from 0 to I-I as for i, is that

now we are considering the mapping of sorting elements but not the output links from it. Since

143

YiPI ... P 1) = PI-k ... PI PI .. · PI-k+l,

YO[(PIPI-l ... Pl)]=(PIPI-l .,. P2Pl), Yl[(PIPI-l'" Pl)]=(PI-IPI-2'" PIPI),

.. ',Y/[(PIPI-l ... Pl)]=(PIPI-l ... P2Pl)·

The logical names of the input and output tenninals in a modified data manipulator are the

same as the physical names. This means the corresponding positions of the sorting elements in

input and output tenninals of the modified data manipulator are the same as those of the Omega

network. 0

144

APPENDIX B.

PERMUTATION TRANSFORMATION

Let a sequence A = {O, 1, ... , 2n_l} (N = 2n) be represented by Pn-l ... Po, and let t, cr

be two permutations of A.

DEFINITION 1: The shuffle permutation cr is defined as cr : A ~ A wilh cr(Pn-l ... Po) = Pn-2

Pn-3 ... P 1 Po Pn-l·
o

DEFINITION 2: The permutation t is defined as t : A ~ A with t(pn-l ... Po) = Pn-! .. , Po if

Po = 0 and t(pn-l ... Po) = Pn-l Pn-2 ... PI Po if Po = 1.
o

DEFINITION 3: The Banyan permutation r is formed by setting all switching clements in lhe

Banyan's interconnection network (lhis network can be viewed as a reverse network of lhe modified data

manipulator in network topology) in straight connection states (see Fig. 3.5(b».
o

DEFINITION 4: The 'I' permutation is formed by setting a switching element in lhe modified data

manipulator eilher in straight or in exchange state. The switching elements in stage i (i=O to n- I) with

positions represented by Pn-l ... PI, will be in exchange state (Pn-l PI Po= Pn-l PI Po) if

Pn-iPn-i-l =01 or 10, or in straight state (Pn-l PI Po= Pn-l PIP 0) if Pn-iPn-i-l =00 or 11. 0

It should be noted that the topology describing rules only describe which switching ele-

ments in stage i + I receive the outputs from switching elements in stage i. These rules do not

describe whether the outputs should connect to the top input part or the bottom input part of a

switching element. This is different from the permutation function which precisely describes

145

the link. connections between two stages. Therefore, a pennutation function has arguments from

Pn-l to Po and a describing rule has arguments only from Pn-l to P 1.

THEOREM 2: The shuffle pennutation cr is topologically equivalent to the Banyan pennu­

tation r.

PROOF: Let N be the number of inputs and Pn-l Pn-2 ... Po represent links for each input, where

n=log2N. Also let cr(Pn-l Pn-2 ... Po) represent a shuffie pennutation function applied to links Pn-l ...

Po, and ri(Pn-l ... Po) represent the pennutation function of the Banyan switching network at the i-th

level (l~i<n-l).

From the network topology we know that cr(pn-l ... PO)=Pn-2 Pn-3 ... Po Pn-l and the per­

mutations of the Banyan network can be described as ri(Pn-l ... PO)=Pn-l ... Pi+l Po Pi-l ... PI

Pi. We have

Po)··· »=rn-l(rn-2('" (r2(Pn-l Pn-2 .,. P2 Po PI)" .»

=rn-l (rn-2(... (r3(Pn-l ... P3 PI Po P2) ... »

=Pn-2 Pn-l .. , Po Pn-l

=cr(pn-l ... Po)· o

THEOREM 3: The 't pennutation (Fig. 3.6(a» is topologically equivalent to 'II pennuta­

tion (Fig. 3.6(b».

PROOF: Let N be the number of inputs, Pn-l ... PI Po represent links for each input where

n=log2N , 't(pn-l Pn-2 ... Po) represent a 't pennutation function applied to links Pn-l ... Po, and

'IIi(Pn-l ... Po) represent the i-th level pennutation function of the modified data manipulator.

From the network topologies we know that the pennutation function for each network can

be described as follows :

146

't(pn-l ... PO)=Pn-l Pn-2 ... Po if Po=O, and Pn-l ... PI if Po=1.

'l'i(Pn-l ... PO)=Pn-l ... Pn-i+l Po Pn-i-l ... PI Pn+

A switching element in stage i (i=0 to n-l), with position represented by Pn-l ... P It will

be either in exchange state (Pn-l PI Po= Pn-l PI Po) or in straight state (Pn-I PI Po=

Pn-l PI Po) depending on the switch control function Si(Pn-I ... PI Po). If Pn-iPn-i-I=OO or

11, the corresponding element will be in the straight state, otherwise it will be in exchange

state. For i=O or n-l, these two functions will depend only on Pn-l and P It respectively. We

have

S I ('!II (Pn-I,I Pn-2 ... Po) ... »

Pn-l) ... » ...

=PO,O Pn-I,O Pn-2,O ... P3,O P2,O P 1,0 + PO,l Pn-I,O Pn-2,O ... P2,O P 1,0 + Po,O Pn-I,O ... P3,O P2,O

Pl,l + PO,l Pn-l,O Pn-2,O ... P3,O P2,O Pl,l + ... + Po,o Pn-l,l Pn-2,l ... P2,l PI,I + PO,l Pn-l,1

- -Pn-2,l ... P2,l P 1,1

The notation Pn-l,O Pn-2 ... Po means that a switch with location representation Pn-I =0

will be in bypass state, and Pn-l,I Pn-2 ... Po means that a switch will be in exchange state if

Pn-l =1.
o

147

REFERENCES

[1] M. J. Foster and H. T. Kung, "The design of special-purpose VLSI chips," Computer., vol. 13,
pp.26-40,Jan.1980.

[2] D. J. Kuck and R. A. Stokes, "The Burroughs scientific processor (BSP)," IEEE Trans.
Comput., vol. c-31, pp. 363-376, May 1982.

[3] K. Hwang, P. -So Tseng, and D. Kim, "An orthogonal multiprocessor for parallel scientific
computations," IEEE Trans. Comput., vol. c-38, pp. 47-60, Jan. 1989.

[4] C. D. Thompson, "The VLSI complexity of sorting," IEEE Trans. Comput., vol. c-32, pp.
1171-1184, Dec. 1983.

[5] D. E. Knuth, The art of computer programming - searching and sorting. Reading, MA:
Addison-Wesley, 1973.

[6] K. E. Batcher, "Sorting networks and their applications," Proc. AFlPS Conf., vol. 32, pp. 307-
314, 1968.

[7] H. S. Stone, "Parallel processing with the perfect shuille," IEEE Trans. Comput., vol. c-20, pp.
153-161, Feb. 1971.

[8] H. T. Kung, "Why systolic architectures?," Computer, vol. 15, pp. 37-46, Jan. 1982.

[9] S. Horiguchi and Y. Shigei, "Wiring space complexity of systolic array," Proc. Int. Workshop
on Systolic Array, pp. 1-10, 1986.

[10] S. Horiguchi, "Systolic sorter for WSI implementation," Int. Con. on Wafer Scale Integration,
pp. 151-160, 1989.

[11] G. Bilardi and F. P. Preparata, "An architecture for bitonic sorting with optimal VLSI
perfonnance," IEEE Trans. Comput., vol. c-33, pp. 646-651, July 1984.

[12] D. A. Rennels, "Fault-tolerant computing - concepts and examples," IEEE Trans. Comput., vol.
c-33, pp. 1116-1129, Dec. 1984.

[13] K. -L. Wu, W. K. Fuchs, and J. H. Patel, "Error recovery in shared memory multiprocessors
using private caches," IEEE Trans. Parallel and Distr. Sys., vol. Vol. 1, pp. 231-240, April
1990.

[14] C. D. Thompson and H. T. Kung, "Sorting on a mesh-connected parallel computer," Commun.
Ass. Comput., vol. 20, pp. 263-271, Apr. 1977.

[15] D. Nassimi and S. Sahni, "Bitonic sort on a mesh-connected parallel computer," IEEE Trans.
Comput., vol. c-27, pp. 2-7, Jan 1979.

[16] M. Kumar and D. S. Hirschberg, "An efficient implementation of Batcher's odd-even merge
algorithm and its application in parallel sorting schemes," IEEE Trans. Comput., vol. c-32, pp.
254-264, Mar. 1983.

[17] K. Hwang and F. A. Briggs, Computer architecture and parallel processing. McGraw Hill,
1984.

148

[18] C. P. Schnorr and A. Shamir, "An optimal sorting algorithm for mesh-connected computer,"
Proc. 18th ACM Symp. Theory Comput., pp. 255-261, Jan 1986.

[19] K. Sado and Y. Igarashi, "Some parallel sorts on a mesh-connected processor array and their
time efficiency," Journal of Parallel and Distribut. Comput., vol. 3, pp. 398-410, 1986.

[20] I. D. Scherson, S. Sen, and A. Shamir, "Shear sort: a true two-dimension sorting technique for
VLSI networks," International Conference on Parallel Processing, pp. 903-908, 1986.

[21] I. D. Scherson and S. Sen, "Parallel sorting in two-dimension VLSI models of computation,"
IEEE Trans. Comput., vol. c-38, pp. 238-249, Feb. 1989.

[22] U. Schwiegelshohn, "A shortperiodic two-dimensional systolic sorting algorithm ," IEEE
International Conference on Systolic Arrays, pp. 257-264, 1988.

[23] Y. -H. Choi and M. Malek, "A fault-tolerant systolic sorter," IEEE Trans. Comput., vol. c-37,
pp. 621-624, May 1988.

[24] C. E. Leiserson, "Systolic priority queues," Proc. Caltech Con/. VLSI, pp. 199-224, Jan. 1979.

[25] A. C. Yao and F. F. Yao, "On fault-tolerant networks for sorting," SIAM J. COMPUT., vol. 14,
pp. 120-128, Feb. 1985.

[26] L. Rudolph, "A robust sorting network," IEEE Trans. Comput., vol. c-34, pp. 326-335, Apr.
1985.

[27] J. Sun, J. Gecsei, and E. Cerny, "Fault-tolerance in balanced sorting networks," Journal of
Electronic Testing: Theory and Applications., vol. I, pp. 31-41, 1990.

[28] C. S. Kayvan, E. D. Goodman, and M. A. Shanblatt, "A concurrent error detection and
correction algorithm for fault-tolerant VLSI arithmetic array processors," Proc. Phoenix Con/. on
Computer and Communication, pp. 688-694, Feb. 1986.

[29] R. J. Cosentino, "Concurrent error correction in systolic architectures," IEEE Trans. CAD., vol.
7, pp. 117-125, Jan. 1988.

[30] J. H. Patel and L. Y. Fung, "Concurrent error detection in ALU's by recomputing with shifted
operands," IEEE Trans. Comput., vol. c-31, pp. 589-595, July 1982.

[31] H. T. Kung and M. S. Lam, "Fault-tolerance and two level pipelining in VLSI systolic arrays,"
MIT Con/. on Advanced Research in VLSI, pp. 74-83, 1984.

[32] K. Ollazcr, "Design and implementation of a single-chip I-D median filter," IEEE Trans.
Accoust. Speech, Signal Processing, vol. Assp-28, pp. 1164-1168, Oct. 1983.

[33] H. oW. Lang, M. Schimmler, H. Schemeck, and H. Schroder, "Systolic sorting on a mesh­
connected network," IEEE Trans. Comput., vol. c-34, pp. 652-658, July 1985.

[34] S. H. Hosseini , "On fault-tolerant structure, distributed fault-diagnosis, reconfiguration, and
recovery of the array processors," IEEE Trans. Comput., vol. c-38, pp. 932-942, July 1989.

[35] U. Manber, Introduction to algorithms. Reading, MA: Addison-Wesley, 1989.

[36] J. J. Shedletsky, "Error correction by alternate data retry," IEEE Trans. Comput., vol. C-25, pp.
106-117, Feb. 1978.

[37] Y. -H. Choi and M. Malek, "A fault-tolerant FFT processor," IEEE Trans. Comput., vol. c-37,
pp. 617-621, May 1988.

[38] B. W. Johnson, Design and analysis of fault tolerant digital systems. Reading, MA: Addison
Wesley, 1989.

149

[39] K. -H. Huang and J. A. Abraham, "Algorithm-based fault tolerance for matrix operations," IEEE
Trans. Comput., vol. c-33, pp. 297-311, June 1984.

[40] W. S. Song and B. R. Musicus, "A fault-tolerant architecture for a parallel digital signal
processing machine," Proc. International Con/. on Computer Design, pp. 385-390, 1987.

[41] J. -Yo Jou and J. A. Abraham, "Fault-tolerant FFf networks," IEEE Trans. Comput., vol. c-37,
pp. 297-311, May 1988.

[42] S. Lin and D. J. Costello, Error control coding: fundamental and applications. Englewood
Cliffs, NJ: Prentice-Hall, 1983.

[43] D. K. Pradhan and etc. and D. K. Pradhan and etc., and J. P. Hayes, Computer architecture and
organization. Englewood Cliffs, NJ: McGraw Hill, 1984.

[44] T. R. N. Rao and E. Fujiwara, Error-control coding for computer systems. Eilglewood Cliffs,
NJ: Prentice-Hall, 1989.

[45] J. M. Berger, "A note on error detection codes for asymmetric channels," Informat. Contr., vol.
4, pp. 68-73, Mar. 1961.

[46] J. F. Wakery, Error detecting codes. self-checking circuits and applications. New York: North­
Halland, 1978.

[47] T. R. N. Rao, Error coding for arithmetic processors. New York: Academic Press, 1974.

[48] H. Dong, "Modified Berger codes for detection of unidircction errors," IEEE Trans. Comput.,
vol. c-33, pp. 572-575, June 1984.

[49] W. C. Carter and P. R. Schneider. "Design of dynamically checked computers," Proc. IFIP-68,
pp. 878-883, Aug. 1968.

[50] M. A. Marouf and A. D. Friedman, "Design of self-checking checkers for Berger codes," Proc.
8th Annu. Symp. on Fault-Tolerant Computing, pp. 179-184, June 1978.

[51] M. J. Ashjaee and S. M. Reddy, "On totally self-checking checkers for separable codes." IEEE
Trans. Comput., vol. c-26, pp. 737-744, Aug. 1977.

[52] D. Nikolos, A. M. Paschalis, and G. Philokyprou, "Efficient design of totally self-checking
checkers for all low-cost arithmetic codes," IEEE Trans. Comput., vol. c-37, pp. 807-814, July
1988.

[53] Z. Kohavi, Switching and finite automata theory. New York: McGraw-Hill Publishing Company,
1978.

[54] S.-C. Liang and S.-Y. Kuo, "Fault-tolerant VLSI systolic median filters ," Proc. Fourth Annu.
Parallel Processing Symp., 1990.

[55] L. R. Rabiner, M. R. Sambur, and C. E. Schmidt, "Applications of a nonlinear smoothing
algorithm to speech processing," IEEE Trans. ACCOUSI .• Speech. Signal Processing, vol. ASSP-
23, pp. 552-557, Dec. 1975.

[56] E. Ataman, V. K. Atre, and K. M. Wong, "A fast method for real time median filtering," IEEE
Trans. Accoust. Speech. Signal Processing, vol. Assp-28, pp. 415-421, Aug. 1980.

[57] I. Pitas, "Fast algorithms for running order and max/min calculation," IEEE Trans. Circuit and
Systems, vol. c-36, pp. 795-804, June 1989.

[58] D. S. Richards, "VLSI median filters," IEEE Trans. Accoust. Speech. Signal Processing, vol.
Assp-38, pp. 145-153, Jan. 1990.

[59] D. Nicolas, J. Francis, S.-P. Marc, and D. Michel, "VLSI architecture for a one chip video
median filter," IEEE Int. Con/. Accoust .• Speech and Signal Proc., vol. 3, pp. 1001-1004, 1985.

150

[60] H. Schmeck, H. Schroder, and C. Strake, "Systolic s2-way merge sort is optimal," IEEE
Trans. Comput., vol. c-38, pp. 1052-1056, July 1989.

[61] L. Snyder, "Introduction to the configurable, highly parallel computer," IEEE Computer, vol. 15,
pp.45-56,Jan.1982.

[62] R. Negrini, M. Sami, and R. Stefanelli, "Fault tolerance techniques for array structures used in
supercomputing," IEEE Computer, pp. 78-87, Feb. 1986.

[63] M. Dowd, Y. Perl, and M. Saks, "The balanced sorting network," Proc. ACM Princ. Distrib.
Comput., pp. 161-172, 1983.

[64] N. Weste and K. Eshraghian, Principles of CMOS VLSI design - a system perspective. Reading,
MA: Addison-Wesley, pp.424-448.

[65] K. Padmanabhan and D. H. Lawrie, "A class of redundant path multistage interconnection
networks," IEEE Trans. Comput., vol. c-32, pp. 1099-1108, Dec. 1983.

[66] N.-F. Tzeng, P.-C. Yew, and C.-Q. Zhu, "A fault-tolerant scheme for multistage interconnection
networks," Sym. Comput. Architecture, pp. 368-375, 1985.

[67] D. K. Pradhan and etc. and D. K. Pradhan and etc., and J. P. Hayes, Computer architecture and
organization. Englewood Cliffs, NJ: McGraw Hill, 1984.

[68] A. Menn, G. B. Adams III, D. P. Agrawal, and H. J. Siegel, "Fault-tolerant multistage
interconnection networks," IEEE Computer, pp. 14-27, June 1987.

[69] M. S. Algudady, C. R. Das, and W. Lin, "Fault-tolerant task mapping algorithms for MIN-based
multiprocessors," Proc. International Conference on Parallel Processing, 1990.

[70] S.-C. Liang and S.-Y. Kuo, "Defect tolerant sorting networks for WSI implementation," Int.
Con. on Wafer Scale Integration, pp. 131-137, 1990.

[71] G. Bilardi, "Merging and sorting networks with the topology of the Omega network," IEEE
Trans. Comput., vol. c-38, pp. 1396-1403, Oct. 1989.

[72] S. Horiguchi, "Fault tolerance performance of WSI systolic sorter," Int. Con. on Wafer Scale
Integration, pp. 196-202, 1990.

[73] C. L. Wu and T. Y. Feng, "On a class of multistage interconnection network," IEEE Trans.
Comput., vol. c-29, pp. 694-702, Aug. 1980.

[74] S.-C. Liang and S.-Y. Kuo, "Concurrent error detection and correction in real-time systolic
sorting arrays," Proc. 20th Annu. Symp. on Fault-Tolerant Computing, 1990.

[75] M. Wang, M. Cutler, and S. Y. H. Su, "Reconfiguration of VLSI/WSI mesh array processors
with two-level redundancy," IEEE Trans. Comput., vol. c-38, pp. 547-554, Apri11989.

[76] C.H. Stapper, F.M. Armstrong, and K. Saji, "Integrated circuit yield statistics," Proceedings of
the IEEE, vol. 71, pp. 453-470, Apri11983.

[77] P. Franzon, "Yield modeling for fault tolerant VLSI arrays," The First Int. Workshop on Systolic
Arrays, pp. 207-216, July 1986.

[78] T. E. Mangir and A. Avizienis, "Fault-tolerant design for VLSI: effect of interconnect
requirements on yield improvement of VLSI designs," IEEE Trans. Comput., vol. c-31, pp.
609-615, July 1982.

[79] G. H. Barnes and et aI. , "The ILLIAC IV computer," IEEE Trans. Comput., vol. c-17, pp.
746-757, 1968.

151

[80] S.-Y. Kuo and S.-C. Liang, "Efficient parallel sorting and merging algorithms for two­
dimensional mesh-connected processor arrays," will be published by International Conference on
Parallel Processing, 1991.

[81] T. Leighton, "Tight bounds on the complexity of parallel sorting ," IEEE Trans. Comput., vol.
c-34, pp. 344-354, Apr. 1985.

[82] B. Parker and I. Parberry, "Constructing sorting networks from k-sorters ," Information
Processing Letters, vol. 33, pp. 157-162, Nov. 1989.

[83] J. W. Tukey, Exploratory data analysis. Reading, MA: Addison-Wesley, 1977.

[84] T. S. Huang, Two-dimensional digital signal processing. New York: Springer Verlag, 1981.

[85] I. Scollar, B. Weidner, and T. S. Huang, "Image enhancement using the median and the
interquartile distance," Computer Vision. Graphics. and Image Processing, vol. 25, pp.236-251,
1984.

[86] H. A. David, Order statistics. New York: Wiley, 1980.

[87] I. Miller and J. E. Freund, Probability and statistics for engineer. Englewood Cliffs, NJ:
Prentice-Hall, 1985.

