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ABSTRACT 
 

In the present study, we investigated conducted responses (CR) that occur within 

the blood vessel walls. Two possible methods for transmission of the signal along the 

endothelium are active or passive. Based on the available body of knowledge, we 

formulated two mathematical models that simulate these transmission methods. Both 

models assume that the CR travels along a series of coupled endothelial cells. Our first 

model describes the behavior of CR based on passive spread of the signal. This model 

shows that a passive signal decays rapidly in a distance of about 2 mm. Since the average 

distance that a CR needs to be able to travel is approximately 1cm, passive spread of the 

signal is inadequate to describe the behavior of CR that have been observed in vivo.  The 

second model simulates the transmission of a Ca2+ wave based on the involvement of a 

regenerative mechanism. Under the given assumptions this model shows that a 

regenerative mechanism allows the Ca2+ wave to travel distances that exceed 1cm, 

thereby making it a plausible transmission mechanism for a CR. 

 

INTRODUCTION 

The vascular system is a dynamic structure that is capable of accommodating 

variation in blood flow (5, 7, 8, 9, 10).  The volume of blood that passes through a 

 



 

capillary bed is dictated by the diameter of the upstream arteries and arterioles that feed it 

(7, 8, 9, 10). The rate of blood flow that is needed in the capillaries changes over time. 

When these changes occur, information needs to be sent upstream to the feeding 

arterioles and arteries so that their diameters are adjusted accordingly. The diameters of 

the feeding arteries and arterioles are adjusted by constriction or relaxation of the smooth 

muscle cell layer within the vessel wall. These adjustments are based on environmental 

signals that are detected mainly by the endothelium. The endothelium responds to both 

chemical and physical stimuli. The specific type of stimulus dictates whether 

vasoconstriction or vasodilatation occurs (12, 14).  

Environmental information can be transferred upstream or downstream from the 

detection site via conducted responses (5, 8, 11, 1, 3, 4). Although conducted responses 

are most often observed on the arterial side of vascular networks, they have been shown 

to occur in the venules as well (3). The two known mechanisms by which signals travel 

are Ca2+ waves and membrane potential changes (4, 13, 2, 12).  Our first model 

represents a change in membrane potential due to passive spread of current. In the second 

model, which depicts a regenerating signal, we considered Ca2+ waves dynamics.  

A Ca2+ wave is triggered when a stimulus induces the release of Ca2+ from 

internal stores within the sarcoplasmic reticulum into the cytosol. The increase cytosolic 

Ca2+ concentration induces further release of Ca2+, thereby creating a positive feedback 

loop. This process is known as calcium-induced-calcium-release (CICR). In this model of 

a CR, information is transferred by the propagation of the Ca2+ from one cell to the next 

through gap junctions. Diffusion of the Ca2+ from endothelial cells into smooth muscle 

cells through myoendothelial gap junctions can induce relaxation or constriction of the 

 



 

smooth muscle cell layer (12, 13, 14). Despite the coupling between the endothelium and 

the smooth muscle cell layer, it has been shown that the Ca2+ waves of the conducted 

response propagates along the endothelium of blood vessels but not the smooth muscle 

cell layer (12). This is reasonable, since the endothelial cells lie parallel to the vessel axis, 

while the smooth muscle cells are circumferential oriented (see Fig. 1). This structural 

arrangement allows the Ca2+ waves to propagate at a much faster rate along the 

endothelium then along the smooth muscle cell layer. 

Due to CICR, a single cell produces 

a spike in [Ca2+]cyt in response to a smal

increase in the [Ca2+]cyt. After reaching its 

peak, the [Ca2+]cyt returns to the baseline 

concentration as the Ca2+ stores are refilled. 

If cells are coupled by gap junctions then as 

the [Ca2+]cyt spikes in one cell, the increased 

[Ca2+]cyt causes a flux of Ca2+ from the first 

cell to the next cell, possibly triggering a spike in the second cell.  

l 

Fig. 1. Structural orientation of the smooth 
muscle cells and the endothelial cells within 
blood vessel walls.  Arrows indicate coupling 
between cells. 
 

 Based on the given information, we considered the transmission of a CR along a 

string of coupled endothelial cells with the structural arrangement as shown in Fig. 2a. 

For the sake of simplicity our models assume that each EC is coupled only to two 

adjacent cells at opposite sides of the EC. This is a simpler coupling structure than the 

true coupling of EC in vessel walls.  Fig. 2b shows the true structural orientation of EC in 

a vessel wall. Another simplification of our model is that we only considered coupling 

between EC, and not coupling between EC and SMC.   

 



 

 

A      B 
 
Fig 2. 2a. Schematic drawing of our assumed coupling structure. 2b. true coupling structure 
for EC seen in vivo. 

Based on the above assumptions we constructed two mathematical models to 

simulate conducted responses within the vascular network. Model 1 is a simulation of 

passive spread of current, while model 2 depicts active spread via a regenerative 

mechanism. Model 2 is based on the two pool model of Ca2+ oscillations as described by 

Keener and Sneyd in their book (6). Both models were used to make predictions about 

the behavior of conducted responses. The predictions were compared with the observed 

behavior. 

 

METHODS 

Model 1: passive spread 

Propagation of conducted responses along a string of coupled endothelial cells 

was modeled as an electrical current along a wire. By Ohm’s Law, the current satisfies 
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where i(x) is the current, Vi(x) is the internal voltage, and ri is the resistance per unit 

length. Based on conservation of current and the principles of Ohm’s Law we have, 

 



 

 

where im(x) is the amount of the signal which transverses the cell membrane, Ve is the 

external voltage, and gm is the conductance per unit length. Combining equations (1) and 

(2) gives,  

 

Boundary conditions are, VA = Vi(0) and VB = Vi(L), where VA represents the voltage at 

the signal initiation site and VB represents the voltage at a given distance from the signal 

initiation site. The general solution of equation (3) can be written in the form: 
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where mi gr=λ . Applying the boundary conditions we find  

 

 

and so the particular solution for Vi(x) is: 

( ) ( ) ( ) ( )( )[ ] emieAmieB
mi

i VxLgrVVxgrVV
Lgr

xV +−−+−= sinhsinh
)sinh(

1)(  

 

Model 2: active spread via Ca2+ waves 

Fig. 3. shows a schematic drawing of the two pool model used to describe Ca2+ 
oscillations.  
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Fig. 3. two pool model of Ca2+ oscillations. 

As the foundation of our second model, we used the following equations (6).  
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where c is [Ca2+]cyt, cs is [Ca2+]store, r is the constant rate at which Ca2+ is released from 

the IP3-dependent store, kc is the rate that Ca2+ is pumped out of the cytosol, kfcs is the 

rate that Ca2+ leaks out of the internal Ca2+ store, and 
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We assumed that the concentrations in each pool are expressed as amount per total cell 

volume. Equations (7), (8), and (9) were non-dimensionalized as follows (6): 
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where the subscript q is the cell number. The resulting non-dimensional equations 

describing calcium dynamics in cell q are: 
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To account for intercellular transmission of the Ca2+ wave we added a term to equation 

(11). 
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where kcond is the permeability of the gap junction connecting the cytosol of adjacent 

cells. Equations (12) and (14) were solved using the MATLAB program ode15s, and 

plotted using MATLAB. 

 

RESULTS 

Model 1 

To test model 1, we choose the following set of parameters: 
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segment length = 1cm 

 Vi(0) = VA  = -50mV 

Vi(1) = VB = 0mV 

 Ve = 0mV 

 gm = 8x10-8Ω-1 cm-1 

  ri = 1.2x109 Ω1  cm-1 

These model parameters are based on values reported by Crane (4). Based on the above 

values we obtained, the potential in mV is given by 

( )[ ]
)6sinh(4
164sinh 50-  (x)Vi

x−
= (15) 

 

where x is the position along the vessel in cm. The graph of equation (15) is shown in 

Fig. 4. The exponential decay of the signal is consistent with a passive transport 

mechanism.  
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Model 2 

First we considered the transient 

response to a small spike in [Ca2+]i in a 

single endothelial cell. Using the 

following set of parameters we obtained 

the graph shown in Fig 5.  

α = 0.9; 
β = 0.13; 
γ = 2; 
δ = 0.004; 
μ = 0.3; 

μpulse = 0.1; 
ε = 0.04; 
m = 2; 
n = 2; Fig. 4. model of the exponential decay of a signal 

transmitted by passive transport. This model is base 
on a 1cm long vessel segment. 

p = 4; 
 

Next we examined the effects of coupling between adjacent cells on the transient 

cellular response to a small [Ca2+]cyt spike. For this we used equations (12), (13), and (14).

 



 

1.6

Fig. 5. Transient response to a change of [Ca2+] in a 
single EC. 

The parameters used are the same as 

those used in the single cell trial, with 

kcond = 0.04. The results are shown in 

Fig 6. To calculate the wave 

propagation rate we used the average 

interval between times at which 

successive cells start the Ca2+ spike. 

This gave a rate of ~100µm s-1. Fig. 7 

shows the dependence of the wave 

propagation rate on kcond.  

The degree of coupling 

dictates both the distance the Ca2+ 

wave will travel and its propagation 

rate. If the coupling between cells is 

too low then a [Ca2+]cyt spike in one 

cell will not induce a spike in 

coupled cells because not enough 

Ca2+ will be transferred from one cell 

to the next to reach the threshold level in the coupled cell. If the degree of coupling 

between cells is too great then even a small [Ca2+]cyt increase in the first cell will diffuse 

to adjacent cells before the threshold level of CICR is reached in the first cell. In this case 

no [Ca2+]cyt spike is observed. There is a range in the degree of coupling in which a wave 

is observed propagating from one cell to the next. Faster wave propagation rate are 

Fig. 6. transient response to the change of [Ca2+] in a 
multiple, coupled EC. 

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2

1.4

t

U
 , 

V

 

 

u
v

time in seconds

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t
time in seconds

U
 , 

V

 



 

 

observed at higher the degree of 

coupling.

e degree of 

coupling.

  

DISCUSSION DISCUSSION 

The average distance that a 

conducted response must travel from a 

capillary to an upstream arteriole is 

approximately 1 cm. Our passive spread 

model shows that after approximately 2 

mm, 90% of the signal is lost. Although propagation of conducted responses was 

originally assumed to occur via a passive spread of the information (11), our model 

shows that passive spread of the conducted response is inadequate to describe their 

behavior. Our findings are consistent with those of Berg et al. (1).  

The average distance that a 

conducted response must travel from a 

capillary to an upstream arteriole is 

approximately 1 cm. Our passive spread 

model shows that after approximately 2 

mm, 90% of the signal is lost. Although propagation of conducted responses was 

originally assumed to occur via a passive spread of the information (11), our model 

shows that passive spread of the conducted response is inadequate to describe their 

behavior. Our findings are consistent with those of Berg et al. (1).  
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Fig. 7. dependence of Ca2+ wave propagation rate on 
kcond. 

When considering Ca2+ dynamics one would expect a time lag between the time 

when the Ca2+ wave enters the cytosol of a cell until it diffuses across the length of the 

cell and enters the cytosol of the next cell. Our model neglects this time lag and assumes 

that Ca2+ is instantaneously, uniformly diffused throughout the cytosol as soon as it enters 

the cytosol. Therefore our model is expected to overestimate the wave propagation 

velocity. However in reality EC are coupled on all sides to multiple cells, which may 

increase the propagation rate from that expected under our assumed coupling structure. 

This may compensates somewhat for the error introduced by this assumption. 

When considering Ca2+ dynamics one would expect a time lag between the time 

when the Ca2+ wave enters the cytosol of a cell until it diffuses across the length of the 

cell and enters the cytosol of the next cell. Our model neglects this time lag and assumes 

that Ca2+ is instantaneously, uniformly diffused throughout the cytosol as soon as it enters 

the cytosol. Therefore our model is expected to overestimate the wave propagation 

velocity. However in reality EC are coupled on all sides to multiple cells, which may 

increase the propagation rate from that expected under our assumed coupling structure. 

This may compensates somewhat for the error introduced by this assumption. 

The degree of coupling between adjacent EC dictates the rate at which the Ca2+ 

wave travels from one cell to the next. Faster wave propagation rates are observed at 

The degree of coupling between adjacent EC dictates the rate at which the Ca2+ 

wave travels from one cell to the next. Faster wave propagation rates are observed at 



 

higher degrees of coupling. If there is not enough coupling between cells then no Ca2+ 

wave is observed. At low degrees of coupling, a wave may travel from the first cell to as 

many as four cells away before it dies out. We found that the critical conductance at 

which the wave is able to transverse the entire length of ten coupled cells is kcond = 

0.0375. Using this conductance rate, and taking individual endothelial cell width to be 

20µm, our model indicates the Ca2+ wave travels at approximately 100µm s-1. This is 

approximately the same speed that Uhrenholt et al (12) measured Ca2+ waves traveling in 

the endothelium.  

In our model, kcond has units of number of Ca2+ ions per unit time that pass 

through the gap junction. We were therefore unable to compare our kcond values to the 

conductance values that have been measured in vivo, because in vivo conductance is 

measured in Ω-1 cm-1. For this reason it is unclear if our kcond value is consistent with the 

conductance measured in vivo.  

Producing a workable model that simulates conducted response in vascular 

networks will provide insights into the maintenance and growth mechanisms that regulate 

vascular structure. Many diseases either affect the vascular system or are affected by its 

structure. For example tumor blood vessels have chaotic and inefficient network 

structures. One theory is that the number of functional gap junctions is insufficient to 

achieve efficient intracellular communication. This lack of communication may lead to 

the chaotic vessel structure seen in tumors. Better understanding of how CR function in 

normal tissue may help us to understand and control vascular properties and other types 

of disease.  
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