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ABSTRACT 

In this dissertation, adaptive wavelet and transform coding techniques are pre

sented for low bit-rate monochrome and color image coding. The proposed encoders 

are based on trellis coded quantization. Trellis coded quantization (TCQ) is an ef

fective scheme for quantizing memory less sources with low to moderate complexity. 

The TCQ approach to data compression has led to some of the most effective source 

codes found to date for memoryless sources. 

For the transform coder, TCQ is used to encode transform coefficients resulting 

from applying a 16 x 16 discrete cosine transform (DCT) to 8-bit gray level and 

24-bit color images. For the color images, the red, green, and the blue planes were 

transformed into NTSC transmission primaries (Y, I, and Q) before the DCT is 

applied. Both fixed-rate and entropy-constrained systems are considered. 

The discrete wavelet transform has recently emerged as a powerful technique for 

decomposing images into various multi-resolution approximations. We investigate 

the use of entropy-constrained trellis coded quantization for encoding the wavelet 

coefficients of both monochrome and color images. The lowest resolution sub-image 

is encoded using a 4 x 4 2-D DCT encoder. An integer programming algorithm is 

employed to allocate the available bit-rate optimally among the subbands. 
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The objective performan-ce results of our wavelet and transform coders are com

parable to or surpass all previous results reported in the literature. rhe subjec

tive quality of the encoded images is also excellent. In particular, the encoded 

monochrome images at 0.5 bits/pixel (a compression ratio of 16:1) obtained using 

our adaptive wavelet coder is almost indistinguishable from the original even when 

viewed on a high-resolution monitor. 



CHAPTER 1 

INTRODUCTION 
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Recent advances in multimedia technology have magnified the demand for effi

cient image transmission and storage. A digital representation of an image requires 

a very large amount of data. The goal of image data compression (or image coding) 

is to minimize the number of information carrying units to represent an image. The 

mere process of sampling band-limited images where an infinite number of image 

points per unit sampling area is reduced to a single image sample (or a pixel) with

out any loss of information can be considered as a simple form of data compression. 

In digital image processing, each image pixel is also quantized to a fixed but suffi

cient number of levels such as 256 (8 bits/pixel (bpp)). To store a digital image of 

size 512 x 512 pixels with a resolution of 8 bpp requires a memory of 2 Mbits. The 

basic intention of image data compression is to reduce this memory so that images 

can be transmitted or stored more efficiently. 

The block diagram of a typical digital image communication system is shown 

in Figure 1.1. An image coder attempts to represent an image with as few bits 

as possible while preserving the fidelity required for that particular application. 

Output from an image coder is a bit sequence which represents the input image. The 

channel coder accepts this bit sequence and modulates it into a signal more suited 
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Figure 1.1: Block diagram of a digital image communication system. 
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for transmission over a analog channel. An analog channel typically introduces 

some noise and hence, the channel coder adds controlled redundancy for error 

correction. This modulated signal is converted into a bit stream by the channel 

decoder. The image decoder inputs this bit sequence and outputs an estimate of the 

original image. For storage applications, output from the image coder is converted 

to a format more suitable for storage in a recording medium. In this work, we 

are primarily concerned about designing image coders and decoders (a noiseless 

channel is assumed throughout this dissertation). 

The fidelity required for the reconstructed imagery varies from application to 

application. For example, for storing medical images, it may be necessary to pre-

serve all information in the original image. Image coders which do not destroy any 

information and which allow perfect reconstruction of the original image are called 

lossless image coders. On the other hand, for applications such as digital video, it 
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is not necessary for an image coder to be lossless. Some amount of distortion can 

be tolerated as long as it is acceptable for the human viewer. These image coders 

are commonly referred to as lossy image coders. Apparently, the more distortion 

one can tolerate, the better will be the data compression. The basic intention of 

a lossy image coder, given a distortion measure, is to minimize distortion for a 

given encoding rate, or equivalently, for a given distortion, minimize the required 

encoding rate. 

Image coders can also be classified in the following way. 

1. Spatial domain coders 

2. Frequency domain coders 

3. Feature-based coders. 

Spatial domain coders: 

1. Pulse code modulation (PCM). These coders encode image pixel inten

sities directly. An acceptable level of image quality can be obtained for 

most applications at an encoding rate of 4-5 bpp [1]. These coders, in 

general, do not exploit any redundancy between neighboring samples. 

2. Differential pulse code modulation (DPCM). It is well known that neigh

boring image pixels are highly correlated. DPCM image coders exploit 

this redundancy by making a prediction of the current pixel intensity us

ing the pixel intensities of previously encoded neighboring samples and 
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then quantizing the difference between the pixel intensity and its pre

diction. Consequently, only the new information (residual) is quantized 

and transmitted. DPCM coders can be made to adapt to the local varia

tions of the image by using adaptive predictors and quantizers. Adaptive 

DPCM coders are capable of achieving high quality encoding at around 

3.4-3.8 bpp [1]. 

Frequency domain coders: 

1. Subband coders. Sub band coders decompose an input image into a 

number of frequency components and encode each of these components 

separately. This decomposition removes the redundancy in the input 

and provides a set of uncorrelated components to encode. These coders 

produce high quality encoding at around 2 bpp. 

2. Transform coders. These coders transform an image (or a image block) 

using an energy preserving transformation to another domain such that 

maximum information is packed into a smaller number of samples and 

where the samples are less correlated. Transform coders are capable 

of producing extremely high quality images at rates about 1 bit/pixel 

[2],[3]. 

Feature-based coders decompose an image into a collection of physical entities 

such as regions or contours. These contours are then encoded according to their 
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information content. Feature-based coders utilize properties of the Human Visual 

System (HVS) and are able to achieve excellent quality encoding even at very low 

rates [4], although at the expense of very high computational burden. 

It is a common practice to combine some of these techniques to produce high 

quality encoding. For example, Woods and O'Neil [5] used 2D-DPCM to encode 

image subbands, Tanabe and Farvardin [6] investigated the use of both DPCM 

and the discrete cosine transform (DCT) to encode one of the image subbands in 

their subband coding system, and so on. Some of these hybrid coders are capable of 

producing high quality imagery at rates between 0.4 to 0.8 bpp (a compression ratio 

of 20:1 to 10:1, assuming 8 bpp for the original). Recently, an international image 

coding standard was proposed by Joint Photographic Experts Group (JPEG) [2] 

and achieves superior quality encoding for most images at encoding rates greater 

than or equal to 1 bpp. If the encoding rate of the JPEG coder is reduced below 

1 bpp, the quality of the reconstructed imagery drops significantly. Image coding 

at rates less than 1 bpp is an ongoing research topic and the material presented in 

this dissertation is directed towards the development of image coders at 1 bpp and 

below. 

In Chapter 2, trellis coded quantization (TCQ) and entropy-constrained TCQ 

(ECTCQ) are briefly reviewed. TCQ was recently introduced as an efficient scheme 

for quantizing memoryless sources with low to moderate complexity. Near op

timal performance (in a rate-distortion theory sense) for encoding memoryless 
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sources can be achieved (by using ECTCQ) at all non-negative encoding rates. 

TCQ is incorporated into a discrete cosine transform coding structure for encoding 

monochrome and color images in Chapter 3. Chapter 4 investigates the use of 

entropy-constrained TCQ with the discrete wavelet transform for encoding images. 

Finally, in Chapter 5, the results are summarized. __ 
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CHAPTER 2 

TRELLIS CODED QUANTIZATION 

2.1 Background 

A quantizer is a mapping Q with domain the k-dimensional Euclidean space Rk 

and range Y, where Y = {y!, Y2, ... , yL} is a finite subset of R k with L elements 

[7]. Associated with every L-point quantizer in Rk is a partition {PI, P2 ,"', PL} 

such that 

(2.1) 

where Pi = {x E Rk j Q(x) = yd. Hence, a quantizer is uniquely specified by the 

output set Y and the corresponding partition {Piji = 1,2,,,, ,L}. 

A scalar quantizer is just a one-dimensional quantizer (k = 1). Perhaps the 

simplest scalar quantizer is the uniform scalar quantizer. The input-output char-

acteristic of a uniform mid-rise quantizer is shown in Figure 2.1. Such a quantizer 

can be described by the following equations [8], 

Xk = [k - Lt2]L1, k - 2,3, ... , L 

Yk = [k- Lf]L1, k - 1,2, ... ,L 

(2.2) 
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Figure 2.1: Input-Output characteristics of an uniform quantizer. 

where the amplitudes Xk are decision levels, Yk are reconstruction levels and A is 

the step size. The partition for this quantizer is given by 

At each time index, depending on which partition the input sample belongs to, a 

L-ary number is transmitted to the receiver, typically in binary format. Generally, 

L is chosen as a power of two. Assuming L = 2R for some integer R and an equal-

length codeword assignment, a bit rate of R = log2 L bits/sample is needed to 

inform the receiver about that index. At the receiver, for an error-free transmission, 

we have an output 

(2.4) 
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The performance of a quantizer is characterized by its mean-squared error (MSE) 

performance. Let the input source be modeled as a sequence of realizations of a 

random variable X with probability density function (pdf) Ix. If Q = X - Y is 

the quantization error, the MSE (p) is given by 

(2.5) 

The optimum minimum MSE step size .6.oPt, for a given input distribution, can be 

found by minimizing p with the constraint of a uniform quantizer. It is customary 

to report the MSE performance of the quantizer as a signal-to-noise ratio (SNR) 

which is defined as 

SNR = 10IoglO(o"i/p) dB (2.6) 

where o} is the variance of the input source. 

Figure 2.2 shows the distortion-rate function (which gives the minimum possible 

distortion that can be achieved for a given encoding rate) plotted as SNR in dB 

along with the performance of the optimal uniform scalar quantizer (OUSQ) for the 

zero-mean, unit-variance, memoryless Gaussian source [8]. It can be shown that 

the performance curve for the OUSQ diverges from the distortion-rate function as 

the encoding rate increases. For input sources with non-uniform pdf's, it is possible 

to achieve a better performance by having closely spaced partitions in the regions 

where the pdf is high and by choosing larger quantization intervals in other regions. 
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Figure 2.2: Distortion-rate performance for the memoryless Gaussian source. 
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Optimal non-uniform scalar quantizers can be found by choosing the decision 

and reconstruction levels such that p (as given by Equation 2.5) is minimized for 

a given rate and input distribution. The necessary conditions for optimality are 

found by setting the partial derivatives of p with respect to the decision and recon-

struction levels to zero [8]. The resulting quantizers satisfy the following conditions. 

(1) The decision levels are at the mid points of their respective reconstruction levels 

and (2) The reconstruction levels must be the centroid of the pdf in the appropri-

ate interval. Quantizers satisfying these conditions are referred to as Lloyd-Max 

quantizers (LMQ). If Ix is log-concave, i.e., if 82 log Ix (x)/8x2 is negative, these 
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conditions are also sufficient [8]. The Laplacian and Gaussian pdf's satisfy the log

concave property and hence, their correspOl~ding Lloyd-Max quantizers are optimal 

scalar quantizers. 

The SNR performance for a memoryless Gaussian source using LMQ is also 

shown in Figure 2.2. From this figure, one might come to a conclusion that using 

non-uniform quantization results in only a marginal improvement in performance. 

However, at higher encoding rates, there is a significant difference in performance. 

The performance improvement (also known as non-uniform density gain) is as much 

as 2.6 dB at 7 bits/sample. Even at this high encoding rate, the performance of 

the LMQ is 4.3 dB away from the distortion-rate function. 

The performance of LMQ's can be improved by using variable-length encoding 

of the quantizer output. Recall from our previous discussion that, at each time 

index, depending on which partition of the quantizer the input sample belong to, 

a L-ary number is transmitted to the receiver, typically in binary format. For 

an equal-length codeword assignment, this requires an encoding rate of R ~ log2 L 

bits/sample. Equal-length codeword assignment, in general, is not the most optimal 

way (with respect to the average bit rate) of assigning codewords. 

A L-point quantizer can be viewed as a discrete source which takes values in 

Y = {Yt, Y2,"', YL} with probabilities {p(yt},p(Y2},'" ,p(YL)} respectively. The 
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entropy of this source Y is defined as 

L 

H(Y) = - L:p(Yi)log2P(Yi) bits. 
i=l 

By assigning shorter codewords to more probable outputs and longer codewords 

to less likely outputs, it is possible to reduce the average encoding rate. It is well 

known from information theory [9] that H(Y) gives the minimum bound on the 

average encoding rate for encoding the memory less source Y. One can come up 

with variable-length (or entropy) codes whose average codeword length is arbitrarily 

close to the entropy by using Huffman's technique [9] or Arithmetic coding [10]. 

Entropy-constrained scalar quantizers (ECSQ) are designed such that the aver-

age encoding distortion is minimized, for a given input source, with the constraint 

that the entropy associated with the quantizer output is below a certain value. 

That is, the MSE distortion p as given by Equation 2.5 is minimized with the 

constraint that 

H(Y) :5 Ho. (2.7) 

Lagrange multiplier techniques can be used to solve the problem of (2.5) and (2.7). 

Gish and Pierce [11] showed that, for high encoding rates, the optimum ECSQ is an 

entropy-coded uniform quantizer (ECUQ) regardless of the source pdf. However, 

at low encoding rates, there could be a large difference in performance between 

optimal ECSQ and ECUQ [12]. This difference in performance is also a function of 

the number of quantization levels L and the source distribution. For example, at an 
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encoding rate of 1 bit/sample, the difference in performance of optimal ECSQ and 

ECU Q is only 0.24 dB for the memory less Gaussian source while it is as much as 2.75 

dB for the Laplacian source. When the constraint on the number of quantization 

levels is removed, the resulting ECSQ is known to provide an upper bound to the 

distortion-rate performance of all memoryless, scalar quantization schemes [12]. 

For encoding memoryless sources, the performance of ECSQ is within 1.53 dB of 

the distortion-rate function at all non-negative encoding rates. 

The reason why LMQ's fail to achieve a performance close to the distortion-rate 

function can be easily explained. Let xm = [Xl, X2, .•• , Xm] be a block of m samples 

from a memoryless source X with joint density Ix(x) = IX(Xt,X2"" ,xm). The 

asymptotic equipartition principle (AEP) [13] suggests that, as m becomes large, 

Ix becomes increasingly localized to a region Pm E Rm inside which it is almost a 

constant. The shape of this region of high probability is dependent on the source. 

For example, Pm is a m-dimensional spherical shell for a Gaussian source and a 

m-dimensional pyramidal shell for a Laplacian source [14]. Scalar quantizers do not 

exploit this localization property of the m-dimensional pdf. 

It is possible to distribute all the output codevectors to lie inside the region Pm 

by using vector quantizers (VQ). In the last few years, several VQ's have sprung up 

with a MSE performance that is superior to that of a SQ (without entropy coding) 

for memoryless sources [15]. This performance improvement could be attributed to 

three different gains [16] [17]. They are 
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1. Boundary gain. Codebook boundary for the VQ can be chosen such that 

all its codevectors lie in the high probability region 'Pm. Uniform scalar 

quantizers place all its output vectors in a m-dimensional cubic lattice. 

Boundary gain is dependent on the pdf f'; and is independent of the 

distortion-measure [17]. For a uniform source, since f'; is uniform over 

a m-dimensional cubic lattice, no boundary gain can be realized (at high 

encoding rates). 

2. Granular gain. This gain is achieved by controlling the shape of par

titions of the quantizer. Granular gain is dependent on the distortion 

measure and is independent of the pdf. For the MSE distortion measure, 

it is well known that it is asymptotically optimal to use m-dimensional 

spherical partitions instead of m-dimensional cubic partitions used by 

uniform scalar quantizers. 

3. Non-uniform density gain. This gain is achieved by selecting the output 

vectors to lie closely in a region of higher probability and to lie farther 

apart in the other regions. AEP suggests that, for a large m, the m

dimensional pdf is roughly a constant in 'Pm and the codewords should 

tend to be uniformly distributed in this region. As a result, this gain 

disappears for a larger m. As expected, this gain cannot be obtained for 

a Uniform source. 
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Note that for non-uniform vector quantizers, it is not easy to distinguish between 

boundary and non-uniform density gains [16]. The shape and sizes of partitions 

can be vastly different. It is also fairly difficult to separately evaluate granular and 

boundary gains that can be achieved by a VQ (for both uniform and non-uniform 

vector quantizers) at low encoding rates. Eyuboglu and Forney [17] showed that 

these two gains can be evaluated separately at high encoding rates and that the 

ultimate granular gain that can be achieved is upperbounded by 1.53 dB for the 

MSE distortion. They have also tabulated the boundary and granular gains for 

different lattice VQ's and trellis quantizers. 

TCQ, first introduced by Marcellin and Fischer in [18], can achieve a granular 

gain of 1.36 dB (of the maximum possible 1.53 dB) using a 256-state trellis with a 

complexity that is roughly independent of the encoding rate and only a fraction of 

what is required by most source coders of comparable performance. For example, 

[18] shows that no VQ of dimension less than 69 can obtain the granular gain 

achieved by 256-state TCQ. Application of a VQ with such a high dimension is 

somewhat restricted in practice even at modest encoding rates due to its design and 

encoding complexity. Both the encoding and design complexity grows exponentially 

as mr, where m is the vector dimension and r is the encoding rate in bits/sample. 

Several vector quantization schemes exist with a reduced complexity but at the 

expense of some performance degradation [14][19]. 
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Although TCQ is able to achieve a significant portion of the ultimate granular 

gain that can be obtained, it does not realize any boundary gain (at high encod

ing rates). It can realize some non-uniform density gain by using non-uniform 

output alphabets. Eyuboglu and Forney [17] showed that, for Gaussian sources, 

the ultimate achievable boundary gain is the same as the ultimate gain that can 

be achieved by variable-length or entropy coding. Fischer and Wang introduced 

entropy-constrained TCQ (ECTCQ) in [20]. In that work, they showed that the 

SNR performance of 8-state ECTCQ systems is within 0.5 dB of the distortion

rate function for encoding memoryless sources at rates greater than about 1.5 

bits/sample. Subsequently, [21] showed that it is possible to obtain a SNR per

formance within 0.5 dB of the distortion-rate function at all non-negative encoding 

rates with ECTCQ by using a slightly different formulation. In this Chapter, we 

briefly review TCQ and ECTCQ. A more detailed treatment on those two topics 

can be found in [18], [20], and [21]. 

2.2 Trellis Coded Quantization 

For encoding memoryless sources at R bits/sample, TCQ uses an expanded 

alphabet size of 2R+l codewords. This expanded codebook is divided into 4 dis

joint subsets, with each subset containing 2R- 1 codewords. These subsets are then 

assigned to the branches of a suitably chosen trellis. TCQ uses Ungerboeck's am

plitude modulation trellises [22]. These trellises have two paths (branches) entering 
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Do Dl D2 Da Do Dl D2 Da 
• • I • I' • • • 

Figure 2.3: A 4-state trellis with subset labeling along with codebook and partition 

for 2 bit/sample TCQ. 

and leaving each node. The justification for choosing this trellis family is provided 

in [18]. 

The trellis branch labeling for TCQ is similar to the one used by Ungerboeck's 

Trellis Coded Modulation [22]. For example, a 4-state trellis with its corresponding 

subset labeling and codebook partition for a 2 bit/sample TCQ is shown in Figure 

2.3. From this figure, it is obvious that, given a "current" state, it would take 1 

bit/sample to specify which path was chosen and hence the "next" trellis state. 

Hence, a path through the trellis can be specified by either a sequence of subsets 

or 1 bit codewords. 

Assume that an input sequence X = [XI, X2, ••• ,xn] of length n is to be encoded. 

At any time in the encoding process, for each path emanating from a given node, 
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scalar quantization is performed to find an element of the subset associated with 

that particular path that is closest to the current input sample. The squared quan

tization error introduced by this scalar quantization process is taken as the branch 

metric. The Viterbi algorithm [23] is then used to find the minimum distortion 

path through the trellis. 

Assume that there is some cost associated with every node of the trellis. The 

branch cost incurred due to the scalar quantization process is added to the cost 

associated with the node from which it (the path) emanates from to calculate the 

overall cost to reach the "next" node if taking that particular path. At each next 

node, a two-way compare is made to determine the path with the smallest overall 

distortion (survivor). The survivor associated with each node is retained while the 

other path is discarded. This recursion is carried out until the end of the data 

sequence. The survivor associated with the node with the least cost at the end of 

recursion is just the survivor with the lowest overall distortion. This procedure is 

described mathematically as follows. 

Let p}-l)j = 1,2,··· ,N be the cost associated with node j at time index i-I, 

Djk be the subset associated with the path from node j to node k, d~k be the 

element of subset Djk which is closest to the current input sample Xi, where N is 

the number of trellis states. The cost incurred by taking the path from node j to 
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node k is (Xi - d~k)2 and node costs are found using 

i . {i-I + ( ..Ii )2} 
Pk = . ~l~ Pk Xi - Ujk 

Je{Jl,J2} 

where il and i2 are the nodes from which the two paths to node k emanate. This 

recursion is carried out for the length of the data sequence. When the end of the 

data sequence is reached, the node with the smallest cost is found. That is 

. n 
Popt = mm Pj' 

je{I,2, ... ,N} 

The survivor associated with Popt is the one which minimizes the overall distortion. 

There are two popular ways by which the survivor path with the least overall 

distortion can be mapped into a bit sequence. The first scheme, introduced in [18], 

makes use of the fact that, given the initial state, it requires 1 bit/sample to specify 

which path (and hence the subset) was chosen while the remaining R-I bits/sample 

were used to select an element from that particular subset. These bit sequences 

are then transmitted through the channel. At the decoder, the bit sequence that is 

used to specify the path through the trellis is passed through a rate-I/2 (1 input, 

2 outputs) convolutional coder. The two output bits from the convolutional coder 

determine the proper subset while the remaining R - 1 bits/sample determine the 

codeword from the chosen subset. 

An alternate scheme was proposed in [20] and subsequently used in entropy-

constrained TCQ (ECTCQ) systems. This scheme considers the fact that the 4 

subsets are disjoint. Hence, for any given state, the next codeword must be chosen 
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either from the superset 80 = Do U D2 or 81 = Dl U Da. As the subsets are disjoint, 

specifying an element from a superset uniquely determines which subset it belongs 

to and hence the "next" trellis state. Since there are 2R codewords in each superset, 

a sequence of R bit codewords can be used to specify a path through the trellis. 

This scheme was shown to be extremely advantageous for use in ECTCQ systems 

although the performance of these two schemes are identical for fixed-rate systems 

[20]. 

Simulation results for encoding a zero-mean, unit variance, memoryless Gaussian 

source using 4-state and 256-state TCQ is shown in Figure 2.2 [18]. TCQ codebooks 

were designed using the generalized Lloyd algorithm [24]. It is apparent from this 

figure that the SNR performance of TCQ is superior to that of a LMQ. A simple 

4-state TCQ outperforms the LMQ by as much as 1.57 dB at 3 bits/sample while 

the performance improvement is 2.02 dB when 1lsing the 256-state TCQ. 

Figure 2.4 shows the granular gain that can be achieved by TCQ systems as 

a function of the trellis size. A simple 4-state TCQ can achieve a granular gain 

of 0.99 dB which is very close to the ultimate granular gain that can be obtained 

by a 24-dimensional lattice VQ (1.03 dB) [17]. As mentioned in [17] and worth 

repeating here, a 4-state TCQ is much more easier to implement. The granular 

gain of 256-state TCQ comes within 0.18 dB of the ultimate granular gain of 1.53 

dB that can ever by achieved. By evaluating the asymptotic VQ bound, [18] found 
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Figure 2.4: Granular gain obtained as a function of trellis size {log2 N}. 
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out that no VQ of dimension less than 69 can obtain the granular gain achieved by 

256-state TCQ. 

2.3 Entropy-Constrained Trellis Coded Quantization 

Consider a uniform codebook with a step size tl. and a subset partition as shown 

in Figure 2.5. The trellis branch labeling is the same as before. The number of 

codewords in each subset is no longer restricted to 2R- 1 elements for encoding at R 

bits/sample. For each input sample, the closest codeword in each subset is found 

and the corresponding squared quantization error is used as the branch metric. 

Viterbi algorithm is then used to find the minimum MSE path through the trellis. 

The ECTCQ encoder proposed in [20] uses the first method discussed in the 

previous section of assigning bit sequences to codeword sequences. In that scheme, 
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Figure 2.5: A uniform codebook and partition for an ECTCQ system. 

1 bit/sample was used to specify a path through the trellis while an estimate of the 

rate required to specify elements from the chosen subset is given by the conditional 

entropy of the codebook given the subset. That is, the average encoding rate for 

this scheme is 1 + H(YID), where 

3 

H(YID) = - L: L: P(yIDi)P(Di) log2 P(yIDi) 
i=O flED; 

and P(yIDi ) is the probability of choosing the codeword y given the subset Di • The 

minimum possible encoding rate for this scheme is 1 bit/sample (if scalar code-

books are used). Lower encoding rates can be achieved by using multidimensional 

codebooks. For encoding rates greater than 1.5 bits/sample, [20] reported a MSE 

performance within 0.5 dB of the distortion-rate function for encoding memory less 

sources with smooth densities with 8-state ECTCQ systems. 

Marcellin [21] showed that by using the second scheme of allocating bit sequences 

to codebook sequences, it is possible to encode at rates below 1 bit/sample with 

ECTCQ using scalar codebooks. In this scheme, since the entire rate is spent on 

specifying an element from one of of the two supersets 80 or 811 an estimate of the 

average encoding rate is given by the conditional entropy of the codebook given 
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the superset: 
1 

H(YIS) = - E E P(yISi)P(Si) log2 P(yISi). (2.8) 
i=O yESi 

The performalice of the two above mentioned ECTCQ systems is almost indis-

tinguishable at encoding rates ~ 1.5 bits/sample. However, when the encoding 

rate is decreased below 1.5 bits/sample, the performance of the system proposed 

in [21] is superior. Even so, the performance of this ECTCQ system is sub-optimal 

(in a distortion-rate sense). For example, the MSE performance for encoding the 

memoryless Gaussian source at 0.5 bits/sample is approximately 2 dB away from 

the distortion-rate function. [21] claims that this deterioration is due to the use of 

uniform codebooks and a MSE distortion measure. By using codebooks designed 

using a modified version of the generalized Lloyd algorithm [25], [21] showed that 

it is possible for 8-state ECTCQ systems to achieve a MSE performance within 0.5 

dB of the distortion-rate function at all non-negative encoding rates. This code-

book design algorithm attempts to minimize the MSE of an encoding (but subject 

to an entropy constraint) by minimizing the cost function 

J = E[p(x, y)] + AE[l(y)] (2.9) 

where x is the data, y is the encoded version of x, p(x,y) is the cost (usually MSE) 

of representing x by y, ). is a Lagrange multiplier, and l(y) is the number of bits 

used by the variable-length code to represent x. A useful approximation of l(y) is 
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-log2 P(y). This optimization process considers not only the MSE but also the 

number of bits used by a variable-length code to represent y. 

Figure 2.6 shows the SNR performance of a 4-state ECTCQ system for encoding 

a zero-mean, unit-variance Gaussian source along with the performance curve for 

an entropy-constrained scalar quantizer (ECSQ) and the distortion-rate function. 

The SNR performance of the 4-state ECTCQ system is within 0.55 dB of the 

distortion-rate function at all non-negative encoding rates. From Figure 2.6, it is 

also apparent that the performance of ECTCQ is superior to the performance of 

ECSQ. The performance curve for the 256-state ECTCQ system is within 0.2 dB 

of the distortion-rate function. 

In [21], it was found that for rates greater than 2.5 bits/sample, the optimized 

codebooks do not provide a significant improvement in MSE over uniform code

books although there may be some advantage in codebook size. Thus, in our 

simulations with images, optimized codebooks with 256 elements were used for en

coding rates less than or equal to 2.5 bits/sample while uniform codebooks were 

used for all other rates. Uniform codebooks with at least 2(Ri+S) elements were 

found necessary to achieve good performance for encoding rates greater than 2.5 

bits/sample [26]. Smaller codebook sizes may be possible when using optimized 

(rather than uniform) codebooks. 
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CHAPTER 3 

TRANSFORM CODING 

3.1 Introduction 

Transform coding has proven to be a very effective technique for image cod-

ing [27] -[30]. The basic idea of any transform coding scheme is to divide the 

input image into blocks of pixels. Each block undergoes a two-dimensional trans-

formation to produce an equal-sized block of transform coefficients. There exist 

different strategies to quantize these transform coefficients (for e.g., see [30]). In 

most schemes, low-frequency transform coefficients (which, in general, possess most 

of the energy) are quantized very finely while high-frequency transform coefficients 

are quantized rather coarsely. 

There exist different transforms with good energy compaction properties [8][30]. 

Among these transforms, the discrete cosine transform (DeT) has emerged as one of 

the best, partially because of the fact that there exist fast algorithms to implement 

this transform [31]. 

The two-dimensional DeT (2-D DeT) of an image block x(m, n) of size N x N 

is given by 

O(k 1) - ~ (k) (1) ~ ~ ( ) 7rk(2m + 1) 7rk(2n + 1) , - N0 ° ~ ~ x m,n cos 2N cos 
m=O n=O 2N 

(3.1) 
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where the transformed image block O(k, I) is also of size N X Nand 

{

I j = 0 
aU) = 7212 

j # O. 

The inverse 2-D DCT is given by 

2 N-l N-l lI'k(2m + 1) lI'k(2n + 1) 
x(m, n) = N L: L: a(k)a(/)O(k, I) cos 2N cos 2N . (3.2) 

k=O 1=0 

Note that the 2-D DCT can be efficiently implemented in two steps, each involving 

a I-D DCT. 

An efficient transform coder should adapt to nonstationarity among the blocks 

within each image. A transform coding system can be made adaptive in many 

different ways [32]. Chen and Smith [27] proposed a transform coder in which each 

input block is classified into one of four classes depending on their level of image 

activity. Adaptivity is provided by distributing bits among each class such that 

more bits are allotted to classes with higher activity. 

An adaptive coder was introduced in [28] which reported excellent performance 

for encoding a color version of the "Lenna" image at 0.4 bpp. This image coder 

makes use of a threshold coding scheme in which all transform coefficients whose 

magnitude below the chosen threshold were set to zero. The remaining coefficients 

were then encoded using the available bit-rate. 

In [33], Vaisey and Gersho segmented the input image into sub-blocks that 

vary in size between 4 X 4 to 32 X 32 pixels according to their level of perceptual 
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activity. They used vector quantization (VQ) to encode the transform coefficients· 

and reported high-quality coding results at rates between 0.35 and 0.7 bpp. 

Another adaptive transform coder, proposed in [29], is similar to the system 

proposed in [27]. Instead of classifying each block into one of four classes, the 

encoder in [29] estimates the variance of transform coefficients in each block. Using 

these estimates, they were able to adaptively encode in such a way that each block 

of the encoded image has the same distortion. The authors claim that keeping a 

constant block distortion results in encoded images which are perceptually superior. 

This work extends the preliminary work described in [34]. TCQ is incorporated 

into a transform coding structure for encoding monochrome and color images. Both 

fixed-rate and entropy-constrained TCQ-based systems are investigated. In the 

monochrome case, the two-dimensional discrete cosine transform (DCT) is used to 

transform all (non-overlapping) 16 X 16 blocks of an image. Like coefficients from 

each block are collected and encoded using an optimum rate allocation method. 

This rate allocation algorithm requires the transmission of a. small amount of side 

information, consisting of the sample mean of the "DC" coefficient and the sample 

variance of all transform coefficients. The procedural flow for color images is similar, 

except for the conversion of the RGB planes into NTSC transmission primaries (Y, 

I, and Q). The I and Q planes are subsampled (2:1 in each direction) before the 

neT is applied. 
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Iterative codebook optimization algorithms are used to minimize MSE in both 

the fixed-rate and entropy-constrained TCQ systems. A large set of images (differ

ent from those used to test the resulting systems) are used as training data for these 

algorithms. In the fixed-rate case, the codebooks are designed for minimum MSE, 

while in the entropy-constrained case, the goal is to minimize MSE, but subject to 

a constraint on entropy. In each case, a different codebook is generated for each 

encoding rate used. 

3.2 System Description 

A block diagram illustrating the procedural flow for the monochrome TCQ trans

form coder is shown in Figure 3.1. All 16 x 16 blocks of a monochrome image are 

transformed using a two-dimensional DCT and like coefficients are collected into 

sequences of data to be encoded using TCQ. Since there are 256 DCT coefficients 

per block, there are then 256 sequences of coefficients to be encoded. The length of 

each of these sequences is 1024 for 512 x 512 images. Each sequence is normalized by 

subtracting its mean and divirling by its standard deviation. The normalized ver

sion of the sequences are then encoded using TCQ at rates determined by the rate 

allocation scheme discussed below. At the receiving end, the resulting bit sequence 

and normalization parameters (side information) are used to reconstruct the quan

tized coefficients. The inverse DCT is performed to obtain the final reconstructed 

image. 
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Figure 3.1: TCQ transform coder for monochrome images. 

3.3 Rate Allocation and Side Information 

The MSE for many source coders can be reasonably modeled by 

(3.3) 

where E is the MSE, R is the encoding rate in bits/sample, (72 is the variance of 

the source, and a and f3 are parameters that depend on the particular encoder 

structure and the probability density function of the source. It was found that the 

MSE performance of TCQ can be approximated with a common value of f3 for each 

coefficient while the required value for a may vary from coefficient to coefficient 

[26]. 
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Let K = 256 be the number of coefficients obtained by transforming a 16 X 16 

block of image data. The average distortion incurred by encoding the ith coefficient 

sequence with Ra bits/coefficient can be determined with (3.3). Since the DCT 

is a unitary transform, the overall average distortion introduced in the image by 

encoding all K coefficient sequences is given by 

(3.4) 

Using Lagrange multipliers to minimize (3.4) subject to the average rate constraint 

1 K 
-~Ra=R. 
J( i=1 

(3.5) 

yields the optimum rates [26] 

{ 

1 O/iU~ RK 
7J log2 nKI ;;; + KT i = 1,2, ... , K' 

Ri= ( i=IO/jU~)K 
o i=K'+I, ... ,K 

(3.6) 

The value of K' is chosen by setting J(' = K and computing the rates, Ra, i = 

1,2, ... , J(' from (3.6). If any rates are negative, K' is decreased by one and the 

rates are computed again. Each time the variances are sorted so that 0"1 ~ 0"1+1 

for all i before using (3.6). This ensures that the coefficients assigned an encoding 

rate of zero are those with the smallest variances. This process is repeated until 

all encoding rates are non-negative. The rates obtained from this algorithm are 

adjusted to integers in the fixed-rate system and to the nearest quarter of a bit in 

the entropy-constrained system. An alternate approach to rate allocation that can 

handle a more complicated distortion model than that of (3.3) is given in [35] and 

used in our subsequent work [36]. 
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As mentioned previously, the sample mean of the DC coefficient (the other means 

are assumed to be zero) and the sample variance of each coefficient are encoded and 

transmitted as side information. These parameters were quantized with uniform 

scalar quantizers using a total of 2056 bits/image, or ~ 0.008 bpp for 512 x 512 

images. These 2048 bits were distributed among the different side information 

parameters in an ad hoc manner with more bits being given to the parameters with 

larger values (as determined by an examination of training data). At high rates 

(;:::: 1 bpp), this side information is a negligible fraction of the overall rate. At lower 

rates, better performance may be possible through a more sophisticated approach. 

In our experiments using TCQ for encoding the transform coefficients, we found 

that it is important that the initial state of the trellis is not chosen arbitrarily. 

Fixing the initial trellis state can cause the first few elements of each coefficient 

sequence to be quantized poorly. For example, if the initial state is fixed as the 

"top" state in Figure 2.3, the first coefficient is constrained to be quantized to 

something in the union of subsets Do and D2 • Although this makes almost no 

difference in objective performance, the subjective quality of the upper-left most 

block can suffer. Hence, the initial state should not be chosen in advance. As a 

result, the initial state that is ultimately chosen by the Viterbi search needs to be 

transmitted as side information. For a 4-state trellis, this requires 2 bits/sequence or 

equivalently, 512 bits/image. Thus, for 512x512 images, the added side information 

is ~ 0.002 bpp. 
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3.4 Codebook design 

Training sequence-based algorithms were used to design the TCQ codebooks. 

The training data were obtained from ten 256 x 256 images. These images were 

divided into 16 x 16 blocks and transformed. The DC coefficients were all normalized 

(using their means and variances) and collected together to be used as a training 

sequence for fixed-rate and entropy-constrained codebooks. In the fixed-rate case, 

a codebook was designed for each integer rate up to 8 bits/coefficient, while in the 

entropy-constrained case, a codebook was designed for each quarter of a bit. The 

non-DC coefficients were then normalized and grouped together to form a second 

training sequence for which both fixed-rate and entropy-constrained codebooks were 

also designed. For the entropy-constrained system, the number of bits required to 

represent a particular codeword y (i.e., l(y)) was computed as 

(3.7) 

where P(yISi) (the probability of using y given that the superset Si is used) is 

estimated from the training data. This yields an upper bound to the number of 

bits that would be required by a Huffman code operating on a block of codewords 

with length ten. 

The rate-distortion performance of the TCQ designs were used to determine 

the parameters for the distortion model of Equation (3.3). It was found that for 

the fixed-rate systems, a value of f3 = 1.88 is appropriate for both the DC and 
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non-DC coefficients, while a should be chosen as 1.54 and 1.67 for the DC and 

non-DC coefficients, respectively. For the entropy-constrained designs, f3 = 2.0 

is appropriate for both types of coefficients while a = 1.13 and a = 0.47 are 

appropriate for the DC and non-DC terms, respectively. 

3.5 Results 

3.5.1 Monochrome image coding 

Coding simulations were performed for the luminance component of the 512 x 512 

"Lenna" image. The performance of our image coder is reported by tabulating the 

PSNR which is defined as 

(
255

2 
) PSNR = 1010g1o MSE dB. (3.8) 

For color images, the MSE is computed as an average over all three image planes 

(RGB). 

Table 3.1 reports the performance obtained for encoding the 512 X 512 "Lenna" 

image using both fixed-rate and entropy-constrained TCQ systems with a 4-state 

trellis. For the purpose of comparison, we also simulated the performance of our 

system using scalar quantization (SQ) rather than TCQ. At fixed encoding rates, 

the PSNRs obtained by TCQ ranged from 1.0 to 2.0 dB better than those obtained 

by SQ. To achieve PSNRs equal to those reported in Table 3.1, the SQ system 
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Table 3.1: Transform coding results for the monochrome "Lenna" image. 

(PSNR values are in dB.) 
Fixed-rate Entropy-constrained 

Rate PSNR Rate PSNR 
1.00 35.82 0.98 39.33 
0.50 32.54 0.52 35.97 
0.25 29.67 0.25 32.49 

required 30 to 50 percent higher encoding rates than the TCQ system, with the 

larger percentages corresponding to the lower encoding rates. 

Improvements in PSNR performance of the entropy-constrained system over the 

fixed-rate systems range from about 1.6 dB to 3.6 dB. As in the fixed-rate case, 

we also simulated our system using (entropy-constrained) SQ rather than TCQ. 

We found that to achieve the same PSNR, the SQ system required encoding rates 

about 10 percent higher than those of the TCQ system. Interestingly, even at 

equal PSNR, the perceptual quality of the images produced by the TCQ system 

is significantly better. The images from the SQ system contain considerably more 

high frequency background noise. To achieve perceptual quality equivalent to that 

of the TCQ system, the SQ system required an encoding rate at least 30 percent 

higher than that of the TCQ system. We believe that the reason for this is that 

the TCQ system does a better job of encoding the high frequency components of 

the image which are important perceptually, but do not significantly influence the 

MSE due to their low variance. 
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The subjective quality of the images produced by our systems are very good 

with the best results corresponding to the ECTCQ systems. The original 512 X 

512 monochrome "Lenna" image along with the encoded image obtained from the 

ECTCQ system at 0.52 bpp are shown in Figures A.I and A.2, respectively. As 

can be seen from these figures, the image quality is quite good with very little 

high frequency background noise, fuzziness, or blocking. The images obtained for 

encoding rates of :::::: 1.0 bpp are nearly indistinguishable from the originals. At 

:::::: 0.25 bpp, the images have visible artifacts but are still of fairly good quality. 

3.5.2 Color image coding 

It is well known that the three color planes (red, blue, and green) are highly 

correlated. To exploit this redundancy, it is a common practice to transform these 

planes to the NTSC transmission primaries specified as Y, I, and Q [37]. This 

transform has the added advantage of being compatible wi th monochrome television 

(Y component). 

It is well known that the human eye is less sensitive to degradation in the 

chrominance components than to the degradation in the luminance component. 

As a result, color image coders concentrate on encoding the luminance component 

more efficiently than the chrominance components [38]. The I and Q planes are 

subsampled (2:1 in each direction) before applying 2-D DCT. Thus, the dimensions 

of the Y plane are N x N while the I and Q planes are each ~ x ~ where N is 512 for 



47 

a 512 x 512 image. As in the monochrome case, the block size for the DCT is 16 X 16 

for the Y plane, while 8 x 8 blocks are used for the I and Q planes. The same rate 

allocation algorithm discussed before may be used, but now K = 162+2(8)2 = 384. 

Side information consisting of the average value for each of the three DC coeffi

cients and the sample variance of all coefficients is transmitted for normalization, 

rate allocation, and reconstruction of the YIQ coefficients at the receiver as in the 

monochrome case. The amount of side information used to transmit these quanti

ties totaled 3096 bits/image, or 0.012 bpp for 512 x 512 images. Before transforming 

the reconstructed coefficients back to the RGB domain at the receiver, we upsample 

the I and Q planes (using linear interpolation) by a factor of 1:2 in each direction. 

Finally, the results of our color image coding experiments for both fixed-rate and 

entropy-constrained TCQ are presented in Table 3.2. As in the monochrome case, 

our system was simulated with SQ in addition to TCQ. Again, to achieve equal 

PSNR, the fixed-rate SQ required 30 to 50 percent higher encoding rates than fixed

rate TCQ while entropy-constrained SQ required about 10 percent higher encoding 

rate than entropy-constrained TCQ. Consistent with the monochrome case, the SQ 

systems required even larger rate increases to achieve perceptual quality equaling 

that of the TCQ systems. The original "Lenna" image along with the encoded 

image at 0.49 bpp are shown in Figures A.3 and A.4, respectively. 



Table 3.2: Transform coding results for the color "Lenna" image. 

(PSNR values are in dB.) 
Fixed-rate Entropy-constrained 

Rate PSNR Rate PSNR 
1.00 33.17 1.00 34.82 
0.50 31.18 0.49 33.01 
0.25 29.03 0.25 30.98 
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CHAPTER 4 

WAVELET CODING 
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Multi-frequency decomposition schemes are not new in the field of source coding. 

Subband coding was first introduced by Crochiere, Webber, and Flanagan [39] in 

1976 for speech signals. The basic idea of any subband coding scheme is to decom

pose the input signal into a number of frequency bands (or subbands) using a bank 

of band-pass filters (analysis stage). Each subband is then decimated and encoded 

appropriately. At the receiver, the encoded subbands are interpolated and then 

passed through reconstruction filters (synthesis stage) to obtain the reconstructed 

signal. This approach, in general, demands the design of sophisticated band-pass 

filters to minimize the effects of aliasing. 

Quadrature mirror filters (QMF) were introduced in [40] and allow alias free 

reconstruction of the signal in the absence of quantization errors. Vetterli [41] 

extended the application of QMF's to multi-dimensional signals. Both separable 

and non-separable extensions were considered, but no coding results were presented. 

Subsequently, Woods and O'Neil [5] presented the first image coder using subband 

coding. The input image was split into 16 equal-sized subbands using circular 
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convolution with 32-tap QMF's designed by Johnston [42]. They used DPCM to 

encode the image sub bands. 

Gharavi and Tabatabai [43] proposed another subband coding scheme in which 

the input image is split into seven un-equal-sized subbands. The lowest frequency 

subband was encoded using DPCM while other sub bands were encoded using mem

oryless quantizers. Their work was extended for color image coding as well. Since 

then, a variety of subband coders have emerged, capable of high-quality encoding 

with bit-rates as low as 0.5 bpp (e.g., [44]-[6]). 

There are several advantages to multi-frequency decomposition schemes. Since 

quantization error variance can be separately controlled in each band, by careful 

allocation of encoding rate, the overall reconstruction error spectrum can be con

trolled in such a manner that the reconstructed image is perceptually pleasing. 

Multi-resolution approximation schemes are also well suited for progressive image 

transmission [47]. 

A number of multi-resolution approximation schemes have emerged indepen

dently in different fields of engineering and science [48]. Recently, wavelet theory 

has been recognized as a unifying framework for these multi-resolution techniques 

[49]-[51]. Wavelets were originally introduced as a family of functions which were 

derived from translations and dilations of one basic function, referred to as the 

"mother" wavelet [52]. 



51 

The basic idea of the discrete wavelet transform (DWT) is that of successive 

approximation, together with that of "added detail". At each stage, the input signal 

is decomposed into a coarse approximation signal (which can be considered a low

pass version of the input) and an "added detail" signal (which can be considered 

a high-pass version). In this regard, the DWT decomposes the input signal into a 

set of frequency subbands [49]. 

Wavelet coders for images have been implemented both with scalar quantization 

[49] and vector quantization [53]. In this chapter, we investigate the use of ECTCQ 

with the DWT for encoding both monochrome and color images. In order to 

apply wavelet decompositions to images, we use a separable 2-D DWT in which 

emphasis is given to the horizontal and vertical directions. For the monochrome 

case, we evaluate the performance of our wavelet coder for 7-band and 16-band 

decompositions. In each case, the lowest-frequency sub-image (LFS) is encoded 

using a 2-D DCT encoder (with a block size of 4 x 4) while the other sub-images are 

encoded using ECTCQ for memoryless data. An integer programming algorithm 

[35] is employed to allocate the available bit-rate optimally among the subbands. 

A small amount of side information, consisting of the sample mean of the "DC" 

coefficient and the sample standard deviation of all sub-images to be encoded, 

are transmitted. The procedural flow for color images is similar, except for the 

conversion of the RGB planes into NTSC transmission primaries (Y, I, and Q). 
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Figure 4.1: A two-band analysis/synthesis system. 

4.2 Subband filter banks 

Figure 4.1 shows a two-band analysis/synthesis system which is the basic build-

ing block for a tree-structured subband coder. In this figure, ! 2 represents a 

downsampler by a factor of 2, i 2 is an upsampler, Ho(eiw ) and Hl(eiw ) are the 

low-pass and high-pass analysis filters, and Go( eiw) and G1 (eiw ) are the low-pass 

and high-pass synthesis filters, respectively. 

The relationship between the input X(eiw ) and the reconstructed output X(eiw ) 

is given by [54] 

X(eiw ) _ ~[Go(eiW)Ho(eiW) + Gl(eiW)Hl(eiW)]X(eiW) 

+ ~ [Go ( eiw)Ho( ei(w+1I'») + G1 (eiw)Hl (ei (w+1r»)] X(ei(w+1I'»). (4.1) 

Note that the second term in the above equation is responsible for aliasing distor-

tions. For perfect reconstruction (i.e., x(n) = x(n - M), M a positive integer to 

account for processing delay) the analysis and synthesis filters have to satisfy the 



following conditions 

Go(e;W)Ho(e;W) + Gl (e;W)Hl (e;W) = 2e;wM 

Go(e;W)Ho(e;(w+7r») + G1 (e;W)Hl (e;(w+7r») = O. 

Aliasing distortions can be eliminated by choosing the synthesis filters as 

Go(e;W) _ HI (e;(w+7r») 

G1 (e;W) _ -Ho(e;(w+7r»). 
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(4.2) 

(4.3) 

In addition, if the analysis filters are chosen to be frequency shifted versions 

of one another, i.e., Hl(e;W) = Ho(e;(w+7r») and are also constrained to have even 

lengths, then exact reconstruction requires that 

Such a filter bank is commonly referred to as a QMF bank [55]. [55] proves that 

perfect reconstruction is not possible if QMF's have odd lengths. Numerous at

tempts were made to design linear-phase FIR filters which would approximate the 

above condition [42][56]. [54] cites two cases in which Equation (4.4) is exactly 

satisfied. In the first case, filters have to be infinitely long while in the second 

case, analysis and synthesis filters are simple two-tap filters. Hence, both cases 

are not useful for practical implementations. Johnston [42] designed linear-phase, 

higher-order QMF's which approximately satisfied Equation (4.4). 
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Recently [54], it has been shown that perfect reconstruction can be achieved if 

the analysis filters are related by 

(4.5) 

where the filter length (= M + 1) is even. The synthesis filters are related to the 

analysis filters according to Equation (4.3) as before. 

The analysis filters chosen according to Equation (4.5) should satisfy 

(4.6) 

for perfect reconstruction. Two filters which satisfy Equation (4.6) are said to 

form a power-complementary (PC) pair. [57] shows that two linear-phase, finite-

length FIR filters, Ho(ejW
) and H1(e jW ), cannot satisfy Equation (4.6) unless they 

are trivial. PC property is a sufficient condition for perfect reconstruction but 

not necessary [58]. It is possible to construct non-trivial, finite-length linear-phase 

filters which achieve perfect reconstruction if the PC property is dropped [59]. 

4.3 Discrete wavelet transform 

DWT can be best explained for the case of an orthogonal representation. A 

DWT utilizes two functions: the mother wavelet ~ and a scaling function ~. The 

scaling function ~ can be chosen in such a manner that the translations of (dilated 

versions of) ~ are orthonormal. That is, for a fixed m, 

- /2-'" (x) = 2m "'(2m x - n) n = ... -1 0 1 ... 'f'mn 'f' , " , , 
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forms an orthonormal basis for a vector space, say V m' Letting m vary results in 

a sequence of successive approximation spaces. i.e., 

V m is said to have a resolution of m. For each m, -¢mn span a. vector space W m 

which is the orthogonal complement of V m in V mH' This is written as 

Consider an arbitrary input function f at a resolution 0 (i.e., f E Yo). The ap-

proximation of f at a lower resolution -1 (say A_I(f)) is given by the orthogonal 

projection of f onto the vector space V-I' This can be written as 

A_1(J(x)) = EiLln~-In(X) 
n 

where 

(4.7) 

Note that since f E Yo, Ao(f) = f. The information lost when going from Ao(f) 

to the coarser approximation A-I (f) is referred to as the error, or "detail" signal 

D-l (f) and can be obtained by the projection of f onto W -1' That is, 

D_I(J(x)) = Ed-In-¢-ln(X) 
n 

f(x) - Ao(J(x)) = A-I (J(x)) + D_1(J(x)) 

- EiLln~-ln(X) + Ed-1n-¢-In(X). 
n n 

(4.8) 

(4.9) 



Since (~on)n is a basis for Vo, f can also be written as 

Using Equation (4.10) in Equation (4.7), we get 

iLIn - (f(u)'~-ln(U)) = i:f(u)~-ln(U) du 

- JOO I: aOk~ok(U)~-ln(U) du 
-00 k 

- I:aokjOO ~Ok(U)~-ln(U) du 
k -00 

- I:aok(~ok(U)'~-ln(U)). 
k 

Define 90{n) = 2-1/2(~(u/2),~{u - n)). Then 

Hence 

(~Ok(U)'~-ln(U)) - i: ~(u - k)2-1/2~{2-1u - n) du 

- 2-1
/

2 i: ~(u + 2n - k)~(u/2) du 

- 9o(k - 2n) 

iLln = I:aOk90(k - 2n) = I:iiokhO(2n - k) 
k k 

where ho{n) = 9o{-n). Similarly, one can show that 

d_1n = I: iiOk91 (k - 2n) = I: iiOkhl (2n - k) 
k k 
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(4.10) 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

be found by convolving {iion)n with ho and hI, respectively and then keeping every 
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ho ....- !2 

- hI r-- !2 

Figure 4.2: Block diagram of a wavelet decomposition. 

other sample of the output. hI is typically a high-pass filter while ho is a low-

pass. This algorithm is illustrated by the block diagram shown in Figure 4.2. 

Approximations at lower-resolutions are obtained by repeated application of this 

algorithm. 

aOn - (f ( u ), ~on ( u) ) 

- (L: a_lk~-lk( u) + d-lk~-lk( u), ~on( u)) 
k 

- L: a_lk( ¢-Ik( u), ~on( u)) + L: d- Ik ( t,b-Ik( u), ~on( u) 
k k 

- L:a-lk90(n-2k) + L:d-1k91(n-2k). (4.15) 
k k 

That is, (aon)n can be reconstructed by interpolating (a-In)n and (d-In)n by a factor 

of two and filtering the resulting signals with 90 and 91, respectively. The block 

diagram shown in Figure 4.3 illustrates this algorithm. Figures 4.2 and 4.3 reveal 

that discrete wavelet transforms are essentially subband decomposition systems. 

Mallat [49] and Daubechies [51] have shown that analysis filters corresponding 

to orthogonal wavelet bases form PC pairs. Filters obtained from Daubechies's 
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12 90 

12 91 

Figure 4.3: Block diagram of a wavelet reconstruction. 

wavelets in [51] are non-linear-phase, FIR filters. For image processing applications, 

one would prefer analysis and synthesis filters to have linear-phase. If the mother 

wavelet is symmetric, the resulting filters will be linear-phase filters. Wavelets 

which result in finite-length filters are said to have "compact support". Mallat's 

orthonormal bases are built using symmetric wavelets with non-compact support. 

[51] proved that the only orthonormal basis of compactly supported wavelets for 

which the associated filters have linear phase is the Haar basis. Filters associated 

with Haar basis are trivial two-tap filters. It is very important to have filters with 

good attenuation characteristics to minimize the effect of aliasing due to coding dis

tortions. This contradiction is already well known in the subband coding literature 

as explained in the previous section. 

Our preliminary work with TCQ of image subbands as reported in [60] employed 

33-tap filters based on Mallat's wavelet (referred to as Mallat's filters for the re

minder of this dissertation). With these filters, the reconstruction of (aon)n given 

(a-ln)n and (lL1n)n is not perfect. However, for the 512 X 512 "Lenna" image, 
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the reconstruction PSNR is 69 dB (in the absence of quantization) for a 4 band 

decomposition. 

Biorthogonal bases for wavelets were recently introduced, independently, by Ca

hen, Daubechies, and Feauveau [61] and by Vetterli and Herley [62]. In [61], it was 

shown that it is possible to construct bases that yield finite-length, linear-phase 

filters with the perfect reconstruction property by relaxing the orthonormality re

quirement (and hence the PC property). 

For the biorthogonal wavelet bases, there exist two hierarchies of bases, one for 

the analysis stage and one for the synthesis stage. Let ljJ and t/J denote the scaling 

function and the wavelet necessary for reconstruction. ( ~mn)n is a basis for V m, 

but no longer orthonormal. The vector space Vim is the complement of V m in 

Vm- l (but not an orthogonal complement as before). A_I(f) and D_I(f) can be 

found the same way as in the orthogonal case. i.e., 

A_1(f(x)) - L:iLln~-ln(X) 
n 

D_1(f(x)) - L: d-1n"b-In(X). 
n 

However, the sequence of coefficients (iL1n)n and (d-1n)n are found using 

iL1n - (f(U),ljJ-In(U)) 

d_1n - (f(U),tfJ-In(U)). ( 4.16) 



Since (~on)n is a basis for Vo, f can also be written as 

Ao(f(x)) = f(x) = Eaon¢on(x) 
n 

Equation (4.17) in Equation (4.16), we can show that 

iLln - E aOkhO(2n - k) 
k 

d.-In - E aOkhl (2n - k) 
k 
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(4.17) 

(4.18) 

where ho(n) = 2-1/2(<p(u/2),~(u+n)) and hl(n) = 2-1/2<.,p(u/2),~(u+n)). Since 

Vo = V-I E9 W -I, (aon)n can be reconstructed from (a-In)n and (d-In)n using 

aOn = Ea-Ikgo(n - 2k) + Ed_Ikgl(n - 2k) (4.19) 
k k 

is obvious from Equations (4.18) and (4.19) that the decomposition and recon-

struction algorithms remain the same as in the orthogonal case. However, the 

relationship between analysis and synthesis filters are different. When ~ = <p and 

;jJ = .,p, the two cases become the same. 

To achieve perfect reconstruction, the analysis and synthesis filters are chosen 

according to 

E ho(n)go(n + 2k) = c5(k). (4.20) 
n 
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There is a condition which the filters developed using wavelet theory typically 

satisfy while those developed using classical signal processing techniques do not. 

Recall that ho is derived from the scaling function ~. Given ho, ~ can be obtained 

using 
00 

~(w) = k II Ho(2-"w) (4.21) 
,,=1 

where <i> is the fourier transform of ~ and k is a scaling factor. ho is chosen in such 

a way that ~(w) decays faster than C(1 + Iwl)-(-O.5 as w -+ 00 for some f > 0 and 

constant C. This condition is often referred to as a "regularity" condition. The 

infinite product in Equation (4.21) need not converge. In such a case, it is very 

difficult to visualize the subband decomposition using wavelets. 

[61] gives a set of conditions for which the infinite product in Equation (4.21) 

converges pointwise to ~(w) for all w such that ~ is a continuous function. Filters 

which are designed in such a manner that their corresponding scaling function ob-

tained using the above mentioned procedure is a continuous function are said to 

be "regular". The order of regularity is the number of times ~ is continuously dif-

ferentiable [48]. This regularity condition is included such that any input function 

can be decomposed and reconstructed using reasonably smooth basis functions. 

There exist filters designed for tree-structured filter banks which are not regular. 

Rioul and Vetterli [48] showed that the infinite product in Equation (4.21) diverges 

for Smith and Barnwell's non-linear-phase filters designed in [54] for a perfectly 

reconstructing filter bank. [48] also showed that the scaling function associated 
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with Johnston's 8-tap filters, although continuous, are not differentiable (regularity 

of order 0). 

If both ho and 90 are regular, then hI and 91 are also regular because of their 

relationship to 90 and ho, respectively. Using the conditions in Equation 4.20, [61] 

showed that analysis and synthesis filters with arbitrarily high regularity can be 

obtained if ho and hI are related by 

Ho{w)HI{W) = coS{W/2)21 [E~:'~ ('-~+p) sin{w/2)2P + sin{w/2)21R{w)] (4.22) 

where, R{w) is an odd polynomial in cos{w), 21 = k+ k, and the functions.,p and ~ 

are (k - 1) and (k - 1) continuously differentiable, respectively. Ho{w) and HI{w) 

can be chosen in several different ways [61]. We have chosen to use the spline variant 

family of filters suggested in [53] and [61] with k = k = 4. For this selection, ho 

and hI are 9-tap and 7-tap filters, respectively. For convenience, this filter family 

is referred to as 9-tap spline filters for the reminder of this dissertation. 

4.4 Image coding application 

A block diagram illustrating the procedural flow for a monochrome TCQ wavelet 

coder is shown in Figure 4.4. The input image is decomposed into a series of sub

images using a 2-D DWT. Since images are spatially limited, the filtering and 

decimation result in an expansion of data. To circumvent this problem, we have 

used a generalization of the symmetric extension technique described in [45] and [63] 
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Figure 4.4: Block diagram of a monochrome TCQ wavelet coder. 

which allows the amount of data to be reduced to its original size while introducing 

no distortion. 

A similar system using Johnston's QMF's [42] was studied by Tanabe and Far-

vardin in [6]. They analyzed the statistical properties of the subband data from 

different images and concluded that the correlation properties of the LFS is similar 

to that of the original image. All subbands, except the LFS, were found to have 

negligible interpixel correlation. Based on these facts, they tried using both DPCM 

and neT to encode the LFS while other subbands were encoded with no additional 

processing. The neT based system was found to be superior. 

We have followed their approach and use a 2-D neT with a block size of 4 x 4 

for encoding the LFS. All "like" neT coefficients of the LFS are collected into 
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sequences to be encoded using ECTCQ. Since there are 16 DCT coefficients in 

each block, there are then 16 sequences of coefficients to be encoded. Each of the 

High-frequency sub-images (HFS) is also treated as a sequence to be encoded (with 

no further processing) using ECTCQ. 

A small amount of side information, consisting of the sample mean of the "DC" 

transform coefficient and the sample standard deviation of all sub-images and DCT 

coefficients, are transmitted. All DCT coefficients and sub-images are normalized 

by subtracting their mean (all data except the DC transform coefficient are assumed 

to be zero-mean) and then dividing by their respective standard deviations. The 

"normalized" transform coefficients and sub-images are then encoded using TCQ 

at rates determined by the optimum rate-allocation scheme described in' a subse

quent section. At the receiving end, the resulting bit sequence and normalization 

parameters (side information) are used to reconstruct the quantized coefficients. 

The inverse nCT is performed to obtain the reconstructed LFS before the final 

wavelet reconstruction stage. 

4.4.1 Codebook design and rate allocation 

A collection of 30 images (different from the "Lenna" image) were used as train

ing data for the optimization algorithm. Three sets of codebooks: one for the 

nc coefficient, one for the other nCT coefficients and the third for all sub-images 
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other than the LFS were used. For each set, codebooks were designed for integer 

multiples of 0.1 bits/sample. 

The basic intention of any rate allocation scheme is to appropriately allocate the 

bits to be used for encoding among the data sequences to be encoded so as to op-

timize the performance according to some objective cost function. For our wavelet 

coder, we use a bit allocation algorithm in which the distortion-rate performances 

of different quantizers are used [35]. This algorithm produces an optimal or very 

nearly optimal allocation, while allowing the set of admissible bit allocation values 

to be constrained to a finite set of non-negative numbers. 

Specifically, the overall MSE incurred by our coding scheme is given by 

K 

E = LaiwiEi(ri) (4.23) 
i=l 

where Ei(ri) is used to denote the distortion-rate performance for encoding the ith 

data sequence at ri bits/sample, J( is the number of data sequences l , and ai is 

a weighting coefficient to account for the variability in the size of the sequences. 

Also, since the biorthogonal synthesis filters, hand g, do not have the same energy, 

the quantization noise in various subbands will not be equally weighted in the 

image reconstruction. The scaling factor Wi is introduced to offset this disparity. A 

detailed treatment of the procedure to find these weighting coefficients for a given 

set of filters can be found in [64]. 

1 K is the number of subbands minus one, plus the number of neT coefficient sequences. For 
example, K equals 22 and 31 for 7 and 16-band decompositions, respectively. 
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In practice, the rate allocation vector B - (rl' r2, •.. , rK) is chosen so as to 

minimize E subject to the constraint that 

K 

L airi :5 R bpp. (4.24) 
i=1 

In [35], it is shown that the solution B* - (ri,r2, ••• ,ri<) to the unconstrained 

problem 
K K 

m~n{?: aiwjEi(rj) + A?: ajri } 
1=1 1=1 

(4.25) 

minimizes E subject to E~1 ajrj :5 E~1 ajri'. Thus, to find a solution to the 

constrained problem of Equations (4.23) and (4.24), it suffices to find A such that 

the solution to Equation (4.25) yields E~1 ajri' :5 R. A detailed treatment of an 

algorithm to find the proper A can be found in [35]. 

For a given A, the solution to the unconstrained problem is obtained by mini-

mizing each term of the sum in Equation (4.25) separately. If Vk = {Pk, ... , qk} is 

the set of allowable rates for the kth quantizer, then rZ solves 

(4.26) 

4.4.2 Side information 

The side information consists of the sample mean of the DC transform coefficient 

and the sample standard deviation of all data sequences to be encoded. A 16-

bit uniform quantizer was used to quantize each of these parameters resulting in 

16(I( + 1) bits/image of side information. In addition, the initial trellis state for 
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each data sequence needs to be transmitted to the receiver [26]. For a 4-state 

trellis, this requires 21( bits/image. Hence, the overall side information amounts to 

(18K + 16) bits/image which corresponds to 0.002 bpp for a 16-band decomposition 

of a monochrome, 512 X 512 image. 

4.5 Results 

4.5.1 Monochrome image coding 

Subband coders which have been proposed in the literature have used both 

7-band (pyramidal) and 16-band (tree-structured) decompositions. Westerink, 

Biemond, and Boekee [65] compared different decomposition schemes in a fixed

rate coding system using QMF's and reported that the best objective performance 

is obtained when the image is split into 16 equally sized subbands. It is not men

tioned in [65], however, if there is any improvement in the subjective quality of the 

encoded images. 

We investigated the performance of our wavelet coder using a 7-band (7B) and 

a 16-band (16B) decomposition. To obtain the same PSNR value, the 7B system 

required an encoding rate approximately 15% higher than that of the 16B system. 

Interestingly, even at equal PSNR, the images obtained from the 16B system are 

sharper and have less high-frequency background noise than those from the 7B 

system. One possible explanation for this occurrence is the fact that PSNR is not 

very sensitive to noise in the HFS because of their low energy content. On the other 
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hand, these sub-images contain significant edge information and if not quantized 

efficiently, introduce ringing and high-frequency fuzziness. High-frequency sub

images are encoded more efficiently by the 16B system than by the 7B system. 

Thus, for a given PSNR, the 16-band decomposition results in an improvement in 

both the encoding rate and the quality of the reconstructed imagery. All simulations 

from this point forward, assume the use of a 16-band decomposition. 

Recently, Westerink, Biemond and Boekee [66] analyzed the use of QMF's of 

different lengths on aliasing distortions in a subband image coding application using 

Johnston's filters and scalar quantization. Comparisons were made at encoding 

rates of 0.8 and 0.6 bpp. They concluded that from both a MSE calculation and 

a subjective judgment that aliasing errors can be neglected for filter lengths of 12 

taps or more. They also reported that at encoding rates more that than or equal 

to 0.8 bpp, the effect of aliasing distortions in image subbands is negligible. The 

encoder in [66] uses Lloyd-Max quantizers to encode the subbands and does not 

exploit any correlation in the LFS. 

Our subband coding system is significantly different than the system in [66]. As 

a result, their conclusions might not be valid for our system. We simulated our 

system using Johnston's 8, 16, 24, and 32-tap filters and the results for encoding 

the 512 x 512 "Lenna" image for "desired" rates of 0.5 and 0.25 bpp are shown in 

Table 4.1. The obtained rates are different from the desired rates specified in the 
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Table 4.1: Performance of Johnston's filters for encoding the "Lenna" image. 

8-tap 16-tap 24-tap 32-tap 
Obtained Obtained Obtained Obtained 

Rate PSNR Rate PSNR Rate PSNR Rate PSNR 
0.49 33.34 0.48 35.26 0.47 36.44 0.47 36.70 
0.27 31.68 0.27 33.06 0.27 33.87 0.27 34.01 

rate allocation procedure because of the entropy-constrained design of the TCQ 

systems. 

It is obvious from Table 4.1 that the PSNR performance of the 32 and 24-tap 

systems are superior to the 16 and 8-tap systems. Recall from our discussion in 

the previous section that a QMF bank using Johnston's filters is not a perfectly 

reconstructing filter bank even in the absence of quantization distortions. This 

distortion (QMF distortion) gets bigger as the filter length becomes smaller. QMF 

distortion is typically not perceptible in the reconstructed image. Hence, the fact 

that the PSNR of the reconstructed image from the 32-tap system is higher does 

not necessarily translate to higher quality reconstructed imagery. 

Subjective tests revealed that, at both the encoding rates, encoded images ob-

tained from the 8-tap system were the best. At approximately 0.5 bpp, the encoded 

images from all systems were of extremely high-quality. However, higher-order sys-

terns seem to create "ringing" near the edges. At 0.27 bpp, these Gibbs phenomena 

type errors affected the quality of the encoded images considerably when the long 
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Table 4.2: Wavelet coding results for encoding the monochrome "Lenna" image. 

Designed Obtained 
rate rate PSNR 
1.00 0.93 39.85 
0.50 0.48 36.61 
0.25 0.27 33.77 

filters were employed. In smooth regions, all four encoded images seem to have 

approximately the same amount of perceptible distortion. 

We also implemented our subband coder using 9-tap spline filters. Simulation 

results for encoding the 512 X 512 "Lenna" image are shown in Table 4.2 for "de-

sired" rates of 1.0, 0.5, and 0.25 bpp. Comparing results in Tables 4.2 and 4.1, it 

is obvious that the performance of spline filters is comparable to the performance 

of the 24-tap system while it is uniformly better than the performance of 16 and 

8-tap systems. 

A subjective evaluation of the encoded images revealed that the encoded images 

obtained from the system employing 9-tap spline filters are marginally better than 

those obtained from the 8-tap system. Note that this improvement is obtained at 

the expense of additional computational complexity. For a two-band decomposition 

of one-dimensional data, generating one output sample from the low-pass and high-

pass analysis filters requires 8 multiplies and 8 adds when using 8-tap Johnston's 

filters (by using the polyphase decomposition technique suggested in [67]) while 

spline filters require 9 multiplies and 14 adds. This improvement in the subjective 
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quality could be attributed to the regularity and differentiability of scaling functions 

associated with the spline filters [53]. More details regarding the importance of 

regularity and differentiability of scaling functions in an image coding application 

can be ~ound in [53]. Due to their superior performance, all results from this point 

forward assume use of the spline filters for the wavelet decomposition. 

The subjective quality of the encoded images from our wavelet coder is excellent. 

The encoded image at an average rate of 0.93 bpp is almost indistinguishable from 

the original image and the encoded image at 0.48 bpp is extremely good with very 

little high-frequency background noise or smoothing. There are no visible artifacts 

even when viewed on a high-resolution monitor. This image is shown in Figure A.5. 

The encoded image at 0.27 bpp is quite natural looking but has some perceptual 

distortion. 

4.5.2 Comparisons 

In comparison with other results from the literature, we find that both our 

transform and wavelet coder are quite competitive. Simulation results for our 

transform and wavelet coders are shown in Figure 4.5 along with other results from 

the literature [68]. For encoding the monochrome version of the 512 X 512 "Lenna" 

image at 0.48 bpp, our PSNR value of 36.61 dB is higher than those of the entropy

constrained scalar quantization based subband coder of Tanabe and Farvardin [6] 

(35.32 dB at 0.45 bpp), the adaptive entropy-constrained TCQ based transform 



....... 
~ 40.0 ...... 
~ 
ell 
Q.c 

38.0 

36.0 

34.0 

tJ. DWT-EcrCQ 
lIE Dcr-EcrCQ 
o 3C-ADcr-AC [12] 
o SUB-ECSQ [13] 
¢ DWT-HC [14] 
+ ADcr-CBD [IS] 
x SUB-ECPNN [16] 
o SUB-AECSQ [17] 
• 3C-ADcr-EcrCQ [12] 

32.0.f----+------lI---+----+---I---I---I----+----f 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 

Encoding rate (bits/sample) 

Figure 4.5: Comparisons for encoding the 512 X 512 "Lenna" image. 
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coder proposed in [69] (36.53 dB at 0.50 bpp), the adaptive entropy coded subband 

coder of Kim and Modestino [70] (35.98 dB at 0.48 bpp), and the hierarchical image 

coder of Shapiro [71] (35.97 dB at 0.50 bpp). In [72] and [3], PSNR's of 36.70 dB 

and 37.3 dB were reported at 0.55 and 0.59 bpp, respectively. When our system is 

simulated at these rates, PSNR values of 37.33 dB and 37.63 dB are obtained, for 

improvements of 0.63 and 0.33 dB, respectively. 
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We also conclude that the performance of our transform coder is quite compet

itive. Results of [73],[3], and [72] are superior to our transform coder. It should 

be pointed out however, that all three systems cited above are of high complex

ity, while the computational burden of our transform coder is fairly low. Unlike 

[73] and [3], we do not do any kind of intraframe adaptation and the quantization 

portion of our system requires only a small amount of computation [18]. 

4.5.3 Color image coding 

As in the transform coding case, the RGB planes are transformed into NTSC 

transmission primaries (Y, I and Q). Each NTSC component is decomposed into 

16 equal-sized subbands. The LFS for each component is encoded using a 2-D 

DCT encoder with a block size of 4 x 4. The subband coder proposed in [43] 

discards all HFS associated with the I and Q components while all subbands of 

the Y component are encoded. At the decoder, the chrominance components are 

restored to their original size by interpolation. 

We investigated the significance of HFS associated with the chrominance com

ponents both perceptually and in a MSE sense by implementing our wavelet coder 

in the following manner: 

1. All high-frequency sub-images of I and Q components were encoded 

(48B), 
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2. All high-frequency sub-images of I and Q components were discarded 

(18B). 

The performance of the two systems is approximately equal (both objectively 

and subjectively) at low encoding rates (::::: 0.25 bpp). This is as expected since 

even for the 48B system, the HFS receive zero encoding rates from the rate alloca

tion algorithm because of their very low variance. At high rates (::::: 1.0 bit/pixel), 

discarding the HFS associated with the chrominance components causes a signifi

cant drop in PSNR and effects the subjective quality of the encoded images in an 

interesting way. Without side-by-side comparison with the original, the encoded 

image from the 18B system looks extremely good. However, careful comparison 

with the original reveals that colors have a lighter, or "washed out" appearance. 

The 48B system does not suffer from this effect. Hence, in the simulations discussed 

below, the high-frequency subbands associated with the chrominance components 

were not discarded. 

Simulation results are presented in Table 4.3 for encoding the color version of 

the 512 X 512 "Lenna" image at three different encoding rates. For comparison, the 

performance of our ECTCQ/DCT coder is also shown. It is evident from this table 

that the PSNR performance of the wavelet coder is superior at all encoding rates. 

This comparison is not completely fair because the encoder in our ECTCQ/DCT 

system subsamples the chrominance components by a factor of 2 in each direction 

before quantization. 
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Table 4.3: Wavelet coding results for encoding the color "Lenna" image. 

Design bit rates 
System 0.25 0.5 1.0 

ECTCQ Obtained 
based bit rate 0.24 0.47 1.13 

wavelet coder PSNR 33.44 35.72 39.20 
ECTCQ Obtained 

based bit rate 0.25 0.49 1.0 
transform coder PSNR 30.98 33.01 34.82 

The subjective quality of the encoded images at all three rates is extremely good. 

In particular, the encoded image at 1.13 bpp is indistinguishable from the original. 

The encoded image at 0.47 bpp is extremely sharp and devoid of any annoying 

artifacts. Fuzziness and high-frequency background noise are totally absent even 

at an average encoding rate of 0.24 bpp. The encoded color "Lenna" image at 0.47 

bpp is shown in Figure A.6. 

4.6 Perceptual Weighting 

One of the most important objectives of an image coding system is to encode 

images in such a manner that coding distortions are not perceptible. To compress 

an image such that a human observer cannot perceive coding distortions is not an 

easy task. One must understand the psychophysics of the human visual system 

(HVS) very well to achieve this. It is known that the sensitivity of the human eye 

to perceive distortion is different for different spatial frequencies [74]. We make use 
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of this information in our sub band coder by perceptually weighting each subband 

according to the sensitivity of the human eye to the energy in that subband. We 

follow the ideas of Perkins and Lookabaugh [75] for calculating these weighting 

coefficients and modify the previously discussed rate allocation algorithm to incor:-

porate these coefficients. That is, instead of appropriately allocating among the 

data sequences to he encoded so as to minimize MSE given by Equation (4.23), the 

weighted MSE (WMSE), defined as 

K 

WMSE = L CtiWiPiEi(ri), (4.27) 
i=l 

is minimized subject to the constraint of Equation (4.24) where Pi is a perceptual 

weighting coefficient for the ith band. 

4.6.1 Calculation of weighting coefficients 

To determine the contrast sensitivity of the HVS, experiments using sinusoidal 

grating patterns were performed in [76]. Sinusoidal gratings are bars of fundamental 

frequency fo displayed against a background intensity Bo and oriented at an angle 

of 0 to the vertical axis. It can be represented as an intensity pattern by 

B(x,y) = Bo + k cos (21f10 (x cos 0 - ysin 0)) 

where k is the modulation level. For each fo with 0 = 0° and a fixed Bo, k was 

adjusted until the sinusoidal pattern becomes just visible. It was found that for a 

fixed value of fo, the visibility threshold depends only on the ratio k/ Bo and not 
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separately on k and Bo. The contrast of the grating is defined as the ratio k/ Bo. 

Threshold contrast is the contrast below which the grating is not visible. It is 

traditional to report the visibility threshold as contrast sensitivity (CS), where CS 

is the reciprocal of the visibility threshold. A typical plot of relative CS (normalized 

with the maximum value of CS) as a function of fo in cycles/degree is shown in 

Figure 4.6 for a vertical sinusoidal grating (0 = 0°). Many such curves exist in 

the literature [77]. The important result from these studies is that CS increases 

linearly from low-spatial frequencies until it reaches a maximum after which it falls 

of rapidly with increasing frequencies. A closed form expression for relative CS 

(RCS) obtained by Campbell and Robson in [76] and used in [75] is given by 

RCS = 0.6033c1.0110-1.18(loglo c)2 (4.28) 

where c is the frequency in cycles/degree. CS also depends on the orientation angle 

of the sinusoidal grating. Campbell, Kulikowski and Levinson [78] investigated the 

effect of orientation on the visual resolution of gratings and concluded that CS is 

maximum for horizontal and vertical gratings and decreases with the angle from 

either axis, to approximately 3 dB at an angle of 45. This conclusion was also 

found to be valid for the HVS [79]. [75] modeled this angular dependence using 

where 0 is the orientation angle in degrees and S is the angular sensitivity in dB. 
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Figure 4.6: Campbell and Robson's relative contrast sensitivity function. 
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The weighting factor for each subband is calculated using their corresponding 

center frequency. Consider a discrete, real-valued image of size M X N. Let the 

display device have a pixel size of ~x X ~y. The Fourier coefficient X(k,/) (0 $; 

k $; M /2,0 $; I $; N /2) corresponds to a cosine function with wavelength 

and 

Ix Ml~x 
() = tan-1 Iy = tan-1 Nk~y' 0 $; () ::; 45 

where Ix and Iy are the horizontal and vertical orientation frequencies. The algo-

rithm to calculate the weighting coefficients is summarized below. 

1. Calculate the wavelength ;\ and () corresponding to the center frequency 
of each subband. 
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2. C = ~d tan(1/2) where d is the distance between the observer and the 
monitor. 

3. S,,(,x) = -4.47,x2 + 8.86,x - 4.39 where,x = loge(c). 

4. SA(O) = -0.02220 - 0.00102 • 

5. S = S,,(,x) + SA(IJ). 

6. p = 105/ 20• 

On the monitor used to view images, a 512 X 512 image is of size 128 mmX 128 mm. 

Hence .6.,x = .6.y = 0.25 mm. We set the viewing distance to be 4 times the size of 

the image (i.e., d = 512 mm). We investigated the choice of weighting coefficients 

associated with the DeT bands by computing them in three different ways. They 

are 

1. All DeT bands were given the same weighting coefficient, the one cor-

responding to the center frequency of the LFS. 

2. Weighting coefficients for the DeT bands were found using the fact that 

a 4 X 4 block is of size 1 mm X 1 mm. For a viewing distance of d, the 

observers eye subtends an angle a given by (see Figure 4.7) 

Hence, a = 2 tan-l (1/1024) = 0.1119°. The function cos(1rk(~~+1)) will 

complete k cycles in N samples (and hence in aO). As a result, the 

frequency in cycles/degree is given by Ck = k/a = 8.9366k. Similarly, the 

value of C corresponding to the 2-D DeT coefficient Xdct(k, I) is given by 
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Figure 4.7: Figure used to obtain frequencies in cycles/degree for the DCT bands. 

c = J(8.9366k)2 + (8.93661)2 = 8.9366v'k2 + 12 while the corresponding 

angle is given by 0 = tan-1 1/k [73]. 

3. Frequencies obtained from method (2) were scaled in such a manner that 

the value of c corresponding to the highest-frequency nCT band is the 

same as the one corresponding to the highest-frequency DFT coefficient 

(X(127, 127)) in the LFS. The weighting coefficients corresponding to 

the scaled c's were calculated as before. Note that this scaling will not 

affect the calculation of O. 

The DC band was always given a weight of 1 because it determines the average 

intensity of the block. Subjective tests revealed that the encoded images obtained 

from using weighting coefficients from method (3) appear the best. We obtained 

PSNR values of 36.37 dB and 33.47 dB at encoding rates of 0.53 and 0.28 bpp, 

respectively from such a system. Comparing these results with those in Table 4.2, 

it is evident that perceptual weighting result in a small drop in PSNR values for 
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approximately the same encoding rate. At approximately 0.5 bpp, it was very dif

ficult to identify any improvement in perceptual quality due to weighting. This is 

not very surprising as the encoded images are of extremely high quality. However, 

at an encoding rate of approximately 0.25 bpp, the encoded image from the per

ceptually weighted system looks better. This improvement in subjective quality 

gets bigger as the encoding rates become even smaller. 

A primary effect of perceptual weighting is to emphasize low frequencies with re

spect to high frequencies. An image like "Lenna" has little high-frequency content. 

As a result, the effect of perceptual weighting might be exaggerated. We encoded 

the "baboon" image and an "Urban" image, both of which have significant high

frequency content, with and without perceptual weighting for "desired" encoding 

rates of 0.5 and 0.25 bpp. As before, the effect of weighting was very difficult to 

perceive at 0.5 bpp. However at approximately 0.25 bpp, encoded images from the 

perceptually weighted system were significantly better. The encoded version of the 

"baboon" image from the system with no perceptual weighting seem to suffer from 

"blocking" effects which was totally absent in the weighted version. 

Mannos and Sakrison [77] investigated the use of different contrast sensitivity 

functions in an image coding application and concluded that the function whose 

closed-form expression given by 

Res = 2.6[0.0192 + 0.114c]e-(O.114C)1.1 ( 4.29) 
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performs the best. This function has a peak at c = 8 cycles/degree while Camp

bell and Robson's [76] RCS function has a peak between 2 to 4 cycles/degree. 

We utilized the RCS function given in Equation (4.29) to calculate the weighting 

coefficients and simulated our system using these new coefficients. Subjective per

formance results revealed that the system utilizing RCS function in Equation (4.28) 

performed better. This contradiction could be due to the difference in viewing con

ditions as [77] made all its subjective judgment using photographs. 

4.7 Adaptive threshold coding 

None of the schemes we have implemented so far do any adaptation other than 

the bit allocation. It is very well known that statistics of a typical image change 

from one image block to another. Also, the required fidelity in reproduction for the 

human viewer changes from pixel to pixel. Visual sensitivity of human observers 

decreases at and adjacent to large luminance changes i.e., luminance edges. Hence 

it is highly desirable to design encoding techniques which are capable of adapting 

to local properties of an image according to the sensitivity of a human observer to 

perceive distortion. 

Visual masking is defined as the action of one visual stimulus on the visibility 

of another [80]. Studying the effects of visual masking have been an active area 

of research. Many spatial domain image coders have sprung up in the recent past 

which make use of visual masking effect of the HVS [80] -[84]. [80] proposed 
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different masking functions and subsequently used them for encoding images using 

DPCM. Recently, Safranek and Johnston [85] proposed a visual masking function 

than can be used with a subband coder. This masking function was obtained 

from extensive psychovisual experiments for a 16-band decomposition. Using this 

masking function, they were able to obtain an analytical expression to obtain an 

estimate of the just-perceptible distortion for each pixel in a given subband. They 

used DPCM to encode the image subbands. 

Subsequently, Baseri and Mathews [86] and Harris and Modestino [87] used the 

visual masking function proposed in [85] and quantized the image subbands using 

vector quantization and entropy-constrained scalar quantization, respectively. In 

this work, we propose an image coder which makes use of the masking function 

proposed in [85] to adaptively encode image subbands using ECTCQ. 

4.7.1 Visual masking function 

The visual masking function associated with the (i,j)th pixel in the kth subband 

is defined as [85] 

pt(i,j, k) = Base(k)Texenergy(i,j)o.o34Brightcorr(i,j) (4.30) 

where Base( k) is the root-mean-squared noise sensitivity threshold for the kth sub

band which was empirically measured and reported in [85]. 

It is very well known that humans are more sensitive to noise in the smooth 

regions than in textured regions. To make use of this property of the HVS, [85] 
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introduced a texture masking adjustment term which is a function of the "texture 

energy" at each pixel. Texture energy at the (i, j)th pixel is evaluated using 

15 

Texenergy(i,j) - L RCS(m)Energy(i,j, m) 
m=l 

+ RCS(O)Variance((i,j), (i + l,j), (i,j + 1), (i + l,j + 1)) 

where RCSO is the relative contrast sensitivity function, Energy(i,j, m) is the 

squared amplitude of the (i,j)th pixel in the mth subband and VarianceO is the 

variance of the 4 pixel intensities in the LFS whose locations are given in the above 

equation. 

Noise sensitivity experiments were done in [85] for an uniform background grey 

level of 127. As explained earlier, the ability of humans to perceive distortion is 

dependent on the image brightness. For example, noise in very dark areas of an 

image is less visible than in other parts. A brightness correction factor is included 

in Equation (4.30) to compensate for this dependence. This brightness correction 

factor was measured and presented in [85]. We have reproduced their curve by 

reading the coordinates off the graph and then obtaining a closed form expression 

using a polynomial fit. The original data along with the polynomial fit are shown 

in Figure 4.8. 

Note that the encoder in [85] employs a separable Generalized QMF bank for 

the subband decomposition while we use biorthogonal wavelet filter banks. Hence, 

a QMF correction factor should be included in Equation (4.30). However, to find 
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Figure 4.8: Brightness correction curve. 
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such a factor requires extensive psychovisual studies and hence, is beyond the scope 

of this work. 

4.7.2 Image coding 

The input image is decomposed into 16 equal-sized subbands. As before, the LFS 

is coded using a 2-D DCT encoder. An estimate of the just-perceptible distortion 

(perceptual threshold) is obtained for each pixel in a subband using Equation (4.30). 

It is obvious that if the pixel amplitude is less than the perceptible threshold, we 

need not encode that particular sample. The amplitude of that pixel can be made 

zero and the resulting distortion would still be imperceptible. 
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Table 4.4: Sample selection for encoding the 512 X 512 "Lenna" image. 

N umber of Samples less Number of Number of 
Subband than perceptual threshold blocks samples encoded 

LL-LL 58 1024 16384 
LL-LH 8981 976 15616 
LL-HL 5883 1012 16192 
LL-HH 12723 765 12240 
LH-LL 16293 62 992 
LH-LH 16195 99 1584 
LH-HL 16350 16 256 
LH-HH 16358 20 320 
HL-LL 15919 216 3456 
HL-LH 16346 28 448 
HL-HL 16229 87 1392 
HL-HH 16370 11 176 
HH-LL 16384 0 0 
HH-LH 16384 0 0 
HH-HL 16384 0 0 
HH-HH 16384 0 0 

Table 4.4 shows the number of samples in each subband which are below the 

perceptual threshold for the 512 X 512 "Lenna" image. From this table, it is ap-

parent that there exist subbands which need not be encoded. A side information 

of 1 bit/subband is required to notify which subbands are to be coded. 

Each subband is of size 128 X 128 if the original image is of size 512 X 512. 

Hence, if we are to directly transmit the location of each pixel in each subband 

which we wish to encode, it would require 14 bits/sample. This would require a 

huge amount of side information. To overcome this deficiency, we split each HFS 

into 4 X 4 sub-blocks. If in a sub-block there exist a sample whose magnitude is 
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greater than the perceptual threshold associated with that sample, then all the 

samples in that sub-block are encoded. We need to transmit which sub-blocks are 

encoded as a side information. Since there are 1024 blocks in each sub-image, it 

would require 10 bits to transmit the location of each-subblock directly. 

Table 4.4 shows the number of blocks that needs be encoded in each subband. 

Since there are 1024 block in each subband, we would need atmost 1024 bits to 

transmit this information. However, if the number of blocks is less than or equal 

to 102, then it is cheaper to transmit the location of sub-blocks that are encoded 

directly as it requires less than or equal to 102 X 10 = 1020 bits/subimage. 

Sometimes, it is cheaper to transmit which subblocks are zero-subblocks (sub

blocks in which all elements are set to zero). For example, from Table 4.4, it would 

take 1024 bits of side information for the LL-LH subband is we are to transmit the 

locations of the 976 blocks that are to be encoded while it would take only 480 

bits to inform which blocks are zero-subblocks. In the later case, we would also 

need 1 extra bit/subimage to notify if the transmitted index locations are for the 

zero-blocks. Total side information, including those for the mean, variances and 

the initial trellis-states, amount to 6423 bits which is approximately 0.03 bpp. 

We use an image-dependent distortion measure which is a function of the per

ceptual threshold at a given pixel in each subband. Let x be the amplitude of the 

(i,j)th pixel of the kth subband with pt(i,j, k) its corresponding perceptual thresh

old. Perceptual distortion pd(x,y) between x and y, the encoded version of x is 
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given by 

pd(x, y) = {Ix - yl2 - pt2(i,j, k)}U(lx - YI- pt(i,j, k)) (4.31) 

where UO is the unit-step function. Note that the perceptual distortion is zero if 

the magnitude of the quantization error is less than than the perceptual threshold. 

When pt(i,j, k) = 0, the perceptual distortion pd(x, y) is equal to the MSE be

tween x and y. Such a distortion measure has already been used for image coding 

applications in [81] and [87]. 

Simulations were performed for encoding the 512 x 512 "Lenna" image. Since our 

intention is to minimize the amount of perceptible distortion at a given encoding 

rate, we have chosen not to report PSNR results for this image coder. The encoded 

image obtained from the adaptive threshold coder at 0.35 bpp was comparable to 

the encoded ima.ge obtained from our non-adaptive wavelet coder at an encoding 

rate of 0.5 bpp. This is consistent with the results of Safranek and Johnston [85]. 
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In Chapter 1, a digital image communication system model was presented and 

the image coding problem was defined. Chapter 2 was devoted to reviewing the 

concept of Trellis Coded Quantization (TCQ). It was shown that, by employ

ing entropy-constrained TCQ (ECTCQ), near-optimal performance (in a rate

distortion theory sense) can be achieved for encoding memoryless sources at all 

encoding rates. 

We investigated the application of transform coding to encode monochrome 

and color images using TCQ in Chapter 3. Specifically, TCQ was used to encode 

transform coefficients resulting from applying a 16 X 16 discrete cosine transform 

(DCT) to 8-bit gray level and 24-bit color images. For the color images, the red, 

green, and the blue planes were transformed into NTSC transmission primaries (Y, 

I, and Q) before the nCT was applied. Both fixed-rate and entropy-constrained 

systems were considered. It was shown that entropy-constrained designs result in 

a low-complexity system with objective performance rivalling that of many coding 

schemes from the literature. 
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Chapter 4 dealt with image coding schemes based on ECTCQ and discrete 

wavelet transform (DWT). In this chapter, the concept of DWT was briefly re

viewed. The relationship between the classical subband filter banks and the wavelet 

filter banks were also discussed. Performance comparisons were made using a clas

sical quadrature mirror filter bank and 9-tap spline filters that were built using 

biorthogonal wavelet bases. It was concluded that the encoded images obtained 

from the system employing 9-tap spline filters appear the best although at the 

expense of additional computational burden. 

The subjective quality of the encoded images from the system employing 9-

tap spline filters was excellent. In particular, the encoded images at 0.5 bpp was 

extremely good with no visible artifacts even when viewed on a high-resolution 

monitor. The objective performance results of our wavelet coder were shown to be 

comparable to or surpass all previous results reported in the literature. 

It is known that the sensitivity of the human eye to perceive distortion is different 

for different spatial frequencies. We made use of this information in our wavelet 

coder by perceptually weighting each subband according to the sensitivity of the 

human eye to the energy in that subband. It is demonstrated that perceptual 

weighting improves the quality of the reconstructed imagery. 

Finally, we implemented an adaptive wavelet coder that makes use of visual 

masking functions to estimate the just-perceptible distortion for each pixel in a 
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subband. Using these estimates, an image-dependent distortion measure was in

troduced and subsequently used for coding image subbands using ECTCQ. The 

encoded image obtained from this adaptive coder at 0.35 bpp was found to be 

comparable to the encoded image obtained from our non-adaptive wavelet coder at 

an encoding rate of 0.5 bpp. The reconstructed image obtained from the adaptive 

system at approximately 0.5 bpp was almost indistinguishable from the original. 



Appendix A 

PHOTOGRAPHS 

Figure A.1: Monochrome "Lenna" i1nage (512 X 512). 

Figure A.2: Encoded in1age from transform coder (35.97 dB at 0.52 bpp ). 
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Figure A.3: Color '"Lenna" image (512 x 512). 

Figure A.4: Encoded color image from transform coder (33.01 dB at 0.49 bpp ). 
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Figure A.5: Encoded iinage frotn wavelet coder (36.61 dB a.t 0.48 bpp ). 

Figure A.6: Encoded color itnage from wavelet coder (35. 72 dll at 0.4 7 bpp ). 
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