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variation of heat or gas content in vessels in countercurrent exchange (see Chapter 

4). It should be noted that the diffusion conductances have been computed under 

the assumption of zero intravascular resistance in the blood vessels. This may be an 

overestimation when the pair blood-vessels are close enough. Comparisons, in the 

case of heat, between the diffusion conductances and the equivalent conduction cou­

pling parameters with no resistance (Nusselt number equal infinity) in the existing 

literature (see [1, 4, 5, 16, 20]) can be made. 

The diffusion equation can also be solved directly by finite element techniques. 

However, the semianalytic approach has several advantages. Once the approach is 

formulated, the amount of numerical computation is very small. The Fourier series 

converge rapidly, so only a few terms are needed. Thus, solutions may be obtained 

readily for a wide range of parameter values. Also, the diffusion conductances 

are given directly as the leading terms (see equations 2.45, 2.46, and 2.47) in the 

expansions, and so it is not necessary to integrate fluxes around the boundaries. 



CHAPTER 3 

RECTANGULAR TISSUE 
REGIONS 

Since blood vessels are approximately cylindrical, it is natural to approximate them 

by uniform parallel cylinders. However, the most appropiate shape of the outer 

boundary of the tissue region is less clear. In the previous chapter, a cylindrical 

boundary was chosen. This is the simplest choice that provides a finite tissue region, 

and follows the precedent of the Krogh model. The same choice was made by 

Baish [1] and Zhu et al. [20]. However, this approach has the limitation that 

cylinders cannot be packed together to form a space-filling array, and thus it can only 

approximate a continuous array of vessels, as was indicated in figure 1.3. Moreover, 

this arrangement implies that all neighboring vessels (or vessel pairs) are equidistant 

from a given vessel (or pair). 

An alternative assumption is that the tissue region is rectangular. If Krogh­

type (zero flux) boundary conditions are imposed, this case is exactly equivalent 

to that of a regular infinite array of vessel pairs arranged in a rectilinear grid, as 

shown in Figure 3.2. Also, this condition is the two-dimensional analog to the 

three-dimensional simulations developed by Hsu and Secomb [8]. This facilitates 

comparisons between two- and three-dimensional calculations. 
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The general approach described in this chapter for a rectangular tissue region 

could be applied also to other geometries. As in Chapter 2, we shall show that the 

semi analytic approach can yield a rapidly decaying sequence of Fourier coefficients, 

and so solutions can be obtained with a small amount of computation, once the 

form of the solution is established. Also, the diffusion conductances are immediate­

ly available without further computations, since they depend only on the leading 

coefficients in the Fourier series. 

3.1 General approach 

We consider the nondimensional problem (2.5 - 2.9) already stated in Chapter 2, in 

which r t now corresponds to some outer boundary surrounding the vessel, symmetric 

with respect to the X axis. We recall that the problem (2.5 - 2.9) is reduced to (2.10 

- 2.14) because of the particular solution Sp(X, Y) = M(X2 + y 2)/4. 

Consider the Z plane (Z = X + iY), the plane where the problem is given, and 

let B = {r a, r v, rtl be the set of boundaries, each of which is a closed curve. Due 

to the linearity of the problem (2.10 - 2.14), the set B can be partitioned, and then 

the superposition principle be applied. The form in which the set B is partitioned is 

dependent on the knowledge of general solutions of the Laplace equation in regions 

bounded by the boundaries in each class of the partition. The procedure is as 

follows: 

a.- The set B of boundaries is partitioned. Let P be a particular partition, that is, 

B = UoEP n. To refer to each n in P, we enumerate the classes n as {n"}~=l. 

b.- Find a general solution of the Laplace equation for each set of boundaries 

n", v = 1, ... , k. Generally, in this step, it is necessary to use a conformal 

transformation w" for each geometry given by n" to get a more suitable geom-
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etry n~, on which the method of separation of variables is applicable. Thus, 

we will have k distinct planes {w il }~=1 = {( U II , VII )}~=1' 

c.- Let {S;( W II )}~=1 be the general solutions for each plane. The superposition 

principle allows us to build up a general form for the original problem by 

adding the solutions S;(wlI ). In this part, functional dependence between the 

terms of the different solutions S=(wlI ) sometimes appears and it is necessary 

to remove this redundancy. 

d.- Once the general solution has been constructed in the previous step, we can 

identify the basis functions. Every basis function should be expanded in Fouri­

er series on each boundary ra, rv and r t (or on the corresponding transformed 

boundary). If each basis function allows at least a continuous periodic exten­

sion on each boundary (or transformed boundary) we know that its Fourier 

coefficients will decay at least as 1/n2• If the periodic extension is not con­

tinuous, the Fourier coefficients will decay like lin. This is undesirable since 

it involves computing many Fourier coefficients to get an appropriate approx­

imation to the solution. However, if the imposed boundary conditions are 

continuous along each boundary, the basis functions can be modified to get at 

least a continuous periodic extension of each of them, while still satisfying the 

Laplace equation. 

e.- By imposing the boundary conditions given in the problem (2.5 - 2.9), we can 

obtain one equation for each Fourier coefficient and solve the corresponding 

linear system of equations. Since the number of the coefficients is infinite, 

the rate of decay of Fourier coefficients of the basis functions should be esti­

mated on each boundary to choose how many coefficients should be retained, 

according to some tolerance. 
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3.2 Krogh case on a rectangle 

The Dirichlet case with outer rectangular boundary shown in Figure 3.1 has been 

Y r 

1 
V 

•• 
----H----

Figure 3.1: Rectangular domain 

included in Appendix A. The Krogh case (zero flux on the outer boundary) for the 

same geometry is presented in this section not only as an example of the general 

approach, but also because it represents an infinite array of countercurrent pairs, as 

mentioned above. 

Step a 

We partition B as: 

" because we know already from Chapter 2 the solution for the domain given by the 

class 0 1 and because we can solve for the domain given by the class O2 by separation 

of variables. 
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00 00 

00 00 

Figure 3.2: Infinite array of countercurrent pairs 

Step b 

We recall the solution (2.21) for the class OJ, 

S;(W) 
00 

+ :~::)an sinh n(ul - w) + bn sinh n(w - U2)]}, (3.1) 
n=I 

where the conformal transformation WI = w corresponds to the map (2.1). 

For the class O2 the method of separat.ion of variables is applied on the original 

domain given by the class O2 , meaning that the applied conformal transformation 

is the identity. Thus the solution for this problem written in complex form is: 
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Step c 

Adding solutions (3.1) and (3.2) we have a candidate for the general solution. We 

can absorb the constant aOUI - boU2 into the constant Ao and rewrite the term 

(bo - ao)w as ).w. With these modifications and the particular solution we get: 

M 
S(w) - "4 1 Z(w) 12 +Re{ilog .jZ(w)2 - ~2 +).w + 

00 

+ :L)an sinh n(ul - w) + bn sinh n(w - U2)]} + 
n=1 

+ Re{Ao + BoZ(w) + CoZ2(w) + 

f: k7r k7r 
+ [Ak cosh V(hl - Z(w)) + Bk cosh y-(Z(w) - h2) + 

k=1 

k7r 
(3.3) + Ck cos H (Z(w) - h2)]}' 

Step d 

The analytic calculation of the Fourier coefficients for each basis function can be 

very difficult, making numerical evaluation necessary. 

For the WI plane, which is the w plane, every basis function can be expanded ana­

lytically in Fourier series. For instance the Fourier representation for log( Z2 - ~ 2)1/2 

is given in (2.28) and for Z and Z2 in (2.29). For the basis functions cosh k7r(h l -

Z(w))/V, coshk7r(Z(w) - h2 )/V, and cosk7r(Z(w) - h2 )/H, the expansion is ob-

tained using Taylor series and the relation (2.29). 

For the W2 plane, which is the Z plane, the analytic computation of the Fouri-

er coefficients for the basis functions generally involves the evaluation of special 

functions like Sinlntegral or Coslntegral or a long expansion in partial fraction­

s, so numerical evaluation is more convenient. Thus, the majority of the Fourier 

coefficients for the basis functions in the Z plane were computed numerically. 
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Step e 

At this point, we can write the equations for the Fourier coefficients of the solution 

imposing the boundary conditions. By evaluating at w = u2+iv (i.e. in the arteriole 

in the Z plane), multiplying by cos nv and integrating over v in the interval [-7r, 7r] 

for n = 0, ... ,00, we get the first set of equations. For n = 0: 

M tl.2 U2 2 
Sa - --4-(2 coth U2 + 1) + T(log(2tl.) + 2") + AU2 + Ao - Botl. + Cotl. + 

~ k7r k7r k7r 
+ L.)Ak cosh -y(hl + tl.) + Bk cosh -y(h2 + tl.) + Ck cos H (h2 + tl.)],(3.4) 

k=l 

and for n ;::: 1: 

o enU2 T 
an + . h L {-Mtl.2cothu2 + - - 2tl.Bo + tl.2B2nCo + 

SIn n n ' 
00 k7rh l k7rh2 00 (k~8?1 

+ tt[(AkcoshV-+Bkcoshv-)~ (21)! B21,n+ 

k7rh k7rh 00 (k1r8)21+1 
+ (Ak sinh T + Bk sinh -V) 2: (2~ + 1 )! B21+1,n + 

1=0 

k7rh2 00 1 (k;l?1 
+ Ck(cos H ~(-1) (21)! B21,n 

k7r h 00 (k1r8 )21+1 
sin H 2 ~(-1)1 (27+ I)! B21+1,n)]}. (3.5) 

Similarly, by evaluating at w = Ul + iv, multiplying by cos nv and integrating over 

v from -7r to 7r we get for n = 0: 

Mtl.2 Ul 2 
Sv - -4-(2coth Ul - 1) + T(log(26.) - 2") + AUl + Ao + Botl. + Cotl. + 

~ k7r k7r 
+ L.)Ak cosh V-(h 1 - tl.) + Bk cosh V-(h 2 - tl.) 

k=l 

k7r 
+ Ck cos H (h2 - tl.)], (3.6) 

and for n ;::: 1: 

e-nUl T 
o = bn + . h L {M tl.2 coth Ul + - + 2tl.Bo + tl.2 B2 nCO + 

SIn n n ' 
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00 k1r hI k1r h2 00 ( k~~ )21 
+ ~[(AkCOShV-+BkCoshV-)~ (21)! B2/,n-

k1r h k7r h 00 (k1r~ )21+1 

- (Aksinh V.!. + Bk sinh T) ~ (2~ + I)! B2/+1,n + 

k7r h2 00 1 ( k'lI~ )21 
+ Ck(cos If ~(-1) (21)! B2/,n 

k1rh 00 (k1r~ )2/+1 

+ sin H 2 ~(_1)1 (27+ I)! B2/+I ,n)]}' (3.7) 

To impose the zero flux boundary conditions we need to compute the derivatives 

of (3.3) respect to X and Y. To do that we use the fact that if S(Z) = Re{G(Z)} 

then 8S(Z)j8X = Re{dG(Z)jdZ} and 8S(Z)j8Y = Re{idG(Z)jdZ}. Thus we 

have: 

8S(Z) 
8X 

and 

8S(Z) 
8Y 
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By evaluating (3.8) at Z = h2 + iV, multiplying by cos(mrY/V) and integrating 

from - V to V we obtain for n = 0: 

M~ T V o - 2V(-2- + Bo + 2Coh2) + 2("2 - -X) arctan h2 _ ~ + 
T V co 

+ 2("2 + -X) arctan h2 + ~ - ~ L k[(bke-ku~ - ake- ku1 )ItJ:l[h2'~' k, 0] + 
k=1 

+ (bkeku2-akekul)ItJ:l[h2,-~,k,O]], (3.10) 

and for n ~ 1 

co 

~ L k[(bke-ku2 - ake- ku1 )ItJ:l [h2'~' k, n] + 
k=I 

+ (bkeku2 - akeku1 )ItJ:l [h2' -~, k, n)). 

Then doing the same for Z = hI + iY we have for n = 0, 

o 

and for n ~ 1, 

00 

~ L k[(bke-ku2 - ake- ku1 )It/2[hb~' k, n] + 
k=I 

+ (bkeku2 - akeku1 )It/2 [hI! -~, k, n)). 

(3.11) 

(3.13) 

Finally, by evaluating (3.9) at Z = X + iV, multiplying by cos(mr(X - h2 )/ H) and 

integrating from h2 to hI we have for n = 0: 

M T HV 
o = HV("2 - 2Co) + ("2 - -X) arctan V2 + (hI - ~)(h2 _ ~) + 
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T HV 
+ (- + .,\) arctan V2 (h ~)( 1, ~) 

2 + 1 + h~ + 
00 

~ L k[(bke-ku2 - ake- ku1 )h2 [~, k, 0] + 
k=l 

+ (bkeku2 - akeku1 )h2 [-~, k, 0]], (3.14) 

and for n > 1, 

n1r. n1rV T T o - (2S111hH)Cn+V(2-"\)hl[~,n]+V(2+"\)Ihl[-~,n]-
00 

~ L k[(bke-ku2 - ake- ku1 )h2[~' k, n] + 
k=l 

+ (bkeku2 - akeku1 )h2[-~' k, n]], (3.15) 

where 

hI [a, n] 
lhl 1 n1r(X - h2) 

h2 (X - a)2 + V2 cos H dX, (3.16) 

Ih2 [a, k, n] lhl R {i(Z + a)k-l} n1r(X - h2) dX 
h2 e (Z _ a) k+ 1 cos H ' (3.17) 

IVI [h, a, n] -
jV h+a n1rY 
-v (h + a)2 + y2 cos -VdY, (3.18) 

IV2 [h,a,k,n] -
jV (Z + a)k-l n1l"Y 
-v Re{ (Z _ a)k+1} cos -VdY. (3.19) 

Note that if we want to apply an iterative procedure to solve the system of linear 

equations we can choose one equation for each coefficient. For instance we can solve 

equation (3.10) for T, (3.12) for "\, (3.5) for an, n ~ 1, (3.7) for bn, n ~ 1, (3.4) for 

AD, (3.11) for An, n ~ 1, (3.6) for Bo, (3.13) for Bn, n ~ 1, (3.14) for Co and (3.15) 

for Cn , n ~ 1. Also, we shall see that the equation for T can be replaced by 

T = _MVH, 
11" 

(3.20) 

as a consequence of conservation of mass. That is, the fluxes per unit length into 

tissue from the arteriole and venule are: 

(3.21 ) 
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and 

QtI = -1r[T - 2A + MR~], (3.22) 

and their sum should equal the product of the consumption rate with the tissue 

area, since the outer tissue flux is zero. Thus Qa + QtI = -1r[2T + Af(R~ + R~)] = 
M[2V H - 1r(R~ + R~)] and the equation (3.20) is deduced. 

3.2.1 Numerical results 

To give a numerical example, we present the solution, after truncating the infinite 

series in (3.3) to three terms, for the geometry Ra/ Rv = 2/3, Ra + Rv = 3/5, and 

the square of side 3.0 defined by hI = 1.596, h2 = -1.404 and V = 1.5. These 

results are given in Table 3.1 where T = 0 and A = -0.4076290147. The surface 

and contour levels for the solution are given in the Figure 3.3. 

n an bn An Bn en 
0 0.428634593 -0.067965995 0.001632164 
1 -0.005596969 0.007410997 0.000147595 -0.996876E-4 0.038563502 
2 -0.000166963 0.000289418 0.141461E-7 -0.218591E-8 0.447140E-3 
3 -0.507349E-5 0.112442E-4 0.51224E-11 -0.33199E-11 -0. 115476E-3 

Table 3.1: Fourier coefficients for Krogh boundary conditions with Sa = 1, Stl = 0 
and M = 0 
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Figure 3.3: Solution for Krogh boundary conditions with Sa - 1, SIJ - 0 and 
M=O 



CHAPTER 4 

COUNTERCURRENT 
EXCHANGE 

In this chapter, we combine the equations for convective transport in the vessels 

with the relationships obtained in Chapters 2 and 3 for diffusive transport in tissue. 

The resulting equations are solved to obtain the axial variation of concentration (of 

mass or thermal energy) along the vessels. Two types of problems are considered: 

Dirichlet, in which concentration is prescribed on the tissue boundary; and Krogh­

type, in which the zero-flux condition is imposed at the outer boundary of the tissue. 

In Chapters 2 and 3, the relationships between concentrations and fluxes at the tissue 

boundaries were given in terms of diffusion conductances, which were calculated 

for several different geometrical conditions in both the Dirichlet and Krogh-type 

problems. 

In the Dirichlet case, the solutions for axial variation lead to the definition of 

an equilibration length, which can be compared with that given in Chapter 1 for 

the case of a single vessel. In the Krogh-type case, however, no such equilibration 

length can be defined. 

The analyses used in Chapters 2 and 3 consider two-dimensional diffusion, and 

axial diffusion in the tissue is neglected. However, we show that, in the Krogh-type 

91 
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case, our two-dimensional solutions lead directly to exact solutions of the full three-

dimensional diffusion equation, including axial diffusion. In these solutions, the 

total axial flux is composed of a convective flux in the vessels and a diffusive flux in 

tissue. The convective flux may be regarded as an enhancement of the diffusive flux 

that would occur in the absence of vessels, and the total axial flux may be described 

in terms of an effective diffusivity that would result in the same total axial flux. 

4.1 Governing equations 

We reproduce here equations (1.41) and (1.42) derived previously in Chapter 1 in 

the interval 0 < ( :5 Lb as: 

QK dGa 
o d( - -qa, (4.1) 

QJ{, dGu 
o d( - qu, (4.2) 

where Ga and Gu are generic variables (thermal energy density or gas concentration) 

specified in tissue adjacent to the arteriole and venule, qa and qu are effluxes per unit 

length from the arteriole and venule respectively and Q is the volumetric flow rate. 

The parameter /(0, which is assumed constant in this analysis, is defined in section 

1.4.3 as the parameter relating blood concentrations to tissue concentrations at the 

tissue-vessel boundary. Throughout this chapter G variables refer to tissue values. 

We specify the concentration or thermal energy density in the arteriole and venule 

where they enter the domain. Therefore, the boundary conditions are of the form 

Go, (4.3) 

(4.4) 
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In the Dirichlet case, the expression for the fluxes qa and qv is obtained from Chapter 

2 in terms of the diffusion conductances, written in dimensional form as: 

[ 
qa ] = D [Faa Fav Fat FaM] [ g: ], 
qv Fva Fvv Fvt FvM Gt 

Ml;/D 

where D corresponds to thermal diffusivity D'h in the case of heat and to Dg in the 

case of gases, M is the consumption rate i.e., Mh for heat and Mg for gases, and Ie 

is the distance between the centers of the vessels. Thus the system (4.1 )-( 4.2) can 

be written as: 

(4.5) 

where e = QJ(o/D, 

A = [-Faa -Fav 1 ' 
Fva Fvv 

and 

B = [ -Fat] Gt + [ -FaM ] Ml~/D. 
Fvt FvM 

These equations may be written in an alternative form, by noting, from section 2.3.2 

that Faa + Fav + Fat = Fva + Fvv + Fvt = 0, so 

and 

The coefficients Fav' Fat and Fvt are negative, and FaM and FvM are positive. We 

see that the rate of change of convective mass or heat flux in each vessel is the sum 

of contributions from exchange between vessels (Fav), exchange with surrounding 

tissue (Fat, Fvt ) and consumption (FaM' FVM). 

In the Krogh-type case, the governing equations are the same except that the 

terms involving Fat and Fvt are absent. 
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4.2 Krogh-type solutions 

Consider the homogeneous part of the system (4.5) and recall from section 2.3.2 that 

for the Krogh case, Faa = Fvv = - Fav. Hence the matrix A has a zero eigenvalue of 

double multiplicity and therefore the homogeneous solution for (4.5) is of the form: 

where Co, C1 are arbitrary constants to be determined according to the boundary 

conditions (4.3) and (4.4). Particular solutions to (4.5) are quadratic in (, and the 

general solution for (4.5) is: 

Recall from section 2.3.2 that l~(FaM + FvM) equals the product of tissue area and 

unit consumption rate, that is, At. The general solution then reduces to: 

Note that if the consumption/deposition rate M = 0, the solution (4.8) varies 

linearly in (. This shows an analogy to the solutions (1.43-1.44) in Chapter 1. Also, 

if M i= 0, the solution (4.8) varies quadratically in ( with equal coefficients in (2 

for both vessels. This is illustrated in Figure 4.1. 

4.3 Dirichlet-type solutions 

Refer to equation (4.5) and let T be the matrix whose columns are the eigenvectors 

of 8-1 A, that is: 

T=[ 
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Figure 4.1: Vessel solutions for equal vessel radii (ra = rv = 45 pm), one diameter 
between vessels (h = 90 pm), outer radius rt = 450 pm, Fav = 2.2836, FaM = 
9.6211, and heat deposition rate M = -1.535 X 1Q6ergsj(cm3 - sec) 

where the corresponding eigenvalues AI, A2 are: 

Fvv - Faa + J(Faa + Fvv)2 - 4F;v 
28 

Fvv - Faa - J(Faa + Fvv)2 - 4F;v 
28 

Then the system (4.5) has the homogeneous solution: 

where Co, CI are arbitrary constants. 

Note that Faa> -Fav and Fvv > -Fav' which implies that F;v - FaaFvv < O. 

But AIA2 = (F;v - FaaFvv)j82, so AIA2 < 0, and from the expressions for Al and A2 

we get Al - A2 > 0 implying that A2 < 0 < AI. Thus we have one positive and one 

negative eigenvalue. 

From the knowledge of the homogeneous solution we can identify a particular 
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solution: 

Note that FavFvM-FvvFaM < 0 and FavFaM-FaaFvM < 0, so the terms multiplying 

M are negative. Thus, in the case of consumption, M > 0, the particular solution is 

smaller than for deposition, M < 0, as expected. The system (4.5) has the general 

solution: 

(4.9) 

We provide a numerical example for heat with circular outer tissue boundary 

with the following data: pc = 41.73 X 106 ergs/(cm3 °K), equal vessel radii ra = 
rv = 45 J.Lm, outer radius rt = 450 J.Lm, interior vessel separation h = 90 J.Lm (one 

vessel diameter separation), length of the vessels Lb = 2700 J.Lm, and volumetric flow 

rate Q = 0.000514 cm3 /sec. The diffusion conductances are Faa = Fvv = 3.4974, 

Fav = -1.5066, Fat = Fvt = -1.9908, and FaM = FvM = 2.7293. The outer 

tissue boundary is Gt = 37 pcergs/cm3 (corresponding to 37°G), and the initial 

conditions are Ga(O) = 37.25 pc ergs/cm3 and Gv(Lb) = 37.05 pcergs/cm3
• These 

energy densities are stated relative to the energy density at OOG. The solution for 

zero deposition rate is presented in Figure 4.2, where the vertical scale is in °G. 

The solution for a nonzero deposition rate of M = -2.086 X 107 ergs/(cm3 - sec) 

is presented in Figure 4.3. 

4.3.1 Equilibration length for two vessels 

In Chapter 1, the concept of the equilibration length was introduced, for a single 

vessel in a tissue cylinder with Dirichlet boundary conditions. Here, we consider 

the extension of this concept for two vessels. We note first that in the Krogh-type 

case, the axial variation is quadratic, and not exponential (see (4.8)), and so an 
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Figure 4.2: Vessel solutions for equal vessel radii (Ta = Tv = 45 pm), one diameter 
between vessels (It = 90 pm), and outer radius Tt = 450 pm 

equilibration length, analogous to that in the Krogh-type case for a single vessel, 

cannot be defined. In contrast, the Dirichlet-type solution involves exponentials, 

like the single vessel solution (1.19), allowing us to define equilibration lengths. For 

comparison with Chapter 1 results, we consider circular outer tissue boundaries. 

By analogy with the expressions in Chapter 1, we can identify from (4.9) two 

equilibration lengths as El = 1/).1 and E2 = -1/).2. In general, these two lengths 

are different. E1 gives the length over which conditions imposed at ( = Lb decay 

to uniform values and E2 gives the corresponding length for conditions imposed at 

( = o. If Faa = Fvv (equal diameter vessels) then E1 and E2 are both given by: 

E = QKo , 
DJF2 - F2 aa av 

(4.10) 

where the values for Ko were estimated in section 1.4.3. Note that the ratios of 

equilibration lengths for gases to that of heat are identical to those for a single 

vessel, as described in Table 1.3. 
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Figure 4.3: Vessel solutions for equal vessel radii (ra = rv = 45 pm), one diameter 
between vessels (h = 90 pm), outer radius rt = 450 pm, and heat deposition rate 
M = -2.086 X 107 ergs/(em3 - sec) 

Intuitively, we might expect that the equilibration length for two vessels, which 

we will refer as EL2 , should be smaller than that of one vessel, referred to as ELl! 

whenever the radii of all vessels are kept the same. To see this, first consider the 

equilibration length for one vessel given in Chapter 1 as: 

EL = QI<01 (rt) 
1 27r D og a . 

Note that from equation (1.16) the diffusion conductance for one vessel is: 

F* _ _ 27r 
ta - log(rt/a)' 

and thus ELI can be written as: 

EL = _ QI<o 
1 DF*' ta 

where a is the radius for one vessel. Now consider the ratio: 

(4.11) 



99 

This ratio is plotted in Figure 4.4 for one diameter vessel separation. The ratio 

1 

0.8 

0.6 
EL2 r 
ELI 

0.4 

0.2 

0 
0 1 2 3 4 5 

Figure 4.4: Ratio EL21 ELI whenever Ra + Rv = 1/2 and Ral Rv = 1 

ELd ELI is less than 1, showing that equilibration is slightly more rapid when a 

single vessel is replaced by a pair of countercurrent vessels with the same diameter. 

4.4 Exact solutions with axial diffusion 

In this section, we show that solutions obtained in tissue considering only two-

dimensional diffusion can provide particular solutions to the three-dimensional Pois-

son equation 

(4.12) 

We recall equation (2.48), which can be written in dimensional form for the Krogh-

type case as 
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where sa, S" and SM are the solutions to the two-dimensional diffusion equation in 

tissue, as defined in Chapter 2. 

If the consumption/deposition rate M = 0, the solution (4.8) varies linearly in 

(, and (4.13) shows that G(x,y,() also varies linearly in (. Therefore G(x,y,() is 

an exact solution to the full diffusion equation (4.12). 

If M =f. 0 the solution (4.8) varies quadratically in (. Note that the coefficients 

of (2 in Ga(() and G,,(() are the same (-MAt Fa,,/(2D02
)). For brevity, let us call 

this coefficient C. Then, equation (4.13) has the form: 

But sa+s" = 1 as shown in section 2.3.2. Applying the three-dimensional Laplacian 

to this last expression we therefore obtain: 

82 82 82 At I Fa" I 
D(8x2 + 8y2 + 8(2)G(X,y,() = 2DC + M = M[l + 0 2 ], 

where the right hand side is a constant. The solution (4.13) satisfies the three-

dimensional diffusion equation with an increased rate of consumption or deposition 

M. A solution to the original three-dimensional diffusion equation (4.12) is given 

by the solution (4.13) to the problem with two-dimensional diffusion, if M in (4.13), 

is replaced by: 
M 

which can be written as: 
M 

( 4.14) 

4.5 Convective enhancement of axial transport 

In the previous section, we established the existence of solutions including axial 

diffusion in the Krogh-type case. In such solutions, the total axial flux J(() of heat 
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or gas may be defined as the sum of net convection in the pair of vessels Je (() and 

diffusion in the tissue JD((), i.e., J(O = Je (() + JD(O, where 

and 

JD(O = -D it 8G(~,/, () dxdy. 

By applying the divergence theorem in the x - y plane to equation (4.12), and using 

(4.1) and (4.2), it is easy to establish that 

dJ(() = -MA 
d( t, (4.15) 

which is an expression of conservation of heat or mass. 

First we consider the case in which the consumption/deposition rate M = o. 
Then J is a constant, and from (4.8) 

where JD = -C1AtD is the diffusive transport in the absence of countercurrent flow, 

for the same overall gradient C1 • We see that countercurrent flow enhances axial 

transport by an amount proportional to the square of the flow rate and inversely 

proportional to the diffusion conductance Fav. One consequence is that increasing 

the distance between the vessels (for fixed At) would result in increased convective 

transport. We may define an effective diffusiviiy 

( 4.16) 

so that J = -C1AtD', i.e., the total flux is the same as would occur solely with 

diffusion and with the diffusivity replaced by the effective diffusivity. 

Next we consider the case M =f. 0, in which J is no longer constant, but from 

(4.15), J(() = J(O) - MAt(. The solution (including axial diffusion) is given by 
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(4.8) with M replaced by Mj(l + D2 At I Fav I j(QKo)2). In this case, the above 

definition of effective diffusivity cannot be used. Instead, we consider what value 

of diffusivity, in the absence of convection, would give the same coefficient for the 

quadratic term in the expression for G, i.e., the same curvature of the concentration 

profile along the tissue (see Figure 4.1). Thus we have 

I.e. 

as previously defined. 

The consistency of these two definitions shows that the effectively diffusivity is 

useful both to describe the increase in flux under a given linear gradient (M = 0), 

and the distribution of concentration that would occur for a given rate of deposition 

or consumption (M =f:. 0). 

4.6 Numerical estimates of countercurrent ex­
change 

In this section, we examine the effects of countercurrent exchange on transport, 

taking into account the physical dimensions of vessels in the circulatory system. 

Clearly, countercurrent exchange can have several different effects, depending on the 

situations being considered. Here, we consider two particular aspects: the reduction 

of convective transport by countercurrent exchange; and the total axial transport 

resulting from diffusion and convection in countercurrent systems. For simplicity, we 

neglect consumption or deposition in the tissue, and consider Krogh-type boundary 

conditions. 
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In the absence of countercurrent exchange, the net axial convective transport 

in a countercurrent system is the difference in concentration (heat energy density) 

multiplied by the flow rate: 

since the concentrations in the two vessels do not vary from their initial values. 

With countercurrent exchange, the convective flux is 

Taking the solution (4.8) with M = 0 and applying the boundary conditions (4.3) 

and (4.4), we obtain 

(4.17) 

where Lc = QKo/(D I Fat} I). We see that countercurrent exchange reduces the 

net convective transport. This reduction depends on the ratio of the length of the 

tissue region to the length Lc which is analogous to the entrance lengths defined 

in Chapter 1 and earlier in this chapter for Dirichlet-type problems. Increasing the 

flow rate or the distance between the vessels (resulting in a reduction of I Fat) I) has 

the effect of increasing Lc , and J c / Jo approaches one if Lc becomes very large. 

Using the empirical scaling relations Q = Al r3 and Lb = A2 r, noted in 1.5.2, 

we can estimate the vessel radius at which Lb = Lc , so that Jc / Jo = 1/2. For this 

estimation, we assume that the vessels have equal diameters and are one diameter 

apart. Thus, the vessel radius is 

and the radius estimates are shown in Table 4.1 



104 

Heat O2 He Ar Xe 
ru (pm) 192.6 2.1 34.8 15.6 8.2 

Table 4.1: Radius at which JelJo = 1/2, i.e., convective transport falls to half of 
its value in the absence of countercurrent exchange 

These values are very similar to the equilibration radii for a single vessel with 

Dirichlet boundary conditions, given in Table 1.6. For vessels much larger than this 

radius, convective transport is little changed by diffusive countercurrent exchange, 

while for vessels smaller than this radius, convective transport is greatly reduced. 

In the case of oxygen, the computed radius is smaller than the range of values 

over which vessel pairing is observed to occur, so these results suggest that convec­

tive oxygen transport is little influenced by countercurrent exchange. In contrast, 

for radii less than 193 pm, corresponding to most microvessels, countercurrent ex-

change of heat reduces the init.ial convective transport Jo, by more than 50 %. Inert 

gases represent intermediate cases, in which countercurrent exchange reduces the 

net convective transport in the precapillary vessels of the microcirculation. 

It is also of interest to examine the effect of countercurrent diffusion on the total 

axial transport resulting from convection and axial diffusion. We use the effective 

diffusivity defined in equation (4.16), and determine the vessel radius at which 

D' = 2D, where D is the actual diffusivity, again using the scaling relationships 

given in 1.5.2. The results are obtained from 

where A3 is the ratio of the radius of the tissue cylinder to that of the vessels, and 

At = 7r(A3r)2. Estimates of r, are shown in Table 4.2 for the same conditions as 

above, and also assuming A3 = 10, so that the vessels represent 2 % of the total 
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cross sectional area. In each case, convective transport is dominant for vessel radii 

Heat O2 He Ar Xe 
rl (11m ) 85.1 0.9 15.4 7.0 3.6 

Table 4.2: Radius at which D' / D = 2, i.e., convective transport is equal to axial 
diffusive transport. 

larger than those in Table 4.2, while axial diffusion is dominant for smaller radii. In 

the case of oxygen, convection remains as the dominant process of axial transport 

through the whole circulation. For inert gases, axial diffusion takes over at the 

diameter of small arterioles, while for heat, axial diffusion becomes important even 

for large microvessels. 

Table 4.2 provides a lower limit rl of radii for which convective flux dominates 

axial diffusive flux, and Table 4.1 provides an upper limit of radii ru for which 

convective flux is substantially reduced by countercurrent exchange. The radii in 

Table 4.1 are similar in magnitude to those appearing in Table 4.2. This shows 

that, as vessel radius decreases (for heat and inert gases), axial diffusion takes over 

at roughly the same radius at which convective transport becomes ineffective. 

It will be noted that the radius r u (Table 4.1) is in each case approximately twice 

the radius rl (Table 4.2). Their ratio is given by 

ru = (A2)1/2 (IFavl)1/4 
rl A3 1C' 

The parameters appearing on the right hand side depend only on the geometry 

of the system. The quantity A2/ A3 is the ratio of vessel length to tissue cylinder 

radius, assumed to be approximately 6 in the above estimates. I Fav I depends on the 

spacing between the two vessels, decreasing with increasing spacing. If the spacing 

between vessel pairs is increased, or if the overall vascular density is decreased (i.e., 
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A3 is increased), then the ratio rufr, is correspondingly decreased. 

The ratio TufT, may be interpreted in terms of the efficiency by which a branching 

network can transport heat or gas to its extremities. Large values of rufT' imply 

that convective transport is reduced before diffusive transport becomes effective, 

resulting in inefficient transport. Conversely, values of rufr, of unity or less imply 

that diffusive transport becomes effective at or before the stage that convective 

transport is strongly reduced by countercurrent exchange. The fact that typical 

values of geometric parameters lead to values of TufT, of order one may therefore 

have broad significance for the transport functions of the circulatory system. 

4.7 Conclusions 

In this chapter, we have developed solutions for simultaneous convection and dif­

fusion in tissue containing paired countercurrent blood vessels. These solutions are 

based on the diffusion conductances calculated in Chapters 2 and 3, which were ob­

tained considering only diffusion in planes perpendicular to the vessels. Two types of 

boundary conditions on the outer tissue boundary were considered, Dirichlet-type, 

and Krogh-type (i.e., zero flux). 

The Dirichlet-type problem models the case in which a particular vessel pair 

has different concentrations of heat or gas than the surrounding tissue. Then, an 

equilibration length can be defined, and it is shown that equilibrium is achieved 

slightly more rapidly when a single vessel is replaced by two vessels with the same 

diameter as the single vessel. This result, while expected intuitively, remains to be 

proved analytically. 

The Krogh-type problem models the case in which an array of identical vessel 

pairs run in parallel, with the same variation of concentration in each pair. In 
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this case, the solutions obtained neglecting axial diffusion also represent particular 

solutions to the same problem including axial diffusion, with the exception that 

the rate of consumption or deposition, M, must be adjusted. These results can 

be interpreted in terms of an effective diffusivity. In the case of a linear gradient, 

this is the diffusivity that would give the same flux in the absence of convection. 

When consumption or deposition is present, the effective diffusivity is defined as 

the diffusivity that would give the same coefficient for (2 in the expression for G, in 

the absence of convection. Both definitions lead to the same expression, illustrating 

the usefulness of this concept, which forms the basis of the new bioheat equation of 

Weinbaum et al. [16]. The limitations of using an effective diffusivity are pointed 

out in [2]. 

Finally, we have interpreted these results in terms of the complementary roles 

of convection and diffusion in providing mass and heat transport in the direction 

parallel to vessels. Considering a sequence of vessels from large to small, we have 

shown that at a certain range of diameters, countercurrent exchange starts to limit 

the ability of paired vessels to provide convective transport, but that axial diffusion 

becomes significant at about the same diameter range. This finding is interpreted in 

terms of the efficiency by which a branching network can transport heat and mass 

to its extremities. 
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In this Appendix, we develop the solution for two vessels in a rectangular tissue 

region, as is illustrated in Figure 3.1 with Dirichlet conditions on the outer boundary. 

The procedure is similar to that for the Krogh-type case (Chapter 3). 

Steps a,b 

We again divide B as: 

The solution for the domain given by the class !h is: 

S;(W) - Re{T log JZ(w)2 - 6.2 + 

00 

+ I)ansinhn(uI-w)+bnsinhn(w-u2)]}, (A.l) 
n=I 

where the conformal transformation WI = W corresponds to the function (1.6.1). 

For the class !12 the method of separation of variables is applied on the original 

domain given by the class !121 meaning that the conformal transformation is the 
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identity. Thus the solution for this problem written in complex form is: 

00 

S;(Z) = Re{2)Ak sinh mk(h1 - Z) + Bk sinh mk(Z - h2 )] + 
k=O 

+ f)Ck sin ~ (Z - h2 )]}, 

k=1 

(A.2) 

where mk = (2k + 1)7r /(2V). 

Steps c,d 

Adding solutions (A.l) and (A.2) we have a candidate for the general solution. We 

can absorb the constant aOul - bOU2 into the solution (A.2) and rewrite the term 

(bo - ao)w as ).w. 

However, in this case, the basis functions in the Z plane, loge Z2 _ ~ 2) 1/2, 

10g((Z +~)/(Z - ~)), sinh k(UI - w), sinh k(W-U2) and M(X2 +y2)/4 are inconve-

nient. They do not have continuous horizontal periodic extensions on the horizontal 

edges of the rectangle, and so their Fourier coefficients decay as lIn. To accelerate 

convergence, we can subtract from each one a harmonic polynomial, without violat-

ing the Laplace equation, so that it vanishes at the corners of the rectangle. This 

leads to a solution formed entirely with basis functions vanishing at the corners of 

the rectangle (the basis functions in S;(Z) already vanish there), that have contin-

uous periodic extensions along the edges of the rectangle in the Z plane. Therefore, 

their Fourier coefficients will decay at least as 1/n2• Since the prescribed value St 

should be satisfied in the corners and all the basis functions vanish there, a constant 

should be added to the solution, and it is precisely St. 

To make clear the modifications in the solution we write the term an sinh n( Ul -

w) + bnsinhn(w - U2) as a function of Z: 
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For convenience, we define the following functions: 

fo(Z) - ~ IZI2
, (A.3) 

fl(Z) - Re{log(Z2 _ D..2)1/2,} (AA) 

f2(Z) 
Z+D.. 

(A.5) - Re{log Z - D..}' 

(A.6) 

and 

. (Z+t.)' fk(Z) = Re{ Z _ D.. }. (A.7) 

We want to make each of the functions (A.3-A.7) vanish at the corners of the rect­

angle, by subtracting a polynomial of the form a + (3X +,Y + b'XY. Because these 

functions are symmetric with respect to the X axis, the polynomial is of the form 

a + (3X. Let 9i(X) = ai + (3iX be the function subtracted from fi for i = 0,1,2. 

The coefficients ai, (3i for i = 0,1,2 are: 

ai -
h1 fi(h 2 + iV) - h2fi(hl + iV) 

H 
fi(h l + iV) - fi(h 2 + iV) 

H 

Let 9k(X) = O:k + /JkX be the function subtracted from ik, where 

hlA(h2 + iV) - h2ik(hl + iV) 
H 

ik(hl + iV) - ik(h2 + iV) 
H 

Thus finally the general solution becomes: 

S(Z) - St + Re{(fo(Z) - 9o(X)) + 

+ i(fI(Z) - 91 (X)) + >'(h(Z) - 92(X)) + 
1 00 

+ 2 2:[(Jk(Z) - 9k(X))(bke-ku2 - ake- ku1 ) -
k=l 
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00 

+ Re(l)Ak sinh mk(h l - Z) + Bk sinh mk(Z - h2)) + 
k=o 

+ f[Ck sin '; (Z - h2)]). 
k=1 

(A.8) 

Step e 

By evaluating at w = U2 + iv, multiplying by cos nv and integrating over v in the 

interval [-71",71") for n = 0, ... ,00, we get the first set of equations. For n = 0: 

Mf:l.2 U 
Sa - --4-(2coth U2 + 1) - ao + (30f:l. + T(log(2f:l.) + 22 - al + (31f:l.) + 

00 

+ ,\( U2 - a2 + (32f:l.) + L:[Ak sinh mk(h1 + f:l.) - Bk sinh mk( h2 + f:l.)) -
k=O 

f[Ck sin ~ (h2 + f:l.)) + 
k=1 

1 00 

+ 2" L:[(h - Pkf:l.)(ake- ku1 - bke-ku2 ) 
k=1 

(&-k - p_kf:l.)(akekul - bkeku2 )), 

and for n ;::: 1, 

o enU2 T 
an - . h L {M f:l. 2 coth U2 - 2f:l.((30 + T,81 + '\(32) - - -

run n n 
00 00 (mkf:l. )2/+1 

£;[(Ak cosh mkhl - Bk cosh m kh2) f,; (21 + I)! B2/+I,n + 

+ (A. sinh m.", - B. sinh m.h,) t, (~;~t B21•nl + 

00 k7l" h2 00 1 ( k;t· )2'+1 
+ ~ Ck[COS -n f,;( -1) (21 + I)! B 2/+I,n + 

k h 00 (k1r~ )21 
+ sin ;/2 f,;(-1)1 (;Z)! B2/,n)) + 

00 

+ f:l. L[Pk(ake- kU1 - bke-ku2 ) - p_k(akeku1 - bkekU2 )]}. 
k=1 

(A.9) 

(A.lO) 
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Similarly by evaluating at w = Ut + iv, multiplying by cos nv and integrating over 

v from -7r to 7r we get for n = 0: 

MIJ.2 U 
Sv - -4-(2 coth Ul - 1) - ao - (301:.i + T(1og(2IJ.) - 21 - al - (31IJ.) + 

00 

+ '\(Ut - a2 - (32IJ.) + I)Aksinhmk(hl - IJ.) + Bksinhmk(IJ. - h2)]-
k=O 

00 k7r 
I)Ck sin H (h2 - IJ.)] + 
k=I 

+ ~ f)(&k + PkIJ.)(ake-kul - bke-ku2 ) 
k=1 

(&-k + p_kIJ.)(akeku1 - bkeku2 )], 

and for n ~ 1, 

e-nu1 T 
o - bn + . h L {M IJ.2 coth Ul - 2IJ.((30 + T(31 + '\(32) + - -

ffin n n 
00 00 (mkIJ.)21+1 £;[( Ak cosh mkhl - Bk cosh mkh2) ~ (21 + 1 )! B 21+I ,n-

+ (A. sinh mkh, - B. sinh m.h,) t. (~;~t B2I,n] + 

00 k7rh2 00 1 (k"l.JA )21+1 
+ £; Ck[COS ---n- ~(-1) (21 + I)! B 21+I ,n -

k7r h 00 ( brA )21 
sin II 2 L( _1)1 (~1)! B 21,n] + 

1=0 
00 

+ IJ. L[Pk(ake- ku1 - bke-ku2 ) - p_k(akeku1 - bkeku2 )]}. 
k=1 

The remaining equations for the edges of the rectangle are: 

at Z = hI + iV 

o - Vsinh(mnH)Bn + Ivo[hI,mnJ + Tlv3 [ht,mn] + ,\Iv4 [hI, mn] + 
1 00 

+ 2" L[Iv5 [hI, k, mn](bke-ku2 - ake- ku1 ) -
k=1 

IV5[ht, -k,mn](bkeku2 - ak eku1 )], 

(A.11) 

(A.12) 

(A.13) 



at Z = hI + iV 

o - V sinh(mnH)An + Ivo[h2, m n ] + T IV3 [h2' m n ] + ,.\Iv4 [h2' m n ] + 
1 00 

+ '2 L[Iv5 [h2' k, mn](bke-ku2 - ake- kU1 ) -
k=I 

IV5[h2, -k, mn](bkeku2 - akeku1 )], 

and at Z = X + iY 

H mrV o - "2cosh(H)Cn + horn] + Th3[n] + "\h4[n] + 
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(A.14) 

+ ~ i=[h5[k, n](bke-ku2 - ake- ku1 ) - h5[-k, n](bkeku2 - akeku1 )], (A.15) 
k=I 

where 

Ivo[h,mn] l:[Jo(h + iY) - 9o(h)] cos mnY dY, 

IV3 [h, m n ] - 1: [fI(h + iY) - 9I(h)] cos mnY dY, 

IV4 [h, m n ] - l:[h(h + iY) - 92(h)] cos mnY dY, 

Iv5 [h,k,mn] 1: [ik(h + iY) - 9k(h)] cos mnY dY, 

horn] - lhl [fo(X + iV) - 9o(X)] sin n7r(X
H

- h2) dX, 
h2 

h3[n] - lhl [!t(X + iV) _ 9I(X)] sin n7r(X;; h2) dX, 
h2 

h 4[n] lhl [h(X + iV) - 92(X)] sin n7r(X
H

- h2) dX, 
h2 

and 

h5[k, n] = lhl [ik(X + iV) - 9k(X)] sin n7r(X
H

- h2) dX. (A.16) 
h2 

We supply as an example the solution for the particular geometry Ra/ Rv = 2/3, 

Ra + Rv = 3/5, and the square of side 3.0 defined by hI = 1.596, h2 = -1.404 and 

V = 1.5. The Fourier coefficients are ,.\ = -0.515616214, T = 0.07434716036 and 
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Figure A.I: Solution for Dirichlet problem with Sa = 1, Sv = 0, St = 1/2 and M = 0. 

the remaining are given in Table A.1. The surface and contour levels are given in 

Figure A.I. 

n an bn An Bn en 
0 -0.01121258166 0.01396434856 
1 0.0042304564 -0.017644374 -2.67988556E-6 2.15988192E-6 0.01327855449 
2 0.0002125836 -6.0562029E-4 -1.05977749E-I0 6.15283368E-12 -3.39854692E-3 
3 7.99602780E-6 -2.4603082E-5 -2.09731200E-13 1.56489916E-13 -3.14022976E-5 
4 2.92524390E-7 -1.0816512E-6 1.21523368E-16 -1.06673951 E-16 -1.01001653E-6 
5 1.08223048E-8 -5.0559894E-8 -1.37638344E-19 1.13603635E-19 -2.22775096E-8 

Table A.I: Fourier coefficients for Dirichlet boundary conditions with Sa = 1, Sv = 0, 
St = 1/2 and M = 0 
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