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ABSTRACT

We consider steady state unsaturated flow in bounded randomly heterogeneous soils

under influence of random forcing terms. Our purpose is to predict pressure heads and

fluxes and evaluate uncertainties associated with these predictions, without resorting to

Monte Carlo simulation, upscaling or linearization of the constitutive relationship

between unsaturated hydraulic conductivity and pressure head. Following Tartakovsky et

al. [1999], by assuming that the Gardner model is valid and treating the corresponding

exponent a as a random constant, the steady-state unsaturated flow equations can be

linearized by means of the Kirchhoff transformation. This allows us develop exact

integro-differential equations for the conditional first and second moments of transformed

pressure head and flux. The conditional first moments are unbiased predictions of the

transformed pressure head and flux, and the conditional second moments provide the

variance and covariance associated with these predictions. The moment equations are

exact, but they cannot be solved without closure approximations. We developed their

recursive closure approximations through expansion in powers of ay and Gp, the standard

deviations of Y = lnK, and 13 = lna, respectively, where IC, is saturated hydraulic

conductivity. Finally, we solve these recursive conditional moment equations to second-

order in Gy and Gp, as well as second-order in standard deviations of forcing terms by

finite element methods. Computational examples for unsaturated flow in a vertical plane,

subject to deterministic forcing terms including a point source, show an excellent

agreement between our nonlocal solutions and the Monte Carlo solution of the original
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stochastic equations using finite elements on the same grid, even for strongly

heterogeneous soils.
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CHAPTER 1

INTRODUCTION

1.1 SCALE ISSUES AND SPATIAL HETEROGENEITY

Geological materials are ubiquitously heterogeneous. Even within a given soil type, the

hydraulic properties may vary significantly in space [Warrick and Nielsen, 1980]. As a

result, soil properties that enter as input parameters to water flow and solute transport

equations may exhibit spatial variability or heterogeneity. Hydraulic properties exhibit

spatial variations on various scales: in the laboratory due to variations in pore size and

pore geometry; in the field due to soil stratification; and on a regional scale due to large-

scale geological variability. Theories of flow and solute transport through porous media

are typically based on, and supported by, laboratory experiments. Therefore, we

encounter a scale problem when applying these theories to field situations in which

heterogeneities appear on a larger scale. Two approaches have been used to address this

issue in a vadose zone context: a system approach and a physically-based approach. In

the system approach, the vadose zone is treated as a black box whose governing principle

is determined by the relationship between available input and output records [Jury et al.,

1986]. The physically-based approach relies on the upscaling of laboratory experimental

results to various field scales of interest.

At the pore-scale, fluid flow is governed by the Navier-Stokes equation. However,

it is neither practical nor necessary to describe flow in all individual pores of the medium

mathematically; in practice, one is interested mainly in average (macroscopic)

descriptions of flow over volumes of the medium that allow measurement of

phenomenological parameters and system states. Details of flow on scales smaller than

such support volumes are ignored. Phenomenological parameters and states measured or

defined on support volumes are associated with a mathematical point at the center of the

volume and considered as functions of space, defined over a continuum of such points.
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Heterogeneity depends on the size of the support volume. Soil properties

measured on a small support scale may exhibit rapid (high frequency) and large (high

amplitude) spatial variations. In a statistically homogeneous medium, these variations

decrease in amplitude and frequency as the support volume increases. In such a medium,

it may sometimes be useful to speak of a Representative Elementary Volume (REV) at

which the variations are smooth enough to disregard their statistical character. In general,

however, natural soils and rocks tend to be statistically non-homogeneous and the

concept of a REV loses its utility. Even in statistically homogeneous media, REVs are

often difficult to define and may differ (sometimes substantially) from the support

volumes of available data. We will therefore base our discussion on the idea that data are

available on a given support scale which is not necessarily an REV, and that the flow

equations must describe phenomena on the same scale so as to be compatible with the

data.

A rigorous analysis of water flow and solute transport in partially saturated media

should consider the simultaneous movements of water and air. Often, the movement of

air can be ignored when one is interested mainly in the flow of water. Our interest centers

on steady state water flow in a variably saturated soil that is governed by

V •[K(x,w)V(w(x)+ x3)] = x E S2 (1-1)

The unsaturated hydraulic conductivity K(x, w) in (1-1) varies with location and the

pressure head w (or, equivalently, water content or saturation). Mathematical formulae

[Brooks and Corey, 1966; Mualem, 1976; van Genuchten, 1980] are typically employed

to describe its dependence on pressure head or water content. One popular formula is the

exponential model of Gardner [1958],

K(itt ). Ks exp( my) (1-2)

where Ks is saturated hydraulic conductivity and a is a pore-size distribution parameter.

Gardner's model often fails to reproduce adequately measured relationships between K

and w over the entire range of saturations [Russo, 1988]. Zhang et al. [1998] developed

and compared one-dimensional flow solutions for gravity-dominated flow in second-
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order stationary media using Brooks-Corey and Gardner-Russo models. They found that

the two models yield significantly different mean head and mean effective water content

at extreme values of saturation (dry and wet), but rather similar values at intermediate

saturations. They also found that the Brooks-Corey model has certain advantages over the

Gardner-Russo model. The Gardner model is nevertheless appealing due to its relative

simplicity, which has made it a favorite among analysts of unsaturated flow in randomly

heterogeneous soils.

In addition to its simplicity, the main reason for adopting Gardner's model in this

dissertation is that it allows one to preserve constitutive nonlinearity when one uses the

Kirchhoff transformation to solve a stochastic version of (1-1). For this, one must define

a as a space-independent random constant. Tartakovsky et al. [1999] justified this

assumption on the basis of published data concerning the spatial variability a. Treating a

as a random constant allowed them to develop exact conditional first and second moment

equations for stochastic steady state unsaturated flow, which have integro-differential

forms similar to those developed for steady state saturated flow by Neuman and Orr

[1993a,b], Neuman et al. [1996], and Guadagnini and Neuman [1997, 1998, 1999a,b].

Upon imposing a limitation on the variability of a, they were able to solve these

stochastic moment equations analytically with the aid of the Kirchhoff transformation.

The following several paragraphs regarding the variability of a are mainly based on

Tartakovsky et al. [1999].

Whereas many studies have been done about the spatial variability of Ks [for

example, Byers and Stephens, 1983; Sudicky, 1986], relatively few studies have

concerned themselves with the spatial statistics of a [Reynolds and Elrick, 1985;

Greenholtz et al., 1988; White and Sully, 1987, 1992; Unlii et al. , 1990; Russo and

Bouton, 1992; Ragab and Cooper, 1993a, b; Russo et al., 1997]. Unlike Ks that can be

measured directly, the soil parameter a can be determined only by indirect methods.

These include least square analyses of measured unsaturated hydraulic conductivity

[Russo 1983, 1984a; Unlii et al ., 1990] or water retention [Wierenga et al., 1991],

sorptivity measurements [White and Sully, 1992], and inversion of infiltration
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measurements [Russo and Bouton, 1992]. All these studies find both K, and a to be log-

normally distributed except Unlii et al. [1990] who found a to be approximately normal.

White and Sully [1992] attributed the lognormality of both K, and a to the dependence of

both parameters on the internal pore structure of the soil.

Values of a appear to depend strongly on soil texture and vegetation. White and

Sully [1987] found a to range from 0.05cm1 for clay to 0.71cm -1 for gravely loam fine

sand; Ragab and Cooper [1993a, b] reported ranges of 0.15 - 1.34cm-1 for grassland,

0.36-0.37cm -1 for woodland, and 0.28 - 0.89cm1 for arable land. The variance of lna

can be either large or small relative to that of lnKs, depending on the study. Unlii et al.

[1990] reported variances of Ina in the range 0.045-0.112, compared to a range of 0.391-

0.960 for the variance of lnKs . Russo et al. [1997] found the variance of Ina to be on the

order of 0.425, compared to 1.242 for InK,. According to Russo and Bouton [1992] and

White and Sully [1992], the variances of ma and InK, are of similar orders. Ragab and

Cooper [1993a, b] found the variance of Ina to exceed that of lnKs . Both the latter

authors and Russo [1992] reported large coefficients of variation for lna.

There is no agreement on the correlation scales of lnK, and Ina, and cross-

correlation between these two parameters. Russo and Bouton [1992] reported that the

estimated correlation scales of lna in both vertical and horizontal directions were

approximately 3 times smaller than the respective correlation scales of K,. The Ina data

of Unlii et al . [1990] exhibit a larger spatial auto-correlation scale than that of in&

Ragab and Cooper [1993a,b] found a lack of cross-correlation between lna and lnK, in

all three soil types they have investigated. Russo and Bouton [1992] reported weak cross-

correlation (p----- 0.3) between lnK, and lna, and treated them as independent (and thus

uncorrelated) random functions based on experimental evidence due to Russo [1983,

1984]. They ascribed such lack of cross-correlation to the fact that, in field soils, K, is

controlled by structural (macro) voids, while a is controlled by the entire continuum of

pore sizes. Weak cross-correlation was reported also for the Las Cruces trench site

[Wierenga et al. 1991]. On the other hand, Russo et al. [1997] found lna and lnK, data to
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exhibit a moderate correlation coefficient of 0.68, while Unlii et al . [1990] reported a

correlation coefficient as high as 0.80.

Considering the above findings, Tartakovsky et al. [1999] felt comfortable

treating both IC, and a as being log-normally distributed. They also felt comfortable

disregarding cross-correlations between Ks and a, and their logarithms, as these

correlations are week in the majority of soils examined to date. The same approach is

adopted in this study.

1.2 STOCHASTIC ANALYSIS

The characterization of heterogeneity requires information about the hydraulic properties

of the porous medium. As the medium cannot be sampled exhaustively, the available data

must be analyzed statistically. That is, the spatial variation of hydraulic properties is

characterized by their joint probability distributions and/or statistical moments, as

inferred from available measurements. Hydraulic conductivities are usually reported to be

univaiiate lognormal [Bakr, 1976; de Marsily, 1986; Sudicky, 1986, Jensen et al., 1987].

Based on this assumption, Freeze [1975] treated hydraulic conductivity as a spatially

uncorrelated random variable and analyzed uncertainty in groundwater flow by numerical

Monte Carlo simulation. Although hydraulic conductivity varies significantly in space, its

variation is not entirely random, but correlated in space [Bakr, 1976; Byers and Stephens,

1983; Hoeksema and Kitanidis, 1984; Russo and Bouton, 1992]. This suggests that

hydraulic conductivity must be treated as a random field rather than a single random

variable.

1.2.1 Monte Carlo Simulation

The most intuitive way to analyze spatial variability stochastically is via (conditional)

Monte Carlo simulation. The principle of Monte Carlo simulation is straightforward. One

treats hydraulic conductivity as a correlated random field whose statistical properties

(typically mean, variance and correlation scales) can be inferred from its measured values

at different points in space, on a given support scale. Since values at other points are
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unknown, they are generated at random so that the generated random field honors

(corresponds to, within a prescribed margin of error) the measured data. Each randomly

generated realization of the hydraulic conductivity field is used to solve the flow

equations numerically in a deterministic manner. Each realization thus yields a random

flow solution, conditioned on the measured hydraulic conductivity data. A statistical

analysis of many such random solutions provides (among others) their (conditional)

mean, variance and covariance. The mean provides an optimum unbiased prediction of

flow in the soil under uncertainty (due to unknown spatial variability of the hydraulic

conductivity), and the variance-covariance provides a measure of the corresponding

predictive uncertainty.

During the past two decades, Monte Carlo simulation has been widely used to

investigate the effect of heterogeneity on flow in groundwater systems [for example,

Smith and Schwartz, 1980, 1981a,b; Ababou et al., 1989; Tompson and Gelhar, 1990].

For flow in the vadose zone, many researchers [such as Bresler and Dagan, 1981; Dagan

and Bresler, 1979; bail et al., 1990; Russo and Dagan, 1991; and Destouni and

Cvetkovic, 1991] have used Monte Carlo simulation to examine the effect of areal

variability on flow and/or solute movement. Hopman et al. [1988] used Monte Carlo

simulation to examine the effect of heterogeneity on multi-dimensional flow regimes.

Eaton and McCord [1994] used Monte Carlo simulation to determine effective hydraulic

conductivity in two-dimensional porous media, and to verify the moisture-dependent

anisotropy concept. Because of numerical difficulties, most of the above studies have

relied on relatively few Monte Carlo simulations [tInlii et al., 1990; Russo and Dagan,

1991; Polmann et al., 1991; Tseng and Jury, 1993; Russo et al; 1994; Roth, 1995]. As a

result, the corresponding sample statistics may not be representative. Because of

nonlinearity of the unsaturated Richards flow equation, numerical methods must rely on

iterative schemes and a large number of iterations are required for the solution. In

addition, Monte Carlo simulation requires a relatively dense grid to resolve high

frequency variations of random fields. As a result, solving the Richards equation in a

Monte Carlo mode is computationally expensive, even though computational time may
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be reduced by using a first-order perturbation solution as an initial guess for the

numerical solution [Harter and Yeh, 1993]. Monte Carlo simulation of flow in the

vadose zone is further hindered by the fact that numerical iterative schemes do not

guarantee convergence of the solution during a given simulation, especially when the

medium is highly heterogeneous. Furthermore, to obtain meaningful statistics from

Monte Carlo simulations, one has to perform a large number of simulations. The number

of simulations required for obtaining meaningful results increases with heterogeneity.

More importantly, there are no reliable criteria to assess convergence of the method.

Based on the above discussion, there is a need to develop alternative approaches

for solving stochastic unsaturated flow problems.

1.2.2 Alternative Approaches

One alternative to Monte Carlo simulation is to solve the stochastic flow and transport

equation analytically by approximation, which usually consists of perturbation and

linearization [Yeh et al., 1985a-c; Mantoglou and Gelhar, 1987a-c; Russo, 1993]. By

employing the Gardner's model, Yeh et al. [1983a-c] analyzed analytically the effect of

variability of hydraulic conductivity and the pore size distribution parameter on

unsaturated flow in an unbounded domain under a unit mean hydraulic gradient. Their

analysis was based on a spectral solution of a perturbation approximation for the

stochastic flow equation. Analytical expressions were derived that describe the variance

of pressure head, flux and effective hydraulic conductivity as functions of statistical

properties of the porous medium and the mean flow characteristics (such as mean

hydraulic gradient). One important finding was that the effective hydraulic conductivity

in stratified soil formations is anisotropie. Mantoglou and Gelhar [1987a,b] extended the

analysis of Yeh et al. [1985a-c] to transient flow in an unbounded domain and found

significant hysteresis in pressure head variance, unsaturated hydraulic conductivity and

moisture capacity. Certain assumptions have been made by Yeh et al. [1983a-c] and

Mantoglou and Gelhar [1987a,b], which limit the applicability of their models to specific

cases. Both assumed that hydraulic properties are spatially homogeneous. While this

assumption may be satisfactory in many situations, it is by no means always applicable.
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In many cases, adoption of this assumption may be due to mathematical convenience

rather than an accurate representation of the actual field conditions. For example,

Rajaram and McLaughlin [1990] studied the hydraulic conductivity data from the

Columbus Air Force Base and proposed methods for estimating large scale trends;

Rehfeldt et al. [1992] examined the hydraulic conductivity at the same Columbus Air

Force Base site and found that the conductivity field can be associated with a third-order

polynomial trend. More importantly, both Yeh et al. [1983a-c] and Mantoglou and

Gelhar [1987a,b] ignored the product of conditional perturbation terms in their mean

flow equations, which does not yield the conditional mean head and thus their solutions

are biased, unless the product of conditional perturbation terms is zero. The product terms

will be zero if and only if all the values of the hydraulic conductivity field are known

exactly, otherwise, it is non-zero and its magnitude comparing to the other terms in mean

equations is unknown. Mantoglou [1992] further extended their models to a finite flow

domain and nonstationality of the soil properties and flow characteristics, but again, the

expected values of perturbation products of higher order have been neglected. Thus this

methodology requires small fluctuations. Based on a small-perturbation approximation,

Indelman et al. [1993a,b], without invoking the unit mean hydraulic gradient assumption

developed a similar analytical model for bounded flow domain that allows the head field

to be nonstationary. More recently, Zhang [1997] investigated, to first order in a 2y , the

combined effect of boundaries and nonstationarity due to a trend in log conductivity on

the statistics of the head field and derived general equations governing the statistical

moments of hydraulic head for steady state unsaturated flow. The results have been

extended to transient unsaturated flow [Zhang, 1999].

Another alternative is to use traditional deterministic models, i.e., simply

replacing the parameters in standard deterministic models by their (conditional) mean

values. Since system outputs are generally nonlinear in the controlling parameters, results

from this approach are generally different from the conditional mean outputs of Monte

Carlo simulations. As shown later, such deterministic outputs would generally be biased

and therefore less than optimal. To render these models less biased, there has been an
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intensive search in the literature for effective or equivalent parameters that could be used

to replace their suboptimal counterparts. The search has focused on a method called

upscaling which is the process of transferring information from a scale of actual

heterogeneity to that of computational elements which are used to solve the stochastic

equations numerically. Upscaling has been conducted numerically based on empirical

equivalence criteria. More rigorous theoretical criteria of equivalence have been proposed

for saturated hydraulic conductivity by IndeIman and Dagan [1993a,b] and Indebnan

[1993] who established necessary and sufficient conditions to be satisfied by upscaling,

but these are not easy to implement in practice.

A major conceptual difficulty with upscaling is that it postulates a local

relationship between (conditional) mean driving force and flux (Darcy's law) when in fact

this relationship is generally nonlocal [Neuman and Orr, 1993; Neuman et al., 1996;

Tartakovsky and Neuman, 1998a, b]. Even where localization is possible, the constitutive

equations satisfied by conditional mean predictors may be fundamentally different from

those satisfied by their random counterparts [Neuman et al., 1998]. Another conceptual

difficulty with traditional upscaling, according to Neuman [1997] is that it requires a

priori definition of a numerical grid even though there are no firm theoretical guidelines

for its selection. Hence it is necessary to continue developing alternative ways of

predicting flow and transport deterministically in a manner consistent with (conditional)

stochastic theory.

Still another deterministic alternative to Monte Carlo simulation is to write a

system of partial differential equations satisfied approximately by the first two ensemble

moments of hydraulic head, then solve them numerically. Since mean functions are

usually smoother than their random counterpart, especially when sparse conditional

points are available, a coarse grid can be employed.

Exact conditional moment equations for steady state flow in saturated media have

been developed by Neuman and Orr [1993] and Neuman et al. [1996], for transient flow

in saturated media by Tartakovsky and Neuman [1997, 1998a, b], for advective transport

by Neuman [1993], for advective-dispersive transport by Zhang and Neuman [1996]. All
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these conditional moment equations are integro-differential and include nonlocal

parameters that depend on more than one point in space and/or time. Guadagnini and

Neuman [1997, 1998, 1999a-b] developed recursive approximations of these conditional

moment equations for steady state saturated flow, which are similar to those for transient

flow by Tartakovsky and Neuman [1997, 1998a, b], and showed how to solve these

approximations numerically.

Exact conditional moment equations for steady state flow in unsaturated media

have been developed by Tartakovsky et al. [1999]. They presented a deterministic

alternative to (conditional) Monte Carlo simulation which allows predicting steady state

unsaturated flow under uncertainty, and assess the latter by means of conditional second

moments, without having to generate random fields or variables, without upscaling and

without linearizing the constitutive characteristics of the soil. It should be noted that

virtually all previously published moment analyses of unsaturated flow, whether

analytical [Andersson and Shapiro, 1983; Yeh et al., 1985a, b; Mantoglou and Gelhar,

1987a-c; Yeh, 1989; Mantoglou, 1992; Russo, 1995; Zhang et al., 1998] or numerical

[Zhang and Winter, 1998], have found it necessary to rely on perturbation

approximations of soil constitutive relations.

Tartakovsky et al. [1999] have demonstrated that when the scaling parameter of

pressure head is a random variable independent of location, the steady state unsaturated

flow equation can be linearized by means of the Kirchhoff transformation for gravity-free

flow. Linearization is also possible in the presence of gravity when hydraulic

conductivity varies exponentially with pressure head according to the exponential model

of Gardner [1958]. This allowed Tartakovsky et al. [1999] to develop exact conditional

first and second moment equations for unsaturated flow which are nonlocal (integro-

differential) and therefore non-Darcian. The authors solved their equations analytically

by perturbation for unconditional vertical infiltration. Their solution treats a as a

nonrandom constant and is otherwise valid to second order in the standard deviation, ay ,

of natural log saturated hydraulic conductivity, Y = ln K.
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1.3 SCOPE OF THIS STUDY

In this study we extend the conditional moment theory of Tartakovsky et al. [1999] to

include uncertainties in a and all driving forces (sources and boundary conditions) during

steady state unsaturated flow in a randomly heterogeneous soil. By means of Kirchhoff

transformation, we transform the original nonlinear Richards equation into a linear

equation, and formulate exact nonlocal conditional first and second moment equations for

the transformed variable and the flux q (Chapter 2). These equations are nonlocal and not

closed. Following Guadagnini and Neuman [1997, 1998, 1999a-b], in Chapter 3, we

derive perturbation approximations for these equations, valid to second order in 6y, 6p,

standard deviations of Y=lnKs and 13= lna, respectively, and to second order in the

standard deviations of driving forces. Based on these approximations, in Chapter 4, we

develop a finite element algorithm for two-dimensional flow in the vertical plane with

deterministic driving forces when Y and 13 are mutually uncorrelated. Once we solved for

the mean transformed variable and its related (cross-)covariances, we then are able to find

the mean and variance of the original variable, pressure head (Chapter 5). We show some

computational results for co= 0 in the presence of a point source, and compare them with

those of (un)conditional Monte Carlo simulations in Chapter 6. Finally, the conclusions

can be found in Chapter 7. Lengthy mathematical derivations have been relegated to

Appendices A-D.
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CHAPTER 2

EXACT CONDITIONAL MOMENT EQUATIONS FOR STEADY

UNSATURATED STATE FLOW IN BOUNDED RANDOMLY

HETEROGENEOUS POROUS MEDIA

2.1 INTRODUCTION

We describe steady state unsaturated flow by means of Darcy's law

q(x)= -K(x,w)V[w(x)+ gx,]	 XE 5"2	 (2- 1)

and the continuity equation

-\7.q(x)+ f(x)=O	 x E	 (2-2)

subject to the boundary conditions

Ni(x)= 1F(x)	 X EFD (2-3)

-q(x)•n(x)=Q(x) xe (2-4)

Here the Darcian flux q (LT -1 ), the unsaturated hydraulic conductivity K (LT-I ) and the

pressure head gradient Vw(x) are representative of a bulk support volume (i) centered

about a point x=(xi, x2, x3)T, such that (1.) is small compared to the flow domain 52 but is

sufficiently large for equations (2-1) - (2-4) to be locally valid [Neuman and Orr, 1993a;

Tartakovsky et al., 1999]. The volume (i) does not need to be a REV in the traditional

sense [Bear, 1972]. The only requirement is that all quantities in (2-1)-(2-4) are
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measurable at the support scale co inside the domain Q and on its boundary F, which is

the union of Dirichlet boundary FD and Neumann boundary FN. The term f(x) is a

random source/sink, W(x) is a randomly prescribed pressure head on FD, Q(x) is a

randomly prescribed flux into Q across FN, n(x)=(n 1 , n2, n3) r is a unit outward normal to

the boundary F, and g is 1 for flow with gravity and 0 for gravity-free flow. We assume

that f(x), 'P(x) and Q(x) are random and prescribed in a statistically independent manner

at the scale co.

Substituting (2-1) into (2-2) gives

V •EK (x ,w)V (w(x)+ gx 3 )1+ f (x)= 0
	 x E	 (2-5)

It is assumed in this work that unsaturated hydraulic conductivity K(x, w) satisfies

K(x,w) = K s (x)K (X,w)
	

(2-6)

and the exponential model [Gardner, 1958]:

K,(x,w) = eœ(r)*(x)

	
(2-7)

where Ks(x) and Kr(x,w) are saturated and relative unsaturated hydraulic conductivity,

respectively, and a is the reciprocal of the macroscopic capillary length scale [Raats,

1976]. As argued in Chapter 1, we take a to be space-independent, which allows us to

define the Kirchhoff transformation [Tartarkovsky et al., 1999]

w(x)	 w(x)
(I)(x) = f K,() 4= f e4cg =

	 (2-8)

The latter transforms (2-5) and boundary conditions (2-3) and (2-4), respectively, into
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•[K (x)(vo(x)+ galcD(x)e, )1+ f (x) = 0	 x c Q	 (2-9)

1	 aT,..rs(1)(X) = H (x), H (x) = — e "	 XE FD 	(2-10)
a

n(x)•[K ,(x) (V (x) + gac13(x)e 3 )1= Q(x)	 x e F,	 (2-11)

where e 3=(0, 0, 1)T and T denotes transpose.

2.2 EXACT CONDITIONAL MEAN EQUATIONS

2.2.1 Exact Mean Equations for the Transformed Variable (1)(x)

We treat saturated hydraulic conductivity as a random field and separate it into an

ensemble mean (Ks(x)) and a zero mean perturbation.

K (x) (K s (x))+ K:(x)	 (K:(x)) 7 0	 (2-12)

The mean saturated hydraulic conductivity represents a relatively smooth unbiased

estimate of the unknown random function Ks(x). It may be estimated using standard

geostatistical methods, such as kriging, which produce unbiased estimates that honor

measurements and provide uncertainty measures for these estimates. Here we assume that

the saturated hydraulic conductivity field is conditioned at some measurement points,

which means that the field may not be statistically homogeneous. By the same token, we

define the conditional ensemble means (0(x)) and (a), and the corresponding

perturbation terms clAx) and a' as

(13(x) = (0(x )) + (1)'(x)
	

(0'(x)) .0	 (2-13)
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a = (a)+ a'
	

(a') 0	 (2-14)

Substituting (2-12)-(2-14) into (2-9), (2-10), and (2-11), and taking their ensemble mean,

yields the exact conditional mean equation for the Kirchhoff-transformed variable 0(x)

V • [(Ks 	(0(x)) — r(x)+ g ((a)(K ,(x))(40.(x))+ (a) R„ (x)

+ (K ,(x)) ROE, (x) + Rwc„) (x))e 3 1+(f (x)) = 0	 x e 52

(0(x)) = (I-1(x))	 xe r,,
n(x)•[(K s (x))V (4)(x))— r(x)+ g ((a)(K,(x))(0(x))+ (a)R„(x)

+ (IC s (x))12,,(x)+ ROEK, (x))e,1= (Q(x))	 x e I',

(2-15)

Here (1/(x)) is ensemble mean of 1 on the Dirichlet boundary, (f(x)) is ensemble mean of

the source/sink term, and (Q(x)) is ensemble mean of prescribed flux along the Neumann

boundary. The other terms in (2-15) are defined as

r(x) = —(1C:(x)V V(x))

RK0 (X) = ( K(x)V(x))

1?(x) = (a'cl3/(x))

R(x) = (a'f((x)(1)'(x))

(2-16)

2.2.2 Perturbation Equations for 0(x)

To solve (2-15), we need to evaluate the terms in (2-16), which requires formulating an

expression for sztv(x). Substituting (2-12)-(2-14) into (2-8), (2-9) and (2-10), and

subtracting mean flow equation (2-15) yields implicit equations for 1213'(x),
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V. F(x)+ f'(x)= 0

(13'(x) = 1-1 /(x)

n(x) • F (x) = C(x)

F(x) = K s (x) Vc1V(x) + K(x) V (0(x)) + r(x)+ g (OEK s (x)(1)'(x)+ a'K s (x)(c1)(x))

+ (a) K's (x)(1:13(x)) — (a) R,,,,(x) — (K (x))1?,,,,(x)—R a„(x))e,

(2-17)

where H' is a perturbation of H on the Dirichlet boundary, Q' is a perturbation of

prescribed flux along the Neumann boundary, and f is a perturbation of the sink/source

term. To obtain an explicit expression for szlY(x), we introduce an auxiliary function

G(y,x) that satisfies

{

V y • [K,(y)V yG(y,x)l— gae, K,(y)V yG(y,x)+ 8(x — y)= 0

G(y,x) = 0

V yG(y,x) • n(y) =0

x,ye

xeS2, ye rp
yer,

(2-18)

where 8 is the Dirac delta. Unlike the symmetric Green's function presented in

Guadagnini and Neuman [1999a] for saturated flow, here G is non-symmetric. Rewriting

(2-17) in terms of y, multiplying by G, integrating with respect to y over SZ, and applying

Green's first identity yields an explicit expression for clY(x)

=—LV T G(y,x)[K(y) V (4:13(y))+ r(y)+g (OE'K,(y)(0(y))+ ((x)1C,(y)(0(y))

—(cORK,(y)—(Ks (y))/?,,(y)—k„,,,(y))eddS-2,

+L f '(y) G(y,x) ciS2

+f
rN

G(y,x)V(y) dr

— 

rD 
(y)K Ay) V yG(y,x) • n(y) dr

(2-19)

This allows us to develop explicit integral expressions for all four terms in (2-16),
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r(x) = — (K:(x)V V (x))

.L(K;(x)vxvrz G(z,x)r„.(z))[v(t(z))+0,0 ( 0(z))e,lc1C1

+L(K.:(x) vyfG (z, x)) r(z)d.0

+gfc, (airs (x)VxVTs G(z,x) Ks (z)) ((z)) e3c11)

— gL (K:(x)V xV7: G(z,x))((a)R„(z)+ (K,(z))R,,(z)+ R(z))e,c1S -2

+fr,, (Kg(x)IP(z)VxVfG(z,x)K., (z))11(z)df

R„ (x) = (K:(x)0 1(x))

=_L (K.: (x)Vf G(z, x)K:(z))[y (cD(z))+g (a) (4)(z)) e,lcin

- I,  (lc; (x)Vrz G(z, x)) r(z)c1S2

—gL (a'K;(x)Vs. G(z, x)K, (z)) (0(z)) e3 d5-1

±g f 0 (K.:(x)Vz G(z, x)) ((a) R K 0 (z) ± (K, (z)) R 	 (z))e,dfl

—frD
 (K,:(x). H - ' (z)\7 7; G(z, x)K,(z)) n(z)n(z)d['

R 	= (a'clY(x))

= — L ( oc'VfG(z, x)K;(z))[V((D(z)) + g (a) (0(z)) e, I df2

__L(cevfG (z,x)) r(z)cin

— gfQ (cil 2 \77; G (z, x)K , (z)) (0(z)) eAS)

+ g f n (cc' vrz G(z, x)) ((a) R„ (z) + (K „(z)) R 	+ R.„(z))e,c1f2

— frD
 (a'H'(z)Vs G(z, x)K, (z))n(z)dr

(2-20)

(2-21)

(2-22)

Ra„(x)= (air, (x) cD'(x))

= — L(cers(x)vf G(z,x)rs (z))[V (cD(z))+ g (a) (0(z)) e31.0

—L.2 ( a'K's (x)VTz G(z,x)) r(z)c1.0

—g Jo (a' 2K's (x)Vrs G(z,x) Ks (z))(c1D(z))e3c11

+ gL(oc'K's (x)Vrs G(z,x)) ((a) R K 0 (z) ± (K s (Z)) ROE, (z) + RŒ„(z))e,c1(2

—S
ri) 

(OE'K's (x)I-P(z)VTz G(z, x)K,(z))n(z)cIF

(2-23)
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The integrals over FN and those containing f are zero because a', K', and G are

independent of Q' and f. The integrals over FD remain because both H' and G depend on

a'. The derivation of other terms can be found in Appendix D.

We mention in passing that equations (18) and (19) of Tartakovsky et al. [1999]

for r, Rico and Roo , which correspond to our equations (2-20) - (2-22), do not include

integrals over the Di richlet boundary. Even in the special case where W is deterministic,

the Kirchhoff-transformed variable H on this boundary is not deterministic unless a is

also deterministic. It follows that (18) - (19) of the above authors should include integrals

over the Dirichlet boundary whenever either Ni or a is random. However, as we show in

Appendix D, these integrals vanish to second order in ay, and so the corresponding

approximations (33) and (34) of Tartakovsky et al. [1999] are still valid because both a

and the prescribed pressure head were assumed to be deterministic in their analysis.

2.2.3 Mean Expression for q(x)

Using (2-6) and (2-7), we can rewrite equation (2-1) in terms of (t(x) as

q(x) =	 s (x)[VcD(x)+ gac13(x) e 3 ]
	

(2-24)

Writing q(x) = (q(x)) + ex), substituting (2-12)-(2-14) into (2-24), and taking ensemble

mean, we obtain an exact expression for the conditional mean flux (q(x)),

(q(x))= —(K s (x)>PV (c13(x))+ g (K,(x))((a)(43.(x))+ R OE„,(x))e,1

+r(x)— g ((a) R Ko (x) R„(x))e,
(2-25)

where r(x), Rota)(x), RKcp(x), and RaKo(x) are defined in (2-20)-(2-23).
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2.2.4 Perturbation Expression for q(x)

In order to evaluate the covariance of flux, which is required for stochastic analysis of

solute transport, we need to have an expression for the flux perturbation e(x).

Subtracting (2-25) from (2-24) and using (2-12)-(2-14) yields

-(K5 (x)) (V 4:1)'(x) + g ((œ)'(x) + a'cl)(x) )e,)- es (x) (V (x) + gall)(x)e,)

- r (x) + g WO RK ,D (X)	 < (X))Ra 0 (X) + Itm,(x))e,
(2-26)

2.3 EXACT CONDITIONAL SECOND MOMENT EQUATIONS

2.3.1 Covariance of the Kirchhoff-Transformed Variable

An equation for the covariance function Co(x, y) of 401) can be obtained upon multiplying

(2-17) by V(y) and taking conditional ensemble mean,

V x • F (x,y)+ (f'(x)(1'/(y))= 0	 xe52,yeS2

C,(x,y)=(11'(x)(1)%y)) 	 xeFD,yeS2

n(x) • F(x,y) = (V(x)clf(y)) 	 xe F N YE S2

F(x,y)=(K,(x))V .,C,(x,y)+(K:(x)clAy)VV(x))+(K:(x)ciAy))\ 7 (4)(x))

+ g ((a)(K s (x))C„,(x,y) + (a)(K:(x)V(x)(13'(y)) + (caCs (x)clY(x)V(y))

+ (K5 	(1C 5 (x))1?,,(y)(4:13(x))+ C„(x,y)(0(x))

+ (a) C K4,(X. Y)(4) (X)))e 3

(2-27) 

Here the cross-covariance functions (f(x)V(y)) and W' (x)(Ds' (y)) can be evaluated using

the explicit expression for (1)/(x) in (2-19). Expressing the latter in terms of y, multiplying

by f (x) and Q' (x), respectively, and taking conditional ensemble mean gives
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(f(X ) CI:V(Y)) = SOX)f(Z))(G(Z0))A2

(MX) C13/(Y)) = (MXV(Z))(G(Z,Y))dr

	 (2-28)

r,

The term (Ir(x)(1) / (y)) cannot be formulated in this way, because H' (x) depends on a and

through it on other terms, such as G(y, x). However, we obtain it by expressing H' (x)

explicitly, multiplying by (1)/(y), and taking conditional ensemble mean, as shown in (A-

13) of Appendex A.

Again, the implicit equation and boundary conditions for the conditional

covariance Co in (A7)-(A9) of Tartakovsky et al. [1999] need to be modified. Instead of a

homogeneous boundary condition on the Dirichlet boundary, one should write

C.13(x,y)=KH'(x)V(y)). Their second order results are correct, as we show in Appendix D.

Equation (2-25) shows that to solve for C,1)(x, y), one needs to evaluate terms such

as (Ks '(x)cIY(y)) and (a'IC(x)c13 / (y)), which in turn involve evaluating still other terms.

Equations for all these terms can be derived upon multiplying (2-17) or (2-19) by the

appropriate quantities and taking their conditional ensemble means (see Appendix D)

2.3.2 Flux Covariance Tensor Cqq(x,y)

The covariance tensor of the flux Cqq(x,y) can be obtained upon multiplying q' (x) in (2-

26) by its transpose in terms of y, and taking conditional ensemble mean,



Cw (x, y) = (q'(x) q'T (y))

= (K s (x))V r 'S7 ;C. (x ,y)(K r (y)) + g (a)(K,(x))V x C. (x, y) e l; (K s (y))

+ g (K s (x))(V ROE,(x)(4)(y)) + V r (a'le(x)(13'(y))) e (K,(y))

+ (K .„(x))(Ve(x)V 1 (cD(y)) K:(y)) + (K s (x))(V x nV (x)V 1y 4V(y)K; (y))

+ g (a)(1‘ s (x))((VV(x) e .; K:(y))(0(y))+ (V (x)c13' (y) e l K:(y)))

+ g (K, (x))(a'VeV(x) eK:(y))(1:13(y))+ g (K,(x))(cCV x le(x)V(y) e K:(y))

+ g (a)(K (x))e 3 "7C„, (x , y)(K (y)) + g (a) 2 (K,(x))C.(x, y) E,(K,(y))

+ g (a)(K,(x))E3 (R,,(x)(K s (y))((y))+ (01) /(x)(1)'(y))(K, (y)))

+ g (a)(K ,(x))e, (V (0(y))C„(y,x)+ (0 /(x)V iy fe(y)K:(y)))

+ g (a) 2 	(x))E3 0(Y))Cic1, (Y , x)+ (0'(x)VU)K:(Y)))

+2g (a)(K,(x))E, ((a' (13'(x)K:(y))(0(y))+ (aW(x)cV(y) K:(y)))

+ g (K

▪

 (x))(43(x))(e 3 V 13,1?m, (y) + (a)E,R,(y))(K (y))

+ g (K, (x))(43(x))E3 ((a'2 )(1:13(y))+ (e(13 /(y)))(K, (y))

+ g (K,(x))(0(x))e, (eV' (13'(y) K:(y))

+ g (K s (x))(t?(x))E, ((a)(a' (1)'(y) K:(y))+ (a'2 (1) /(y)K:(y)))

+ g (K

▪

 (x))(e,Vy (a' (13'(x)(1)'(y))+ E, (a)(a' cre'(x)V(y)))(K, (y))

+ g (K

▪

 (x)) E, ((c13(y)) (d' V(x)) + (a° c13'(x)(1) /(y)))(K, (y))

+ g (Ks (x))e,(V T (0(y))(oc'cl:V(x) K:(y))+ (oCie(x) K:(y)Vy cl:V(y)))

+ g (Ks (x))E,((eV(x)K:(y))(c13(y))+ (a /2 te(x)(13'(y)K:(y)))

+ ((K: (x)V x V(x)V V(y)) + (K:(x)\ 7 (43(x))V ry (13'(y)))(K,(y))

+ g (a) (C, (x, y)V (0(x)) + (K:(x)V x cl:V(x)e(y)))e; (K (y))

+ g (a'K:(x)VelY(x)) e (K,(y))(43(y))

+ g ((al‘:(x)(13 /(y))V (43(x))+ (a /K:(x)V x V(x)(12V(y)))e l, (K,.(y))

+ (K:(x)G' (43(x))V i (1:13(y))K:(y))+ (K:(x)V (43(x))V;V(y)K:(y))

+ (K .:(x)V x cl) /(x)V T (4)(y))K:(y))+ (K:(x)V x (1) /(x)V Ty V(y).K(y))

+ g (a) ((K:(x)V (4)(x))e", K:(y))+ (K:(x)V x el)'(x) K:(y)))(0(y))
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+ g (a)((K:(x)V (0(x))V(y) IC:(y))+ Kle(x)V x (I) / (x)V(y) e .; K:(y)))

+ g ((ale, (x)V (0(x)) e l, K:(y))+ (ale(x)V x e(x) e K:(y)))(cD(y))

+ g ((al{:(x)V (0(x)) cif (y)e", K:(y)) + (a' K:(x)V x (V(x) 1213'(y)e", K:(y)))

+ g (a)(((1)(x))(K:(x)e 3 Vy V(y))+ (K(x)V(x)e,Vy cl, '(y)))(K, (y))

+ g ((c13(x))(cek(x)e,V Ty e(y)) + (ct'le(x)K:(x)e,Vy nIf(y)))(K , (y))

+ g (Œ) 2 ((43 (x))C Ko (x, y ) + (K:(x)V(x)EV(y)))E, (K, (y))

+ g ((a)(cCcIV(x)K:(x)) + (a' 2 0 /(x)K;(x)))E,(K8 (y))(0(y))

+ 2g (a) ((c13(x))(a1C, (x)V(y)) + (a'clV(x)V(y)K:(x)))E, (K, (y))

+ g ((01)(x))(oC2 K:(x)V(y))+ (ecIV(x)c1V(y)K;(x)))E 3 (k. (y))

+ g (a)(0(x))((K:(x)e 3 VT ( n01)(y))K:(y))+ (IC,(x)e,V 13,c1V(y)K:(y)))

+ g (a) ((K:(x)clf(x)e,	 (( (y)) K:(y)) + 1‘[(x)(12V(x)e,V 1,11:V(y)K:(y)))

+ g (0(x)) ((a /K:(x)e,V i (c13(y))1‹:(y))+ (aW:(x)e 3Vy (1) 1(y)K:(y)))

+ g ((ales (x)(1) /(x)e,V T (0(y))K:(y))+ (a /K:(x)V(x)e,V Ty clV(y)K:(y)))

+ g (a) 2 (c13(x))((K:(x)E 3K:(y))(0(y))+ (K'(x)E,V(y)K:(y)))

+ g (a) 2 ((c1)'(x)K:(x)E 3 K .:(y))(0(y))+ (V(x)K:(x)E3(1Y(y)K:(y)))

+2g (a)(0(x))((aW:(x)E,K:(y))(0(y))+ (cc'K:(x)E,V(y)K:(y)))

+ 2g (a) ((a'clV(x)k(x)E3 K:(y))(c13(y)) + (a'clo'(x)k (x)E,c1V(y)K: (y)))

+ g (1:13(x))((a'2 K:(x)E,K;(y))(43(y)) + (a'2 K(x)E3 4:1V(y)K:(y)))

+ g ((a /2 1:1V(x)k(x)E 3 K(y))(0(y))+ (cC2 cIV(x)K:(x)E,V(y)K;(y)))

(2-29)
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where E3 is a 3x3 matrix with '1' where the third row and third column intersect, and '0'

everywhere else.

2.3.3 Cross-Covariance of Log Hydraulic Conductivity and Flux

Sometimes we may be interested to see how changes in hydraulic conductivity at one

location affect the flow field. Expressing (2-26) in terms of y, multiplying it by Ifi(x), and

taking conditional mean yields
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Cyq (x,y)= (r(x)q'(y))

= -(1(s (y))(nx)V(13v(y))-(nx)K(y))V(4)(y))-(r(x)K(y)VV(y))

- g[(a)(Ks (y))(nx)(1) /(y))+ (a)(Y'(x)1(:(y))(41)(y))

+(a)(r(x)K:(y)V(y))+(Ks (y))(01x)V(y))+(a'r(x)K:(y)(13 '(y))1e,

(2-30)

2.3.4 Cross-Covariance of ln a and Flux

Uncertainty in a may affect the flow field. Expressing (2-26) in terms of y, multiplying it

by EY (a perturbation of Ina) and taking conditional mean leads to

cp,,(Y) = (PV(Y))
= -(K s (Y))VCpo (Y) - K(Y)VV(Y))

g[(a)( 1(, (Y))Rpo(Y)( K5(Y))(03')(4)( Y ) )

+(a)(fYK:00 (lAY))+(K,00)(03' ctv(Y))+ (OE'13'es (Y)0 '00)1 e3

(2-31)

2.4 LOCALIZATION OF CONDITIONAL MEAN FLOW EQUATIONS

To solve the mean flow equation (2-15), we need to evaluate (2-20)-(2-23), i.e., r, RK0

Roo, and Ram), which are nonlocal (depending on more than one point in space). To

evaluate these terms, one would need to use either high-resolution conditional Monte

Carlo simulation or some type of closure approximation. As in the case of saturated flow

[Neuman and Orr, 1993; Guadagnini and Neuman, 1999a], following Tartakovsky et al.

[1999], the conditional mean (Ks(x)), the best available unbiased estimate of random

function Ks(x), does not represent an effective saturated hydraulic conductivity in the

deterniinistic formulation of the stochastic unsaturated flow problem, due to the nonlocal

nature of r, RK0 Rao, and Ram). Such an effective hydraulic conductivity does not exist,

unless these terms can be localized. From (2-20)-(2-23) it turns out that the mean flow

equation (2-15) can be localized only if
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(0(x)) = const.
	 (2-32)

which implies that w = constant in the flow domain, i.e., the mean flow is strictly due to

gravity.
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CHAPTER 3

RECURSIVE CONDITIONAL MOMENT APPROXIMATIONS FOR

STEADY STATE UNSATURATED FLOW

3.1 INTRODUCTION

Although the moment equations presented in Chapter 2 are exact, they contain unknown

mixed moments of the random auxiliary function G and are therefore not workable. To

evaluate them, one would need to use either high-resolution conditional Monte Carlo

simulation or some type of closure approximation. In this study, following Gaudagnini

and Neuman [1999] and Tartakovsky et al. [1999], we use perturbation analysis to obtain

recusive approximations for our moment equations. Specifically, we start by expanding

all moments into infinte power series in terms of ay and saf3, the standard deviations of Y

= 1nKs and 13 = ma, respectively. We then equate terms of same order in ay and ao on

both sides of moment equations to obtain a set of recursive equations, in which higher-

order terms can be solved once lower-order terms have been evaluated. Theoretically, we

can evaluate any moment of interest to an arbotrary order in this manner. We derive in

this chapter equations for mean and covariance functions to second order. Many of the

mathematical details are relegated to Appendix C.

In the following analysis, we assume that it is possible to write
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K s (x) = e Y = e (Y (x))+3”(r) = KG (X)	 EY (X)r 
n = o 	n!

(1<s (x))-- (eY(x) )= (e<Y(x))+Y '(x) )= K (x)
n=o	 n!

[11/(x)r)
K:(x)= K ,(x) (K s (x))= K	

[nx)1" —(
G (x)2.; 	

”=o	 n!

and

i 13/m	a = e f3 = e (P)+13' = CCG	 -m!

(a) = (e 13 ) =(e<13>4 )=- ŒG y- (r) 
m=0 m•

- Ir - (13/m ) 
a' = a - (a) = ŒG E

	m=0	 m !

where Y(x) and Y(x) are the natural logarithm of saturated hydraulic conductivity and its

perturbation, respectively, KG(x) is the geometric mean of the saturated hydraulic

conductivity, 13 is the logarithm of the reciprocal of the macroscopic capillary length scale

a and 13 ' is its pertubation, and aG=e (13) is the geometric mean of a.

To solve conditional mean and second-order moment equations approximately,

we expand all related quantities, such as (0(x)), (q(x)), r(x), RK:D(x), R œo(x), ROEK0(x), and

G(y, x), in powers of Gy and 60, for example,

(o(x)). E (0"."1)(x)) (3-3)
n,m=0

where n and m designates terms that contain only a y to ll
th power and (To to mth power.

The expansion is not guaranteed to be valid for strongly heterogeneous soils with G y 1

and Go 1. As we shall see, it actually works well for relatively large values of G y as long

(3-1)

(3-2)
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as 60 remains small. In the case of random driving forces, (3-3) should include powers of

standard deviations of these forces. For simplicity, we suppressed the superscripts of

these powers but derived equations that are second-order accurate in their standard

deviations, unless stated otherwise.

3.2 RECURSIVE EQUATIONS FOR MEAN (13 AND FLUX

3.2.1 Recursive Equations for (4:13 (141n)(x))

Using (3-1) -(3-3), (2-15) can be written as

V •[(K ,(x)) V (c1)(x))- r(x)+ g ((a)(Ks (x))(0(x))

+(a) R„(x) + (K,(x))1?(x)+ Raxo(x))e31 + (f (x))

(	 —

	

=V • K	
(Y"' x))

G (x)L 	v(on.m)(x))- E r(n•m)(x)
n.m=0	 n.m=.

[3° ( '")
	(Y'n (X)) °°	

(Rln\

	+ g	 E	 K, (x)L 	 E (0("'"i)(x))+a,E!v E R°(x)
n=O n!	 n=o	 n!	 nA=0	 n=0 n! n,n1=0

(Y'" (x))
+ (x) 	 E kri)(x)+ E R(x) e 3

n=0	 n!	 n,m,o

(x)) 
V •[K (; (x)	 V (431) ( "4' ) (x))- r ("'"1) (x)

k=0	 k!

+ (f (x))

= E
n,n1=-0

n (x )) m (f3'P)	 In Er)

+ g oc,K,(x)y, 	 E 	 (4."43("'-P)(x)) +a„E( )kr-P) (X)
k=0	 k!	 p=0 P. 	p=o P!  

}+ ( f (x)) = 0	 x E 
y n,

+K	
(x))

. (X)E 	6	 KV'''')(x) + Ra(n " ) (X)
k=0	 k!   (3-4)    

subject to the boundary conditions

-
E	 =(H(x))(,,,m) x E	 (3-5)

n ,n1=0



(y/k (x) )

	K G (x) 	 V (4)("4 '"I) (x)) — r" ) (x)
k=0	 k!

„ (y'k (x 	'P)

	+ g oc„K„(x)E	
)) E (13	

(0 (n_k,„,_,) (x))+ c, „ 2 (r) D (n,m-p) (x)

p=0 r	k=0	 k!	 p=0 p!	 nl 1‘1“D
 •
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n(x)•

(3-6)   

	+ K„(x)E 	 It',,"")(x)+Rc,('K''„")(x)
	k=0	 k!

e3 = (Q(x))	 x   

where (f(x)) is the ensemble mean of the source/sink term, (H(x)) =Kea/a) is the

ensemble mean of the Kirchhoff-transformed variable specified on the Dirichlet

boundary, and (Q(x)) is the ensemble mean flux normal to the Neuman boundary.

Ensemble means (f) and (Q) in (3-6) are not expanded in powers of ay and cr13 as we take

them to be statistically independent. Although the pressure head and its auto-covariance,

prescibed on the Dirichlet boundary, are also independent of Y and (3, the transformed

variable H(x) on this boundary does depend on 13, and therefore its mean must be

evaluated. The mean is given to various orders of approximations by (see Appendix A)

a' (P(x)) (e	
1+

1	 2
(I1(")(X)) —cvK,,(x))

aG	 2
(3-7)

(H(0,2 )(x) ) _
„r2aG (-Y(x))
s-13 e

1	 a„	 (111(x))(1— a, (tIf(x)))+1-a2, (1+ cc, (T(x)))2 02,(x)]

[

2	 a,

where 6[32 = (
13

/2) is the variance of 13. For a deterministic Dirichlet boundary condition,

(34,2(x) 0 and (3-7) simplifies to

(H(0.o)(x)) = 1 e«,; (4, (x))

aG
02 c,G 0,00)

(H (° • 2) (x))—	
e»

[1 a„ ( 1P(x))(1— a, (T(x)))1
2 a,

(3-8)
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Equating these with same order terms on both sides of (3-4)-(3-5) gives the following

recursive equations for 1:1(x)) to second order in ay and (To,

(oco,okx» :

• [K„(x)(v(0 (" ) (x)) + gŒ(; (0 (" ) (x))e, )1+ (f (x)) = 0I	 x E Q

(0 (0,0) (x) )_ (H(o,o)(x)) 	Xe F,

n(x)•[K,(x)(V (V" ) (x)) + goc, (4) (" ) (x))e3 )1= (Q(x))	 xe F,

(0(O,i)(x)) :

(3-9)

V •[KG (x)(y KO" (x)) + ga, KO" (x))e3 )1= 0	 x E Q

(0 (0,1) (x) )_ 0	 xe F,

n(x)•[K,(x) (v (4)(0,1)(x))+ gCC G (0 (0,1) (x))e3)1= 0	 xe I',

(3-10) 

which has the solution

(cp ("(x ))=o	 x E Q	 (3-11)

(0 (O,2)(x)) :

	(2 	 n -0.
ŒG (0 (0,2) (x) ) + 13

- ŒG  (
0 (0,0) (x) ) + k04,,2) (x) e3

	2 	
) -

. N7 .[KG (x)V (0 (° •2) (x))+ gK,(x)

((o,2) (x)) _ (H (0,2) (x))

n(x)•[KG (x)V (43 (02) (x)) + gKG (x)
f	 2	 \

ŒG (0(0,2) (x) ) + Go 
ŒG

 (

0(0,0) (x) ) + c2) (x)
2 

where (I-P'2)) is defined in (3-8) and RL; 2) is given by ( see (C-11) of Appendix C)
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R 2 (x) = pa 2,G 123 VG (" ) (y,x) KG (y)(0" ) (y))e,c/Q

- frp (aV(Y)VG(Y,x)K,(y)) (0.2) n(y)dr
(3-13)

(0(1 ,0)(4) :   

V • [K G (X)(V	 CO) + gŒ (cI)" ) (x))e 3 )1= 0

(0" ) (x)) ---

n(x)•[KG (x)(V (c13 0) (x))+ pa, ( 1:13 (1.°) (X))e 3 )1= 0

(3-14)

which has the solution  

(0") (X)) = O 	X E Q

((Daly» :

V • [K,(x)(V(0 1.1) (x)) + gŒ ("(x)) e 3 )] =0	 xe Q

(4) (" ) (x)) = 0	 xe r,

n(x)•[1{,(x)(q13" ) (x))+ pa, (4) (1J) (X» e 3 )]= O 	xe

(3-15)

(3-16)

which has the solution

(0(1,1)(x )) x E	 (3-17)
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4(2,0)(x)) :

V • [K0 (x) (V ((2.0) (x)) + 0.5a,(x)V(01(2 ' 0) (x)) )- r (2 '°) (x)

±g (a GI  , (x)((.13 (2 •°) (x)) + 0. 5a,2„ (x)V (60 .0) (x))) + ad'? (K2,; (x)) ed= 0 X E Û

(0(2,0 (x) ) _ 0	 X E

n(x) •[K 0 (x) (V((2.0) (x)) + O. 5a; (x)V (cID (2.°) (x)) ) - rM(2(x) 

	 I-,

+ g (cc,K G (X) ((CD (2'°) (x)) + O. 5(4 (x)V (6" (x))) + a G/42i, (x)) e3 1 = 0	 x E FN

(3-18)

where 6y2(X) =0(12(X» is the conditional variance of the natural logarithm of the

saturated hydraulic conductivity at point x in the flow domain, and r(2'°)(x) = R(2,o)(x,x)

op,o)(x) = ciccri(2,o)(x,and RK	 x) are given by (Appendix C)

r(2,0)(x) = R(2,0) (x,
)	 (K:(X)VCIAX))(2'°)

= KG (x)L Ç (x, z)vxvzT (G°'°) (z, x)) KG (z) [y ( ( ° '°) (z)) + ga 0 (c1) (0.0) (z))e,]dû
(3-19)

R (K2(;,°) (x) q °) (x, x) = (K's (x)clY (x))
(3-20)

=	 ,(x)	 (x, z)VTz (G(° '°) (z,x))K (z) ['V (c(°'°) (z)) + gcx G (c1) (" ) (z)) e3 ] ds-2

(0(2,1)00) :

y. 	G (x) (V ( (2 ' 1) (x)) + got,G (43(2 '1) (x))e,)]= 0
	

x e

(0 (2m (X)) = 0
	

X E rp
	 (3-21)

n(x) [KG (x) (V(2.» (x)) + ga G ((1) (2 'D (x))e3 )]= 0
	

X E

which yields

(0(2 ,1)(x)) =	 E	 (3-22)
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(cp(2,2)(x» :

V • F(x)= 0

(c13(2.2) (x))= 0

n(x) • F(x)= 0

F(x)= KG(x)[

(

( v (CD(2,2)(x))+
45

2(x)

\

(

v ()(0,2) (x))
i

G y2 (x)

_r(2,2)(x)

2	 2
ar,a,(x)

(3-23)
cy2

+ g aGKG(x) (0 (2.2) (x) ) + 	13 (0 (2,0) (x) ) +	 (0(0,2 )(x ) ) +	 (0(0,0 ) (x) )
2	 42

. /
(	 (	 \	 \

+ CCG Ric2ri>2) (x) + — Ric2: (x
2

+ KG (x) )R 2 (x) + CY 2y (X) 	(0	 )R 2 + R,L2) (x) e,a4;	 (x)
2

where the following terms are evaluated in Appendix C,

ROE(24;2) (x) = —ŒG f.(111(y)f3/VTvG(''')(y,X))KG (y) (V (4)(0 1 0)(y)) gaG (0050) (y))e3 )dQ

—ŒG f.  (fYVT,, G (0 ' ) (y, x)) r (2 '°) (y)dS2

g taG2 1:5123 L[(0.5(32y (y)vT,G (0,0) (3, 9x)+ 0, ,(y)vv. G (1,o) (y,x)))(4) (0,0) (y) )

+V 	(y , x))(4)( 0 , 0) (y)) V7G(OM(y, x) ( I20) (y))] KG (y)e3 dS2

—ga2G fça (r3V 2,,G (" ) (y, x))/62d,°) (y) e3 c1S2

- (a'H'(y)VG(y,x)K, (y)) (2,2) n(y)dF
rD

(3-24)

r (2.2) (x )	 R12.2) (x,
) (K:(X)V0 '(x )) (2,2)

= -KG (x)fu Cy (x, Z)V	 (G 2) (z, x))KG (z)[y (0" ) (z)) + g a„ (0 (" ) (z))e,10/5-2

- KG (x)f o Cy (x,z)V ,VG (m) (z,x)KG (z)[y (43 1
0
 2) (Z)) +g aG

(w.2 (z)) cY2ft /vo.o) (z) )
/	 2 \

e, dg2 (3-25)    

- g cc,K,(x)L[Cy (x, z) (WV ,V T,G (°I) (z,x )) +(f3'17 '(x)V	 (z,x))]K G (z) (C13  	 (Z)) e 3 C1Q

+gK G (x)f o (Y'(x)V rz G" (z, .0) KG (z)	 (z)d52

KG (X) f Knx)11'(z)V,V:G(z,x)K,(z)) (2 2) n(z)dr
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Ri,2) (x) =	 i,2) (x ,x) = (K:(x)V (x)) (2 '2)

= — KG (x)LC, (x,z) V r, (G (0 '2) (z,x)) K G (Z) [V (0") (Z)) + ga, (0" ) (z))e,1c/S2

(	 0.2	 \ -
—KG (x)LC, (x,z)V T, (G (" ) (z [,x))KG (z) V (0:13 (0.2) (z))+ ga G ( (° • 2) (z))+	 (4:13 (" ) (z» e 3 dS2

2 )
— g a, K ,(x)L[C, (x,z) (PV T,G (" ) (z , x)) + (f3'Y '(x)V,G ( ''' ) (z, x))1K , (z) (Ow (z))e,c1S2

+gKG (x)L(If'Y' (x) VG ( ''°) (z, X)) KG (z) R (L',2) (z)dg2

— K G (x) frp (Y '(x)H'(z)V iz G(z,x)K, (z)) (2 ' 2) n(z)dr

(3-26)

R (x) = C,2k,1,2) (X , X) = (0C K:(X)C131 (X)) (2 '2)

= — ŒG K G (X)LC y (X, z) (i3Vz G (" ) (z, x)) K G(z)[v (4
3 (0 ,0) (z))  g Œ

 (vo,o) (z) ) e3 1 dQ

—g c4cT 23 KG (x)10 (Y /(z)VT, G" ) (z, X)) K G(z) (C13(") (z)) e 3df�

- K G (X) fr, (Cit'nx)I-r(z)VTz G(z, x)K s (z)»(z)dr

(3-27)

The above derivation shows that we need to solve only for ( 0,0)), (0 (O,2)), ((2O)) and

(c13 (2 '2)), while all first-order terms are zero.

3.2.2 Recursive Approximations for Conditional Mean Flux

Expressing (q(x)) in (2-25) in powers of O'y and ar3 gives

It,m=0

— KG (x)(t (	

(x)) (43(n-k.") (x))
k	 k!   

(YNx)) VP) 	(x))
	+g ŒGLL	

Ko(n-k,m- p) (x))e +g 	v	 ko" (x)e 3
	k=0 p=0	 k!	 nt

	

•	 kl
(3-28)

(x ) g
or )

ŒGE—, 1?„,- -P)(x)-F	 e3
p=0 P

X EQ

Comparing terms of same order on both sides, we obtain to second order
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(q (0,0) ( x )) __. _KG (x) (y (00,0) (x) ) + giaG (4) (0.0) (x) ) e3 )	 x E S2 (3-29)

(q ( 2,0)( x ) ) _ _KG ( x ) V ( ) 2 .°) (x)) a2Y2(x) V (X))+	 (c1) (0,0)

/ \ (3-30)
+gŒG

(02s» (x) )

-

(-72y (x)+	 (cro.o) (X) )

f

e3 + r (2.c» (x) _ gaG k2,i)o) (x)e3 	x E f2

\2	
_

2

(9,(0,2)( x)) _	 KG (x ) V (4)(0.2)(x )) + gaG a(OW) ( x )) 4. ; (OM (x )) e 3 + gR 2) (x) e 3 (3-31)
- )	 -

-

(q (2 .2) (x ) ) = -KG (x) y (43,(2.2) (x)) CY}' (X) v /0(0,2)( x ))+
2	 \

-

0.22y(	 2	 0. tx\

+ gaG
GP(0(2,2)(x )) +	 (0(2,0)(x )) +

2
Gy2 (X) /(0,2)(x )) P	 \	 f

e32	 \
4.	 (0(0,0)(X))

4
(3-32)

+ g	 Ra(2,;2)(
c(x)

(x) + Ra2) (x)
œ'D2

-

-
(	 cy2

+r (2,2)
(x) - g C4 G

-

RK(2:)(x \ +	 13 R (2M (x,

)	 2	 " k )
\

+ R(x)
-

e,

All first-order terms are zero, hence the total flux to second order is

402,21(x ) = q (0,0)( x ) + q (0,2)( x ) ± q (2,0)( x ) + q (2,2)( x ) (3-33)

3.3 RECURSIVE CONDITIONAL SECOND MOMENT APPROXIMATIONS

3.3.1 Recursive Equations for Co.(x,y)

Expanding moments of quantities in (2-27) in powers of ay and 613 gives, for any integer

m > 0,
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" (x)
i 	mK„(x)L 	 VxW'm)(x,y)+ EIC„k "(x,y)V(c13 (1"'"' - ' ) (x))+(K:(x)V(y)Vc1) /(x)) ( "'"' )

k!	 k=0 1=0  

(y'k (x))	 y) aG	 (r)c(n_0.(x,y)(K:(x)V(x)(1)/(y)r-P)
op

p=0 PI	 k!	 p=0 P.
,+g 

0=0   

(Y (x))
K G (X)2.,	 (X)CIAY))(n P) (CaCs (X)CD ' (X)C13' CY)) (n.'")

1,0	 k!

(Y 'u (X)) In n

KG(x)I L 	 yr..('''")(x));;;.'"-P)(y)+1E(43(k.P)(x))(oc'es(x)V(y)r 	 P )

p=0 0=0

13n	 n+ŒG E E	
)(0(k.„)(x))c;ci;k.w)(x,y)

k=0 14+ v- w=0 U.

C,,n'in ) (x,y)--(H'(x)V(y)) (n '''' )

n(x) • I*1= (V(x)V(y)) ( "'"i)

+ (f(x)(13'(y)) (H '"i) = 0 	x,y E

ye 52, xe F,

ye 52, x E

(3-34)

where cross-moments (f(x)(10/(y)) ('''') and (V(x)(13v(y)) (1"» can be derived from (2-28),

(f '(x)(1)/(y)) ( "'"I) = Cfr ) (x, y) = f C f (X Z) (G ("."') (z, y))c/S2

(Q i(X)V(Y))(") = C"41 (x, y) = f CQ (x,z)(G ( "'"' ) (z,y))dF
rN

(3-35)

Cf(x,z) and CQ(x,z) being auto-covariances of the source/sink term and prescribed

boundary flux, respectively. The terms Y-1/(x)c13/(y)) ("n) are evaluated up to second order

in (A-26)-(A-29) of Appendix A. Collecting terms with same power of say and 613, one

derives equtions for Co to second order,

{

vx • [K,(x) V x C,T•°) (x,y)+ g oc,KG (x) C °) (x,y)e,l+ C °) (x,y) =0

C °) (x,y)= C: ) (x,y)

n(x)•[K,(x) V ,C: .°) (x,y)+ g aG IC,(x) C' °) (x ,y)e 3 1= q °) (x,Y)

x,y E

yeS2, xeF,

yeS2,, xEF,

(3-36)

where (f(x)(1) /(y)) (") and (V(x)(1) /(y)) (° '°) can be obtained from (3-35),
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(f'(x)v(y)) (" ) = c°)(x,y) = f cf (x,z)@(°'°)(z, y ))c/S2

(0X ) CD /00)(") = q °) (x,y)= f CQ (x,Z)(G (° '°) (z,y))dr
	 (3-37)

FN

and (H /(x)V(y)) (° '°) is derived in (A-26) of Appendix A,

(f-f(x)V(y)) (° '°) = -eœG ( '`x» f eaG ("cp(x,z)KG (z)V,G (" ) (z,y)-n(z)dr	 (3-38)
FD

The auto-covariance c.g).0)(x,Y) is zero only if all driving forces are deterministic, i.e.,

Cf(x,z) = CQ(x,z) = Cw(x,z) = 0, for all x and z. Equations for Co(x,y) up to second order

in Gy and Go are

. 'V x • F(x,y)+ ef2,;()) (x,y) = 0

C .°) (x,y)=C(x,y)

n(x) - F(x,y)=Cy: ) (x,y)

F(x,y)=[KG (x)V „CD2.°) (x,Y)+C (K2: ) (x,y) V (0" ) (x))

+ g oc, (KG (x) C")) (x,y)+C (K2°) (x,y)(0" ) (x)))ed

x,ye

yEQ, xEF D

y E Q, x E r iv (3-39)

• F(x,y)+ C (1: 2) (x,y)= 0

C:'2) (x,y)=C (:: ) (x,y)

n(x) - F(x,y)=q°,i,2) (x,y)

x,y

ye52, xeF,

yE Q, x E F iv
(3-40)

F(x,y)= KG (x)V ,C,,° '2) (x,y)+ g KG (X)(aGC 2) (X Y) Ra( ?1>2) (Y)(0(") (x)))e,

and



, • F(x,y)+ C (f2,;2) (x, y) = 0

C' D2 ' 2) (x,y) = C 2) (x,Y)

n(x) • F(x,y) = q24;2) (x ,y)
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0.2y ( x .,
F(x,y)= KG(x) V,,C((i .2) (x,y)+ 	 f K„(x)V „C:• 2) (x ,y)+ (K',(x)(13'(y)VcIAx)) (2,2)

2
+Ci,°) (x,y) V (c120 ' 2) (x)) + C (,,;,,2) (x,y) V (4) (" ) (x))

2

[	

\
(2,2)	 CT2y (X)	 ( 0 . 2 ) 	CYO	 (2,0)a„K„(x) C, (x,y)+ 	 C, (x,y)+ —C (x,y)

2	 2
/

+ g

a2

	(K:(x)v(x)(1)'
(y))(2,2)	 Kic,(x)43/(x)cw(y))(2,0)

n

+ KG(x) (a'cl:V(x)(1)'(y)) '	
CY

+	 (c(crAx)(12V(y))(°1	(2 2)	 2y (X)
2 

(Cit 'es (X) (1AX)Clqy)) (2'2)

(+ KG (x) 
a2y(x)

(41:0 (° •,) (x))R 0,2) (y) + (430 (2 '°) (x))R (Œ0,;2) (y) + (11) (" ) (x))R 2) (y)
2	 )

26
(4) (") (X))C,2: (x,y) + (4) (02) (x))C 2°) (x,y) + (43 (" ) (x))C,<2,2) (x,y)

2

+ C;x2,„,2) (x , y) (01) (" ) (x))1e 3

aG

(3-41)

where CH(D(° ' 2)(x, y) and CH0(2'2)(x, y) are given by (A-24)-(A-27) of Appendix A, and all

other terms have been evaluated in Appendix C.

3.3.2 Recursive Approximations for Cq(x, y)

Expanding (2-29) in powers of cry and ao, we obtained approximations for the covariance

tensor of flux, Cqq(x,y) = (q'(x)e(y)), to second order in Gy and 'Jo,

C10,°) ( y	 0,1( x ) ,7/1 y ))(")

= K, ; (x)[V „V 1 C D(:),0) Y ) + g OEG (y x Cr ) ( x, y ) e 3T + eyC:• °) (x, y) + cc,Cr ) (x, y) 01K, (y)

(3-42)
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C	 (x, y) = (q 1 (x)q'T (y))(2m

= K,(x)[y x Vyr C,(j' °) (x, y) +V xCe) (y, x)VTy (11) (m ) (y))

+ Vy C °) (x, y) Vrx (1)(0.0) (x)) Cy (x, .Y)Vx (
00,0 (x) ) vyr K oom (y))]

 KG
 (y)

+ ga,K, (x)[V „C1,2 '0) (x, y) + vxqr (y, x) (0") (y))

+ C1,2P (x, y)V x (11 0.0) (x)) + Cy (x, y)V „ (el)" (x)) (0.0) (y))] e3T K G (y)

+goc, e3 KG (x)[VyT 	(x, y) +C °  (y, x)VT (113") (y))

+ vyr c1,2p (x, y) (1:1)(00) (x))+Cy (x, y) (cre") (x))Vry (0(
0.0

) (y))]K,(y)

+ goc 2, KG (x) [c,2.0) (x, y) + qr) (y, x) (0") (y))

c °) (x, Y) (cD (0.0) (x))+ Cy (x, Y) (c13(0.0) (x)) (i °°  CO)] E3K G (Y)

(3-43)

‘ (0 ,2)
c 0 '2) (x, y) = (q' (x)q'T (.Y))

= KG (x)V xVryCg) '2) (x, y)K,(y)

+ g-G (x) [OEGvx0:,2) (x, y. ef)	 + aG e3VyrCr'2) (x, y) + C,,°'2 (x, y) E,

▪ v„.R 2) (x) 	(60,0) (y) ) + e3VyT
Rocj,;2) ( y) ( (D (om (x))

▪ ŒG (R2) (x) (Ï 00 ) (y) ) + R o(c;2) (y) (00,0) (x) )) E3

+a2,a2p (11:0") (x)) (0(m) (y)) E3 ]KG (y)

0,2'2) (x, y) = (q' (x)q'T (y)) (2 '2) .U(x, y) +V (x, y) +VT (y ,x)

(3-44)

(3-45)

where U and V are defined as
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U (x, y) =

= K„(x)[V xVC 2 •2) (x, y) + —21 (a;, (x)+ (y))V	 (x, y) + V x (4) (" ) (x))(Y'(x)0y)V Tx (V(y)) (2.2)

+ (0x)ny)V ix. (13'(x))(2,2) vT, (43 (" ) (y)) + (nx)ny)V 1x 4:13'(x)Vy clAy)) (2 ' 2)

+ Cy (x,y)(V x (c13 (°.2) (x))V r (0 (" ) (y))+ v (43 (" ) (x))V T, (0 (° •2) (y)))1K,(y)

+ giC,(x)[a 2G C•2) (x, y) +	 y (x)+ CY ( y ) )C,° • 2 ) ( x, y ) + CY 20C,)2 • °) (x, y)

lt24;2) x ((DOM y ))	 R2) (x )
(2.0)(y )) (G2y ( x ) cy2y y ))(4) (0,0)(y ))

2 \

OEG
n

Ra(2,,;2) (y) (Ow ) (x)) + ROE(134;2) (y)(0 (2 •0) (x)2
1 (Gy2 (x)+— 4:72y (y))(0(0,0)(x))

2 \

CC2G (1213 ((4)(2,0)(x))(4)(0,0)(y)) + (
)
0,0)(x

))
 (CI)(2,0) Cy»

+ 1 ( 4::y, (x)	 (y))(00,0)(x))(00,0)(y))j

2 \
(a,o ,( y)) (2,2) (0(0 ,0)(x)) + (4:1,20 ,(x))(2,2) (1:)(0 ,0)(y))

+ 2ŒG (aW(x)(13v(y)) (2 ' 2) + (a'2 0:1Y(x)V(y)) (2 ' 2)

+ ac2;Cy (x,y)(20123 (000)(x))(0(")(y))+ (00,2) (x. ) )(00,0) (y)) (00,0) (x) )(0 )0,2) (y) ))

a2G (y ,(x)y ,(y) 0 ,(x)) (2,2) (0 (0 .0) (y)) a2G ( y ,(x)y ,(y) ev(y))(2.2) (0(0.0)(x))

+ 2ŒG (a'Y'(x)11y)(1) /(y))(2 '2) (0" ) (x))+ 2aG Ka'Y'(x)Y'(y)cD'(x)) (2 ' 2) (
)w (y))

+a2G (Y /(x)Y'0) 0/(x)clY(Y))(2.2) 1 E3KG(Y)

(3-46)
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V(x,y) = gK„(x)E3[4 (C(1,i,2)(y,x) (4) (o.o) (y)) cK2:) (y,x) ((4) (0.2) (y)) cy2ti (420.0)(y))))

+	 (K;(y)(13'(x)(1)'(y)) )2 ' 2) + a, (c10 (" ) (x))(ar,(y)(1V(y)) )2 .2)

+ 2a, (c1:0 (y))(ar(y)V(x)) (2,2) + 2a, (a'IC,(y)c13"(x)(1V(y)))22)

+ (0(0.0) (x)*(2 K:(Y)0.Y# 2,2) + (0") (Y))(eK:(Y) (1)/(x)) (2)2) 1

(
+ gK,(x) e, La„ VTy C,,7-2) (x,y)+ —

1
(a;, (x) + a (y))VT C" .2) (x/ y) + —

1
0. 12iVTy C:' °) (x,y))

2	
y 4, 2

1
+ VX 2} (y)(43 (00) (x))+ V rA 2) (y) (V 2 0) (x)) +	 (x) + cs;, (y))(43 100) (x)j

+ a„Cy (x,y) ( 4:1) (0,21 (x)): (143( 0 .0 )(y))	 (:13(0,0)(x))
	(0.2 (y))

1

1- 

cy2 /0(0 ,01 ( x ))	 (cp( 0.0) ( y)) )

2 \

+ (a'cicV(x)V T,V(y)) 2) + (ca t(x)Y t(Y)V(x)Y 2) V 	°) 00)

+ arc (nx)y ,(y)
'
(x) )(2,2)	 (0,0) (y)) ( cc,y ,(x)y ,(y)vrvily(y) ) (2,2) ,,r,(0,0) (x) )

+ 4a, (nx)Y t(Y)V 1, (13t(Y)Y 2 2) K° '

° (x)) + ŒG (Y‘(x)Y'(Y) (13 '(x)V 1, (13t00) (2 2)

+ (a'nx)crqx)V 7,,(13'(y)) )2 2)1 K„(y)

+ gK,(x) e,[cc„(vT (43 (" ) (y))C(y,x) + [v 	y:13"" ) (y)) C;c2: 1 (y,x)j
2

	

\	 1

+ a, (K:(y)(1:qx)V T,V(y)))2)2) + ocele,(y)(13 t(x)V 7y143'(y))(2.2)

+03(" ) (x))(00Y)VT„V(Y)) (2)2' + v

+ K,(x)[Qe(y)V T,V(x)){2.2) '1/47 7,) (0 (" ) (y))+ (K:(y)V E,V(x)Y 2)0) v r, (0 (0.2) (y))

+ (K:(y)VcD t(x)V 1,,I1V(y))(2 2) 1

+ gK,(x)[a,[(K:(y)V,V(x)) (2.2) (4:13 (" ) (y))+ (K:(y)V,V(x)) (2.°) ( ( 3 (0.2 ' (y)) + a/23

+a„ (K:(y)V,V(x)0'

(3-47)

3.3.3 Approximations for Cyq(x, y)

Rewriting (2-30) in terms of mean quantities and fluctuations about these means, then

collecting terms of same order in ay and cy(3, we obtain expressions for the cross-

010.0)(y) )J
(y))(2.2 	(CeK:(y)Vx(13'(X)Y 2.2) (43 (° ' °) (y))1e;
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covariance between the natural logarithm of saturated hydraulic conductivity and flux up

to second order in ay and ari,

y) = (Y'(x)q /(y))(2,0)

= -KG (y)(Y /(x)Vc1) /(y)) (2,0) - Cy (x, y)K, (y)V (c1) (" ) (y))
	

(3-48)
- ga„KG (y)[(11/(x)V(y)) (2,0) + Cy (x, y) (113 (" ) (y))1e 3

C4•2) (x, y) = (Y / (x)q'(y)) (2 '2)

= -KG (y)(y ,C;,2,;2) (x, y) + Cy (x, y)V (420.2) (y)))- KY'(x)K:(y)VV(y)) (2. 2)

[- g ct„KG (y) ( 0 2) (x, y) + —1 a r230 °) (x, y) + a.„ (Y /(x)K:(y)(1)'(y)) (2,2)
2

+ ocG KG ( Y )Cy (x, Y)[( 01(0 " 2) (Y» + —21 (4 (0(" ) (Y))j±

+ KG (y) (a'nx)V(y))( 2,2) + (a'nx)K:(y)(1)'(y)) (22) 1 e,

(3-49)

All terms on the right hand sides of (3-48)-(3-49) are derived in Appendix C.

3.3.4 Approximations for Cpq(x, y)

Similarly, rewriting (2-31) in terms of mean quantities and corresponding fluctuations,

then collecting terms of same order in Gy and ap, we obtain expressions for the cross-

covariance between 13 and flux up to second order in Gy and 0 13,

CP,;2) (y) = (13'q'(y)) (0,2) = -KG (y)[V Rf(3c„,' .2) (y) + got, (R42) (y) + af23 (43" ) (y)))	 (3-50)
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C'2(y)	
(3ql(y))(2,2)

= - KG (y)[V R IV,;2) (y)+ -21 Gr (Y)VR4 2) (Y)1 - (13(K:(Y)VV00) (2.2)

- ga„K(y)[ Rf(32) (y) + -i a;, (y )4;2) (y ) N + ap2 (0(2,0)(y)) + 
	(

y) (4)( 0 ,0)(y))

\	 /	 \	 ) -
g[K.

[KG (y)
 (a , r o f (y ) )(2 ,2) + 

ŒG
 (0,K ,, (y)cv(y) )(2,2) ± (a , 13,K:(y)43 , (y) )(2,2)] 	 e3

e 3

(3-51)
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CHAPTER 4

FINITE ELEMENT SOLUTIONS OF RECURSIVE CONDITIONAL

MOMENT EQUATIONS

4.1 INTRODUCTION

In this study, we consider steady state unsaturated flow in a two-dimensional vertical

plane. The flow domain is discretized into a number of elements. Soil properties, such as

saturated hydraulic conductivity, are defined over elements, i.e., they are considered to be

constant inside an element but may vary from element to element. However, flow

properties, such as pressure head and its transformed variable (13, are evaluated at nodes,

and their values at points other than nodes can be interpolated using weight functions,

which are defined later.

We solve the recursive conditional moment equations by a Galerkin finite element

scheme on a rectangular vertical grid, using bilinear weight functions. For simplicity, we

consider only deterministic forcing terms. For illustration purposes, we show only the

derivation of numerical solutions for recursive conditional mean equations and

covariance functions in detail. Appendix D is devoted to the detailed derivation of all

other quantities (related to the mean and covariance equations).
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4.2 FINITE ELEMENT SOLUTIONS OF CONDITIONAL MEAN FLOW

EQUATIONS

4.2.1 Mean Transformed Variables

Consider Galerkin orthogonalization of (3-9). Application of Green's first identity yields

f KG (x) v((00,0) (x)) gaG (€13(")(x))e2)•Vk(x)c/S2n 

= KG (x)V (clo (" ) (x))k (x) • n(x)dr + (Q(x))k(x)dF + f (f (x))k(x)d5r2

where, e3 in (3-9) has been changed to e2=(0,1)T for two-dimensional flow. Let

NN
(0(0 ,0) (x ))	 lli(x)

In=1

where k, is the weight function defined in (D-2), NN is the total number of nodes used

for discretization of the flow domain, and (omo,o)) is (43 (")(x)) evaluated at global node

m. It should be pointed out that in the following derivation, a node number (such as m

here) may denote either a global node or a local node, which should be evident from the

context. Substituting (4-2) into the first integral of (4-1), and defining

A„„, = EA,(:„) .f KG (x)V,, (x) •V„,(x)df2

B,„„= EB 	 f K„(x)„(x)V„,(x)dS2

leads to

NN

E (A + ga„eB„) ( °,•1= f KG (X)V (V") (X)) k (X) • n (X)dr
nt=1	 rD

+ f (Q(x))k(x)dr +1(f(x)),,(x)d5-2	 n = 1,2,...NN

(4-1)

(4-2)

(4-3)

(4-4)



and

if n E rD

(4-6)

I ( H ,0

	(e) 	 (e)
yWi W2

 ( f (0 ) ± E de)	(Q(e))

	4 	 \
if n F,

eeE„	 e€E,: 2
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where integrals containing prescribed mean flux (Q) and source/sink term (f) need to be

evaluated, but the integral over Dirichlet boundary can be ignored. In fact, for any node

ne FD, since 07)=0 on FD, the first boundary integral in (4-4) vanishes. For any nE rb,

we can drop the n-th equation, since the value of (0,0,13)‘2 is prescribed on FD, or we can

simply assign coefficient matrices

Ann++ gaG e 2T Bnin	 if n e F,

1	 if n I'D and n = m
	 (4-5)

O	 d n E F, and 11# 197

so that (4-4) can be rewritten as

NN

m=1

(4-7)

This scheme is easier to implement, because we do not need to distinguish between types

of boundary nodes (Neumann boundary nodes or Dilichlet boundary nodes) in

assembling element matrices into global matrices. Here 0-/ ° '°)) is the mean value of the

Kirchhoff-transformed variable specified at the Dirichlet boundary node n, as evaluated

in (A-10) of Appendix A. Definitions for other terms are illustrated in Figure 4-1. Here

we assumed that prescribed flux is uniformly distributed along the Neumann boundary of

each boundary element. If flux is prescribed at boundary nodes, the coefficent matrix in

(4-6) should be modified accordingly.
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	d(e2)	 d(e3)

	

(e2)	 (e3)

ylv,1
__.

44 '' '	 ' V	 Tiv	 ''' viv V	 4'

el e2
n

e3

e4 Ili e5

e6

f•
e7

Figure 4-1. Diagram showing how the contribution of prescribed flux and the source/sink

term is evaluated in formulating element matrices, i.e., (4-7). For global node n1, En in (4-

7) consists of element e4, e5, e6, and e7, and the source f in e7 contributes one quarter of

strength to this node; the contribution from influx to the global node n consists of half of

influx in element e2 and half from e3.

We note that all the recursive equations (3-9), (3-12), (3-18) and (3-23) have the same

structure. This leads to corresponding finite element equations with the same format as

(4-5) with exactly the same A matrix but different I; . The finite element equation for

40,2)4)) can be written as

NN
Â 0(0,2)
	

(4-8)

where
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(H 0 '2) )	 ifnErp
my a2

E p fo,(,,0,0))

m=i 2 \
e72: B „„,	 if n

(4-9)

Here, RI%2)„ is the covariance functionR or evaluated at node m , and (Hn0,2)) is defined in

(A-9). Derivation of (0(2,0)(x)) is somewhat more complicated. Following the same

o0,procedure as we did for (0 )(x)), we obtain

K ,(x) (N7 (CI (2,O) (x)) gOCG ( (2,0) (x)) e2	 (x)dû

=	 (x) (y (cD(2.°) (x)) + O.5o. (x)V ( (2.°) (x)) )- r (2 '°) (x)
rp

+ g (a K (x)(0) (2 '°) (x)) + 0.5(7,2 (x)V (413 (° '°) (x)))+ ccG R °) (x))e,]”(x)- n(x)dr

+ f(r (2 '°) (x)- - g a G KG (x)cr;, (x) (V") (x)) e, - gaGRg) (x)e2 )•V„ (x)c1
2
1

(4-10)

For Vxee, multiplying (D-15) of Appendix D by K(x), taking the derivative with

respect to y, and then setting y = x, gives

r (2,0)(e) (x) R(2,0)(e)(x,
) = (K is (x)V(1)

,(x))(2,0)(e) = KG (x) ,(x)vCD u))(2,0)(e)

NNN
(e',e) (ft,(0,0)(e'))*	 •(.e')EC.), (e ,e 1)K (x)	 Gr	) E E E )	 A + gcx er BlVe ) (x)p	 ip	 G 2 pi

j=1k=1p=1

(4-11)

where G (")('''' ) is G(" ) associated with node j in element e' and node k in element e
jk

(Figure 4-2), (cDpo,oxe). • s2 (e'°)(x)) at local node p in element e', N is the number of

nodes in an element, We) is weight function associated with node k in element e, and

(e') •is associated with node j in element e'.



3529 30 31 32 33 34

(03 (0,0)(e)

Cy(e,e)

G12(0,0)(e,e)

Figure 4-2. Diagram illustrating the numbering of nodes and elements. The boxed

numbers are global nodal numbers, and the numbers inside elements are local nodal

numbers. It also shows the meanings of some terms appearing in equations.

From (4-11), we obtain

r(2,0xe) x s
) •V „(x)dS-�

N NN

=EECy(e,e')E 
E v r...,(0,0)(e',e) (0(0,0)(e'))* (Ay') + nr,„ D T B(e')\ f r„,-( e)( ....\v(ke) , x , .

'-' jk	 P	 JP	 5 ''''G' 2 pj I i‘G ''' " )	 ( ) •Vte) (X)A2
e	 e'	 1=1 k=1 p=1	 52

N NN

=EICy(e,e')E E EGJ(0 ,0)(e',e) ( cD(p0,0)(e'))*(A(;') + gaGe2TB,(?) ,4,(,ke)

e	 e'	 j=1 k=1 p=1

(4-12)

Similarly,

42.,i,o)(e) (x s e2.) V„(x)c/52

NNN

= —E cy (e, e')y jk
(r._ 0)(e' ,e) (	

JP
0(0,0)(e"))*(A(e')	 Tgae B') 	 p(e)

2 "krt
e	 j=1 k=1 p=1

(4-13)

Derivations of the remaining terms in (4-10) re straightforward. We finally obtain

64
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NN

E	 =

1	 4
=	 I 027 )	 ien) g Ge 21. ,( ) (0	 e))

2 e	 ni=1
4

+	 Cy(e,e') E (G,(H01,0 e ,e') )(Ap(em) gaGe2T Bp(em))( Ai(ne') gaGe 'B i(ne') )(0 (0,0)(e) )

e	 e'	 ni,1,p=1

(4-14)

(4-15)

for nO , and E,„ =0 otherwise. Lastly, from (3-23), the component k in the finite

element equation for (02,2)(x)) is zero for n E Fi,, otherwise

= _ Liv 0. ,(e)1(Acuen, _FŒG4A(ne,)(4) („0,2Xe)	 E(r(2.2),),
In ' 

,(2)((e0)r:oxe))

2 e	 m=1	
1	 `-"2	 `-"21,

gaG0.02e2T E lAcnen)( cr,(„2o)(0)__1 ga,(302e27. E 072y(e) E B,(„en, („Dm 	)
2	 4	 m=1

	

e	 (11=1

_ gaG E R (K2ci32xe) + 1(	 02 0R(2,)(e)

2 r' "3
C2 ,,	 (4-16)

cy2(e) n(0 2)(e)
Y	

T (e)— gaG	 yr:=, : RŒ(24;2.,,u(e) + 1.
e2 „.

2

g E R e 2 if n rt,

where i(2,2)(e) and 4 2.2)( e ) are components of r(2 '2) at element e, it2,i2,;( e ) is Re,(2, 2,; at element e,

Y(e) is the conditional variance of Y at element e, and

(0
—	

Ig,(,e)(x) 
c/S2 aQ,	 x

r.(e)	 r at (ne) (x)
A2axQ,	 2

(4-17)

All these terms are evaluated in Appendix D.
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4.2.2 Conditional Mean Fluxes

Mean flow can be computed to second-order after solving equations for mean (1) and

other covariance functions (presented in the next section). As an example, the equation

for (q") is derived from (3-29) as

(4 (O,0) (x)) _ _KG (x) 07 (0 0.0) (x)) giaG ( (D om (x) ) e2 	 x E Q	 (4-18)

Basically, (q ( 3,°)) can be obtained in two ways from (4-18). One approach consists of

computing (q") directly at any point x inside an element e by using the weight

functions

(q (0.0Xe) (x)) =c(e) (x )E(00Xe))(vte: (x) gaGtei)(x)e2)	 XE Q	 (4-19)
1,1=1

where m is the node number in element e. The zero-order flux at the center of a

rectangular element is 

1

23,1e

	 (4(0,0)(e)) ± (0(40,0)(e)) (0(20,0)(e)) (0(30.0)(e)))

4 ) " I

1  
( .7 (0 ,0)(e)) = K G(e) 1	

4
_gacKe) (4:,0,0)(e))

4	 '
(4-20)

	(((00)(e)) + (0(20,0)(e))	 (0(30,0)(e))	 (0(40,0)(e)))

24 ) " 1      

where 14,e) and 144e ) are the dimensions of element e in the x i and x2 directions (Figure 4-

1), and the subscripts 1-4 of (0(0 0 (e)) denote the values of (00) at local nodes in

element e. The scheme is very simple and easy to implement. One problem is that the

calculated flux is defined inside the element. It is not convenient if one needs to compare

closeness of the solution with prescribed flux on the boundary, when the flux is

prescribed at boundary nodes.



67

Another approach is based on writing a finite element algorithm for (4-18) and

solving for the mean flux defined at the same nodes as mean O. At first glance, it seems

that solving equations for (e'n by the finite element method, instead of direct

calculation, involves an average scheme that may lower the accuracy of the solution.

However, since expressions for (q (' )) usually contain quantities defined at both nodes

and elements, some kind of averaging is inevitable.

Multiplying (4-18) by the weigh function n(x), integrating over the flow domain

Q, and setting

NN
(q (0,0) ( x)) Lq .0) ) ,, ( x)

NN

(0") (X)) = E(4);,;) ,0))„(x)
„i.,

(4-21)

where (or ) ) and (q,T'°)) are (ow) xi) and (q(0.0) x evaluated at global node m,

respectively, gives

NN	 NNy (q;, ,̀Llf „,(x ) „(x)ctS2= -E(413 ,0))f K(x)[v„,(x)+ ga(x)e2 ]„(x)610, 	(4-22)
/71=1	 Q	 ///=1	 Q

or

NNENN D„(q'°) )= -E(B„„, + ga„S„„,e 2 )(0 °) )
m=1	 m=1

where

D„„, = E D,) =f „(x)„,(x)r/S2
e

S,,,, =	 =f KG (x)„(x)„,(x)dQ
e

n=1, NN 	(4-23)

(4-24)

which are evaluated in Appendix D.
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In a similar manner, the finite element equations for higher-order approximations

of mean flux can be formulated as

NNE	 (i in2,o)) = _E E
e	 m=i

(B ,(ue,,)	 gac s e2 )	 ( 44) („2:0)(e))	1 	 2	+ 	 (e)	 (,0:0)(e))

	2 	 Y 	/- (4-25)
(r (2.0)(e) _ g 	K oxe,e2 )te) n=1, NN

NN
D. (q 2)) =	 I[(B,(ue„)	 g a (; S ,(uen) e 2 )(43 (no.2)(0) 1_ 

6
„,	 (e) (a) (0,0Xe)) e

,`-'0"run	 in	 22
m=1	 e	 ,r1=1 (4-26)

— gE E Ra(.0,2)(e)se2
e in=i

n=1, NN

NN	 N	 1"(e)
E D„,,, (q,2) ) . _E y B(e)

	Inn 
(0(2,2Xe) ) + u Y	 (0(0,2)(e))

ni=1m	 ni
e //1=1	 2n

,i,	 ,,,	2 	 2(e)	 2 2(e)	 \(

(

0(2,2)(e)) + p (0(2,0)(e)) + uy	 (0(0,2)(e)) + 613 6Y 	(0(0,2)(e))
m
	2	

,,,	
2	

„,	 4	 In

\	 I

N	 ,T2(e)	 \
	_ gE E R (22)(e) + '-'y R(0cr;2)(e) S,(L)e,	 (4-27)

e tn=I	 2
J

S 2
e ni=1

N (	 cy 2
p	 (2,e)+Er (2.2)(e) Tn(e) _ gc, E E

2

R(2,2)(,) +	 D0)(
lcox,	

T(e)e2,
1
1 	 \	

K(1,),in	 il
e	 e tri=4

I
_ gE E R (2,2:(e) Tn(e)e,

e m=i

n=1, NN

where k e ) and 1? (K2<i)°, ;;,e) are second order cross-covariances R ) and K2,;,°) between Ks in

element e and 0 at node m of element e, Rc,(24;2),( e ) and RcT,;2,)„(e) are second order cross-

covariances ROE( 2,;2 ) and R» between a and 0 at node m of element e, R=( ,e„ ) is

Ra(2i2 associated with K2 at element e and 0 at node m of element e, and

T„ =	 =f (x)dEl
	

(4-28)
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4.3 FINITE ELEMENT SOLUTION OF CONDITIONAL SECOND MOMENT

EQUATIONS

4.3.1 Covariance Function of EI)

For deterministic driving forces, Co(2 '°) is zero. Similar to first moment equations,

applying Galerkin orthogonalization to (3-39), the equation for Co (2 '°) , using Green's first

identity, and again assuming deterministic boundary conditions, gives

f KG (x) (V,C',.°) (x,y) + ga,C 2 '°) (x,y)e 2 )•\7„(x)d5-2

= —f(V xC (K2,;,°) (x,y)+ ga,C ) (x,y)e 2 )(V" ) (x))-V„(x)dS2

f [KG (X) 
v xc(1,2,0)(x,y) c(K2:)(x,y ) v (0(0,0)(x ))

	 (4-29)

F,)

+g a, (K,(x) C' .°) (x,y) +C (K2,i,°) (x,y)(43 (" ) (x))) e 3 ],, • n(x)dr

Let

NN

C 2 '°) (x,y)=	 (4-30)

be the second-order (in Gy) approximation of the covariance of scID between point x and

point y, which is taken to coincide with node p of our finite element mesh, then (4-29)

becomes

NN

E ( An" , + ga(eiBmn) Cd:.. 2, 'n°tp)
m=1

= _1E Ap(2,, ,,m)(e)(O,0) ) _ gaG 	Er (2.0)(e) B (e) (0 (0.0)) +/(ro
2,mn	 m

e	 e m=1

n = 1,2,...NN
(4-31)

where I(FD) is the integral over Dirichlet boundary as shown in (4-29), c',2,i,%( e ) is the

cross-covariance CKT)(x,y) evaluated at XE e and y at global node p, and



I
cH(20,0) ,p

E A (pe m (0,00)) g	ci,(20.0),(e) B e) (00))

e m=1	 e m=1

if n E

A („2„;°„,)(e) = f Cg ) (x,y p)V„,(x)Vt„(x)(1S2
fi

0,

at„ (x)
BL„ = f „,(x) 	 dS2

Q,	 ax,

=	 (x) 
a4" (x)

 cis2
ax2

Using (4-6), (4-31) can be rewritten as

NNy	 =A C 2 ;,°, ) . P

70

(4-32)

(4-33)

where

(4-34)

and	 is the cross-covariance between H at Dirichlet boundary node n and (13 at any

node p. For any given node p, the solution of (4-33) is the covariance of (I) between all

nodes with respect to p. Therefore, solving (4-33) for each node p in the flow domain

yields the covariance of (I) between all nodes. It should be pointed out that the covariance

function between (1) at a node with that at a reference point on the Dilichlet boundary may

not be zero if the driving forces are not deterministic.

The equations for Co(° '2) , and CD(22) have the same format as (4-33), with different .

For Ce.(° '2) and any fixed y at node p, COE(c,;;2) (y)=Caw:p)=c, we get

c.1(10,,b2),p

b„--	 4

gROE( ")1" 2, P) E E B,(L)(o
. o

)
e m=1

(4-35)
if ne rt,
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Similarly, the vector k needed for the computation of Ccp(2'2) is obtained (when

considering any fixed y at node p and XE e) upon interpolating some terms in (3-40) such

as

C'(D°'2) (x , y) =	
C(0,2Xe)(e)

(13,trip

(	 (X)V(y)4V(X))(i.j)	 = ( K:(X) (1)/(y)(V(X)) (' ' j)(e)
xEe,v=p

(cc'otv(x)ciAy)) (x ie "y.p 	
P

where i, j denote the order of terms, as

-̀'110,np

2 e	 m=1	 e

N	 N1_E \--, A(2,0)(e) (0(0) _,2
,,(_d in Jun	 ni	 ga, E E (a2,(e)c(°•2 )(e)„nip 	+ (3132 c 43( 2 ,, 0,p)( e ) ) B,(:,,,)

e ni=1	 2	 - e m=1

1
irv(y),, __, \ (2,2)(e) . —1 0., , _,,x , _,,yr,„__, \ (2,00)

—gŒ(	
C2n

, E (K:(x)	 w ,x,,,	 —r 
2	

Vç s ( )(13 ( ki, ..r)i p

e \

N \y E (a,,,,(x)(,) ,(y)) (,:,2)(e) + _21 (32y (e) (01) ,(x)0 ,(y) ):2)(e) ,t3rn)

e m=1

—g (0(K: (x)oicyw(x))(p2,2 )(e) C2 „

E p

•	

(2,2)(e) (d),(0,0) ) 4_ p(0,2Xe) (0(2,0))
+ 1 0 2, (e)R 2 xe) /00,o) \

"ael, , p	 ' "c10,p 2	 cop,p \	 I
e ni=1

_gaG E E 	(K20, 2. ,p(	 , 0 ) c (K2., 0 )p( e ) ( (n0:2 ) ) +	 (K2., 0:p( e	 .0) ) r
`-'2n

e m=1	 2

-gy E c

• (

2aK,243)(pe, c2n (0(„0,0) )

e m=1

I VI	 2	 'V' ,•-•(0,2)(e) • (e)	 (2,2)(e)
— ay (e)2, oymp A —EKK:(X)(IY(y)VV(X))	 C2n

B(e)

(4-36)

if ne FD

(4-37)

where

A(2,2)(e) = f C (KT ) (x, y = P)V „I (X)	 (x)dg2p,mn (4-38)
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4.3.2 Covariance Tensor of Flux

For simplicity, we compute the covariance tensor of flux directly from (3-42)-(3-45). Let

j)(e  (x, y) = E q-')t(„e,)(x)te')( y )
,n =I
	

(4-39)
C)(;,i)j)(e (X Y) =	 Ci4T )t („e ' ) (Y)

n=1

be the (i, j)-order components (in ay and Go, respectively) of the covariance of (1) and

cross-covariance of (13 at pointy in element e' and Y at point x in element e. Substituting

(4-39) into (3-42), for example, yields

Cq(0,0)(x y	 r„,(e)	 r (0,0)(e	 v (,r)
L	

(e')
)V y II (Y) get„V	 (X)t,(,e') (y) TG 

nt,,, =1 (4-40)
+gaG e,(x)V e " ) (y) + ga 2,t („(x)te " ) (y)E2 1Kg' ) (y)

which is zero if driving forces are deterministic. Similarly, from (3-43)-(3-45), the rest

terms of the covariance tensor of flux up to second order are

c 0,2) (x, y)

= E K.e)(x)co, ;,2„x, e.e') [v(x)v)(y ) + ga,V xte, ) (x)t (:" ) ( y)e 2T +ga„e 2te, ) (x)V(y)
,,,,n=1

+ ga 2,t („ez ) (x) (:' ) (y)E 2 1 Ke) ( y)

—
+gaG E Rtoci ,)2„),i(e' ) Kg) ( x)[v	 (x) te') y)e 2T t (:, ) , x) (ne ,

;(Y)E 2 _Kg ') (

+ gaG E R °4;2„)(e) K (x)[e	 (x)V Ty ,(,e' ) (y)+ t,(: ) (x)t,(ie" ) ( y)E 2 ]Kr (y)

g Ga2p 	(0(„0:0Xe))(Vn0,0)(e)) K g) (x) t(ny (x )E 2 te') yvcc(;,') ( y )
ni

(4-41)
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r(2,0)(x, y ) =	 [r(2,0)(e,e')	 r( 2 ,0 )(e) (4) (n0.0Xe')	 c(2,0)(e) ((0.0Xe)) + (4) (0,0)(e)) (4) (0.0Xe') )1
`- e/	 k	 s""Yit,in	 Y(I),n

ni,n=1

	KG (x) 	 A(,e,) (x)V e ' ) (y) + g ct„V xte, ) (x ) (,,e' ) (y)e 2T

±gaG e2ty(x)VIA(ne')(y) get2Gte,) (	 (ne
X)

'; (y )E2 1Kr 00

C,7(2 ' 2) (x , y) = U,(x , y)+ U 2 (x , y) +V,(x, y) + V, T (x, y) + V2 (x , y)+ V2 T (x,y)

where

2)	 / 2	 2U, (X, Y) =	 Kr(x)	 + I v5( , )+Gy(e) )c 02„, ) v	 (x)V T n (y)y 
2

(4)/(t°1 ) V 	(1/U)17'09VTvCV(y))(2 2)(e) 
fl (y)

2)(e )
(4) ,(:) ) 'Ç7 n (y)(nX)11.Y)Vix(V(X)):	

(x)

+ ( 17'( x ) 17'00V 1 43'(X)V Tv C1)'(.Y))
(2

2) 	(x ) n (Y)

+ Cy
 (e,e)((4)(,°:2))(42, (OO)) + (ono.2))((noi ,o))) v	 (x)v7An(y)

+gate, ) (x) ') (y)E21K;e') (y)

U 2 (x , y)

k ‘i y 	1- kiy	 )	

.\

(
R2'2

 ) 4,0.1,0) \ _, p(0,2) (d-,(2,0)) + II- f2(e) , ,...2(e\ (4),(0,0))
'`a(1, ,(1 \ -**. ni 	 ' ”ix(I),ri	 .'” in

2

	(a-,(2,0))((0,0)) + (4) (0,0) )(q),2,0) )	

\ 

G2y(e)	
)

(4)(0,0))(4),(,0,0))

2 
(2,2) 0 0)	 (4),(0,0))Ka,'243'(y)),, ( 0o) + (a/2	

\ (2,2)

in

+2aG (a'($1'(x)cr/(y) 1
\ (

::2) + (ar2 ([13'(x)(13'(y)):: 2)

2)	 (0 0) ,	 j_	 ((f1(0.0) )(a-1 (0 0))1
+ aG Cy (e,e')[( 0 )(c1 	 k-P 	 n

+a,2; (y(x)y ,(y)0 ,(x) ) :2)(e')(0 (na0)) + aG2 (y(x)ny)(D ,(x) )(,2,2xe) (ono:(»)

+2aG (a'Y'(x)ny)cry
(y)yn2.2xe) (0(no,0)+

 2ŒG
 (ay(x)ny)(1) ,(x))2:2)w) ( (D (na())

+4 (nx)ny)(12V(x )(1)/(y))(L,2)1C;)(x)tr(y)E2

+Œc;

(4-42)

(4-43)

(4-44)

(4-45)



VI( X1Y)

g 	Ke)E2 [ aG2 (c(K2,;2, ),() 0(0.01) +	 ((c):).2)) Gr23 ( 3,(,0.0))))

▪ (K:(Y)V(x)V(Y)) 2) 	(14),°, °) )(aY(Y)V(Y)) 2 '2)

2ŒG
 il:),0 ,0) )(a/K /(y):t '

(x));2) 2aG (a,K;(y)43 ,(x)43 ,(y)):::)

-F(0 1(a'2 1c y )(13 '(y) ) (,: 2) + (C13(n0 0) )(a'2 K:(Y) (13'(X)),(,2.2) 1(30411(y)

11
+g	 (e)

e 
,[c4 

G C 2 ' 2) + — (,2y(	 ,2(e') )r(0,2, ), _,2r12.0)
0,111	 2 -	 `-' 0,111	 2 nrs-' 0.,1111

m,n=1
( ,	 4_ _1 /a2(e)	 (3 (e'l \ (0(0,0)))

It2q>2,t: (13(it '°)) RCZ (C13(to
0) ) 2 ( Y + 2

Y )	 m

▪ (1,Gce.e.)[(2))(43(„0,0))+ (4,, , o))( 42, ,0.2)) + _21 ai23 (4) (no, ,o))().0))j

+ (a'4:13'(x)(13'(y)) 2. 2) + (a'Y'(x)Y'(y)(13'(x)) 2, 2) ( 0 0) )

▪ aG (y /(x )y(y)0 1(x ) ) : 2 ) (43 (,:)1 + (a/y/(x)y(y )cp/(y )) ( 2 . 2) (cp („0O))

▪ (nX)nY)C13'(Y)) 2 2) (4)(n? °)) aG (Y '(X)17'09(13'(X) (13'00):,2„,2)

+ (a'nx)(13'(x)(1V(y)) ,̀,2„: 2) 1K;' ) „,(x)VT,„(y)
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(4-46)

(4),(0,0) ) + c(K2,i 	(43 (,0,2) ) 4. cy123 (a, ,(O,o)) ." j

;
ŒG

 ( rs(y)0 ,(x)av(y) )(n2„:2) 

▪

 (a,K;(y)ox)43 ,(y) ):: :2)

+ .(0))(ccr(y)43 ,(y) )(:.2) 

▪

 (4),no.0))(coc;•(y)0,(x))(z.2)(elm(x)vyTn (y)

V2 (x, y)

= g E K ) e
ni,n=1

(4-47)
E (4)()'2) ) (ZOE) + ( K:(Y) '(X)0Y)) 2,;,2) ] \	n(X)Vryti(Y)

nt,n=1

-

+ g	 K G (x) ocG	 K(2,i)2 ,e) (o .o))	 ,2 n )	 (32 (0(0,0)) .\

In,n=1	 2	
n

+aG (K;(y)(13' (x)(13'(y))	 K;(y)v	 (x)),(, ,2) (0 (;o.o ))1v

where the superscripts e and e' have been dropped except where this may cause

confusion, and n and m are node numbers in element e and e', respectively. For gravity-

free flow, g = 0 and (4-42) simplifies to (45) of Guadagnini and Neuman [1999a] for

saturated flow.
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4.3.3 Cross-covariance Function of Y and q

Finite element equations for the cross-covariance between Y at point x in element e and q

at pointy in element e' can be calculated directly from (3-48) and (3-49). By interpolating

some terms in the equations, for example,

( I7'(X)V (I)'(Y ) ) (' j)= E(Y'(x)v(y))' Xe) V ytEe vce
nt=1	 (4-48)

(nX)Y ' ( Y)V (131'(y)) („Ei'je ) vee, =1(Y ' ( X)(1 ' (y)) (: i)(e) V y (ne')

ni=1

where (i, j) designate orders of approximation in ay and ao, respectively, we have

0,12.°) (X ,Y) = —EKr(y)[qe)	 (e, e)(4);," ) )1(v (y) + ga,,,(y)e 2 )	 (4-49)
n=1

C'2 ) (x, y) —EK;')(y )[C,(,22)(e) +Cy (e,e')( ( '2) )j(v „(y)+ ga(y)e 2 )
n=1

—EK.Ny)(Y'Grw(y)vv(y)) 2 2)(e) (Y)
n=1

2	 (e')—1 gaG 60 y K, (y)[C,:,;°.„)(e) +	 (e,e')(0 ,T .°) )1,,(y)e 2

2	 n-1

(4-50)

g	Kr (y) [( oety ,(x)0 /(y) )(„2 , 2 )( ,) Kary /(x)y /(y)0 ,(y ) )(n2 ,2 )(e)	 (y)e2

n=1

where, for example, 024)(e) denotes the cross-covariance function c',2,.,°) associated with Y

in element e and t' at node n in element e'.



76

4.3.4 Cross-covariance Function of (3 and q

The finite element equations for the covariance function of f3 and q can be readily derived

from (3-49) and (3-49). The equations are, to second order,

C 2 (y) —	 Kg)(y )R42) (V	 (y)+ ga,„(y)e 2 )— ga„cs y Kg ) (y)(4:13 (n" ) )„(y)e 2
	 (4-5 1)

N(
0 ,72,2) (y) = _K((e)(y)E 1?,(,..1;2„) + C7j, (ORTI; 2)

2	 16 '"n=.
M„(y)+ ga,„„(y)e 2 )

- y(p'K',(y)v(y))(„2•2)v,,(y)
„=,

1	giaGG123 Kg) (y )E( (43 ,2,0)	 cy2y ( e)(42,(no,o))) ,z (y )e 2

n=1	 /	 2

(4-52)

(2,2)	 ,
—gŒG E[Kg ) (y) (rev ( y)) +03'r,(y)eqyvn2.2)+

n=1
(P/21C:(Y)V(Y))(:.2)1„(Y)e2
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CHAPTER 5

DERIVATIONS OF MEAN PRESSURE HEAD AND ITS

(CO)VARIANCES

5.1 MEAN PRESSURE HEAD

Once we know the mean field of the transformed variable (13(x) and its associated

variances and covariance, we can calculate the mean field and covariance of the original

variable, i.e., pressure head. Rewrite equation (2-8) as

aw(x) = ln(a (1)(x))	 (5-1)

Replacing each random variable or function in (5-1) by its conditional mean plus a

perturbation, and recalling expansions for (a) and (01)(x)), i.e., (3-2) and (3-3), we have

(a) (iii(x)) + (a)V(x) + a' (i v (x)) + ocV (x) = In (a, (cI) (" ) (x)))+ 13 + B(x) + 0(b 3 (x))

where

(5-2)

B( x ) = b(x) - 1— b2 (x)
2

and

(13' (x)	 (0("'"') (x))
b(x) =	

+

(5-3)

(5-4)(00,0) (x) )	 n_, ./m � (;) (0(0,0)(x ))

Taking conditional mean of (5-2) yields:

(a)(ig(x))+ (a'w'(x)) = In (a, (43 (" ) (x))) + (B(x))+ 0 ((b 3 (x))) (5-5)

To eliminate (a'ilf/(x)) from the above equation, one multiplies (5-2) by a' and takes

conditional mean,

(a) (aV(x)) + (a/2 )(w(x)) + (a'V(x)) = (a13) + (a/8(x)) + HO	 (5-6)
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where HO represents higher-order terms. Multiplying (5-2) by Ce2 and taking conditional

mean gives

(a" ) (a) (Iii(x)) + (a) (a'w'(x)) = (a' )1n (a„ (0(0,0) (x))) (a/2 B(X))+ HO

From (5-5), (5-6), and (5-7), we obtain an equation for mean pressure head

(a) 3 (w(x)) = ((a) 2 + (alin (a, (°'°(x))))(x,)) ( a) 2 ( /3(x)) + (a /2 B(x))

- (a)[(a/(3)+ (a'B(x))] + HO

Expanding (5-8) in powers of 6 y and (Y13, and equating terms of same order in both sides,

we obtain solutions for the conditional mean pressure head to second order in ay and 613

(kv (" ) (x)) = 1
a G

1 C:m) (x,x)
In (a, (0 (" ) (x)))	

2 (0 0,0)(x )) 2

1= (0(2 '°) (x))	 1 c' 2 .°)(x,x)(Iv (2,0)(x )) [

ŒG (00,0) (x) )	 2 (0 (0,0) (x) ) 2

(w(0,2)(x )) =	 (3 10
2	 2

CYR \
(0(0 2)(f )

) C:2)(X,X) aP C °) (x,x)+	 (ŒG (0(0,0)(x )

G 	2a( . / (4)(° '°) (x)) 2(4) (" ) (x)) 2 4 (4),(°°) (x)) 2a aG

(5-7)

(5-8)

2

it°;2)(X)	
(a2 (x))(° '2) 	(

aG (	 n0(0,0)(x)) 
Lu2a(. ((0,0)	 + 	

	

(x))-2	 (4)(0.0,(x)) 2a2G (00,0) (x) )

	

(0 (2,2) (x) )	 G2 (0(2,0)(x )) (0(2,0) (x ))(0(0,2) ( x ))

	 )

	

(0(0,0)(x ))	 2 (0(0,0) (x) )	 (00,0)(x))

124,2 4) ,(x »(0 . 2) (a 2 ( x ) ) (0, 2 )

(w( 2,2)(x ,) _

aG
2

1  c(D2,2)(x,x )	 p c .(„2,0)
2	

(x,x)
24; (00,0) (x) )2       

(0(2 ,0)(x ) )	 a,20,( x ) ( 2,2 )	 /OE,20,(x))(0 ,2 ) (0( 2,0)	) )

lt 2) (x)  	 + 	(0(0,0)(x)) 
R 2(x)  

CCG	 aG	
(0(0,0)(x))

1 
aG2 (0 (0,0) ( x    

(42(20 ,2 (x) )(2,2)	 /	 (0,2)
(a 2 ( x ))

2a, (c13 (" ) (x))	 2(4) (" ) (x))    

(5-9)

For the case of deterministic driving forces, the first two equations in (5-9) simplify to

(45)-(46) of Tartakovsky et al. [1999], in which a is also taken as deterministic constant.
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5.2 PRESSURE HEAD COVARIANCE FUNCTIONS

Multiplying (5-1) by itself in terms of y, we have

a 2 w(x)w(y) = In[ac13(x)] ln[acl)(y)]	 (5-10)

Replacing all terms in their mean and perturbation, and taking conditional mean, the left

hand side becomes

(0= (a) 2 (v(x))(w(y))+ (a) 2 C,v (x,y)+ 2 (a) (w(x))(aV(y))

+ 2(a) (iii(y))(aV(x)) + 2 (a) (aV(x)V(y)) + (a' 2 ) (v(x)) (w(y))

+ (W(x))(d 2N(Y))+ (W(Y))(cc'21V(x))+ (cc'20x)V(Y))

To eliminate higher-order terms, we note that

(ca) = (a) 2 (111 (x))(ŒV(Y))+ (c0 2 (4030)(OEY(x))+ (OEY (OEV(x)V(Y))

+ 2 (a)(w(x))(w(y))(d2 ) + 2(a)(w(x))(a /214J(y))

+2 (a) (w(y)) (dV(x)) +2 (a) (d2V(x)V(y)) + HO

and

(d2 L) _ (a)2 ( lf(x))(iv(y) )(ce2) + (a)2 (iii(x))(a,20y) )

+ (a)2 ov(y))(42414j ,(x .) + la x 2	 ?)	 ç 2 (d- Nr ' (x)iir ' (y )) + HO

(5-11)

(5-12)

(5-13)

Multiplying (5-11), (5-12) and (5-13) by (C) 2 , -2(a) and 3, respectively, and summing

them yields

(a) 2 (L)- 2 (a)(a1)+ 3 (a12 L) = (a) 4 (Ni(x))(w(y))+ (a)4 Cw (x, y) + HO	 (5-14)

The second term on the right hand side of (5-14) is the covariance of pressure head.

Equation (5-14) could also be derived from (5-10) upon multiplying the left hand side by

(W-2a)cci+3cre 2 and taking the conditional mean,

(a) 4 (Iv(x))(tv(y))+ (a)4 CI, (x,y)

= (((a)2 - 2(a)a' + 3a'2 fin (a, (0 (" ) (x))) + [3 + B(x)1 [Ink (c13 (" ) (y)))+ p + B(y)1)+ HO
(5-15)
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Expanding (5-15) in powers of ay and Cfp and comparing terms of same order on both

sides of (5-15) yield, recursive approximations to the second order in ay and ar3

c,,( 0 ,0)(x, y) = 12 [c 0 ,0)(x, y ) 14,2(00,00 \ (0,0) 1 / (0,( 00,2 (y))(0,0) + 4/2 x )0/2 (y) )( 0,0)

L	 2 \	 /	 2 \	 4 \

—!C (0

"
.0) (xx)C" ) (y,y)
4 

1
C,p(2 '0) (x,y)=—T [F,(x,y)+ F,(y,x)]

oc,

1
Cw(° ' 2) (x,y) = ---T [F2 (x,y)+ F2 (y,x)]

aG

1
Ckv(2 ' 2) (x,y)= —2a2pC,V m) (x,Y)+ --T[Fx,y)+ F3 (y,x)]

(5-16)

where

0(x) = o(x)to")(x)
	 o'(x)= 0/(x)/0 (" ) (x)	 (5-17)

1
FI(x9Y) = —2

(

C, 2 '°) (x,y)+(c0'2 (x)O'(y)) (2,0) — C',° '°) (x,x) ( )

2' ) (y)) — —21 C,2.°) (Y,Y) (5-18)  

2
6	

5.72

F2 (x,y)= -2.11 [1n (a„ (43 (" ) (x)))- 11[1n (a„ (0 (0.0) (y)))_ + 8 cr)0,0)(x,x)co,o)(y, y)

(C(00.2) (X 	(0" (Or 00) (0 '2) ((	 )0'2 (. 0) (0'2 	KO'2 (X ) (0'2 ( .0)(0 '2) )

±3'2 (c00)(x,y) - ((v2(x)cy) ) ( 00) - (cx)e(y))(00) -E ((v2(x)(r2(y))( 0 ° ) )

( 13,0,(00,( y ))( 0,2 ) 21 (0,4r( 01)/2 (y) )( 0 , 2 ) + 21 (re (x )(Ay ) )(0,2)	 03,43(2 (x )4;2 00 )(0,2)

. C.,(0° '13) (y,y) - In (a„ (43 (" ) (x))) +1 \ ( 43'0'(x))( 0,2) -(ro- (x)) (0,2) 1

+L(y,y)+ 2 (In (aG (0" ) (x))) - 1)1(rcr(x)r .2)

in
-	 + 2 (In (aG (0 (" ) (x»)-1)fr0'2 (x)r .2)

1[(00.2) (y»_ cnr)0,2) y y) 02p (In (cc, (4) (" ) (x)))- 1)1C" ) (x,x)

(5-19)
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F3 (x, y) = i-(0 (2 ' 2) (x))((cr(x)(V2 (y))(c") - C ('''3) (y , y) - 2C(r) ( x , y))

+	 (0 2 '0) (x))[3a2Ga f2, (1- In (a, (0" ) (y)))) - a, (0'(y))(° '2)
a,

- a, (1 - In (a„ (43 (" ) (y))))(aV(x))(0.2) +2W(r(y))(° ' 2)

+ 2(1- In (a, ( ( 0.0) (y))))(a/2 (1)/(x)
(0,2)

 - -3 a, (aV2 (y)) (0 ' 2)
2

_ (a,22 (y) )( 0,2 ) _ aG2 (0,(x)(4),(y)\(0,2) l aG2 /0,crw2(y) )(0,2)

/	 2	 \
_ 2aG (a,4),(x)(1),(y))(0,2) ac; (a, cx)(0,2 00) (0,2)

-3 ( 13(2 (r(x)(1;(30) (O,2) +	 (ar2(r(x)(r2(y))(0,2)1

+ (00,2) (x))[ (0,(x)(0,( y))(2,0) + 21 ( 0,(x)(0 ,2(y) )(2,o)1

÷ (00,2) (x))(02,0) (x) )[( 4),(x)0,(y) )( 0 ,0 )	 21 c.,(00,0) (y,y)

C (2M) (X,X)[ n (0,2)	 1	 /	 \ ( 0 ,2 )	 (0,2)	 1	 2	 2 (0 0)
(Y,Y)(4)'(Y)) + -

2
ŒG (1) (Y)2	 +

/	

CO)	 -
2

ŒcapC0
2a,2

1	 2	 (0 2)--a,C0 • (y, y)+ a2,44 (1-1n (a, ((1) (° • °) (y))))1
2

1 /	 /	 /	 2)	 1 /	 \ (2,2)	 2 /	 /	 /

	

+ -V - In	 yT). (" ) (y))))[(aV(x)) (2. ---vx(x))	 1+	 çix'24:Y(x)2
“2,2)

 In ic,cc; çcl) (" ) (y)))
2	 aG

1 /
(X , Y) 4cYC'r(2,0)(x,y))- -

1 (x)'2 (y))(2.2) + a 123 (01:((x)e (y))(2,0))

2	 2 \

(rcx)) 	+( 2,2)	 2 03/0/(x )0/(y ))( 2 . 2 )	 1 03,4)x )0, 2 (y) )( 2,2 )

()CC;	 OEG

1	 (2,2)	 1	 2

8
((r2 (x)$'2 (Y))	 + -

2 
p ($'2 (x)0/2 (.0) ( 2 '0) + i-(c0(2 (x)0'2 (Y))(2,2)

8ŒG

(5-20)

For deterministic a and driving forces, from (5-16), the variance of mean pressure head

simplifies to

c,(2.°)(x , x) = co(2,0)(x,x )
co(2,0)(x,x) 

(5-21)
‘-'”
‘,2 (0(0,0)(x )

G )2

which is identical to (47) of Tartakovsky et al. [1999].



C, 24;2) (x, y) 	C;,24;°) (x, y)
C 2) (x, y) -

2
6(0( 0 , 2 ) (y ))	 2L3 (CVOS» y ))

aG (q)(0 ,0) (y )) aG (0(0 ,0) y
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5.3 CROSS-COVARIANCE FUNCTION Cy,v(X, Y)

Multiplying (5-2) by Y'(x), taking conditional mean, and noting that (a'Y'(x))=0,

(a)C„(x,y)+ (a'Y'(x)iii'(y)) = (Y'(x)B(y))+ HO	 (5-22)

To eliminate the second term in the above equation, multiply (5-2) by oc'Y'(x) and taking

conditional mean, to give

(a)(a'Y'(x)V(y» + (a'Y'(x)w'(y)) = (a'Y'(x)B(y))+ HO	 (5-23)

Again, the second term in (5-23) can be formulated upon multiplying (5-2) by a' 2Y1 (x)

and taking conditional mean,

(a) la'2 37 '(x)11/(y)) = (a'2 Y'(x)B(y)) + HO	 (5-24)

From (5-22)-(5-24 ) we get an equation for the cross-covariance function Cyw(x, y),

(a)3 Cy,(x, y) = I \ I\a/ 2 \Y'(x)B(y))- (a) (a/ Y /(x)B(y)) + (d2 11 '(x)B(y))+ HO	 (5-25)

Expanding (5-25) in powers of Gy and Go and equating the terms of same order on both

sides yields approximations for the cross-covariance function Cyw(x, y) to the second

order,

C °) (x, y) =	 (x, y) = Cg; 2) (x, y) = 0

C °) (x, y) = C;,V ) (x, y) = C'v2) (x, y) = 0

y)
y) =

y) = 0

aG (4.,(o.o) (y) ) (5-26)
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5.4 CROSS-COVARIANCE FUNCTION Cpv(X, Y)

Multiplying (5-2) by ((a)-a') 3' and taking conditional mean yields

(a) 2 	(x) = (a)( ( 313/2 ) + (13'B(x))) - (03'B(x))

- (a13)1n (a„ (c13.'" ) (x))) + HO
(5-27)

where B(x) is defined in (5-3). Expanding (5-27) in powers of ay and ap, and equating

terms of same order in both sides yields the following recursive approximations to the

second order in ay and al3

-

	qW2'2)(X) cc(; (0(01,0)(x)) 2	 [C1(32q;2)(x)(0(0•0)(x))-C1:2)(x)(0")(x))]

	(43 ,0 ,(x))(2 ,2) 	1 03,0 ,2 (x)v2,2)	
(a

,13,0 ,2(x))(2,2)

+cc(23 ( (D om (x) )	 2 Œ
6
 (00 ,0)(x)) 2

2 aG2 (00,o) (x) ) 2

C2 (x)„r2 in 	(
f,(0,0)(x)))+ 	

(0(") (X))

(5-28)

crw,2)(x) = _L
CC G



84

CHAPTER 6

NUMERICAL EXAMPLES OF TWO-DIMENSIONAL VERTICAL

STEADY STATE UNSATURATED FLOW

6.1 DESCRIPTION OF PROBLEM

This section describes problem samples that illustrate the nonlocal finite element

methodology. In our main example, denoted as Case 1, we consider a rectangular grid of

20 x 40 square elements in the vertical plane (Fig. 6.1) having a width L 1 = 4k, a height

L2 = 8k, and elements with sides 0.2k, where X is the auto-correlation scale of Y= lnKs.

The boundary conditions consist of no-flow on the left and right sides (x 1 =0 and

x1 = 4.0k), a constant deterministic flux Q = 0.5 (all terms are given in arbitrary

consistent units) at the top boundary (x2 = 8.0X), and zero pressure head at the bottom

(x2= 0). A point source of magnitude QS = 1 is placed inside the domain to render the

flow locally divergent.

The saturated hydraulic conductivity field is made statistically non-homogeneous

through conditioning at three points, two above and one below the source. In most cases

of practical interest, conditioning points are sparse enough to ensure that conditional

mean quantities vary more slowly in space than do their random counterparts. Hence one

can resolve the former (by an algorithm such as we propose) on a coarser grid than is

required to resolve the latter (by Monte Carlo simulation). Here we nevertheless use a

fine grid to allow comparing our direct finite element solution of the recursive moment
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equations with a finite element Monte Carlo solution of the original stochastic flow

equations.

To solve the original stochastic flow equations by Monte Carlo simulation using

standard finite elements, we assume that Y is multivariate Gaussian. Prior to

conditioning, Y is statistically homogeneous and isotropic with exponential auto-

covariance

cy ()= cy2y e-ix (6-1)

where 4 is separation distance and cy y2 is the variance of Y. We started by generating

one unconditional random Y field on the grid using a Gaussian sequential simulator,

GCOSIM [Gómez-Hernández 1991], with unconditional (Y) = 1, a y2 = 2 and X=1. We

took its values at the conditioning points to represent exact "measurements" and

generated NMC = 3000 realizations of a corresponding non-homogeneous conditional Y

field by the same method. Our choice of number of Monte Carlo simulations (NMC) is

based on numerical simulations that will be discussed in Section 6.4. For purposes of

flow analysis by conditional Monte Carlo (MC) simulation, we assigned to each element

a constant Y value corresponding to the point value generated at its center by GCOSIM.

To ensure that the generated fields possess the desired properties, we examined the

conditional ensemble mean and variance of these fields. Since generation of conditional

fields starts from unconditional fields, we need to examine the quality of unconditional

fields first. Figure 6.2 shows images of a single unconditional realization, unconditional

sample mean (Y(x)) and variance 6y2(X) obtained from 3000 Monte Carlo simulations
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with unconditional (Y)=1.0, ay2=2.0, and X=1.0. Even though hydraulic conductivity

values in any single realization may fluctuate significantly (Fig. 6.2A), unconditional

sample mean and variance of these realizations are close to specified unconditional 01)

and 6y2 , as shown in contour maps (Fig. 6.2B-C) and two cross-sections (Figs. 6.3-6.4),

where the sample mean ranges from 0.93 to 1.07 and the sample variance from 1.85 to

2.12. Comparison between unconditional auto-covariance Cy obtained from Monte Carlo

simulations and calculated Cy using (6.1) shows that they are very close (Fig. 6.5). These

results ensure the quality of the generated unconditional log hydraulic conductivity fields.

For conditional log hydraulic conductivity fields, Figure 6.6 shows images of a

single conditional realization of Y, conditional sample mean (Y(x)) and variance cry2 (X)

obtained from 3000 Monte Carlo conditional simulations with unconditional (Y)=1.0,

6y
2
=2.0, and X=1.0. Cross-sectional views of conditional sample mean Y(x)) and

variance ay2(X) are presented in Figures 6.7 and 6.8. Comparison between conditional

auto-covariance Cy obtained from Monte Carlo simulations and calculated unconditional

Cy using equation (6.1) is illustrated in Figure 6.9.

We solved (2-1)-(2-4) for each realization of log hydraulic conductivity, together

with a constant lncc = —1 by the standard finite element method. As an example, Figure

6.10 depicts solutions of pressure head, transverse flux and longitudinal flux

corresponding to the single conditional realization of Y shown in Figure 6.6A. We then

calculated sample mean pressure head and flux at each node, as well as sample variance

and covariance of head and flux across the grid, based on solutions from all realizations.

This completed our conditional Monte Carlo simulation of flow in Case 1.
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Our nonlocal solution does not require generating any random field realizations,

and is free of any distributional assumptions. Nevertheless, to render it consistent with

the Monte Carlo solution, we based it on the same conditional mean and auto-covariance

of Y generated earlier by GCOSIM. In other words, the geometric mean

KG(x)=exp((Y(x))) and the conditional auto-covariance, Cy(x, y), of Y used in our

nonlocal conditional moment equations were those obtained from generated realizations

(Figures 6.6B-C). In practical applications, one would normally infer these conditional

moments geostatistically from measurements by methods such as kriging. It should be

noted that the conditional Y fields are non-stationary with conditional mean (Y(x)) and

auto-covariance Cy(x, y) that depend on the coordinates x and y. From Figures 6.6B-C we

note that the sample mean field is much smoother than a single realization of Y (Figure

6.6A), whose values range from -3 to 6 on natural log scale, which is equivalent to 3

orders of magnitude on arithmetic scale of K. The pattern of the mean field is controlled

largely by the conditioning points. The conditional variance of Y is zero at the

conditioning points, increases rapidly with distance from these points, and is as high as

the unconditional variance in some areas near the boundary.

6.2 CONDITIONAL MOMENTS OF HYDRAULIC HEAD

6.2.1 Mean Conditional Pressure Head

Figure 6.11(A) depicts two-dimensional contours of conditional mean head obtained by

Monte Carlo simulation, zero-order local solutions, and second-order nonlocal solutions
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with parameters defined in Figure 6.1. Throughout the rest of this chapter, we use solid,

dash-dotted and dashed lines to denote results from Monte Carlo simulations, zero-order

and second-order solutions, respectively, unless stated otherwise. Figure 6.11(B) is a

vertical profile passing through one of the conditional points, and Figure 6.11(C) is a

vertical profile passing through the source. Whereas the second-order mean pressure head

virtually coincides with Monte Carlo (MC) results (maximum deviation of 0.82% and

average deviation of 0.26%, from MC results), the zero-order solution deviates from

them slightly (maximum deviation of 10.48% and average deviation of 3.2% from MC

results), especially near the upper flux boundary.

6.2.2 Conditional Variance and Covariance of Pressure Head

Figure 6.12A depicts two-dimensional contours of conditional head variance as computed

by MC and nonlocal finite elements. Figures 6.12B-C show how this variance varies

along profiles indicated in Figure 6.12A. Although our nonlocal results represents only

the lowest possible order of approximating second moments, the variance of pressure

head computed from our second-order solutions is close to the Monte Carlo results, even

for such a large unconditional variance as Gy2=2.0. Generally, along the longitudinal

(vertical) direction, the head variance is zero on the Dirichlet boundary at the bottom and

increases upwards. The variance exhibits a peak at the source (Fig 6.12C).

The covariance between pressure head w at all nodes and w at various reference

points P is illustrated in Figure 6.13, where the first diagram in each row is a contour map

while the other two are vertical profiles identified in the first diagram. Though the
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nonlocal and Monte Carlo simulation yield similar patterns, there is a notable numerical

difference between them when 6y2=2.O. The difference diminishes when c 2=1.0 (Fig.

6.14). It should be noted that the variance of pressure head at a point P might be less than

the covariance of pressure heads between point P and other points. Indeed, the peaks of

covariance are offset from the reference point P in Figures. 6.13A, D, and J. Guadagnini

and Neuman [1999a] noted the same and ascribed it to the non-uniformity of the

conditioning variance. We also find that the auto-covariance of pressure head in our

examples is always positive, though it is not clear if this must always be the case.

6.2.3 Cross-covariance between Y and w

The cross-covariance between pressure head values at nodes and Y in various elements P

(Y is a constant in any element) is illustrated in Figure 6.15. It seems that the cross-

covariance is almost always negative except for a small area below element P. That is,

any increase in Y within element P causes pressure head to decrease nearly everywhere

except in an area under element P. Intuitively, since the overall flow in the domain is

fixed (due to the flux boundary at the top and fixed inflow from point sources), according

to Darcy's law, an increase in hydraulic conductivity within an element must decrease the

hydraulic gradient. Therefore, pressure head tends to decrease in the upstream side of

point P and increase in the downstream side of P.
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6.3 CONDITIONAL MOMENTS OF FLUX

6.3.1 Conditional Mean Flux

Figure 6.16 compares mean flux in the longitudinal (vertical, x2) direction as obtained by

Monte Carlo simulation, zero-order and second-order solutions. The figure shows a

contour map and cross-sections identified on this contour map. Though both the zero- and

second-order solutions yield good results (average deviation of 1.23% and 3.03% from

MC results, respectively), the second-order solution is closer to the Monte Carlo results.

The pattern of the contours in Figure 6.16 is largely controlled by the conditioning

points of hydraulic conductivity and the point source, which render the flow field non-

uniform. Three peaks correspond to three conditioning points. For convenience of

discussion, we denote the conditioning point below the source as cl, the other two points

from left to right as c2 and c3. The highest peak in the flux field corresponds to the

largest mean hydraulic conductivity (Fig. 6.6) and lowest peak to the lowest mean

hydraulic conductivity.

Figure 6.17 compares the mean flux in the transverse (horizontal, x 1 ) direction

obtained from Monte Carlo simulation, zero- and second-order solutions. Again, both

solutions are good, but the second-order solution is somewhat better than the zero-order

solution (average discrepancy 0.015 for the second-order solution and 0032 for zero-

order the solution).

Due to the highest hydraulic conductivity value at conditioning point cl, upstream

of this point, the flow tends to converge to it, producing positive horizontal components
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to its upper-left and negative components to its upper-right. Similarly, downstream of

point cl, the flow diverges from this point, which yields negative horizontal components

to its lower-left and positive components to its lower right. The pattern of transverse

component at cl is almost symmetric except to its upper-right, where the transverse flux

is affect by the point source. The pattern around the point source is also close to

symmetric, with negative components to its left and positive components to its right.

6.3.2 Conditional Variance and Covariance Tensor of Flux

Figures 6.18-6.20 compare components of the conditional variance tensor of flux, as

obtained by Monte Carlo simulation and second-order moment solutions. Figure 6.18A

shows contours of the conditional variance (covariance at a zero lag) of longitudinal flux,

Cq(22'q°2) (x,x), and Figures 6.18B-C show vertical profiles along two lines passing through a

conditioning point and the point source, respectively. The conditional variance of

transverse flux Cq(2;q())1 (x,x) is shown in Figure 6.19, and the cross-covariance Cq(2;q°2) (x,x),

which is equivalent to Cq(22,1'°)1 (x,x) , in Figure 6.20. There is an excellent agreement

between the second-order and Monte Carlo results.

Figures 6.18-20 show that the point source does not have significant impact on

Cq(2,':;(x,x) and C(x,x) , but it has significant effect on the conditional variance of

longitudinal flux, Cq( ,22,102)(x,xs.) The variance, Cq(22'q°2) (x,x), starting from zero on the upper

Neumann boundary, increases markedly near the point source. Unlike Guadagnini and

Neuman (1999) who had found that conditioning tends to reduce the variance of
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longitudinal flux, here the effect of conditioning on this variance is mixed. For example,

in Figure 6.18(C), there is a valley at conditioning point c3, but a peak at conditioning

point cl.

The conditional variance of transverse flux (Fig. 6.19) is zero along the lateral,

vertical no-flow boundaries, where transverse flux is prescribed to be zero. It is also zero

on the bottom (the constant pressure head boundary) along which a same deterministic

constant pressure head is prescribed at all nodes and so transverse flux is zero. The

variance is reduced near conditioning point c3 (Fig 6.19C), but has a peak at conditioning

point cl. The peak at cl is not surprising if we recall from Figure 6.17A that near this

point, the transverse flow changes dramatically. In fact, in any vicinity of this point, the

flux may have a positive or negative horizontal component, which decreases the

predictability of transverse flux at this point and thus the variance is large.

The term C,,,,(x,x) represents cross-covariance between transverse flux and

longitudinal flux at a zero lag. Figure 6.20 shows that near conditioning point cl, it has a

more-or-less symmetric pattern with respect to a vertical line passing through the middle

of the domain, especially in the lower half of the domain. One possible reason for lack of

symmetry in the upper half is that conditioning points c2, c3, and the point source are too

close to each other to allow the formation of a clear pattern.

The conditional auto-covariance tensor of flux between all nodes and point P at

the center of the grid are depicted in Figures 6.21-6.24. Each of these figures includes a

contour map and two vertical profiles, one passing through a conditioning point and the

other through the point source. Unlike the auto-covariance of flux with a zero lag (x = y),
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which is symmetric, Co , 2 (x,y) is generally not equal to Cq2q ,(x,y) when x y. The

second-order moment solution of the conditional covariance tensor of flux is close to

Monte Carlo results.

The auto-covariance of the longitudinal flux with reference to point P at the center

of the grid, Cq(22q. (P,y), exhibits a peak at P and decays more-or-less monotonically with

distance from P (Fig. 6.21). The rate of decay is slower in the longitudinal than in the

transverse direction, where the covariance soon becomes negative. This implies that the

correlation scale of longitudinal flux is longer in the longitudinal direction than in the

transverse direction. Since we prescribe a constant flux along the upper Neumann

boundary and a constant rate of injection at the point source, an increase in longitudinal

flux at one point must cause a decrease at some other location along the same horizontal

cross-section, which explains the negative covariance in the figure. The covariance of

transverse flux with reference to point P, Cq(24,) (P,y), in Figure 6.22, also shows a sharp

peak at P, together with a small negative peak downstream of it. The positive peak is

elongated in the transverse direction, which means that the correlation scale of transverse

flux is longer in the transverse direction than in the longitudinal direction. Both

cg(22q,02) p9y and Cci(2, q (P,y) are more-or-less symmetric with respect to horizontal and

vertical lines passing through the reference point.

The contour map of Cq(2:2 (P, y) , which represents the cross-covariance between

transverse flux at reference point P and longitudinal flux at other points, shows a more-

or-less anti-symmetric pattern with respect to the vertical line passing through the
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reference point P (Fig. 6.23). Similar results have been found by Rubin [1990] for an

unbounded saturated flow domain and by Osnes [1997] for a bounded saturated flow

domain. Contours of 0t,° (P, y) in Figure 6.24, the cross-covariance between longitudinal

flux at reference point P and transverse flux at other points, shows a somewhat similar

pattern.

It should be noted that both the point source and conditioning points do not have

significant effects on the pattern of the above covariance of the flux, except in the case of

zero separation lag, i.e., the variance of flux.

6.3.3 Cross-covariance of Y and q

Figure 6.25 depicts the cross-covariance between Y and longitudinal flux with a zero

separation distance, i.e., Cycp (X, x), obtained from Monte Carlo simulation and our

second-order solution, and Figure 6.26 shows the cross-covariance between Y and the

transverse flux, Cyo (x, x). Each of these figures includes a contour and two vertical

profiles passing through a conditioning point and the point source, respectively. It is seen

from these figures that the second-order solution is close to Monte Carlo results, even

though the variability of the medium is high (ay2=2.0). The figures for Cyo (x, x)

illustrate some very interesting features (Fig. 6.25). First, this quantity is always negative.

In fact, intuitively, any increase in Y at a point x tends to increase the flow rate at this

point. Since the mean flow is downward (opposite to the vertical coordinate x2 which is

upward), an increase in flow rate implies that the flow rate becomes more negative. Thus

the cross-covariance Cyq2 (X, X) is negative. In addition, the value of the cross-covariance,
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starting from zero along the deterministic Neumann boundary (the upper boundary),

increases gradually toward the lower boundary, except for areas near the point source or

conditioning points. At the point source, the cross-covariance exhibits a sharp peak (Fig.

6.25C). At conditioning points, the cross-covariance is zero because there is no

variability of Y at these points. The cross-covariance Cyo (x, x) has a slightly different

pattern (Fig. 6.26). Near the point source, instead of a sharp peak as seen for Cy,2 (x, x) ,

it exhibits one positive peak and one negative peak, i.e., an anti-symmetric pattern with

respect to a vertical line passing through the source. The same is true at conditioning

points (Fig. 6.26).

We also examined how the cross-covariance Cyq2 (P, x) changes with various

locations of point P (Figures 6.27B-F), where only the second-order solution is depicted,

since it is very close to Monte Carlo results (not shown). In all these cases, Cyq2 (P,x)

shows a negative peak at the reference point P, which means that an increase in Y at point

P will increase the magnitude of the longitudinal flux. The negative sign is due to our

choice of vertical coordinate, which is opposite to the downward mean flow direction.

Away from point P, Cy,2 (P, x) decays rapidly with distance from P, especially in the

transverse direction, where this drop is accompanied by a change of sign, as explained

earlier.

Similar depictions of the cross-covariance between Y and transverse flux are

shown in Figures 6.28B-F, most of which exhibit some degree of anti-symmetric

behavior (positive on one side and negative on the other side). Take Figure 6.28F as an
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example, where reference point P is located in the center of the domain. Around point P,

there are two positive peaks to its upper-left and lower-right and two negative peaks to its

upper-right and lower-left. This can be explained as follows. For any increase in Y at

point P, the flow on upstream side of the point tends to converge toward it, producing

positive transverse components to its upper-left and negative transverse component to its

upper-right. This yields a positive peak in the upper-left and a negative peak in the upper-

right. The two peaks downstream of point P can be explained in a similar fashion.

6.4 FACTORS AFFECTING SOLUTIONS

In section 6.3 we illustrated that, compared to zero-order solutions, our second-order

solutions are closer to Monte Carlo results, even when unconditional variance is as high

as 2. Here, we discuss some factors that may affect our solutions. The factors considered

include conditioning, type of boundaries imposed, and number of Monte Carlo

simulations.

6.4.1 Effect of Conditioning Points

Consider a case, Case 2, the unconditional equivalent of Case 1. The unconditional

ensemble mean log hydraulic field and auto-covariance have been shown in Figure 5-2.

The results are presented in Figures 6.29-6.39. Although the second-order solution of

mean pressure head is very close to the Monte Carlo results in both the conditional (Fig.

6.11) and unconditional (Fig. 6.29) cases, the zero-order solution is less closer. A

comparison of Figure 6.12 (the conditional case) and Figure 6.30 (the unconditional case)
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shows that conditioning reduces the variance of pressure head and improves the quality

of the second-order solution (i.e., the latter is closer to Monte Carlo results). Without

conditioning, the variance of mean pressure head obtained from the second-order solution

differs noticeably from Monte Carlo results. The unconditional mean flux fields obtained

from zero-order, second-order and Monte Carlo solutions are illustrated in Figures 6.31-

6.32. The unconditional solution of mean flux (Figs. 6.31-6.32) exhibits a very different

pattern than does the conditional solution (Figs. 6.16-6.17). Though the second-order

solutions for fluxes are superior to the zero-order solutions in both the conditional and

unconditional cases, the zero-order solutions are nevertheless close to Monte Carlo

results in both cases.

Figures 6.33-6.39 depict the (co)variance tensor of flux. In contrast to the

variance of mean pressure head, our second-order solutions for (co)variance of mean flux

are very close to Monte Carlo results, even without conditioning. Comparison between

Figure 6.33 and Figure 6.18 (the variance of longitudinal flex) shows that the effect of

conditioning on the variance of longitudinal flux is mixed. Comparing to the

unconditional case, the variance is reduced around conditioning points c2 and c3, but

around conditional point cl, the variance is much larger in the conditional case than in

the unconditional case. Similar is true for the variance of transverse flux. This may be

due to the effect of the point source.

To isolate the effect of conditioning, two numerical experiments have been

conducted. In one experiment (Case 3), we considered a soil with (Y) = 0.0, ay2 = 1.0, X

= 1.0, (13) = - 1.0, '502 = 0.0, and without any point source and conditioning points. The
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mean and variance of unconditional realizations of log hydraulic conductivity are shown

in Figure 6.40. Case 4 is the same as Case 3, but there are four conditioning points as

shown in Figure 6.41. Numerical results from these two experiments are illustrated in

Figures 6.42-6.57.

Figure 6.42 compares mean pressure head computed from cases with and without

conditioning points, where diagrams (A) and (C) show contours for unconditional and

conditional cases, and diagrams (B) and (D) show vertical profiles identified in (A) and

(C), respectively. Since there is no significant difference between mean pressure head

computed from MC and second-order solutions when ay2 = 1.0, only the second-order

solutions are plotted in Figure 6.42. Figure 6.42D includes two vertical profiles, one

passing through two conditioning points, and the other through the middle of the domain.

Conditioning has clearly changed the mean flow field considerably. A part of the flow

field even becomes saturated, due to small values of hydraulic conductivity in the lower-

right area (Fig. 6.40). The impact of conditioning on the variance of pressure head is

illustrated in Figure 6.43, where the variance increases monotonically from bottom to top

in the unconditional case (Fig. 6.43A-B), but it diminishes near conditioning points in the

conditional case (Fig. 6.43C-D).

The effect of conditioning on conditional cross-covariances between log hydraulic

conductivity at various locations and pressure head, Cyw , are also examined (Figs. 6.44-

6.45). It is seen that conditioning generally reduces the magnitude of the cross-covariance

Cyw . The cross-covariance is a measure of how well one can predict one variable, given

information about the other. More specifically, Cyw is a measure of how an increase in Y



99

at one point affects pressure head at other points. In the conditional case, the effect of

knowing of hydraulic conductivity at any particular point on pressure head prediction is

less than in the unconditional case, because hydraulic conductivity date are given at

conditioning points. Therefore, the cross-covariance is lower in the conditional case than

in the unconditional case. Figures 6.44-45 also show that log hydraulic conductivity and

pressure head may be positively or negatively correlated in the conditional case, while in

the unconditional case, they are always negatively correlated.

The mean longitudinal and transverse fluxes derived from unconditional and

conditional cases (Case 3 and Case 4) are shown in Figures 6.46-47. Each of these figures

includes contours for unconditional and conditional cases as well as scatter plots showing

comparisons between Monte Carlo, zero- and second-order solutions. Although our

second-order solutions are superior to zero-order solutions in all cases, the zero-order

solutions are very close to Monte Carlo results in the conditional case (Figs. 6.46E-F,

6.47E-F), but much less so in the unconditional cases (Figs. 6.46B-C, 6.47B-C). This

implies that zero-order mean flux may be accurate enough when conditioning points are

available. In addition, as discussed in Section 6.3, conditioning has a visible impact on

the flow pattern. The mean flux (especially the mean transverse flux) is controlled largely

by conditioning points (Fig. 6.47D). Without conditioning, the flow rate is more-or-less

uniform and close to that prescribed at the Neumann boundary, as shown in Figures

6.46A-C and 6.47A-C. In the conditional case, however, there may be divergent or

convergent flow around conditioning points.
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Figures 6.48-6.49 suggest that conditioning reduces uncertaintites of flux

predictions. Figure 6.48 compares the variance of longitudinal flux for both unconditional

and conditional cases (Cases 3 and 4), where (A) and (C) are contours for unconditional

and conditional cases, respectively, and (B) and (D) are vertical profiles indicated in their

corresponding contour maps (A) and (C), respectively. The profile A-A' in Figure 6.48D

passes through two of the conditioning points, and the other through the middle of the

flow domain. The figure indicates that conditioning does not change the overall pattern

but reduces the variance of longitudinal flux locally around conditioning points. In fact,

at all conditioning points, the contour map shows valleys (Fig. 6.48C-D). The same

holds for transverse flow (Fig. 6.49).

Covariance of flux has been discussed by many researchers, but most of these

studies are only applicable to saturated flow in unbounded statistically isotropic domains.

Rubin [1990] derived analytical expressions of unconditional velocity covariances in a

two-dimensional statistically isotropic domain of infinite extent under uniform mean flow

and concluded that the variance of longitudinal flux is three times as large as the variance

of transverse flux. Additional analytical expressions for two- or three-dimensional

statistically isotropic domains were given by Rubin and Dagan [1992], Zhang and

Neuman [1992], Hsu et al. [1996], and Hsu [1999]. Osnes [1997] presented expressions

for velocity covariance in a bounded domain. In unsaturated flow, Russo [1993, 1995]

derived expressions for velocity covariance in an unbounded domain under a mean

uniform hydraulic gradient.
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Simple calculation for the unconditional case shows that our results are smaller

than values calculated from Rubin's expressions. For example, in the central part of the

domain (where the effect of boundaries is minimum), the second-order approximation

Cq2q2(x, x):---,-.0.06, Co q i(x, x)--0.015, thus the ratio of longitudinal velocity variance to

transverse velocity variance, which is equivalent to the ratio of the corresponding flux

variances, is approximately equal to 4, not 3 as predicted by Rubin's expressions. The

discrepancy is mainly due to the boundary effect. For instance, since Coo (x, x) is zero at

lateral boundaries and the lower boundary, its values in whole domain are small in the

cases of relatively small domain. In fact, for large domain, our data fit Rubin's

expressions quite well (next section).

The auto-covariance of flux has been examined for both unconditional and

conditional cases (Case 3 and 4), and results are displayed in Figures 6.50-53. Figure

6.50 depicts the auto-covaraince of the longitudinal flux between a fixed point at the

center of the domain and all other points. The magnitude of the auto-covarince is seen to

be reduced by conditioning. In addition, unlike the unconditional case where the peak is

at the reference point, in the conditional case the peak is shifted slightly away from the

reference point. This is also true for the covariance of the transverse flux (Fig. 6.51).

Several authors have noticed that the flux covariance exhibits anisotropy (i.e., the

correlation scale of the flux variance varies with the angle from the mean flow direction)

in two-dimensional [Rubin, 1990; Shapiro and Cvetkovic, 1990; Osnes, 1997] and three-

dimensional [Shapiro and Cvetkovic, 1990] saturated flow. It seems that our results do

not support Russo's [1993] conclusion that, under unsatuared conditions, the auto-
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correlation scale of the velocity covariance (equivalent to flux covariance) is not sensitive

to the angle from the mean flow direction. In fact, the auto-covariances of longitudinal

and transverse flux exhibit anisotropy under both unconditional and conditional cases, as

shown in Figures 6.50-51. Anisotropy of the flux auto-convariance is strongly influenced

by boundaries, suggesting that Russo's [1993] conclusion may be valid only for

unbounded domains.

The cross-covariance Coq2(x, P) between longitudinal and transverse flux at a

reference point P, located at the center of the domain, are illustrated in Figure 6.52 for

unconditional (A-C) and conditional cases (D-F). The figure includes two contours for

unconditional and conditional cases, and cross-sections along two diagonal lines of each

contour map (dashed curves represent second-order solutions). Compared to the

unconditional case, the cross-covariance Cgiq2(x, P) for the conditional case is smaller in

magnitude, especially near conditioning points. Compared to the unconditional case

where the contour map shows a more-or-less anti-symmetric pattern with respect to a

vertical line and a horizontal line passing through reference point P, in the conditional

case, symmetry is less obvious. Even when it shows some kind of symmetry, the

symmetry is not with respect to point P but some other point shifted away from point P

(Figs. 6.52D, 6.53D).

We also examined the cross-covariance between flux and log hydraulic

conductivity at various points in the domain for both unconditional and conditional cases,

as shown in Figures 6.54-6.57, where the first diagram in each figure is the cross-

covariance of flux and Y with zero lag distance. These figures indicate that conditioning
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does not have a significant impact on the cross-covariances Cyo and Cyq2, except at zero

lag. It appears that this observation contradicts our previous finding which states that

conditioning has impact on cross-covariance between pressure head and Y. One possible

explanation is that, even though increasing Y at one point (say P1) may cause an increase

or a decrease in pressure head at other point (say P2), it does not necessarily cause a

change in hydraulic gradient at P2 and therefore the flux may not be affected.

6.4.2 Effect of Boundary Types

To illustrate the possible effect of boundary type on solutions, we ran two cases with

unconditional realizations (2,000 realizations with unconditional mean Y)=1.0, ay 2=0.5,

X=1.0.) of log hydraulic conductivity fields that yield the mean and auto-covariance, as

shown in Figure 6.58. In Case 5, we imposed impermeable boundaries on both lateral

(vertical) sides, and prescribed deterministic pressure head on both the lower boundary

and at the upper boundary. In Case 6, we replaced the prescribed pressure head at the

upper boundary in Case 5 by a prescribed deterministic flux. The major difference

between Case 6 and the previous unconditional case (Case 3) is that the domain size is

doubled in Case 6. To isolate effect of boundary types, there are neither conditioning

points nor point sources in Cases 5 and 6. Strictly speaking, one may need to run Case 5

to find the mean flux at the top boundary and impose this flux as the prescribed flux for

Case 6, or run Case 6 to obtain mean pressure head at the top boundary and impose it as

prescribed pressure head for Case 5. However, this is not necessary, since we are

concerned only with the general pattern of mean flow and associated (co)variances for
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different boundary types. The results from these two runs are shown in Figures 6.59-70.

Each of these figures shows contour maps and vertical profiles along the middle of the

domain. There is a noticeable discrepancy between pressure head from the zero-order and

MC solutions in Case 6 (Fig. 6.59C-D), in Case 5, however, the zero-order pressure head

is very close to MC results (Fig. 6.59A-B). This may stem from the fact that the

variability of pressure head is much smaller when pressure heads are prescribed on both

the upper and lower boundaries (Fig. 6.60A-B). In either case, the second-order solution

is almost identical to MC results. Unlike Case 6 where the variance of pressure head

increases with elevation (Fig. 6.60C-D), the variance of pressure head in Case 5 increases

from the bottom, reaches a maximum and then decreases to zero at the upper boundary

(Fig. 6.60A-B). Even though the zero-order mean pressure head in Case 5 is very close

to that of MC, the zero-order mean flux is different from that of MC, as shown in Figures

6.61B-C, where Figure 6.61B is a vertical profile passing through the middle of the

domain and Figure 6.61C is a scatter plot of zero-order solution against MC results. This

may be due to the fact that zero-order mean flux is calculated from zero-order mean

pressure head, while the mean flux of MC simulations is computed from the flux of all

realizations, not directly from the averaged pressure head of MC results. Another reason

is that a small difference in pressure head may cause a relatively large gradient (due to

small grid size) and thus the difference is magnified in terms of flux. In either case, flux

computed from second-order solutions is closer to that obtained from MC than computed

from zero-order solutions (Fig. 6.61-64).
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The variance of flux is depicted in Figures 6.65-66. As we mentioned previously,

due to significant boundary effect, the variance of flux does not fit Rubin's expressions

for our cases with a small domain. For the current numerical examples, our simple

calculation shows that Rubin's expressions are more-or-less applicable for large domain.

In Case 6, for example, the second-order approximation of Cq2q2(x, x) - 0 .075, and Co q i(x,

x) 0 .025, thus the ratio of the longitudinal velocity variance to the transverse velocity

variance (equivalent to the ratio of corresponding flux variances) is approximately equal

to 3, as predicted by his expressions. Figures 6.65-66 also indicate that the effect of

boundaries on the velocity covariance extends across about one correlation scale, which

means that expressions for unbounded domain may be applicable for an area that is

several correlation scales away from the boundary.

Figure 6.67 compares the auto-covariance between longitudinal flux at reference

point P in the center of the domain for Case 5 and Case 6. Since magnitudes of mean

longitudinal fluxes in these two cases are different from each other, we may need to

normalize them by the square of their mean longitudinal fluxes, respectively. For

example, the normalized peak value in Case 6 (Fig. 6.67D) is 0.054/0.5 2=0.216, and the

normalized peak value in Case 5 (Figure 6.67B) is 0.009/0.142=0.46. Other cross-

covariance terms of flux components are illustrated in Figures 6.68-70. One conclusion

we can draw from these figures is that the cross-covariance of flux computed from

second-order solutions is closer to MC results in Case 6 than in Case 5.
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6.4.3 Effect of Number of Monte Carlo Simulations (NMC)

As we mentioned in Chapter 1, there are no rigorous criteria to determine if Monte Carlo

simulations converge or not. Even if they converge to a solution, it may not converge to

the true solution of the problem. Intuitively, one way to check the convergence of Monte

Carlo simulations is to plot quantities of interest (such as pressure head, flux and their

variances) at any given point over the number of Monte Carlo simulations. Figure 6.71

shows mean pressure head, longitudinal flux, variance of mean pressure head, and

variance of longitudinal flux for Case 1 over the number of Monte Carlo simulations at

two points (x 1 =2.0, x2=2.0; and x 1 =2.0, x2=6.0). The figure shows that solutions for mean

pressure head and mean longitudinal flux stabilize at NMC = 2000, but relatively large

fluctuations are observed for the variance of mean pressure head and the variance of the

longitudinal flux at NMC = 2000. These quantities seems to stabilize when NMC = 3000.

We also examined the effect of heterogeneity (variance of log hydraulic conductivity) on

the convergence of Monte Carlo simulations. Figure 6.72 depicts mean pressure head,

longitudinal flux, variance of mean pressure head, and variance of longitudinal flux over

the number of Monte Carlo simulations at (x1= 1.1, x 2 = 1.1) and (x1= 1.1, x 2 = 3.1), for

Case 4, i.e., the conditional case with 5y2 = 1.0, X = 1. 0 , (0) = - 1, (30 2 = 0.0. For

comparison, the similar cases with variance ay2 = 0.1 and ay2 = 2.0 are plotted in Figures

6.73 and 6.74, respectively. Comparison between Figures 6.72-74 indicates that high

heterogeneity usually requires more realizations to render the solution stable. However,

there are several problems with this technique. First, Monte Carlo simulations converging

at some points do not guarantee convergence at all points in the domain. In addition,
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different quantities may have different rates of convergence. Furthermore, when

variances are our concern, the number of Monte Carlo simulations required for

convergence will be much larger. It takes many more realizations to make variances

converge even when the mean is stable.

The second-order solutions presented so far are based on ensemble mean and

covariance of log hydraulic conductivity derived from generated realizations, and our

comparisons between Monte Carlo simulations and the second-order solutions are

consistent in this sense. As we said earlier, one of merits in our approach is to avoid

generating random realizations. However, one question remaining is whether our second-

order solutions obtained from these ensemble quantities, with increase of the number of

realizations, converge to the solutions with soil properties inferred from measurements,

instead of from generated realizations. For this purpose, we designed three cases and

generated 5,000 unconditional realizations of log hydraulic conductivity fields with (Y) =

1.0, 5y= 0.5. Parameter 1 is taken as (r3)= -1.0, sae= 0.0. In the first case, we use mean

Y and Cy calculated from the first 2,000 realizations as input to our nonlocal recursive

equations. In the second case, all 5,000 realizations are used to obtain mean Y and Cy .

Lastly, we use analytical values for Y and C y , i.e., (Y)=1.0 and Cy computed using (6-1).

For all these cases, deterministic constant pressure head is imposed at the bottom,

impermeable boundaries on both sides, and deterministic constant flux at the top. The

second-order solutions from these cases are compared in Figures 6.75-78, which show

that these solutions are very close.
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Figure 6.4. Cross-sections of unconditional variance ay2(x) along horizontal profile a-a'
and vertical profile b-b' identified in Figure 6.2.
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Figure 6.7. Cross-sections of conditional mean (Y(x)) along horizontal profile a-a' and

vertical profile b-b' identified in Figure 6.6.
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Figure 6.9. Conditional auto-covariance between Y at reference point P and that at points

along horizontal and vertical sections identified in Figure 6.6.
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Figure 6.10. Images of (A) pressure head; (B) transverse flux; and (C) longitudinal flux,

corresponding to the single conditional realization of Y presented in Figure 6.6.
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Figure 6.11. Mean pressure head obtained from Monte Carlo simulations (MC), zero-

order and second-order solutions for Case 1. (A) A contour map; (B) vertical profile

passing through a conditional point; and (C) vertical profile passing through the source.

Figure 6.12. Variance of pressure head computed from MC, zero- and second-order

solutions for Case 1. (A) A contour map; (B) vertical profile passing a conditional point,

and (C) vertical profile passing the source.
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Figure 6.16. Mean flux in the longitudinal direction (x2) using three solution methods in

Case 1. Contour map (A) and various cross sections identified in (A).
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Figure 6.17. Mean flux in the transverse direction (x 1 ) using three solution methods in

Case 1. Contour map (A) and four cross-sections identified in (A).
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Figure 6.18. Conditional variance of longitudinal flux computed from Monte Carlo

simulation and second-order solutions in Case 1. (A) A contour map, (B) a vertical

profile passing through a conditional point, and (C) vertical profile passing through the

source.

Figure 6.19. Conditional variance of transverse flux for the same case as in Figure 6.18.
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zero lag for Case 1. (A) A contour map, and (B)-(C) profiles along A-A . and B-B'.

Figure 6.21. Auto-covariance of longitudinal flux with respect to a reference point P at

the center of the domain, computed from MC and second-order solutions for Case 1. (A)

A contour map; and (B)-(C) profiles along A-A' and B-B', respectively.
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Figure 6.22. Auto-covariance of transverse flux with a reference point P at the center of

the domain, for Case 1. (A) A contour map, and (B)-(C) profiles along A-A' and B-B'.
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Figure 6.23. Cross-covariance between longitudinal flux at all nodes and transverse flux

at a reference point P at the center of the domain, for Case 1. (A) A contour map, and

(B)-(C) profiles along A-A' and B-B'.



B-B'A-A'
88

7

6

5

7

6

5

><"

33

22

1 1

-?I.1	 0.0	 0 1	 -YU	 0.0	 0 1
(B) Cq20 (x=P, y)	 (C) Cq2q ,(x=P, y)

MC
- 2r' order -

125

A-A'
8

B-B'

MC
MC

—	2 ordq
7 —	 2" ordeA

6

5

4

3

2

1

1.0	 -0.5	 0 0 1.0
(B)	 Cyq2(x, x)	 (C)

-0.5 	00
Cyq2(x, x)

Figure 6.24. Cross-covariance between transverse flux at all nodes and longitudinal flux

at the center of the domain, for Case 1. (A) A contour map, and (B)-(C) profiles along A-
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Figure 6.25. Cross-covariance between longitudinal flux and Y at a zero lag, for Case 1.

(A) A contour map; and (B)-(C) profiles along A-A' and B-B', respectively.
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Figure 6.27. Cross-covariance between longitudinal tlux at all nodes and Y in various

elements P in the domain, for Case I.
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Figure 6.29. Mean pressure head obtained from Monte Carlo simulations (MC), zero-
order and second-order solutions in Case 2. (A) A contour map; and (B) a vertical profile
passing through the source.
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Case 2. A contour map (A) and various cross sections identified in (A).

Figure 6.32. Mean flux in the transverse direction (x 1 ) using three methods in Case 2. A

contour map (A) and various cross sections identified in (A).
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Figure 6.33. Unconditional variance of longitudinal flux computed from Monte Carlo

simulation and second-order solutions in Case 2. A contour map (A) and two profiles.

Figure 6.34. Unconditional variance of transverse flux in Case 2.
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Figure 6.35. Unconditional covariance between transverse flux and longitudinal flux at a

zero lag in Case 2.

Figure 6.36. Auto-covariance of longitudinal flux with a reference point P at the center of

the domain, computed from MC and second-order solutions in Case 2. (A) A contour

map; and (B)-(C) profiles along A-A' and B-B', respectively.
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Figure 6.37. Auto-covariance of transverse flux with a reference point P at the center of

the domain, for Case 2. (A) A contour map; and (B)-(C) profiles along A-A and B-B',
respectively.

Figure 6.38. Cross-covariance between longitudinal flux at all nodes and transverse flux

at a reference point P at the center of the domain, for Case 2. (A) A contour map; and

(B)-(C) profiles along A-A' and B-B', respectively.
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Figure 6.40. Image of (A) an unconditional mean log hydraulic conductivity field, and

(B) covariance calculated from 2,000 unconditional realizations with (Y)=0.0, ay2=1.0,

X=1.0, and an 11x21 grid with Ax 1 =Ax 2=0.2X. (Case 3)
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Figure 6.41. Images of (A) a conditional mean log hydraulic conductivity and (B)

covariance calculated from 2,000 conditional realizations with (Y)=0.0, o 2=1.0, X=1.0,

and an 11x21 grid with Ax 1 =Ax 2=0.2X. (Case 4)
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4

/40

0120

11) 	 -0.100

2
x 1 /X

o

--0.080

_13 060

-0 04°

0

00	

(C)

4

o
3

-QAto

ré 2

2
x /X

0	 0

	 -0.060--

o
0.0 z.11

_0.040 	
	 -0.020-

139

><" 2- X' 2

1

o

	-0.200

	0.000
0.020

.0 040
0

-0.040
---0.15007E1050
--0.ioo

-„/0----(1.°°°

oo 001 1
(D)	 x a	 (E)	 xia

o

Figure 6.45. Cross-covariance between pressure head and log hydraulic conductivity at various locations,
Cy ,v(P, x), for Case 4.



(A)
x /X

2

4

3

(D) 2

=MN

-0.6 -0.55 -0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2

4

3

1

-0.46

-0.48

-0.52

-046

(E)
-0.3

(F)

Figure 6.46. Longitudinal flux for unconditional (A-C) and conditional cases (D-F). The

contours are plotted from second-order solutions.

140



(A) 2 (C)

(B)
0.01

0.005

/.4

0

-0005

0.06

0.04

-5 0.02
o

0

U7-0.02

-0.04

Figure 6.47. Transverse flux for unconditional (A-C) and conditional cases (D-F).

The contours are plotted from second-order solutions.

141



!MIME

142  

A-A'

4

><'" 2

4

3   

2
	

0	 0.025	 0.05	 0.075
	

0l

x i /X
	

(B)	 C q2+42
(X

'
X)

11111•IMI  

4

3

	o 	
0.025	 0.05	 0.075

	
0I

(C)
	

(D)
	

Cq2q2(X
'
X)

Figure 6.48. Variance of longitudinal flux (second-order solutions) for unconditional (A-

B) and conditional cases (C-D).



(C)
1
x

2

4

3

A-A'

4

3

	

0	 0.01	 0.02 0.03 0.04 0.05
	(B) 	 C (X

'
X)

4

- - - - A-A'

	  B-B'

3

	

0	 0.01	 0.02 0.03 0.04 0.05

	(D) 	 Cq20(x,x)

143

Figure 6.49. Variance of transverse flux (second-order solutions) for unconditional (A-B)

and conditional cases (C-D).



44

3 3

4

=MI
4

3

2	 -0.02	 0	 0.02	 0.04
	

0.06

(A): unconditional Cq2q2(P,x)	 x 1 /X	 (B): unconditional	 Cq42 (P,x)

(C): conditional Cq2q,(P,x)C	 (P x)(D): conditional q2q2

Figure 6.50. Auto-covariance of the longitudinal flux with respect to reference point P

located at the center of the domain for unconditional (A-B) and conditional cases (C-D).

144



4

3

-0.01	 0
(B): unconditional

0.01	 0.02
C (P x)coo

1	 2
(A): unconditional Coqi (P,x)	 x ia

=MN

4

3

4

- - - - A-A' .

	  B-B' -

3

2

1C31

(C): conditional Coqi (P,x)
-0.01

(D): conditional Co g i(P , x)

0.022
a

=MIMI

Figure 6.51. Auto-covariance of the transverse flux with respect to reference point P
located at the center of the domain for unconditional (A-B) and conditional cases (C-D).

145



2	 3

Distance from B
2

(A): unconditional Coo(P,x) (C): unconditional

0.01

viè
a:

0.005

42

Distance from B

A-A'

3

4

1<2

0

(D): conditional Coq2(P,x)
2

X A.1

A-A'
0.005

B-B'

0.01

0.005

Figure 6.52. Cross-covariance between the longitudinal flux and the transverse flux at a

reference point P located at the center of the domain for unconditional (A-C) and

conditional cases (D-F). Dash lines in cross-sectional diagrams are results from Monte

Carlo simulations and all solid lines represent results from second-order solutions.

146



147

3

A '

(A): unconditional Coqi (P,x)

a:

u

0 01

0 005

42	 3

Distance from B

A-A'

o

-0.005

-001

4

B-B'

-0.01	12	 ' 3 " " 4
(E): conditional	 Distance from A

0.015 	

Distance from B

-0.005

(F): conditional

0.01

0.005

2

(D): conditional Cq2q1 (P,x)

Figure 6.53. Cross-covariance between transverse flux and longitudinal flux at a

reference point P located at the center of the domain for unconditional (A-C) and

conditional cases (D-F). Dash lines in cross-sectional diagrams are results from Monte

Carlo simulations and all solid lines are results from our second-order solutions.



411111 1111111M141111111M1

nIEEL/11111111=11

4

3

-0.14	 -0.1	 -0. 06 .002	 0. 02	 0.06 -0 06 -004 -002 0 0 02

2
xl i /k

00	

 (B)

4-

4

3

00	

(E)

Figure 6.54. Cross-covariance between the longitudinal flux and log hydraulic

conductivity Y at various locations for the unconditional case (Case 3).

148



4

3

2

4-P11E11111

Figure 6.55. Cross-covariance between the longitudinal flux and log hydraulic

conductivity Y at various locations P for the conditional case (Case 4).

149



11111111111111111

111111111111
-0.03 -0.02 -0.01	 0	 0.01 0.02 0.03 0.04

2

4

Figure 6.56. Cross-covariance between the transverse flux and log hydraulic conductivity

Y at various locations P in Case 3.

150



11111111M1

4-

00	

(D)

1111111111111

MEN ANNIE   

151

Figure 6.57. Cross-covariance between transverse flux and log hydraulic conductivity Y

at various locations P in Case 4.



0.5
1111111111111M1

152

Figure 6.58. Image of (A) an unconditional mean log hydraulic conductivity field, and

(B) covariance calculated from 2,000 unconditional realizations with (Y)=1.0, c 2=0.5,

X= 1.0, and a 22x42 grid with Ax 1 =Ax 2=0.2X.



A-A'

42	 3
X /X

1	 , 1
_

_

-3.5----:
....	 -3.5

_

_
— - —	 — — — —

_

1 1
-

-12175------0.5
:

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

(D)	 <Iv>
00

(C)

.1 	A 
2	 3
X /X

5

3

8

7

6

5

3

2

MC
zeroth

— — — — second

Figure 6.59. Mean pressure head computed from Monte Carlo simulation (MC), zero-

order and second-order solutions for Case 5 (A-B) and Case 6 (C-D).

153



A-A'

(A)

'2 3 4
x

(C)

2	 3	 4
x/X

---

—---
7 7

-

	-0.06

	

0.06 	
— — —

	--0.05	

	0.04- — 

—

3 	 0.02	 3

2 -	 0.01

—

0.6

0.5

	—0.4 —

-
0.2

 1_ —

A

(-<
sé 4 - ><'4

(D)

Figure 6.60. Variance of pressure head computed from Monte Carlo simulation (MC) and
second-order solutions for Case 5 (A-B) and Case 6 (C-D).

154



(B) <q2>

-0.13 -0.13

A-A'

-0.14
<q2>: MC(C)

-0.13
-0.15

(D)

Figure 6.61. Mean longitudinal flux (q2) computed from Monte Carlo simulation (MC),
zero-order and second-order solutions for Case 5 (prescribed pressure head at the upper
boundary). (A) A contour map; (B) a profile along A-A'; (C)-(D) scatter plots of zero
and second-order solutions against MC resluts.

155



A' A-A'

8

7

6

5

X 4

3

2

1

1
(A)

0.004

0.002

a.)
0

V
-0.002

4

0.004

0.002

-2(.1

-0.002

"W.004 -0.002	 0	 0.002 0.004 -"-(64.004 -0.002	 0	 0.002 0.004
(C)	 <q,>: MC	 (D)	 <q1>: MC

Figure 6.62. Mean transverse flux (q i) computed from Monte Carlo simulation (MC),
zero-order and second-order solutions for Case 5 (prescribed pressure head at the upper
boundary). (A) A contour map; (B) a profile along A-A'; (C)-(D) scatter plots of zero
and second-order solutions against MC resluts.

156



A-A'

8

7

6

5

4

-0.48

<q2>

-0.52	 -0.50

C12

Figure 6.63. Mean longitudinal flux (q2) computed from Monte Carlo simulation (MC),

zero-order and second-order solutions for Case 6 (prescribed flux at the upper boundary).
(A) A contour map; (B) a profile along A-A'; (C)-(D) scatter plots of zero- and second-
order solutions against MC resluts.

157

A'

7

1

i	 I) 7

( 'N	 c	 \
1	

Iu (

I /
I	 i 	I t-0

r \:.'	 .°‘

/	 v ,

ly-	 ' 41	 <	 ke).. ,:\

	

^ (- (	 1	 S3'. \I Iit:
J	 /

•

çI
	.0--.. 4.

_	 , jr,I	 .,, ,.	 '-‘,....

1

I `-' , \c _	 -.

	

< Y,, 	4/ r

,

4.

s
 L., 0

--....

--..../ .

(- '2;? . 1'
-e»,)

	

\ LI .-6'k'L/<"	 I (

	111. .. :-.\\,.	 4

< —

4

-0.48



(A) (B)

A-A'A'

8

7

6

3

2

1

-0.005

Figure 6.64. Mean transverse flux (q 1) computed from Monte Carlo simulation (MC),

zero-order and second-order solutions for Case 6 (prescribed flux at the upper boundary).
(A) A contour map; (B) a profile along A-A'; (C)-(D) scatter plots of zero- and second-
order solutions against MC resluts.

158



i

A-A'

5

(C)	
1 2	 3

X i/X (D)	 Cq2q2 (X
'
X)

4 0.20

7

6

5

c-<
>< -̀'4

3

2

,-
><'4

3

2

i

Figure 6.65. Variance of longitudinal flux computed from Monte Carlo simulation

(solid), second-order solutions (dash) for Case 5 (A-B) and Case 6 (C-D).

159



-1
\

-

0142
X a

,

1
(C)

	0 	 0.025	 0.05	 0.075

	(D) 	 Coqi(x,x)

A-A'

-

-

-

-

-

/

5

,-<
.....e,
x 4

4

Figure 6.66. Variance of transverse flux computed from Monte Carlo simulation (solid)

and second-order solutions (dash) for Case 5 (A-B) and Case 6 (C-D).

160



A-A'

8

7

6

5

3

2

5

4

3

2

MIMI=

Figure 6.67. Auto-covariance of the longitudinal flux reference to point P, computed

from Monte Carlo simulation (solid) and second-order solutions (dash) for Case 5 (A-B)

and Case 6 (C-D).

161



8

7

0.03-0.01	 0	 0.01	 0.02
(D)	 Coqi(p,X)

4
(C)

2	 3
X i n).

A-A'

7

6

5

x 4

3

7

6

2

(A) -0.004
(B)

8

7

o

5

x 4

6

8

Figure 6.68. Auto-covariance of the transverse flux reference to point P, computed from

Monte Carlo simulation (solid) and second-order solutions (dash) for Case 5 (A-B) and

Case 6 (C-D).

162



A-A'

0.0005

0

(C)

-0.005

a.

-001

(E)

0

-0,005

(F)
Distance from B

-0.012 -0.008 -0.004 0	 0 1)04 0.008 0.012
A	 B'

/7

2 	3	 4 A'

X 1 /X(D)

163

Figure 6.69. Cross-covariance between the longitudinal flux at all nodes and the

transverse flux at pont P, computed from Monte Carlo simulation (solid), second-order

solutions (dash) for Case 5 (A-C) and Case 6 (D-F).
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CHAPTER 7

CONCLUSIONS

On the line of Tartakovsky et al [1999], we developed a deterministic alternative to

conditional Monte Carlo simulation to predict steady-state unsaturated flow in randomly

heterogeneous soils with uncertainties in driving forces, without resorting to Monte Carlo

simulation, upscaling or linearization of the constitutive relationship between unsaturated

hydraulic conductivity and pressure head. By assuming that the Gardner model is valid

and treating the corresponding exponent a as a random constant, the steady state

unsaturated flow equations can be linearized by means of the Kirchhoff transformation.

This allows us develop exact integro-differential equations for the conditional first and

second moments of transformed pressure head and flux. The predictions of system states

and fluxes are made by means of first ensemble moments, conditioned at measured

values of soil properties. The uncertainties associated with these predictions, also

conditioned at the measured values of the soil properties, are assessed by conditional

second moments.

Although the derived conditional moment equations are exact, they are not

workable unless some kinds of closure approximations are employed. The approximation

we used in this research is perturbation analysis. Expending all related terms in exact

conditional moment equations as powers of ay and ap leads to recursive equations. These

recursive equations are then solved numerically using finite element methods. The

validity of the perturbation method is normally limited for flow in soils with mild
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heterogeneity. However, the method can be applied to strong heterogeneous soils, as long

as the hydraulic properties are conditioned at some measurement points.

Our approach has several advantages over Monte Carlo simulations. First, the

computational demand will be reduced. All conditional parameters in our conditional

moment equations are smoother than their random counterpart in the original flow

equations, and therefore these moment equations can be solved using a relative coarse

grid. In Monte Carlo simulation, the number of times to solve flow equations required to

make solution convergent increases as the heterogeneity of the soil increases, while in our

approach, the number of times is fixed, since moment equations are deterministic. More

importantly, even if Monte Carlo simulation converges, there is no guarantee that they

converge to the true solution. Numerical examples show that our second-order nonlocal

solutions are superior to zero-order local solutions and are much closer to Monte Carlo

simulations, which makes our approach to be an excellent alternative.

Instead of assuming statistically homogeneous hydraulic conductivity field as

most of existing models did, our moment equations are conditioned at some measurement

points, which renders the hydraulic field statistically non-homogeneous. The effects of

conditioning can be summarized as follows. First, numerical examples show that even a

few conditioning points may allow us to model unsaturated flow in strongly

heterogeneous soils (for example, ay2 =2 in Case 1). Second, though conditioning does

not change the mean pressure head field drastically, it reduces the uncertainty associated

with mean pressure head prediction and improves the quality of our second-order

nonlocal solutions (closer to Monte Carlo results). In addition, conditioning points affect
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the overall flow pattern significantly, but it does not necessarily reduce the variance of

flux for all cases, especially when some other factors, such as point sources, are present.

Furthermore, although our second-order solutions for flux are superior to zero-order

solutions in all cases, the zero-order solutions are very close to Monte Carlo results in the

conditional case. This means that the flux filed obtained from zero-order solutions may

be accurate enough for well-conditioned soils.

Unlike some other models that are applicable only to statistically uniform flow (or

statistically uniform mean hydraulic gradient), our model allows us to deal with non-

uniform flows, which for example may be caused by point sources in the domain. Our

numerical examples show that point sources have significant effect on mean flow and it

associated variance. The point source increases the variance of pressure head and the

variance of flux.



172

APPENDIX A

DIRICHLET BOUNDARY CONDITIONS RELATED TO THE

TRANSFORMED VARIABLE

A.1 INTRODUCTION

In Chapter 2 we showed that the original nonlinear Richards equation could be

transformed into a linear equation by means of the Kirchhoff transformation. However,

the transformation transforms the prescribed pressure head W(x) on the Dirichlet

boundary to

cl)(x)= H(x), H(x)=
oc

XE	 (A-1)

which introduces some difficulties in dealing with this boundary condition, especially

when the parameter a is not a deterministic constant. In solving for the mean Kirchhoff-

transformed variable (1), we need to know its value at the Dirichlet boundary. In addition,

both implicit and explicit perturbation equations for cl), i.e., (2-17) and (2-19), include a

term related to H', the perturbation of H, either as a Di richlet boundary condition or as a

boundary integral over the Dirichlet boundary. Even in the case that the original pressure

head is deterministic on the Dirichlet boundary, i.e., 111' = 0, the transformed variable (13 is

not necessarily deterministic on the boundary. As a result, in each (cross-)covariance

function associated with 013, there exists a term related to H' that needs to be evaluated

before solving for (cross-)covariance functions. In this appendix, we derived mean H to
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second order in section A.2; obtained an perturbation expression for H' in section A.3,

which is the basis for formulating cross-moments; and in sections A.4 and A.5, we

formulated all terms that are related to H'.

A.2 EXPRESSION FOR THE PRESCRIBED MEAN 01), (H(x)), ON THE

DIRICHLET BOUNDARY

Rewriting equation (2-10) as

aH(x) = exp (aT(x))	 x e I-,	 (A-2)

expanding its left side

(a)(H(x))+ (a) I l' (x)+ a' (H (x)) + a' I 1 '(x) = exp (aT(x))	 x e r 	 (A-3)

and multiplying (A-3) by (02-(a)a'+a' 2 yields

(a) 3 (If (x)) + (a) 3 H '(x) + a6 H(x) = ((a) 2 - (a) a'+ a'2 ) exp (a(x))	 x e F,	 (A-4)

Splitting W(x) into its mean (W(x)) and perturbation 111/(x), expanding a as

....,..... rn
a = e r3 = e (13)  = a„ I —

m=0 m!
(A-5)

where ŒG is the geometric mean a, and substituting (A-5) into exp(atlf(x))



exp [ocT(x)]

1	 ,	 n
ŒG 1 + f+ 412 Kip(x))+(x))1+ HO

2

aG= e	 ! ŒG ( i(x)) (1±	 (W(X)))f3œG (T(xe » [1+ t1P(x)+ ŒG ( 111 (x))r3 + -2 aG 	(x)+
2

+ aG (1+ ŒG (W(x)))(3'11P(x) + -21 aG (1+ 3aG (W(x))+ a 2G (W(x)) 2 )1Y2111 (x)
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(A-6)

= exp

2	 1	 /	+aG : 1+ŒG
 Mx)) 13'111/2 (x) + -1 ac,2 	+ 5aG (41 (x))+ aG2 (W(x)) 2 )13'211 '2 (x)]+ HO

2	 4 '

Here HO is the sum of higher-order terms, because we are only interested in terms that

are up to second order in Gp and ay (this equation is independent of Gy). Since we

assume that the prescribed pressure head IF on the Dirichlet boundary is independent of

medium properties, its mean Klif(x)) does not need to be expanded in powers of Gy and

6p. Substituting (A-6) into (A-4), taking conditional ensemble mean, and rearranging,

yields an expression for (H(x))

(a) 3 (H(x))+ HO

= ea,(Too[((a) 2 + ( oc,2 )) ( 1+ _
12

cec
'
cy2,(x) `

1+—a„, (a)(W(x))[(a)(1+ aG ( 111(x))) - 2aG 1(fr)2 '

ŒG2 (52T (X)

( ea) ,
+5a, (W(x))+ ŒG 2 (W(x)) 2 )-ag-(2 + ŒG (W(x)))

4	 2 (cor>1
where C7T2 = (V2) is the variance of prescribed preesure head on the Dirichlet boundary.

Taking emsenble mean of (A-5) and expanding (1-/(x)) in (A-7) in powers of ay and Gp,

(H(x)) = VH ( "'"` ) ( x))	 (A-8)

(A-7)

n=0 in =0
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where n and m designates terms including n th power of a y and mth power of 613, and

equating terms with the same order on the two sides gives

eaG(P(x)) (	 1 2 ,(H (" ) (x)) = 	  1+ —ac5 (x)
CLG 2 '

(72	 uG (9J(x))
(11 (°	

e
'2) (x))=	 _(	 [1+ a, (tY(x)) (a„ (tlf(x)) - 1) + 0.5 a c2, + 3a, (tlf(x)) + ac2, ( 11i(x)) 2 1:52,„ (x)1

;

(A-9)

Here we take (W(x)) and a 4,2 (x) to be system inputs that do not depend on medium

properties. Other lower-order terms, such as ( H ai ) , x , and (H( 2 •0)(x)), are zero and have

been omitted in (A-9). For deterministic pressure head boundary condition, i.e., Yw2(x)

0, (A-9) is simplified to

(H (") (X)) =	 ea'G(T(x))
CCG
(72	 a.,; (4, (x»

(10'2) (X)) —	 e	 [1 + a, ( 11/(x)) (a,	 (x» -1)]
2 a„

A.3 EXPRESSION FOR THE PERTURBATION TERM H' (x)

Substituting (A-6) into (A-4) yields an expression for H'

(A-10)
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0 _2 c( (0 2 4 3 ,2 (x)
(a)3 H'(x)=e" (T(x)) [(a) 2 + a„ (a) 2 Ill'(x)+aG (a) 2

 (tY(x)),4\cci\ cc,+1

+ 1 a6 (a) 2 (W(x))(1+a„ ( 1P(x)))13'2 -„ (a)(1f(x))a'13'+a /2
2

+a, (a) 2 (1+a, (W(x))) 13'‘If'(x)-a 0 (a)a'T'(x)

+ 1 a0 (a) 2 (1+3a, (1"(x))+	 (W(x)) 2 ) 13'211-1 '(x)
2

- a, (a)(1+ a, ( 111 (x))) a'13' 111/(x)+a0 a'211/'(x)	 (A-11)

, ,
2 1+-a, I	 2 / \+a,2 IDE)	 Of(x)) 13'11"2 

(X)	 ma'T'2(x)
2	 2 '

-	
(
a)(

+1a2 , cc n 2

4	
)	 + Sa c, (T(x))+ a c2; (11f(x))2 )I3'211f '2 (x)

1	 1 21+ -a, ( 111 (x))] a'P'lls'2 (x)+-aG (a)a'2 V2 (x)1
2 -	 2

-(a) 3 (H(x))+ HO

This is the basis for formulating cross-moments associated with H'.

A.4 IF-RELATED TERMS AS BOUNDARY CONDITIONS

Recall the Dirichlet boundary condition of the implicit equation for V

(13 / (x) = (x)
	 x Fr,	 (A-12)

If we formulate a cross-moment associated with EIV using the implicit equation for cicv,

i.e., (2-17), we will have a term related to H' as its Dirichlet boundary condition. All this

types of H'-related terms will be evaluated in this section.

A.4.1 Cross-covariance (I/ (x)(13' (y))

To evaluate the covariance function Co(x, y), we need to find the cross-covariance of

H(x) and cIp(y), (H'(x).43/(y)). This can be derived upon multiplying (A-11) by (I)'(y) and

taking conditional ensemble mean
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(a) 3 (10x)V(Y))

=e ) [aG (a)2 (1,,(x)cw(y))+ 1 0, fav (4,,2 (x) ,v(y) )

2	 \

+ a„ (a) 2 (1+ aG ( 11f(x)))([3' 11''(x)4'(y))-aG (a)(e1P(x)(1) /(y))

+ OE G (a) 2 + 3a, ( 111(x))+a 2G (W(x)) 2 )(13'2 V(x)(1Ay))

- aG (a)(1+a„ (W(x)))(arIP(x)(13 /(y))+aG (a'2111 (x)V(y))

(a) 2 [1+ - aG (W(x)) vv 2 (x)cw(y)Ha., (a)(001P 2 (x)(13'(y))

+ 14 c 	2c ice
‘c,	 )	 + 5aG (tlf(x))+a 2c, (T(x)) 2 )(13'2 V2 (x)(1)/(y))

(A-13)

(x)(v(y) + 1 a2 /a \ ( cc ,2 4,,2 (x)(1) ,(y) )
- a 2 (a)(1+-1 aG (T(x)) (03'11P2

	G 	2	 / 2 G \ I

+ aG (a)((a)(41 (x))-1)(WV(y))

	+cc,	 (a) 2 (W(x))(1+ ŒG (1P(x))) _!(a)-a. (a)(4f ( x )) +ŒG (P '2(13'(Y))1

where terms that are obviously higher than second order in 613 and agi, such as terms

containing t3'3 or liP3 , have been dropped from (A-13). Evaluating (A-13) is complicated,

because it contains cross-moments associated with both perturbations 'r(x) and (10', such

as (13'21P(x)0/(y)). To evaluate latter, it requires employing an eqaution for V, either (2-

17) or (2-19). Using (2-17) to evaluate (13'211P(x)V(y)), for example, requires to solve

equation for (13'21P'(x)(13'(y)) with Dirichlet boundary condition of 03'2V(x)H'(y)). The

latter can be obtained upon multiplying (A-11) by (l3' 2 41 '(x)), which leads to an equation

similar to (A-13). This procedure continues until the derived terms become higher orders,

and thus are beyond our concern. As an example, we will show the detailed procedure in

evaluating the first term in (A-13). The term (V(x)(13/(y)) can be obtained upon

multiplying (2-19) in terms of y by V(x), XE rD, taking conditional ensemble mean, and



—f V21IJ(x)/1 /(z)K:(z)V,G(z, y)) • n(z)dF
rD

(A-18)

— f 03 1112 (x)I-r(z)K s (z)V,G(z, y)) • n(z)dr
r„

(A-19)
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using the assumption that V(x) is (statistically) independent of Ks and a and thus is

independent of G(y,x),

(t 1 '(x)(13'(y))=— f (V(x)H'(z)1C 5 (z)V ,G(z, y)) • n(z)dr
	

(A-14)
Ft,

The integrand contains H'Ir which has to be evalauted using (A-11) again

(a) 3 (V(x)H'(z)K s.(z)V s,G(z,y))

= C,(x,z) eaG (T(z)) [a„ (a) 2 (K s (z)V,G(z, y)) + a„ (a) 2 (1+ a, ( 11f (z)))(13'K s (z)V z G(z, Y))

— a, (a) (a'K, (z)V z G(z, y)) — a, (a) (1 + aG ( 11i(z)))(43'K5 (z)V2G(z, y))	 (A-15)

+ —21 a, (a) 2 (1+ 3aG (T(z)) + a. 	(z)v,G(z, y))

+ŒG (a'2 K, (z)V,G(z, Y))1

Terms that are obviously higher than second order have been dropped, and all terms in

the right hand side of (A-15) are known (see Appendix B for details). Similarly,

expressions for other terms in (A-13) are

(V2 (x)(13'(y)) = f (V2 (x)H'(z)K, (z)V,G(z, y))• n(z)dF	 (A-16)
r„

Pr(x)V(Y)) = -f (13/V(X)fr(Z)K 5 (Z)V,G(Z, y)) • n(Z)dr
r„

(A-17)

(13' 2 W /(x)cl(y))=

(r(V2 (x)(1)'(y))=

(f3'21r2 (x)(1) /(y))= (r 2v2 (x)H/(z)K,(z)V,G(z,y)) • n(z)dF (A-20)
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where the integrands are

(a)3 ( 1r (x)I (z)1C,(z)V z G(z, y))

= a2p (x) ea0(4'`z)) [(a) 2 (I( v (z)V	 , y)) + a, (a) 2 (T(z))03'1C,(z)VP(z,Y))

-(a)(a'K, (z)V z G(z, y)) - a„ (a)(11 (z))(aWK s (z)Vp(z,y))

+-12La„ (aY (W(z)) + a, ( til (z)))V2 K,(z)V z G(z, J))

+(a'2 K, (z)V,G(z,y))]

- (a) 3 (H(z))cs,,(x)(K s (z)Vp(z, y))

(A-21)

(a) 2 (13'Ir(x)I-r(z)K s (z)V,G(z, y)) = C, (x, z) ea' (T(n) [a„ (a) (1 + a„ Of(z)))(Pi2 K.,(z)V zG(z, Y))

+a„ (a) (pc, (z)V z G(z, 3 ) ) - aG (alYK, (z)V z G(z, y))]	 (A-22)

(a)3 (fPif'2 (x)H'(z)K,(z)V,G(z, y))

=	 (x) ea' (T(z)) [(a) 2 (I3'K,(z)V z G(z,y))+ aG (a)2 (1'(z))(rK(z)VG(z Y))

-(a)(43'K,(z)V z G(z,y))]
	

(A-23)

- (a) 3 cs,(x)(H(z))(13'1‘,(z)V z G(z,y))

(a)(13'2V(x)1-1/(z)K,(z)Vp(z,y)) = aG C,F (x,z) eaG(4" (z)) (f3'2 K, (z)V,G(z, y))
	

(A-24)

(a)(13'2,r(x)H'czw,(z)v z G(z,y))= c. (x)(ea' (‘P`z)) (a)(H(z)))(13'2 K, (z)V z G(z, J))
	

(A-25)

After evaluating (A-14) to (A-25) to second order in my, 6y, and 0 13, and combining all

terms, we obtain

(y #0.0) _ _e q
(H '(x)(1)'	 f eaG (T(z))C,,,(x,z) KG (Z)V z G(") (z, y) n(z)dF (A-26)

rD



(H'(x)c1)/(Y)r .2)

1
= — —2 occ; (W(x)) — 1)	 (x)eaG (4' (x)) f e OE' (T(z)) K„(z)(13/V z G (° '1) (z, y)) • n(z)dF

1-0

	

_ e000,(x)) f ea,(T(z)) 
Cp(x,z) K„ (z) [(V ,G02 (z, Y)) + ŒG ((P(x)) + (T(z)))	 V z G (°3) (z, Y»

r„

1 	2	 / /	 \ /
+ —2 aoaG WP(x)) + ( 111 (z)ma„ ( 111 (x))+ a„ (T(z))+ 1)V zd" ) (z, y)1 • n(z)dr

1 Œ„ (Ùoc„ 01(x)24 9-) (y)+ —21 (1— a„ (T(x)) +14, ( 11J(x)) 2 )(13'2V(y)) (°,2)e 
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(A-27)

(11'(x)(1)'(y)) (2°) = _e"(» ea'Mz»CT (x,z)K„(Z)
F„

(A-28)
2(2,0)(z,y ))

(-/	 .19)	
1 

ay (Z)V zG(") (z,y)1 • n(z)dr

KRAX)43/(y))(2 '2)

1
— 2

7. (a, ( 111 (x)) — 1)	 (X)eœG(T(x)) f ea' (T(z)) KG (Z)

*[(13'V z G (23) (z, y)) + VY'(z)V z G" ) (z, y)) + 0.5(7,2, (z)V, (13'G (" ) (z, y))1-n(z)dF

e«(4, (x)) f eaG(9,(0cp	 c52,z	 Q2) (z, y))(x,z)KG (z)[(V z G (2 '2) (z, y)) + 11 '(z)V z G (I '2) (z, Y)) + 0.5 (z)V (G (

+ aG ((W(x)) + ( t1/ (z)))(03/V z G (23) (z, y)) + (13Y(z)V,G ( " ) (z, y)) + 0.5a 2y (z)V, (IYG (" ) (z, y)))

+ 0.50 123a, (('(x)) + ( 11i(z)))(a, (41 (x)) + a, (T(z)) + 1)

*((lYV,G (2.1) (z, y)) + (fYlii(z)Vg" ) (z, Y)) + 0.5cy;,(z)V z (WG (" ) (z, y)))] • n(z)dr

1v2,2)
+ea' (4' (x)) [ac; (T4' 1) 024;2) (y) -2j1 a, (tY(x))+ a ( IF(x»2 )(I3 	(Y ) )

aG

(A-29)

For the deterministic pressure head boundary condition, i.e., C(x,z)..(), (A-26)-(A-29)

simplify to

rn
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0: ) (x, y) = 0

C °) (x, y) = 0

(x, y) =	 eaG(T(x)) [(a, (W(x))-1) C4 2) (y) + 0.5 (1- a„ ( 11f(x))+•4 ( 1F(x))2 )(13'2 4:1)'(y)) (0 2)1 (A-30)
a l;

C;2;b2) (X , y) = -L- e' (‘"(x)) [(a, (11(x))-1) 0 24; 2) (y) + 0.5(1-a, ( 111 (x))+a 2G (11 (x)) 2 )(13 '2 V(.0) (2 2) 1

Note that, for deterministic a and pressure head boundary, c°)(x,y) = O. This explains

why the exact equation for the conditional covariance function Co, (A7) of Tartakovsky

et al. [1999], should have a term W(x)(1)/(y)) on the Dirichlet boundary condition, but the

corresponding Dirichlet boundary condition for their second order approximation, (42) of

the above authors, is still valid and their numerical results are correct. The missing term

is generally non-zero, but it is zero under the assumptions that a is a deterministic

constant and that the boundary condition for pressure head is also deterministic on the

Dirichlet boundary.

A.4.2 Cross-covariance (cc'H'(x)) and (a'2H'(x))

Multiplying (A-9) by a' and noting that, to second order in ap, (03') = aGap 2, and (a'2) =

ŒG26p2 , yields

(
(a)2 (a7-1 /(x))= a,2 ea' (P(x)) [a, ( 11-1 (x)) - 1+

which gives

, 	 1
(a'H'(x)r ) = (3 12,ea6(T(x)) [a, ( tY(x» - 1+ -a -,

1	 2
aG (a)+ aG (a)(1P(x)>

1
--ac2	 '

,
ka, k tP(x)2+1)(x)]

cr2,,,(x)1 (A-31)

(A-32)
2

For the deterministic Dirichlet boundary condition, we have
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(ceIi i(x))(0,2) = (521, ear' ('") (aG (W(x)) -1) (A-33)

Similarly, for (oc'2H'(x)), we have

(a) (a'2 0x)) = ex )) (i + -21 aG2 	(x) (a' 2 ) - (a) (x)) (a' 2 )	 (A-34)

which results in (a'2 H/(x)) (0,2) =0 .

A.4.3 Opc'clAx)I-E(y))

Similar to (A-13), for (a'(1) /(x)I-r(y)) we have

(a) 3 (013'(x)fi'(y)))

= eaG (T(Y» [a, (a) 2 (a"V(y)0/(x))+ 1a2G (a)2 (011 /2 (y)(1:0'(x))

+ a, (a) 2 (1+ a„ (IP(y)))(cc13'tny)(13'(x))- a, (a)(a'411 '(y)V(x))

+ a (a) 2 (1+ j2-aG (tlf(y)) yfrIf'2 (y)(1:V(x)) -	 (a)(eV2(y)V(x))

+a, (a) ((a)(11(y)) -1)(a'rcl:V(x))1

- (a) 3 (H(y))(a'cV(x))

(A-35)

and its approximations to second order

(0(o'(r)H'(y)))(')

1 22 (02)	 a (T(Y))

2(T(yccG (T(z p "

=--2OEGGT(Y)Roq; (x)e

_OEGec,G»f e))c

G

(y,Z) A (z)[(13'vg" ) (z,x))+ cy2 aG (41 (z))(V,G (0 '0) (z,x))1 n(z)df 
(A-36)

rt)

— (02„ (W(y))e aG (T(Y)) f ea(' (+(z)) C,p(y ,z) K G(Z)	 ,G(°.°) ,X)) • n(z)dF
rp



(ceV(x)1-1'(y))(2,2)

= eOEG(T(Y)) 	aG2 cY2T (Y)CP 24;2) (x) + (ŒG (W(y)) -1) (fr(13'(x)) )2 '2)
2

- a(2,ea' <4" )) f e" (T(z))C4., (y,z) IC,(Z)[(P ,G (2 '1) (Z,x))+03')/ /(z)V z G (° '1) (Z,x))
r„

+1G2y (z) (0, ,v, G (03) (z, x. ) )1. n (z)dr
2
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(A-37)

- (W(y))e'M Y)) f eaG(T(z))c(y,z) K G (Z)[(V ,G (2 '()) , X)) + / (07 ,G (") , X))

1 2+-cry (z)(V z G (u) (z, x))1 • n(z)dr
2

A.4.4 (a'24)'(x)W(y))

Rewriting (A-11) in terms of y, multiplying by a'20'(x), and taking conditional ensemble

mean yields

(a)(eszt-V(x)H'(y)))

(A-38)
= e )) [(a/2 49'(x))+ (DcG (a'411 '(y)0'(x)) + 1 a2G (ce2V2 (y)V(x))1- (a) (H (y))((f2 V(x))

Here again, terms of higher than second order have been omitted. Expanding (A-38) in

powers of ay and Go leads to the following second order approximations

((0,2)	 1 3 2	 c(G(W(Y)) r20 (x),)(Cit,"V(X)0Y)))	 = —2 °Cc; ay, (Y
,

_07(23ŒG2eG0)) eaG(T(z))cp (y,z ) K G (z) V _G (° '°) (z,x))• n(z)dr
(A-39)

\ (2,2)	 1— 3 2 

(Y)e 
cxG ('}'(y)) (p/2(x )) (2,2)(d2CIAX)00) = 

2 OEGGT 

- 020aG2 eœG(T(Y)) f eaG (T(z))C, (y, z) KG (z)[(V,G (2' ) (z, x)) (A-40)

+ (1/(z)Vp ( ''°) (z, x))+ -21 (7, (z) z G (" ) (z, x))] n(z)dr
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A.4.5 (V(x)clAy)W(z))

Multiplying (A-9) by r(x)c1) / (y) and taking conditional mean gives

(a) 3 (Y'(x)V(y)l-f(z))

= e c4' ('Y» [(a) 2 (0x)V(Y))+ aG (a) 2 (0x)V(Y)nz))+ a6 (a) 2 ( tif(z))0Mx) (1)/(Y))

- (a)(a'y'(x)(1V(y))+ 4[4 ; (0 2 (1' /(x)V(Y)r (z))

(a)2 (T(z))(1+ a, (T(z)))(froxwcy)) - aG (a)( 1-15(z))(03 '0x)V(Y))
2

+ (a'2 Y'(x)(1)'(y))+ a, (a) 2 (1+ a, (q1(z)))(rIlx)V(y)V(z)) - aG (a)(01 '(x)(1AY)V(z))

+ 21 aG ax 2
)	 + 3a6 (Ill(z))+ a 2G (T(z)) 2 )(f3'2 y'(x)(13'(y)V(z))

- a„ (a)(1+ a. (IP(z)))(a13'Y'(x) ,40V(y)'r(z))+ ŒG (a'2 17 '(x)(1)'(y)V(z))

+ a2„ (a) 2 (1+ a„ (11(z)) (PY(x)V(Y)V2 (Z))	 (a) (c('Y'(x)V(y)V2 (z))

a 	(4 +5a, (T(z)) + a 2„ ( 111 (z)) 2 )03'2 Y'(x)ev(y)V2 (z))

- (a) ( 1	 a„ ( tii(z)) (OE'13'Y'(x)ev(y) ir (z)) + a 2G (a)(ay'(x)(1V(y)V 2 (Z))1
2

- (a)3 (H(z))(11x)V(y))+ HO

(A-41)

Similar to the procedure we used in evaluating (A-13), evaluating all terms in (A-41) in

powers of say and Cfp leads to following approximations

(y '(x)43 '(y)e(z))( 2 °'
c, (T(z))

e	  j C, (Z,U)eœu(P")) [07 ' (X)V:G (1.°) (14, y)) + Cy (x ,u)07 G (°) (u, y))]K,(u)n(u)dr
CCG	 rp

(A-42)
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(0x)ctv(y)H'(z))` 2.2 )

e
ac; (W(z

I la2, 62T (z ) (	 )43'(y ))( 2 2

ŒG 1. 2

-1[2 + a, (T(z)) (a, (T(z)) - i)+ i4; (1 + 3a6  (tY(z)) + a 2G (111 (z)) 2 1a24, (z)(0x4V(Y)) (2 2)

+(a, (T(z)) -1)([3'Y'(x)(13'(y)) ( 2 2) + + ŒG (T(z))(a, (tY(z)) - 1)1(irY'(x)43 '(Y)) (2 2)

+ŒG
(y /(x )(1(y)'nz))( 2 2) _12 (523c4G (0x)43 ,(y)w ,(z) )(2 0)

Ct2G (W(Z)) (13 ' YAX)0 /00V(Z)) ( 2 '2) + -il aG (1+5a, (IY(z))+ a2, (T(z))2 )03 /2 0x)A.Y(1:rr(z)) (2 2)

a 2„ (1+ a, (T(z)))(13'Y'(x)(13'(y)V2 (z))(2.2) +	 (0x)(1)/(y)V2 (z))(2 2) }
2

(A-43)

where terms related to	 are given by the following equations

(0x)(13 '(y)V(z)) (2 °) = - f c (z , u)e a° 	 [(Y /(x)VT,G ( ") (u, y)) + Cy (x ,u) (V;	 (u, y))11‹,(u) n(u)dr
rt,

(A-44)

(y '(X) (1)/(y) 1 ii'(Z)) (2 2)

= f C (z,u)e'G (T" )) [(Y '(x)V;G 21 (u,y))+ Cy (x ,u)(V„G (° ' 2) (u,y))
r„	 (A-45)

(T(0) (a, ( 111(u))+1)(01 '(x)VF, G` I°) (u, y)) + Cy (x ,u) (V G (° °) (u, y)))

+cc,	 (u)) 03'Y '(x)VT,G ( ''' ) (u, y))+ Cy (x, u) (DV G`" (u, y)))]K„(u)n(u)dr

(Y '(x )(13 '(y)V2 (z) ) (2 2)

c,,,,(T)
= -a	

[
,(z) f e 	cs2pa„ ( 111(u))(0x)V 2„ G (101 (u, y)) + Cy (x ,u)(v;G'" ) (u, y))

ot,	 2

+ (aG (W(u))-1)((13 /0x)V 2„ G ( " (u,	 + Cy (x, u) (pv„Gmicu, 30))]KG (u)n(u)dr

(13 ' 0X)V(y)V(Z)Y

(A-46)

2.2)

=	 Csp (Z,11)e œG(‘P(')) [03 '0X)V:G (1 1) (u, y)) + C (x ,u) (WV; G (° '' ) (u, y))
	

(A-47)

+02p aG ( 1P(u))(01/(x)VT,G (1°) (u, y)) + C (x,u)(V Iu Gw '°) (u, y)))]KG (u)n(u)dF
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Y'(x)V(y)lr(z)) (2 2)

2 r	 T (= —6 p j Cm, (Z,U)e	
/

aG(T (	 (X)V „G
10) (u, y)) + Cy (x, u) (V:G` ° °) (u, y))]KG (u)n(u)dr

CD

(A-48)

(13'Y'(x)(1'/(y)V2 (z)) (2)2)

=	 (z) f e":") (a, ( 111(u)) -1)[(11/(x)V 	 (u, y)) + c (x,u)(V", G ( " ) (u, y)) K G (u)n(u)dr 

(A-49)

A.4.6 (oc'Y'(x)(1)'(y)H'(z))

From (A-11) we have

(a) 3 (a'Y'(x)clv(y)H'(z))

= e ) [(a)2 (a'nx)43 '(y)) + a, (a)2 (a'nx)4:13 '(y) IP'(z)) + a, (a) 2 (ii(z))(03 /0x)V(3))

- (a) (a'2 Y i(x)(13'(y)) +	 (a y (aY(x)(13/(y)V2 (z))

+ a, (ay (1+ a, (1)1 (z)))(arY'(x)(13'(y)nz)) - a, (a) (eY'(x)(13'(y)r(z))

, , (	 ,	 \	 1
ka2
	 1

) \ 1+ a., kIll(z))jkaVY'(x)(1) /(y) 111 '2 (z))- 	 kalka - 17 /(x)(13 '(y)V2 (z))]

- (a) 3 (H(z))(a /Y /(x)V(y)) + HO

(A-50)

To second order,

(aY(X)C13/00H '(z)) (2 2)

\ (2,2)e ct,(T(z» [__1 ac2	 fz, /a/y/(x)	 )0/(y . \) 
( 2,2)	 /

+ +	 ( 1(z)) -1)(V2 11/(x)(1) /(y))
2 w"\F

+a, (P'Y'(x)V(y)V(z)) (2 2) + a2, ( tIf (z))(f3'2 ), '(x)V(y) 111/(z))(2 2) 1

(A-51)

A.4.7 (cc'2Y'(x)(1e(y)H'(z))

From (A-11) we have
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(a) 3 (a'2 Y'(x)(IV(y)l-Rz))

= e" (T(' ) [(a)2 (a'2 Y'(x)ctV(y)) + a, (a) 2 (a'2 Y'(x)(1V(y)V(z))+-1a2, (ay 0.-y(x)(y) ,r2(z))1 (A-52)

-(a) 3 (H(z))(onAx)(13 '(y))+ HO

To second order,

(Ce2}AX)C13'000Z)Y 
2 , 2)  

= -are
cto(T(z)) (2.2)

-
1
a2ca2,,(z)(frY'(x)(11/(y))	 +a2Gcs eaG (T `" )) C, (x,u)(Y'(x)VF,G" .°) (u,y))KG (u)n(u)dF 

(A-53)

A.4.8 (Y'(x)Y'(y)c1V(x)H'(z))

Multiplying (A-11) in terms of z by Y(x)Y(y)V(x) and taking conditional mean yields

(a) 3 (0x)11/(y)V(x)11'(z))

= ea" (T ` z)) [(a)2 (//4(x)Y'(y)V(x))+ a, (a)2 (17'(x)11/(Y),V(x)V(z))+ a, (a)2 (Ii (z))(13 / 11x)Y'(y)(1)'(x))

-(a)(a'Y'(x)Y'(y)(1)'(x))+ 	 (a)2 (Y'(x)ny)(13 '(x)V2 (z))

2
	 (a) 2 ('(z)) (1+ aG (T(z)))(13Y'(x)Y /(y)(13'(x))- a, (a)(11(z))(aVY /(x)Y'(y)(13 '(x))

+ a, (a)2 (1+ a, ( 111 (z)))([3'Y'(x)Y'(y)(1)'(x) Ir(z)) - a, (a)(aT i(x)Y'(y) (13 '(x)V(z))

+ (a'2 1/ /(x)(13'(x)) +	 (a)2 (1+ 3a, ( 111(z)) + a 	)(fY2 1/x)ny)(13'(x)V(z))

ac (a)(1 + OEG ( tP(z)))(41'11x)ny)V(x) Ir(z))+ aG (d2 Y'(x)Y'(y)(1) /(x) tr(z))

+ a 	(1+1.a, ( 1.11(z)) T'Y'(x)ny)(13/(x)V2 (z))	 (a) (a'Y'(x)Y '(y)1)'(x)"2 (z))

a 	(4+ 5a6 	(z)) + a 	)(13'2 Y'(x)0y)(13'(x)11 '2 (z))

(a)(1+ aG (T(z)))(43 / 17/(x)Y'(y)(1)'(x)V2 (z))+I-a (a)(a' 2 17 '(x)11 '(y)(1) '(x) tr2 (z))]

	

- (a)3 (H (z))(nx)Y'(y)(1)'(x)) + HO	 (A-54)

Evaluating all terms in second order gives the following approximations,
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(Y'(x)Y '(y)V(x)H /(z))(2.0) = e`; " (4'''' ) [-lac a2T (z)(nx))1y) (13 '(x)) (2.°)

2 '	 (A-55)

+(y'(x)y'(y).43'(x)T'(z)) (2°) +-2-1 a, (Y'(x)ny)V(x)V2 (Z)Y 2 ]

(0	 (1x)Y'(y) 1/(x)H'(z))(2.2)

	e u`' (‘P (z))  [	 1	 2	 2 )
(2.2)

2 
aG(3,p (Z)(Y (x)Y (y)c13 (x)

	1 	 /	 3
	- 	 a2, (111(z))

2	 1
-1+ -a„ ( 111(z))	 (' 1 (z)) +3) cs;,, (z))(Y'(x)11/(y)c13 '(x)) (2 °)

+ 12 (4.; (W
T(

z
)) + 3a, ( 115(z)) - 2)0Mx)Y"(y)(13/(x)1 ( 2,2)

+ (a„ ( 11f(z)) - 1)(13'20x)0y)(13'(x))( 
2.2)

12 (- - G 3 '(x)/' '(Y)V(x)V(z)Y 2 °)(11 '(x))1y)c13'(x)V(z)) (2 2) 

1 2
±-

2	
((nx)Y'(y)(1)/(x)tif'

2 (z)v 2.2) 	1 (52 iy ,( x)y ,(y)C1),(x) n (z)y 2 0)

/	 2 fi

+a2, (111 (z)) (13'11 '(x)Y '(y)(12V(x)V(z))( 
2,2)

+-2-1 a, (1+ a, ( 111(z))+ a2, (W(z)) 2 )(13'2 0x)ny)(1)'(x)V(z)) )2 2)

a2„ (6 + 7a„ ( 111 (z)) + a 2, ( 111 (z)) 2 )(13'11x)Y /(y) ,V(x)V2 (z))' 
2,2)

- -2-1 a2„ (1+ a„ ( 111(z)))(13)1x)Y'(y)(1)'(x)V2 (z))( 2 .2)1 (A-56)

where terms in (A-53)-(A-54) are given by

(Y'(x))/'(y)clAx) 115/(z)) )2 0) = -Ci, (x, y)f C9 (z, u)ea' (T (")) (Vu G (°°) (11, z)) KG (U)n(U)dr	 (A-57)
ro

01 ' (x)ny)(13/(x)T' (z)) )2,2)

= -Cy (x, y) f C, (z,u)e a`' (P( " )) [(V;G'"(u,z)+ a, (W(u))(iMu d ° "(u,Z))
	

(A-58)
o

1 	2	 2- Go vac. (11f(u)) 2 + a, (W(u)) -1) (V; G'° '°) (u, z))] KG
2	 '

(11 '(x)ny )cl:V(x) 111 '2 (z )) (2.0) = 0
	

(A-59)

+ a„
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KY'(x)ny)(13'(x)V 2 (z)Y 2 2)

= —Cy (x, y)c4(z) f e aG (T '" )) (W (u)) 	 G' ° 1) (u, z)) K G (u)n(u)dF
r,

(A-60)

(13'Y'(x)Y'(y)431V(x)V(z)) (2,2)

= —Cy (x, y) f C, (z,u)eaG (T `" )) [(3'V i„G`"(u,x)) + a, (W(u))4:5 20 (v 7„G (°°) (u, x))]K G(u)n(u)dF 
(A-61)

r„

((i'Y'(x))7/(y)V(x) 11-1/2 (z)) (2 2)

1	 2
=	 (x, y)(52,1, (z) f e a`7(T ` n)) (a, ( 111(u))-1)(V 1”G` °°) (u,x)) K ,(u)n(u)dF

G

(A-62)

(2
 ,

2)
 = —a2p Cy (x, y) f C, (14 ,Z)e c'G(T(u)) (V d ° °) (11, .X)) K G(u)n(u)dr 	 (A-63)

(13 '2 Y '(X)Y '004f(X)V2 (Z))(22) = 13	 (A-64)

A.5 H'-RELATED TERMS AS BOUNDARY INTEGRALS

The explicit expression for 0', (2-19), includes an integral over the Dirichlet boundary,

clAy) =	 VTz G(z,y)[K:(z) V (c13(z)) + r(z)+g K (z) (c1)(z)) + (a) K:(z) (4)(z))

—(a)RK0 (Z) — s(z))1?,,(z) — RaKo (z))e 3 1 ciS2

+ f(z) G(z,y) dS2

+ f G(z,y)Q'(z) dr
rN

—	 1-1 /(z)K s (z) V ,G(z, y) • n(z) dr

(A-65)
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as a result, (cross-)covariance functions associated with (13' also include a boundary

integral over the Dirichlet boundary. In this section, all terms related to these boundary

integrals are formulated.

A.5.1 (ceclY(y))

Multiplying (A-65) by a' and taking conditional mean yields an explicit expression for

(a'cl)'(y)), but for the moment we only concern the term related to H', the integral over

the Dirichlet boundary,

(a'0'(y)),D = -fro (a'H /(z)vi, G(z, y)K (z)) n(z)dr	 (A-66)

where a'szl) /(y))FD denotes the term related to the Dirichlet boundary in cross-covariance

(a't'(y)). Expressing (A-11) in terms of y, multiplying by a'VT,G(z,y)K, (z) , taking

conditional mean, and ignoring terms that are obviously higher than second order, such as

those containing ce3 or 43'2 , we have

(a) 3 (a'H'(z)VT,G(z, y)K, (z))

= ea`' ( ‘P(x » [(I + 0.5a 2 c52, )(a) 2 (aV T, G(z, y)K, (z))

+LaG (IF (x)) + (1+ 0.5a, (T(x)))aG2 	(a)2 (a'13'V f, G(z, y)K, (z))

-(1+ 0.5a G2	) (a) (a /2 V iz G(z, y)K, (z))]

- (a)3 ( t/ (x)) (aV T G(z, y)1(s (z))

(A-67)

All unknown terms in (A-67) can be evaluated as follows

(aV, G(z, y) (z)r 2) = aG (13'V" G (" ) (z, y)) KG (z)

Ka'Vz G(z, y)K,(z)) (2,2)

	

(A-68)

= a„ [(13'v`, G (2 • 1) (z, y)) + ( 13/ nz)V z̀ G ( ''"(z, y)) + 0.5 0:72y (z)
	

G(°'1)(z, y))] KG (z)
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= aG2 a r23 (V T,	 (z, y)) KG (z)T, G(z, y)K,(z)) (0 ' 2)(OE /2V 

(a /2 v iz G(z, y)K s (z) )(2,2)

= ce,a 2{3 [(V, G (2m) (z, y)) + (Y'(z)V", G" ) (z, y)) + 0.5a2y (z) (V 1z G (° '°) (z, Y))] KG (z)

and

(a'13Vz G(z, y)Ks (z)) (0,2) = ŒG 313 (Vaz G (" ) (z, y)) K G (Z)

(013V Tz G (Z, Y) K (Z)) (2 '2)

= ccG cs /23 [(VTz G (2 •°) (z, y)) + ( nz)V 1z G" ) (z,y)) + 0.5a 2y (z) (v iz G (" ) (z, J))] K G(z)

(A-69)

(A-70)

where terms related to G are determined in Appendix B. Expanding (A-64) in terms of or,

and ay, substituting (A-68)-(A-70) into it, and collecting terms of same order, we find the

integrand of (A-66) to be

(OE'H'(z)Vz G(z, y)K s (z))(0,2)

k	 2 2= e» [ŒG 1.11 (z)) - 1+ 
1 /
— cc G Of(z)) + 1) a, cy, (z)]	 G(")(z, y)K, (z)
2

(a,'H'(z)VG(z, y)K s (z)) (2 '2) = cs2p ec`G (T(z»Loc, (T(z)) -1+ —21 (OEG (tY(z)) + 1)a(z)

*[(V T: G (2 '0) (z, y)) + (17 '(z)VG" ) (z, y)) + 0.5c52y (z)(V T,G (" ) (z, y))]1( G (z)

The integral in (A-66) must be calculated numerically.

A.5.2 (V(x)(13'(y))

Similarly, for covariance function ( Y(x)V(y)), the term related to H' is

(A-71)

(A-72)

(Y /(x)V(y)),D =	 (11x)F-V(z)V T, G(z, y)K (z))n(z)dF	 (A-73)
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and its integrand can be approximated by multiplying (A-11) by Y '(x)V T,G(z, y)K s (z) ,

taking conditional mean, and collect terms of same order,

(Y'(x)I- r(z)V I,G(z, y)K (z)) (")) = 0

,	 ,OEG(T(z))	 \	 1 /	 ,	 \	 \	 2
(Y i(x)I1'(z)V T,G(z, y)Ks (z)) (2 '2 - -

aG 

[a„ (41(z))-1+-Acc, 01 (z))+1)(1„c4(z)1
2	 '

*[(P'Y'(x)Vz G (u) (z, y)) + Cy (x, z) 03'V_ G (" ) (z, y))] KG (z)

(A-74)

A.5.3 (oc'Y'(x)43'(y»

Multiplying (A-65) by a'Y'(x), taking conditional mean, and retaining only the term

related to H', gives

(a'Y'(x)V(y)) FD = -frp (allx)H'(z)Nr:G(z, y)K ,(z))n(z)dF	 (A-75)

Its second order approximation of the integrand is

1(2,2)	 ,	 ,
(a/17/(x)H'(z)V,G(z,y)Ks(z)

)	
(3123eaG (4'(z))[ (DE G ( (z)) — 1+ —	 + 1)acs:,,(z)1

2

*[(11/(x)V,G ("(z,y))+ Cy (x, z) (VT, G (° '°) (z, y))] KG (z)

(A-76)

A.5.4 (Y'(x)Y'(y)(1)'(y))

Multiplying (A-65) by Y'(x)Y'(y), taking conditional mean, and retaining only the term

related to H', gives

(nx)nywcy)),,, =-frp (nx)Y '001-1'(z)V,G(z, y)K,.(z)) n(z)d	 (A-77)

The second order approximation of the integrand can be obtained upon multiplying (A-

11) by nx)ny)V 7z G(z, y)K,(z) , and evaluate it to second order
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(1P(x))1 '(y)H '(z)N7 G(z, Y)K s (z))(2.2)

\	 1
= 

ea,(T(z))

	 [ aG (IP(z)) —1 + —ka„; Ilf(z)) + 1)aG2 cr2p (z)1C (x, y)(f3Vz G ( " ) (z, y))KG (z)
a

G	
2

ct(,( ,y(z)) [
op e 	\ 	 1	 ,	 \ 7 7

	3 +	 (T(z))(a„. ( 1.11 (z)) + 1)— —a, 111 (z))k4aG ('(z)) — 3)w-,Œ(z)]
2 aG 	2 

(A-78)

*Cy (x, y)(V I:G ( ''°) (z, y)) K„ (z)

Again, (A-77) must be integrated numerically.

A.5.5 (OE'Y'(x)Y'(y)(1V(z))

Multiplying (A-65) by onfi(x)1/(y), taking conditional mean, and retaining only the term

related to H', gives

(OE'Y'(x)0y)(1)/(z)) ri, = —frn (aY(x)Y'(y)f-l'(u)V:G(u,z)K,(u))n(u)dr 	 (A-79)

(a'Y'(x)Y /(y)H /(u)VG(u,z)K, (u)
) (2.2)

(A-80)
= cy 12, eac' ('`" )) cy (x, y) [a, (1f(u)) -1+ (a,„ ((u)) +1)a2 a2,„ (u)1(VG" ) (u,z)) K (u)

A.5.6 (a'243/(y))

Multiplying (A-65) by a'2 , taking conditional mean, and retaining only the integral over

the Dirichlet boundary gives

(a'2 V(y)) rD 	rp= —f (OE'2 0z)V, G(z, y) K ,(z)) u(z)dF
	

(A-81)

The corresponding integrand to second order in ao and ay is
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(el- (z)V,G (z, y)K ,(z)) (0,2) = 0

(a-1'2 '(z)V G(z, y)K s (z)) (2,2) = 0
(A-82)

A.5.7 (o(21r(x)(1Y( y»

Multiplying (A-65) by ce2 Y'(x), taking conditional mean, the integral over the Dirichlet

boundary is

(a r'Y'(x)(1:V(y)) rp = -frD (a'2 Y'(x)H'(z)V G(z, y)K (z)) n(z)dF
	

(A-83)

The corresponding integrand to second order in ao and ay is

(a'2 r(x)Ir(z) G(z, y)K, (z)) (2 ' 2) = 0
	

(A-84)

A.5.8 (oW(x)V(y)(13'(z))

Expressing (A-65) in terms of z, multiplying by alfi(x)Y(y), and taking conditional

mean, the integral over the Dirichlet boundary is

(a'Y'(x)Y'(y)eV(z)) 1, =	 (aY(x)Y'(y)H'(u)V;;G(u,z)K, (u)> n(u)dF	 (A-85)

Its integrand to second order in 613 and cs y can be obtained by multiplying (A-11) by

a'Y'(x))1/(y)VG(u,z)1<s (u) , taking conditional mean, and collecting terms of same order

(a' nx)ny)11'(u)V	 z)K (u)) (2,2)

„ (	 ,	 1 /	 ,\= aka° \ 4"» a, (W(u)) - 1+ -	 (W(u)))a 2,(u) Cy (x, y)V I„G (" ) (u,z)1(5 (u)
2

(A-86)
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A.5.9 (ce2r (x)V(y)V(z))

Rewriting (A-65) in terms of z and multiplying it by a'2 1fi(x)Y(y), and taking conditional

mean yield

OE'2 Y'(x)Y/(y)cl3v(z)) = -f (a'2 17/(x)Y'(y)fr(u)Vu G(u,z)K,(u))n(u)dr	 (A-87)
r„

Using (A-11), we have

(a) 3 WY'(xply)11u)V 1u G(u,z)Ku))

,V	 1
e	 u	 a a ( u ) j ( a ) 2 (a'2 11x)ny)V;G(u,z)K,(u))	 (A-88)

-(a) 3 (H(u))(enx)ny)V iu G(u,z)K,(u))

Expanding all terms in powers of csy and 613 results in

(enx)ny)f-f(u)V:G(u,z)K,(u)) ( "" ) =0 	n, m5_ 2	 (A-89)
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APPENDIX B

RECURSIVE EQUATIONS FOR THE AUXILIARY FUNCTION

B.1 INTRODUCTION

From Appendix A we note that solving the first and second conditional moment

equations to second order in ay and ar, requires not only the mean auxiliary

approximations (G(°,o)(x)), (G(° '2)(y, x)), (G (2 '°)(y, x)) and (G(2 ' 2)(y, x)), but also mixed

moments that include combinations of Y'(x), IT and lower-order approximations of the

auxiliary functions, for instance, wifi(z)V,VyTG(1'1)(y,x)). Quantities containing

[derivatives, such as 3,y(z)v,,vy'r	 )(y,x)), can be obtained by formulating their

corresponding terms without derivatives, like ([3'Yl(z)G(1 ' 1)(y,x)), and then taking their

derivatives. In this appendix, we derive recursive equations for all terms related to the

auxiliary function G defined through

{

V y • [Ky)V y G(y, x)]— gae 73 K,(y)V y G(y,x) + 5(x— y) = 0

G(y ,x) = 0

V y G(y, x) • n(y) = 0

Expanding Ks(x), a and G as

x,yE

xe5-2, YE FD

yer,

(B-1)

K(x) = eY(x) = e (Y(x))+r(x)E = KG (X)	 [Y'(x)]" 	(B-2)
n=0	 n!

13 	(13 ) Ya = e =e 	= G

m=0 m!
(B-3)
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-
G(y,x) = E	 (y,x)	 (B-4)

where n and m designates terms including li th power of Gy and Mth power of ao.

Substituting (B-2)-(B-4) into (B-1) yields

ii{V y . [K„(Y)i [Y ' (kY1 )]k V y G ( '" '''' ) (y, x)1
o o 

— gia,Ge3T KG (y)i 
[y(y)1k
	 ( 13) °  v ,,(„,„,_ )

k=0	 k!	 tlo p!	 Yti.	 . P (y, x)

CO CO

EE G ( "'"' ) (y, x) =0
n=0 In=0

co	 0,,

EE[v y Go."0(y,x)1•n(y ) = 0
n=0 m=0   

+ 5(x - y) = 0
(B-5) 

The deterministic solution KG(°)(y,x))	 (o,o) (y,x) can be obtained by solving

V y •[KG (y)V yG (" ) (y, x) 1- gaGe 3T KG (y)V y G (" ) (y,x)+ 5(x - y) = 0

Go.o) ,x) =

V yG" ) (y, x) • n(y) = 0

In general, for n + m ..� 1, we have

vy. [KG (y)±[Y ' (.)0] k 

k=0	 k!	 Y
V G (''''' ) (y, x)

- gaGe 3T K
G

 (y)i {Yi(Y)lk 	G("'"1-P)(y,x) = 0
	 k=0 	 k!	 p=0 p !	Y

G (' ) (y, x) = 0

V y G ( "'"(y, x) • n(y) = 0

x,ye

xeS2, yEF,	 (B-6)

xES2, yEFN

x,yeS2	 (B-7)

yEF,

xEQ, yEFN

(B-7) constitute recursive equations for (G (''')(y,x)). Here we devolop equations for those

approximations that are required to obtain the conditional first and second moment

equations to second order in ay and
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B.2 TERMS RELATED TO 01 '°)(y,x)

Setting n=1 and m=0 in (B-7) yields

V y TIC, (y)(V yG") (y, x)+ Y'(y)V y G (" ) (y,x))1

- glaGe IC, (y) (V y G ( ' ) (y , x)+ Ily)V y G ( '''' ) ( y,x))= 0

G"° (y,  = 0

V y G" ) (y,x)• n(y) = 0

(B-8)

Taking ensemble mean of equation (B-8), and noting that 01/(y)) = 0 while d0 '13) (y,x) is

deterministic, we have

{

V y •[K , (y) V y (G (1.0) (y, x))1- gcc,e KG (y)V y (G (1 •0) (y, x)) = 0

(G (1.°) (y,x)) = 0

V y G (' '') (y, x)) • n(y) = 0

(B-9) has a trivil solution:

(G'°) (y, x)) 0

x,yEQ

xEQ, yEr,
	 (B-9)

xEQ, yEr,,

x,ye 5-2,	 (B-10)

Uniqueness of the solution implies that (B-10) is the solution of (B-9). Multiplying (B-8)

by Y(z) and taking conditional ensemble mean, we get the equations for (Y(z)G(I '°)(y,x))

• [KG (y) (V , (17/(z)Ga.°) (y, x)) + Cy (y, z)V y (G (" ) (y ,x)))1

- goc,e 7, K G (y) (V , (Y'(z)G" ) (y , x)) + Cy (y, z)V , (G(° '°) (y,x)))= 0	 x, y,ze Q	
(B-11)

(Y'(z)G ( ''°) (y,x)) = 0	 x,zE Q, ye I'D

V, (nz)0 1.°) (y,x)) • n(y) =0	 x,z E Q, YE FN

where Cy(x, y) is the conditional auto-covariance of Y between point x and y. Once (B-

11) is solved, the terms (Y(x)G(1 '°)(y,x)) and W(y)G (1 '°)(y,x)) can be derived by setting z



199

= x and z = y, respectively, in (Y'(z)G" )(y,x)), and (11"(y)Vyd i '°)(y,x)) can be evaluated

by taking the derivative of (Y/(z)G")(y,x)) with respect toy, then evaluating it at z =y.

Multiplying (B-8) by r3 /Y(z), taking conditional ensemble mean, and recalling that

we consider and Y' to be uncorrelated, we get the solution for (1:3'Y'(z)G (1 '(y,x))

(f3Y(z)G (1.°) (y,x))=• 0
	

x, y, ze	 (B-12)

B.3 TERMS RELATED TO G(° '1)(y,x)

From (B-7) we have

{

V y •[K G (Y)V yG (° ' I) (y, x)1 - g cx,Ge K G (y)(V y G ("(y,x)+ P'V yG (") (y,x))= 0 x,y E S2

G (° ' 1) (y,x) =0	 xe S2 , yE I-,

V yG (" ) (y,x) • n(y) = 0	 xES2,yer,

(B-13)

Taking ensemble mean of (B-13) and noting that (f3') 0, we get equations for

( G(0,1 ky,x ))

{

V y •[K G (y)V y (G (" ) (y,x))1-- gaGe,r KG (y)V y (G (" ) (y,x))= 0

(0 1) (y,x))= 0

V y (G (") (y,x))•n(y)= 0

which have the solution

G ( ''' ) (y,x)) -= 0

(B-14)

x,yES-2	 (B-15)

To formulate equations for (13'd° ' 1)(y,x)), we multiply (B-13) by 0' and take conditional

ensemble mean,
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v y • [K,(y)V y (13'0' 1) (y, x))1.1

- g ct,e KG 00 (v y (fYG ( '(y,x))+ (4V y (G (" ) (y,x)))= 0

('G (° ' 1) (y,x))= 0

V y (fl ' O' 1) (Y,X))•n(Y)= 0

(B-16)

The term (1317yG (" )(y,x)) can be derived by taking the derivative of (13'd" )(y,x)) with

respect toy, after (B-16) has been solved.

B.4 TERMS RELATED TO 01 '1) (y,x)

Setting n=1 and m=1 in (B-7) gives

V y • [ KG (y)(V yG'' ) (y,x)+ Y'(y)V y G (°.1) (y,x))1-gaGe . KG (y)[V y G (11) (y,x)

+17/(y)V y G (" ) (y, x) + 13'V y G" ) (y,x)+13'ny)V y G (" ) (y,x)] =0	 x,yE Q	 (B-17)
G (13) (y,x) = 0
	

xeS2, yEr i,

V yG (1.1) (y,x)•n(y) =0
	

xEQ, yerN

Taking conditional mean of this equation, using (B-10) and (B-15), and recalling our

assumption that Y'(y) and 13' are uncorrelated leads to

Vy .[KG (Y)Vy (G (1.1) (y, x))]- gaGe; KG (Y)Vy (G'' ) (y, x)) = o

(G(11) (y, x)) = 0

Vy (G(u) (y, x)) • n(y) = 0

X, ye 52

x,yES2,yErD

yEQ, yE

(B-18)   

which has the solution

(G (13) (y,x))=.- 0	 x, y E S2	 (B-19)

Multiplying (B-17) by 13' and taking conditional mean yield
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Vy • [KG (y)V y ('G (1.1) (y, x))]- gaGe; (y)(V ('G ( ' .1) (y, x)) + a(3V, (G0) (y, x))) = 0 x, ye Q

(rrG" ) (y, X)) = 0
	

x, ye 52 ,ye rp (B-20)

V y (WG (1.1) (Y, X)) • n(Y) = 0
	 yE Q, y e FN

where (G") = 0, according to (B-10). Therefore, (B-20) has the solution

(fVG ( " ) (y, X)) 0	 x, y e Q	 (B-21)

Similarly, we have

(r(z)V G ( " ) (y, x)) 0	 x, y,z e Q	 (B-22)

An equation for (13'Y(z)G (1 ' 1)) can be derived upon multiplying (B-17) by fl'Y'(z) and

taking conditional mean,

, V y • [ KG(Y)(Vy (13'11 '(z) G (1 ' 1) (y,x))+ Cy (y,z)V y VG (" ) (y,x)))1

- gaGe K„(y)(V y (fni /(z) G ( ''(y,x))+ Cy (y,z)VG (" ) (y,x))

+c7 /23Cy (y,z)V y G(0) (y,x))= 0	 x, y,z E Q

Vr(z) G (1.1) (y,x))= 0	 x,zeS2 yEr,)

V y (r.M.Z) G ( ''(y,x))• n(y)= 0	 x,ze Q, yE FN

(B-23)

Its related terms such as (13'Y'(z)V yG(1 ' 1)(y, x)) can be obtained numerically by taking the

derivative of (f3'1fi(z)0 1 ' 1)(y, x» with respect toy.

B.5 TERMS RELATED TO G(° '2)(y,x)

Equations for G(° '2)(y, x) can be formulated from (B-7) by setting n=0 and m=2,
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Iv y • [K,(y)V y0'2) (y, x)1

— goc„e KG (y)V y0 .2) (y, x) +13'V y0J) (y, x) + IL2 V y0'°) (y, x)1 = 0	 x, y E Q
(B-24)

G ("(y,x) = 0

V y0 .2) (y,x) • n(y) = 0

X, y E Q, ye F,

x, yc Q, YE FN

Taking ensemble mean of (B-24) leads to

a62
— gct,e K G (y) Vy (G (0 '2) (y, x)) + Vy 03'0' 1) (y, x)) + TVy0 .°) (y, x)

(0'2) (y, x)) =

Vy (G (13.2) (y, x)) • n(y) = 0

=0	 x,yEll

XEQ, Y EFD

xcQ, yErN

(B-25)

Due to the assumption that Y' and p' are uncorrelated, it is easy to see from (B-24) that

(Y(z)G (° '2)(y, x))=0.

B.6 TERMS RELATED TO G (2 '°)(y,x)

Setting n=2 and m=0 in (B-7) gives

y,V y • [KG (y)(V yG (20) (y, x)+ Y /(y)V yG (1 '°) (y, x)+ Y'2 (y)VG (0 ' 0) (Yx))1

+ gaGe 23 10y)[V yG (2 '°) (y, x) + Y'(y)V yG (" ) (y, x)	 17 '2 (y)V0'° (y, x)]= 0 x,y c Q (B-26)

G 2 " (y, 	= 0

V y G (2 ' ) (y,x) • n(y) = 0

Taking conditional mean of (B-26) gives

xcQ, yEr,,

xcQ, ycr,



(32y (Y) 	(V, (G (2.0 ) (y, x)) + (Y'(y)V yG(1.°) (y,x))+  2  Vy G o,o) (y, x)
\-
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/- 

0-2 (Y) 	c
— gace KG (Y) V, (G (2.°) (y, x)) + (Y'(y)G (1.°) (y, x)) +  2  V,G o o) (y, x)

(G(2 •0) (y,x)) = 0

(G(2 '°) (y,x)) • n(y)= 0 

Y E g2 (B-27)

xeg2, yell)

xcg2, yeF,

It is obvious from (B-26) that (13 /G(2 '°)(y, x))=0.

B.7 TERMS RELATED TO G (1 '2) (y, x)

Again, from (B-7) we have

V y •[KG (y)(V y G") (y, x) + Y'(y)V y0'2) (y, x))1

— gaGe 7, KG (y)[V y G (1.2) (y, x)+ (3'V y G (1.1) (y, x) + 0.5rV yG" ) (y,x)

+11/(y)V y G (' .2) (y,x)+ rny)V y G (" ) (y,x)+ 0.5frny)V yG" ) (y,x)] = 0	 x,y E g2	 (B-28)

G (I '2) (y, x) = 0

V .„G (1 '2) (y,x)-n(y) = 0

x,yeg2, yEr,

x,yEg2, yEF,

Taking the conditional mean of (B-28) yields

(G (1 • 2) (y,x)) 0 x , y E	 (B-29)

Multiplying (B-28) by Y/(z) and taking conditional mean yields equations for

ll'(z)G(1 '2)(y, x)):

V y •LK G (Y ) (vy (nZ)G (1'2) (y1 x )) + Cy ( Y3 z)V y (0•2) (y, x)))1

gaGe13- KG 00 [vy (Y '(Z)G (1'2) (y, x)) + (13'Y'(z)v y G (1 '1) (y, x)) + 0.5(7 123 (Y'(z)V yG" ) (y,x))

+Cy (y, z) y (G (0 ' 2) (y, x)) + v y 0'0'1) (y, x)) + 0.5c7 f2,V y G (")) (y, x))1 =0

(Y'(z)G (1 '2) (y, x)) = 0

y 	(z)G (1 '2) (y, x)) • n(y) = 0

x,yE g2

x,yES-2, yEF,

x,yeg2,

(B-30)



B.8 TERMS RELATED TO G(2 '1) (y,x)

From (B-7), the equation for G(2 ' l)(y, x) reads

V y • [KG (y)(V y G (2J) (y, x)+17/(y)V y G ( " ) (y, x)+ 0.5Y'2 (y)V y G (" ) (y, x))]

+ gaG e 73 1{,(y)[V y G (23) (y, x)+ r3V y G (2 •°) (y,x)+0.5Y /(y)V y G (1 " ) (y,x)

+13'Y'(y)V y G (Im (y,x)+0.517 '2 (y)V y G ("(y,x)+0.5f3'

G ( " ) (y, x) = 0

V y G (2.1) (y, x) • n(y)
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Y'2(y)VyG(°'°)(y, x)] = 0 x,y e Q (B-31)

xeQ, yEF,

xeQ, yEr,

Taking conditional mean of (B-30) leads to

, V y • [KG (y)(v y (G (23) (y, x)) + (Y /(y)V y G (" ) (y, x)) + 0.51;3, (y) (V y G (o " ) (y, x)))]

- gaGe 7; KG (y) [v (G (2J) (y, x))+ 0.5 (Y'(y)V yG" ) (y, x))

(G (2 'I) (Y, X)) = 0

V y (G (2.1) (y, x)) • n(y) = 0

(13/ y(y)V y G(It0) (y, x)) 0.5(4 (y) (V y G(0,1)(y, x))] x, y e	 (B-32)

xEQ, yEF D

xE Q, yE

It can be shown that (B-32) has a trivial solution. Equations for ( otG(2,1) ,(y x» can be

obtained upon multiplying (B-31) by 13' and taking conditional mean,

\

V y • [KG (y)(03'V y G (2 • 1) (y,x))+03'ny)V yG (1.1) (y,x))+ (4)1) (r3iV yG(") (y, X))

- ga,e 13 k(y)[(13V yG (2 ' 1) (y, x)) + a i23 (V y G (2.°) (y, x)) + (13Y(y)V yG (1.1) (y,x))

+csr2,(ny)V yG (1.°) (y, x)) + (32Y CY) (13'V yG (" ) (y, x)) + lcs2p cs;,(y)V y G (" ) (y, x)1= O x,yE Q (B-33)
2	 2

(rG (" ) (y,x))= 0
	 xEQ, ye FD

.. (13'V yG (21) (y, x)) • n(y) = 0 	x E Q, YE FN
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B.9 TERMS RELATED TO G(2 '2) (y,x)

Finally, setting n, m=2 in (B-7) and taking conditional mean gives  

Vy • [KG (Y) (V y KG (2 '2) (y,x))+Kny)V y G (12) (y,x))+ 0.5(y)V y (G (0 ' 2) (y,x)))1

- gaGe,F IC,(y)[V y (G (2 ' 2) (y,x))+ (f3V y G (2 ' 1) (y,x))+0.5cYPV y (G (2 0) (y,x))

+(ny)V yG (1 '2) (y,x))+ (f3'ny)V yG ( " ) (y,x))+0.5a /23 17 '(y)V yG (1.°) (y,x))

+0 .5cq, ( y) (V y (0 .2) (y, x)) + V y (3'0 .1) (Y, X)) ± 0.513 20V yG (00) (Y, X))1 = O x,y E g2

g2(G (2 • 2) (y, x)) = 0	 yE , yErD

V y (G (2 ' 2) (y,x))•n(y)= 0	 , y E Q, y E FN  

(B-34)  
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APPENDIX C

DERIVATION OF RECURSIVE MOMENT EQUATIONS

As we have seen from Chapter 3, solving conditional first moment euquations (mean

equations) for the transformed variable and flux, and second moment equations (their

associated (co)variance and cross-covariance) involve some other terms that must be

solved first. In this section, we will derive all terms required in solving the first and

second moment equations.

C.1 (IC(X)Ce(Y)) AND (K'(X)VV(Y))

Expressing the explicit expression for (13', (2-19), in terms of y, multiplying it by Y'(x),

and taking conditional ensemble mean, gives

(y(x )0 , (y))=—L(Y'(x)V:G(z, y )K(z))[V(c1)(z)) + g (a) (0(z))eddf�

_L(y ,(x)vT,G(z, y )) r(z)c1

— g (cc'Y'(x)V G(z, y)K s (z))(t.(z))e, cIS2

gisz ( Y'(x)VTz G(z, Y))((cc)RK0 (z) + (Ks (z)) Rao (z) + RaKo (z))e3 c1S2

— f
rp 

(Y'(x)H'(z)Vz G(z, y)Ks (z)) n(z)dF

where

r(z) = (K:(Z)V (Z))

RK 0(Z) = (z)(10 ' (z))

R(z) = (a / c13 / (z))

ROE„,(z) = (ai IC / (z) V(z))

(C-1)

(C-2)
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The integral over the Neumann boundary in (C-1) has been dropped due to the fact that

both Y and G are independent of perturbations of prescribed influx Q' on this boundary.

The integral over the low domain that contains fluctuation f is also vanished because Y

and G are independent of f. The integrand of the integral over Dirichlet boundary was

evaluated in (A-74) of Appendix A.

As stated in Chapter 4, exact equations are not workable because they are not

closed. Expanding (C-1) in powers of ay and 60 using (3-1) and (3-2), we can obtain

recursive solutions to any order. The second term in the first integral of (C-1), for

example, can be expressed

gL KY'(x)V 7SG(z, y)K:(z))(a)(0(z))e,ds2

-
= gŒ f E (y(x)vT,G(z, y )K:(z))(—)i (13/m)

	(nn (z)) e 3 c1S2
m=0 MI n,n1=0

n

= 8ŒG y E	 .	  \ y'(x)v,c(z,y)K:(z))( 1 •"(00-.0(z))e,a2
„,„,.0,0 j+k-Ffrin	 .1!	 '1

(C-3)

Similarly, expanding all terms in (C-1) and equating terms of same order, we have

C °) (x, y) = -Lcy (x,z) V (G (" ) (z, y)) K ,(z) (0" ) (z)) + ga, (0 (" ) (z))e 3 ]dS2 (C-4)

C 2) (x,y) = (Y'(x)(1)'(y))

= -Lcy (x,z) V, (G (° '' ) (z, y)) K ,(z) [V (0 (" ) (z)) + ga, 03 (" ) (z))eddS2

cy2
- fQ Cy (x,z)V: (G (" ) (z,y)) K G(z) V (0 (OE2) (.0) + ga G (0°.2) (Z)) + 1(0") (z))[	

,

e, d52 (C-5)

g ac	 y (x,z) (PV T,G (" ) (z, y)) + 03' Y (x)V T,G ( ''' ) (z, Y))1K G (z)(0")(z))e3d0

+gfQ (Y'(x) VG (0) (z,Y))KG (z) C2) (z)e 3,152

- f (Y'(x)i-f(z)V,G(z,Y)K s (z)) n(z)dFru
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Here the definitions of terms, such as KG and a02 , can be found in Chapter 4. The terms

related to G have been evaluated in Appendix B. All omitted lower-order terms, such as

(y4",(00,o) , y(.01),(y))0,1), are zero. Approximations of the cross-covariance

function (K'(x)(lcv(y)) can be obtained to second order, using (C-4)-(C-5),

(K:(x)V(y)) (2 '°) = KG (x)(0x)V(y)) (2 "°)

(K:(x)V(y)) (2 ' 2) = KG (x)(0x)V(y)) (2 '2)

	 (C-6)

Equations (C-5) and (C-6) show that (K'(x)(13v(y)) (2 '°) does not include any term related to

the boundary integral over the Dirichlet boundary. This is why the second order

approximation (44) is still valid in Tartakovsky et al [1999], though in their exact

equation, (A9), the integral over Dirichlet boundary has been mistakenly dropped. The

same applies to some other terms, such as KIC(x)V0'(y)).

Taking the derivative of (C-1) with respect to y yields an explicit expression for

(Y(x)VV(y)),

(0x )vv(y)).-L(nx)v vviz G(z, y )K's (z))EV (0(z)) + g (c4(4)(z))ejdS2

L(ox)v yvi,G(z,y)) r(z)d2

—gL(OE'Y'(x)V,VG(z,y)Ks (z))(0(z))e, cif2
	

(C-7)

+gin (17/(x)V yV,G(z,y))((a) R„(z) + (Ks (Z))Racp (Z) R(z))e3c15-2

— frD (Y /(x)f-f(z)V,VG(z,y)K,(z)»(z)dr

Corresponding second order approximations are:

(Y'(x)V1:1)'(y)) (2 "°) = icy(x,z )v y vTz G(0,0)(z, y )KG.(z)(y(0")(z))+ga, (1131 ( 00 ) (z))e 3 )ds2	 (C-8)



(Y'(x)VV(y)) (2 ' 2) = _Lcy(x,z )vvi, (G (0 2) (z, y)) K ,(z)[V (43 (" ) (z)) + g aG (c1) (" ) (z))e,p52

[\

cy2

— $u Cy (r,Z)V .,,V G(") (Z, y)KG (Z)[\7030.2) (z))+g a, (43 (°2) (z))+ —2L-3 (4) (" ) (z)) e, jdS2
)

— g ct,L[cy (x,z)(13'v yv 1,0"(z,y))+Vnx)V yVz G ( u ) (z,y))1KG (z)(43 (° ° ) (z))e,A2

+4.(Y'(x)V yVT,G (" ) (z,Y))KG (z)	 (z)e3dS2

— fro (Y 'Grgr(Z)V,VI:G(z,y)1C,(z))
(2,2)
 n(z)dr

The integrand of the intergal over the Dirichlet boundary can be obtained from (A-74) of

Appendix A by taking the derivative with respect to y. Once (C-8) and (C-9) are solved,

R(2,okx,y).0c(x)vo,00)(2,o) and R (2 '2)(x,y)=4C(x)VV(y)) (2 '2) can be evaluated simply

upon multiplying (C-8) and (C-9) by KG(x). "Residual flux" r(2,0)(x)=R(2,0)(x,x) and

r(2,2)(x)=R (2,2)44 .) can be calculated.

C.2 (a'cliqy)) AND (a'20:13'(y))

Multiplying (2-19) by a' and taking conditional ensemble mean yields an expression for

the cross-covariance function Ruo(x),

RŒ,,(x) = (d(1)'(x)) =	 G(z, x) K:(z))[S7 (43(z))+ g (a)(0(z))e 3 idg2

- ccV, G(z, x)) r(z)c152

- gL (eV', G(z, x) Ks (z))(43(z))e,d51

gL (cc	 G(z, x)) ((a) R (Z) (K (Z))	 (Z) RaKo (z))e,c1S2

- (OE'H'(z)V T,G(z,x)K, (z))n(z)dF

(C-10)

The boundary integral over the Neumann boundary has been dropped because a' is

uncorrelated with Q' and G, and so has the volume integral containing f. Approximations

to second order can be obtained in a manner similar that described earlier,
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(C-9)



210

ko.„2, (x)= _gaG2„ Lv TyG (0,0) ( _, x) 10y) (0" ) (y)>e,d52

— fr (a'11'(y)V I,G(y,x)K s (y))(0,2) n(y)dri, 
(C-11)

k 2) (x) = —aG L(Y /(y)13V,G ( ''' ) (y,x))KG (y) (qI) (" ) (y))+ gCCG (c1) (" ) (y))e3 )c152

_	 (3VlyG(0,1)(y,x)) r(2.0) 00do,

— g acY /23 $0 [(0.5(y)V I,G (" ) (y,x) + (Y /(y)V,G" ) (Y,x)))(43(00) (Y))

+v 7v (G (2,o) (y,x) )(4 (0 ,0) (y) ) + V lv GAO) (y , x)(4)( 2 , 0)(y))] K  (y) e3 c1S2

— gicc .f. (13VG (" ) (y,x))14 ()) (y) e3 c1S2

—

 fro
 (cellAy)V T), G(y,x)K,(Y)) (2,2) n(Y)dr

(C-12)

The integrands of integrals over the Dirichlet boundary are as shown in (A-71) and (A-

72) of Appendix A.

Multiplying (2-19) by a' 2 and taking conditional ensemble mean yields an explicit

expression for a' 2(1:1'(y)),

(d2V(x)) = _LKa'2V7z G(z,x) K:(z))[V (0(z)) + g (a)(0(z))e3 1 dS2

- L(a'2VG(z>x))R(z,z)dS2

+ gL (egTz G(z,x))((a)R„(z) + (K v (z))R„,(z)+ ROE„(z))e 3 c1S2

— f (d2 1-1'(z)V iz G(z,x)Ks (z))n(z)df
D

Its approximations to second order are

( cc,2 	x )( 0,2 ) 0 	
(C-14)

( cc,2 ,(x )( 2 ,2 )

_a (2;0 L[v 7; (G (2,0) (z x )) (y (z )v7: (Z, X))1 K G(z)[y (0(0,0) ( z )) g a G (0(0,0) (z )) e 3 1

+v7z (G (0,0) (z , x )) ag G (-- (2,0)
KG (Z) [V' (40(2.°) (z)) +	 (I)	 (z))eddS2

_ cc(2.3(3132Lv r_	 0(-0,)
(.1	 (z,x)) r (2.°) (z)cg-�

+ niaG3 02 f v r (-0,0 )
5	 a Q , ci	 (z,x))/? (K2: ) (z) e 3c1S2

(C-15)

(C-13)
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where boundary integrals over the Dirichlet boundary in (C-14) and (C-15), as evaluated

in (A-82) of Appendix A, are zero and have been dropped.

C.3 (oc'Y'(X)013'(Y))

Rewriting (2-19) in terms of y, multiplying by oc'Y'(x), and taking conditional ensemble

mean yields

Cay.(x,y) = (a'nx) 0:13.'(y))

=	 (a'Y'(x)v'z G(z , y) K:(z))[V(0(z))+ g (a)(0(z))eddS2

_ f (oc'Y'(x)VG(z,y))r(z)c1S2

- gL(OE' 2 1l /(x) .1/47 1,G(z,y) K s (z)) (0(z))e 3 c1.52

+ g L(a'Y' (x)V,G(z, y)) ((a)R,.(z) + (K v (z)) RŒ4,(z)+ RŒ„(z))e3dg)

-f (

OE'Y'(x)H'(z)V T,G(z,y)K, (z))n(z)dFr I,

(C-16)

Expanding (C-16) and collecting terms of like order gives the following approximation,

= (OEV,(x)(13'(y)) (2.2)

= -aG IC G (x)fa Cy (x,z)(13VT,G (° • 1) (z, y)) K ,(z) [v (00,0) (z)) gaG (- (0,0)
(11 	(z))e,lcif�

- g OE,2; a 12,K,(x)fa (nz)V T,G" ) (z,y))/(G (z)(4) (° '°) (z)) e 3c1S2

- KG (x)frD (a' r(x)11'(z)VT,G(z, y)K r (z))(2.2)n(z)dF

(C-17)

where the integrand of the boundary integral has been evaluated in (A-76).

C.4 (ce2I"(x)(13'(y))

Rewriting (2-19) in terms of y, multiplying by a'2Y(x), and taking conditional ensemble

mean gives
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(0(2 Y '(x) cl)'(y)) = _L(OE'Y'(x)V,G(z,y) K:(z))[V (0(z))+ g (a)(4)(z))e,lciS2

— f(d2 Y'(x)H /(z)V 1z G(z,y)K,(z))n(z)dr
rp

(C-18)

The approximation to second order is

( OE,2y ,(x) 0 ,00 )(2,2)	 2 0.123 L y x, /
C ( ZKVizG(")(Z,3))KG(Z)[v(4)(0,0)(z)) 

gaG ( (0,0)
CP	 (z))e,1 ciS2 (C-19)

The integral over the Dirichlet boundary has been dropped, because, according to (A-84),

the integrand (dY(x)H'(z)v_G(z,y)K s (z)) is higher than second order.

C.5 (06:1)/(x)V(y)) AND (o(201'(x)(1Y(y))

When there is more than one perturbation clo' appearing in one term, it is more convenient

to use the implicit equations for c1', i.e., (2-17). Rewriting it in terms of y, multiplying by

ceV(x), and taking conditional mean yields

V, • [(K, (y))V, (a'10 /(x)(1V(y))+ (a /K:(y)(1) /(x)V4V(y))+ (oCK:(y)(13'(x))V(c13(y))+ R(x)r(y)

+ g ((a)(K,(y))(c6:1V(x)V(y))+ (a)(ce 2 K:(y)(13 /(x)V(y))+ (Ks (y))(ec13/(x)(1V(y))

+(ce2 1C(Y) (1)/(x) (1) '(3))+ (K3 (Y))(4) (Y))(cC2V(x))+ (OE'2 K:(Y) (1Ax))( 4:1) (Y))

+ (a)(cees (y)V(x))(0(y))— ((a)R„(y)+ (K,(y))RŒ,(y)+ Ra„(y))RŒ,(x)) e 3 ]

+ (01:1 /(x) (y)) = 0

(ceV(x)(1) /(y))= (oC4:1) /(x)H /(y))

n(z) • [*] = (ceclAx)V(y))

(C-20)
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where (a'43/(x)fr(y)) has been solved in (A-36) and (A-37) of Appendix A. soc'.:13'(x)f (y»

and a'sz1V(x)V(y)) can be obtained by multiplying (2-19), the explicit equation for (13'(x),

by af(y) and aV(y), respectively, and taking their conditional means,

(a' (121' (x) f (y)) = (f '(y) f i(u))(a /G(u, x))(152

(OE'V(x)V(y))= f (V(y)Q /(u))(oc'G(u,x))dr
(C-21)

All other terms have been dropped from (C-21) due to the assumption that f and Q are

uncorrelated with IC, and a, and thus with G. All other terms in (C-20) are solved

accordingly. Recursive approximations of (C-20) to second order are

. [KG (Y) V y (C621:1' (X) (1)/ (y)) (°'2) gocG IC, (y) Ka'0 /(x)(13'(y)) (° "2) e,1

+ (oce• 1(x )f ,( y ) )(0 ,2) = 0

@''(x )')Y°'2 = (Œ''(x )11 ,0
)

)(0,2)

n(z) • [*] = ( 06:11(x)V(y)r'2)

(C-22)

V •[KG(Y) V (a/(1) /(x)(13 /(y))(2,2) (avs(y)(1),(x)va),00)(2,2)

+ (OE'IC:(y)(1) /(x)) (2,2) V (4:13 (" ) (y)) + R (2m (y,y)k 2) (x)

+ g (ot,KG (y)(0C4V(xW(y)) (2 ' 2) + K G (y)(a'2 V(x)(11:V(y)) (2. 2)

+ KG (y)(013 (" ) (y))(d20'(x)) (2,2) + ( ce2 K:(y)(1V(x)) (2.2) (0 (" ) (y))

+ ŒG (avs(y)0 ,(x) )(2,2)(0 0,0)00)_ ocGc (K2: (y) ko4;2) (x) » 3 1
(C-23)

(aw( x )f ,( y ) ) (2, 2) =

(ce(1) /(x)0V)) (2 ' 2) = (c6c13 /(x)H'(y)) (2 ' 2)

n(z) • [*] = (0V(x)V(y)) (2.2)

where
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(013 /(x)F(y)) (° ' 2) = a6 .(C1 (y,u)(rG(0 , ) (u,x))dg-�,
Q

(dcw(x)0y) ( 0,2) _	
f CQ(Y, 14 )(13'G(") (U,X))dr
r,

(061) ,(x)f ,(y))
(2,2) = cc„fCf (y,u)(13'G (2 ' 1) (u,x))dS2

Q

(dol) /(x)V(y)) (2 ' 2) = a, f CQ (y,u)(13G (2.1) (u,x))dr
,

(C-24)

(C-25)

Here Cf and CQ are covariance functions off and Q, respectively. For (oc'20 /(x)(13'(y)), the

exact equations are 

-[(K.(y)) V , (ce 2 c13 /(x)V(y))+ (oC 2 K:(y)(13'(x)VeLV(y))+ (ce 2 K:(y)V(x))V (420(y))

+ R(y , y)(OE' 2 (x))

+ g ((a) (I( s (y))(a /20' (x)(1) /(3)) + (a) (a' 2 e,(y)(13V(x))(43(y))

- ((a )RK0 (Y) + (K s (y))1?(y) + RaK„(y)) (a' 20'(x))) ed

+ (a'2 V(x)f /(y)) = 0	 x, y e S2

(oC2 c1V(x)(1:/(y)) = (cC 2 V(x)li'(y))	 xeS2,ye I',

n(z) • H = (a' 2 (1) /(x)V(y))	 xe52,yerN  

(C-26)

where

(Ce2V(X).RY)) = f(f /(Y),0 10)(d2G(U , X))A2
n

(d2V(X)0Y»= f (0Y)0 11 ))(d2 G(U,X))dr
r,

(C-27)

Recursive approximations to second order are

V y • [K6 (y) V , (a'20 /(x)(120'(y))(0,2) +gOE 6 K6 (y)(eV(x) (1) '(y)) (0,2) e 3 ]

+ (a,20,(x)f,(y))(0,2) 0

(OE' 2 4f(x)(1) /(y)r .2) = (oe'2 0 /(x)HV)r )

n(z) • H = (a' 2 4:13'(x)Q'(y)) (0, 2)

(C-28)
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• V •[1‹ ,(y) V, (a'20 /(x)V(y)) (22) + (a/21(:(y)(1)/(x)Vel,cy))(22) + (
0t,2K(y) .4) ,(x) )(22) 	 v (4)(0 ,0)(y) )

+g (a,(a0 /(x)V(y)) (22)k(y)	 + a, (eK's (y)(1Ax)) (2 2) (CD (M) (Y)))e 3 1

+ (ce20/(x)f,(y))(2 2) = 0

(a/20 ,(xwo, ) )(2,2) (a,20 ,( x)H ,(y) )(2,2)

n(z) • HI (OE'20 /(x)V(y)) (2.2)

(C-29)

where

( Œ.20 ,(x)f ,(y) )( 0,2 )

( cc,20 ,(x)Q ,(y) yo ,2 )

= a2,a2/3 1Cf (y,u)G(m) (u,x))c/S2

= (12,Œ213 CQ (y,u)(G" ) (u,x))dF
r,

(ccr2V(x)f '(y)) (2,2) = a2,a123 SCf (Y,U)(G (2 ' 0) (11,X))dg2

(CE'2 	V(1:V (X ' (Y # 2 '2) = a2GCTI23 CQ (y, u) (G (2 (u , x)) dF
r,

(C-30)

(C-31)

oy20 ,(x)my)) 03,2) and 01,20,(x)/00)(2,2) in (C-28) and (C-29) are solved in (A-39) and

(A-40).

C.6 (Y(x)Y(y)cV(z))

Multiplying (2-19) by Y'(x)Y'(y) and taking conditional mean gives

(11x)ny)V(z))

= -42 (nx)ny)V„G(u,z)(K s (u))(a' (cI)(u))- Ra4,(u))e,) cin

- f
rD
 (nx)r(y)fr(u)V 7„G(u,z)K s (u)) n(u) dr

(C-32)

+ HO
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where HO denotes summation of all terms that are obviously higher than second order.

The corresponding approximation to second order is

(Y /(x)n.Y) (1:qz)) (2 ' 2)

= -gCy (x,y)L[aGV't VG( 0 ' 1 )(t,z))(4)(0.0)(1.))_vf (0,0 )(T,z) ) /e . 2)
(T) K c (')e 3 dS2

-fr
1
1 (r(x)ny)H'("c)V,G(T,z)K 1 (T))(2.2) n(t) dF

(C-33)

where the boundary integral is given in (A-77) and (A-78) of Appendix A.

C.7 Kifi(x)(1A0V(z))

Rewriting (2-17) in terms of z, multiplying by Y'(x)clAy), and taking conditional gives

the following equations for (Y/(x)clY(y)V(z)),

[(K s (z)) V , (Y'(x)olAy)(13 '(z))+ (Y /(x)K(z)V(y)VV(z))+ (Y'(x)K(z)V(Y))V (0 (z))

+ R(z,z)Cy,(x, y)

+ g ((a)(K ) (z))(nx)(lAy)(13'(z))+ (a)(Y /(x)1(5 (z)(1) /(y)(1)'(z))+<K s (z))(OE'Y'(x)(1) /(y)(13/(z))

+ (IYY /(x)K:(z)clAy) ,V(z))+ (K (z»(.43 (z))(a'Y'(x)(13/(y))+ (cOes (z)Y'(x)(1V(y))(43 (z))

+ (a)(11/(x)K:(z)V(y))(0(z)) - ((a) R (z) (K (z)) ROE,(z) + ROEK0 (Z))Cm (x, y))

+ (Y /(x) (1AY) f /(Z)) = 0

(nx)(1) 1(y)(11 '(z)) = (Y'(x)(1V(y)11 /(z))

n(z) • H = (Y/(x)(1v(y)V(z))

x,y, ze S2

x,yES2., ze FD

x,yeQ, ze FN

(C-34)

where (Ifi(x)clY(y)f(z)) and (Y(x)clAy)Q'(z)) are derived from (2-19) upon multiplying by

Y(x)f(z) and Y'(x)V(z), respectively, and taking their conditional means,

(rcort./(y)f'(z))=f(r(z)f(u))(11x)G(u,y))dS2

(nx)or(y)V(z))= f (V(z)V(u))(nx)G(u,y))dr
(C-35)
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V, • [K,(z)V, KY '(x) (13 '(Y) (131 '(Z)) (2,O) + (nx)K:(z)(13 '(y)VV(Z)) (2 '°)

+ (Y(x)K:(z)(1) /(y))(2M) V (4)(") (Z))

+ g (OE G KG (Z)(nx)V(y)(1)'(z))(2) + cc6 (Y'(x)K;(z)(1) /(y)43/(z)) (2M)

±CCG (nX)K:(ZW(Y)) (2,O) (4 )(") (Z)))e 3 1

17'(X) C1V(Y)f '(z))(2M) = 0	 x,y, ze Q

(Y'(x)(1) /(y)V(z)) (2.°) = (Y'(x)(1:V(y)H /(z)) (2m) 	x,ye Q, ze r,
n(z) • [* 1= ( 11/(x) (13/000z)) (2 '°)

	
x,ye	 zerN

(C-36)

•[ IC(z)V z (17 '(x)clY (y)V(z)) (2 2) + OAX)K:(Z) (1)/(Y)VCI:V(Z)) (2 2)

Kr(X)K(Z)'t '(Y)) (2 2) V (C13(°°) (z))

+ g (a,K,(z)(Y'(x)(1)'(y)c13 /(z)) (2 2) CCG KnX)/(:(Z) (1AY)4)/(Z)) (2 2)

K G (z) <OCC '  Y (X)C13' ) (1)' (Z)) (2 2) + (C(OX)K:(ZACV(y)V(Z)) (2 ' 2)

KG (z) (CD (° 13) (Z)) (Ce n X )C1)/(Y)) (2 2) + (a'K's (z)Y'(x)(la'(y)) (2 2) (c13( 0 ) (z))

+a, (nx)K;(z)(13'(y)) (2 2) (0 ° NZ)) K ,(z) 4,2) (z)d °) (x , y))e 3 1

(C-37)

+ (nx )clAY )f /(z ) )(2 '2 ) = 0	 x,y, zE Q

01 '(x) (13 '(Y) (13 '(z))(2,2) = 07 '(x)clf(Y)H'(z)) (2,2)
	

x,ye Q, ze

n(z)•[*1= (Y /(x) (1) '(Y)Q'(z)) (2,2)

	
x,yE Q, ze r,

where

(nx) (13 '(Y).f /(z))(2 '°)

(nx)(V(Y)Q'(z)) (2.0)

( 11x)(13 '(y)f"(z ))(2.2 )

(11 "(x)(11(y)Q"(z)) (2 '2)

= f C1 (z, u)(Y'(x)G (1 •°) (u,y))c/Q

= f CQ (Z,11)(Y /(X)G(U,y))dr

= f C f (z,u)(11/(x)G (1.2) (u, y))dS2

= f C Q (z,u)(nx)G" ) (u, y))clr
r,

(C-38)

(C-39)
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Once approximations for (1fi(x)(13'(y)(1)/(z)) have been evaluated by solving (C-36) and

(C-37), approximations for (1fi(x)(1)'(y)VV(z)) can be obtained by taking their

corresponding derivatives.

C.8 (OE'Y'(x)r(y)(1Az))

Equation for Ka'17'(x)1fi(y)(13'(z)) can be formulated upon rewriting (2-19) in terms of z,

multiplying by cc/Y(x)Y(y), and taking conditional mean,

(a'Y'(x)Y /(y)(V(z)) = —gL(a /2 Y'(x)Y i(y)V Tu G(u,z)K,(u))(4)(u))e 3c1f�

—frD 	(x)Y' (y)H / (u)V Tu G(u,z)K ,(u))n(z)dF + HO

Expanding (C -40) in powers of 60 and ay gives an approximation to second order

( cc , y , (x)y , (yw (z) )(2,2) _ getcyizlc,y (x, y )f (vuT (u, z) )KG (u )(0 (0 ' 0) (11))e3c1S2

—fr 	Y' (x)Y/ (y)H / (u)VG(u,z)K s (u)) (2,2) n(z)dFp 

(C-40)

(C-41)

where the integrand of the boundary integral is given in (A-86) of Appendix A.

C.9 (a'r(x)(lAy)(1Az))

Rewriting (2-17) in terms of z, multiplying by a'lfi(x)V(y), and taking conditional mean

gives
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, • [(K (z)) V. (cc' Y (x)(13 ' (y)(1:1 ' (z)) + (a' Y ' (x) K:(z)(1) / (Y)V (z))

+ (cc'Y (x)K:(z)(13/ (Y)) V (43 (z))+ R(z,z)CŒm (x, y)

+ g ((a) (K (Z»(CC /nX)43 '(y) 1V(Z))+ (a) (a'Y'(x)K:(z)43/(y)0 /(z))

+ (K s (z))(a /2 Y /(x)(13/(y)(1:V(z))+ (enx).C.(z)(1) /(y)(1)'(z))

+ (K s (z))(41)(z))(enx)(13 '(y))+ (a /2 K:(z)nx) (13/(Y))(43 (z ))

+ (a)(a'r(x)K:(z)43/(y)X0(z))

— ((a) Rico (Z) (1‘ s (z)) Ra.(z) + RaK.(z))C ay, (x , y)) e 3 1

+ (Ca i(x)V(Y),r(Z))= 0

(a'Y'(x) ,V(y)(13 '(z)) = (aT i(x) (1)/(y)Ir(z))

n(z) • H = (a'Y'(x)V(y)V(z))

x,y, z e Q

x, y e Q, z E r„

x, y E Q, zE FN

(C-42)  

where (cc' Y' (x)V (y)Ir (x)) is given by (A-50), and

(a'Y '(x)cIV( Y) f '(z)) = f(f'(z)nu))(dr(x)c(u, y ))ds2

(CenX)V(Y)0Z)) = f (Q /(Z)Oli))(Cer(X)G(U,Y))dr
	 (C-43)

FN

Expanding (C-42) and collecting terms of same order yields recursive equations for

(a'Y'(x)(13'(y)(13'(z)),

V, •L KG (z)V z (a'Y'(x)V(y)(D'(z)) (2,2) + (aY(x)K:(z)clAY)Vc13/(z)) (2, 2)

+ (a'r(x)K(z)(13'(y)) (2,2) V 0)(1" ) (z))

+ g (aG K„ (z)(Œ'nX)cr(y)crqZ)) (2,2) + a, (a'r(x)I(:(z)V(Y)V(z)) (22)

+ KG (z) (d2r(x)V(y)(1Az))(2,2) Ka'2/1AX)K:(Z)ClAy)(D'(Z))(22)

KG (z) (CD") (z))(a'2 17/(x)(1)'(y)) (2.2) + (d2 K(z)r(x)(13/(y))(2 ' 2) (4)(° '°) (z))

+a, (a'r(x)K:(z)(1;/(y)) (22) (0" ) (z)))e,1

(OE'Y'(x) (13V0Onz)) (22) =0 	x,y, z E Q

(dr(x)(13 '(y)(13/(z)) (22) = (a /nx) ,V(y) 10z))( 2,2) 	x,yeQ, ze

n(z) . [*1= (cenx)(13'00Q/(z))(2.2)	X, E Q, ZE

(C-44)  

where (celfi(x)(13'(y)l-r(z)) (2 '2) is given by (A-51), and
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(ceox)o'cy)f '(z))( 2.2 ) =f Cf (Z1U) (CC ' Y i(X) G (I 'I) O. 00) d

(OE 'OX)V(Y)0Z)) (2.2) = f CQ (Z,U)(ca /(x)G (I ' l) (u,y))dF
	 (C-45)

All other terms are can be found in this appendix.

(Yvyrwev(x)(v (z))

Rewriting (2-17) in terms of z, multiplying by 1"(x)Y(y)(1) / (x), and taking conditional

mean gives equations for (1"(x)1/(z)V(x)clAz)),

•[(1‘ ,(z))V , (17/(x)Y i(y)43 '(x)(1) /(Z)) +

+ g ((a)(K,(z))(Y'(x)Y'(y)V(x)(1) /(z))+ (Ks (z))(a'Y'(x)Y'(y)(tv(x)(IV(z))

+ (K,(z))(a'Y'(x)Y'(y)V(x))(4)(z))-  (K, (z))(Y /(x)11y) 413/(x))/?(z)) e]

+ (0x)Y i(y)(1:/(x) f (z)) = 0	 x,y, ze Q

(Y /(x))/ /(y)V(x) ,:tqz))= (Y /(x)Y i(y)V(x)Ir(z))	 x,ye Q, ze I'D

n(z)•H= (Y'(x)Y i(y) (15/(x)V(z))	 x,yeQ, ze I-,

(C-46)

where terms that are higher than second order in either ay or ao, such as

(Y(x)Y/(y)K;(z)cl)'(y)413'(z)) that is at least third order in ay, have been dropped, and

(0x)oyw(x),r(z))=f(f'(z)f'(u))(Y'(x)Y'(y)G(u,x))c/S -2,

01AX)0y)(TAXV(Z)) = f (Q'(z)ou))(y(x)0y)G(ti,x))dr
	 (C-47)

Approximations of (C-46) to second order are

z •[K[KG (z)v., ( 17 '(x)0y)(1V(x)(13'(z)) (2,0)"S2'	 + ga1(G ,(Z)(0x)0Y) (13V(x) 113 '(z)) (2m) e 3 ]

+01/(x)11/(y)(1) /(x)f(z)>(2,2) =0 	x,y, z E Q

(17/(x)11/(y)0 /(x)(13 1(z))(2.°) = (17/(x)11y)(13/(x)ir(z)) (2 '0) 	.r,yeQ, ze F L,

n(z)-H = (11/(x)0y)(131(x)V(z)) (2 •°) 	x,y E Q, z E FN

(C-48)
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.'V' , •[K ,(z)V z (nx)Y /(y)(1)'(x)cl)'(z)) (2, 2)

+g (cc G KG (z) (nx)ny)(13/(x)V(z)) (2 ' 2) + KG (z) (OE'Y'(x)ny)(13'(x)) (2,2) ( (" ) (z)))e,1

where

07 , (x)ny)0 ,(x )f ,(z) )( 2,0) cy (x,y) f cf (z,u ) (G(0,0)( u,x ))dQ

(nx)r(y)(10'(x)Q'(z)) (2,°) = Cy (x ,y) f CQ (z,u)(G (" ) (u,x))c/F
	 (C-50)

PN

(nx)Y'00 61) /(x)f '(z)) (2 '2) = Cy (x, y)	 (z,u)(0.2)(u,x))c/f�

(Y'(x)ny)(1V(x)V(z)) (2 '2) = Cy (x, y) f CQ (z,u)(G ('' ) (u,x))dF
	 (C-51)

(nX)Y'(y)CIV(X)H'(Z)) (2.°) ancl(Y'(x)Y'(y)ay(x)Fi'(z)) (2 '2) in (C-48) and (C-49) are given by in

(A-55) and (A-56) of Appendix A, respectively.

C.11 (ce2r(x)r(y)(13'(z))

Rewriting (2-19) in terms of z, multiplying by a'2 17/(x)1fi(y), taking conditional mean, and

recalling our assumption that both f and Q' are uncorrelated with ot', Ks ', and thus G,

yields an explicit equation for KeY'(x)r(y)(13 '(z)),

+(Y /(x)ny) (13 '(x)f"(z)) (2 '2) =0

(r(x)ny)(1V(x)c1V(z)) (2 '2) = (r(x)ny)01) /(x)H /(z)) (2,2)

n(z)•H= (nx)ny)(1:',v(x)V(z)) (2.2)

x,y, zes2 (C-49)

X, ye Q, ze FD

x,ye Q, zE F N

(a'2 Y'(x)Y'(y)(13V(z))=-frp (a'2nx)r(y)H /(u)VIu G(u,z)K, (u))n(z)dr + HO	 (C-52)
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From (A-89) of Appendix A we know that the integrand in the above equation is higher

than second order, therefore,

(ce2 Y '(x)nyw(z )) (2 '2 ) = 0 (C-53)

C.12 (0(2 1fi(x)clAy)V(z))

Rewriting (2-17) in terms of z, multiplying by cc'2 Y'(x)(13'(y), taking conditional mean,

gives

•[(I C ,(z)) V ,(ci2 nx)(1:V(y)(1V(z)) + g ((a) (K s (z))(ce2nx)(1) /(y)(1)'(z))e

+ (a' 2 Y"(x)(1) /(y)f (z)) = 0

( 1Y2 Y /(x) (13/(Y) (rqz))= (ce2 Y /(x)V(Y) 1/ /(z))

n(z)•[*] =(a'2 11/(x)(1) /(y)V(z))

zE
(C-55)

x,yeQ, zer,

x,yE 52, z G FN

where

(ce2 Y /(x)(1V(Y)f z)) = f(f /(z),r(u))(er(x)G(u,y))c/f2
S2

(C1(2 nX)V(y)V(Z» = f (V(z)V(u))(enx)G(u,y))dr
r,

Expanding (C-54) yields

•L V , (aY'(x)V(y)0'(z)) (2 ' 2) + gOE G KG (z)(a'Y(x)(13'(y)(tv(z)) (2.2) edK ,(z) 

(C-55)

(ce 2 y ,(x)(y)f ,(z) )( 2 . 2 )

(a/2 11/(x)(1)'(y)(13 /(z))(2,2) = (en(1x)(y)H'(z)) (2,2)

n(z)-H= (ce2Y'(x)V(y)V(z)) (2,2)

x,y, ze
(C-56)

x,yE Q , z r,

x,yŒ Q, zE FN

where
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(a'20x)(1)'(Y)f(z)) (2 ' 2) = ct 2G cs [23 1C1 (z,u)(Y'(x)G ( ''°) (u,y))A2
5-2

(d2 Y'(x)(12V(y)V(z)) (2.2) = aa20 f CQ (z,u)(0x)G" ) (u,y))dF
r,

(C-57)

and Ka"y/(x)V(y)(z))
(2,2) has been evaluated in (A-53).
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(X (1 1),2(1) )
(2)	 (2).

(X 1 ' X 2 )

(4	 (4)(x 1 , x 2 )
(3)	 (3)(x 1 ,x 2 )X 2

(0,0) (1,0)
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APPENDIX D

DERIVATION OF FINITE ELEMENT SOLUTIONS FOR

NONLOCAL CONDITIONAL MOMENT EQUATIONS

D.1 BASIC RELATIONS

Consider a rectangular element parallel to the Cartesian coordinates (x 1 , x 2) with corner

nodes numbered counterclockwise as shown in Figure D.1.

Figure D.1. Definitions of an element, local numbering and the element transformation.

Defining local coordinates

CC =
(1)	 (1)

-	 = X2 - X2

1

(D-1)

where w 1 and w2 are sides of the element in the x1 and x2 directions, respectively (see Fig

D.1), and weight functions



= (1 — a)(1 — p)
043

= c0 1

= (1 — et)f3
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(D-2)

When formulating finite element equations, we will encounter integrals (either volume or

boundary) that contain these weight functions. Table D.1 lists integrals over the element

that have the form

/ =	 (1 - cc)m (1 - f3)n celYda.d13
	

(D-3)
0

Based on Table D.1, element matrices that are required in formulating finite element

equations in this study can be evaluated (Table D.2).

D.2 NUMERICAL SOLUTIONS OF AUXILIARY FUNCTIONS

According to Appendix B, we need to solve for nine quantities related to various orders

of auxiliary functions or combinations of auxiliary functions, 13', and Y. In this section,

numerical expressions for these quantities are derived.

Take (G@ '°)) as an example. Consider the Galerkin orthogonalization to the zero

order auxiliary function, (B-6),

f[ V, [KG ( y)V,G (" ) (y, x)] - gaGe' KG (y)V y G (m) (y, x)+ 8(x - y)]„(y)c1S2 = 0 x E S2 (D -4)
51

where ft(y) is the n-th weight function, n=1,2, ...NN is a global node number, and NN is

the total number of nodes in the flow domain.



Table D.1. Table of Integrals
m+n+s+t=k

mns t I km n s t I

(.1
ii

2 0 0 0

1/3

.1-
it

4 0 0 0

1/50 2 0 0 0 4 0 0
0 0 2 0 0 0 4 0
0 0 0 2 0 0 0 4
1 1 0 0

1/4

3 1 0 0

01/8

1 0 0 1
0

3 0 0
0 1 1 3 0 0 1
0 0 1 1 0 3 1
1 0 1 0

1
1/6

1 0 0
0 1 0 0 1 3 0

co
ii

3 0 0 0

1/4

0 0 3 1
0 3 0 0

0
2 2 0

1/90 0 3 0 0 2 2
20 0 0 3 2 0 0

2 1 0 0

1/6

0 2 2 0
2 0 0 1 2 1 0 1

01/181 2 0 0 1 2 1
0 2 1 0

0
1 0 1

0 1 2 0 1 2 1
0 0 2 1 3 0 1 0

11/201 0 0 2 0 3 0
00 0 1 2 1 0 3

2 0 1 0 0 1 0 3
0 2 0 1 2 0 1 1

1/2411/24

1 0 2 0 0 2 1 1

0 1 0 2 1 0 2
1 1 1 0 0 1 1
1 1 0 1 1 1 2 0
1 0 1 1 1 1 0 2
0 1 1 1 2 0 2 01/30

20 2 0
1 1 1 11/36
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_
a —a b —b - d e —e —d

F=
a —b b f —f —e 1+_.*

_

c —c

c _
f e

d

36

84 ) +44 ) +24 ) + 4K 	 —24 ) +24 ) + K23) - K 1

—41C;21) — 8 K22) —4K — 2 K;24)

—44 ) — 2 K;',.2_ ) — 4K —84' )

S2 	 (i)	 (2)	 (3)	 (4)	 S2	 (I)	 (2)	 (3)(4) )	 S2 /	 (I)	 (2	 (3)	 \a=-0K„ +3K„ +K„ +K„),b=--(K„ +K„ +K„ + K„ ,c --AK„ +K ) +3K„ +3K (4)„ )
24	 24	 24

S	 „,	 S,	 „,	 S,
d =—

,

(3K;' +K;;- + fq2- +3K24) ),e=---K;'+K; ) + K23) + K24) ), f	 +3K22) +3K 23) KV)
24	 24	 24

—44 )

4 1

24 )

— 5 4 ) — 4 K2')

+2K22) -24)

+44 ) + 8K

- 5 IC;24)

-K;24)

+44 )

—2 K 	 — K1+ K; + 24 )

54) +442. ) +5KT +44 )

Kg) — K 	 - 2K 	 +24 )
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Table D.2. Element Matrices

Integrands Element Matrix

n A	 (1,1,1, Or- w
1
4w2

ni-ri

w w
D —	 I 	2

-4	 2	 1	 2

2	 4	 2	 I

1	 2	 4	 2

2	 1	 2	 4_	 _

36

aniaxl,

antax2

w,	 w
c, ==(-1, 1, 1,_1 ) , 	C, = ( -1, -1, 1, 0 7-

8	 8

gnV„,

b, =

B, =

—2	 2	 I	 —I -

—2	 2	 1	 —1

-1	 1	 2	 —2

—1	 1	 2	 —2_

-1:11 K„b, + -14 	Kub2
12	 12

b2 =

B2

--2	 —1	 1	 2 -

—1	 —2	 2	 1

—1	 —2	 2	 1

—2	 —1	 1	 2

= l't	K2 , b, + 14 K22b2
12	 12

B=(B,, B2 )T

_
V il * V ili

S
A=--

6

—2	 —1	 1

—2	 2	 1	 —1

—1	 1	 2	 —2

1	 —1	 —2	 2
-

s
+

6

2	 1	 —1	 —2

1	 2	 —2	 —1

—1	 —2	 2	 1

—2	 —1	 1	 2 _

,where s1=w1/w2, s2=w21w1

KVII*'qin
A _ w2 K I I

2	 -2 	-1	 1

-2	 2	 1	 -1

-1	 1	 2	 -2

1	 -1	 -2 	2_

K+	 12

2

	

- 1	 0	 -1	 0 -

	0 	 -1	 0	 1

	-1 	 0	 1	 0

	

_ 0	 1	 0	 -1

w K
22+	 I 

2	 1	 -1	 -2-

1	 2	 -2	 -1

-1	 -2	 2	 1

-2	 -1	 1	 2
6w

'

6w2

1( n 'V il*V n,
F*
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Applying Green's first identity to the first term in (D-4) yields

K G (y)V .,,G (u) (y,x)• V (y)c/Q+ g aG e f K G (y)V y G (") (Y ,XAn (y) c/S2

= K G (y)Vy G (° '°) (y,x) n (y)•n(y)dr+ f 8(x — y An (y) dS2
Po

This holds for all xe S2. For any fixed x at a global node p, let

NN
G(0,0)	 E G(0,0)x) — mp	 m\Y

m=1

(D-5)
x

(D-6)

where G mp(0 ,0) is do,o) ky' , x) evaluated at x of node p and y of node m. Substituting (D-6)

into the volume integrals in (D-5), and recalling from (5-3) that

Anm
 =E An em) =1 KG(y)vyL(y) •v ,, ,,(Y)dg2

=E13, n) = f KG(y)vy ,n(y)n(Y)A2

gives

NN
E (km + gaG e 2TB„,„) G °,;°) =45„p f KG(Y)V y -6 (" ) (y,x)„(Y)•n(y)dr'
m=1

(D-7)

x E Q (D-8)

Here A., and B. have been evaluated in Table D-2. As explained in Chapter 4, we do

not need to evaluate the boundary integral in (D-8), but hereby assign the matrices as

follows,

;km =

Ann, +gaGe 2T B,„,

1

0

if n I' D

if n e rD and n =m

if nEF, and n m

(D-9)    



(G(13) (y, x)) = yG° , -, )(0) („e,)(y )mp
m=1

((3'G0 '' ) (y, x)) = y(13'co , 3))	 ,,n )(y )
mp

m=1 (D-12)
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{08np if ne

if n F,
(D-10)

The finite element equation for the zero order auxiliary function is

NNE 	r; (0.0) = ion
mp

m=1   
n, p=1, NN	 (D-11)

The derivation of numerical solutions for all other required G-related auxiliary functions

can be done in a manner similar to that for G(° '°)(y, x) upon the following interpolation,

for any fixed x at global node p, yE e, and zE ,

(I (Z)G (' ' j) (y, x))	 (e')G("))(e) V„e, ) (y)
mp

m=1

(17 '(y)V,G ( `-' ) (y,x))= E E	 (Y'(e,)G(')
I mp

m=1 ei e E, N

These interpolations are straightforward except for the last one. Because Y' is defined in

elements and G ( ''' ) (y,x) is evaluated at nodes, (Y/(z)G ( `-' ) (y,x)) is associate with Y' in an

element and G ( ''' ) (y,x) at nodes. Therefore, (Y/(y)G(y,x)) is not well defined.

Especially, (Y'(y)V ,G ( '-' ) (y,x)) cannot be evaluated directly from (11 '(y)G ( ''(y,x)) . Here

we use an averaging scheme to evaluate (Y'(y)V G ( '-' ) (y,x)), i.e., averaging all

(Y/(e,)V vG ( ''' ) (y, x)) = V y (el)G(i .j) (,Y , X)) , where eiE Ei denotes elements that are adjacent to

the element e, and NE is the number of such elements. Because equations for all required
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G-related auxiliary functions have the same structure, their finite element equations have the

same format as (D-11), with exactly the same A matrix but different 1. Vectors	 for all these

equations have been evaluated and listed in Table D.3.

D.3 FORMULATION OF FINITE ELEMENT SOLUTION FOR CONDITIONAL

HIGHER MOMENTS

In this section, we formulate finite element solutions that are required in evaluating

solutions for mean and (cross-)covariance functions, as was seen in Chapter 4.

D.3.1 (W(x)(13'(y)) and (W(x)V0V(y))

From (D-4) and (D-5), for any XE e, yE e', and zE e', let

((0,o)(z) (z)) = EN 
(0(0,0)(e") t(Z)

(Dp (z)

P= 1 	P
(D-13)

< 2) 	= E itt2)„(e)(z) (e-)(z)	 (D-14)
p=i

All symbols have been defined in Chapter 4. G(''J)(y,x) are interpolated as in (D-12).

Substituting (D-12)-(D-13) and (D-15) into (C-4)-(C-5), using definitions (D-7), and

assuming deterministic force terms (boundary conditions and source/sink), yields

(x,y)=—IC (e,e")	 (e",e') (43 p(0 ,0)(e')) (A p(ei .) gaGe27- Bp( Je'))	 ( y )Cy( )	 y	 E G(,0: 0)

e, j,k,p=1

(D-15)

and



Table D.3. Finite Element Equations for Auxiliary Functions*

xnip 4, for nEFD, otherwise, k=0

)(G0 .0\
1 iv b- 	 = 8,,p

('G01  \
I me

N
4, = _ gaG G02 E E (G ,(nop,o) ) (e) e27 . A(een)

e	 m=1

( yG(1,0) Ve. )
I me

N

i; n = -E C, (e,e")E(k„;,) + gaGe; B„) ) G7' )

e	 rn=1

(D 'Y 'G (13) )V)
me

—	 N

bn = -E Cy (e, e")E [VG(o,l)( y, xle)
)	 (yte„) + gaGe 2.1. B;)+ g OEG do- (G 0) ) (e) e.,T B„( ,e„) ]

nip
nt=1

(G ,(n0p,2)) _	 N

b„ = —gaG EE
e	 m.--1

1 1(rG(0.1))	 + _ cs2 /G(0,,) (e)

"P	 2	 0 \ nw
,../. B(e)

2	 nm

(G 0) )
b„ = -E E

e	 m=1

	

)\(e)	 2E (ne,)G( 1 0	+-1 ay (e)(Gr(r ) ) (e)
	mp 	 2

N E i ei € E i

(A, e„) + gaGe . B,(„`;,) )

KyG(1.2)) 

nip

N	 \

b„ = —gaG I Cy (e er)E ( ,,(0,2),e) ) + (3'G°')  e) + —1 0. (G,,( 0)(e)
,	 ,-, 

e	 m= i	 2	 P

27' B(e)

(fYG (2 ' 1) )
"t'

N [
bn = -E E

e	 m=1

N
_ gaG E E

e	 m =1

N-1	 ‘1-1
— g aG L 2d—

e	 m=1

1— E (Fyne') Go , i) )(e) + lcy2y (e) (FEVG (° '' ) ) (: )p
nip	 2N E ei E El /

I
1c,2 (r,..(2.0)(e) ) + __,2y (e) (0, 0)(e) ± _I- G2 G2 (e) (G (0,0)(e))

p	 ,-, nip
2	 nip	 2	 P	 Y

1
E ((p'ne')G(1 , i) ye ) + 6B2 (Y '(e')G") ) (le T B (e)

	mp 	 •	 mpN E, eie E,

.14,(:„)

2	 mu

r	 (e)e n
2 '''ritri

(G,(4.2)) N	 1
b„ - 	 (neoG(. , 2)

e	 ni=1 N Ei ei cE,

N

— gaG E E( 03 G
e	 m=1

N1
— gaG E E_ E

e	 ni=1 N E, ei €E

1 N
_ _ gaG E cy2y (e)I

2	 e	 m=1\

/	 (2)) (e)

	X ') 	(,e) — —1 1	nip 	in	 2 	e

\
.	 1 G 2	 (2,0)(e)	+ 2— R (G	 )

	mp 	 ,	 011)

I
(y ,(6G (.,2))(e) + (,

\	
mp

I (G 2)(e) ) + (0,0,1) y e)

N

o2 (e)E(G (" )( e ) )	Y 	 nip
m=1

	T 	 (e)e2 B,„„

y /( e)G (1.,) )(,) + _1_ 0 r:
mp	 2

\+ ___1 cy2_ (G0)(e))

	mp 	 2	 0

2 ((2,0)(e))	 a T pee)
p •-• mp	 '2 '''nm

e2TB(ei)

NN

*All required G-related terms satisfy an equation of form E A,„,x„, =	 n, p=1, NN , where A,„, is defined in (D-
01=1
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=_ECy (e,e") y (G i(k0,2)(e,e') (0(p0,0)(e")) G jok,w,e) (vp0.2)(e')))( A pr g aGe27-Bp(ei-))1e')(y)

j,k,p=1

1
- goc00-2,Ecy(e,Z) y G jok,oxe , ) (0(p0,0)(e")) e2T BT (e) k(e') (y)

2 	e 	j,k,p=1

e2

21
	

2

cy( 24;2)(x, y )
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—gŒG	 1)(e",e)) + (13')1/(e)G(°' 1)(e',Z)) 1(,f,(0,0)(e .)) e2T ii	 )(9p( e")(e,,)
" jcT 2 I y [Cy (e,e ff)(13'0°'

jk	 jk	 P
j,k,p=1

+gE E (17/(e)G (1.°)(e",e')) R (0 • 2)(e") e T
B (e') Ve') (y)jk 	ac13,p	 2	 pj	 k

j,k,p=1

(2,2)(, ,e' ,,D
—E(Y '(x)1-1' (z)VT,G(x , y)K ,(z))	 n(eD) de

eD

(D-16)

Here the last summation is over all elements on the Dirichlet boundary (eD), de is the

length of the element segment on FD, n(eD ) is the normal to this boundary segment, and

(Y/(x)ir(z)v:G(x,y)K,
(z)

)
(2,2) is given in Appendix A.

The term V' ) (y) in (D-15) and (D-16) allows us to evaluate (Y(x)clAy)) (2 '°) and

(Y(x)(1Y(y)) (2 '2) for x in an element and y at a local node, i.e., the cross-covariance

between Y in an element and (13 at a node. This is preferred because c1) is defined at nodal

points. However, because (D-15) and (D-16) are formulated for y in any element e' in the

domain, the question remains are these results consistent if we evaluate them from

different elements that share the same node point? The answer is positive. Take (D-15)

4
	

3 4 	3
as an example. Suppose we calculate

KY(x)clY(y)) (2 '°) for Y in any element e and

0' at node 2 of element el, as shown in the
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figure on the right. Replace e' by e l in (D-15) and note that only G .,(re-,,,) and (kei ) are

related to element el. The product of these two, according to the definition of E k . is

G (0,0)(e", ei )(e1) = 
"

(0,0)(e" ,e 1 )	 (:),o)(e" ,	 (0.0)(e", )	 (0,0)(e", ) )T
12	 , "22 	,j32 	"42 (D-17)

where G")(e'''' ) is 4x4 matrix defining G at all nodes in e" with respect to all nodes in el,

and	 ) the vector of the weighting functions evaluated at node 2 in e l . Similarly, if we

evaluate (Y(x)(11/(y)) (2 '°) for Y in the same element e and (13' at node 1 of element e2,

which is the same node as node 2 of element el, then we have

G (0,0)(e",e 2 ) (e1 )	 (G 00)21)	 (0,0)(e",e2 )	 (0,0)(e', e2) 	,e2 )
‘`' 21	 , "31	 , 41 (D-18)

Xe',e 1 	G(30,0)(e",e2)which is the same as (D-17), because for any j, GT2' )

The solutions for (Ks'(x)clty(y)) (2 '°) and ./<','(x)(1)'(y» (2'2) can be obtained simply

upon multiplying (D-15) and (D-16) by KG(e). Taking the derivatives of (1C,'(x)(13 (y))(2,0)

and (Ks/ (x)4:13'(y)) (2 '2) with respect to y gives the solutions for R (2 '13) (x ,y)=(Ks ' (x)V (13.

and R(2,ov 30.ac8 , (x)v (0 (2,2)

D.3.2 (0'(y)) and (ce2V(y))

From (D-11) and (D-12), for any xEe, yE e', interpolating terms when necessary, as

shown (D-12)-(D-14), yields

/(y»(2 ,0)

Ra(04;2) (x ) = _gaG0, 1321, y G osme',e) (opo,oxe)),T pe(e')p(e)( y )
jk	 2 '''' pj

e'	 j,k,p=1

—y(cc'H'(y )VT,G(y , x)Ks
(y))(0,2)(e,eD) 

n(e) d,
eD

(D-19)



R2 (
x ) =

1  (WY (e i )G (13) ) (e'çe)
jk

(	
k

d.,(0,0)(e'))( A

-1 	g'G'
(e')	 TB(e'))p(e)f

•P	 J1V	 2 pj —ŒGE E E
e' j,k,pI eiEE,

a2 ,,.2 v E 	,e))vT (e ' ) ( g(e)	 )( ()2,0
G u l34,d	 " jk	

(2,0)	 )
yk	k (x r	 (e)— gaG e2 R,,,„ (e

and

234

_OEG E E ( ri( ,''e)	 2 0)(e')
Cin + 4 2,0)(Z)

C2n 	(x)(e)

1 jk
j,k=1

g aG2 (302E

e'

N"E
(G")u y	 jk

.	 1
°))le, )G(''	

(e' ,e)

fic

(2,0)(Z, e)+ (G ik (f.,(0,0)(e'))„ppT	 (e')(e)(x )
P	 2 "pj ‘k

j.k,p=1 2 ei€Ei NE,

gccG2 	eE,	 R) (T2,0:2 e,o:(e')) D T n(e)p(e)

gœ2GCTE	 jk	 P	 "pj	 kx)

I jk	 1") ) C2riVke) (X)
e' j,k=1

, )(2,2)(e,e» )—I	 00VT,G(y ,x)K 
37

) 	n(eD) de

et)

(D-20)

For (a"V(x)), from (D-14) and (D-15), for any xe e, we have

(a/243 /(x )) (2,2)	 v E (f7 (0,0)(e',e) )(a.,(0,0)(e'))(A(e')	
"'Gt 2 "

pee') )p(e)
" jk	 ripj 	 pj	 `k k•4'

é j,k,p=1

(D-21)

and

(u2	
(x))(2.2)

(a-„(0,0)(e))( (e') „, D(e') p (e)

P krill] g u'G v 2 " pj )`k J
• j,k. p=1	 e, E,	 E l

aG2 (.5 021 y (Gi(k0,0)(e',e) )(0(p2,0)(e))(A(pei) gaGe27- Bp(ep )(ke) (x)
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D.3.3 (a'Ks'(x)43v(y))

For any xe e, and yEe', from (D-17) we have
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(D-23)

D.3.4 (er(x)4:13V(y))

For any XE e, and ye', from (D-19) we have

(cc/2y /(x)0,(y))(2,2) = aG2 0. 132	
C (e, e') E (G(0,0,0)(e",e') )(o(p0,0)(e"))(Apr gaGe Bp(e;))te') (y)

j,k.p=1

(D-24)

D.3.5 Koc'cIv(x)(13v(y)) and (OE'243'(x)(13'(y))

From (D-22), we note that the implicit equation for (a'43.'(x)V(y))(° ' 2) has the same structure

as that of mean (1), thus, for any fixed x at global node p, the finite element equation has a

form of

NN
(0,2)	 —

EA,„, (cc'(1)/(x)cD/(y)) 
Pm

 =b,,   n,p=1,NN	 (D -25)
m=1
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n	 gaGe2T "mn if n e Fp

Anm = if n E Fp 	and n = m
if n	 rD 	and n	 m

(D-26)

_y (OE'43/(x)H'(y)) (p° 2){ 

0

if n G FD

if n e
(D-27)

Here (œ'cV(x)Hb0) (p°: 2) is cross-covariance of (OE'V(x)HV)) (° '2) associated with at global

node p and y at global node n. Equation (D-25) needs to be solved for each global node p.

Note that (D-26) is different from (D-9). For (OE'V(x)V(y)) (2 ' 2) , we have
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where

Alfun = EA,:(,:)=fv,„(y)•Vy ni(Y)dg2
e

B;un EC) f,i(Y)V y „,(Y)dg-2,
(D-29)

Similarly, for (ce20'(x)0V)) (
0,2

) we have
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and for (a'243'4)(13V)) (2 ' 2)
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D.3.6 ( r(x)V(y)(tv(z))

From (D-33), for any XE e, ye and ze e", we have
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D.3.7 (r(x)(tv(y)(13'(z))

From (D-36) and (D-37), equations for (Y(x)(1) /(y)V(z)) (2'°) and (Y(x)(13v(y)43/(z)) (2 '2)

have the form of (D-25) and exactly the same A as defined in (D-26), the vector -6 for

(Y(x)V(y)(1) /(z)) (2 '0) and (Ifi(x)(1) /(y)V(z)) (2'2) are
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respectively. Equations (D-34) and (D-35) have to be solved for Y' at each element and

0:13/(y) at all nodes.

D.3.8 (a' V(x) V(y)(13'(z))

)For any fixed XE e, yE e', interpolating G0,o and (0 (

00
)) as weighted combination of their

values at node points, as shown in (D-12)-(D-13), gives the
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D.3.9 (a'r(x)clAy)clAz))

From (D-44), for any

(ceY(x)(13V)V(z)) (2 '2) has

fixed XE e, y at global node p, the equation for

the form of (D-25) and the same A defined in (D-26), the

vector E. for (y(x)(13/000,(z))(2,2) is
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D.3.10 ( Y'(x)Y'(y)(1)'(x)(13v(z))

From (D-48) and (D-49), equations for (17/(x)V(y)cry(z)) (2'°) and (Y(x)V(y)(1) /(z)) (22)

have the form of (D-25) and exactly the same A as defined in (D-26), the vector i; for

(Y(x)01Y(y)V(z)) (2 '°) and (Y'(x)GlY(y)(19'(z)) (22) are
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0	 if ne F,
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D.3.11 (0(2Y'(x)4V(y)4V(z))

From (D-56), the vector E. for (a,2 y(x)(1) , (y)43 ,(z)) (2,2) is

Kenx)(10'(y)i-Oz#:: 2) 	if n E rD

0	 if n 0 rp
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