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Figure 6.12: A single layer nonlinear perceptron that classifies an input vector into 
two classes denoted A and B. This perceptron divides the space spanned by the 
input into two regions separated by a hyperplane or a line in two dimensions. 

The probability density functions of the perceptron outputs are depicted in Figure 

6.11(b), and the detectability d is 2.483. As expected, the Hotelling observer is 

better in the sense of detect ability although its probability density functions partially 

overlap. 

Figure 6.13 shows the Hotelling discriminant A(X,y) when Figure 6.2 is applied, 

and the binary map, which is obtained by thresholding A(X,y), is depicted in Figure 

6.14. Figure 6.14 shows more true positives and less false positives caused by texture 

edges, compared to Figure 6.7. 

6.1.2 Classifying candidate jlCa++s 

In practice, the multiscale matched filter detects false alarms created by edges 

and other linear structures, as well as jlCa++s, as shown in Figure 6.7 or Figure 

6.14. Many false alarms can be eliminated by shape analysis. Figure 6.15 shows 
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Figure 6.13: This image shows the output when the Hotelling observer is applied to 
the input vectors v(x,y). 

a procedure for classifying the candidate pCa++s. To reduce the false alarms, we 

first detect the boundaries of the detected pixel regions. Marr and Hildreth [62] 

showed that one can obtain the positions of multiscale sharp variation points from 

the zero-crossings of the signal convolved with the Laplacian of Gaussian. 

The first step in zero-crossing edge detection is to smooth an image to remove 

discontinuities and small fluctuations. Then the second derivative of this smooth 

function is computed. It will have a zero crossing at the location of the edge. The zero-

crossings of a wavelet transform indicate the location of sharp variation points which 

corresponds to the edges in two dimensions, if the wavelet is the second derivative of a 

smoothing function, typically a Laplacian of Gaussian [24]. Hence, the boundaries are 
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Figure 6.14: This binary map image shows candidate pCa++s detected by Method 
#2. 
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Figure 6.15: A procedure for classifying candidate pCa++s. 
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Figure 6.16: Boundaries around the detected pixels. 

obtained easily from the zero-crossings locations in the LH + HL sub-bands, which 

corresponds to the result of convolution with 2D Laplacian of Gaussian functions. 

A pixel is considered a zero-crossing if the pixel value of the LH+HL sub-band is 

greater than or equal to zero, and it has at least one 8-connected neighbor with a 

value less than zero. The zero-crossing points are detected in LH + HL at each 

octave. These zero-crossings, however, may represent spurious edges as well as true 

edges. These false edges can be deleted by computing an approximation of the 

gradient magnitude at each zero-crossing. In other words, true edges will be more 

likely to have large gradient magnitudes, while the gradient magnitude of false edges 

is small. To remove false edges, the computed gradient magnitudes are thresholded 
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Figure 6.17: The detected regions whose boundaries are closed are classified as true 
positives. 

at some fixed histogram percentile. Figure 6.16 shows the zero-crossing points around 

the potential JLCa++s given in Figure 6.14. JLCa++s are usually circular and their 

boundaries are rounded. 

To discriminate between JLCa++s and false alarms, we first search for a precise 

closed boundary of a possible JLCa++ at each candidate JLCa++ site. When we find 

such a boundary, we refer to the resultant object as a true positive. Figure 6.17 

represents the closed edges detected from the above edge map using a chain coding 

technique [64]. The remaining edge map without closed edges is given in Figure 6.18. 

The straight edges shown in the upper right and lower left of Figure 6.18 should 

be removed because they are caused by the linear structure of normal breast tissue. 
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Figure 6.18: The remaining edges without closed boundaries. 

At each boundary, both end points are searched. The boundary is regarded as a 

straight edge and removed if the distance between two end points is long compared 

to its length. Figure 6.19 represents the edge map in which the straight edges are 

removed using the chain coding technique. 

Then, a circularity measure for each boundary is computed and those detected 

regions falling below a threshold (determined by training using the database) are 

discarded. Given the position vector a = (at, a2) and a radius r, the circularity of 

the boundary for the triplet (at, a2, r) is defined as the number of edge pixels on 

a circumference at radius r about a. This technique is called the Hough transform 

[64]. Triplets (at, a2, r) with high circularity values are selected as true positives if 
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Figure 6.19: The edges caused by long, linear structure are removed. 

the radius r is in the range of 1 to 5 pixels. The output image after applying the 

Hough transform is given in Figure 6.20. 

To remove more false positives, a phase distribution feature is calculated from the 

regions detected by the Hough transform. Figure 6.21 shows the region of support of 

phase distribution. Phase distribution p(i,j) [67] is depicted as 

(
' ') _ E(k.IlERcos lJ(k,l) 

P Z,J - N , (6.12) 

where (i, j) is the location of the center of the region detected by the Hough transform, 

and N is the number of pixels in the region of support R. The variable O( k, I) is defined 

as the angle between a gradient vector at (k, l) and the straight line connecting pixels 

at (i,j) and (k,/). The term cosO(k,/) is a measure of convergence of the gradient 
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Figure 6.20: A circularity measure IS applied. The white regions are detected 
jlCa++s. 

gradient vectO~'k"1 

(i, j) 

center pixel 

Region of support R 

Figure 6.21: The region of support which corresponds to the detected pixel region. 
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(a) Circular shape. (b) Line edge. 

Figure 6.22: Phase distribution patterns of gradient vectors. 

vector upon the pixel of interest and p(i,j) is the average convergence of gradient 

vectors in the region of support. It is bounded between -1 and 1. If it is close to 

1.0, it means that almost all gradient vectors in the region of support point to the 

same point. This can happen near the center of pCa++s, as shown in Figure 6.22(a). 

On the other hand, the gradient vectors do not converge to a particular point if a 

local high density area is long and slender as shown in Figure 6.22(b), and p(i,j) for 

such shapes can not be large. The feature p(i,j) is sensitive not to long and slender 

shapes but to rounded local high density regions. Among the regions detected by the 

Hough transform the regions whose p(i,j) are below some threshold are picked out, 

as shown in Figure 6.23. 

The final detected pCa++s, shown in Figure 6.24, are obtained by adding the 

closed edges shown in Figure 6.17 to the regions detected by the Hough transform 

and phase distribution shown in Figure 6.23. By comparing Figure 6.24 with Figure 

6.14, we see that many false positives are removed after applying the circularity 

measure technique. 
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Figure 6.23: Among the regions detected by the Hough transform the regions whose 
p( i, j) are below some threshold are eliminated. 

To see how well the Hough transform works, it is applied to a subimage containing 

elongated jlCa++s as well as circular jlCa++s. Figure 6.25 shows the results at each 

step. As expected, circular jlCa++s can easily be detected by the Hough transform 

because it is tuned to detect circular shapes. The Hough transform is related to 

template matching and is used to match the simple analytic form or known shape. 

Although, as stated earlier, the average jlCa++ is assumed to be circular, individual 

jlCa++s may be elongated or curved. So, the Hough transform is inappropriate 

for detecting jlCa++s of arbitrary shape. However, if we assume that elongated or 

curved shapes can be modeled as a chain of circles, the Hough transform can be 

applied by modifying the algorithm. In other words, it is regarded as detected, if the 
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Figure 6.24: The final detected jlCa++s obtained by adding the closed edges shown 
in Figure 6.17 to the regions detected by Hough transform and phase distribution 
shown in Figure 6.23. The outlined regions correspond to detected sites with closed 
boundaries. The filled-in regions originally had open boundaries but later passed a 
shape test. 
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Figure 6.25: The output images at each stage. Upper left LH + HL image of octave 
2, Upper right Zero crossings around the detected pixels, Lower left Zero crossings 
with edges caused by linear structure removed. Lower right Hough transform output. 

sum of circularity measures of adjacent points is far above a threshold although each 

of them falls below the threshold. An elongated shape is detected as a superposition 

of several circles, as shown in the lower right of Figure 6.25. 
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segmented llIicrocalcificationa 

Segmentation process 

Figure 6.26: Segmentation process. 

6.2 Segmentation process 

If segmentation of pCa++s is desired, and since matched filter detectors do not 

preserve pCa++ shape, the following step is required. First, each details sub-band 

is nonlinearly mapped to achieve multi scale contrast enhancement. The nonlinear 

mapping function is given as 

f(x) = a[max. sigm(b(x - c)/max) + min· sigm(b(x + d)/min)] 

where sigm(x) is defined by 

sigm(x) = 1 1 , + e-X 

(6.13) 

(6.14) 

a controls the gain of details images, max and min are the maximum and minimum 

values of each details sub-band, and c, d and b control the threshold and rate of 

enhancement, respectively [76]. 



118 

The wavelet coefficients corresponding to dilated circular regions centered at each 

detected pixel site are further weighted (typically by 7); then a straightforward in­

verse wavelet transform of the LL image from octave 4 and the detection-enhanced 

details subimages from octaves 1 through 4 reconstructs the original mammogram 

with detected J.LCa++s visible. A procedure for segmenting the detected J.LCa++s is 

indicated in Figure 6.26. Figure 6.27 shows the dilated version of the final map of 

detected pixels, the reconstructed mammogram with detected J.LCa++s highlighted 

and the segmented J.LCa++s when the mammogram given in Figure 2.4 is applied. 

This form of output may be useful where further viewing by the radiologist is re­

quired, since the context of the detected pixels within the breast will probably be 

required for diagnosis purposes. Alternatively, the smooth subimage may be omit­

ted in computing the inverse transform, leaving an image containing only suspected 

J.LCa++s. The diameter of the circular weighting region increases with octave, and 

hence object scale. 

Experimental results of this nonlinear algorithm are described in the next chapter. 

Performance resulting from tests on a set of 40 digital mammograms is presented 

in the form of a free-response receiver operating characteristic (FROC) curve, and 

examples of reconstructed calcifications are shown. 
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Figure 6.27: (a) Dilated version of the final map image. (b) Reconstructed mammo­
gram with detected j.tCa++s highlighted. (c) Segmented microcalcifications. (Origi­
nal image is shown in Figure 6.2.) 
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CHAPTER 7 

Experimental Results 

We have tested our detection algorithms on the Nijmegen database of 40 mam­

mograms[lO]. Each mammogram contains at least one J.lCa++s cluster verified by 

radiologists. Since individual J.lCa++s are not usually a warning sign in breast can­

cer, only clusters of J.lCa++s need to be detected. Although the mammograms were 

digitized to arrays of 2048 x 2048 pixels, they are reduced to 1024 x 1024 to re­

duce processing time. This is done by manually cutting out parts of the image that 

contains at least one J.lCa++s cluster. Regions of film outside the breast tissue were 

identified by hand and not processed. The free-response receiver operating charac­

teristic (FROC) curves in Figure 7.1 were generated by counting true positive (TP) 

and false positive (FP) clusters for each mammogram while varying the threshold 

applied to the sub-band images. The FROC curve is a graph of the percentage of 

TP clusters found versus the average number of FP clusters per image detected. So, 

it is sufficient only to glance at the FROC curve to see what percentage of TP are 

detected and how many FP clusters there are, if one is viewing an output image and 

wants to know how accurate it is. 

The program code for the FROC testing is obtained from Karssemeijer. It reads 

in a binary image that contains the location and shape of the clusters. Then each of 
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Figure 7.1: Cluster detection performance measured on 40 mammograms. 
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the pCa++s is thinned to one pixel, then it searches for the circular region known 

to contain a cluster and counts the number of pixels found in the region. If there 

are two pCa++s or more in a region, a TP is returned for that cluster. The process 

is repeated for each cluster. Any pCa++ clusters found outside the true positive 

regions are FPs. 

Figure 7.1 shows that the performance of the method #2 which uses a Hotelling 

observer is slightly better than that of method #1. The improved FROC curves are 

obtained by using object shape to reduce false positives caused by linear structure, 

for both methods. The best performance can be obtained when the method #2 is 

used to detect candidate pCa++s, followed by shape analysis. 
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As stated earlier, each image in the database contains an average of two clusters. 

However, one pair of images, numbered 120 (oblique) and 12c (craniocaudal), con-

tains a total of 28 clusters, which is approximately 27% of the total. Furthermore, 

many of these clusters are closely grouped or partly overlapping, and many IlCa++s 

fall outside the truth circles marked by the radiologists. These IlCa++s are often 

detected, resulting in a higher false positive rate, and an overall drop in FROC per-

formance. To demonstrate the impact of the images numbered 12c and 120, Figure 

7.2 also shows an FROC curve computed when these images were omitted from the 

test. Examples showing IlCa++s reconstructed by the second, segmentation step are 

given in Figure 7.3. 
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Notice that, although the matched filter is predicated on circular jlCa++s, the 

segmentation process is able to reconstruct jlCa++s of arbitrary shape. This can 

be explained as follows. The matched filter, although designed for detecting objects 

of Gaussian shape, nevertheless produces a significant peak response to objects of 

similar shape and of the same size as the Gaussian. However, the shape of the 

matched filter response is not an estimate of the object; it is the location and height 

of the peak value that is significant. Hence, when thresholded, the matched filter 

output is typically smaller than the object to be detected. By dilating each detected 

pixel, we effectively "cast a net" encircling that location to find the object responsible 

for the output peak at that point. This process of weighting circular regions centered 

on detected pixels is analogous to filtering in the Fourier domain, except that the 

wavelet transform occupies a domain whose coordinates are space and scale. One 

example shown here (image 7c) contains elongated calcifications. That these are 

recovered by our approach can be explained by noting that fine, linear structures 

may in some cases be modeled by superposing Gaussian functions of appropriate 

scale along a line or curve. To justify the inverse wavelet transform stage we present 

a close-up example of segmented jlCa++s in Figure 7.4. The calcification boundaries 

generated by the second, segmentation step are visibly more accurate than those 

present in the detected pixel map created by the first stage. 
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Figure 7.3: Four examples of micro calcification clusters reconstructed using the com­
plete algorithm shown in Figure 6.1. (a) Original mammogram. (b) Hough trans­
formed output. (c) Reconstructed mammogram with detected microcalcifications 
highlighted. (d) Segmented micro calcifications. 
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Figure 7.4: Close-up view of a cluster showing that microcalcifications are more ac­
curately segmented when the second stage processing is implemented (weight/inverse 
wavelet transform/threshold) (b), compared to the detected pixel map (c) generated 
by the first sta.ge. The original mammogram section is in (a). 
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CHAPTERS 

Summary 

We have developed wavelet-based algorithms for detecting ILCa++s of varying size 

in mammograms. Our work has been reported in [31], [68] - [72]. With an appropriate 

choice of wavelet basis the undecimated wavelet transform with inter-octave voicing 

can be a useful tool for detecting ILCa++s in digitized mammograms. The method 

uses multiscale matched filters designed for detecting Gaussian objects in correlated 

Markov noise. We assume that individualILCa++s possess similar rounded profiles. 

We further simplify their profiles as a Gaussian signal. 

Under the assumption of a known object in stationary background noise, an opti­

mum detector can be derived, namely, the pre-whitening matched filter(PWMF)[13]. 

Even when noise is nonstationary, a spatially-adaptive filter may be used [28]-[31] to 

create a significantly decorrelated and more homogeneous background. In these cir­

cumstances we have shown that the PWMF is useful, although non-optimum, when 

applied to pre-processed gamma-ray images. The shape of the PWMF for a simple 

Gaussian object in stationary noise is similar to that of the second derivative of Gaus­

sian with its characteristic positive center lobe surrounded by a smaller negative lobe, 

as shown in section 3.3. Thus, we expect that wavelets of form akin to the second 
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derivative of a Gaussian approximate multi-scale, pre-whitening matched filters as 

they compute the details sub-bands of the various octaves. 

Our recognition algorithm is composed of two major process: detection and seg­

mentation. The purpose of the detection process is to find the candidate IlCa++ 

locations within the breast region, and then classify the potentiaIIlCa++s into true 

and false positives. Two methods have been proposed to find the potentiaIIlCa++s 

within the breast region. One method uses the details sub-bands HH and LH + HL 

from each octave, which are thresholded at some fixed percentile of the histogram of 

each component. The detected binary images from all octaves are then logically ORed 

to yield the binary map of detected pixels. The other method employs a Hotelling 

observer. The input vectors needed to apply the Hotelling observer to detect can­

didate IlCa++s are defined using the wavelet coefficients from each octave. Since 

the procedure to compute the Hotelling discriminant is similar to the prewhitening 

matched filtering, this method can be modeled as concatenating two matched filters. 

Better performance is obtained from this method. The detected potentiaIIlCa++s 

are classified to reduce the false alarms by analyzing their shape. 

The classical matched filter used in communications receivers makes no attempt 

to recover the shape of the incoming signal. Likewise, while the first (detection) stage 

of our method detects the presence of IlCa++s, it does not accurately segment them. 

However, by weighting the details sub-bands at the sites of detected pixels followed 

by computing the inverse wavelet transform we achieve a reasonable segmentation 
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of fLCa++s outlines. The effectiveness of the technique is constrained by certain 

approximations and assumptions. For example, adopting the Gaussian object model 

prevents us from optimally detecting anything but an average fLCa++s at any given 

scale. The detection performance of the method has been tested by computing FROC 

curves using the Nijmegen database of 40 mammograms. Several qualitative examples 

of segmentated clusters are presented as evidence that fLCa++s of varied shape can 

be recovered. 

The method requires computing one 4 octave wavelet transform, one 3-octave 

wavelet transform (for the inter-octave voices), and one inverse wavelet transform if 

accurate fLCa++s segmentation (as opposed to just detection) is desired. Efficient 

wavelet transform techniques are employed throughout. In practice we notice little 

drop in detection results when we omit the contributions from HH and LH+HL in 

octaves 1 and 4. Hence octave 4 need not be computed, whereas octave 1 is required 

in the sub-band decomposition. Octaves 2, 2.5, 3 and 3.5 are required to obtain best 

performance at the working resolution of the Nijmegen database. Further work is 

needed to ascertain the optimum sampling of this scale range. 

The weighting factor applied during the reconstruction stage influences the con­

trast of the segmented fLCa++s relative to the background. We currently use a factor 

of 7. The smaller the value used, the more noticeable the background breast texture 

appears, and vice versa. As stated earlier, we usually omit the LL component in the 
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final reconstruction, unless the context of the large scale breast structure is deemed 

to be valuable in a given situation, such as for viewing by a radiologist. 

The proposed method is founded on the principles of optimum detectors (matched 

filters); furthermore, the analysis/synthesis paradigm of the wavelet transform is 

elegant, simple to implement. In addition, the wavelet basis used here, being close 

to the Laplacian of Gaussian, provides useful zero-crossing information in the details 

LH + HL sub-bands which could be applied to the suppression of false edges and 

lines. Many false positives are removed by analyzing the shape of the detected pixels 

through the edges. 

The basic matched filtering / probability summation method attains a TPF of 

55% at a false positive rate of 0.7 clusters per image. Introducing shape discrimina­

tion improves the TPF to 70% at the same false positive rate as above. The Hotelling 

observer method has slightly better performance, achieving a detection rate of 73%. 

When the images 12c and 120 are omitted, even better performance of 81% is ob­

tained. 

8.1 Future Directions 

This method affords the potential for future enhancements of the basic approach. 

For example, the sub-bands could also be scanned for, and weighting applied to, 

clusters of detected pixels, prior to the inverse wavelet transform step. (The current 

method applies equal weight to all detected pixels, whether isolated or clustered.) 
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We will be able to improve our method further by: (1) using a neighborhood 

interaction mechanism which disallows detected pixels from regions containing both 

calcifications and linear structure, and (2) rewarding detected pixels which occur 

in local clusters. Action (1) will reduce the number of false positives due to long 

strands of connective tissue, and action (2) will tend to eliminate many isolated false 

detections. 

As well, future work will address the potential of using multiple wavelet bases 

for computing multiple forward wavelet transforms. The idea here is that differ­

ent wavelets may target different object classes. For example, a given wavelet may 

be more appropriate for enhancing the background texture in mammograms. By 

combining sub-bands from the multiple transforms it is conceivable that background 

structures could' be favorably suppressed. Significantly, only one set of sub-bands 

needs to be involved in the reconstruction (inverse wavelet transform) stage. 
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Appendix A 

Receiver Operating Characteristic Curve 

This appendix provides the details of the ROC curves used for the performance 

evaluation of the wavelet transform and the matched filters in Chapter 5. 

The most elementary situation in the detection theory involves discrimination 

between two hypotheses, Hand K, based on a single observation or realization x of 

a random variable X; that is, 

H: hypothesis on the observation x, e.g. X = N 
(A.l) 

K: alternative hypothesis on x, e.g. X = N + s. 

Here we assume that N is a noise random variable, s is a signal to be detected 

and X is the observation random variable. Given x, a realization of X, we need to 

decide whether x belongs to HoI' K, namely, "signal absent" or "signal present". In 

order to accomplish this task, we need a decision rule d = d( x). The decision rule d 

= d( x) partitions the X space 0 = {x E X} into two disjoint regions OH and OJ(, 

Then we can commit such errors as deciding for K when H is true. These errors 

are often called false alarms. The probability of false alarms can be written as 
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false positive fraction 1 

Figure A.l: Receiver operating characteristic curve for some particular detector. 
Points A, Band C correspond to different decision thresholds. 

The probability of the correct detection of J( is 

(A.3) 

where dJ( represents a decision for J( and PH(X), pJ«(x) are a posteriori conditional 

densities of the random variable X under Hand J(, respectively. 

Then the detector performance can be measured by examining (3 as a function 

of the threshold, 0: as a function of the threshold, and (3 as a function of 0:. This 

is called a receiver operating characteristic or ROC curve, as illustrated in Figure 

A.I. 
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In some cases where PH(X) and P[((x) are not known, it is very difficult to compute 

Q, f3 and thus, the ROC curve. Under this situation, we can estimate Q and f3 in the 

following way. 

We first define some terminologies, namely, true positives (TP), when we correctly 

decide for J( when J( is true, true negatives (TN), when we correctly decide for H 

when H is true, false positives (FP), when we incorrectly decide for J( when H 

is true, and false negatives (FN), when we incorrectly decide for H when J( is 

true. Suppose that N observations are made, with NTP of them being true positives, 

NTN true negatives, NFP false positives, and NFN false negatives. Then Q can be 

estimated as 

Q IV False positive fraction(F P F) 

(Number 0/ false positive decisions) 
(Number 0/ actually negative cases) 

Nep 

Likewise, f3 can be obtained by 

f3 IV True positive fraction(T P F) 

= 

= 

(Number 0/ true positive decisions) 
(Number 0/ actually positive cases) 

Nxp 

(AA) 

(A.5) 

We can compute ROC curve by plotting TPF vs FPF, with various points along 

the curve obtained simply by varying the decision threshold. The imaging system, 

the input object, and the viewing conditions should be held constant for a particular 

curve. 
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ROC curves are very important measures to analyze the performances of the 

different detectors as shown in Figure A.2. An ideal detector would give no false 

positives until all true positives are detected. Its ROC curve would therefore hug the 

left and top edges of the graph, something like curve IV in Figure A.2. On the other 

hand, if the ROC curve would be the diagonal line from lower left to upper right, 

this detector simply guesses whether the object is present, not using any information. 

Thus the amount by which the ROC curve bows away from the diagonal and towards 

the upper left-hand corner is a measure of the performance of the detector, at least 

for the simple binary detection experiment for which the ROC curve was computed 

[65]. 
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Figure A.2: ROC curves for four different detectors. System IV is the best, system I 
is the worst for this detection task. 
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This appendix provides the details of a Hotelling observer whose strategy is based 

on the discrimination theory proposed in the early 30's by three eminent statisticians 

Hotelling, Fisher and Mahalanobis. 

Starting with different practical problems, their theories more or less converge to 

answer a common question: How to quantify the discrimination of two population 

distributions? Hotelling and Mahalanobis each suggested a figure of merit, later 

known as the Hotelling Trace and Mahalanobis Distance, respectively, to measure 

statistical distance between the two distributions. Equivalently, Fisher derived an 

optimum linear discriminant that maximized the statistical distance [73][74]. 

In order to separate several clusters well, the difference between the center points 

of the clusters should be large compared to the standard deviation for each cluster. 

Hotelling proposed a quantity called "Hotelling Trace" which is a scalar that 

measures the separability of two or more clusters in the sample space. The Hotelling 

Trace is defined as 

(B.l) 

where Sw and SB are matrices that describes the scatter characteristics of these 

clusters. 
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If mi is the sample mean of ith cluster given by 

(B.2) 

then the "within-class" scatter matrix Sw is defined as 

N 

Sw = I: Pi < (x - mi)(X - mif >, (B.3) 
i=l 

where N is the number of clusters, Pi represents a priori probability of occurrence of 

the ith cluster and < > means an average operation. Sw, which is proportional to the 

covariance matrices of the clusters, indicates the average scattering of the clusters. 

On the other hand, the "between-class" scatter matrix SB is defined as 

N 

SB = I:Pi(mi - me)(mi - mef, 
i=l 

where me represents the average over the whole clusters given by 

N 

me = I:Pimi. 
i=l 

(BA) 

(B.5) 

SB, an average distance between each cluster center mi and the center of whole 

clusters, represents the relative distance between the clusters. 

The Hotelling Trace, expressed by two scatter matrices, measures the separability 

between the clusters. This is proportional to the distance between the clusters. The 

feature operator w is obtained so that the Hotelling Trace J has a maximum. The 

"Hotelling Discriminant" is then defined as the linear function w T x. 
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If we assume that there are two clusters of samples with equal a priori probability 

(PI = P2 = !), then the scatter matrix SB reduces to 

SB = Hml - m2)(ml - m2)T, 

and the Hotelling Trace J can be written as 

Since (ml - m2)Siil(ml - m2)T is a scalar, the above equation reduces to 

(B.6) 

(B.7) 

(B.8) 

This Hotelling Trace J satisfies the eigen value equation of the matrix SiilSB' In 

other words, it can be expressed as 

(B.9) 

which is a generalized eigenvalue problem. By substituting the expression for J given 

in (B.8) into (B.9), the above equation can be written as 

~Siil(mi - m2)(ml - m2)Tw = ~w(mi - m2)SH>(ml - m2)T, 

and the eigenvector satisfying the above equation has the form 

Thus, the Hotelling discriminant>. can be computed in the following way, 

>. _ uT • X 

= (mi - m2)SH> . x. 

(B.I0) 

(B.ll) 

(B.12) 
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The inner product of x with S", functions as a prewhitening operator, while that 

of the prewhitened x with ml - m2 is equal to the matched filter. This is similar to 

the prewhitening matched filtering operation, as shown in Figure 6.9. 
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