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ABSTRACT 

In this dissertation, a novel approach to on-line error detection and correction for high 

throughput VLSI sorting arrays is presented first. Two-level pipelining is employed in the 

design which makes the proposed VLSI sorting array very efficient and suitable for real-time 

applications. In addition, all the checkers are designed as totally self-checking circuits such that 

the resulting sorting array is extremely reliable. 

Next, in order to overcome the yield problem in WSI implementations a novel hierarchical 

modular sorting network is presented. This design is based on the tradeoITs in area and time 

between the odd-even transposition sort and the bitonic sort. More regularly structured 

equivalent sorting networks are introduced by replacing shuffle interconnections in the original 

sorting network with easily reconfigurable interconnections. Redundancy is provided at every 

level of the hierarchy. Hierarchical reconfiguration is implemented by replacing the defective 

cells with spare cells at the bottom level first, and goes to the next higher level. Yield analysis 

is performed to demonstrate the effectiveness of our approach. 

Efficient implementation of parallel sorting algorithms for mesh-connected processor 

arrays are also considered in this dissertation. The trapezoid sort which has the properties of 

very simple control hardware and ease of implementation for mesh-connected processor arrays 

is developed. This algorithm is a combination of recursively sorting elements of two neighbor 

rows into opposite directions, sorting elements in each column, and a cyclic shift after the first 

row sort to rearrange the output order of each row. Its advantage is that the number of itera­

tions is improved significantly compared with the existing parallel sorting algorithms on mesh-
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connected processor arrays. 

Based on this algorithm, an efficient method is proposed to find the median value of the 

input elements. The elements outside the boundary are excluded from the remaining sorting 

process to reduce the time complexity and the median value can be found without completely 

sorting the array. This method is then extended to finding the kth smallest element in the input 

array. 

Finally, if the number of clements to be sorted is larger than N, the trapezoid sort algo­

rithm can not be applied directly. Therefore, a modified odd -even merge procedure is 

presented to merge m sorted input sets. The modified odd-even merge procedure can sort two 

sets of data inputs concurrently by utilizing the idle processors and then merge them together. 

A speedup of 0 (log2m) over the previous merge-split method is achieved. 
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CHAPTER 1. 

INTRODUCTION 

1.1. Objective 

Many applications in real-time digital signal and image processing need a high perfor­

mance and special purpose architecture for parallel sorting on a huge amount of input data 

[1,2,3]. Sorting arrays which consist of a number of identical processing elements with re!:,rular 

interconnections and high concurrency factors [4], such as the odd-even transposition sort [51. 

the bitonic sort [6], and the perfect shuffle sort [7], are good candidates for real-time applica­

tions. Use of these arrays has become attractive mainly due to the availability of VLSI and 

WSI technologies at a reasonable cost. 

Studies by Kung [8] indicate that both regular cell structures and simple interconnections 

will dominate the cost in VLSI or WSI implementations. Also by considering the ratio (Aw/At) 

of the wiring space to the total area as a function of the number of inputs, Horiguchi [9.10] 

showed that the Aw/At ratio is approximately one for the perfect shuffle SOlt or the bitonic sort 

and is a constant 0.1 for the mesh connected odd-even sort when the number of inputs N is 

large. 

Therefore, although both the perfect shuffle sort and the bitonic sort use less sorting cle­

ments (O(Nlog2
2N») than the odd-even transposition sort (O(N 2 )) [11], the wiring complexities 

of the first two sorters make them more costly to implement than the odd-even sort since. for 
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large N, the wiring space will dominate the silicon area. This is why the more regularly struc­

tured odd-even transposition sort is a better candidate for VLSI implementations than other 

parallel sorting algorithms. 

In addition to the area-time perfonnance, reliability, availability, and continuous operation 

are important in real-time applications [12,13]. Also, the defect tolerance capability (yield), the 

capability of a system to survive from defects, is also very important in manufacturing. In order 

to increase the system reliability and availability, a highly reliable sorting array which can 

detect multiple errors and correct a single error for on-line applications is presented. Further­

more, due to the large area and the processing technology limitation, defects seems unavoidable 

in VLSI and WSI implementation. Therefore, the sorting array needs to have defect tolerance 

capabilities. In this dissertation, we also present a novel hierarchical modular sorting network 

(HMSN) which is based on the tradeoffs between the simple communication scheme of the 

odd-even transposition sort and the fast convergent speed of the bitonic sort. Spare sorting cle­

ments are incorporated in every level of the hierarchy so that it can survive from defects in an 

efficient way. 

Moreover, parallel sorting algorithms for two-dimensional mesh-connected processor 

arrays also have been intensively studied in [14,15,16,17] and more recently, in 

[18,19,20,21,22]. These earlier efforts were adaptations of inherently parallel algorithms such 

as the odd-even merge sort and the bitonic sort to the mesh-connected array in an efficient 

manner such that the time complexity is D(n). However, these implementations spend most of 

the time in routing data to appropriate processors, and the complicated data movements in suc­

cessive iterations result in complicated control structures and thus, offset the advantage of sim­

ple interconnections. 
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Recently, Sado and Igarashi [19], and Scherson and Sen [21] presented two similar paral­

lel sorting algorithms independently, the parallel bubble sort and the shear sort, respectively, for 

two-dimensional SIMD model. These sorting algorithms are based upon a repeated application 

of the bubble-sort method [5] to the rows and columns of the array to be sorted. They are 

indeed two-dimensional sorting techniques and have the advantages that it is extremely simple 

to implement them in any of the two-dimensional computing models and their control complex­

ity is reduced considerably due to their repetitive and nonrecursive nature. However, they have 

a drawback that rlOg2nl+1 iterations are required to sort an n x n input array. 

In this dissertation, we present a new two-dimensional sorting algorithm, the 

trapezoid sort, which preserves the properties of simple control hardware and ease of imple-

mentation of the row-column sort, and the complexity is improved to f10g211+1 iterations 

with l~. This will algorithm can be used to find the kth smallest value of the inputs without 

the input sequence being completely sorted. Reduction on processing steps also means reduc­

tion in silicon area when the algorithm is implemented as a VLSI sorting network. However, 

the algorithms discussed above were designed to sort N = nXn inputs only, where N is the 

number of processors in the mesh array. If the number of elements to be sorted is larger than 

N, they can not be applied directly. To overcome this, the method in [14,21] uses the merge­

split operation to replace the compare-interchange (or compare-and-swap in this paper) opera­

tion and 0 (mlog2m)T N time complexity is required to sort mN inputs where TN represents the 

time complexity to sort N inputs. Although that method is simple, it is not efficient. A novel 

modified odd -even merge method is proposed in this dissertation which can merge m sorted 

sets in 0(; ·log2m)n time complexity. The other advantage of the proposed method is that it 

is quite simple and regular. 
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1.2. Overview of the Fault-Tolerant Systolic Sorting Arrays 

In chapter 2, a novel approach to on-line error detection and correction for high 

throughput VLSI sorting arrays is presented. The error model is defined at the sorting element 

level and errors generated are considered as functional errors if the outputs from a faulty sorting 

element are not ordered correctly and as data errors if the output data values were modified by 

the faulty sorting element. Functional errors are detected and corrected by exploiting inherent 

properties as well as discovered special properties of the sorting array. Coding techniques and 

an on-line fault diagnosis procedure are developed to locate data errors. All the checkers are 

designed to be totally self-checking and hence the sorting array is highly reliable. Two-level 

pipelining is employed in our design which makes it very efficient and suitable for real-time 

application. The hardware overhead is not significant for typical array sizes and the time 

penalty is only 3 clock cycles. The structure is very regular and therefore, is very attractive for 

VLSI implementation. 

1.3. Overview of the Defect-Tolerant WSI Sorting Networks 

In order to overcome the yield problem in WSI, a novel hierarchical modular sorting net­

work is presented in chapter 3. The design is based on the tradeoffs in area and time between 

the odd-even transposition sort and the bitonic sort. It uses less hardware than a single-level 

odd-even transposition sorter and reduces the wire complexity problem of the bitonic sorter in 

VLSI or WSI (wafer scale integration) implementation. The optimal number of levels in the 

hierarchy is analyzed and sorting capability of each level is derived to minimize the hardware 

complexity. More regularly structured equivalent sorting networks are introduced by replacing 
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shuffle interconnections in the original sorting network with easily reconfigurable interconnec­

tions. The hierarchical sorting network is very regular in structure after the equivalent network 

transformation and hence easier to include defect tolerance capability than any existing sorting 

network with the same time complexity. Redundancy is provided at every level of the hierar­

chy. Hierarchical reconfiguration is implemented by replacing the defective cells with spare 

cells at the bottom level first, and goes to the next higher level to perform reconfiguration if 

there is not enough redundancy at the current level. Yield analysis is performed to demonstrate 

the effectiveness of our approach. 

1.4. Overview of the Trapezoid Sort 

A parallel sorting algorithm, the trapezoid sort, for mesh-connected processor arrays is 

presented in chapter 4. Given a sequence of numbers mapped onto an n x n array, the 

trapezoid sort will generate a sorted output sequence stored in the array in snake-like row 

major order. This algorithm is a combination of recursively sorting clements of two neighbor 

rows into opposite directions, sorting clements in each column, and a cyclic shift after the first 

row sort to rearrange the output order of each row. It preserves the properties of very simple 

control hardware and case of implementation, and has the advantage that the number of itera-

tions improved significantly from rlOg2nl+1 to r10g211+1 with (l2+l)/2~n«12+31+2)/2 in com­

parison with the existing parallel sorting algorithms on mesh-connected processor arrays. 



18 

1.5. Overview of the Kth Smallest Value Extraction 

Properties of ilie trapezoid sort are derived in chapter 5. The maximum distance boun­

dary of an element in an array to be sorted after the second iteration of the trapezoid sort from 

its position in the final sorted output array is determined first. An efficient method is also 

developed in chapter 5 to find the median value of the input elements by exploiting the properly 

that the boundary distance will be reduced by half after each successive iteration. The elements 

outside the boundary are excluded from the remaining sorting process which reduces the com­

plexity and the median value can be found without completely sorting the array. This method is 

then extended to find the kth smallest element in the input array. 

1.6. Overview of the Modified Odd-Even Merge Procedure 

The row-column sort algorithms on mesh-connected processor arrays, such as the 

parallel bubble sort and the shear sort, have the properties of very simple control hardware and 

ease of implementation. However, these row-column sort algorithms are based on the odd-even 

transposition sort such that half of the processors are idle during each basic comparison­

interchange step. In addition, they are designed to sort N inputs only, where N is the number of 

processors in the array. If the number of elements to be sorted is larger than N, the row-column 

sort algorithms can not be applied directly. Therefore, a modified odd-even merge procedure is 

presented in chapter 6 to sort two sets of data inputs concurrently by utilizing the idle proces­

sors and then merge them together. This procedure is further generalized to merge m sorted 

input sets (m>2) where each set can be initially sorted by any algorithm. A speedup of 

o (log 2m) over the previous merge-split method is achieved. 
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CHAPTER 2. 

THE FAULT·TOLERANT SYSTOLIC SORTING ARRAYS 

2.1 Introduction 

Many applications in real-time digital signal and image processing need a high perfor­

mance and special purpose architecture for parallel sorting on a huge amount of input data. 

Sorting arrays which consist of a number of identical processing elements with regular intercon­

nections and high concurrency factors [4], such as the odd-even transposition sort [5], the 

bitonic sort [6], and the perfect shuffle sort [7], are good candidates for real-time applications. 

Use of these arrays has become attractive mainly due to the availability of VLSI and WSI tech­

nologies at a reasonable cost. Studies by Kung [8] indicate that both regular cell structures and 

simple interconnections will dominate the cost in VLSI or WSI implementations. Also by con­

sidering the ratio (Aw/At) of the wiring space to the total area as a function of the number of 

inputs, Horiguchi [10] showed that the Aw/At ratio is approximately one for the perfect shuffie 

sort or the bitonic sort and is a constant 0.1 for the mesh connected odd-even sort when the 

number of inputs N is large. Therefore, although both the perfect shuffie sort and the bitonic 

sort use less sorting elements (O(Nlog22 N)) than the odd-even transposition sort (O(N2)), the 

wiring complexities of the first two sorters make them more costly to implement than the odd­

even sort since, for large N, the wiring space will dominate the silicon area. This is why the 

more regularly structured odd-even transposition sort is a better candidate for VLSI implementa­

tion than other parallel sorting algorithms. 
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Reliability, availability, and continuous operation are also very important in real-time 

applications. On-line error detection is the first requirement to increase the reliability. In order 

to increase the system availability, off-line diagnosis after on-line error detection should be 

avoided and the system should be able to automate the recovery process. In this chapter, we 

present a highly reliable sorting array which can detect multiple errors and correct a single 

error for on-line applications. In addition, it is highly available. As a systolic sorting array 

based on the odd-even transposition sort, it has a regular structure and simple interconnection 

links. Both the regularity and the simplicity are preserved by the presented fault tolerance tech­

nique so that redundancy can be included into the system easily, either to enhance the system 

performance or to replace the faulty elements. Also, it can be reconfigured easily to tolerate the 

faulty sorting elements located by the on-line fault diagnosis procedure and can be degraded 

gracefully after redundancy is exhausted. 

Recently, an algorithm-based fault-tolerant sorter was proposed in [23]. They developed 

an on-line error detection method for the systolic priority queue [24] by applying the time 

redundancy approach to the operation of sorting a sequence of N inputs serially. Since it is a 

serial sorter which uses N/2 sorting elements and 2N clock cycles to sort N inputs, it is not suit­

able for real-time applications. Therefore, its entire structure as well as the fault tolerance tech­

niques are different from the proposed highly pipelined sorting array. Also, by comparing the 

AT2 complexities of the odd-even transposition sort with the systolic priority queue, it is found 

that the former is more cost effective than the latter by a factor of 2. 

Extra cost incurred by bringing in fault tolerance features is minimized by exploiting the 

inherent properties of the embedded sorting algorithm. Properties such as nondecreasingly or 

nonincreasingly ordered output sequence is used to check the functional correctness of the sort-
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ing array. In contrast with assuming that a faulty sorting element will transmit its inputs to the 

outputs unchanged or a faulty element can be located by some external circuits and then 

bypassed as in [25,26] and [27], a faulty sorting element in our error model can either pass or 

swap data incorrectly. Also, we discovered an important robust property of the odd-even tran­

sposition sorting array in which a single error can be masked automatically and multiple errors 

can be detected concurrently without disturbing the normal circuit operation. 

In addition to checking the order of the outputs, the code-preserving property in data 

manipulation is employed to check whether the output data has been modified. Errors which 

violate the code-preserving property can be detected by using an appropriate coding technique. 

Depending on how critical the applications are, the requirements of fault coverage as well as the 

corresponding coding techniques will be different. Three example coding techniques are 

evaluated and the results are shown in section 2.6. 

The total overhead of the proposed approach based on our analysis is much lower than 

previous fault tolerance techniques for other pipelined array processors [28,29,30], even if the 

checkers in the array are designed to be totally self-checking to increase the reliability. From 

the analysis in section 2.6, the overhead ratio is approximately (54 + c)/14N where c is a con­

stant determined by the data error coverage requirement as well as the adopted coding technique 

for the array. For example, with the simple parity check code, c is equal to four and the over­

head ratio is less than 10% if N is greater than 42. 
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2.2 Array Architecture and Cell Realization 

In order to have a high perfonnance system, the two-level pipelining technique [31] which 

is frequently used in sorting arrays to achieve very high throughput [32,33] is employed in the 

design here. In addition to the use of the pipelined odd-even transposition sort as the word­

level structure (section A), the systolic data flow concept [8] is used for the bit-level pipelining 

(section B). In this chapter, we use the term CS element to represent a word-level compare­

swap element and the tenn cell to represent a bit-level compare-swap element. Also, without 

loss of generality, we will assume that the sorted output sequence is in nonincreasing order. 

A. Array Architecture 

The word-level pipelines can be achieved by one of the parallel sorting algorithms such as 

the odd-even transposition sort, the bitonic sort, the perfect shuffle sort, or the balanced sort. 

Based on the Aw fAt ratio as discused in section 2.1, the simple and regular odd-even transposi­

tion sort is adopted. An example odd-even transposition sorter with N=5 (without loss of gen­

erality, N is assumed to be an odd number) represented by Knuth's [5] comparator-network 

representation is shown in Fig. 2.1. Horizontal lines represent data paths and vertical lines 

represent comparisons between data values. As shown in Fig. 2.1, the five inputs, 1, 2, 3, 4, 

and 5 are nonincreasingly ordered at the outputs as 5, 4, 3, 2, and 1. The word-level implemen­

tation of the systolic sorting array based on the odd-even transposition sort is shown in Fig. 2.2 

where each vertical line in Fig. 2.1 is realized by a CS element. The parallel odd-even transpo­

sition sorting array consists of a cascade of N stages with N(N-1)/2 CS elements in each stage to 

sort N input data elements [5]. Each CS element in the sorting array compares two n-bit input 

numbers x and y and swaps these two values if x<y. Data registers (D) in Fig. 2.2 are used as 
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Figure 2.1. Odd-even transposition sort: comparator-network representation. 
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delay buffers so that input data sets can be synchronized by the system clock and pipelined 

through stages of the sorting array. 

N=5 
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stage 1 2 3 4 5 
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t 

x--lEJ-x 

D: data register 

x~ max(x,y) 

y ~ min(x,y) 

cs: compare-swap element 

Figure 2.2. Odd-even transposition sort: word-level structure. 
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B. Cell Realization 

In the word-level, there are only two types of elements in the sorting array: data registers 

(D) and compare-swap elements (CS). For each CS element, n bit-level comparisons are 

required to compare two n-bit binary numbers. These n steps of comparisons can be imple­

mented by either a serial or a parallel method. Since the goal here is to have high throughput 

systems, the systolic data flow concept is also applied in the bit-level pipelines. A matrix of 

single-bit data registers (d) is cascaded before the input stage to synchronize the data flow as 

shown in Fig. 2.3. (Note that this matrix of d registers is required only before the CS elemenL') 

of the first stage.) These data registers are arranged as a lower right triangular matrix such that 

input data bits can enter the systolic sorting array in a skewed fashion. That is, for a CS cle­

ment, when Cn has finished processing Xn and Yn the comparison results can pass to cell Cn-l 

together with the two inputs xn-l and Yn-l at the same time. Therefore, cn can process the next 

inputs an and bn when Cn-l is processing Xn-I and Yn-I. The n cells of each CS element are 

chained together by the swap control lines r and s. 

Logical operations of a cell Ci in a CS clement are described in the following: (1) Signals 

Sj+1 and rj+1 from cell ci+l to cell Ci indicate whether any of the more significant bits than bit i 

has been swapped or not. (2) Inputs Xj and Yi are the ith bits of the two input words x and Y to 

a CS element, respectively. (3) The signal rj indicates whether (xn , ... , Xj) = (Yn' ... , Yi) or not ( 

rj = 0 or 1, respectively) and Sj indicates whether (xn , ... , Xj) < (Yn' ... , Yj) or not ( Sj = 1 or 0, 

respectively). (4) Uj and I3j are two output data bits from cell Cj with Uj ~ I3j. Therefore, we 

have the bit-level cell structure and logical equations as shown in Fig. 2.4. 

In the case of Sj+l = 1, it means (Yn' ... , Yj+l) > (xn , ... , Xj+l)' Both Sj and rj should then be 

set to 1 and passed to cell Cj-l to indicate that x < Y and cell Cj should swap the two input bits 
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Figure 2.3. Structure of a CS element and the matrix of data registers. 
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Xi and Yi. Otherwise, if Si+1 = 0 and 'i+1 = 1, (Yn' •.. , Yi+l) < (xn' ... , Xi+l) and (Si' 'i) should be 

(0, 1), i.e., no swap is needed. The case in which both 'i+1 and Si+1 are zeros represents (Yn' ... , 

Yi+l) = (xn' ••. , Xi+l) and the order of X and Y will be determined by xi and Yi in the following 

three cases: (1) If Xi = Yi, we have si = 'i = 0, exi = xi, and Pi = Yi. (2) If Xi < Yi, then Si = 

'i = 1, exi = Yi and Pi = Xi. (3) Otherwise, Si = 0, 'i = 1, exi = Xi, and Pi = Yi· 

For example, let X = (xn , ..• , X I), Y = (Yn' ... , Y I) be two inputs of a CS element in the firsL 

stage. Xn and Yn are processed in cell Cn of the CS element first. Initially 'n+1 =0 and Sn+1 =0. 

After the comparison of Xn and Yn in cell cn' the swap control signals Sn and 'n from Cn will be 

passed to cn-I. At the next clock, Xn-I and Yn-I together with Sn and 'n are processed in Cn-I, 

another input data set an and bn is processed at Cn at the same time. 
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The swap control signals S 1, r 1 from cell c 1 indicate whether the two inputs, x and y, 

have been swapped (SI = 1, rl = 1) or not (SI = 0). We call sl the swap-indicator since it 

alone can tell us if there is any swap operation perfonned in the corresponding stage. 

2.3. Properties of the Sorting Array 

In order to evaluate the fault tolerance techniques, the error model which describes the 

effect of physical faults on the sorting element will be defined first in subsection A. The error 

model defined here is quite general that it can cover many faults whose nature are not apparent. 

Properties of the sorting array which will be exploited to introduce fault tolerance capabilities 

are then derived in subsection B. 

A. Error Model 

The error model is defined at the CS element level. A CS element which contains physi-

cal faults can generate errors such as swapping its inputs incorrectly, modifying the data values, 

or both, and can be classified as a functional error, a data error, or a hybrid error, respectively. 

Xi (X. 
I 

Yi ~i A. = s· . y. + s· . X· 1-'1 I I I I 

ri Si (Xi = Si • Xi + Si . Yi 

Figure 2.4. Structure of a compare-swap cell and its logical functions. 



27 

For example, stuck-at faults on the two swap control lines can cause functional errors and 

stuck-at faults on the communication links can cause data errors. Effect of faults on links 

between stages i and i + 1 is lumped into stage i + 1 such that errors in communication links are 

also representable in this word-level error model. Faults in communication links are less com­

mon [34] but more severe since, in a sorting array, a faulty communication link will cause the 

entire output data useless unless a reconfiguration process followed by a recovery process is 

applied. 

Example errors are shown in Fig. 2.5 where x and y represent four-bit numbers. The 

example in Fig. 2.5(a) shows that the element with faulty control lines performs an incorrecl 

swap and thus represents a functional error. An example data error is shown in Fig. 2.5(b) 

which indicates that the value y has been modified. A hybrid error is shown in Fig. 2.5(c). A 

CS element with a hybrid error will generate both incorrect order and data values at the OUlpUlS 

and is regarded as having multiple errors. 

B. Properties 

The first property is that the systolic sorting array based on the odd-even transposilion sort 

with N stages and (N-l)/2 elements in each stage is a valid sorting array and a random inpul 

sequence will be correctly ordered at the outputs [35]. The second property is that the sorting 

array is a code-preserving sorter. This is due to the fact that the sorting array consisls of CS 

elements and data registers only, no logical or arithmetic operation which can modify daLa 

values is performed during normal circuit operations. Therefore, the order of input sequence 

may be modified at the outputs but the coded input values should be preserved. 

These two properties inherently exist in all sorting arrays and any sorter can be examined 

functionally according to these two properties. In addition to these two common properties, we 
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(c) A hybrid error. 

derive a special property for functional error checking which can be applied to all pipelined 

sorting algorithms and a robust property for the odd-even transposition sort only, in which any 

single functional error can be recovered automatically. Based on these two special properties, 

the sorting array can be designed with high reliability and low overhead. 

It should be noted that as was discussed in subsection A, it is possible for a CS element to 

swap its inputs incorrectly such that the entire output sequence from a sorting array is not 

nonincreasingly ordered. From the comparator-network representation of the odd-even transpo-

sition sort (Fig. 2.1), we can see that two neighbor stages in the odd-even transposition sorting 

array completely compare all pairs of adjacent inputs in two clock cycles. Therefore, if two 

additional neighbor stages which include an odd-numbered stage and an even-numbered stage 

are added after the last stage of any sorting array, they can be used as a checker to check 

whether the outputs from the sorting array are ordered or not. If the output sequence is 

correctly ordered, no swap operation will be executed in any CS element of these two additional 

stages, otherwise, some of these CS elements will perform swap operations and it represents 

that the output sequence from the sorting array is not correctly ordered. We call these two 
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stages the Nonincreasing-Order-Checker (NOC). and the detailed proof will be presented in 

Theorem 2.1. 

Let V 1 represent the input vector of N values to the sorting array (i.e.. the input of the 

first stage) and Vh represent the input vector of the hth stage. Vh[i] represent the value located 

at the ith input line of stage h. 

THEOREM 2.1: The nonincreasing-order-checker (NO C) can detennine whether the out­

put sequence from the sorting array is correctly ordered or not. 

PROOF: The outputs of the sorting array at the Nth stage will be nonincreasingly ordered 

such that 

VN+1 [1]~VN+l [2]~VN+l [3]~"'~VN+l [N) 

if there is no faulty CS element in the array. The CS elements in stages N+l and N+2 of the 

NOC will then compare VN+l[i) to VN+1[i+l). i=1 to N-l. and should not perfonn any swap 

operation. If the output from the NOC which is the ~Ring of the swap -indicators in these two 

stages is set to 1. it means that at least one of the CS elements of the NOC has made a swap 

operation and therefore. the output sequence from stage N is not correctly ordered. 
o 

The second property is the robust property of the odd-even transposition sort. This robust 

property is very important in on-line real-time applications. For on-line applications. the proba­

bility of a single error is much higher than multiple errors. If a single error can be recovered 

automatically without interrupting the entire system. the system availability will be increased 

significantly. Before we prove this property. two variables ex(i.h) and bp(i.h) are introduced 

first in Definition 2.1 to represent the number of exchanges and bypasses executed. respectively. 

if we compare Vh[i) with VhU). for all j>i. 
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N-i 
DEFINITION 2.1: Let ex(i,h) = LC(Vh[i]:Vh[i+jD where c(Vh[i]:Vh[i+j])=l if 

j=1 

N-i 
Vh[i]<Vh[i+j], and c(Vh[i]:Vh[i+j])=O, otherwise. Similarly, let bp(i,h)= Lc(Vh[i]:Vh [i+j]) 

j=1 

o 

N-l 
LEMMA 2.1: If L ex(i,h)=O, then the input sequence to stage h is in nonincreasing order 

i=1 

after being processed by stages 1,2, ... , h-1. 

N-l 
PROOF: Since ex(i,h)7Z.0, L ex(i,h)=O means that ex(i,h)=O for all i=1 to N -1. There­

i=1 

fore, Vh[l] 7Z. Vh[i] (for 1 <i:5N) since ex(1,h)=O, and Vh[2] 7Z. Vh[i] (for 2<i<5N) since 

ex(2,h)=O, and so on .• Vh[N-l] 7Z. Vh[N] since ex(N-l,h)=O. That is, 

o 

N-l N-I [NJ N(N-l) 
LEMMA 2.2: ex(i.h)+bp(i.h)=N-i and ~ ex(i,h)+ ~ bp(i,h)= 2 2 

1=1 1=1 

PROOF: This lemma can be proved by assuming that a bubble sort is applied to the input 

vector of stage h. Thus, the values of ex(i,h) and bp(i,h) can be viewed as the number of 

exchanges and bypasses, respectively, required to move the value at line i to its final position. 

Hence, ex(i,h)+bp(i,h)=N-i and the total number of operations required by the bubble sort to 

N-I N-I N-I [NJ N(N-I) 
sort the corresponding input vector is equal to L N -i= L ex(i,h)+ L bp(i,h)= 2 2 

;=1 ;=1 ;=1 
o 

In the following analysis, we will assume that a functional error is generated by the CS element 

in stage k (k<5N) which compares two inputs on lines x and x+l(see Fig. 2.6). 
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LEMMA 2.3: For i"#x, if Vk[i)<V,Ji+l) then ex(i,k+I)=ex(i,k)-1 else 

ex(i,k)=ex(i,k+I). For i=x, if Vk[x]~Vk[x+l) then e.x(x,k+I)=ex(x,k)+1 else 

ex(x,k)=ex(x,k+I). 

N~ N~ 

PROOF: For i"#x, e.x(i,k) = Lc(Vk[i):Vk[i+j)) and e.x(i,k+l) = LC(Vk+1[i):Vk+1[i+j)). 
j=l j=l 

From these two functions we can see that the difference between the results of ex(i,k) and 

ex(i,k+l) will depend on the values of Vk[i], Vk[i+I) and the operation of the CS element 

between the two lines i and i+1. Other CS elements in stage k will not affect the relationship 

between ex(i,k) and ex(i,k+I). If Vk[i )<Vk[i+l) and there is a CS element between lines i and 

HI then this CS element will perfonn an exchange operation on the two input values at the out-

puts. So we have Vk+1[i](=Vk[i+l]) > Vk+l[i+I)(=Vk[i)), i.e., ex(i,k+I)=ex(i,k)-1. Otherwise, 

ex(i,k)=ex(i,k+I), for kgy. 

For i=x, as the analysis in the above, the difference between ex(x,k) and ex(x,k+l) 

depends on the values of Vk[x), Vk[x+l) and the operation of the CS element between the two 

lines x and x+ 1. According to the outputs of the faulty element, this functional error can be 

classified as either incorrect swapping or incorrect bypassing and the corresponding relationship 

between ex(x,k) and ex(x,k+l) will be ex(x,k)+l=ex(x,k+l) for making an incorrect swapping 

or ex(x,k)=ex(x,k+l) for making an incorrect bypassing, respectively. 
o 

From the analysis of Lemma 2.3, we know that the number of exchanges required to move 

the value at line i of stage k to its final position is not affected by other CS clements that do not 

compare the two values Vk[i) and Vk[i+I). That is the faulty CS element in stage k will not 

increase the number of exchanges required to move the value at line i to its final position unless 

i=x. 
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Vk- 1 [3] V 3 Vk+l [3] 

Vk-l [x-I] 

rx+lJ 

x+21 

stage k-l k k+l 

Figure 2.6. A comparator-network representation of a faulty clement at stage k. 

THEOREM 2.2: The systolic sorting array for N inputs based on the odd-even transposi-

tion sort with N +2 stages can recover from a single functional error in the first N stages 

automatically. 

PROOF: Depending on the number of exchanges perfonned by the faull-free CS elements in stage 

k and the results derived in Lemma 2.3, we have the following two cases: 

N-l N-l 
(1) L exU,k)+I= L exU,k+I), that is, all the CS elements in stage k perform bypass 

i=l i=l 

operations except the faulty one which generates an incorrect swap. According to the 

configuration of the odd-even transposition sort (as shown in Fig. 2.6), we have 

ments in stages k+ 1 and k+2 will not perform any swap operation except the one that compares 

Vk+2[X] and Vk+2[x+l] and it corrects the result generated by the faulty element at stage k. 



Therefore, 
N-l 
Lex(i,h)=O 
i=l 

for 
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h>k+2 since 

k+3 has been sorted and it will not change the order any further more in the sorting array from 

stages k+3 through N +2. 

N-l N-l 
(2) L ex(i,k)~ L ex(i,k+l), that is, at least one CS element in stage k executes a swap 

i=l i=l 

operation in addition to the faulty one. Let eXb(i,h) and ex/i,h) be equivalent to ex(i,h) and 

bpb(i,h) and bp/i,h) be equivalent to bp(i,h) except that the subscript "b" means that the faulty 

stage k is assumed bypassed and "!' means that the faulty stage is assumed not bypassed. In 

the following analysis, we will complete the proof by first showing that the number of 

exchanges required for the faulty stage k is bypassed will be equal to 0 at the input of stage 

N+3 (i.e., eXb(i,N+3)=O) and then showing that eXb(i,h)~ex/i,h) for h>k so that we also have 

ex/i,N +3)=0. 

If stage k is bypassed, the function of stage k-l will be duplicated by stage k+l so that 

stage k+l can be viewed as bypassed. Thus, the normal execution of stage k is performed by 

stage k+2 and the normal execution of stage k+l is performed by stage k+3, ... , and the normal 

execution of N is performed by stage N +2. So the output sequence from stage N +2 is sorted. 

N-l N-l N-l 
From Lemma 2.1, we have L eXb(i,N+3)=O. By comparing L eXb(i,h) with L eX/i,h) for 

i=l i=l i=l 

N-l N-l 
kgzgy +3, we can show that L eXb(i,h)~ L ex/i,h). The reason is described in the following: 

i=l i=1 

N-l N-I (N] N(N-l) 
Due to the result from Lemma 2.2, we have L ex(i,h)+ L bp(i,h)= 2 . Since the 

i=l i=l 2 

input vector Vk for assuming faulty stage k is either bypassed or not is the same. So that 

N-I N-l 
L bp/i,k)= L bpb(i,k). Because the input vector Vk are processed by more functionally 
i=l i=l 
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normal CS elements before arriving stage h (h>k) in the case of faulty stage k is not bypassed 

N-l N-l 
than in the case of stage k is bypassed, therefore, we have L bpf..i,h)~ L bPb(i,h) and 

i=l i=l 

N-l N-l N-l N-l N-l 
Lexb(i,h)~Lex.t<i,h) forh~k. Since Lexb(i,N+3)?Lex.t<i,N+3) and Lexb(i,N+3)=O, we 
i=l i=l i=l i=l i=l 

N-l 
have L ex.t<i,N +3)=0. Again from Lemma 2.1, we know that the outputs of stage N +2 have 

i=l 

been sorted and therefore, the single functional error is recovered by the two extra stages. 
o 

2.4. Fault Tolerance 

Fault tolerance techniques such as recomputing in different stages or clements 

[36,28,37,38], and recomputing with shifted operands [30] can detect errors in pipelined array 

processors, but the requirement of 100% time overhead is not tolerable in real-time applications. 

Therefore, we adopt the algorithm-based approach [39,40,41] to design a fault tolerant systolic 

sorting array with the capabilities of concurrent error detection and correction and minimize the 

overhead by using the properties we derived in the last section. 

In subsection A, by checking the two general invariant properties, the sorting array has the 

capability of concurrent error detection. By exploiting the special property we derived in 

Theorem 2.2, the sorting array can correct a single functional error during the normal operation. 

It is difficult to correct data errors in a sorting array during the normal operation. Even if the 

faulty bits can be detected and corrected by some coding techniques [42,43,44] such as the 

Hamming code and the Berger code, [45] the output sequence is no longer correctly ordered. 

Therefore, with the assumption that the hardware used for off-line diagnosis and yield enhance-

ment such as the multiplexers and the bypass registers in each CS element arc fault-free, we will 
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present a fast on-line fault diagnosis procedure in subsection B to locate the faulty sorting cle­

ments. This assumption is appropriate because those additional circuits are usually included for 

the purpose of off-line testing and reconfiguration [31] in the manufacturing phase and they are 

fault free before operation and not activated during the normal on-line operation. 

For mission-critical applications, the restart time should also be minimized and therefore, 

an efficient on-line reconfiguration procedure is presented in subsection C. The presented sort­

ing array can also be degraded gracefully. As will be discussed in subsection C, it can be 

degraded to sort less input data and tolerate more faulty elements if it runs out of redundancy. 

A. Concurrent Error Detection and Correction 

As proved in Theorem 2.1, whether the output sequence is in nonincreasing order or not 

can be detected by the NOC. Error correction for a single functional error is done automatically 

as shown in Theorem 2.2. Therefore, the two stages added to a sorting array can be either a 

checker or a single error corrector. These two stages are sufficient for a single error. But for 

multiple errors, two more stages are required to detect other errors after the first error has been 

corrected by the first two added stages. 

The problem of who will check the checkers is very important in mission critical applica­

tions. The two additional stages used to recover a single error in the array will not be able to 

recover errors in themselves. The errors in the NOC itself will generate a useless result if the 

NOC does not have a self-checking capability to check its own outputs. Therefore, from 

Theorems 2.1 and 2.2, the sorting array for N inputs can be implemented with N +4 stages for 

error detection and correction. The first N stages are for normal sorting functions. Stages N +3 

and N +4 are used as the NOC and will be designed to be totally self -checking (TSC) [46]. 

(The details on implementing a TSC checker will be discussed in section 2.5). Stages N + 1 and 
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N +2 which are used to correct a single functional error do not need to be TSC circuits since 

their outputs are checked by stages N +3 and N +4 (NOC). However, in the following theorem, 

we will show that stage N +4 can be omitted from the sorting array if stage N +2 is implemented 

by TSC circuits. 

THEOREM 2.3: The systolic sorting array with a total of three additional stages, stages 

N+l, N+2 and N+3, where stages N+2 and N+3 are implemented by TSC circuits can tolerate 

one incorrect swap operation and check whether the output sequence is nonincreasingly ordered 

or not. 

PROOF: From the properties derived in Theorems 2.1 and 2.2, a systolic sorting array with a tot<11 

of four additional stages has the capability to tolerate one incorrect swap operation and to check whether 

the output sequence is ordered or noL In the following analysis. we will prove that if stages N +2 and 

N+3 are implemented with TSC circuits. the stages N+l and N+2 can be used to correct a single func­

tional error and stage N +3 itself can be used to detect multiple functional errors in the sorting array. 

According to the properties of TSC circuits [46], the checkers implemented as TSC circuit 

are code disjoint, fault secure, and self-testing. If stage N+2, which compares VN+2[l] and 

VN+2[2], VN+2[3] and VN+2[4], ... , VN+2[N-2] and VN+2[N-l], is implemented as TSC circuits. 

we should have VN+3[l] ~ VN+3[2], .... VN+3[N-2] ~ VN+3[N-l] at the output of stage N+2 

due to the fault secure property, otherwise, errors in this stage will be detected by the stage 

itself. Therefore, if the output sequence is nonincreasingly ordered at the output of stage N +2. 

then stage N+3 which takes this sequence as input and compares VN+3[2] and VN+3 [3] • .... 

VN+3[N-l] and VN+3[N], should not do any swap operation, otherwise, the output sequence is 

not ordered. This shows that stage N +4 can be omitted. 
o 
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In addition to checking the correctness of the output order, we can check whether the 

input data values are preserved during the nonnal operation or not by using appropriate coding 

techniques. The choice of a data error detection method is very flexible depending on the pro­

perties of the sorting array, the type of errors to be detected, and the fault coverage requirement. 

Arithmetic codes such as residue code[47] have good fault coverage for all kinds of errors, but 

they require large devices. Coding techniques for error detection in communication lines such 

as Berger code and modified Berger code [48] require less area overhead but they are efficient in 

detecting unidirectional errors only. Fault coverages and overhead analysis for different options 

in coding techniques will be discussed in section 2.6. 

B. On-Line Fault Diagnosis 

We have proved (in Theorem 2.2) that whether the fault-free CS elements in the faulty 

stage k are bypassed or not, two extra stages are required any way to mask the effect of a faulty 

CS element in the faulty stage k (k'5.N), i.e., the fault-free CS element in the faulty stage are use­

less. Therefore, instead of locating individual faulty elements, the on-line fault diagnosis pro­

cedure only needs to identify the location of the entire faulty stage and this makes our 

reconfiguration procedure simpler. 

The diagnosis procedure is described in Fig. 2.7. The input set I which generates the data 

error is reapplied repeaUy to diagnose the faulty stage. A reservation table which shows an 

example diagnosis for a sorting array with N = 5 and three extra stages is in Table 2.1 where 

DED represents a data error detector. A marked entry at the (n, m)th position of the table indi­

cates that the stage K = n will be activated m time units later after the initiation of the fault­

diagnosis procedure. Empty spaces in the table represent idle stages that perform only bypass 

operation. 



Procedure On_Line _Fault_Diagnosis; 
begin 

roll back input data I; 
/* I is the inputs which generate the data error */ 
k= 1; 
/* k is used to control which stages should be bypassed */ 
for t: = 1 to N +3 do begin 
/* t represents the clock sequence */ 

if t is odd then k = k+l; 
input I and bypass stages k to N +3; 

end; 
for t:= N +4 to 2(N+3) do begin 

end; 

if data error detector is set at t 
then stage t - (N +3) is faulty; 

end. /* all stages process data nonnally except the stages 
specified to be bypassed */ 

Figure 2.7. On-line fault diagnosis procedure. 
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At t = 1, the input set I is applied and processed at stage 1 (we call it III to represent that 

it is reapplied into the sorting array at t = 1 and has been processed by stage 1) and will pass 

through all the other stages without being processed. The bypassing capability of a CS element 

and a stage will be discussed in the next section. At t = 2, the same input set I is applied again 

to stage 1 (we call it 12t> and III will not be processed until t = 9. That is, III bypasses stages 

2 to 8 and is then checked by DED. At t = 3, the same input set I is applied again to stage 1 

(we call it / 31 ), and at the same time 121 enters stage 2 (we call it 122 ). After this, 122 will not 

be processed until it is checked by DED at t = 10. Thus, for t=1, 2, ... , N+3, these reapplied 

inputs are processed at stage 1, stages 1 through 2, ... , stages 1 through N+3, respectively, such 

that the data set I which generates incorrect data at the outputs due to a faulty CS element in 

stage m will set the data error indicator at time t = N+3+m during the on-line fault diagnosis. 
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This faulty stage m will then be bypassed by the on-line reconfiguration process (as will be dis-

cussed in subsection C) to exclude the faulty element from normal operation before the sorting 

array can get back into normal operation. 

Therefore, instead of a time consuming off-line diagnosis and reconfiguration, we can 

restore the array back into operation with a time delay of 2(N +3) clocks (we assume that this 

sorting array is used as a special chip attached to a large system and this system has buffers 

large enough to store N +3 input data sets). The reconfigured sorting alTay with one faulty stage 

bypassed can no longer correct a single functional error but can still detect multiple functional 

errors. This procedure can be generalized to any sorting array with more than three extra stages 

by simply increasing the values of the loop control variables with appropriate constants. 

Table 2.1. Reservation table. 

K 

t 1 2 3 4 5 6 7 8 DED 

1 111 

2 121 
3 131 122 

4 141 132 

5 151 142 133 

6 161 152 143 

7 171 162 153 144 
8 lSI In 163 154 
9 IS2 173 164 155 111 

10 IS3 17 165 122 
11 IS4 175 166 133 
12 Iss 176 144 
13 IS6 177 155 
14 187 166 

15 Iss 177 

16 188 
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Although this on-line fault diagnosis procedure is designed to locate the faulty stage 

which generates data errors, by adding some extra hardware this procedure can be adapted to 

locate the faulty element which generates either a functional error or a data error. Since each 

data word contains the check bits, if we can access these check bits we can identify the faulty 

sorting element in stage m when a data error is detected at t=(N +3)+m. To locate the faulty ele­

ments generating a functional error, both swap-indicators of stage N+2 and stage N+3 should 

be checked. These two stages are activated and bypassed alternately so that inputs at t=1, 3, ... , 

N are checked by stage N+2 and inputs at t=2, 4, ... , N+l are checked by stage N+3 respec­

tively. If some of the sorting clements in stage m are faulty, the corresponding sorting elements 

in stage N+2 (m is odd) or N+3 (m is even) will set the swap-indicators at time t=(N+3)+m. 

C. On-Line Reconfiguration and Performance Degradation 

In order to achieve fast on-line reconfiguration, bypass registers (8) and multiplexers 

(mux) (see Fig. 2.8) which are usually added to a processing element for manufacturing 

reconfiguration [31] are utilized in our on-line reconfiguration. The multiplexer can be enabled 

by two control lines, row bypass (r) or column bypass (c). In the normal operation, (r, c) is 

reset as (0, 0) and outputs from the CS elements are selected. If a CS element is faulty, it is 

bypassed by setting either r or c to 1. In order to reduce the cost of bypass control circuitry, 

only the word-level control scheme is considered as shown in Fig. 2.9 where a CS element is 

bypassed when either the corresponding bit in the row bypass control register or the column 

bypass control register is set to 1. All bypass control lines of cells in the same CS element are 

set or reset together. Each bit of the row bypass control register controls all CS elements in the 

same row and each bit of the column bypass control register controls all CS elements in the 

same column (stage). The entire sorting array can also be degraded to sort N-l, N-2 or less 
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Figure 2.8. Compare-swap element with bypass registers and switches. 
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inputs as shown in Fig. 2.9. Two dotted lines in row 4 and stage 5 of Fig. 2.9 means that CS 

elements are bypassed in the corresponding row and column and the sorting array can then be 

used to sort N -1 inputs. 

N=5 

-D a 
0 

n u a 
p t 

P a u 
u 

t 

cia a a a 1 I 
Figure 2.9. System degradation scheme. 
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2.5. Design of Totally Self·Checking Checkers 

We have designed a data error detector and an NOC to detect data errors and functional 

errors, respectively, in the last section. It is always desirable to design checkers which can 

detect errors in the checker itself as well as in its inputs. This leads us to design checkers 

which are totally self-checking (TSC). The concept of a totally self-checking checker has been 

introduced in [49] as a circuit which is fault secure, self-testing, and code disjoint [46]. 

A. Design of a Totally Self-Checking Data Error Detector 

A general structure of the totally self-checking data error detector for the systolic sorting 

array is shown in Fig. 2.10. Check bits from the check symbol generator (CSG) are generated 

based on the coding technique used. They are attached to the corresponding data (infonnation) 

and propagated through the array but are not processed by the systolic sorting array before 

arriving the two-rail checker (TRC) (TRC is a two-level AND-OR circuit as in [46] and will be 

described latter). At outputs, these input check symbols are compared with the outputs from the 

complement check symbol generator (CSG is a combination of CSG which generates check bits 

for the received data and an inverter at the output of each check bit) through a tree of two-rail 

checkers. As discussed in the previous section that any input data should not be modified by 

the systolic sorting array, so the check symbols generated by the CSG should be complementary 

to the check symbols generated by the CSG if both the checker and the sorting array are fault­

free. 

In the case that only one check bit is generated for each codeword (for example, by using 

the single parity code to detect data error), since N inputs will be processed in parallcl, N 1-

out-of-2 code outputs «01) or (10) for code word outputs and (00) or (11) for noncode word 
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Figure 2.10. Totally self-checking data error detector. 

outputs) will be generated in parallel during normal operations. Therefore, a tree of two-rail 

checkers which maps N input pairs into one output pair can be used to combine these inform a-

tion together and generate a single output (10) or (01) in the normal operation and (00) or (11) 

as an error message. In order to have a high fault coverage, usually more than one check bit of 

each data will be generated by the CSG and CSG (for example, by using either the Berger code, 

the modified berger code, or the low-cost code) and therefore, an intermediate-level two-rail 

checker is required for each code word to map the outputs of check symbols and complement 

check symbols into a single output pair. Sometimes, the combination of inverters of the CSG 

and the intermediate-level two-rail checkers are called an equality checker [46] because it can 

check whether the input check symbols are the same as the output check symbols or not. 
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Design of a TSC checker for single bit parity code is quite simple. Let x = (xn, •.. , Xl) be 

the input data and the code word output from the odd parity generator is (xn , ••• , X I, X 0). 

Divide the set of variables into two groups, (xn , Xn-2, ..• , Xl) and (Xn-l, Xn-3, ... , xo), and con­

nect variables of each group to the inputs of the parity checker. During the normal operation, 

the number of of D's in the former group is odd and that in the latter is even, or vice versa. 

Therefore, for a fault-free output data the outputs of the two parity checker will be either (10) or 

(01) but never (00) and (11). Verification of the self-checking properties for this checker was 

given in [49]. 

Designs of a totally self-checking checker for the modified Berger code and a self­

checking checker for the Berger code were presented in [48] and [50] respectively. To avoid 

the problem of two legal representations of zero during the calculation of residues, either special 

definitions are required for the modulo 2m_l adder in the check symbol generator [51] (where 

2m-1 is the check base of the residue code) or a code translator is added between the equality 

checkers and the two-rail checkers [52] to design an efficient TSC checker for the low-cost code. 

It has been proved that the two-rail checker is a totally self-checking checker [46]. The 

combination of the CSG and the CSG can be a totally self-checking checker for different coding 

techniques such as for the simple parity code, [49] the modified Berger code, [48] the Berger 

code, [50] and the low-cost code [51,52]. Since the output pair from the CSG and CSG can 

generate all 0, 1 sequences needed to test the two-rail checker tree, the combination of these two 

circuits preserves properties of TSC [46]. 
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B. Design of a Totally Self-Checking Order Checker 

To design a TSC CS element, the concept of duplication with comparison is used to gen­

erate m-variable (m= N ;1 ) two-rail code (or l-out-of code). Every Boolean function f(x) has a 

corresponding dual function fd(x) such that fd( x )=1 (x). If we apply x to the function f and x 

to the function fd' the resulting output should be complementary to each other and can be used 

as inputs to a TSC two-rail checker. The dual of a Boolean function is found by replacing AND 

operations with OR operations, OR operations with AND operations, 1 's with D's and D's with 

1 's [53]. As described in section 2.2, all the cell elements are simple combinational circuits. 

Hence it is possible to duplicate all the cells in the last two stages with complementary circui­

try. This can be further simplified since outputs Xj and Yj are checked by the data error detector. 

Therefore, only the output information Sj and rj which indicate whether the cell Cj performs 

swap or not should be duplicated in order to design the TSC CS elements. These CS clements 

which are implemented according to the above method of designing TSC circuit will generate 

paired swap-indicators in the form of the 1-out-of-2 code. That is, if a CS element has a func­

tional error, its output pair (SI,SI) will be either (00) or (11) and will be (01) or (10) if it is 

fault-free. 

The stage N +2 which is used to correct a functional error should be designed as TSC 

checkers as proved in Theorem 2.3. All output pairs of (s I' S I) from word-level TSC CS cle­

ments in this stage will be either (01) if there is no swap operation or (10) if there is any swap 

operation performed during normal operations and (00) or (11) if there is an error in a CS ele­

ment. Since these 0,1 sequences can completely test the two-rail checker (TRC) tree which arc 

used to map N output pairs to form a single output pair, the combination of TSC CS elements 

with TSC two-rail checker constitutes a TSC checker. The output pair from the two-rail checker 
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indicates whether there are functional errors (output pair is (11) or (00» in this stage or not 

(output pair is (01) or (10». 

In addition to stage N +2, CS elements in stage N +3 are also designed as TSC circuits to 

generate m-variable two-rail code such that if there is no functional error in this stage, then the 

paired output (s 1 ,s 1) of each CS element is either (01) or (10). In addition, if the input 

sequence to this stage has been ordered correctly, then the swap-indicators of all CS elements 

in this stage should be all O's and their complement signals are then all 1 's, i.e., the paired out­

put (s 1 ,s 1) for all CS elements are (01). 

During normal operation, the input sequence to stage N +3 will be in correct order if there 

is no functional error. Therefore, the inputs to the AND-OR pair which is used to map m­

variable two-rail code to a single output pair as an error indicator will be all D's for the OR gate 

and all 1 's for the AND gate (these two gates can be viewed as a tree of two input gates if 

m>2). The output pair (S, S) from the AND-OR circuit should then be (10). This AND-OR 

circuit can be shown to be code disjoint (this can be proved easily by expanding the truth table 

to include all possible inputs) and fault secure. The reason that it is fault secure is described in 

the following. Suppose that a fault has occurred in the OR gate (or AND gate). Depending on 

the input, a single fault in it may not produce an error or produce an error value which is the 1 's 

complement of the correct value. In the first case, the fault will not affect the output of the 

gate. In the second case, a fault in the OR gate will not affect the output from the AND gate 

and a codeword will not be produced. Therefore, for single faults the output of the AND-OR 

pair is either the correct output or a none codeword and consequently, it is fault secure. 

It is impossible for this paired AND -OR circuit to be self-testing under the condition that 

there is only one code input during the normal operation. Therefore, the NOC which includes 
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both the TSC CS elements and the AND-OR circuit will not be a totally self-checking checker 

because the swap-indicators and their complements from CS elements in stage N+3 can not 

generate all the input sets required to test the AND-OR circuit during the nonnal operation. But 

it does have the properties of fault secure and code disjoint which will increase the system relia­

bility. 

A complete word-level structure of the fault-tolerant sorting array for N=5 is presented in 

Fig. 2.11. Input data can be encoded with either a parity code, a Berger code, a modified 

Berger code, or a low-cost code by the check symbol generator (CSG) before entering the sort­

ing array. The output sequence is then checked by the TSC checkers which include a DED to 

detect data errors in the output sequence and an NOC to check whether the output sequence is 

in nonincreasing order. Stage N +2 is implemented as totally self-checking circuits in order to 

check whether all the compare-and-swap functions perfonned by the CS elements in this stage 

are correct. The swap error signals from stage N +2 will generate an output pair as 11 or 00 if 

there is an error swapping in this stage. 

2.6. Evaluation and Discussion 

In this section, the impact of the proposed fault tolerance techniques on fault coverage, 

area and time overhead will be evaluated. Multiple functional errors can be detected by the 

NOC and any single functional error is masked by the first two additional stages as proved in 

Theorem 2.1 and Theorem 2.2, respectively. Faults in the NOC will be either masked or 

detected by the NOC itself due to its fault secure and code disjoint properties. Coverage of data 

errors in the proposed sorting array will depend on the complexity of the specific coding tech­

nique selected to detect data errors. As mentioned earlier that there is no arithmetic operation 
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Figure 2.11. A complete fault-tolerant sorting array with N +3 stages. 
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involved in the sorting array and it was observed that some physical defects in the VLSI circuits 

tend to generate unidirectional errors. Therefore, only the simple parity check code, the Berger 

code, and the modified Berger code will be considered as potential coding techniques for data 

error detection. By using the simple parity code, only single bit error in each data word will be 

detected, however, it incurs the least hardware overhead. All unidirectional errors can be 

detected by the Berger code but it requires at least 22% overhead than the modified Berger code 

which has a 93% or more fault coverage of unidirectional errors [48]. Error detection for other 

types of errors can be achieved by using more complicated codes such as the AN code, the 

check sum code, and the low-cost code. Although they may have higher fault coverage and 

lower fault masking effect, the requirement of n-bit multipliers, adders, or dividers makes them 

inefficient for VLSI implementation. For example, with the same number of check bits 
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generated, the number of full adders required by the low-cost code which can detect undirec­

tional multiple errors as well as errors produced by arithmetic processors is almost twice as it 

required by the modified Berger code [48]. 

In the following hardware overhead analysis, the calculation of overhead ratio will be on 

the gate level. Since the comparison of overhead among the TSC Berger checker, the modified 

Berger checker, and the TSC low-cost code checker has been discussed in [48], we will only 

calculate the overhead ratio for appling the parity code and the modified Berger code. The 

number of check bits in the modified Berger code in this analysis is assumed to be 2. The 

number of gates in a I-bit full adder and a half adder in the check symbol generator of the 

modified Berger (MB) code is 5 and 2, respectively, by assuming that the EXOR operation in 

the adder is performed by an EXOR gate. 

Let 

Then 

N = # of input words to be sorted at a time 

n = # of bits in each word 

gc = # of gates in each sorting cell = 14 

gt = # of gates in each pair of two-rail checker = 6 (see )[46] 

gj = # of extra gates required for a compare-swap cell to be TSC = 6 

gd = # of gates in each pair of AND-OR gates = 2 

gp = # of gates in an n-bit parity checker = (n-I) two-inputs EXOR gates 

gmb = # of gates in an n-bit MB checker = (n-l)/2 full-adder 

+ 2 half-adder + (n+ 1)/4 three-inputs EXOR gates = (lin + 7)/4. 

A = # of gates in the original sorting array = gcN(N-I)n/2 

B = # of gates in the three additional stages = gc3(N-I)n/2 
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C = # of extra gates for stages N+2 and N+3 to be TSC = 2gj(N-l)n/2 

D = # of gates which map (N-l)/2 output pairs of (SI' SI) to one pair in stage N+2 = 

gt[(N-l)/2 -1] 

E = # of gates to put S I and S I of a CS element in stage N +3 together = gd [(N -1 )/2 

-1] 

F = # of gates in a parity checker = 2gpN 

G = # of gates which map N to one output pair in the parity checker = g,eN -1) 

H = # of gates in the MB checker = 2gmhN 

1=# of gates which map N to one output pair in the MB checker = g,eN -1). 

Therefore, the respective overhead ratio for using the TSC NOC with either the TSC parity 

checker (rp) or the TSC MB checker (r mh) is listed below: 

r = (B+C+D+E+F+G) 100% = P 100% 
p A A 

= 42(N -1)n + 12(N -1)n +6(N -3)+2(N -3)+4N (n -1)+ 12(N -1) 100% 
14N(N-l)n 

= 54(N-l)n+8(N-3)+4N(n-l)+12(N-l) 100% 
14N(N-l)n 

::: 2L100% (N)>I) 
14N 

r mh = (B +C +D +E +H +1) 100% = MB 100% 
A A 

= 54(N-l)n+8(N-3)+NOln+7)+12(N-l) 100% 
14N(N-l)n 

::: ~100% (N)>I) 
14N 

From the above analysis, we can see that the cost B, C, D and E, are required to imple-

ment a TSC NOC. Therefore, a general overhead ratio for the proposed fault tolerance tech-



niques can be written as : 

r = (B+C+D+E+T) 100% 
A 

= 54(N-l)n+8(N-3)+T) 100% 
14N(N-l)n 

::: ~~~ 100% (N)>l) 

where the values of T and c will depend on the complexity of the selected coding technique. 
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Examples of overhead ratios on different values of n and N by using simple parity code 

are shown in Table 2.2. From the table, it is observed that the difference between overhead 

ratios for arrays with 8-bit input words and 16-bit input words is very small since n does not 

dominate the equation. The overhead ratio drops in proportion to ! and therefore, the over-

head ratio is smaller for an array with a larger input set. 

Table 2.2. Overhead ratios. 

n N P A r 

8 25 11532 67200 17.16 

8 49 23052 263424 8.75 

8 81 38412 725760 5.29 

8 121 57612 1626240 3.54 

8 169 80652 3179904 2.54 

8 225 107532 5644800 1.90 
16 25 22700 134400 16.89 
16 49 45356 526849 8.61 

16 81 75564 1451520 5.21 

16 121 113324 3252480 3.48 
16 169 158636 6359808 2.49 

16 225 211500 11289600 1.87 
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The proposed fault-tolerant sorting array is highly pipelined. Once the pipe is filled we 

can get an output for every clock cycle although the time latency required to fill the pipe was 

increased by 3 clocks due to the three additional stages for error detection and correction. The 

analysis shows that the hardware overhead is less than 10% if N > 42 and the time overhead 

approaches zero after the pipe is filled. 

If we apply the RESO [30] approach which detects errors by comparing the unshifted out-

put sequence with the shifted output sequence, it requires 100% time overhead and one extra 

cell in each CS element to sort the shifted input sequence in order to detect any single data 

error. Even if we do not include the shifting circuits and comparators for comparison, the 

hardware overhead ratio is 

14N(N-l) 1 
rreso = 14N(N-l)n 100% = -; 100%. 

The AT2 ratio of RESO over the proposed method is equal to 

1 
n 4 

RAT2 = 1 = 54+c 
14N 

56N 
(54+c)n 

For N>n, RAT2 » 1 which shows that the area-time cost of RESO (with the error detection 

capability only) is higher than our method. 

2.7. Summary 

A novel fault tolerance technique was presented for a systolic sorting array based on the 

odd-even transposition sort algorithm. Functional and data errors are detected by additional 

stages and a simple coding technique respectively. Based on the discovered properties and the 

developed fast on-line fault diagnosis procedure, these errors can be corrected either automati-



53 

cally or by bypassing and reconfiguration. Hardware overhead for fault tolerance is about 

(54+c)/14N and only 3 clocks delay is incurred in the pipeline. Since the sorting array is two­

level pipelined and all the checkers are implemented to be fault secure or totally self-checking, 

it is well applicable to real-time applications which require high throughput as well as high reli­

ability. The error detection techniques in this chapter can be applied to sorting arrays based on 

other sorting algorithms with either two-level pipelined or bit-level serial structure [54]. 
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CHAPTER 3. 

THE DEFECT-TOLERANT WSI SORTING NETWORKS 

3.1. Introduction 

Recently, the fast growing computer vision, image processing, and digital signal process­

ing techniques [55,56,57,58] enforce the sorters to process even more input data in a shorter 

period of time for real-time applications. According to Thompson's [4] analysis, only two of 

the thirteen sorters discussed in his chapter were designed with high degree of concurrency and 

thus suitable for real-time applications. One uses the odd-even transposition sort [5] which 

requires N·(N-I)/2 basic sorting clements (N is the number of input data to be sorted) to com­

pletely sort the input sequence with the concurrency factor N. This sorting algorithm is widely 

used in VLSI systems [32,59,33,60], because it has the advantages of regular cell structure and 

simple communication scheme which render it easily implementable and reconfigurable in VLSI 

technology [61,62]. However, this is a hardware intensive architecture since it requires O(N2) 

sorting elements to sort N input data. The other one uses the Batcher's bitonic sort [6J which 

requires (N/2)[log2N·(lOg2N + 1 )]/2 sorting elements with the concurrency factor 

[log2N·(lOg2N + 1 )]/2. Although this architecture has the advantage oflogarithmic area-time2 

(AT2) cost, it is difficult to implement in VLSI if N is very large, due to its complex communi­

cation scheme. Even with the modified sorting networks such as the perfect shuffle sort [7J or 

the balanced sort [63], which are much more regular than the bitonic sort, they are still hard to 

implement in VLSI due to their complex interconnections. The results in [64] show that the 
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minimum area required to layout an m-line perfect shuffle interconnection networks grows as 

m2• This problem is even more significant when the sorter is implemented in WSI (Wafer 

Scale Integration) which can have a huge number of sorting elements fabricated in a single 

wafer. In addition, due to the large area and the processing technology limitation, defects seems 

unavoidable in WSI implementation. Therefore, the networks need to have defect tolerance 

capabilities. Although various approaches on fault tolerant interconnection networks for shared 

memory multiprocessors have been proposed [65,66,67,68,43,69] , these techniques can not 

be applied to sorting networks since every interconnections in the sorter are active at any given 

time and the data movements are highly pipelined. 

Therefore, in order to obtain a good area-time tradeoff, in section 3.2 we present a novel 

sorting network which is designed to be hierarchical and modular and retains advantages of both 

sorting networks discussed above. The hierarchical modular sorting network (HMSN) is based 

on the tradeoffs between the simple communication scheme of the odd-even transposition sort 

and the fast convergent speed of the bitonic sort. In section 3.3, an approach to determine the 

optimal sorting capability at each level is proposed based on the technology constraints and the 

requirement of hardware area. A cost function is derived and simulations are performed to find 

the minimum cost with respect to various parameters. 

Although the HMSN is highly modular, it is still difficult to exclude faulty elements in the 

network and replace them by redundant elements since the connections between stages in the 

bitonic sorter are irregular and complex. Therefore, in section 3.4 networks with regular inter­

connections are derived and shown to be equivalent to the bitonic network and therefore can 

replace it. In section 3.5, defect tolerant structures are presented. Spare sorting elements are 

incorporated in every level of the hierarchy and they not only can replace defective sorting ele-
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ments in the corresponding level but also can be used to correct run-time errors. Detailed yield 

analysis is done in section 3.6 which shows that our approach is indeed very effective in com­

parison with other structures. 

3.2. Hierarchical Modular Sorting Networks 

As discussed in section 3.1, the Batcher's bitonic sort has the advantage of having a loga­

rithmic area-time2 (AT2) cost over other sorters. However, if N is very large, it is dimcult to 

implement the N-input bitonic sorter in a single chip VLSI [64] or WSI [70] due to the complex 

and long interconnections. As shown in the middle of Fig. 3.1, both shuffle and butterfly inter­

connections are used in the bitonic sorter and the longest interconnection exists between sorting 

elements which are n/2 elements away from each other if there are n clements in each stage. 

Although the odd-even transposition sorter is a hardware intensive architecture (it requires 

O(N2) sorting clements to sort N inputs), it has the advantage of having simpler and shorter 

interconnections. As shown in the left of Fig. 3.1, every sorting clement only communicates 

with its two I earest neighbors and hence the odd-even sorter is more suitable for implementa­

tion in VLSI and WSI. Therefore, in order to have advantages of fewer processing clements 

(area cost) as well as less wire complexity and faster convergence in sorting, the sorting net­

work can be decomposed into a two-level structure with the bitonic sorter in the bottom level 

and the odd-even transposition sorter in the top level. For example, if N = b' X p', the network 

can be decomposed such that the bitonic sorter in the bottom level will sort b' inputs and the 

top-level odd-even sorter will merge the p' sets of data with b ' sorted inputs in each set. 

The reason why a two-level sorting network can reduce the wire complexity can be 

demonstrated with the following example. If a one-level bitonic sorter has N=I024 inputs, we 
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know that 55 stages with 512 sorting elements in each stage are required to complete the sorting 

process and thus, there are 1024 interconnections between two stages. Since the complexity of 

shuffle and butterfly interconnections grows with the square of the number of elements to be 

connected between two neighbor stages, if a bitonic sorter with 1024 shuffle or butterfly inter­

connections is decomposed into a two-level sorter with b'xp' = 256x4 or 128x16, the number 

of sorting elements in each stage will be reduced significantly to 128 or 64, and the number of 

interconnections is reduced from 1024 to 256 or 128. Therefore, the original wire complexity 

which is in proportion to 10242 will be reduced to 2562 or 1282 , and thus simplify the wire 

complexity considerably. 

Although this two-level sorting network now has a good area-time cost measure, it is 

difficult to incorporate redundancy and reconfigure for surviving from defects since the bottom-

Odd-even sort Multi-way odd-even merger 
Multi-way bitonic merger 

Figure 3.1. Hierarchical sorter. 
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level bitonic sorter has irregular shuffle and butterfly interconnections. Therefore, it is not cost 

effective to use this architecture for WSI implementation where reconfiguration is necessary to 

tolerate defects. To minimize the cost to survive from defects, the easily reconfigurable odd­

even transposition sorter can be used as the bottom level sorter to replace a sorting element in 

each bitonic sorter (Reconfiguration on the odd-even transposition sorter and the bitonic sorter 

will be discussed in section 3.5). 

Therefore, the sorting network has three levels. Let N = PIX b X P2. Then, each 

bottom-level odd-even sorter can sort PI inputs, each middle-level bitonic sorter can merge b 

sets of sorted inputs with P 1 inputs per set, and the top-level odd-even sorter can merge P 2 sets 

of inputs with b'p 1 inputs in each set. In the rest of this chapter, a sorting element will be 

referred as a cell at the bottom level, a submodule at the middle level, and a module at the top 

level. Each bottom-level odd-even sorter has PI stages with PI 12 cells in an odd stage and 

(p 1 /2)-1 cells in an even stage if P 1 is even [5]. If PI is odd, there are (p 1-1)/2 cells in a 

stage. A data register "D" in the odd-even sorter is used as a buffer to synchronize the data 

movements. We refer a middle-level bitonic sorter in Fig. 3.1 as a multi -way bitonic merger. 

A cell (submodule) marked with a "1" ("-") means that the outputs from it are in monotonic 

decreasing order, otherwise, the outputs are in monotonic increasing order. 

It can be shown by using the method similar to that in [5] for merge-sort that the multi­

way bitonic merger in the middle level with a total of (log2b+1)'(lOg2b+2)/2 stages can com­

pletely sort PI ·b inputs if there are b (b needs to be a power of two) submodules in each stage 

and each module can sort PI inputs. In the top level, the odd-even sorter is referred as a 

multi -way odd -even merger which can merge P 2 sets of P l'b sorted inputs into the correct 

order. The multi-way odd-even merger has 2P2-1 stages with P2 modules in each stage and 
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can merge P2 sets of P l'b sorted outputs into the correct order if each module can sort P l'b 

inputs. An example three-level sorter is shown in Fig. 3.1 where the four-input odd-even tran­

sposition sorter is used in the bottom level. Depending on the number of inputs to be pro­

cessed, each level can be furthermore decomposed. For example, if P2 is still very large after 

the decomposition, then the top level can be further decomposed into two levels with one based 

on the bitonic sort to save area and the other one based on the odd-even sort. 

In addition to the bitonic sorter, the perfect shuffle sorter [5,7] can also be a good candi­

date for the middle level. In a perfect shuffle sorter, IOg2n blocks are configured as an Omega 

interconnection network, i.e., interconnections between blocks are shuffle connections. Each 

block of the perfect shuffle sorter is also constructed as an Omega network except that switching 

elements in the original Omega network are replaced by sorting elements in the perfect shuffle 

sorter. That is, with a total of (lOg2n)2 stages and nl2 elements in each stage, the perfect 

shuffle sorter can completely sort n inputs. If we replace each bitonic sorter in Fig. 3.1 by a 

perfect shuffle sorter, a multi -way perJect (shuffle) merger is formed. 

Although the multi-way bitonic merger uses less sorting submodules and incurs less time 

latency (log2n'Oog2n + 1)/2 stages) to fill the pipeline than the perfect merger ((lOg2n)2 stages), 

the multi-way perfect merger has the advantage that it has the same interconnection pattern 

between stages in a block and between blocks. This repetitive architecture can simplify both 

the design and the operation complexity compared with the recursive architecture of the bitonic 

merger. However, both the bitonic merger and the perfect merger need more than one type of 

submodules which may increase the implementation complexity. 

Recently, a new sorting network, the balanced sorter (as shown in Fig. 3.2), was proposed 

in [63]. Although it requires the same number of blocks as the perfect shuffle sorter to sort n 
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inputs and each block is also configured as an Omega network, permutations between blocks are 

different. Instead of shuffle connections, 1: permutations exist between blocks of the balanced 

sorter as shown in Fig. 3.2. This balanced sorter is essentially equivalent to the bitonic sorter 

[71]. If we replace each bitonic sorter in Fig. 3.2 by a balanced sorter, a 

multi -way balanced merger is formed. A multi-way balanced merger has some advantages 

over a multi-way bitonic merger: (1) unlike the multi-way bitonic merger which does not have 

uniform sorting submodules, the multi-way balanced merger contains only one type of submo-

dules (2) interconnections between stages in each block are the same and the permutations 

between blocks are all 1: connections. The uniform submodule property in (1) is also an advan-

tage over the perfect shuffle merger. 

N=8 

stage 

permutation permutation 

r-------------~!r-------------~!r-------------, 

block 1 

I 
I 
I 
I 
I 

block 2 

Figure 3.2. The balanced sorter. 

block 3 
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Therefore, the multi-way balanced merger is more suitable for WSI implementation 

because of its uniform submodules and regularly repeated architecture. If N is large and the 

timing requirement is not very critical, we can even use only one block of the balanced sorter 

and recirculate the outputs of this block to its inputs for log2N times until the sequence is 

ordered. Inherent fault tolerance properties of the balanced sorting network were discussed in 

[26,27]. By recirculating all output lines to the corresponding input lines or duplicating the last 

block, a functional fault which generates an incorrect swap will be recovered automatically. 

3.3. Optimal Decomposition 

We know that the HMSN can have multiple levels for large N with odd-even transposition 

sorters at both the bottom and the top level. In this section, we will present the analysis pro­

cedures for chosing an optimal sorting capability (number of inputs or sets of inputs) of each 

level based on the wire complexity and the hardware cost. We will assume that the multi-way 

balanced mergers are used at the intermediate levels in the analysis, however, similar analysis 

can be performed if the multi-way bitonic mergers are used. 

For a three-level sorter, let N = P 1 xbXP2 and therefore, the total number of cells is 

(3.1) 

It should be noted that PI in equation (I) should be greater than 2 to form a sorter in the 

bottom-level. Otherwise, the network will be a two-level structure since a submodule of the 

balanced sorter can sort two inputs directly [10,72]. The ratio rhlo of Nh over the number of 

sorting clements in a single-level odd-even sorter which is N (N -1)/2 = P 1 bP2(P 1 bp2-1)/2) is 

then 
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rhlo=1 when b=128. Thus, the HMSN will have less sorting elements than the single-level 

odd-even sorter if b>128. From equation (2), we can see that if b~(log2b+l)2, we will have 

rhlo<'1. Therefore, b should be as large as possible under the constraints imposed by the tech-

nology and wire complexity in order to reduce the number of sorting cells. Thus, the optimal b 

is technology dependent. In the following analysis we will assume that b is known to be equal 

to an optimal value b max which depends on the technology and the wire complexity. 

After the value of b has been determined in a three-level HMSN, we can find the values 

for P 1 and P2. From equation (1), since both N and b are fixed, log2b as well as P lXP2 (let it 

be represented as p) are fixed, the minimization of Nh is then equivalent to minimizing 

is equal to a constant P, we will have a minimum Nh• This means that PI, which is an integer 

factor of P, should be as small as possible but greater than 2. 

However, with redundancies included in every level, finding the minimum Nh with respect 

to P 1 is very difficult. Simulation is necessary to select the minimum Nh and thus determine P 1 

and P2. The reason is that the minimization procedure involves finding the minimum value of a 

fourth order function of P 1 and PI not only has to be discrete (p 1 is an integer) but also must 

be a factor of p. Let Nh-r be the number of sorting elements in a HMSN with redundancy and 

assume that there are d, I, and n redundant rows as well as J, m, q redundant columns in each 

sorter at the bottom-level, middle-level, and top-level, respectively. Then, 

Pl-l 
Nh-r=(-2-+d)-(P 1+.n·(b+/)·[(1og2b+l)2+m]·(P2+n)·(2P2-1+q). (3.3) 

Finding the minimum Nh - r with respect to various PI is equivalent to finding the minimum C 

where 
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C=(P l-l+2d)'(p l+j}(P2+n )'(2p2-l+q) 

=[p IP2+(2d-l)P2+np 1 +n (2d-l)]'[2p IP2+2/P2+(q-l)p 1 +/ (q-l)]. (3.4) 

Since b in equation (3) and the redundancies added to each sorter are fixed, only P2 (= pip I) is 

related to PI in finding the minimum N h-r with respect to PI. 

Example cases with various amounts of redundancy are used to illustrate how to find the 

minimum C (or Nh- r ) with respect to a given p. It should be noted that Nh - r is equal to kxC 

where k can be viewed as a constant and is equal to (b+l)-[(log2b+li+m]/2. These example 

cases have one or two redundant rows in a cell, submodule, or module. Redundant columns can 

also be included in a cell or module since they, as will be discussed in section 3.5, can simplify 

the system on-line reconfiguration process. The amount of redundancy in a level for each case 

is shown in Table 3.1 where nr represents n redundant row and me represents m redundant 

columns. Tables 3.2-3.5 present the results for these example cases with various P values (i.e., 

different array sizes). The C min is the minimum C and the corresponding P 1 is listed as P Imin' 

For case 1, one redundant row is incorporated in a sorter at every level, then 

Nh-r=(p I+l)-p 1'(b+l)-(log2b+l i'(P2+l H2P2- l )/2, 

C=(P I+l)-p 1'(P2+l H2p2-l )=(P IP2+P IH2p IP2+2P2-P 1-1). 

The global minimum C will occur at the value of PI which satisfies the equation p+2p 2-2p 1 =1 

Table 3.1. The amount of redundancy for each case. 

Case No. 

level 1 2 3 4 5 6 7 8 
bottom lr lr2c lr lr2c 2r 2r2c 2r 2r2c 

middle lr lr lr lr 2r 2r 2r 2r 

WQ Ir lr lr2c lr2c 2r 2r 2r2c 2r2c 
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(p=p I xP 2). However, since both P I and P 2 are discrete, simulation will be necessary to deter-

mine the values of P I and P2 which minimize Nh - r • 

In Fig. 3.3 we also show the cost versus P I graphically for cases 1, 2, 3 and 4 with p=100 

and p=105. The cost decreases rapidly before PI =P lmin for case 2 which has two redundant 

columns in the bottom-level sorter and increases rapidly after PI >P lmin for case 3 which has 

two redundant columns in the top-level sorter. Since case 4 has two redundant columns in both 

the bottom-level and the top-level sorters, the curve in Fig. 3.3 shows the cost decreases before 

Table 3.2. The cost C with p=20. 

Case No. 

P! 1 2 3 4 5 6 7 8 
4 1080 1620 1320 1980 1764 2646 2156 3234 
5 1050 1470 1350 1890 1680 2352 2160 3024 
10 990 1188 1650 1980 1560 1872 2600 3120 

Cmin 990 1188 1320 1890 1560 1872 2156 3024 

Plmin 10 10 4 5 10 10 4 5 

Table 3.3. The cost C with p=loo. 

Case No. 

P! 1 2 3 4 5 6 7 8 
4 25480 38220 26520 39780 37044 55566 38556 57834 
5 24570 34398 25830 36162 34320 48048 36080 50512 
10 22990 27558 25410 30492 29640 35568 32760 39312 
20 22680 24948 27720 30492 28980 31878 35420 38962 
25 22750 24570 29250 31590 29400 31752 37800 40824 
50 22950 23868 38250 39780 31800 33072 53000 55120 

Cmin 22680 23868 25410 30492 28980 31752 32760 38962 

P!min 20 50 10 10/20 20 25 10 20 
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Table 3.4. The cost C with p=105. 

Case No. 

PI 1 2 3 4 5 6 7 8 
3 29808 49680 30672 51120 45954 76590 47286 78810 
5 27060 37884 28380 39732 37720 52808 39560 55384 
7 25984 33408 27776 35712 34510 44370 36890 47430 
15 24960 28288 28800 32640 31590 35802 36450 41310 
21 24948 27324 30492 33396 31752 34776 38808 42504 
35 25200 26640 35280 37296 33250 35150 46550 49210 

Cmin 24948 26640 27776 32640 31590 34776 36450 41310 

PImin 21 35 7 15 15 21 15 15 

Table 3.5. The cost C with p=200. 

Case No. 

PI 1 2 3 4 5 6 7 8 
4 100980 151470 103020 154530 144144 216216 147056 220584 
5 97170 136038 99630 139482 132720 185808 136080 190512 
8 91728 114660 95472 119340 116424 145530 121176 151470 
10 90090 108108 94710 113652 111540 133848 117260 140712 
20 87780 96558 97020 106722 104880 115368 115920 127512 
25 87750 94770 99450 107406 105000 113400 119000 128520 
40 88560 92988 108240 113652 108360 113778 132440 139062 
50 89250 92820 114750 119340 111300 115752 143100 148824 
100 90900 92718 151500 154530 123600 126072 206000 210120 

Cmin 87750 92718 94710 106722 104880 113400 115920 127512 

Plmin 25 100 10 20 20 25 20 20 

P Imin and then increases after PI =P Imin. The cost does not change significantly with respect to 

P I for case 1 with no redundant columns. 

Comparing case 2 with case 3 and case 6 with case 7 in Tables 3.2-3.5, we see that the 

minimum cost of adding two redundant columns in the bottom-level sorter is less than that of 

adding two redundant columns in the top-level sorter. Case 4 has the highest hardware cost 
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among the first four cases and it costs about 20-25% more than case 1 or 2. Case 8 has the 

highest cost among all cases since it has the most redundancy in every level. However, the 

optimal amount of redundancy depends not only on the area overhead but also on the yield 

improvement achieved over the original structure with no redundancy. Therefore, the results on 

these cases will be used in section 3.6 to determine the optimal amount of redundancy in each 

level. 

We also discussed in section 3.2 that depending on the number of inputs, the bottom or 

the top-level sorter can be further decomposed into a sorter with two or more levels. The 

bottom(top) level sorter can be decomposed with the bitonic mergers or balanced mergers in the 

higher (lower) levels and a odd-even merger in the lowest (highest) level. Since P 1 and P2 can 

be determined from the simulation, in the following analysis we will show that when the bot-

tom or top level sorter should be further decomposed. 

There are PI(PI-l)/2 cells and P2(2P2-1) modules in a bottom-level sorter and a top-

level sorter, respectively. Let the bottom-level sorter and the top-level sorter be further decom-

posed such that PI=PI"b l ' and P2=P2'b 2'. Compare the numbers of sorting cells and 

modules in these two levels before and after decomposition and let the ratios be , 1 and '2, 

respectively, we have 

(3.5) 

P2(2p2-1) 
(3.6) '2 

P2' b2'(2P2' -1)log2b 2' +1l0g2b2' +1 . 

For PI =64 and PI' =4 (since PI' should be greater than 2 and b I' should be as large as possi-

ble) , we have '1=63175 and if PI=128 we will have '1=127/108. This means that if PI is 

further decomposed, the network will have more cells than before decomposition if P 1 ~64. 
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Since b l' should be a power of 2, we know that further decomposition is profitable in the 

bottom-level if P 1 is greater than 128. Similarly, we can derive that P2 should be greater than 

256 if the top-level sorter is to be decomposed. From Tables 3.2-3.5, we see that in our exam-

pIe cases every PI or P2 are less than 128 or 256, respectively. Therefore, normally a three-

level network is sufficient for most applications unless a huge number of inputs (more than 

128><256><256 inputs, i.e., p=128><256 and bmax=256) is to be sorted. Practically, it may not 

be possible to implement a sorting network to sort more than 128x256x256 inputs in a single 

wafer. Hence, in the rest of this chapter we will concentrate on the three-level structure only. 
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3.4. Easily Reconfigurable Equivalent Networks 

In the middle-level of the HMSN, both the multi-way bitonic merger and L~e multi-way 

balanced merger are considered in this chapter. The balanced merger has the unique properties 

of uniform cell structure and regularly repeated architecture. Advantages of the bitonic merger 

are that it has the fewest submodules and the least pipeline latency among all real-time sorting 

networks, and the number of submodules is approximately half of that in other mergers. 

Although the bitonic merger is not a regular and repetitive architecture originally, after an 

equivalent network transformation described in this section, the resulting network will have a 

regular structure and simpler interconnections. 

However, there still exist shuffle type interconnections in these two mergers which are 

very difficult to reconfigure to exclude faulty elements and some modifications are necessary to 

make these networks easily reconfigurable. It has been shown in [73] that the modified data 

manipulator (see Fig. 3.4(b» is topologically equivalent to the Omega network (see Fig. 3.4(a». 

In addition to the topological equivalence, these two networks are functionally equivalent [70] 

such that without any modification the shuffle connected Omega network in a sorting block of 

the balanced merger can be replaced by the modified data manipulator (detailed proofs will be 

discussed in appendix section A.I). Since the modified data manipulator has simpler intercon­

nections, the resulting network is easier to reconfigure (will be discussed in section 3.5) around 

faulty submodules. 

The shuffle connections in the multi-way balanced merger can now be simplified by 

replacing the Omega network in each sorting block with the modified data manipulator. The 

remaining shuffle permutations (0) in the multi-way bitonic merger and 't permutations in the 

multi-way balanced merger will be defined here and then replaced by the equivalent switching 



N= 16 
block 1 r----------------, 

I 
I 
I 

stage I 0 1 2 3: L ________________ ~ 

(a) 

block 1 r----------------, 
I I 

stage I 0 1 2 3 I L ________________ ~ 

(b) 

Figure 3.4. (a) Omega network and (b) modified data manipulator. 
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network so that these two multi-way mergers can be replaced by a more regular and 

reconfigurable equivalent multi-way merger (detailed proofs will be discussed in appendix sec-

tion A.2). 

Let a sequence A = {O, 1, ... , 211_1} (N = 211) be represented by Pn-l ... Po, and let 1: and 

cr be two pennutations of A. The shuffie pennutation cr is defined as cr : A ~ A with cr(PlI-l ... 

Po) = Pn-2 PII-3 ... PI Po PII-l' An example of cr pennutation with N = 16 is shown in Fig. 

3.5(a). The pennutation 1: is defined as 1: : A ~ A with 1:(PII-l ••• Po) = Pn-l ... Po if Po = 0 and 

1:(PII-l ... Po) = PII-l Pn-2 ... PI Po if Po = 1. An example of 1: pennutation with N = 16 is 
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shown in Fig. 3.6(a). The Banyan permutation r is formed by setting all switching elements in 

the Banyan's interconnection network (this network can be viewed as a reverse network of the 

modified data manipulator in network topology) in straight connection states (see Fig. 3.5(b)). 

The,!, permutation is formed by setting every switching element in the modified data manipula­

tor either in straight or in exchange state. The switching elements in stage i (i=O to n-l) with 

positions represented by Pn-l ... PI, will be in exchange state (Pn-l .... PI po= Pn-l .... PI Po) 

if Pn-iPn-i-1 =01 or 10, or in straight state (Pn-l .... PI Po= Pn-l .... PI Po) if Pn-iPn-i-1 =00 or 

11. An example of,!, permutation with N = 16 is shown in Fig. 3.6(b). It has been shown [70] 

that: (1) the shuffle permutation a is topologically equivalent to the Banyan permutation r, (2) 

The 't permutation (Fig. 3.6(a)) is topologically equivalent to 'I' permutation (Fig. 3.6(b)). 

link-level 1 2 3 

(a) (b) 

Figure 3.5. (a) Shuffle permutation a and (b) Banyan permutation r. 
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N= 16 link-level 1 2 3 

stage 0 1 2 3 

(a) (b) 

Figure 3.6. (a) Balanced pennutation 1: and (b) pennutation \j1 of the modified data manipulator. 

Therefore, we know that a shuffle pennutation of N inputs can be replaced by a Banyan network 

with log2N stages and every switching element in a stage is in the straight state. Now we can 

see that the sorting networks with complex connections can be replaced by equivalent networks 

which are inherently easier to reconfigure. Each switching element in the equivalent networks 

is either in the bypass state or in the exchange state and therefore, is very simple to implement 

such that the area and time penalty is negligible compared with the entire sorting network. The 

number of cells used in the modified equivalent networks is equal to that of the original net­

works and the time latency is not changed. Therefore, the two multi-way mergers can be 

replaced by a more regular and reconfigurable equivalent multi-way merger which introduces 

little time overhead. 
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3.5. Defect Tolerance 

A. Bottom-Level and Top-Level Reconfigurable Structures 

Since the odd-even sorter is used in both the bottom-level and the top-level of the sorting 

network, the reconfigurable structure will be the same and therefore, we use an example 6-stage 

odd-even sorter in Fig. 3.7 to illustrate our approach. In this section, a cell can be a bottom cell 

or a top-level module. Two redundant cells are added to each stage with one at the bottom and 

the other at the top of the stage. Two switching elements are associated with each cell to con-

trol input/output to and from the cell. The input and output functions of a switching element 

100 10 100 11 100 10 I 
eRA 

G
I 

R -
II II 

CRB 

100 10 100 It 100 10 I 
Figure 3.7. Example rcconfigurable structure of the odd-even transposition sorter. 
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are shown in Fig. 3.8 which are controlled by the reconfiguration control registers (eRA and 

eRB) where S is a control bit for a cell. Each field in a reconfiguration control register controls 

a stage. The number of bits in each field for a stage with 1 cells is r (where 2r ~ 1-2). Cells in 

a stage are numbered from 1 to I. The bit patterns in eRA and eRB determine whether a faulty 

cell will be replaced by a redundant cell in the top row or the bottom row. Table 3.6 illustrates 

the meaning of a field in eRA and eRB. The switches of a delay cell is activated when its 

neighbor cell in the same stage is activated. For example, in Fig. 3.7 there are two faulty cells 

in stage 4 and the corresponding switch settings after reconfiguration are eRA= 1 and eRB= 1, 

i.e., switches of cells 1 and 2 in this stage are activated by eRA, switches of cells 3 and 4 are 

activated by eRB. Two switches are also associated with each "0" registers, one is a 2-to-l 

multiplexer and the other is a I-to-2 demultiplexer. This structure can tolerate up to two faulty 

cells in each stage. 

It has been shown shown in [74] that by adding two extra stages in an odd-even transposi-

tion sorter as shown in Fig. 3.9, any single fault which makes a sorting cell perform an 

incorrect swap (we call this a functional fault) can be recovered automatically. In addition to 

CRA CRB 

switch S=O S=1 S=O S=1 

input =§= Jur- =§= port 

output =§= =€F port 

Figure 3.8. Output functions of a switching clement in the top-level. 
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Table 3.6. Regions covered by CRA and CRB. 

1=5(r=2) 1=4(r=l) 

CRA CRB CRA CRB 
00 nonnal nonnal 0 nonnal nonnal 
01 cells 1-2 cells 3-5 1 cells 1-2 cells 3-4 

10 cell 1-3 cell 4-5 

the fault masking property for the single functional fault, each sorting cell in Fig. 20 includes 

bypass registers such that the faulty cells generating nonfunctional errors can be bypassed 

without affecting system synchronization. The bypassed cells can be viewed as faulty cells 

which do not swap at all, and these errors will be recovered by the two extra stages [74]. 

Therefore, the odd-even transposition sorter can tolerate up to two faulty stages by simply 

bypassing the faulty cells without the need to restructuring the entire sorter. 

Since the sorting network is a pipelined structure, increasing the number of extra stages 

will increase the pipeline latency only. After the pipeline has been filled, a set of N outputs will 

redundant 

stages 

CS: compare-swap cell 

d: bypass register 

0: multiplexer or 

fusible switch 

Figure 3.9. On-line reconfigurable odd-even transposition sorter. 
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be generated at every clock period. For the top-level sorter, since the bottom-level sorter in 

each submodule can be bypassed, each module can also be bypassed by setting all sorters in the 

submodules of this module bypassed. Therefore, the same reconfigurable structure with redun­

dant rows and columns of modules or cells can be applied to both levels. 

B. Middle-Level Reconfigurable Structure 

However, with clustered defects, it is possible that there are more than two faulty stages in 

a bottom-level sorter. If the number of faults in a bottom-level sorter is larger than the amount 

of redundancy it has or if any physical defect causes a faulty cell unable to be bypassed, this 

sorter will be declared as unrepairable and switched out by the reconfiguration scheme described 

in the following and replaced by a redundant submodule. 

Input lines and output lines of a submodule in this level are connected to three submo­

dules in the preceding stage and succeeding stage, but not all of them are the nearest neighbors 

of that submodule. Each submodule has two switches, one in the input port to select two out of 

three inputs and the other in the output port to direct data to two of the three output lines. It 

should be noted that after the transformation to the equivalent network, the shume interconnec­

tions in the bitonic merger are replaced by the Banyan permutation and therefore, the bitonic 

merger is now like a modified data manipulator. The Omega network in a sorting block of the 

balanced merger and the 't permutation between sorting blocks are replaced by the modified data 

manipulator. Therefore, the balanced merger is now connected by a series of modified data 

manipulators. 

The reconfigurable structure of the multi-way balanced merger is shown in Fig. 3.1O(a). 

In Fig. 3.10(b) we show an example after reconfiguration. The reconfiguration strategy in Fig. 

21 includes a redundant row of submodules which can either the bottom row or the top row. 



[[]: switch 

(a) 

(b) 

o 
o 
o 
o 
o 

£8J: faulty submodule 

0: switching element 
(c) 

Figure 3.10. Example reconfiguration in the middle-level. 
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Note that the switching elements in the pennutation networks should also be reprogrammed 

since the setting of switching elements in the equivalent network to perfonn the 't pennutations 

are different and depend on the positions of these switching elements. Similarly, after restruc-

turing the system, a sorting clement in the equivalent multi-way bitonic merger should be repro-

grammed according to its position in the new structure due to the nonunifonn cell structure in 

the bitonic merger. 

However, the reconfigurable structure in Fig. 3.10(a) can tolerate faulty submodules in the 

same row only, any two faulty submodules in two different rows will cause the submodule 
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unrepairable. This problem can be solved by modifying the two switches at the input and out­

put ports as shown in Fig. 3.1O(c). Excluding a faulty submodule and replacing by a redundant 

submodule in the same column can be completed with the same control scheme as that in Fig. 

3.7 and the same switch functions as those in Fig. 3.8. 

The major drawback of the defect tolerant multi-way merger in Fig. 3.10 is that the 

reconfigurable butterfly interconnections between two stages have wrap-around connections. An 

example butterfly interconnection between two stages is shown in Fig. 3.11(a), where each stage 

has k=8 sorting elements and one redundant element (R=I). If each element has n=3 outputs 

with m=1 bit line per output, then there will be 8 (=(/c+r-l)mn/3) warp-around interconnec­

tions. Let a represent the wire width of an interconnection and b the space between two inter­

connections as shown in Fig. 3.11. Then the distance between two stages in a butterfly inter­

connections is kl(2x-ff)x(h+b) since dl=d2. The length on the longest interconnection due to 

wrap-around will be about (kI2+k+l)x(h+b) which is 3x-ff times longer than the shortest inter­

connection. Therefore, in addition to increasing the wiring complexity, the wrap-around inter­

connections will slow down the system clock significantly and thus, reduce the system 

throughput. 

However, this drawback can be avoided by replacing the wrap-around interconnections 

with interconnections directly from the source to the destination. Let the submodules in a stage 

be numbered from 0 to k. As shown in Fig. 3.11(b), the three wires of a sorting element s 

(O~~) connect respectively to the sorting elements s, k12, and k12+ 1 in the next stage, if 

s~kI2, otherwise, they connect to the sorting elements s, s-kl2 and s-kI2-1 in the next stage. 

The configuration of Fig. 3.11(b) is then equivalent to Fig. 3.11(a). The length of the longest 

interconnection in Fig. 3.11(b) becomes 2(kI2+1)(h+b)/-ff which is approximately 2/(3-ff) that 
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Figure 3.11. Bunerfly interconnections with and without wrap-around wires. 

of the longest interconnection in the wrap-around structure. 

The advantage of Fig. 3.11(b) over Fig. 3.11(a) in the total interconnection area is illus-

trated as follows. The total wire area for the original butterfly interconnections can be derived 
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to be 

k (h+b) 
Ab-o = [(k+1)-h+k'b + k'(a+b)] x [2''' T3 + k'(a+b)] 

and the total wire area of the modified butterfly is 

k (h+b) 
Ab-m = [(k+1)'h+k'b] x [("2+1)' T3 ]. (3.7) 

Since Ab-o>Ab-m' not only the wrap-around connections are eliminated, but also the area is 

reduced. 

3.6. Yield Analysis 

The yield of a WSI array processor is defined as the probability that during the manufac-

turing process, defects are distributed into cells, switches, and wires of the array in such a way 

that all defective elements can be tolerated [75]. In order to evaluate the improvements on yield 

after redundancies are introduced in each level, yield modeling and analysis are developed in 

this section. Our approach is to start the analysis at a stage of the bottom-level odd-even sorter. 

If the defects are randomly distributed, the yield Y=e-DA where D is the average defect 

density and A is the area of the chip or wafer. However, in the real manufacturing environment, 

the defects have a tendency towards clustering. Therefore, the yield Y follows the more accu-

rate negative binomial distribution, i.e., Y = (1 + DA lafa. [76]. a is a parameter representing 

the level of clustering, which usually takes a value around I or 2 [77]. The probability of hav-

ing k defects in a stage is then [76] 

r(k+a)( DA i 
a 

Pw(k) = --------
k !r(a)(1+ DA )a.+k 

a 

The yield Ybs of a stage at the bottom-level with n-r nonnal cells and r redundant cells can 
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then be derived as 

r r(k+IX)( DA l 
IX 

Ybs = L X Pknr · 
k={J k !r(IX)(l+ DA )a+k 

IX 

(3.8) 

where Pknr is the recon!1guration coverage which represents the probability of successfully 

reconfiguring a stage of n cells with r redundant cells and k defects. For our reconfiguration 

scheme, Pknr=l if k$.r, and in order to simplify the analysis we will assume that Pkn,={) for k>r 

to obtain the lower bound of Ybs ' Actually, our scheme can tolerate more than k defects if some 

of the defects fall on the same cell. 

Defective wires or switches between two stages can also be tolerated by using alternative 

paths and bypassing the corresponding cell which can be viewed as a faulty cell and replaced by 

a redundant cell. Therefore, the effect of defects in wires and switching elements on the yield 

can be included into the model Ybs by adding the area of switches and interconnections to the 

total area A in equation (3.8). This is different from the model in [78] where the effect of wires 

on the yield is calculated independently because no faulty interconnection can be tolerated. 

Therefore, the yield of a bottom-level sorter, Yb , is equal to Y bs m, if there are m stages and 

no redundant stage in the sorter. If two redundant stages are included, the bottom-level sorter 

can tolerate up to two consecutive faulty stages, and the yield is 

Since a submodule is an odd-even sorter, the yield of a stage in the middle-level sorter is 

Yis = Ybi+2+(i+2)Ybi+l (l-Yb)+(i+2)(i+l)Yb m(l_yb)2/2 

assuming there are i submodules plus two redundant submodules in each stage. 

Let Aiw represent the area of the interconnections and the switching elements between two 

neighbor stages of a middle-level sorter as shown in Fig. 3.1O(c). The yield Yiw of the 
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interconnection area can be derived by using equation (8). The yield of a stage including the 

interconnection area is then Y is' =Y ~xYiw' Therefore, the yield of a middle-level sorter, Yi' will 

be (Y ~')q if there are q stages. 

Similarly, the yield, YISt of a stage in the top-level sorter is 

YIS = y/+2+(t+2)y/+1(I-Yi)+U+2)U+l)Yim(l-Yi)2/2 

if there are j rows plus two redundant rows in each stage and YI=Y tsXYIW where YIW is the yield 

of the interconnection area between two top-level stages. Then, Y, the yield of the top-level 

sorter (i.e., the yield of the HMSN) is 

Y = y/+2+(1+2)y/+1(1-YI)+(I+I)Y/(l-yl )2, (3.9) 

if there are I stages plus two redundant stages in the top-level odd-even sorter. 

An example sorting cell in[74] is used in the following simulation to evaluate how much 

yield improvement can be achieved by various redundancies in each level. The height of a cell 

is assumed to be between 5 Ilm (micrometers) and 50 Ilm. From equation (3.7), the area Aiw of 

the butterfly interconnections in the middle-level is proportional to (khi where k=b max and 

therefore, the larger the Aiw is the smaller the Yiw will be. Since Y~' =Y ~xYjw' any small 

decrease of the value of Yiw will reduce the value of Y is' and thus, drop the yield of the 

middle-level sorter significantly. This is due to the fact that Yj=(Y ~,)q, where q is the number 

of stages in a sorter at this level and is no less than 64 (i.e., b max=128). 

Yield with respect to p for the example cases in Table 3.1 are shown in Fig. 3.12 (a), (b) 

and (c). The defect density D in the cell area is assumed to be two defects per cm 2 and <X. is 2. 

However, since the wires and switches are much simpler and more regular than the cells, they 

are less vulnerable to defects and hence we assume that defect density in the interconnection 

area is one tenth of D. If no redundancy is included in an HMSN, the yield is zero for all cases 
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Figure 3.12. Example yield analysis. 

83 

40 50 

in Tables 3.2-3.5. From Fig. 23(a), we see that the HMSN perfonns well in every case with 

p=20 and bmax=256 (the solid lines) for cell heights less than 25 J.lm. The dotted line in Fig. 

3.12 (a) shows the yield when bmax=128. We only show cases 1 and 2 which have about 92% 

yield even if the cell height = 50 J.lm. For cases 3 to 8, the yields are always close to 100%. 

In Fig. 3.12 (b), bmax=256 and p=100, the yield drops quickly when only one redundant 

row is incorporated in every level for case 1. Also, we can see that case 7 perfonns better than 

case 8 even case 8 has two more redundant columns in the bottom-level sorter. The reason is 

that when two redundant rows are included in the bottom level, the yield of a bottom level 

sorter will be almost 1, and two more redundant columns cannot generate any further significant 

improvement on yield. Therefore, the difference on yield between case 7 and case 8 depends on 

the value p 1. Since Aiw grows with (p 1 xcell-height)2, a difference in PI can generate a large 

difference in Yiw ' From Table 3.3, since P 1 =10 for case 7 and PI =20 for cases 6 and 8, case 7 
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has a higher yield than cases 6 and 8. The yield of case 5 with PI =25 is less than that of case 

6, but it is not significant. The same reason can be applied for the differences among cases 2, 3, 

and 4. 

If p=200 and b max=256, the yield does not improve for cases 1 and 2 , and for other cases 

the yield drops sharply when the cell height increases past a certain value as shown in Fig. 

3.12(c). For example, let us look at case 7 with a cell height of 20 or 25 J.lm, respectively. Our 

simulation results show that Yis is 1 for both heights and Yjw=0.999 if height=20 J.lm and 

Yjw=0.997 if height=25 J.lm. However, since Yj=(Yjw )81 for this case, we have Yj=O.9527 if 

height=20 J.lffi and Yj=0.8495 if height=25 J.lm. The two redundant rows in the top level make 

Y1s=O.983 if height=20 J.lffi and YIs=O.73 if height=25 J.lffi and therefore, we have Y=O.9559 and 

Y=O.017. respectively. This case shows how the wire complexity can decrease the yield so 

significantly when both bmax and P 1 are large. 

3.7. Summary 

A novel hierarchical modular sorting network is presented in this chapter. It uses less 

hardware and converges faster than a single-level odd-even transposition sorter and the wire 

complexity problem of the bitonic sorter in VLSI or WSI is alleviated. A cost function is 

derived to determine the optimal sorting capability at each level and minimize the hardware 

complexity when redundancy is provided at every level of the hierarchy. The hierarchical sort­

ing network is very regular in structure and hence easier to reconfigure than any existing sorting 

network with the same time complexity. Hierarchical reconfiguration strategy is proposed to 

tolerate the defective elements in an efficient manner. Detailed yield analysis is performed on 

the hierarchical sorting networks. Yield improvements for cases with various number of spares 
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are evaluated. The simulation results show that the defect tolerant HMSN achieves a significant 

yield increase over a nonredundant sorting network. 
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CHAPTER 4. 

THE TRAPEZOID SORT 

4.1. Introduction 

Parallel sorting algorithms for two-dimensional mesh-connected processor arrays have 

been intensively studied in [16, 15, 14] and more recently, in [19, 21, 3]. Efficient implementa­

tions of these sorting algorithms in two-dimensional VLSI models are shown in [33, 60]. One 

of the earliest results on sorting rectangular arrays of numbers was presented by Thompson and 

Kung [14]. By mapping the odd-even merge sort and the bitonic sort [6] onto an n x n mesh­

connected array, it takes (6n+O(n 213 log2n))tr+(n+O(n 213 log2n))tc and (14(n-1)-

8log2n)tr+(2log22n)+log2n)tc, respectively, to sort n2 data items. The notation tr represents the 

time for routing a value in a processor to one of its neighbor processors and tc represents the 

time for comparing two values. Their efforts were improved by Nassimi and Sahni [15], and 

Kumar and Hirschberg [16] with improved constant factors. These earlier efforts were adapta­

tions of inherently parallel algorithms such as the odd-even merge sort and the bitonic sort to 

the mesh-connected array in an efficient manner such that the time complexity is O(n). How­

ever, these implementations spend most of the time in routing data to appropriate processors, 

and the complicated data movements in successive iterations result in complicated control struc­

tures and thus, offset the advantage of simple interconnections. 

Recently, Sado and Igarashi [19], and Scherson and Sen [21] presented two similar paral-
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leI sorting algorithms independently, the parallel bubble sort and the shear sort, respectively, for 

two-dimensional SIMD model. These sorting algorithms are based upon a repeated application 

of the bubble-sort method [5] to the rows and columns of the array to be sorted. In this chapter 

we will refer either of these two as the row-column sort algorithm since it consists of two 

basic operations: the row sort and the column sort. It is a true two-dimensional sorting tech­

nique and has the advantages that it is extremely simple to implement in any of the two­

dimensional computing models and its control complexity is reduced considerably due to its 

repetitive and nonrecursive nature. Its major drawback is that it requires flog2nl + 1 iterations 

to sort an n x n input sequence where each iteration includes one row sort and one column sort. 

In section 4.2, we present a new two-dimensional sorting algorithm, the trapezoid sort, 

which preserves Ille properties of simple control hardware and ease of implementation of the 

row-column sort, and the complexity is improved to f10g211+1 iterations with l={fi. Further 

analysis in section 4.3 gives the proof of convergence and some special properties of the algo­

rithm. 

4.2. The Trapezoid Sort 

Let Q=[Qij] be an n x n mesh-connected array of identical processors as in [79], onto 

which we have mapped an input sequence S. Sorting the sequence S is then equivalent to sort­

ing the elements of Q in some predetermined indexing scheme. Here, we use the 

snake-like row major (SLRM) indexing scheme as shown in Fig. 4.1 to order a two­

dimensional array of elements. 
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1 2 3 4 5 6 7 
14 13 12 11 10 9 8 
15 16 17 18 19 20 21 
28 27 26 25 24 23 22 
29 30 31 32 33 34 35 
42 41 40 39 38 37 36 
43 44 45 46 47 48 49 

Figure 4.1. An example of snake-like row major indexing scheme. 

The trapezoid sort is presented in Fig. 4.2 with PASCAL-like notations. In this procedure, 

the ith row and the jth column of the matrix Q are denoted by Q[i, 1 ... n] and Q[1 ... n, j], 

respectively. A row vector is sorted in nondecreasing order from left to right by the procedure 

row-sort and a column vector is sorted in nondecreasing order from top to bottom by the 

column-sort procedure. Both the row-sort and the column-sort procedures are implemented 

based on the odd-even transposition sort [5] which compares two neighbor values in a regular 

and alternating manner. The procedure row-sort sorts a row vector of Q in an opposite way to 

the row-sort procedure, i.e., nonincreasingly from left to right. The parameter I which will be 

determined in the next section is used to control the number of iterations required of the 

row-column sort module (step 4) in the procedure to obtain a snake-like row major ordered 

output sequence. 

The trapezoid sort can be decomposed into five steps. In the first step, all rows are sorted 

in the same direction from left to right and then these sorted rows are shifted right cyclicly by 

(t-1) elements from row t=1 to n in step 2. An example output right after steps 1 and 2 are 

executed is shown in Fig. 4.3, where the values 1 to 7 are randomly distributed in each row of 

the 7 x 7 matrix initially. After step 2 has been executed, the values 1, 2, 3, ... , 7 are also dis-

tributed uniformly in each column. The configuration in Fig. 4.3 will be referred as Q' in 



Procedure Trapezoid Sort (Q, I); 
begin 

end. 

for all t := 1 to n do in parallel /* step 1 */ 
row-sort Q[t, 1 ... n]; 

for all t := 1 to n do in parallel /* step 2 */ 
cyclic shift right Q[t, 1 '" n] by (t-l) positions; 

for all t := 1 to n do in parallel /* step 3 */ 
column-sort Q[l ... n, t]; 

for i := 1 to rlOgzll do /* step 4 */ 
begin 

end; 

for all t := 1 to n do in parallel 
if odd(t) 

then row-sort Q[t, 1 ... n] 

else row-sort Q[t, 1 ... n]; 
for all t := 1 to n do in parallel 

column-sort Q[1 ... n, t]; 

for all t := 1 to n do in parallel /* step 5 */ 
if odd(t) 

then row-sort Q[t, 1 ... n] 

else row-sort Q[t, 1 ... n]; 

Figure 4.2. The trapezoid sort algorithm. 
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1 2 3 4 5 6 7 
7 1 2 3 4 5 6 
6 7 1 2 3 4 5 
5 6 7 1 2 3 4 
4 5 6 7 1 2 3 
3 4 5 6 7 1 2 
2 3 4 5 6 7 1 

Figure 4.3. An example output of step 2 with n=7. 

section 4.3 to describe the orders of rows after the cyclic shift right operation. Step 3 is a 

column-sort to sort values of each column nondecreasingly. The statements in steps 4 and 5 

together can be viewed as an independent module (row-column sort module) which is 

equivalent to the shear sort in [21] or the parallel bubble sort in [19] except that it requires 

less iterations of the row sort and the column sort. 

4.3. Analysis and Time Complexity 

Let i represent the number of iterations of the row-column sort which has been executed 

on Q, Q i represent the matrix after i iterations of the row-column sort (a row sort followed by a 

column sort) except that a cyclic shift operation is performed between the row sort and the 

column sort in the first iteration (steps 1 to 3), Properties of the trapezoid sort and the amount 

of improvement on the number of iterations over the suboptimal shear sort and 

parallel bubble sort will be analyzed by applying the zero-one ({0-1}) principle [5]. For com-

pleteness, the {O-I} principle is restated in Theorem 4.1. 

THEOREM 4.1: If a network with n input lines sorts all 2n sequences of O's and 1 's 

into nondecreasing order, it will sort any sequence of n numbers into nondecreasing order. 0 
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For the purpose of applying the {0-1} principle, Q is assumed to contain only O's and l's 

, 
and a row is said to be clean if it contains identical elements, i.e., only O's or only 1 's, other-

wise it is dirty. In Theorem 4.2, we will show that the maximum number of dirty rows after the 

first iteration of row-column sort can be detennined by an equation similar to that of calculating 

the area of a trapezoid. This is the reason why we call it the trapezoid sort. By using the {O-

I} principle, we will prove in Theorem 4.3 that the trapezoid sort is a complete sorting algo-

rithm with the variable" l" in step 4 being equal to the maximum number of dirty rows after the 

first iteration when there are initiall::tn zeros in the matrix Q. 

A. Finding the Maximum Number of Dirty Rows 

In our analysis, the relationship between row j and row j + 1 in Q i will be obtained first in 

Lemma 4.1 based on the number of zeros in Qi. A method is then derived in Theorem 4.2 to 

fmd the maximum number of dirty rows in the matrix Q after the first iteration of the row-

column sort. 

LEMMA 4.1: Let the number of zeros in row j after i iterations be represented by 'Yj(i). 

For all j, k, l~j<k~n, the number of zeros in the jth row of Qi is no less than that in the kth 

row. 

PROOF: If the number of zeros in row j of Q i is less than that of row k, then there will be 

at least a zero in Qi[k, m] and a one in QiU, m], l~~n. This is in contradiction to our 

assumption that all columns are sorted in nondecreasing order after a column sort. Thus, the . ' 

zero in Q i [k, m] should pop up to Q i U, m]. Therefore, for all j, k, l~j <k~n, there are at least 

as many zeros in the jth row as in the kth row. That is, 'Yj(i)~k(i), for all l~j<k~n. o 

In step 5 of the trapezoid sort algorithm, a final row sort is used to sort the output 

sequence into the SLRM order after all elements are in their final row positions following step 4 
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(this will be shown in Theorem 4.3). That is, if the sorting algorithm can sort an input 

sequence with pn zeros or (p+ l)n zeros, then it can sort any input sequence with the number of 

zeros between pn and (p+l)n. Therefore, without loss of generality, in the following analysis 

we will consider input sequences wilh pn zeros only where p can be any integer and p ~n. 

THEOREM 4.2: Let lhe maximum number of dirty rows in Q i be IpCi). If there are ini-

tially pn zeros in Q, the relationship between lhe maximum number of dirty rows in Q 1 and pn 

will follow an equation similar to that of calculating the area of a trapezoid. That is, 

of remaining zems which do not increase the height of the trapezoid is represented by rp 

(~lp(1)) in the above equation. 

PROOF: Since the operation of the first column sort (i.e., step 3 of Fig. 4.2) is just to 

move zeros in each column of Q' to the top of Q 1 , the maximum number of dirty rows in Q 1 

can be regarded as the maximum number of zeros allowed in any column of Q'. 

To have a zero located at Q'[l, m], from Fig. 4.3 we know that at least n-[l-(m+l)] and 

m-l+l zeros are required in row I for l>m and l~, respectively. For Q' to have the max-

imum number h of dirty rows with the least total number of zeros, there should be h zeros in 

the same column and in continuous rows, i.e., located in Q'[l, I], Q'[l-l, I], Q'[l-2, 1], "', 

Q'[l-h+l, I] for I-h~O or in Q'[l, l], Q'[l-l, 1], "', Q'[l, I] Q'[n, l], Q'[n-l, 1], "', 

Q' [n -(h -l), I] for l-h <0. Therefore, wilh a total of 1 +2+"'+h zeros and arranged in the 

matrix Q' according to the above restrictions (Le., topologically equivalent to a trapezoid), we 

can have the maximum number of h dirty rows in Q' by having the least number of total 

h(h+l) 
2 zeros. 



93 

In the case of having pn zeros in Q, h will be equal to Ip(1) and 

That is, and 

-1-M/1+8(p·n-r ) 
P p(1)+lp(1)-2[(p+1)·n-rp]<0. In other words, Ip(1)= 2 p. o 

An example with p =1 is shown in Fig. 4.4, where n 1 =7, 11 (1)=3 'Yl (1)=4 and r 1 =1. 

Also, from Fig. 4.4 we can see that with the maximum number of dirty rows in Q 1 or Q', the 

number of zeros in row 1 of Q 1 will be at least as large as the maximum number of dirty rows 

B. Proof of Convergence 

From Corollary 1 in [8], we know that the number of iterations in the row-column sort for 

any 0/1 input sequence is determined by the number of dirty rows initially in the matrix. For 

example, if there are initially d dirty rows in the matrix, then rlOg2dl + 1 iterations are required 

to sort the sequence. Based on this property and Theorem 4.2, counting the maximum number 

of dirty rows in the array after step 3 has been executed is equivalent to that of calculating the 

the maximum height of a trapezoid which can be generated by the input sequence. Therefore, 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

1 1 0 0 0 0 1 

1 1 1 0 0 1 1 

1 1 1 1 0 1 1 

1 1 1 1 1 1 1 

1 1 1 1 1 1 1 

Figure 4.4. The maximum number of dirty rows = 3 for Q 7x7. .1Ia " 
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the maximum number of iterations of the row-column sort to sort any input sequence is equal to 

flog2(n-I)1+1 since the maximum number of dirty rows after the first row-column sort (steps 

1 to 3) is equal to n -1 which is generated by input sequences with n (n -1 )/2 or more zeros. 

However, in the following theorem we will prove that any input sequence can be sorted by the 

trapezoid sort algorithm with the maximum number of iterations equal to flOg2/1 (1)1 + 1, where 

II (1):::."Jn is the maximum number of dirty rows which can be generated by step 3 for an input 

sequence with n zeros. 

THEOREM 4.3: The trapezoid sort is a complete sorting algorithm. 

PROOF: In the following analysis, we will first prove that the trapezoid sort algorithm can 

sort any input sequence with n zeros, and then prove that if this sorting algorithm can sort an 

input sequence with n zeros, it can sort any input sequence with up to n2 zeros. 

The process of convergence in sorting the matrix Q with n zeros can be regarded as a pro­

cess of recursive merging. Let h=/1 (I). In order to have the maximum number of dirty rows in 

the matrix, we have 'YI (1)~2(1)~ ... ~h(I), and 'Yj(I)=O for all j>h. Since there are n zeros in 

the matrix, 'YI(1)+Y2(l)+'" +'Yh(l)=n and 'Yj(I);eO for 15:j5:h. In addition, from the proof of 

Theorem 4.2 we have 'YI (l)+Y2(l)<n, 'Y3(l)+Y4(l)<n, "', 'Yn-I (1)+Yn(l)<n. Therefore, after the 

second row sort, all zeros in 'Y2b-1 (1) are packed at the left and all zeros in 'Y2b(1) are packed at 

the right (l5:b<n/2). Then, all zeros in 'Y2b(l) are moved up b rows and so are all zeros in 

'Y2b-I(1) after the second column sort and therefore, two dirty rows, j and j+l, are merged 

together. 

According to Lemma 4.1 and Theorem 4.2, for an input sequence with n zeros and max­

imum number of dirty rows, 'Y2b-1 (i)+Y2b(i) should be less than n, unless after the ith row sort 

all zeros are moved to row 1. After each repetition of the row-sort in step 4, since all zeros in 
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an odd row are moved to the left and all zeros in an even row are moved to the right, 'Y2b-l (i) 

and 'Y2b(i) will be combined together to form a new row. That is, after each row-column sort, 

half of the remaining dirty rows become clean. Then, after i iterations of the row-column sort, 

I, (i) will not be greater than r I, (~-I) 1- Therefore, in addition to the first iteration of ti,e 

row-column sort, rlOg211 (1)1 iterations are required to clean the dirty rows and one last row 

sort is required to order zeros in the same row. Hence, the trapezoid sort can sort any input 

sequence with n zeros. 

Assume that the input sequence with pn zeros has the maximum number of n 12 dirty 

rows, i.e., lp(1)=nI2. Then, ~ +k:5;lp+k(1):5; ~ +2k if there are kn more zeros in the sequence. 

n 
From Lemma 4.1 and Theorem 4.2, we have 1'1 (1)~2 (1)~ ... ~2k+l (1), and 1'1 (1)~2+k, 

1'2(1) will be merged as 1'1 (2),1'3(1) and 1'4(1) will be merged as 1'2(2), and so on. Therefore, we 

have 1'1 (2)~n+2k-l, 'Y2(2)~n+2k-5, "', 1'1+1 (2)~n+2k-4t-1. For k=l, since n+2-1>n, we will 

have one clean row after the second row-column sort. For k=2, although n+2k-5<n, since 

n+2k-l-n=3, we know that in addition to that row 1 will become clean after the second row-

column sort, three zeros will be moved up to row 2. These three extra zeros will be merged 

with 1'3(1) and 1'4(1) at row 2 and we have 2k-1+2k-5=2 zeros left after row 2 becomes clean. 

In the same way, if there are kn zeros, k>2, at least k rows will be clean and after these k rows 

become clean, at least k extra zeros will be popped up to rows k+ 1 through n. This means that 

after the second row-column sort at least k clean rows will be generated and therefore, only 

rlp+~(I) l-k dirty rows will exist after the second row-column sort if there are initially (p+k)n 
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n n r1p+k(1)1 r 1p(1)1 zeros in the matrix Q. Since 2"+kgp+k(1)=::;2"+2k, 2 -k=::; -2- -0 (0 represents that 

no clean row is generated), we know that if this sorting algorithm can sort an input sequence 

with pn zeros and a maximum of n12 dirty rows, it can sort any input sequence with up to n 2 

zeros. 

Similarly, assume that the input sequence with qn zeros has the maximum number of n 14 

dirty rows, i.e., [q (1)=n 14. Then, : +3k=::;lq+k(1)=::;: +4k if there are kn more zeros in the 

n n n 
sequence, and "(1 (1)~4+3k, "(2(1)~4+3k-l, ... , 11+1 (1)~4+3k-t. After the second row-column 

sort, "(I (1) and "(2(1) will be merged as "(I (2), "(3(1) and "(4(1) will be merged as "(2(2), and so on. 

n n n 
Therefore, we have "(I (2~2"+6k-l, "(2(2)~2"+6k-5, ... , "(1(2)~2"+6k-(4t-3). Then, after the 

third row-column sort, "(I (2) and "(2 (2) will be merged as "(I (3) , "(3 (2) and "(4(2) will be merged 

as "(2(3), and so on. We have "(1(3)~n+12k-6, "(2(3)~n+12k-22, ... , "(,(3)~n+12k-16t-l0. 

Since n+12k-6>n for k=l and n+12k-22>n for k=2, we will have one and two clean rows, 

respectively, after the third row-column sort. For k=3, although n+12k-38<n, since 

n+12k-6-n=30 and n+12k-22-n=14, that is, in addition to that row 1 and row 2 will become 

clean after the third row-column sort, at least 44 extra zeros will be popped up to row 3 and row 

4. Two of these extra zeros will be merged with "(5(2) and "(6(2) at row 3 and we ,will have 42 

zeros left after row 3 becomes clean. In the same way, if there are kn zeros, k>3, at least k 

rows will be clean and after these k rows become clean, at least 42 extra zeros will be moved up 

to rows k+ 1 through n. That is, after the third row-column sort, at least k clean rows will be 

generated and only r 1,+:(1) 1-k dirty rows will exist after the third row-column sort if there 

are initially (p+k)n zeros in the matrix Q_ Since rl,~(l) 1-k'; r I,~l) 1-0. we know that if 
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this sorting algorithm can sort an input sequence with qn zeros and a maximum of nl4 dirty 

rows, it can sort any input sequence with up to n 2 zeros. 

These results can be generalized to an input sequence with zn zeros and a maximum of 

n/2m dirty rows, i.e., Iz(1)=nI2m. Then, ..!!....+(2m-1)k~/z+k(1)~..!!....+2mk if there are kn more 
2m 2m 

zeros in the sequence. After the (m+ l)th row-column sort at least k clean rows will be created, 

therefore, only r 1,~~I) l-k dirty rows will exist after the third row-column sort if there are ini-

·all (k) . th . Q S· f/Z+
k(1)l k r/z(1)1-o kn th ·f tho tl Y z+ n zeros m e matrix . mce 2m - ~ ~ , we ow at I IS sort-

ing algorithm can sort an input sequence with zn zeros and a maximum of nl2m dirty rows, it 

can sort any input sequence with up to n2 zeros. Thus, if the sorting algorithm can sort an 

input sequence with n zeros it can sort any input sequence with up to n 2 zeros. Based on this 

result and Theorem 4.1, we know that the trapezoid sort is a complete sorting algorithm. 0 

From the analysis in Theorem 4.3, the number of iterations in step 4 of the trapezoid sort 

(Fig. 4.2) is determined by the maximum number of dirty rows that can be generated after step 

3 (i.e., the first iteration) by an input sequence with n zeros. The following corollary follows 

immediately. 

COROLLARY 4.1: The number of iterations 1 in the trapezoid sort to sort any 0/1 input 

sequence is equal to the maximum height of a trapezoid that can exist with n zeros in the matrix 

initially, i.e., 1=/ 1 (1). o 
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4.4. Summary 

This chapter presents an improved algorithm for sorting on two-dimensional SIMD arrays. 

Like the "parallel bubble sort" of Sado and Igarashi [19] and the "shear sort" of Scherson and 

Sen [21], the "trapezoid sort" is suboptimal for this architecture. However, the justification of 

the algorithm is in its data movements simplicity. The major result is a reduction in the time 

complexity over these schemes, by a constant factor of approximately two. For practical sized 

arrays, there is a significant advantage of this scheme. 

An advantage of this algorithm over a straightforward mapping of bitonic sort is the 

reduction in the time complexity by the same constant factor. It should be noted that the com­

plicated data movements in mapping bitonic sort arise only if O(n) performance is attempted. 

Simple column transfers alternating with individual column sorts will achieve O(nlog2n) per­

formance, while preserving simplicity in data movements. However, the proposed algorithm 

improves over this scheme by a factor of two. 
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CHAPTER 5. 

THE Kth SMALLEST VALUE EXTRACTION 

5.1. Introduction 

A new two-dimensional sorting algorithm, the trapezoid sort [80], has been proposed in 

chapter 4. It preserves the properties of simple control hardware and ease of implementation. 

Moreover, the complexity is improved to FOg2l1 + I iterations with l=:;{fi. Similar to the 

parallel bubble sort and the shear sort, this algorithm is based upon a repeated application of 

the bubble sort technique to the rows and columns of the array. In addition, a simple 

cyclic shift operation is incorporated into the algorithm to improve the time complexity. In this 

chapter, we will refer anyone of the above three algorithms as the parallel row -column sort 

algorithm since they all contain the two basic operations: the row-sort and the column-sort. 

In this chapter, based on the {0-1} principle, the relationship between two rows in the 

array will be derived in section 5.2. From the results in [81,21,82], the number of zeros in the 

jth row of the array after each iteration has been shown to be no less than that in the kth row, 

for all 1 '5:j<k'5:n. However, we can further show that the number of zeros in the jth row of the 

array after each iteration is always greater than that in the kth row unless it is equal to 0 or n. 

In addition, the relationship between the numbers of maximum dirty rows generated by input 

sequences with arbitrary number of zeros is also derived in section 5.2. This will be used in 

section 5.3 to determine the minimum number of clean rows generated after each iteration and 
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derive a more efficient method to find the kth smallest value of the inputs. The proposed 

method preserves the properties of the parallel row-column sort such as simple control 

hardware and ease of implementation. In addition, it requires less time complexity than the 

algorithms in [19,21] and [80]. As will be derived in section 5.3, approximately ! n process­

ing steps are reduced in the first column-sort after the second iteration and the remaining steps 

will be reduced further by half after every successive iteration. Reduction on processing steps 

also means reduction in silicon area when the algorithm is implemented as a VLSI sorting net­

work. 

5.2. Properties of the Trapezoid Sort 

Let i represent the number of iterations of the row-column sort which has already been 

applied on Q, Q i represent the array after i iterations of the row-column sort with a cyclic shift 

operation inserted between the row-sort and the column-sort in the first iteration which includes 

steps 1 to 3. Let Q' represent the array after the cyclic shift which follows the first row-sort. 

The configuration of Q' is shown in Table 5.1 Properties of the trapezoid sort will be analyzed 

by applying the zero -one ({ 0-1 }) principle [5]. For completeness, the {O-I} principle is res­

tated in Theorem 5.1. 

THEOREM 5.1: If a network with n input lines sorts all 2n sequences of D's and l's 

into nondecreasing order, it will sort any sequence of n numbers into nondecreasing order. 

For the purpose of applying the {O-l} principle, Q is assumed to contain only D's and l's 

and a row is said to be clean if it contains identical elements, i.e., only D's or only 1 's, other­

wise it is dirty. Without loss of generality, in the following analysis we will consider input 



101 

Table 5.1. An example output of step 2 with n=7. 

1 2 3 4 5 6 7 
7 1 2 3 4 5 6 
6 7 1 2 3 4 5 
5 6 7 1 2 3 4 

4 5 6 7 1 2 3 
3 4 5 6 7 1 2 
2 3 4 5 6 7 1 

sequences with pn zeros only where p can be any integer and p ~n. Since in step 5 of the 

trapezoid sort algorithm, a final row-sort is used to sort the output sequence into the SLRM 

order after all elements are in their final row positions following step 4. Therefore, if the sort-

ing algorithm can sort an input sequence with pn zeros or (p+l)n zeros, then it can sort any 

input sequence with the number of zeros between pn and (p+l)n. The following theorem 

shows how to fmd the maximum number of dirty rows in the matrix Q after the first iteration of 

the row-column sort. 

THEOREM 5.2: Let the maximum number of dirty rows in Q i be lp(i). If there are ini­

tially pn zeros in Q, the relationship between the maximum number of dirty rows in Q 1 and pll 

will follow an equation similar to that of calculating the area of a trapezoid. That is, 

of remaining zeros which do not increase the height of the trapezoid is represented by rp 

(~lp(1)) in the above equation. 

PROOF: Since the operation of the first column-sort (i.e., step 3 in Fig. 4.2) is just to 

move zeros in each column of Q' to the top of Q 1, the maximum number of dirty rows in Q 1 
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can be regarded as the maximum number of zeros allowed in any column of Q'. 

To have a zero located at Q'[l, m], from Table 5.1 we know that at least n-[l-(m+l)] 

and m-I+l zeros are required in row I for l>m and I~, respectively. For Q' to have the 

maximum number h of dirty rows with the least total number of zeros, there should be h zeros 

in the same column and in continuous rows, i.e., located in Q'[l, I], Q'[/-l, I), Q'[l-2, I], ... , 

Q'[l-h+l, I) for l-h~O or in Q'[l, I], Q'[I-I, I), ... , Q'[I, I] Q'[n, I], Q'[n-l, I], ... , 

Q'[n-(h-/), I] for l-h<O. Therefore, with a total of 1+2+···+h zeros and arranged in the 

matrix Q' according to the above restrictions (i.e., topologically equivalent to a trapezoid), we 

can have the maximum number of h dirty rows in Q' by having the least number of total 

In the case of having pn zeros in Q, h will be equal to Ip(1) and 

That is, and 

-1-h/1+8(p·n-r ) 
12/1)+lp(1)-2[(p+l)·n-rp]<O. In other words,lp(1)= 2 p. 

o 

An example with p=1 is shown in Table 5.2, where nl=7, 11(1)=3 11(1)=4 and rl=1. 

Also, from Table 5.2 we can see that with the maximum number of dirty rows in Q 1 or Q', the 

number of zeros in row 1 of Q 1 will be at least as large as the maximum number of dirty rows 

(i.e., 11 (1)~/p(I)). 

In the following analysis, the relationship between row j and row j + 1 in Q i will be 

obtained first in subsection A based on the number of zeros in Q i. From the results in 

[81,21,82], the number of zeros in the jth row of Qi has been shown to be no less than that in 

the kth row, for all 1 '5:j<k'5:n. However, due to step 2 in the algorithm we can further show that 
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the number of zeros in the jth row of Q i is always greater than that in the kth row unless the 

number of zeros in it is equal to 0 or n. In subsection B, the relationship between the numbers 

of maximum dirty rows generated by input sequences with arbitrary number of zeros is derived. 

In section V, this will be used to determine the minimum number of clean rows generated after 

each iteration of the row-column sort and to derive a more efficient method to find the kth smal­

lest value of the inputs. 

A. Relationship Between Two Rows 

LEMMA 5.1: Let the number of zeros in row j after i iterations be represented by Y/O. 

For any j and k such that l~j<k~n, the number of zeros in the jth row of Qi is no less than 

that in the kth row. 

PROOF: If the number of zeros in row j of Qi is less than that of row k, then there will be at least 

a zero in Qi[k, m] and a one in Q iU, m], l~m~n. This is in contradiction to our assumption that all 

columns are sorted in nondecreasing order after a column-sort. Thus, the zero in Q i [k, m] should move 

up to Q i U, m]. Therefore, for l~j <k~n, there are at least as many zeros in the jth row as in the kth 

row. That is, y/i)~k(i), for l~j<k~n. 
o 

From Lemma 5.1, we have Y/O~j+l(i). For i=l, i.e., after the first iteration which 

includes a cyclic shift operation, we can further have the following lemma. 

LEMMA 5.2: In Q 1, the number of zeros in row j is greater than that of row j+1, unless 

y/1)=Yj+l (1)=0 or n. That is, Yl (1)=Y2(1)="'=Yj(1)=n>Yj+l (l»Yj+2(1»···>Yj+k(l)="·=Yn(1)=O. 

PROOF: For Yj(1) to be equal to Yj+l (1), every zero in row j of Q 1 must have a corresponding 

zero in the same column of row j+1, otherwise, YjCl) will be greater than Yj+l (1). Since the operation 

of the first column-sort is to move zeros in each column of Q I to the top of Q 1 , this means that if a 

column of Q 1 has no less than j zeros, there will be at least j + 1 zeros in that column and at least j + 1 
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Table 5.2. The maximum number of dirty rows = 3 for Q7X7. 

1 1 1 1 1 1 1 
1 1 1 1 1 1 1 
1 1 0 0 0 0 1 
1 1 1 0 0 1 1 
1 1 1 1 0 1 1 
1 1 1 1 1 1 1 
1 1 1 1 1 1 1 

zeros in those columns of Q' with no less than j zeros. But this situation can exist only when all the 

columns in Q' have at least j + 1 zeros or are all empty (the word empty means a column or a row with 

no zero in it). The reason is detailed in the following paragraphs. 

After the first row-sort and the cyclic right shift, the array is represented as Q'. If there is 

a zero in Q'[l, m], there are at least n-[l-(m+l)] zeros in row 1 if I>m, and m-I+1 zeros in 

row I, otherwise. These zeros are located at Q'[l, 1] "', Q'[I, n], Q'[l, 1], "', Q'[1, m], if 

I>m, and Q'[I, I], "', Q'[I, m], otherwise. For 'Yl(1)=Y2(1) to be true, every zero in row lof 

Q' should be covered (a zero is covered by another zero if for a zero in Q' [1, m], there is also 

a zero in Q'[d, m], d-:t=l) by another zero in the corresponding column. So there will be at least 

another zero in column m. Let it be located at Q' [d, m]. We have the following three cases. 

Case 1: for m~1 and m~, (a) I<d, the number of zeros in Q'[1,I], "', Q'[l,m] will be 

greater than that in Q'[d,d], "', Q'[d,m] unless row d contains all zeros, because 

l-m+1 > d-m+1. (b) I>d, the number of zeros in row d will be greater than that in row 1 

unless row 1 contains all zeros, because l-m+1 < d-m+1. Case2: for m<1 and m<d, (a) I<d, 

the number of zeros in Q'[l,I], "', Q'[I,n] and Q'[l, 1], ''', Q'[l,m] will be greater than that in 

Q'[d,d], "', Q'[d,n] and Q'[d, 1], "', Q'[d,m] unless row d contains all zeros, since 

m-l+l>m-d+1. (b) I>d, the number of zeros in row d will be greater than that in row 1 
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unless row 1 contains all zeros, since m -I + 1 < m -d + 1. In the same way, we can show that 

Case3: for m>1 and m<d, (a) 1:t:1, the number of zeros in row d will be greater than that in row 

I. (b) 1=1, the number of zeros in row d will be greater than that in row l. Case 4: for m<1 and 

m>d, (a) d:t:1, the number of zeros in row 1 will be greater than that in row d. (b) d=l, the 

number of zeros in row 1 and right of column m will be greater than that in row d. 

From the above discussion, we know that if we add a zero to column m (i.e., Q' [d, m]) to 

cover the zero at Q'[/, m], another column with only one zero at either row lor row d which 

need to be covered again is generated. Hence, columns that need to be filled with zeros will be 

generated recursively, unless every column in Q' has either two zeros or is empty. In the same 

way, if there are more than j zeros in column m of Q', then there will be at least j + 1 zeros in 

each column of Q' in order to have 'Yj(l)=yj+l (1). Therefore, we have 

o 

Two neighbor rows are sorted in opposite directions by the row-sort in steps 4 and 5 of 

the trapezoid sort algorithm. After the first row-sort in step 4, all zeros in an odd row are 

moved to the left and all zeros in an even row are moved to the right. From Lemma 5.2, we 

have 'Yj(l»'Yj+1 (1). In the following theorem, it is shown that 'Yj(1) and 'Yj+1 (1) as well as 

'Yj+2(1) and 'Yj+3(1) are combined together to form new rows after the second iteration of the 

row-column sort. Therefore, we can further show that 'Yj(i)+Yj+l (i)~'Yj+2(i)+Yj+3(i) based on the 

fact that 'Yj(1)+Yj+1 (1)~j+2(1)+yj+3(1). 

THEOREM 5.3: The number of zeros in row j of Q i is greater than that in row j + 1, 

unless 'Yj(i)=Yj+l (i)=O or n. That is, 

'YI (i)=Y2(i)="'='YjCi)=n>'Yj+1 (i»'Yj+2(i»"·>'Yj+k(i)="·='Yn(i)=O. 
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PROOF: After executing the second row-sort (the first row-sort in step 4), all zeros in row 

2b-1 arc on the left and all zeros in row 2b are on the right (1::;b::;;). Depending on the 

values of 'Y2b-l (1) and 'Y2b(1), sorting the columns will result in one of the two cases: (a) 

j<b::; ~. In (a), all zeros in row 2b-1 will move up b-1 rows and zeros in row 2b will move 

up b rows. Therefore, zeros in rows 2b -1 and 2b will be merged at row b after the second 

column-sort (the first column-sort in step 4). As proved in Lemma 5.2, we have 

'YI (1»'Y2(1»···>'Yn(1) (since 'Y2b-l (1)+'Y2b(l)::;n for l::;b::; ; ), and therefore, 

That is, 

'YI (2»'Y2 (2»··· >'Yj/2 (2)=· ··='Yn (2)=0. 

In case (b), if j=1 and 'YI (1)+Y2(1)=n+c>n (c~O), there will be c overlapped zeros between row 

1 and row 2 after the second row-sort. Since we assume that all columns are sorted in nonde-

creasing order, these overlapped zeros will be moved down to row 2 and combined with two 

merged rows 3 and 4 after the second column-sort. They will first be used to fill the vacancies 

of row 2 after the merging, then moved down to row 3 if there is already a zero in the same 

column. (The number of vacancies of a row represents the number of 1 's in a dirty row since 

they can accept D's moved down from the upper row.) If j> 1, the situation will be the same as 

that of Case(b) if 'Y2b-1 (l)+Y2b(1»n, and the same as that of Case(a) if 'Y2b-1 (l)+r2b(1)<n. 

Therefore, we have 'Yl (2)='Y2(2)=···='Yj-l (2)=n>'Y/2»···>'Yj+k(2)=···='Yn(2)=O. Similarly, the 

result can be generalized to i>2, i.e., 

'YI (i)=Y2(i)=···='Y/i)=n>'Yj+1 (i»'Yj+2(i»···>'Yj+k(i)=···='Yn(i)=O. 
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o 

B. Relationship Between the Numbers of Maximum Dirty Rows 

In order to have maximum number of dirty rows, from the proof of Theorem 5.2 we know 

that "{I (l)=lp(l) only if rp=O, otherwise, 11 (l»lp(l), and 1j(1)~j+1 (1)+ 1 for all 1/1)#0 or n. 

From the proof of Theorem 5.3, we know that one clean row can be generated after the second 

row-column sort if 11 (l)+y2(l)~n, after the third row-column sort if 11 (2)+Y2(2» ~ , and so on. 

Therefore, in the following analysis, we will derive the relationship between lp and the number 

of zeros in the input. 

LEMMA 5.3: If lp(l)~ n
l

, then p> n+~ 2 • 
2 2x(2 ) 

PROOF: Let since we have 

n I n 1 
Therefore, n·[ (2/)2 + 2/ -2p]<0 (rp>O), and n·[ (2/)2 + 2/ -2p]=O (rp=O). Since n>O, 

n+21 
we havep> 12. 

2x(2 ) 
o 

If f=l, Ip(1)= ~ and p~ n;2. Since both p and Ip(1) are integers, we can assume that 

Ii 1)= r ~ 1 and p= r n ;21- This means that if there are initially more than ( n ;2 ) x n zeros in 

the n x n 0/1 input array, the maximum number of dirty rows generated after the first iteration 

of row-column sort will not be less than ~ and at least one clean row will be generated at the 

top of Q2 after the second iteration of row-column sort (this will be proved in Lemma 5.5). 
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If there are more than pn zeros in the array, in order to determine the number of extra 

clean rows generated, we should derive the relationship between lp(l) and lp+k(l) first. 

rn+21 LEMMA S.4: For any z=p+k and p= -8- ,lz(l)~I/I)+k and Iz(l)~lp(I)+2ko 

n (n+2k) -Vn 2+4kn+4k2 
Ip(l)+k="2+k 2 2 

For Iz2(l)+lz(l}-2(p+k)n~O, 

I (P'> -1+~1+8(p+k)on > -1+~1+8[(n+2)/8+kJon 
z ~ 2 2 0 

Hence, 

Iz(I)-(lp(1)+k)~ ~1+~1+8[(~+2)/8+k]On -vn2+4~n+4k2 

To prove that Iz(l}-(lp(1)+k)~O, we can check whether -1+~1+(n+2+8k)n--Vn2+4kn+4k2 ~Oo 

Because 

and 

~1+(n+2+8k)n=-Vn2+4kn+2n+4kn+l , 

if -1 +~ 1 +(n + 2+8k)n - -V n 2 +4kn+4k 2 ~O is to be satisfied, 4kn + 1 should not be less than (2k + 1)2 

or equivalently, n~+ 1. 

Since p+k$n, we have k+l$n-r n;21- This implies that n~+J. Therefore, 

n 0 (n+4k) -Vn 2+8kn+16k2 
Iz(1)~lp(1)+ko In addition, Ip(1)+2k="2+2k 2 2 Therefore, 

Ip(1)+2k-Iz(I)=-vn 2+8kn+ 16k2 + 1-~1+8[(n +2)/8+k Jon 

=-Vn2+8kn+ 16k2 + I--Vn2+8kn+2n+ 1 
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(2) 

The only difference between the two polynomials inside the two square roots of Equation (2) is 

the term (4k+li in the first square root and the term 2n+1 in the second square root. Since n 

can be viewed as a constant, the first polynomial is then an increasing function with respect to 

k2• Therefore, if the equation is greater than zero for k=O, then it is also greater than zero for 

k>O. For k=O, Equation (2) is equal to n+l-(n+I)=O, and for k=l it is equal to 

-Vn2+lOn+25 --Vn2+lOn+l which is greater than O. Therefore, lz (1)::;;lp (1)+2k. 
o 

5.3. Finding the Kth Smallest Element 

In the analysis of speech data and in image processing, many linear filters have been used 

to enhance the data by smoothing the signal and removing noise. However, they have some 

disadvantages such as complicating the detection of edges and attributing some significance to 

widely spurious values. In recent years, median filters have been suggested in digital signal 

processing [83,84] and image processing [85] as simple nonlinear filters to remove noise from 

the input signal without these disadvantages. In order statistic analysis or selection [86], the 

median value extractor is widely used in statistic analysis such as a descriptive measure of the 

center of a set of data or testing the randomness of samples consisting of numerical data [87]. 

A straightforward way to implement the median value extraction is to use a mesh­

connected processor array to sort the input numbers Xj first, i = I, 2, ... , N. Then the median 

value is extracted from the N; I th largest output if N is odd and the mean of the ~ th and 

N ;2 th largest outputs if N is even. However, from the following analysis we will show that a 

more efficient way can be derived to find the median value of the array without all inputs being 
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sorted in correct order and this result is then generalized to find the kth smallest element in an 

input sequence S for solving order statistic or selection problems. 

A. Generating Clean Rows 

To determine the number of clean rows generated at the top of Q 2 for an input array with 

arbitrary number of zeros, we will first find the smallest number of zeros required to generate a 

clean row at the top of Q2 and then the number of extra clean rows generated if there are more 

zeros. For 11 (1)< ~ , we know from Lemma 5.2, 12(1) will be less than ~ - 1 and there will 

be no clean row generated after the second row-column sort since the total number of zeros is 

less than n, i.e., 11 (2)=Yl (1)+"f2(1)<n. Therefore, to generate one clean row at the top of Q2, 

11 (1) should be greater than ~. For 11 (1» ~ , we know from Theorem 5.2 that to obtain the 

maximum number of dirty rows after the first row-column sort, Ip(1) at least should not be less 

than ~, and from Lemma 5.3 we know that more than n ;2 xn zeros should be in the array ini­

tially. If there are more than pn zeros in the array, in order to determine the number of extra 

clean rows generated, we need the following lemma. 

LEMMA 5.5: If there are initially pn zeros in the array Q where p is equal to rn+8
21 

and r p >0, at least one clean row exists at the top of Q 2 . 

PROOF: Since we have p= r n; 21-lp( l)=~ and 1/(1 )+Ip(l )--2(p' n-r p)=O. According [0 

Lemma 5.2, 

13 (1)=lp(1)-2+C3 , 

111-1 (l)=2+CII_l, 
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n 
where h=lp(1)="2' The values of Cj'S depend on the value of rp and Cj~Cj+l since 

'Yl (1»'Y2(1»"·>'Yh(1). By assuming that rp=l (the worst case), the distribution of these pn zeros is 

shown in Table 5.3(a), where 

After the second row-sort, all zeros in the odd rows and even rows will be packed to the 

left and right respectively, as shown in Table 5.4(a). The zeros in row 1 and row 2 will be 

merged at row 1 after the second column-sort. Therefore, 'Yl (2)="(1 (1)-1-"(2(1) or 

'Yl (2)= ; + 1 + ; -l=n. That is, these pn zeros can generate a clean row after the second row-

column sort. 

It is impossible to let 'Yl(2)=Yl(1)+"(2(1)<n, since at least ; -1 zeros in column m-l 

(assuming that the position of the rightmost zero of 'Yl (1) is in column m) should be removed 

from row 2 to row ; to make 'Y2(1)<; -1 and 'Yl (1)-I-"(2(1)<n. According to Theorem 5.3, the 

only way to restore these zeros is to put them in row 1 and this will cause the number of zeros 

in row 1 to be equal to n. The value of Cj when rp>1 will be at least equal to that when rp=l, 

so that more zeros should be removed from columns m and m-l. Hence, in the case of rp>l, 

'Yl (1)+"(2(1»n. 

In general, if the number of dirty rows is not maximum (for example, with only d dirty 

rows in Q 1 and d<lp(l», then those zeros in rows d+l through h in Table S.3(a) should be 

deleted since these rows are not dirty any more. These deleted zeros can only be restored in 

row 1 to row d based on the condition in Theorem 5.3. That is, the numbers of zeros in row 1, 
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row 2, ... , and row d will be greater than those of the case having the maximum number of dirty 

rows. Therefore, Yl (1) + Y2(1) will always be greater than n. That is, if there are initially pn 

zeros in Q and p is equal to r n; 21 ' atleast one clean row exists at the top of Q 2 . 

o 

Furthermore, if there are initially (p+k)n zeros in Q, k:t:O, then in the following theorem we will 

prove that at least the first k+l rows in Q2 are clean rows. 

THEOREM 5.4: If there are initially (p+k)n zeros in Q where p is equal to rn+8
21 and 

k>O, then at least k+l clean rows exist at the top of Q2. 

PROOF: Let z=p+k and k>O. To show that (p+k)n zeros can generate at least k+l clean 

rows, we begin with the case of k=1 and rp=l as shown in Table 5.3(b), and then the case of 

k>1 as shown in Table 5.3(c). For k=l, rp=l, there will be n more zeros to be added in Table 

5.3(a). To have maximum number of dirty rows, ~ of these n zeros should be used to fill the 

column m until there are lp(1)+l zeros in column m (i.e., lp(1)+k=lp+k(1)=lp(I)+l) and put the 

remaining ~ zeros in column m+1. As shown in Table 5.3(b), with h= ~ +1, we have 

n n 
Yl(1)="2+2,Y2(1)="2+1,· .. ,Yh-l(1)=3 and YhO)=I. A "<\>" in Table 5.3 represents a newly 

added zero. 

After the second row-sort, zeros in odd rows will be moved to the left of the rows and 

zeros in even rows will be moved to the right of the rows as shown in Table 5.4(b). From this 

figure we also know that since there are three overlapped zeros between rows 1 and 2, therefore, 

there will be three extra zeros left after row 1 is fully filled in the second column-sort. These 

overlapped zeros in columns ~, ~ +1, and ~ +2 will be moved up to row 2 after the second 



113 

Table 5.3. The relationship between 'p+k and k. 

0 0 0 0 0 0 
0 0 0 0 

0 0 0 
0 0 

0 

0 0 0 0 0 0 I\> 
0 0 0 0 I\> I\> 

0 0 0 I\> I\> 
0 0 I\> I\> 

0 I\> I\> 

I\> 

0 0 0 0 0 0 I\> 0 
0 0 0 0 I\> I\> 0 

0 0 0 I\> I\> 0 
0 0 I\> I\> 0 

0 I\> I\> 0 

I\> 0 0 
0 0 

0 
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Table 5.4. The distribution of zeros in each row after the second row sort. 

0 0 0 0 0 0 
0 0 0 0 

0 0 0 
0 0 

0 

(a) k=O 

0 0 0 0 0 0 <P 

~ ~ 0 0 0 0 
0 0 0 <P <P --

<P <P 0 0 
0 <P <P 

<P 

(b) k=l 

0 0 0 0 0 0 <P 0 
0 <P <P 0 0 0 0 

0 0 0 <P <P_ O 
0 ~ ~ 0 0 

0 <P <P 0 
0 0 .! 

0 0 
0 

(c) k=2 
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column-sort. Also, after the second column-sort zeros in rows 3 and 4 will be merged in row 2. 

Since the total number of zeros in rows 3 and 4 is equal to n-l, only one vacancy will be avail-

able to accept the overlapped zeros from rows 1 and 2. Therefore, these overlapped zeros in 

columns ~ and ~ +2 will be moved up to row 3 again and the overlapped zero in column ~ +1 

will fIll the vacancy in row 2 after the second row-sort to create another clean row. From the 

above discussion, we can see that two pairs of rows in Table 5.4(b), (YI, Y4) and (Y2, Y3), contri-

bute to the generation of two clean rows. 

Also, from Table 5.3(b), we see that at least two zeros should be removed from row 4 to 

make the array Q unable to generate two clean rows after the second row-column sort. Accord-

ing to Theorem 5.3, those zeros in columns ~ +2 and ~ + 1 of Table 5.3(b) should be removed 

n n 
from row 4 to row h so that 2'-3 and '2+1-3 zeros should be removed. These removed zeros 

can only be restored in rows 1,2, and 3 according to Theorem 5.3. Suppose that rows 1,2, and 

3 have a, band c more zeros to be removed, respectively. Then, YI+'Y2=n+a+b+3. These extra 

a+b+3 zeros will be moved down to row 2 and merged with Y3(1)+Y4(I)=n-I+a+b+c+3. 

Therefore, row 2 will also be cleaned since a+b+c+3> 1. 

For rp>I, as discussed in Lemma 5.5, the number of zeros in each row after the first row-

column sort will be greater than that if rp=1. Therefore, they will generate k+I clean rows after 

the second row-column sort. In general, the number of dirty rows is less than Ip(I)+k and in the 

same way as proved in the case of k={), these general cases will also generate at least k+ 1 clean 

rows after the second row-column sort. 

If k=2, as shown in Table 5.3(c), lp+2(1)=lp(1)+2+I=lp(I)+k+1. This means that at least 

there will be one more zero in Yj(1), for all j such that YiI»O, in addition to what it should 



have (as the analysis we did for k=1). That is, for h= ~ +k+1, 

n 
Ys(1)='2+k- 3+cs , 
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Since Cj~Cj+1 and Cj~O (according to Theorem 5.3), we know at least k+ 1 clean rows can be 

generated by the pairs (Yk+1 (1), Yk+3(1)), ... , (YI (1), Y2k+3(1)). Similarly, it is impossible that 

the array generates less than k+ 1 clean rows as proved for k=1. For rp> 1 or when the number 

of dirty rows is not maximum, the proof is similar to that for the k=1 case. Therefore, at least 

k+ 1 clean rows will be generated after the second row-column sort. 
o 

B. Finding the median value 

From the above derived properties of the trapezoid sort, we know that once a row is clean 

it will remain clean during the succeeding iterations. That is, the number of iterations of the 

row-column sort to sort the array depends on the number of remaining dirty rows [21]. (How-

ever, this does not mean that the clean rows can be excluded from the remaining row-column 

sort operations.) Therefore, the property of the trapezoid sort in Theorem 5.4 will be further 

developed to find the median value from the mesh-connected processor arrays in a fast and 

efficient way. 

Without loss of generality, in the following analysis we assume that n is an odd number 

and there are initially r ~ 1 XII ordered O's in Q and represented by 0, for l"i,;m< r ~ 1 xn and 



117 

m nxn+1 
2 

They are ordered as 0;<0;+1, so that after the process of median filtering, the 

largest n zeros among these O's will be extracted and the median value among these n zeros is 

the median value of the n2 input clements. 

Since we have z= r ; 1 and p= r n; 21- acconting to Theorem 5.4, there will be at least 

rn1 rn+21 . rn1 rn+21 2 . ( '2 - -8- )+1 (z.e., kc= '2 - -8- ) clean rows at the top of Q . Also the clements In 

a column are sorted in nondecreasing order after each column-sort and therefore, the largest n 

zeros in the input sequence will not be on the top kc rows of Q2. Similarly, we can assume that 

there are initially r; 1xn ordered I's in Q and represented by I,. They arc ordered as 1,<11+1, 

so that after the process of median filtering, the smallest n ones among these l's will be 

extracted and the median value among these n ones is the median value of the n2 input ele-

ments. From the {0-1} principle, the result derived by counting the number of O's is comple-

mentary to what is derived by counting the number of l's. Hence, according to Theorem 5.4, 

there will be at least ( r ; 1-r n ;21 }t I clean rows at the bottom of Q 2• Therefore, in the third 

iteration of the row-column sort, only the clements of the n-2kc rows in the middle of Q2 

should be considered, that is, only n-2kc steps of the odd-even transposition sort are required in 

the column-sort. For example, if n=29, we have z=15, p=4, kc=15-4 and 1=7. After the 

second iteration of the row-column sort, there will be 22 clean rows in Q2 and the largest n 

2OroS will then be located between rows 12 and 18 (i.e., r n; 21-1 rows above and bellow the 

center row, respectively). Therefore, instead of sorting 29x29 clements, we can sort the middle 

7x29 elements after the second row-column sort. 
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C. Finding the Kth Smallest Value 

The kth smallest value among the n2 inputs can also be obtained in a fast and efficient 

way similar to that of extracting the median value in subsection B. Assuming that there are ini-

tially en zeros in Q with (e-l)n<k~en, the kth smallest value will be among the largest n zeros. 

Similarly, assuming that there arc initially (n-e+ l)n ones in Q, the kth smallest value will be 

among the smallest n ones. Then, according to Theorem 5.4, we can count the number of clean 

rows containing zeros at the top of Q 2 and the number of clean rows containing ones at the bot-

tom of Q2. Again from the {O-I} principle, since the result derived by counting the number of 

D's is complementary to that derived by counting the number of 1 's, there will always be i and j 

clean rows at the top and boltom of Q 2• respectively. with ;=c- r n; 21 + I and 

j=n-c+l- r n;21+1. For the same reason as discussed in subsection B. the kth smallest value 

will not be at the top i-I clean rows or the bottom j -1 clean rows. 

From the results in subsections B and the following analysis, a more efficient way can be 

obtained in finding the kth smallest value by modifying the trapezoid sort. This is achieved by 

reducing the number of steps in each column-sort after the second iteration of the row-column 

sort to n-(c-r n;21}-(n-c+I-r n;21) steps. where c= r ~ 1 for fmding the median value in 

the array and c= r: 1 for fmding the kth smallest value. Therefore. the number of steps 

required by the column-sort after the second iteration to find the kth smallest value from n 2 

inputs can be reduced to 

. . rn
+

21 rn
+

21 rn+21 rnl n-(l+J)+2 = n-(e- -8- )-(n-e+l- -8- ) = 2x -8- -1 = n-2kc ~ '4 +2. That is, 
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after the second column-sort, only the elements of the n -2kc consecutive rows (starting from 

row c-( r n;21-1) to row c+( r n;21-1)) should be considered in the remaining row-column 

sort. 

D. Reduction on Processing Steps 

In the following we will compare the result with the parallel bubble sort and the 

shear sort first, and then discuss further reduction on processing steps. Although no discussion 

was made in [19,21] for finding the kth smallest value, based on the properties of their sorting 

algorithms, we know that there will be l~ J clean rows after the first iteration of the row-sort 

and the column-sort and only r: 1 rows will be dirty after the second iteration [211. That is 

after the second iteration, each element in the array will be at most r: 1-1 rows away from iIE 

final row position [811. However, the median value in the array can be either r: 1-1 rows 

above or bellow its final position. The r: 1-1 rows above and bellow the center row in the 

array should all then be considered in finding the median value after the second iteration. 

Therefore, instead of having 2x r n;21-1 rows left to be processed after the second iteration as 

in the trapezoid sort, 2x r: 1-1 rows remain to be processed after the second iteration in the 

shear sort or the parallel bubble sort. 

Further reduction on processing steps can be achieved for each column-sort after the 

second row-column sort. In the proof of Theorem 5.4, it is shown that every two neighbor rows 



120 

are merged to form a new clean row so that only half of the initial dirty rows will remain after 

each row-column sort. This means that the num ber of rows needs to be processed are reduced 

by half after each iteration. That is. half of the r n; 21-1 rows above and below the c-th row 

can be discarded in the fourth row-column sort. Let d~ r n;21-1. then only rows from 

c-r ~ 1 to c+ r ~ 1 should be processed in the fourth row·column sort. In general. only rows 

from c- r 2~31 to c+ r 2~31 should be processed in the ith row·column sort. However. in the 

original trapezoid sort, after i = 1+log21 iterations, all elements in the array are in its final row 

position [80]. Therefore, only the c-th row should be considered in the final row-sort in order 

to find the kth smallest value. For example, if n=29, kc=15-4 and 1=7. Based on the above 

analysis, only rows between 12 and 18 are processed in the third row-column sort and rows 

between 13 and 17 are processed in the fourth iteration. Since 1+10g21 = 4, only the fifth row 

should be processed in the final row-sort in order to find the median value. 

Reduction on processing steps also means reduction in silicon area when the algorithm is 

implemented as a VLSI sorting network. The sorting network will have 1+ rlOg211 stages 

where in each stage an iteration of the row-column sort is included except that a cyclic shift 

operation is added between row-sort and column-sort in the first stage. Originally, for sorting 

n x n inputs, there will be n submodules to sort n rows independently and another n submo­

dules to sort n columns. Each submodule is an odd-even transposition sorter which includes n 

steps with n;1 sorting elements per step. However, according to the above analysis, about 

! n x n data elements are eliminated from the sorting process after the second row-column sort 
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and the remaining data elements will be reduce by half after every successive iteration. There­

fore, instead of using n submodules in the third row-sort, : submodules are sufficient and the 

number of steps in each submodule required in the third column-column sort can be reduced 

from n to : and then half of the submodules can be reduced from every successive row-sort 

and half of the steps in each submodule can be reduced from every successive column-sort. 

5.4. Summary 

We have derived several properties for the trapezoid sort. The relationship between two 

rows in the array after each iteration of the trapezoid sort are derived first based on the {D-l} 

principle. The number of zeros in the jlh row of the array after each iteration which was shown 

in [21,82] to be no less than that in the kth row, has been further shown to be always greater 

than that in the kth row unless it is equal to D or n, for all l~j <k~n. The relationship between 

the numbers of maximum dirty rows generated by input sequences with arbitrary number of 

zeros is also obtained. This result is then used to derive a more efficient method to find the 

kth-smallest value mesh-connected processor arrays. The proposed method not only preserves 

the properties of the row-column sort such as simple control hardware and ease of implementa-

tion but also has less time complexity that approximately ! n processing steps are reduced in 

the first column-sort after the second iteration and the remaining steps will be reduced further 

by half after every successive iteration. 
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CHAPTER 6. 

THE MODIFIED ODD·EVEN MERGE PROCEDURE 

6.1. Introduction 

The row-column sort algorithms on mesh-connected processor arrays, such as the 

parallel bubble sort and the shear sort, have the properties of very simple control hardware and 

ease of implementation. However, these row-column sort algorithms are based on the odd-even 

transposition sort such that half of the processors are idle during each basic comparison­

interchange step. In addition, they are designed to sort N inputs only, where N is the number of 

processors in the array. If the number of elements to be sorted is larger than N, the row-column 

sort algorithm can not be applied directly. To overcome this, the method in [14,21] uses the 

merge-split operation to replace the compare-interchange (or compare-and-swap in this chapter) 

operation and 0 (mlog2m)T N time complexity is required to sort mN inputs where TN represents 

the time complexity to sort N inputs. Although that method is simple, it is not efficient. We 

will show that instead of requiring 2xTN steps to sort 2N inputs by the merge-split method, only 

TN+n+3 steps are sufficient by the proposed merge sort algorithm. An O(log2m) order of 

improvement is achieved by further generalizing the merge sort to sort mN inputs with 

o (; )T N time complexity. A novel modified odd -even merge method is proposed here which 

can merge m sorted sets in 0(; 'log2m)n time complexity. The other advantage of the pro­

posed method is that it is quite simple and regular. Each processor only needs to communicate 

with its nearest neighbor processors and concurrent data movements are restricted in a single 

row (column) within a time period and hence, simplifies the control structure. Therefore, it is 
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very suitable for sorting more than two sets of data inputs in a mesh-connected processor array. 

Details of the merge sort and modified odd -even merge algorithms are in section 6.2. Analysis 

of the time complexity will be performed in section 6.3. 

6.2. The Modified Odd-Even Merge 

The row-column sort algorithm can only handle N input elements which is equal to the 

number of processors. If the number of elements to be sorted is larger than N, the row-column 

sort algorithm can not be applied directly. To overcome this, the method in [14,21] distributes 

the elements evenly among the processors and apply the merge-split operation instead of the 

compare-interchange (or compare-and-swap in this chapter) operation. The "merge-split" opera­

tion is described as follows. First, processor P I sends its largest element to P 2 and P 2 sends 

its smallest element to P I' Then this process repeats until the largest element in P I is not 

greater than the smallest element in P 2 [35]. For example, if there are only two elements in 

each processor, this process can be implemented by the following substeps: (1) sort the cle­

ments in each processor, (2) route the largest element in PI to its neighbor processor P2, and 

P 2 routes its smallest element to PI, (3) sort the clements in each processor, (4) route the larg­

est element in PI to P 2 and P 2 routes its smallest element to PI. As discussed in chapter 4, a 

compare-and-swap operation on two data elements in adjacent processors can be implemented 

by the following sequence: route left, compare, and route right. The time for a compare-and­

swap is tes=2tr+te where tr is the time to route and te is the time to compare. Thereforc, 2tes is 

required to exccute a merge-split operation if there are two elements in each proccssor. If there 

are m elements in each processor, O(mlog2m) compare-and-swap steps are requircd if an 

optimal sequcntial sorting algorithm is used in substeps (1) and (3) of the "mcrge-split" opcra-
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tion. In the following analysis, we will show that instead of having twice the time complexity 

to merge two sets of N sorted inputs by the merge-split operation, only n+3 extra steps are 

sufficient to merge two sets of N sorted inputs by the proposed merge sort. 

As di~cussed in chapter 4, the row-column sort type of algorithms are implemented by 

applying the row-sort and the column-sort repetitively. In each row-sort (column-sort), n steps 

of the odd-even transposition sort are executed to sort elements in the same row (column). The 

advantages of the row-column sort algorithms are the simple data routing required and con­

current data movements allowed only in the same direction which simplifies the control struc­

tures. However, for sorting algorithms on mesh-connected processor arrays [14, 19,21], during 

each compare-swap operation half of the processors are idle as shown in Fig. 6.1. This 

inefficiency can be improved based on the fact that all the clements move in the same direction 

at a time and processors are idle in an alternating manner, i.e., in odd (even) steps of the row­

sort or column-sort, all processors in the even (odd) rows or columns are idle. With some 

modification on the substeps of a compare-swap operation, the idle processors can sort another 

Figure 6.1. A comparc-and-swap step in the column-sort. 
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set of input data at the same time. That is, assuming that there are two registers, RA and Rn, in 

each processor and two sets of input data, N 1 and N 2, are preloaded in the array, then instead of 

routing right and left in the row-sort (or up and down in the column-sort), an exchange (or 

swap) operation is performed between two neighbor processors and this is referred as the 

modified compare -and -swap operation. As shown in Fig. 6.2, in every data routing substep of 

a modified compare-and-swap step, the content in Rn of the upper (left) processor is exchanged 

with the content in RA of the lower (right) processor in the column (row) sort and all processors 

execute the same instruction at the same time. That is, in a row-sort (column-sort) operation, if 

processors in the odd-numbered rows (columns) are processing N 1, processors in the even­

numbered rows (columns) are processing N 2 at the same time. 

Therefore, at the time when the first input data set N 1 is being sorted and stored in RA 

registers of the processors in snake-like row major order by using the trapezoid sort, the second 

input data set N 2 is also being sorted into snake-like row major order but stored in Rn registers 

of the processors. These two sorted data set can than be merged together into a sorted output 

sequence of 2N elements with only n+3 extra steps based on the merge sort method which will 

be described in subsection A. If there are more than 2N clements in the input array, the 

merge sort will be generalized in subsection B to sort mN inputs with 0 (; )-TN time complex­

ity, where TN is the time to sort N inputs. Compared with the merge-split operation, an 

O(IOg2m) order of improvement in time complexity is achieved. 

A. Sorting 2N Inputs 

Let the two sorted sequences N 1 and N 2 be stored in RA registers and Rn registers, 

respectively, of the processors in snake-like row major order. Let the processor in the (i, j) 

position of the array be represented by PEj,j' l$i, j$n. There are three steps in the process. In 
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processors: fNt~ 

Figure 6.2. A modified compare-and-swap step in the column-sort 

the first step, the "interleaving" of the odd-even merge is executed as shown in Fig. 6.3(a). If i 

is odd, the content in RB of PEj.i is swapped with the content in RA of PEj.i+l, the content in 

RB of PEj.i+2 is swapped with the content in RA of PEj.i +3, and there is no swapping between 

PEj•j +1 and PEj•j +2, for all odd j. If i is even, the content in RA of PEj.j is swapped with the 

content in RB of PEj.i+l, the content in RA of PEj•j +2 is swapped with the content in RB of 

PEj.i+3, and there is no swapping between PEj.i+l and PEj.i+2, for all odd j. The configuration 

after the interleaving process is shown in Fig. 6.3(b), where the two interleaved sequences are 

stored in RA registers and RB registers of the processors, respectively. Let these two interleaved 

sequences be represented by LA and L8. 

In the second step, "sorting the two interleaved sequences" is performed. This scenario can be 

viewed as that the two random input sequences, LA and LB, are preloaded in the array. In this case, an 

efficient method to sort these two interleaved sequences is to sort these two sequences concurrently by the 

trapezoid sort which will require 2x( rlOg211 + l)n+n compare-and-swap steps to complete the sorting. 

However, these two sequences LA and LB are not random input sequences, since they have already been 

sorted in some order. For example, for the sequence LA, if i is odd, the content in RA of PEj•j is no 
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greater than the content in RA of PEj,j+2, and if i is even, the content in RA of PEj,j is no less than the 

content in RA of PEj,j+2' Furthermore, LA (or Ln) itself is generated by two shuffied sorted sequences. 

Let the two sorted sequences which fonn LA be represented as M 1 and M 2. Using the serial bubble 

sort, the worst case scenario to sort LA is that the largest clement in M 1 is less than the smallest clement 

in M 2, since M 1 and M 2 are shuffied to fonn LA and this case has the maximum distance ( ~ ) to move 

an clement to its final position. This is also the worst case in the row-column sort which is implemented 
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based on the odd-even transposition sort The detail reasoning is in the following. 

If the largest element in M 1 is less than the smallest element in M 2, then M 1 can be assumed to 

have all zeros and the largest element of M 1 will be in PEn,n-l and M 2 can be assumed to have all 

ones and the smallest element of M 2 will be in PE 1,2' In this situation, instead of using rlOg2Ll + 1 

iterations of row-column sort followed by a row-sort, a single column-sort followed by a single row-sort 

is sufficient to sort the sequence. We designate the operation of a single column-sort followed by a row-

sort as a singLe-coLumn-row sort. An example worst case of an 8x8 LA is shown in Fig. 6.4. Any 

change of an element from 1 to 0 in make LA such that it is no longer a worst case should be performed 

at PE 1,2 first. Similarly, any change of an element from 0 to 1 should be done at PEn,n-l first, since 

M 1 and M 2 are two sorted sequences. As shown in Fig. 6.4, any change from 0 to 1 or 1 to 0 will not 

increase the number of steps required to sort LA, that is, 2n steps of the odd-even transposition sort are 

sufficient to sort the sequence LA' These 2n steps include n steps of compare-and-swap in the column-

sort and n steps of compare-and-swap in the row-sort. However, based on the fact that M 1 and M 2 are 

interleaved to form LA, ~ steps are sufficient to clean a column in the column-sort since the maximum 

distance required for any 0 or 1 to move to its final destination is ~ -1. Similarly, ~ steps in the fol-

lowing row-sort can clean every row after the column sort. We call this operation the 

0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 
1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 

1 0 1 0 1 0 1 0 
0 1 0 1 0 1 0 1 

1 0 1 0 1 0 1 0 

Figure 6.4. An example 8x8 LA. 
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reduced single -column-row sort to represent the fact that instead of using n steps of the odd-even 

transposition sort for each of the column-sort and the following row-sort, only ~ steps are sufficient for 

each. 

In the third step, "merging of the two sorted sequences" is executed. This process is 

implemented by two compare-and-swap steps as shown in Fig. 6.3(c). Since concurrent data 

movements are allowed in the same direction only, the compare-and-swap step that compares 

two neighbor processors in the same column can not be executed until the two neighbor proces-

sors in the same row finish sorting. It should be noted that in the original odd-even merge 

method, another interleaving step is required between step 2 and step 3. However, for the 

current application, this step can be combined with the merging operation and implemented 

directly by comparing Rn of PEj,j with RA of PEj,j+l (Fig. 6.3(c)). In the following, we will 

refer steps 1 to 3 as the modified odd -even merge procedure and the procedure merge sort 

describes the process of sorting the two sets of inputs at the same time first and then, perform-

ing the modified odd -even merge. 

Therefore, with one step to perform the interleaving operation, 11- + 11- steps to sort the 
2 2 

interleaved sequence, and two more steps to complete the merging, the two sorted sequences N 1 

and N 2 can be merged as a sorted 2N-output sequence. Thus, instead of using 

2x[2x( fIOg211+1)n+n] compare-and-swap steps to sort the 2N-input sequence based on the tra-

pezoid sort and the merge-split operation, only [2x( flOg211 + l)n+n ]+n+3 steps are required by 

the merge sort. 
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B. Sorting mN Inputs 

In this subsection, the merge sort procedure will be further generalized to m input 

sequences where m>2 and each sequence has N elements. In order to simplify the analysis, we 

will assume that (1) instead of only two registers RA and Rn as in subsection A, there are m 

registers, R 10 R 2 , ••• , Rm , in each processor (or each processor has a local memory that can store 

m elements) and m is a power of two, (2) each processor can access its registers (or memory) 

with the same speed, and (3) the mN inputs are equally distributed among processors. 

Let an input sequence S with mN elements be represented as m N-element sequences. The 

first sequence stored in R 1 registers of the processors is represented as Q 1, the second sequence 

stored in R 2 registers is represented as Q2, ... , and the mth sequence stored in Rm registers is 

represented as Qm. From the last subsection, we know that two sets of inputs can be sorted 

concurrently and then merged together to form a sorted 2N-element sequence. Therefore, there 

will be ; sorted 2N-element sequences generated after the first merge. These ; sequences 

can be merged again based on the modified odd-even merge to form ~ sorted 4N-element 

sequences, and so on until the sequence S is sorted. That is, the modified odd -even merge is 

applied recursively to merge the m sorted sequences two at a time until all of them are merged. 

The generalized merge sort and modified odd -even merge procedures are described in 

Fig. 6.5 and Fig. 6.6, respectively. Let I S I represent the number of elements in the input 

sequence S and it is equal to mN. (If I S I <mN, some values larger (smaller) than the largest 

(smallest) entry in the array can be used to fill S.) If there are more than 2N input clements in 

I S I, i.e., I S I >2N, the sequence S will be equally divided into two subsequences S 1 and S 2. 

The subsequence S 1 which includes Q 1 to Q.!!!. will be sorted first by recursively calling the 
2 
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Procedure Merge Sort (S); 
begin 

end 

/* divide S into two subsequences, S 1 and S 2, of equal sizes */ 
S 1 = contents in R 1 registers through Rml2 registers of all processors; /* m = IS liN */ 
S 2 = contents in Rm/2+1 registers through Rm registers of all processors; 
if IS I >2N then 

else 

begin 

end 

/* sort the two subsequences recursively one after another */ 
Merge Sort (S 1); 
Merge Sort (S 2); 
/* merge the two sorted subsequences S 1 and S 2 into a sorted sequence S */ 
Modified Odd-Even Merge (S); 

begin 

end 

do in parallel 
begin 

end 

Row-Column Sort (S 1); 
Row-Column Sort (S 2); 

/* merge the two sorted subsequences S 1 and S 2 into a sorted sequence S */ 
Modified Odd-Even Merge (S); 

Figure 6.5. Merge sort procedure. 

procedure and then followed by sorting the subsequence S2 which includes Q.E!.+l to Qm. After 
2 

the two subsequences are sorted, the procedure modified odd -even merge in Fig. 6.6 is used to 

merge these two sorted subsequences. 

If there are only 2N inputs, as described in subsection A, the procedure will completely 

sort these 2N inputs. Since two sets of inputs can be sorted concurrently, two 

Row-Column Sort processes are executed in parallel. The Row-Column Sort procedure can be 
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implemented by any of the row-column sort algorithms, and the trapezoid sort is used here 

since it requires the least number of compare-and-swap steps. After each set of the data inputs 

are sorted, the procedure modified odd -even merge again is performed to merge the two sorted 

sets. 

The modified odd -even merge procedure first interleaves (or shuffles) the two sorted 

sequences to be merged. When implemented in a mesh-connected array, this step means that the 

contents in Rml4+1 to Rml2 are exchanged with the contents in Rm/2+1 to R 3m14 • Thus, the 

subsequence formed by Ql to Q.E!.. can be further decomposed into two sorted subsequences, 
2 

Q 1 to Q.E!.. and Q.E!..+l to Q.E!... Therefore, the modified odd -even merge can be executed again 
4 4 2 

to sort the two interleaved sequences in Q 1 to Q.E!.. and Q.E!..+l to Qm' separately. The function 
2 2 

Reduced Single -Column -Row Sort in Fig. 6.6, as described in subsection A, is implemented 

by a column-sort with only ; steps followed by a row-sort with the same number of steps. 

If m=2, the two sorted sequences to be merged are interleaved first, as shown in Fig. 

6.3(a), and then follow the steps described in subsection A to merge them as a sorted 2N-output 

sequence. An example of sorting 4N inputs is shown in Fig. 6.7. The random input sequence 

with 4N inputs are sorted two subsequences at a time. 

At the beginning, the two subsequences in R 1 registers and R 2 registers of all processors, 

respectively, are sorted concurrently and merged into a sorted 2N-output sequence. Then the 

next two subsequences in R 3 registers and R 4 registers are processed. Two sorted sequences, 

S 1 and S 2, with 2N elements each are stored in the processor array as shown in Fig. 6.7(a). 

The sequence S 1 consisting of 10, 11, 12, ... , 40, 41 is stored in R 1 and R 2 registers of all pro· 

cessors and ordered by the merge sort in snake-like row major ordering. In the same way, 
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Procedure Modified Odd-Even Merge (S); 
begin 

end 

/* divide S into two subsequences, S 1 and S 2, of equal sizes */ 
S 1 = contents in R 1 registers through Rml2 registers of all processors; /* m = f S f / N * / 
S 2 = contents in Rml2+1 registers through Rm registers of all processors; 
if f Sf> 2N then 

else 

begin 

end 

interleave S 1 and S 2; 1* as shown in Fig. 6.7(b) */ 
Modified Odd-Even Merge (S I); 
Modified Odd-Even Merge (S 2); 
merge the two sorted sequence S 1 and S2 into S; /* as shown in Fig. 6.7(d) */ 

begin 

end 

interleave the two sorted sequence SI and S2; /* as shown in Fig. 6.3(a) */ 
do in parallel 

begin 
Reduced Single-Column-Row Sort (S 1); 
Reduced Single-Column-Row Sort (S2); 

end 
merge the two sorted sequence S 1 and S 2 into S; /* as shown in Fig. 6.3 (c) */ 

Figure 6.6. Modified odd-even merge procedure. 

the sequence S 2 with 42, 43, ... , 73 is stored in R 3 and R 4 registers. 

In the second step, "interleaving" (or shuilling) of the two sequences is performed as 

shown in Fig. 6.7(b). By exchanging the contents in each pair of R2 and R 3 , the two sequences 

in R 1 registers and R 2 registers can be viewed as two sorted sequences and the combination of 

these two sequences is an interleaved sequence. An example of this interleaved sequence is 

shown in Fig. 6.7(b) as 10, 42, 12, 44, ... , 38, 70, 40, 72. 
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In the third step, the modified odd -even merge procedure merges 2N elements. The con­

tents in R 1 registers and R 2 registers are interleaved again as the process in Fig. 6.3(a). Then 

the contents in R 1 registers and R 2 registers are sorted by the modified column-row sort con­

currently and rearranged in snake-like row major order as the process in Fig. 6.3(c). Let these 

two sorted sequences be represented as Ll and L 2. Ll and L2 are then merged to form a sorted 

2N-output sequence. The ordered 2N-output sequence, 10, 12, 14, ... , 70, 72, is stored in the R 1 

and R 2 registers of the processors. After L 1 and L2 have been merged, the same sorting and 

merging process can be repeated on contents in R 3 and R 4 registers. Therefore, two sorted 

sequences, 10, 12, ... , 72 and 11, 13, ... , 73 are stored in the array as shown in Fig. 6.7(c). 

Finally, merging of these two sorted sequences is done by comparing (and exchange if neces­

sary) the contents in each pair of R 2 and R 3 with no interleaving required before merging. 

(c) sort 2N 

Figure 6.7. An example of sorting 4N inputs. 
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6.3. Analysis 

Let T mN represent the number of modified compare-and-swap steps required to sort mN 

inputs, i.e., the time complexity of the procedure merge sort, and CmN represent the time com-

plexity of the procedure modified odd -even merge. Then, from Fig. 6.5 and Fig. 6.6, we have 

(6.1) 

and 

(6.2) 

which implies 

(6.3) 

The first ; in (2) represents the number of exchange steps (it should be noted that the amount 

of time required by an exchange step is less than that of a compare-and-swap step) required to 

exchange the contents in Rml4+1 through Rm/2 with the contents in Rml2+1 through R 3m14 , 

respectively. An example is shown in Fig. 6.7(b). Since m=4, one step is required to exchange 

the content in R2 with that in R 3• The second ; in (2) represents the number of compare-

and-swap steps required in the last merging step (as shown in Fig. 6.7(d» to compare and 

exchange the contents in Rml4+1 through Rml2 with the contents in R m12+1 through R 3m14 , 

respectively. If there are only 2N inputs, from section 6.2 we know that two sets of data can be 

processed concurrently by the mesh-connected processors array and therefore, 

TN=2( rIOg2z1+1)n+n and CN= ~ + ~, 

This implies that 



136 

When n is large and m <t::.n, we have 

TN~log2m·CN~m·log2m 

since 2( llog2 ll+l)n+n>>n·log2m. Also we know that T 2N=TN+CN and therefore, 

m m 
T mN = 2(T ~ N+C ~ ) = 2x[T 2N+(log2m - 1)-C 2N] = 2x[TN+(log2m - l)·CN ]. (6.5) 

That is, instead of an O(mlog2m)·TN time complexity to sort mN data inputs with the "merge-

split" operation, only 0 (; )-(TN+n·log2m) (TN>n·log2m) time complexity is sufficient to sort 

mN data inputs by the modified odd -even merge procedure. Therefore, we have achieved an 

0 (log2m) order improvement. 

The proposed method can be modified by replacing the Row-Column Sort procedure in 

Fig. 6.5 with any sorting algorithm for the mesh-connected processors array. However, the data 

movements in these algorithms are not as simple as those in the class of row-column sort algo-

rithms and thus, complex control schemes are required in these algorithms to synchronize the 

data movements in order to sort two sets of data inputs. To reduce the complexity of the con-

trol scheme, the "do in parallel" operation is Fig. 6.5 can be replaced by two consecutive opera-

tions and thus, T2N = 2TN+C2N and C2N = CN+3. Therefore, the time complexity required to 

sort m sets of N data inputs is 

(6.6) 

which is about twice the time complexity when two sets of data inputs are sorted concurrently. 
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6.4. Summary 

A novel merge sort method for the mesh-connected processor arrays is presented in this 

chapter. Instead of an O(mlog2m)TN time complexity to sort mN input elements by the previ-

ous merge-split operation, only 0(; )TN time complexity is sufficient to sort mN random 

inputs where TN is the time complexity of the row-column sort algorithm. Therefore, we have 

achieved an 0 (log 2m) order of improvement in time complexity to sort mN inputs. Other 

advantages of the proposed method include the simplicity of the architecture and efficient data 

movements with only ncar-neighbor communications. Therefore, it is very suitable for sorting 

more than two sets of input elements in mesh-connected processor arrays. 
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CHAPTER 7. 

CONCLUSIONS 

7.1. Summary and Discussions 

Many applications in real-time digital signal and image processing need a high perfor­

mance parallel computer. Parallel sorting algorithms for two-dimensional mesh-connected pro­

cessor arrays including efficient implementations of these sorting algorithms in two-dimensional 

VLSI models have been intensively studied. Due to the availability of VLSI and WSI technolo­

gies at a reasonable cost, use of special purpose architecture for parallel sorting on a huge 

amount of input data has become attractive recently. 

In chapter 2, I have presented a highly reliable sorting array. It can detect multiple 

errors and correct a single error for on-line applications. As a systolic sorting array based on 

the odd-even transposition sort, it has a regular structure and simple interconnection links. Both 

the regularity and the simplicity of the odd-even transposition sorting array are preserved by the 

presented fault tolerance technique so that redundancy can fit into the system nicely, either to 

enhance the system performance or to replace the faulty elements. In addition, it can be 

reconfigured easily to tolerate the faulty sorting elements located by the on-line fault diagnosis 

procedure and can be degraded gracefully after redundancy is exhausted. Also, I discovered an 

important robust property of the odd-even transposition sorting array in which a single error can 

be masked automatically and multiple errors can be detected concurrently without disturbing the 

normal circuit operation. Therefore, extra cost incurred by bringing in fault tolerance features 
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can be minimized by exploiting the inherent properties of the embedded sorting algorithm. 

According to the analysis in section 2.6, hardware overhead for fault tolerance i·sabout 

(54+c)/14N and only 3 clocks delay is incurred in the pipeline. Since the sorting array is two­

level pipelined and all the checkers are implemented to be fault secure or totally self-checking, 

it is well applicable to real-time applications which require high throughput as well as high reli­

ability. The error detection techniques in this dissertation can be applied to sorting arrays based 

on other sorting algorithms with either two-level pipelined or bit-level serial structure. 

Due to the large area and the processing technology limitation, defects seems unavoidable 

in WSI implementation. Therefore, the networks need to have defect tolerance capabilities. A 

novel hierarchical modular sorting network (HMSN) is presented in chapter 3. Since it is a 

comprise between the simple communication scheme of the odd-even transposition sort and the 

fast convergent speed of the bitonic sort, it has a good area-time performance. It uses less 

hardware and converges faster than a single-level odd-even transposition sorter and the wire 

complexity problem of the bitonic sorter in VLSI or wsr is alleviated. Networks with regular 

interconnections have been shown to be equivalent to the bitonic network and used to replace it. 

Spare sorting elements are incorporated in every level of the hierarchy and they not only can 

replace defective sorting elements in the corresponding level but also can be used to correct 

run-time errors. Detailed yield analysis is performed on the hierarchical sorting networks. 

Yield improvements for cases with various number of spares are evaluated. The simulation 

results show that the defect tolerant HMSN achieves a significant yield increase over a non­

redundant sorting network. 

In chapter 4, a new two-dimensional sorting algorithm, the trapezoid sort was presented. 

It is an improved algorithm over time complexity for sorting on two-dimensional SIMD arrays. 
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In addition, it preserves the properties of simple control hardware and ease of implementation of 

the row-column sort, and the complexity is improved to f10g211+1 iterations with l={ii for an 

n x n processor array. Like the "parallel bubble sort" of Sado and Igarashi and the "shear sort" 

of Scherson and Sen, the "trapezoid sort" is suboptimal for this architecture. However, the 

justification of the algorithm is on the simplicity of its data movements. The complicated data 

movements in mapping bitonic sort arise if O(n) performance is attempted. 

In chapter 5, several properties for the trapezoid sort were derived. The relationship 

between two rows in the array after each iteration of the trapezoid sort are derived based on the 

{O-I} principle. The relationship between the numbers of maximum dirty rows generated by 

input sequences with arbitrary number of zeros is also obtained. These results are then used to 

derive a more efficient method to find the kth-smallest value on mesh-cormected processor 

arrays. The proposed method not only preserves the properties of the row-column sort such as 

simple control hardware and ease of implementation but also has less time complexity that 

approximately ! n processing steps are reduced in the first column-sort after the second itera­

tion and the remaining steps will be reduced further by half after every successive iteration. 

A novel merge sort method for the mesh-connected processor arrays was also presented in 

this chapter. Instead of an 0 (mlog2m)TN time complexity to sort mN input elements by the 

previous merge-split operation, only 0(; )TN time complexity is sufficient to sort mN random 

inputs where TN is the time complexity of the row-column sort algorithm. Therefore, we have 

achieved an 0 (log 2m) order of improvement in time complexity to sort mN inputs. Other 

advantages of the proposed method include the simplicity of the architecture and efficient data 

movements with only ncar-neighbor communications. Therefore, it is very suitable for sorting 
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more than two sets of input elements in mesh-connected processor arrays. 

7.2. Suggested Future Research 

In this dissertation, I have concentrated on the developments of fault-tolerant VLSI sys­

tolic sorting arrays, defect-tolerant WSI sorting networks as well as sorting and merging algo­

rithms on two-dimensional mesh connected processor arrays. Suggested future research issues 

include: (1) in addition to the analysis method, gate-level simulation can be perfonned to evalu­

ate the actual fault coverage of the fault-tolerant systolic sorting array, (2) optimization in tenns 

of the number of sorting elements in each level of the hierarchical modular sorting network may 

be generalized to a flexible HMSN which has more than three levels, and (3) in addition to 

using the merge-split method, the trapezoid sort algorithm can be further extended to k­

dimensional mesh-connected processor arrays based on the modified odd-even merging algo­

rithm. 
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APPENDIX A. 

NETWORK TRANSFORMATION 

Before we derive equivalent networks, some definitions based on those proposed by Wu 

and Feng [73] are introduced first. The physical names (or notations) for components inside an 

interconnection network T are defined as follows: (1) The stages in T are labeled from 0 to 1= 

log2N - 1. (2) The levels of links are labeled from 1 to I. (3) In a stage, each sorting element is 

denoted by binary bits PI... PI representing its location in the stage and a link connected to the 

sorting element is represented by PI ... PIP 0 where Po = 0 for the link connected to the top 

input and Po = 1 for the link connected to the bottom input of the sorting element. The 

configuration of an interconnection network T is described by its describing rules. 

THEOREM 1: A sorting block interconnected as a modified data manipulator is function-

ally equivalent to a sorting block interconnected as an Omega network. 

PROOF: The topology equivalence between the Omega network and the modified data 

manipulator was shown in [73, 10] where the mapping function 'Yi was derived as: 

'Yi[(PIPI-1 ... Pl);]=(PI-i'" PIPIPI-l .. , PI-i+l)i. 

To further prove that these two networks are functionally equivalent, we exploit the property 

that if the input lines i and j from stage k-l are processed by sorting element (PI." PI) in stage 

k of the Omega network, they will be processed by 'Yk(P1 ... PI) for k=O to n-l in the modified 

data manipulator. The reason why k is from 0 to I=n -1 instead of from 0 to I-I as for i, is that 

now we are considering the mapping of sorting elements but not the output links from it. Since 
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YiPI ... P 1) = PI-k ... PI PI .. · PI-k+l, 

YO[(PIPI-l ... Pl)]=(PIPI-l .,. P2Pl), Yl[(PIPI-l'" Pl)]=(PI-IPI-2'" PIPI), 

.. ',Y/[(PIPI-l ... Pl)]=(PIPI-l ... P2Pl)· 

The logical names of the input and output tenninals in a modified data manipulator are the 

same as the physical names. This means the corresponding positions of the sorting elements in 

input and output tenninals of the modified data manipulator are the same as those of the Omega 

network. 0 
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APPENDIX B. 

PERMUTATION TRANSFORMATION 

Let a sequence A = {O, 1, ... , 2n_l} (N = 2n) be represented by Pn-l ... Po, and let t, cr 

be two permutations of A. 

DEFINITION 1: The shuffle permutation cr is defined as cr : A ~ A wilh cr(Pn-l ... Po) = Pn-2 

Pn-3 ... P 1 Po Pn-l· 
o 

DEFINITION 2: The permutation t is defined as t : A ~ A with t(pn-l ... Po) = Pn-! .. , Po if 

Po = 0 and t(pn-l ... Po) = Pn-l Pn-2 ... PI Po if Po = 1. 
o 

DEFINITION 3: The Banyan permutation r is formed by setting all switching clements in lhe 

Banyan's interconnection network (lhis network can be viewed as a reverse network of lhe modified data 

manipulator in network topology) in straight connection states (see Fig. 3.5(b». 
o 

DEFINITION 4: The 'I' permutation is formed by setting a switching element in lhe modified data 

manipulator eilher in straight or in exchange state. The switching elements in stage i (i=O to n- I) with 

positions represented by Pn-l ... PI, will be in exchange state (Pn-l .... PI Po= Pn-l .... PI Po) if 

Pn-iPn-i-l =01 or 10, or in straight state (Pn-l .... PI Po= Pn-l .... PIP 0) if Pn-iPn-i-l =00 or 11. 0 

It should be noted that the topology describing rules only describe which switching ele-

ments in stage i + I receive the outputs from switching elements in stage i. These rules do not 

describe whether the outputs should connect to the top input part or the bottom input part of a 

switching element. This is different from the permutation function which precisely describes 
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the link. connections between two stages. Therefore, a pennutation function has arguments from 

Pn-l to Po and a describing rule has arguments only from Pn-l to P 1. 

THEOREM 2: The shuffle pennutation cr is topologically equivalent to the Banyan pennu­

tation r. 

PROOF: Let N be the number of inputs and Pn-l Pn-2 ... Po represent links for each input, where 

n=log2N. Also let cr(Pn-l Pn-2 ... Po) represent a shuffie pennutation function applied to links Pn-l ... 

Po, and ri(Pn-l ... Po) represent the pennutation function of the Banyan switching network at the i-th 

level (l~i<n-l). 

From the network topology we know that cr(pn-l ... PO)=Pn-2 Pn-3 ... Po Pn-l and the per­

mutations of the Banyan network can be described as ri(Pn-l ... PO)=Pn-l ... Pi+l Po Pi-l ... PI 

Pi. We have 

Po)··· »=rn-l(rn-2('" (r2(Pn-l Pn-2 .,. P2 Po PI)" .» 

=rn-l (rn-2( ... (r3(Pn-l ... P3 PI Po P2) ... » 

=Pn-2 Pn-l .. , Po Pn-l 

=cr(pn-l ... Po)· o 

THEOREM 3: The 't pennutation (Fig. 3.6(a» is topologically equivalent to 'II pennuta­

tion (Fig. 3.6(b». 

PROOF: Let N be the number of inputs, Pn-l ... PI Po represent links for each input where 

n=log2N , 't(pn-l Pn-2 ... Po) represent a 't pennutation function applied to links Pn-l ... Po, and 

'IIi(Pn-l ... Po) represent the i-th level pennutation function of the modified data manipulator. 

From the network topologies we know that the pennutation function for each network can 

be described as follows : 



146 

't(pn-l ... PO)=Pn-l Pn-2 ... Po if Po=O, and Pn-l ... PI if Po=1. 

'l'i(Pn-l ... PO)=Pn-l ... Pn-i+l Po Pn-i-l ... PI Pn+ 

A switching element in stage i (i=0 to n-l), with position represented by Pn-l ... P It will 

be either in exchange state (Pn-l .... PI Po= Pn-l .... PI Po) or in straight state (Pn-I .... PI Po= 

Pn-l .... PI Po) depending on the switch control function Si(Pn-I ... PI Po). If Pn-iPn-i-I=OO or 

11, the corresponding element will be in the straight state, otherwise it will be in exchange 

state. For i=O or n-l, these two functions will depend only on Pn-l and P It respectively. We 

have 

S I ('!II (Pn-I,I Pn-2 ... Po) ... » 

Pn-l) ... » ... 

=PO,O Pn-I,O Pn-2,O ... P3,O P2,O P 1,0 + PO,l Pn-I,O Pn-2,O ... P2,O P 1,0 + Po,O Pn-I,O ... P3,O P2,O 

Pl,l + PO,l Pn-l,O Pn-2,O ... P3,O P2,O Pl,l + ... + Po,o Pn-l,l Pn-2,l ... P2,l PI,I + PO,l Pn-l,1 

- -Pn-2,l ... P2,l P 1,1 

The notation Pn-l,O Pn-2 ... Po means that a switch with location representation Pn-I =0 

will be in bypass state, and Pn-l,I Pn-2 ... Po means that a switch will be in exchange state if 

Pn-l =1. 
o 
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