
PEDIATRICS ONE ELECTRONIC MEDICAL DATABASE SYSTEM

By

Erin Elizabeth Prenger

A Thesis Submitted to The Honors College

In Partial Fulfillment of the Bachelors degree
With Honors in

Computer Engineering

THE UNIVERSITY OF ARIZONA

May 2009

Approved by:

Anthony King
College of Engineering (Interdisciplinary Advisor)

STATEMENT BY AUTHOR

 I hereby grant to the University of Arizona Library the nonexclusive
worldwide right to reproduce and distribute my thesis and abstract (herein,
the “licensed materials”), in whole or in part, in any and all media of
distribution and in any format in existence now or developed in the future. I
represent and warrant to the University of Arizona that the licensed materials
are my original work, that I am the sole owner of all rights in and to the
licensed materials, and that none of the licensed materials infringe or violate
the rights of others. I further represent that I have obtained all necessary
rights to permit the University of Arizona Library to reproduce and distribute
any nonpublic third party software necessary to access, display, run, or print
my thesis. I acknowledge that University of Arizona Library may elect not to
distribute my thesis in digital format if, in its reasonable judgment, it believes
all such rights have not been secured.

Signed: ___________________________________

Roles and Responsibilities

Erin Prenger:

Team Leader – Main point of contact for sponsor and faculty advisors

Database and Back-End Work – For each of the modules developed in the project:
Designed and implemented tables in a MySQL database. Designed, implemented, and
tested Python code for the back-end to interact with the database, storing and retrieving
all data appropriately.

Michael Schreiber:

Middleware and Integration Work – For each of the modules developed in the project:
Designed, implemented, and tested the Django middleware to allow the User Interface
and the Back-end to communicate with one another. Integrated the UIs and Back-ends,
testing each to ensure their complete functionality.

Joseph Wahl:

User Interface – For each of the modules developed in the project: Designed,
implemented, and tested the User Interface portion in Adobe Flex.

Abstract

In recent years, there has been an increase in demand within the medical community for
software applications to increase the quality of patients’ visit and to increase throughput,
particularly in small private practices. Such a system would need to collect and store all
patient data digitally, as opposed to via traditional paper-based forms. The goal of this
project was to fill this need by creating a small, simple-to-use application, whose overall
design closely models a patient’s trajectory through the office. Specifically, the project is
intended for use in small clinics, as opposed to the large hospitals for which most
electronic medical systems are designed. Constraints on the implementation primarily
consisted of the use of a preexisting MySQL® database for data storage. After examining
a series of concepts and potential designs, it was decided to implement a web-based,
three-tiered system. These tiers are the user-facing front end written using Adobe®
Flex®, the aforementioned backend in MySQL®, and an intermediary layer utilizing
Django® to decrease coupling between the two. In addition, modularity was designed
into the system by separating each step in a doctor’s office into a discrete module in the
system. The final prototype produced by the team fulfills all four of the high-level
functional requirements agreed upon with the customer at the beginning of the project:
reduced potential for billing errors, improved time use by reducing repeated information,
improved patient transitions, and improved access to medical knowledge.

i

Pediatrics One: Pediatric

Electronic Medical Records

Submitted by: Team 3498
 Erin Prenger
 Michael Schreiber
 Joseph Wahl

Submitted to: Anthony King (Mentor)
 Mark Ginsburg (Sponsor)

Submitted on: April 30, 2009

Interdisciplinary Engineering Design Program

University of Arizona

ii

iii

In recent years, there has been an increase in demand within the medical community for software
applications to increase the quality of patients’ visit and to increase throughput, particularly in
small private practices. Such a system would need to collect and store all patient data digitally,
as opposed to via traditional paper-based forms. The goal of this project was to fill this need by
creating a small, simple-to-use application, whose overall design closely models a patient’s
trajectory through the office. Specifically, the project is intended for use in small clinics, as
opposed to the large hospitals for which most electronic medical systems are designed.
Constraints on the implementation primarily consisted of the use of a preexisting MySQL®
database for data storage. After examining a series of concepts and potential designs, it was
decided to implement a web-based, three-tiered system. These tiers are the user-facing front end
written using Adobe® Flex®, the aforementioned backend in MySQL®, and an intermediary
layer utilizing Django® to decrease coupling between the two. In addition, modularity was
designed into the system by separating each step in a doctor’s office into a discrete module in the
system. The final prototype produced by the team fulfills all four of the high-level functional
requirements agreed upon with the customer at the beginning of the project: reduced potential for
billing errors, improved time use by reducing repeated information, improved patient transitions,
and improved access to medical knowledge.

iv

!"#$%&'(&)'*+%*+,&
I.! Introduction .. 1!

II.! System Requirements.. 2!

a.! Functional Requirements ... 3!

b.! Technical Requirements... 4!

III.! Design Concepts and Analysis .. 6!

a.! Option 1: Standalone Application.. 6!

b.! Option 2: Asynchronous JavaScript + XML (AJAX) / PHP ... 6!

c.! Selected Option: Adobe® Flex® ... 6!

d.! Concept and Decision Analysis ... 7!

IV.! Design.. 10!

a.! Functional Decomposition ... 10!

b.! Subsystem Design.. 11!

c.! Design Analysis and Validation... 12!

V.! System Build ... 14!

a.! Subsystem Construction... 14!

b.! Subsystem Debugging ... 14!

c.! Subsystem Testing ... 15!

d.! Subsystem Integration.. 15!

e.! Integration and Acceptance Testing... 16!

VI.! Results ... 17!

a.! Results of Testing... 17!

b.! Design Verification.. 17!

c.! Design Validation .. 18!

d.! Data and Research Results... 18!

e.! System Functionality.. 19!

VII.!Conclusions ... 21!

VIII.! Recommendations... 22!

IX.! Acknowledgements ... 23!

X.! References ... 24!

XI.! Appendix ... 25!

v

-.,+&'(&/.012%,&
Figure 1 - Quick Search Sequence Diagram... 11!
Figure 2 - Nurse Assessment Sequence Diagram... 11!
Figure 3 - Sick and Well Visit Sequence Diagram... 12!
Figure 4 – High-Level Technical Design.. 14!

vi

-.,+&'(&!"#$%,&
Table 1 - Functional Requirements... 3!
Table 2 - Systems Requirements... 4!
Table 3 - House of Quality Quality Function Deployment (QFD) Matrix 5!
Table 4 - Design Matrix.. 10!
Table 5 - Table of Ideality .. 12!
Table 6 - Failure Design Effects Analysis .. 13!
Table 7 - Verification Table.. 18!
Table 8 - Implementation Table.. 20!

1

34 3*+2'516+.'*&

The objective of this project is to assist small private practices, particularly those specializing in
pediatric health care, in better serving patients by increasing throughput and improving the
quality of health care. This project focused on replacing and rearchitecting an existing software
system, using an entirely new toolset to improve reliability and to add scalability and
extendibility. The previous system, which was developed in response to a recent federal
mandate for a nationwide interoperable heath information network, was designed using an
inefficient and antiquated methodology, in that it is very difficult to extend or improve. Certain
components and features were never completed and, due to the exceptionally poor
documentation, cannot be introduced into the current system in a cost-effective manner.
Additionally, because it is not modeled very closely after the actual path of a patient through the
office, bottlenecks are often introduced that would not otherwise be present. The system that
was developed by this project will greatly improve upon the current system’s shortcomings and
expand on this original design to make it more efficient and reliable. This implementation of the
system, while initially custom-developed for Orange Grove Pediatrics in Tucson, AZ, has the
potential to be expanded to any number of similar practices nationwide, as well as the ability to
be expanded with a series of modular improvements in the future.

2

334 78,+%9&:%;1.2%9%*+,&

Based on the specified needs and requests of the customer, the following four requirements were
derived as the most pertinent high-level functional requirements for this project.

1. Reduce billing errors
2. Improve use of time
3. Improve patient transitions
4. Improve access to medical knowledge

The goal of the project will be to address each of these functional requirements and implement
different software modules to accomplish them based on the general specifications as well as
specific features requested by the customer. The following describes in further detail each of
these high level functional requirements.

Reduce Billing Errors

One of the main goals of the project was to reduce the number of billing errors that occur within
private practice offices. Medical billing codes fall within two categories (Current Procedural
Terminology (CPTs) and International Classification of Diseases, 9th Revision, Clinical
Modification (ICD9s) Codes), which correspond to different actions taken and diagnoses given
during an appointment. The majority of the errors that occur with these billing codes happen for
two distinct reasons. The first cause of these errors is due to an inefficient transfer of data
between the doctors/nurses and the billers. During an appointment, the doctors and nurses takes
notes on a physical piece of paper, listing the details of the appointment. These details are later
transcribed by the biller to billing codes, and can often be misrepresented because the
handwriting of the doctors and nurses is unclear or the notes themselves are not accurately
interpreted. One goal of our project was to transfer all of these paper forms to digital forms.
This should eliminate the first problem of illegible notes. Another aspect of the project which
helps to address this functional requirement is to auto populate fields whenever possible. By
developing these modules that communicate with each other, this manual transfer of data can be
eliminated and consequently this functional requirement will be fulfilled.

Improve use of time

Another primary goal of this project was to improve the use of time in the office. The main
measure of success of any private practice can be defined as its “throughput,” which is the
number of patients that can be seen in a given amount of time. One way to facilitate an increase
in throughput is to increase the efficiency of time-usage by all employees. In order to fulfill this
functional requirement, our group designed several software modules to improve the efficiency
of time usage. Another module that helps to fulfill this functional requirement is an automatic
data converter and grapher which will take in the nurse measurements, convert them to the
appropriate form and graph them automatically, thereby eliminating the time currently spent by
the nurses manually graphing this data. This auto-population of data has be carried over to the
doctor’s evaluation portion of the appointment as well; as described in the previous section, this
should not only reduce errors in data transfer but also save time since the data will no longer
need to be manually transcribed by the biller. The basic idea of auto population, eliminating

3

manual paper to digital transfers, and adding “agent” features that allow the software to do the
job of the employees wherever possible has been implemented throughout the project to
successfully fulfill this requirement.

Improve patient transitions

The third main requirement expressed by the customer is the need to improve patient transitions.
In order to improve efficiency and throughput in the doctor’s office, it is important that patient
transitions through different stages of the appointment happen as smoothly and quickly as
possible. Currently in such a hectic work environment, the communication can be lacking,
which leads to doctors and nurses being unaware of the current stage of patients, and
consequently patients will often wait at a given stage in an appointment simply because the next
employee (doctor or nurse) does not know that they are ready to be seen. To fulfill this
requirement and help improve these transitions, the customer has requested that the team
implement several features. These features include a module that acts as a patient status bar,
which will monitor the location of all patients in the office at any given time. Additionally this
module should incorporate alert features to notify the office users (doctors, nurses, front office
clerks, and billers) when a patient has entered a new stage relevant to their particular duties.

Improve access to medical knowledge

The final main requirement for the project, as directed by the sponsor, is to incorporate the idea
of a nationwide interoperable health information network. As it stands, some of these networks
are currently available and in use in larger hospitals and medical facilities; however, there is a
new federal mandate for this network to incorporate private practices as well. So, one important
requirement of this project was to incorporate this network into the implemented system. For our
purposes this occurs primarily in one form: the system interfaces with the pediatric subset of the
Physician’s Information and Educational Resource, also known as PIER. This database of
information can provide the doctors with a large amount of data about different diagnoses, their
corresponding medication, and possible side effects of these medications. All of this information
networking will provide the doctors with as much background information as possible so that
they can make the most accurate, well-informed diagnoses which will lead to a better quality of
health care overall.

"4 /1*6+.'*"$&:%;1.2%9%*+,&

Table 1 - Functional Requirements

Functional Requirement Priority

Reduce billing errors 5

Improve use of time 5

Improve patient transitions 5

Improve access to medical knowledge 5

4

#4 !%6<*.6"$&:%;1.2%9%*+,&
The system that has been developed will be used to allow doctors to input and retrieve patient
information in a very quick and efficient manner through a web-based portal. It will also be used
to assist in the record keeping and diagnosis of patient illnesses through the integration of the
Pediatric subset of the Physicians’ Information and Educational Resource (PIER). In order to
satisfy the needs of the doctors, a set of system requirements were generated. Since the solution
being developed is entirely software based, there are virtually no physical components that can
be measured. Instead, the system requirements focus around the functionality of different
aspects of our system and across multiple platforms. The system requirements along with
constraints dictated by the customer have been described in detail in Table 2: System
Requirements.

Table 2 - Systems Requirements

Number Category Description Type of Requirement

1
Performance

Simplify patient information access
by implementing a Quick Search
feature which searches through the
patient database using 5 different
search field types

Measurable Term

2 Performance Generate patient summary handouts
indexed by the age of the patient

Measurable Term

3 Performance Restrict access for different types of
users to incorporate various
administration and access levels
(e.g. doctors, nurses etc)

Measurable Term

4 Performance Aggregate reporting for all types of
users such that information
gathered from patients will be
maintained in a common location to
prevent the need for repeated
questions.

Measurable Term

5 Performance Interface with ASIIS (Arizona State
Immunization Information System)
such that information about any
necessary immunizations related to
the patients’ age is readily
available.

Measurable Term

6 Performance Improve doctor efficiency by
presenting possible diagnoses based
on inputted symptoms

Measurable Term

7 Performance Integrate with ACP (American
College of Physicians) Pediatric
subset of PIER to collect and
present common information about
a given diagnosis

Measurable Term

5

8 Performance Interface with E-Billing Clearing
House to automate the patient
billing system

Measurable Term

9 Performance Access the system via multiple web
browsers, including Mozilla®
Firefox® 3.x

Measurable Term

10 Platform and tools Use the Flex® framework for the
User Interface.

Constraint

11 Platform and tools Interface with a MySQL® database Constraint

12 Platform and tools Use Tomcat® or Django® Constraint

13 Platform and tools Use JavaServer Pages (JSP) to
interface with application server

Constraint

Table 3 - House of Quality Quality Function Deployment (QFD) Matrix

6

&

3334 =%,.0*&)'*6%>+,&"*5&?*"$8,.,&

"4 @>+.'*&AB&7+"*5"$'*%&?>>$.6"+.'*&
The first option considered when evaluating the architecture of the system featured a standalone
client application that would interact with the remote server. As all of the developers on the
team were most comfortable with this model of programming, it initially seemed like an obvious
choice. A thin client program would be installed on all computers that will connect to the
system, and all database interactions would be performed through this application. Indeed, this
method of development is still heavily used internally in many corporations for a variety of tasks.

However, preliminary investigation indicated that this would not fill all of our system’s
requirements. In particular, most standalone applications are not cross-platform, and will only
function on the system for which they were written (usually Microsoft® Windows, due to its
overwhelming majority of the market). Additionally, these programs require a separate
installation and update stream, which can often lead to a mix of older and newer versions across
different workstations.

#4 @>+.'*&CB&?,8*6<2'*'1,&D"E"762.>+&F&GH-&I?D?GJ&K&LML&
The second option considered was much closer to our final chosen design. Once a native
application was scrapped, the project was transitioned to an entirely browser-based interface to
the system. The traditional way of developing web-based applications (or “web apps”) is to
write the entire suite using a collection of technologies known as AJAX (short for
“Asynchronous JavaScript and XML”). When coupled with the scripting language PHP (not
actually an acronym!), it is possible to create dynamic and powerful web apps that are hosted at a
central location and accessed by any web browser. This resolves the updating issue presented by
standalone applications, as the latest version of the program is automatically downloaded at
every access.

Unfortunately, this idea was also ultimately scrapped. Coding in AJAX and PHP is tedious and
time-consuming, and requires enormous amounts of code to develop a system of any complexity.
Using these technologies also results in considerably more time testing and debugging, as
different browsers render JavaScript in very different ways (as an example, many web sites have
completely disparate code bases for Microsoft® Internet Explorer and Mozilla® Firefox®, due
to renderer inconsistencies).

64 7%$%6+%5&@>+.'*B&?5'#%N&/$%ON&
The third and final option that was explored when trying to decide upon a framework in which to
build our web-based application was Adobe® Flex®. Flex® allows for the development of rich
web-based applications that eliminate the need for frequent Hypertext Transfer Protocol (HTTP)
requests creating a “smoother” feel for the end-user. The system was architected by Adobe®
Systems and the integrated development environment, or IDE, to develop in Flex® is based on
the Eclipse platform.

7

An advantage of Flex® over the other two options is that it works with any browsers that support
Flash, a ubiquitous plug-in. In addition, the interface builder provided by this IDE provides a
drag-and-drop UI builder that assists in rapid prototyping of the interface. Flex® is also free to
deploy for both the developer and the end user, unlike some of the previous choices. All they
would need to do is ensure that the plug-in is installed and they should not have any
complications accessing the system.

In addition to these positives, Flex® 10 has true cross-platform support, working properly on all
three major operating systems: Microsoft® Windows®, Mac OS X® and GNU/Linux™. In
addition, from a development standpoint, Flex® provides built in support for Extensible Markup
Language (XML) and ECMAScript, both of which are industry standards.

Although it has many positives, Flex® is not without its drawbacks. One of these is the fact that
the speed at which the program runs is based entirely upon the browser rendering speed of the
user. This may lead to issues if an older browser is being used with a less powerful Flash
renderer. In addition, due to the fact that Flex® is able to create very powerful components that
are able to display lots of information, there may be significant loading time for the user due to
how memory intensive the rendering of these “heavy” components are.

54)'*6%>+&"*5&=%6.,.'*&?*"$8,.,&
As described in the previous section, the decision to present the application as a web-based
application is a fundamental constraint of the design. Therefore the first decision to be made is
the toolkit to be used. Remember: the previous iteration made the mistake of developing a UI
based solely around hand-crafted JavaScript, HTML, and AJAX, which greatly crippled the
system’s ability to expand in the future. At this point the available toolkits have been narrowed
down to Microsoft® Silverlight™ and Adobe® Flex®. Both are powerful, versatile tools that
can be used on multiple platforms and in multiple web browsers. Unfortunately, both are
relatively “heavy;” that is, both sacrifice loading time in favor of offering a rich, desktop-like
user interface. When neither particularly surpassed the other in this regard, certain minor issues
needed to be taken into account. In particular, deployment presented a particularly difficult issue
to overcome. The current system utilizes a Linux™ server (Community ENTerprise Operating
System (CentOS) in particular), which is unable to host the Silverlight™ application. Instead,
the customer would be forced to install copies of Windows Server 2003®, which ranges in cost
from $999 to $3,999 per server. This was considered an unacceptable cost, particularly when
compared to the cost of deploying Flex® (or rather, lack thereof: Flex® is completely free to
license and use). Compound this with the fact that the client portion of Silverlight™ is not fully
supported outside Windows® and Mac OS® X, and it becomes clear that Microsoft’s solution is
not adequate for this situation.

As mentioned earlier, the particular database to be used is a constraint of the project; the system
must make use of a preexisting MySQL® database for all patient information storage. Flex® in
its purest form is unable to communicate directly with MySQL®, and requires one or more
intermediary carriers to assist in communication. The most common means of performing this
interaction is using PHP code, which can be generated and parsed by Flex®, and by which
databases can be queried. This is not a perfect solution, however, as PHP code tends to be very
difficult to read, write, and modify over time. This approach would also require a daunting
amount of initial work, as each piece of PHP needs to be custom-written. In lieu of this, a

8

number of third-party alternatives exist which are specifically designed to ease interaction with
these databases. Many of them offer interfaces in Python, which is a powerful and flexible
scripting language with pervasive use throughout industry. By eliminating the need to generate
custom PHP code, more time can be spent focusing on actual system design and implementation,
and less on code churn.

This leaves only the overall structure of the system. The original implementation was
monolithic, without any considerable separation between modules or layers, resulting in a
nightmare of interdependent code that is virtually impossible to maintain on a long-term basis. It
is clear that this all-in-one design choice is not an option in this iteration. Beyond this, no other
structures were considered and discarded.

After careful consideration, it has been determined that the most effective toolkit for the
implementation of this system’s user interface is Adobe® Flex®. This was determined after
eliminating both AJAX and Microsoft® Silverlight™ as potential frameworks for the interface.
In reality, Flex® is simply a convenient XML- and ActionScript™-based interface for creating
interactive Flash animations in the form of event-based applications. Because Flex® is based
directly on Adobe® Flash®, it can be used on any web browser, for any device, as long as it
sports a free Flash plug-in. As Adobe® offers a version of the plug-in for virtually every
browser on virtually every platform the end-user will encounter, any Flex® application will be
almost universally compatible from day one. In fact, these rich interfaces will be even more
cross-platform compatible than standard AJAX code: different web browsers on different OSs
render HTML and JavaScript differently, requiring the use of many platform-specific hacks and
tweaks to ensure a consistent experience. Because Flash (and Flex®, by proxy) is rendered by
the plug-in, these tweaks are completely unnecessary, resulting in faster development, with
considerably less room for error.

Once Flex® and MySQL® have been put in place, the issue of communication between the two
once again approaches the foreground. Fortunately, a number of third-party intermediaries exist
in order to avoid the need for cumbersome and repetitive PHP or JSP pages. Investigations into
this field consistently point to a single tool: Django®. Django® is a powerful framework that is
written entirely in Python, and which has the ability to communicate pragmatically with a
MySQL® database. With this tool, queries that may have taken many lines of obfuscated SQL
syntax can be performed via a simple function call. Django® is also free to use, which is very
convenient.

These three components (Flex®, MySQL®, and Django®) set the groundwork for a three-tiered
application, with a rich front end, a Flex®ible middleware, and a powerful database. In this new
three-tiered setup, the end user (usually a nurse, doctor, or secretary) interacts directly with the
Flex® User Interface (UI), which sends messages across the web to a server. These messages
are then intercepted by a Django® gateway, parsed into Python method calls, and translated to
SQL queries. The results of these queries climb back up this chain, resulting in a new state being
seamlessly presented to the user.

Once the overall architecture has been determined, the final design decision is the general layout
of the system. Unlike the previous monolithic attempt at this problem back in 2006, our team
will be implementing a highly componentized setup, with clearly defined responsibilities and
duties being distributed throughout the modules. Thanks to Django®’s encapsulation of

9

complex database calls, each component in the system can perform its own database queries
without large amounts of repeated code. Each module is roughly based on a stage in a patient’s
trajectory through a clinic (check in, assessment, etc.). This modularization will ensure that the
system is expandable, maintainable, and flexible for many years to come, without sacrificing
features or simplicity of design and development. The fact that the system is modeled after a
patient’s trajectory should greatly improve the efficiency with which the system operates, as it
will be more closely tied into the actual path of a patient through the process.

10

3P4 =%,.0*&

"4 /1*6+.'*"$&=%6'9>',.+.'*&
The following table and design matrix lay out the division of the main functional requirements
into smaller, more specific functional requirements and associate a design parameter with each of
these requirements. The original description of these requirements lies in detail in the Systems
Requirements section of this document; these tables simply enumerate the specifics of these
descriptions.

Table 4 - Design Matrix

11

#4 71#,8,+%9&=%,.0*&
In order to meet these functional requirements, the system is divided into four modules. The first
of these is the Quick Search module, which is responsible for responding to user queries by
providing live updates pulled directly from the database. These queries may take the form of
names, birthdates, or unique patient ID numbers. Once the desired patient has been selected, a
portal is displayed which binds the other modules to one another.

Figure 1 - Quick Search Sequence Diagram

The second module is the Nurse Assessment module. This portion of the system is used by a
nurse at the beginning of every visit. It is responsible for storing standard measurements (height,
weight), vitals (blood pressure, pulse), and other general questions (contact information, current
medications, etc.). Notably, this module provides live graphical updates of a patient’s
measurements as a function of time, and compares them against official curves provided by the
Center for Disease Control (CDC).

Figure 2 - Nurse Assessment Sequence Diagram

The third and fourth modules for this implementation are the closely-related Sick Visit and Well
Visit. The doctor, depending on the reason for the visit, uses one of these modules per visit.

12

Sick Visit is responsible for helping doctors record symptoms and diagnose ailments, while Well
Visit provides a dynamic list of common questions for the patient’s age group. However, the
two are fundamentally similar from an architectural point of view.

Figure 3 - Sick and Well Visit Sequence Diagram

64 =%,.0*&?*"$8,.,&"*5&P"$.5"+.'*&
Table 5 - Table of Ideality

Requirement Ideal Final Result Our Design
Ideality

(0-100)

Billing Accuracy
• No billing code errors

• No repeat input of data

• Automate billing codes

• Electronic forms
100

Time efficiency

• No time spent scheduling
well-visits via phone

• No manual data plotting

• Well-visits can be scheduled
online

• Plots generated automatically

80

Patient

Transitions

• Move patients between
stations immediately

• Indicator for patient progress 90

Access to medical

knowledge

• Unified access point to online
databases of medical
information

• Interfaces with PIER 90

Overall Ideality: 90

1
3

 T
a

b
le

 6
 -

 F
a

il
u

r
e
 D

e
si

g
n

 E
ff

e
c
ts

 A
n

a
ly

si
s

L
in

e
#

It
em

F

u
n

ct
io

n

P
o

te
n

ti
a

l

F
a

il
u

re
 M

o
d

e
E

ff
ec

t
P

o
te

n
ti

a
l

C
a

u
se

C

u
rr

en
t

C
o

n
tr

o
l

1

C
an

n
o

t
co

n
n

ec
t

to

d
at

ab
as

e

D
ef

au
lt

s
to

 l
im

it
ed

 m
o

d
e

in

ab
se

n
ce

 o
f

a
se

cu
re

 c
o

n
n

ec
ti

o
n

2

L
o

g
o

n

R
es

tr
ic

ts
 s

y
st

em

ac
ce

ss
 t

o
 p

ro
p

er
ly

au
th

en
ti

ca
te

d
 u

se
rs

U
se

r
ca

n
n

o
t

lo
g

in
to

 s
y

st
em

N
o

 a
b

il
it

y
 t

o

ac
ce

ss
 d

at
a

U
se

r
is

 n
o

t

re
g

is
te

re
d

 o
n

 t
h

e

sy
st

em

A
d

m
in

s
ca

n
 a

d
d

/r
em

o
v

e
u

se
rs

 a
s

n
ec

es
sa

ry

3

C
u

rr
en

t
m

at
ch

es
 a

re
 s

u
p

p
li

ed

in
te

ra
ct

iv
el

y
 w

h
il

e
ty

p
in

g

4

T
y

p
o

 e
x

is
ts

 i
n

 n
am

e
T

o
p

 t
en

 s
u

g
g

es
ti

o
n

s
ar

e

id
en

ti
fi

ed
 a

n
d

 s
u

p
p

li
ed

5

Q
u

ic
k

 P
at

ie
n

t

S
ea

rc
h

R
ef

er
en

ce
s

th
e

d
at

ab
as

e
to

 f
in

d
 d

at
a

fo
r

a
g

iv
en

 p
at

ie
n

t

P
at

ie
n

t
ca

n
n

o
t

b
e

lo
ca

te
d

Q
u

er
y

 i
s

in
co

n
cl

u
si

v
e

S
u

p
p

li
ed

 n
am

e
is

 n
o

t

a
cu

rr
en

t
p

at
ie

n
t

S
y

st
em

 i
n

d
ic

at
es

 t
h

at
 t

h
e

sp
ec

if
ie

d
 p

at
ie

n
t

ca
n

n
o

t
b

e

lo
ca

te
d

6

S
y

st
em

 w
il

l
p

ar
se

 i
n

p
u

t
an

d

at
te

m
p

t
to

 e
x

tr
ac

t
re

le
v

an
t

d
at

a

7

M
ea

su
re

m
en

ts

C
o

n
v

er
ts

 s
ta

n
d

ar
d

m
ea

su
re

m
en

t
in

p
u

t

to
 m

et
ri

c,
 a

n
d

 s
to

re
s

it
 i

n
 t

h
e

d
at

ab
as

e

D
at

a
ca

n
n

o
t

b
e

co
n

v
er

te
d

 t
o

m
et

ri
c

U
se

r
is

 u
n

ab
le

 t
o

re
co

rd

m
ea

su
re

m
en

ts

In
v

al
id

 i
n

p
u

t
(e

.g
.

le
tt

er
s

in
 a

 n
u

m
er

ic
al

fi
el

d
)

A
 d

es
cr

ip
ti

v
e

er
ro

r
m

es
sa

g
e

w
il

l

b
e

p
re

se
n

te
d

8

W
h

en
 m

ea
su

re
m

en
ts

 a
re

in
p

u
tt

ed
,

th
e

u
se

r
is

 p
re

se
n

te
d

w
it

h
 t

h
e

u
p

d
at

ed
 c

u
rv

es

im
m

ed
ia

te
ly

9

D
at

a
w

as
 i

n
p

u
t

in
co

rr
ec

tl
y

 i
n

it
ia

ll
y

R
ec

en
tl

y
 a

d
d

ed
 d

at
a

ca
n

 b
e

re
m

o
v

ed
 o

r
m

o
d

if
ie

d
 i

f
in

co
rr

ec
t

1
0

P
lo

tt
in

g

R
ea

d
s

fr
o

m
 t

h
e

d
at

ab
as

e,
 p

re
se

n
ts

m
ea

su
re

m
en

t
h

is
to

ry

as
 a

 g
ra

p
h

 o
v

er
 t

im
e

C
u

rv
es

 a
re

 n
o

t

p
re

se
n

te
d

co
rr

ec
tl

y

A
cc

u
ra

te

ev
al

u
at

io
n

s

ca
n

n
o

t
b

e
m

ad
e

W
ro

n
g

 C
D

C
 p

lo
t

is

b
ei

n
g

 u
se

d

C
D

C
 p

lo
t

ch
o

ic
e

w
il

l
b

e
m

ad
e

au
to

m
at

ic
al

ly
,

av
o

id
in

g
 h

u
m

an

er
ro

r

14

!" #$%&'()*+,-.)

/" #+0%$%&'()123%&4+5&,23)
This project was broken down into four subsystems, each of which contains three distinct parts.

The projects main modules are Quick Search, Nurse Assessment, Sick Visit, and Well Visit.

Each of these modules also is composed of three separate sections. The user interface (front end)

was completed in Adobe® Flex®, and is supported by a thoroughly documented MySQL®

database (backend). In order to allow these two technologies to communicate with each other, a

Django®-based middleware was used. This addition allows for the user-facing portion and

database to be built independently, without the need for hardwired calls between the two. By

adding this additional level of abstraction to the project, should the system ever need to be

modified in the future, any changes will be much easier, as opposed to requiring the entire

system to be rearchitected a third time. A graphical representation of the way that the three

pieces interact is shown in Figure 4.

Figure 4 – High-Level Technical Design

0" #+0%$%&'()6'0+77,37)
Debugging takes place in two discrete segments: client-side and server-side. For all client

debugging, the Flex® development environment provides a powerful debugger, which is

functionally equivalent to the industry-standard GNU Project Debugger (GDB) for debugging

C/C++ code, or JDB for Java. Server-side debugging can be considerably more difficult, though

possible. Our team made use of the Python debugger PDB, for discovering flaws and errors in

the code.

15

The most difficult portion to debug in any networked application tends to be the interaction

between the client and server. The system must elegantly handle network latency and

interruptions, even while debugging, making it difficult to definitively locate the source of

certain problems. Often times, it would be necessary to debug both the client and the server

simultaneously to identify code flaws.

!" #$%&'&()*+,)&(-./+
Due to the fact that there exist two sets of sub-systems, namely the four different modules each

containing a three-layered architecture, the subsystem testing can be divided up into two

sections. While it is possible to test all three portions independently, the Flex® interface is by

far the easiest of the three to test. It can be run and tested for general user functionality and to

ensure that when a particular series of events is generated (whether they be mouse- or keyboard-

driven), an expected outcome is produced. The database backend does not require any initial

testing as it is simply a database that will house the newly input data as well as the archived data

for each patient. It will only be fully tested once the three pieces are integrated and integration

testing is performed. The middleware is primarily tested via its integration with the UI, though

some basic testing can be performed via a command-line interface.

Moving on to the four separate modules, each one is created independent of the others in a

parallel fashion. They all contain a Flex® UI, MySQL® backend and Django® middleware

components. Each individual module can be completely built and tested to ensure complete

functionality before any integration is performed. Each module has been checked to ensure that

it can save new information to the database, retrieve archival information from the database and

edit said archival information and resave the edits. In addition, each of these modules has been

tested for aesthetics and usability by the end-user.

0" #$%&'&()*+1.()/23(-4.+
With regards to integrating the subsystems, there are two distinct types of integration that must

occur. First the three technical elements that are being used must be integrated to work with one

another to advance all of the modules to fully functional integrated subunits. Then each of these

designed modules must be merged into one complete, usable system.

In order to integrate the different technical aspects, the main disconnect that must be

implemented properly is the connection between the Flex® User Interface and the MySQL®

database. These two technical aspects must be merged so that the user-inputted information is

properly stored in the database and in return the database information can be displayed back to

the user. This integration will be implemented with the use of the Django® middleware tool.

This technical tool acts as an effective communication device between the Flex® front end and

the MySQL® back end, allowing the two portions to successfully merge into one fully-

functional system.

After the technical aspects have been integrated such that each of the individual modules have

been formed and function independently, they must then be combined into one complete

application. There are two main points of access that will be used to integrate the system such

that the users may navigate through the different sections appropriately. The primary point of

access for the system will be a patient portal. This module will employ the functionality of the

Quick Search feature that the team developed in order to allow the user to search for a patient. It

will then display all of the information contained in the database relevant to this patient including

16

their prior visits and any potential future visits. Consequently this will provide access to all the

other modules in the system and allow the user to navigate through this complete system based

on the desired patient. The other point of access for this system will be a Scheduler module that

will display all of the information in the system based on date and time. This will also allow the

users to navigate through all of the different modules (providing them access to past and future

visits) only based on a given time frame and set of appointments instead of a specified patient.

Both of these modules will sufficiently integrate all of the subsystems developed for this project

and allow the user to navigate through the entire system in a successful manner. However, both

of these integration modules are outside of the scope of this particular project; our sponsor only

required the previously defined modules and claimed responsibility for the two integration

modules just described. So with regards to the required contribution, our team will provide all of

the overhead necessary in the developed modules for this integration to take place, and provide

temporary placeholders for this integration, which will fulfill our required contribution to the

integration portion of the project.

!" #$%!&'(%)*$+($,+-..!/%($.!+0!1%)$&+
The final integration and acceptance testing of this project was completed in two stages. First

the team ran sample scenarios for all possible functionality of the system, ensuring that all of the

expected outcomes are achieved consistently. The second level of testing was completed by

presenting the finalized system to the medical team at the Orange Grove Pediatrics center. The

staff performed trial runs in a real-world office situation and provides feedback and final

approval for the overall subsystem integration of the complete final system.

17

!"# $%&'()&*

+# $%&'()&*,-*.%&)/01*
Three layers of testing were employed in order to fully test the results of this system. The first

level of testing to be completed tested the functionality of all of the individual components of the

system. After each module, each piece of medical data related to that module was tested to

ensure that it could be both saved to the database and retrieved from the database successfully.

The second level of testing that occurred within each of the modules of the system was scenario

testing. Scenario testing involved running through a set of standard scenarios on the system and

confirming that in each of the scenarios, the system acted as expected at all times. The final

level of testing that our project endured was a real-world application test in which each of our

modules was presented to the medical team at the Orange Grove Pediatrics Medical Center to be

reviewed by the medical staff at this private practice. The medical staff was able to test the

provided prototype in a use the field, provide us with feedback on the system, and finally given

an overall approval for completion of each of the modules. The results of all three layers of

testing are displayed in the following Data and Research Results section of this document.

2# 3%&/10*!%4/-/5+)/,0*
Design verification was performed to ensure that the medical database system that was created

met the requirements set out by the customer. The four high level functional requirements are

listed below along with the method of testing that was implemented in order to verify the design.

The main testing methods used included unit and integration testing along with module testing

with the current users of the PedOne system at the Orange Grove Pediatrics Medical Center.

18

Table 7 - Verification Table

Requirement Method of Verification Testing

Billing Accuracy

The current system requires multiple fields to be input in

many different places. By auto-filling these fields, the

potential for error will be decreased. This will be tested

through observation and user testing of the new system.

Time efficiency

To improve time use in the system, graphing of patient data

will be done automatically, as opposed to the current method

of plotting it by hand. Unit testing of the module and user

testing will perform the accuracy and efficiency of this.

Patient Transitions

In order to ensure that a users position can be tracked in the

system, a patient tracking system will be written. For a given

patient, it will track what states have been completed allowing

that office staff to know what the next state for a patient will

be. This will be tested using unit, integration and user testing.

In addition to this form of tracking, each module will display

an indicator as to which sub-sections of that module have

been completed. Once again, unit and user testing will be

performed.

Access to medical knowledge

To allow users to have better access to medical knowledge,

the pediatric subset of PIER will be implemented. This will

be unit tested to ensure that for a given condition, the PIER

suggestion becomes available to the user. This will also be

tested via user testing.

!" #$%&'()*+,&-+.&/()
Design validation was performed in order to ensure that our design successfully accomplished

the goals set out in our functional requirements. Specifically, this validated that the developed

PedOne system improves billing accuracy, decreases superfluous time plotting data by hand,

increases patient throughput through patient tracking, and increases the access to medical

knowledge stored in the pediatric subset of PIER. These four key areas were compared against

the old system and their functionality was tested individually through unit testing and

collectively through integration testing. In addition, final validation was received from our

sponsor and the team at the Orange Grove Pediatrics Center who tested out the final product first

hand.

-" #+.+)+(-)0$%$+1!2)0$%3,.%)
As previously described, three levels of testing were employed in order to ensure the

functionality of this product both on a modular level and as a whole. The results of each of these

levels will be displayed in this section. For the first level, each element of data that is associated

with each module was tested to ensure that it could successfully be saved to and retrieved from

the database through all the sublevels of the system. This testing was completed via

confirmation by the testers, the results of which can be seen in a table located in the Appendix A.

 The second level of testing was scenario testing for each of the individual models as well as the

integration of the entire system. A table of the res ults of this scenario testing is located in

19

Appendix A. The third level of testing was completed as described by providing prototypes of

the software to the Orange Grove Pediatrics Medical Center, who, via our sponsor, provided us

with a final level of approval for each of the modules.

!" #$%&!'()*+,&-.+/0-&$((
The PedOne system that was developed in four separate modules that addresses specific sections

that a patient may go through in a given visit. The four main modules that were developed are

Quick Search, Nurse Assessment and Grapher, Sick Visit, and Well Visit. The Quick Search

provides a unified access point to access a given patients medical information using either their

name, date of birth or patient identification number (PID). This ensures that all members of the

office staff can quickly retrieve a patient’s information and access their medical history through a

dynamic query of the patient database. The second module created was the Nurse Assessment

and Grapher. This module is used by nurses to gather preliminary information about patients.

This information is automatically converted from US to metric measurements, and height, weight

and body mass index (BMI) are automatically graphed against CDC charts. The Sick Visit was

created to be used by doctors to track the symptoms of a patient who comes in with an ailment.

In addition, an interactive diagram is provided, which allows doctors to annotate specific regions

of concern on a human body diagram. This will allow the doctors to visually represent concerns

such as a rash on a patient’s body or a mole that has recently appeared. In addition, if applicable,

data from the pediatric subset of PIER will appear based upon the patient’s symptoms. Finally,

the Well Visit is provided to allow doctors to perform routine checkups on patients. This module

has a common list of questions applicable to all patients, and it will also dynamically generate

specific questions geared to a given patient’s sex and age.

These four main modules were collectively integrated into a unified access point. This provides

a clean user interface where all modules can be accessed and data can be retrieved for a given

patient. In addition, a scheduling module provided by our sponsor was integrated into this main

window to allow a pediatric private practice to track when patients would arrive and which

doctor would be seeing them.

The high level functional requirements were satisfied through the implementation of these four

modules and their unified access point through:

20

Table 8 - Implementation Table

Requirement How it was implemented

Billing Accuracy

Billing accuracy was improved through the integration of

the modules. When this was accomplished, the need to

repeatedly input data into different sections of the forms

was removed.

Time efficiency

 In order to more effectively use the time of the doctors

and nurses, the nurse assessment utilized auto-conversion

of US to metric data and auto-calculation of BMI. In

addition, to reduce possible human errors and to improve

the use of time, height, weight and BMI are auto-plotted

against CDC data.

Patient Transitions

Patient transitions were improved in two ways. First, well

visit, sick visit and nurse assessment all contain sub-

modules, which provide visual feedback to the user

indicating that they have been completed. In addition, the

system as a whole, through its integration, can indicate

which of the four main modules have been completed.

Access to medical knowledge

The access of to medical knowledge was improved

through the integration of the pediatric subset of PIER

into the sick visit module.

21

!""# $%&'()*+%&*,

The purpose of this project is to develop an electronic medical records system designed to meet

the specific needs of pediatric private practices. In recent years, there has developed a strong

demand for well-developed electronic medical record management systems within the medical

community. Our system attempts to provide an efficient, cost-effective answer to this demand.

On a larger scale, the software was developed modeling the patient’s trajectory in stages through

an appointment. The three-tier architecture previously described (including the Flex® UI,

Django® middleware, and MySQL® database) has helped to solve most of the challenges with

respect to reliability, scalability, and expandability. Likewise, the system’s inherent modularity

will help future developers and maintainers who wish to expand or modify the features of the

application without being forced to perform yet another costly rewrite.

Of course, this application is by no means a complete system. Several features necessary for a

working system, such as a way to handle billing and scheduling appointments, are not yet

implemented. However, what we have provided is a solid framework, as well as a capable

prototype to demonstrate the feasibility of a small, inexpensive system for small private

practices. With the bulk of the most difficult development and testing completed, bringing the

application to the point of deployment will be far less time- and resource-consuming.

22

!"""# $%&'((%)*+,-')./

Moving forward, this system can be expanded in a few ways. First, the system could be

integrated with additional databases to assist in diagnosis of patients and the observation of

possible medication interactions. This would allow doctors the ability to make better, more

informed diagnosis in a timelier manner. In addition, with the addition of the medication

interaction database, a doctor would be able to know in an instant if two medications prescribed

to a patient would propose any immediate health risks.

Another possible area for advancement would be with the creation of a user community, in

which doctors would be able to collaborate and share information with each other. Due to the

fact that many doctors are general practitioners, this would give them a knowledge base to pull

from about some less-common diagnoses. In addition, if it were created properly, if a series of

particular diagnosis were noticed in a particular region, the doctors would be able to discuss

possible causes for such a trend. By giving the doctors a means to communicate with each other

and share information, both the practices and the patients benefit.

Finally, we could see a system such as this expanded such that no matter where a patient went or

what doctor they saw, the practitioner would have access to their full medical history. This

would be beneficial in many instances. The first would be if an unconscious person enters the

emergency room. This system would allow the doctors and nurses to know right away what the

patient is allergic to and any preexisting conditions that they should know about. In addition to

this situation, it would be useful for a person who has more than one doctor. This would allow

the doctors to monitor the patient’s prescriptions and ensure that multiple doctor are not

prescribing conflicting medications.

23

!"# $%&'()*+,-+.+'/01

Team 3498 would like to acknowledge our Faculty Mentor for the project, Anthony King, whose

assistance throughout our project progression was greatly appreciated.

We would also like to acknowledge the medical team at the Orange Grove Pediatrics center

whose doctors, nurses, and front office staff members were greatly helpful in providing input and

feedback throughout the development of the product.

Finally, we would like to acknowledge Mark Ginsburg for providing us with sponsorship and

constant support throughout the course of the project.

24

!" #$%$&$'($)*

Adobe, "Adobe Flex 3.3 Language Reference." 26 Feb 2009. Adobe Systems. 25 Apr 2009

<http://livedocs.adobe.com/flex/3/langref/>

Holovaty, Adrian and Jacob Kaplan-Moss. "The Django Book: Version 1.0." 12 Dec 2009. 10

Apr 2009 <http://www.djangobook.com/en/1.0/>.

25

!"# $%%&'()*+

,# -&./)'0+1&.23/.+

!"#$%&'$$%$$(%)*& +,((-*&+,).-#(/*-,)& 0%*#%-1%&+,).-#(/*-,)&

!"#$%&"!"'()*+,, -./,012134, -./,015134,

6#(*"'()*+,, -./,012134, -./,015134,

7*$*()+#(",, -./,012134, -./,015134,

8%&(*!",, -./,012134, -./,015134,

#889!6#'*"+):;,, -./,012134, -./,015134,

7*$*()(;6",, -./,012134, -./,015134,

89!6<#*'($,, -./,012134, -./,015134,

!"+*8#(*9'$,, -./,012134, -./,015134,

#<<"&=*"$,, -./,012134, -./,015134,

#<<"&=*8)&"#8(*9'$,, -./,012134, -./,015134,

:6,, -./,012134, -./,015134,

("!6,, -./,012134, -./,015134,

>"*=?()<:, -./,012134, -./,015134,

>"*=?()9@,, -./,012134, -./,015134,

6%<$", -./,012134, -./,015134,

?"#+)8*&8%!)8!,, -./,012134, -./,015134,

?"*=?()*',, -./,012134, -./,015134,

("$($,, -./,012134, -./,015134,

*+)&"$%<(,, -./,012134, -./,015134,

%#)&"$%<(,, -./,012134, -./,015134,

?=:)&"$%<(,, -./,012134, -./,015134,

6%<$"9A)&"$%<(,, -./,012134, -./,015134,

'%&$")*'*(, -./,012134, -./,015134,

<#$()8?#'="+):;,, -./,012134, -./,015134,

<#$()8?#'="+)+#(",, -./,012134, -./,015134,

89'(#8()("<, -./,012134, -./,015134,

89!!"'($,, -./,012134, -./,015134,

26

!"#$%&"'"(%)''*''+*,(% -.++"(%-.,/"0+1(".,%% 2*(0"*3*%-.,/"0+1(".,%

!"#$$ %%&$$'()*(+,$ %%&$'())(+,$

-#"./01234"567$ %%&$$'()*(+,$ %%&$'())(+,$

18"79$ %%&$$'()*(+,$ %%&$'())(+,$

9:."2#3;$ %%&$$'()*(+,$ %%&$'())(+,$

56$ %%&$$'()*(+,$ %%&$'())(+,$

57$ %%&$$'()*(+,$ %%&$'())(+,$

560570/7<8$ %%&$$'()*(+,$ %%&$'())(+,$

560570"#;:8$ %%&$$'()*(+,$ %%&$'())(+,$

560570=58:$ %%&$$'()*(+,$ %%&$'())(+,$

56057097"<$ %%&$$'()*(+,$ %%&$'())(+,$

>:77?7$ %%&$$'()*(+,$ %%&$'())(+,$

.18:6.$ %%&$$'()*(+,$ %%&$'())(+,$

@07A.@7"$ %%&$$'()*(+,$ %%&$'())(+,$

937!653#.$ %%&$$'()*(+,$ %%&$'())(+,$

937!653#.0"$ %%&$$'()*(+,$ %%&$'())(+,$

937!653#.0/$ %%&$$'()*(+,$ %%&$'())(+,$

937!653#.0!/$ %%&$$'()*(+,$ %%&$'())(+,$

937!653#.06/$ %%&$$'()*(+,$ %%&$'())(+,$

937!653#.0//$ %%&$$'()*(+,$ %%&$'())(+,$

937!653#.097"#="53@:$ %%&$$'()*(+,$ %%&$'())(+,$

="53@:#5/#8#1$ %%&$$'()*(+,$ %%&$'())(+,$

@"5!90@53B!3@8#-#8#1$ %%&$$'()*(+,$ %%&$'())(+,$

.//7";#@0":#3#8#1$ %%&$$'()*(+,$ %%&$'())(+,$

@53B!3@8$ %%&$$'()*(+,$ %%&$'())(+,$

7@?76.$ %%&$$'()*(+,$ %%&$'())(+,$

421:#4"58#@$ %%&$$'()*(+,$ %%&$'())(+,$

47"6.8#8#1$ %%&$$'()*(+,$ %%&$'())(+,$

-#"./0".1:$ %%&$$'()*(+,$ %%&$'())(+,$

>."81$ %%&$$'()*(+,$ %%&$'())(+,$

65//!1$ %%&$$'()*(+,$ %%&$'())(+,$

=#870=!;$ %%&$$'()*(+,$ %%&$'())(+,$

=#870.3#6./$ %%&$$'()*(+,$ %%&$'())(+,$

=#870:!6.3$ %%&$$'()*(+,$ %%&$'())(+,$

/.@7".8#53$ %%&$$'()*(+,$ %%&$'())(+,$

@.34#4.$ %%&$$'()*(+,$ %%&$'())(+,$

@.34#4.05"./$ %%&$$'()*(+,$ %%&$'())(+,$

@.34#4.04#.9$ %%&$$'()*(+,$ %%&$'())(+,$

.=1@711$ %%&$$'()*(+,$ %%&$'())(+,$

6"1.$ %%&$$'()*(+,$ %%&$'())(+,$

#3B!"2019".#3$ %%&$$'()*(+,$ %%&$'())(+,$

#3B!"20<".@8!"7$ %%&$$'()*(+,$ %%&$'())(+,$

#3B!"2018".#3$ %%&$$'()*(+,$ %%&$'())(+,$

@5318#9.8#53$ %%&$$'()*(+,$ %%&$'())(+,$

#6978#;5$ %%&$$'()*(+,$ %%&$'())(+,$

.1171167380471@$ %%&$$'()*(+,$ %%&$'())(+,$

!"#$%&"'"(%4015",6'% -.++"(%-.,/"0+1(".,%% 2*(0"*3*%-.,/"0+1(".,%%

=5420#6.;70*$ CDE$$'()*(+,$ CDE$$'()*(+,$

=5420#6.;70)$ CDE$$'()*(+,$ CDE$$'()*(+,$

=5420#6.;70'$ CDE$$'()*(+,$ CDE$$'()*(+,$

=5420#6.;70F$ CDE$$'()*(+,$ CDE$$'()*(+,$

=5420#6.;70G$ CDE$$'()*(+,$ CDE$$'()*(+,$

=5420#6.;70H$ CDE$$'()*(+,$ CDE$$'()*(+,$

=5420#6.;70I$ CDE$$'()*(+,$ CDE$$'()*(+,$

=5420#6.;70J$ CDE$$'()*(+,$ CDE$$'()*(+,$

=5420#6.;70,$ CDE$$'()*(+,$ CDE$$'()*(+,$

=5420#6.;70*+$ CDE$$'()*(+,$ CDE$$'()*(+,$

72710#6.;70*$ CDE$$'()*(+,$ CDE$$'()*(+,$

72710#6.;70)$ CDE$$'()*(+,$ CDE$$'()*(+,$

72710#6.;70'$ CDE$$'()*(+,$ CDE$$'()*(+,$

72710#6.;70F$ CDE$$'()*(+,$ CDE$$'()*(+,$

72710#6.;70G$ CDE$$'()*(+,$ CDE$$'()*(+,$

72710#6.;70H$ CDE$$'()*(+,$ CDE$$'()*(+,$

72710#6.;70I$ CDE$$'()*(+,$ CDE$$'()*(+,$

72710#6.;70J$ CDE$$'()*(+,$ CDE$$'()*(+,$

72710#6.;70,$ CDE$$'()*(+,$ CDE$$'()*(+,$

72710#6.;70*+$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0/0#6.;70*$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0/0#6.;70)$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0/0#6.;70'$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0/0#6.;70F$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0/0#6.;70G$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0/0#6.;70H$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0/0#6.;70I$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0/0#6.;70J$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0/0#6.;70,$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0/0#6.;70*+$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0"0#6.;70*$ CDE$$'()*(+,$ CDE$$'()*(+,$

7."0"0#6.;70)$ CDE$$'()*(+,$ CDE$$'()*(+,$

27

!"#$#$%&"'!$() *+,))(-./-01) *+,))(-./-01)

!"#$#$%&"'!$2) *+,))(-./-01) *+,))(-./-01)

!"#$#$%&"'!$3) *+,))(-./-01) *+,))(-./-01)

!"#$#$%&"'!$4) *+,))(-./-01) *+,))(-./-01)

!"#$#$%&"'!$5) *+,))(-./-01) *+,))(-./-01)

!"#$#$%&"'!$6) *+,))(-./-01) *+,))(-./-01)

!"#$#$%&"'!$1) *+,))(-./-01) *+,))(-./-01)

!"#$#$%&"'!$/0) *+,))(-./-01) *+,))(-./-01)

789!$%&"'!$/) *+,))(-./-01) *+,))(-./-01)

789!$%&"'!$.) *+,))(-./-01) *+,))(-./-01)

789!$%&"'!$() *+,))(-./-01) *+,))(-./-01)

789!$%&"'!$2) *+,))(-./-01) *+,))(-./-01)

789!$%&"'!$3) *+,))(-./-01) *+,))(-./-01)

789!$%&"'!$4) *+,))(-./-01) *+,))(-./-01)

789!$%&"'!$5) *+,))(-./-01) *+,))(-./-01)

789!$%&"'!$6) *+,))(-./-01) *+,))(-./-01)

789!$%&"'!$1) *+,))(-./-01) *+,))(-./-01)

789!$%&"'!$/0) *+,))(-./-01) *+,))(-./-01)

&8:;<$%&"'!$/) *+,))(-./-01) *+,))(-./-01)

&8:;<$%&"'!$.) *+,))(-./-01) *+,))(-./-01)

&8:;<$%&"'!$() *+,))(-./-01) *+,))(-./-01)

&8:;<$%&"'!$2) *+,))(-./-01) *+,))(-./-01)

&8:;<$%&"'!$3) *+,))(-./-01) *+,))(-./-01)

&8:;<$%&"'!$4) *+,))(-./-01) *+,))(-./-01)

&8:;<$%&"'!$5) *+,))(-./-01) *+,))(-./-01)

&8:;<$%&"'!$6) *+,))(-./-01) *+,))(-./-01)

&8:;<$%&"'!$1) *+,))(-./-01) *+,))(-./-01)

&8:;<$%&"'!$/0) *+,))(-./-01) *+,))(-./-01)

7!=>$%&"'!$/) *+,))(-./-01) *+,))(-./-01)

7!=>$%&"'!$.) *+,))(-./-01) *+,))(-./-01)

7!=>$%&"'!$() *+,))(-./-01) *+,))(-./-01)

7!=>$%&"'!$2) *+,))(-./-01) *+,))(-./-01)

7!=>$%&"'!$3) *+,))(-./-01) *+,))(-./-01)

7!=>$%&"'!$4) *+,))(-./-01) *+,))(-./-01)

7!=>$%&"'!$5) *+,))(-./-01) *+,))(-./-01)

7!=>$%&"'!$6) *+,))(-./-01) *+,))(-./-01)

7!=>$%&"'!$1) *+,))(-./-01) *+,))(-./-01)

7!=>$%&"'!$/0) *+,))(-./-01) *+,))(-./-01)

<!"#;$%&"'!$/) *+,))(-./-01) *+,))(-./-01)

<!"#;$%&"'!$.) *+,))(-./-01) *+,))(-./-01)

<!"#;$%&"'!$() *+,))(-./-01) *+,))(-./-01)

<!"#;$%&"'!$2) *+,))(-./-01) *+,))(-./-01)

<!"#;$%&"'!$3) *+,))(-./-01) *+,))(-./-01)

<!"#;$%&"'!$4) *+,))(-./-01) *+,))(-./-01)

<!"#;$%&"'!$5) *+,))(-./-01) *+,))(-./-01)

<!"#;$%&"'!$6) *+,))(-./-01) *+,))(-./-01)

<!"#;$%&"'!$1) *+,))(-./-01) *+,))(-./-01)

<!"#;$%&"'!$/0) *+,))(-./-01) *+,))(-./-01)

?:7'9$%&"'!$/) *+,))(-./-01) *+,))(-./-01)

?:7'9$%&"'!$.) *+,))(-./-01) *+,))(-./-01)

?:7'9$%&"'!$() *+,))(-./-01) *+,))(-./-01)

?:7'9$%&"'!$2) *+,))(-./-01) *+,))(-./-01)

?:7'9$%&"'!$3) *+,))(-./-01) *+,))(-./-01)

?:7'9$%&"'!$4) *+,))(-./-01) *+,))(-./-01)

?:7'9$%&"'!$5) *+,))(-./-01) *+,))(-./-01)

?:7'9$%&"'!$6) *+,))(-./-01) *+,))(-./-01)

?:7'9$%&"'!$1) *+,))(-./-01) *+,))(-./-01)

?:7'9$%&"'!$/0) *+,))(-./-01) *+,))(-./-01)

"@A87&"?$%&"'!$/) *+,))(-./-01) *+,))(-./-01)

"@A87&"?$%&"'!$.) *+,))(-./-01) *+,))(-./-01)

"@A87&"?$%&"'!$() *+,))(-./-01) *+,))(-./-01)

"@A87&"?$%&"'!$2) *+,))(-./-01) *+,))(-./-01)

"@A87&"?$%&"'!$3) *+,))(-./-01) *+,))(-./-01)

"@A87&"?$%&"'!$4) *+,))(-./-01) *+,))(-./-01)

"@A87&"?$%&"'!$5) *+,))(-./-01) *+,))(-./-01)

"@A87&"?$%&"'!$6) *+,))(-./-01) *+,))(-./-01)

"@A87&"?$%&"'!$1) *+,))(-./-01) *+,))(-./-01)

"@A87&"?$%&"'!$/0) *+,))(-./-01) *+,))(-./-01)

':$%&"'!$/) *+,))(-./-01) *+,))(-./-01)

':$%&"'!$.) *+,))(-./-01) *+,))(-./-01)

':$%&"'!$() *+,))(-./-01) *+,))(-./-01)

':$%&"'!$2) *+,))(-./-01) *+,))(-./-01)

':$%&"'!$3) *+,))(-./-01) *+,))(-./-01)

':$%&"'!$4) *+,))(-./-01) *+,))(-./-01)

':$%&"'!$5) *+,))(-./-01) *+,))(-./-01)

':$%&"'!$6) *+,))(-./-01) *+,))(-./-01)

':$%&"'!$1) *+,))(-./-01) *+,))(-./-01)

':$%&"'!$/0) *+,))(-./-01) *+,))(-./-01)

!"#$%&"'"(%)*+"#,("-.'% /-00"(%/-.1"20,("-.%% 3*(2"*4*%/-.1"20,("-.%%

"&8B) CCD))(-.4-01) CCD))(-.4-01)

>!E?!B) CCD))(-.4-01) CCD))(-.4-01)

28

!"#$%&'())*((+,-.,/0())*((+,-.,/0(

!"#$%&'1-//12())*((+,-.,/0())*((+,-.,/0(

!"#$%&'13//12())*((+,-.,/0())*((+,-.,/0(

!"#$%&'12//())*((+,-.,/0())*((+,-.,/0(

!"#$%&'1452())*((+,-.,/0())*((+,-.,/0(

!"#$%&'1'6717899())*((+,-.,/0())*((+,-.,/0(

!"#$%&'1:8;1<1=/;())*((+,-.,/0())*((+,-.,/0(

>$&8?%@())*((+,-.,/0())*((+,-.,/0(

>$&8?%@1=-212())*((+,-.,/0())*((+,-.,/0(

>$&8?%@1-2/12())*((+,-.,/0())*((+,-.,/0(

>$&8?%@1+//())*((+,-.,/0())*((+,-.,/0(

>$&8?%@1'6717899())*((+,-.,/0())*((+,-.,/0(

>$&8?%@1A;())*((+,-.,/0())*((+,-.,/0(

>$&8?%@1:8;1<121=/;())*((+,-.,/0())*((+,-.,/0(

:!?'B8$1;616"67())*((+,-.,/0())*((+,-.,/0(

:!?'B8$1;616"67178991'67())*((+,-.,/0())*((+,-.,/0(

:!?'B8$1;616"671:8;1<1=/;())*((+,-.,/0())*((+,-.,/0(

?87B>;%<())*((+,-.,/0())*((+,-.,/0(

@9><8&1;B>76())*((+,-.,/0())*((+,-.,/0(

?87B><1@9><8&1:8;1<1215;())*((+,-.,/0())*((+,-.,/0(

7>9C'B8$())*((+,-.,/0())*((+,-.,/0(

D8#!$><())*((+,-.,/0())*((+,-.,/0(

:!?'B>:!&1>8&'())*((+,-.,/0())*((+,-.,/0(

:!?'B>:!&1:8;())*((+,-.,/0())*((+,-.,/0(

:!?'B>:!&1E?1=1-72())*((+,-.,/0())*((+,-.,/0(

:!?'B>:!&1'!?1/7=())*((+,-.,/0())*((+,-.,/0(

:!?'B>:!&1$%'B>#%91=1:8;17$())*((+,-.,/0())*((+,-.,/0(

$!#1?8'B!'%())*((+,-.,/0())*((+,-.,/0(

$!#1?8'B!'%1:>''9%1:8;1-())*((+,-.,/0())*((+,-.,/0(

$8B!9!<())*((+,-.,/0())*((+,-.,/0(

$8B!9!<1>F1;!C())*((+,-.,/0())*((+,-.,/0(

7"9$8?>B'())*((+,-.,/0())*((+,-.,/0(

7"9$8?>B'18&E())*((+,-.,/0())*((+,-.,/0(

7"9$8?>B'1B%67())*((+,-.,/0())*((+,-.,/0(

AD!B())*((+,-.,/0())*((+,-.,/0(

!;D!8B())*((+,-.,/0())*((+,-.,/0(

7"9$8?>B'1AD!B1!;D!8B16'B%&#'E())*((+,-.,/0())*((+,-.,/0(

7"9$8?>B'1AD!B1!;D!8B16'B%&#'E1D8!9())*((+,-.,/0())*((+,-.,/0(

7"9$8?>B'1AD!B1!;D!8B16'B%&#'E17"@@())*((+,-.,/0())*((+,-.,/0(

7"9$8?>B'1AD!B1!;D!8B1@B%A())*((+,-.,/0())*((+,-.,/0(

!9:())*((+,-.,/0())*((+,-.,/0(

<>7%&%<())*((+,-.,/0())*((+,-.,/0(

$;8())*((+,-.,/0())*((+,-.,/0(

&%:())*((+,-.,/0())*((+,-.,/0(

!9:1<>7%&%<1$;81&%:16'B%&#'E())*((+,-.,/0())*((+,-.,/0(

!9:1<>7%&%<1$;81&%:1@B%A())*((+,-.,/0())*((+,-.,/0(

!9:1<>7%&%<1$;81&%:1?>&'8&"%17$())*((+,-.,/0())*((+,-.,/0(

!9:1<>7%&%<1$;81&%:1?>&'8&"%1"&'89?>"#EB%6>9D%6())*((+,-.,/0())*((+,-.,/0(

E>$%1&%:1E!6!'E>$%())*((+,-.,/0())*((+,-.,/0(

E>$%1&%:1>B;%B%;())*((+,-.,/0())*((+,-.,/0(

E>$%1&%:1#8D%&())*((+,-.,/0())*((+,-.,/0(

7B%9>&%())*((+,-.,/0())*((+,-.,/0(

7B%;&86>&%())*((+,-.,/0())*((+,-.,/0(

7B%9>&%17B%;&86>&%1;>6%())*((+,-.,/0())*((+,-.,/0(

7B%9>&%17B%;&86>&%1A;<1;!C6())*((+,-.,/0())*((+,-.,/0(

BE8&>?>B'())*((+,-.,/0())*((+,-.,/0(

D%B!$86'())*((+,-.,/0())*((+,-.,/0(

@9>&!6%())*((+,-.,/0())*((+,-.,/0(

&!6>&%<())*((+,-.,/0())*((+,-.,/0(

BE81D%B1@9>1&!6167B!C())*((+,-.,/0())*((+,-.,/0(

BE81D%B1@9>1&!61A6())*((+,-.,/0())*((+,-.,/0(

?9!B8'8&(())*((+,-.,/0())*((+,-.,/0(

FCB'%?())*((+,-.,/0())*((+,-.,/0(

?9!B8'8&1FCB'%?12$#())*((+,-.,/0())*((+,-.,/0(

?9!B8'8&1FCB'%?1=/$#())*((+,-.,/0())*((+,-.,/0(

?9!B8'8&1FCB'%?17899())*((+,-.,/0())*((+,-.,/0(

?9!B8'8&1FCB'%?16CB"7())*((+,-.,/0())*((+,-.,/0(

!99%#B!())*((+,-.,/0())*((+,-.,/0(

!99%#B!1+/())*((+,-.,/0())*((+,-.,/0(

!99%#B!1./())*((+,-.,/0())*((+,-.,/0(

!99%#B!1=4/())*((+,-.,/0())*((+,-.,/0(

!99%#B!1A;())*((+,-.,/0())*((+,-.,/0(

!99%#B!1:8;())*((+,-.,/0())*((+,-.,/0(

$%;8?!'8>&61;%6?())*((+,-.,/0())*((+,-.,/0(

!"#$%&"'"(%)*+,#("-,%% ./00"(%./12"304("/1%% 5,(3",-,%./12"304("/1%

7!'8%&'18;())*((+,-4,/0(GHI((+,-4,/0(

E%!;1&9())*((+,-4,/0(GHI((+,-4,/0(

6J8&1&9())*((+,-4,/0(GHI((+,-4,/0(

%<'B%$1&9())*((+,-4,/0(GHI((+,-4,/0(

B!6E1$>9%1?>9>B())*((+,-4,/0(GHI((+,-4,/0(

98#E'1;!BJ())*((+,-4,/0(GHI((+,-4,/0(

29

!"#$% &&'%%()*+),-% ./0%%()*+),-%

1213425% &&'%%()*+),-% ./0%%()*+),-%

6273425% &&'%%()*+),-% ./0%%()*+),-%

753!89% &&'%%()*+),-% ./0%%()*+),-%

!724$9% &&'%%()*+),-% ./0%%()*+),-%

:";;3!$% &&'%%()*+),-% ./0%%()*+),-%

!7288$5$:% &&'%%()*+),-% ./0%%()*+),-%

1287<9% &&'%%()*+),-% ./0%%()*+),-%

7=>;43$>8% &&'%%()*+),-% ./0%%()*+),-%

?53"!$:% &&'%%()*+),-% ./0%%()*+),-%

$:$62% &&'%%()*+),-% ./0%%()*+),-%

?53"!$:@$:$62@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

5=6@;344% &&'%%()*+),-% ./0%%()*+),-%

5=6@4"6"8$:% &&'%%()*+),-% ./0%%()*+),-%

5=6@:$!7% &&'%%()*+),-% ./0%%()*+),-%

8$>:$5@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

8$>:$5@:$!7% &&'%%()*+),-% ./0%%()*+),-%

9!@>4% &&'%%()*+),-% ./0%%()*+),-%

9!@4@">B$78% &&'%%()*+),-% ./0%%()*+),-%

9!@4@">B$78@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

9!@4@:"!7<@745% &&'%%()*+),-% ./0%%()*+),-%

9!@4@:"!7<@753!8% &&'%%()*+),-% ./0%%()*+),-%

9!@4@:"!7<@9$44=C% &&'%%()*+),-% ./0%%()*+),-%

9!@4@:"!7<@D5$$>% &&'%%()*+),-% ./0%%()*+),-%

9!@4@4":!@$:$62% &&'%%()*+),-% ./0%%()*+),-%

9!@4@4":!@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

9!@4@:$>>$!% &&'%%()*+),-% ./0%%()*+),-%

9!@4@:$>>$!@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

9!@4@7?4% &&'%%()*+),-% ./0%%()*+),-%

9!@4@7?4@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

9!@4@:$!7% &&'%%()*+),-% ./0%%()*+),-%

9!@5@">B$78% &&'%%()*+),-% ./0%%()*+),-%

9!@5@">B$78@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

9!@5@:"!7<@745% &&'%%()*+),-% ./0%%()*+),-%

9!@5@:"!7<@753!8% &&'%%()*+),-% ./0%%()*+),-%

9!@5@:"!7<@9$44=C% &&'%%()*+),-% ./0%%()*+),-%

9!@5@:"!7<@D5$$>% &&'%%()*+),-% ./0%%()*+),-%

9!@5@4":!@$:$62% &&'%%()*+),-% ./0%%()*+),-%

9!@5@4":!@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

9!@5@4":!@:$>>$!% &&'%%()*+),-% ./0%%()*+),-%

9!@5@:$>>$!@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

9!@5@7?4% &&'%%()*+),-% ./0%%()*+),-%

9!@5@7?4@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

9!@5@:$!7% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@>4% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@$598<$6% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@$598<$6@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@$:$62% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@$:$62@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@$E3:28$% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@$E3:28$@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@13!% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@13!@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@C2E% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@C2E@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@;=5$"D>?=:9% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@72>24@;=5$"D>?=:9@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@86@$598<% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@86@$598<@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@86@1$8% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@86@;43":% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@86@;43":@:$!7% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@86@=?!85378$:% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@86@?3443!% &&'%%()*+),-% ./0%%()*+),-%

$25!@4@:$!7% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@>4% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@$598<$6% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@$598<$6@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@$:$62% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@$:$62@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@$E3:28$% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@$E3:28$@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@13!% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@13!@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@C2E% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@C2E@!$A$5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@;=5$"D>?=:9% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@72>24@;=5$"D>?=:9@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@86@$598<% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@86@$598<@!A5"89% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@86@1$8% &&'%%()*+),-% ./0%%()*+),-%

$25!@5@86@;43":% &&'%%()*+),-% ./0%%()*+),-%

30

!"#$%#%&'%()*+,%,!$-. //0..1234256. 789..1234256.

!"#$%#%&'%:;$&#*-&!,. //0..1234256. 789..1234256.

!"#$%#%&'%;*))*$. //0..1234256. 789..1234256.

!"#$%#%,!$-. //0..1234256. 789..1234256.

<:$!%<). //0..1234256. 789..1234256.

<:$!%&*#;$%!,!'". //0..1236256. 789..1236256.

<:$!%&*#;$%!,!'"%$!=!#+&>. //0..1236256. 789..1236256.

<:$!%&*#;$%!#>&?. //0..1236256. 789..1236256.

<:$!%&*#;$%!#>&?%$!=!#+&>. //0..1236256. 789..1236256.

<:$!%&*#;$%@!"#)>. //0..1236256. 789..1236256.

<:$!%&*#;$%@!"#)>%$!=!#+&>. //0..1236256. 789..1236256.

<:$!%##. //0..1236256. 789..1236256.

<:$!%,!$-. //0..1236256. 789..1236256.

':*&?%<). //0..1236256. 789..1236256.

':*&?%&:<$+)$%:<!. //0..1236256. 789..1236256.

':*&?%&:<$+)$%&A:.. //0..1236256. 789..1236256.

':*&?%&:<$+)$%&?#!!.. //0..1236256. 789..1236256.

':*&?%&:<$+)$%(:*#. //0..1236256. 789..1236256.

':*&?%&:<$+)$%!#>&?!'. //0..1236256. 789..1236256.

':*&?%&:<$+)$%!#>&?!'%$!=!#+&>. //0..1236256. 789..1236256.

':*&?%&:<$+)$%!B*,"&!. //0..1236256. 789..1236256.

':*&?%$:(&%@")"&!%!#>&?!'. //0..1236256. 789..1236256.

':*&?%$:(&%@")"&!%!#>&?!'%$!=!#+&>. //0..1236256. 789..1236256.

':*&?%$:(&%@")"&!%@!&!-?+"!. //0..1236256. 789..1236256.

':*&?%@:$&%@?"#><B%!#>&?!'.. //0..1236256. 789..1236256.

':*&?%@:$&%@?"#><B%!#>&?!'%$!=!#+&>. //0..1236256. 789..1236256.

':*&?%@:$&%@?"#><B%-:;;)!$&:<+<C. //0..1236256. 789..1236256.

':*&?%,!$-. //0..1236256. 789..1236256.

<!-D%<). //0..1236256. 789..1236256.

<!-D%)<%!<)"#C!,. //0..1236256. 789..1236256.

<!-D%)<%)!$$E?"<F@G. //0..1236256. 789..1236256.

<!-D%)<%-'. //0..1236256. 789..1236256.

<!-D%,!$-. //0..1236256. 789..1236256.

?!"#&%###. //0..1236256. 789..1236256.

?!"#&%&"-?%<)%#. //0..1236256. 789..1236256.

?!"#&%<:%'*#'. //0..1236256. 789..1236256.

?!"#&%,!$-. //0..1236256. 789..1236256.

)*<C$%<). //0..1236256. 789..1236256.

)*<C$%,!-#!"$+<C%;#!"&?$:*<,$. //0..1236256. 789..1236256.

)*<C$%A?!!H!. //0..1236256. 789..1236256.

)*<C$%-#"-D)!. //0..1236256. 789..1236256.

)*<C$%"!. //0..1236256. 789..1236256.

)*<C$%"!%,!$-. //0..1236256. 789..1236256.

)*<C$%(:#-!,%!B@+#"&+:<%<). //0..1236256. 789..1236256.

)*<C$%(:#-!,%!B@+#"&+:<%@#:):<C!,. //0..1236256. 789..1236256.

)*<C$%(:#-!,%!B@+#"&+:<%A?!!H!. //0..1236256. 789..1236256.

)*<C$%,!$-. //0..1236256. 789..1236256.

";,:'!<%<). //0..1236256. 789..1236256.

";,:'!<%$. //0..1236256. 789..1236256.

";,:'!<%<,. //0..1236256. 789..1236256.

";,:'!<%<:%?$'. //0..1236256. 789..1236256.

";,:'!<%;$%<). //0..1236256. 789..1236256.

";,:'!<%;$%+<-#!"$+<C. //0..1236256. 789..1236256.

";,:'!<%;$%,!-#!"$+<C. //0..1236256. 789..1236256.

";,:'!<%;$%";$!<&. //0..1236256. 789..1236256.

";,:'!<%&!<,!#. //0..1236256. 789..1236256.

";,:'!<%,!$-. //0..1236256. 789..1236256.

C*%)";+"%'+<. //0..1236256. 789..1236256.

C*%)";+"%'"I. //0..1236256. 789..1236256.

C*%*#!&?#". //0..1236256. 789..1236256.

C*%="C+<". //0..1236256. 789..1236256.

C*%"<*$%#!-&. //0..1236256. 789..1236256.

C*%;#!"$&%)!(&. //0..1236256. 789..1236256.

C*%;#!"$&%#+C?&. //0..1236256. 789..1236256.

C*%;#!"$&%;:&?. //0..1236256. 789..1236256.

C*%;#!"$&%,!$-. //0..1236256. 789..1236256.

C*%@!<+$%<). //0..1236256. 789..1236256.

C*%@!<+$%,!$-. //0..1236256. 789..1236256.

C*%&!$&!$. //0..1236256. 789..1236256.

C*%&"<. //0..1236256. 789..1236256.

!"#$%&'&(#$)*+,%&'&-*""*.&+/& 0*112,&0*$3241#,2*$& 56,42676&0*$3241#,2*$&

@)"<%$>'@&%-"#. JKL..123M256. JKL..123M256.

@)"<%&B%@#:=+,!,. JKL..123M256. JKL..123M256.

@)"<%,!$-. JKL..123M256. JKL..123M256.

?"<,:*&$%*#+. JKL..123M256. JKL..123M256.

?"<,:*&$%*#+%)!$$3. JKL..123M256. JKL..123M256.

?"<,:*&$%*#+%C#!"&!#3. JKL..123M256. JKL..123M256.

?"<,:*&$%A?!!H+<C. JKL..123M256. JKL..123M256.

?"<,:*&$%-#:*@.. JKL..123M256. JKL..123M256.

?"<,:*&$%A"#&$. JKL..123M256. JKL..123M256.

?"<,:*&$%:!. JKL..123M256. JKL..123M256.

31

!"#$%&'()*%#('+,"'+%#- ./0--1234256- ./0--1234256-

!"#$%&'()%*,(- ./0--1234256- ./0--1234256-

!"#$%&'()78%#*!+%9+'+(- ./0--1234256- ./0--1234256-

:%99%;&,),<- ./0--1234256- ./0--1234256-

:%99%;&,)+:;%8(=#(- ./0--1234256- ./0--1234256-

:%99%;&,)+:(><,'%<(*!"#?=- ./0--1234256- ./0--1234256-

:%99%;&,)+:#%'8=(%9@+#?- ./0--1234256- ./0--1234256-

:%99%;&,)$=(*- ./0--1234256- ./0--1234256-

!"#$%&"'"(%!)*+,#("-,%% ./00"(%./12"304("/1% 5,(3",-,%./12"304("/1%

:=@=8- AAB--1215256- CDE--1215256-

"*'+@+'>)#9- AAB--1215256- CDE--1215256-

"*'+@+'>)%F- AAB--1215256- CDE--1215256-

"*'+@+'>)$%;#- AAB--1215256- CDE--1215256-

"*'+@+'>)$=(*- AAB--1215256- CDE--1215256-

8#- AAB--1215256- CDE--1215256-

*%#?=('- AAB--1215256- CDE--1215256-

8#)$=(*- AAB--1215256- CDE--1215256-

('- AAB--1215256- CDE--1215256-

!"- AAB--1215256- CDE--1215256-

*%&?!);='- AAB--1215256- CDE--1215256-

*%&?!)$8>- AAB--1215256- CDE--1215256-

*%&?!)7"8F>-- AAB--1215256- CDE--1215256-

*%&?!)'+?!'- AAB--1215256- CDE--1215256-

*%&?!)$">- AAB--1215256- CDE--1215256-

*%&?!)#+?!'- AAB--1215256- CDE--1215256-

%&?!);+'!)"'+@+'>- AAB--1215256- CDE--1215256-

%&?!)$=(- AAB--1215256- CDE--1215256-

=>=()8=$- AAB--1215256- CDE--1215256-

=>=()!&8'- AAB--1215256- CDE--1215256-

=>=()+'*!>- AAB--1215256- CDE--1215256-

=>=()$8"+#"?=- AAB--1215256- CDE--1215256-

=>=()9=:'- AAB--1215256- CDE--1215256-

=>=()8+?!'- AAB--1215256- CDE--1215256-

=>=()7%'!- AAB--1215256- CDE--1215256-

=>=()$=(*- AAB--1215256- CDE--1215256-

="8)9=:'- AAB--1215256- CDE--1215256-

="8)8+?!'- AAB--1215256- CDE--1215256-

="8)7%'!- AAB--1215256- CDE--1215256-

="8),+##"- AAB--1215256- CDE--1215256-

="8)$8"+#"?=- AAB--1215256- CDE--1215256-

="8)(;+<<+#?- AAB--1215256- CDE--1215256-

="8)$=(*- AAB--1215256- CDE--1215256-

('%<"*!)?=#=8"9- AAB--1215256- CDE--1215256-

('%<"*!)8&G- AAB--1215256- CDE--1215256-

('%<"*!)9&G- AAB--1215256- CDE--1215256-

('%<"*!)89G- AAB--1215256- CDE--1215256-

('%<"*!)99G- AAB--1215256- CDE--1215256-

('%<"*!),=8+&<7- AAB--1215256- CDE--1215256-

('%<"*!)=,+?"('- AAB--1215256- CDE--1215256-

('%<"*!)$=(*- AAB--1215256- CDE--1215256-

",,='+'=)#9- AAB--1215256- CDE--1215256-

",,='+'=)%::)"#$)%#- AAB--1215256- CDE--1215256-

",,='+'=):"+8- AAB--1215256- CDE--1215256-

",,='+'=),%%8- AAB--1215256- CDE--1215256-

('%<"*!)#"&(="- AAB--1215256- CDE--1215256-

('%<"*!)@%<+'- AAB--1215256- CDE--1215256-

",,='+'=)$=(*- AAB--1215256- CDE--1215256-

('%%9)#9- AAB--1215256- CDE--1215256-

('%%9);"'=8>- AAB--1215256- CDE--1215256-

('%%9)9%%(=('%%9)!"8$- AAB--1215256- CDE--1215256-

('%%9)'+#>)7"99(- AAB--1215256- CDE--1215256-

('%%9)9"(')'+<=- AAB--1215256- CDE--1215256-

('%%9)79%%$- AAB--1215256- CDE--1215256-

('%%9)#%)79%%$- AAB--1215256- CDE--1215256-

('%%9)$=(*- AAB--1215256- CDE--1215256-

&8+#=)7&8#+#?- AAB--1215256- CDE--1215256-

&8+#=):8=G&=#*>- AAB--1215256- CDE--1215256-

&8+#=)"**+$=#'(- AAB--1215256- CDE--1215256-

&8+#=)$=(*- AAB--1215256- CDE--1215256-

(F+#)$8>- AAB--1215256- CDE--1215256-

(F+#)+'*!>- AAB--1215256- CDE--1215256-

(F+#)8"(!- AAB--1215256- CDE--1215256-

(F+#),",&9"8- AAB--1215256- CDE--1215256-

(F+#)<"*&9"8- AAB--1215256- CDE--1215256-

(F+#)$=(*- AAB--1215256- CDE--1215256-

9=(+%#)(+H=- AAB--1215256- CDE--1215256-

9=(+%#)#&<7=8- AAB--1215256- CDE--1215256-

<=#(=()#9- AAB--1215256- CDE--1215256-

<=#(=()G- AAB--1215256- CDE--1215256-

<=#(=()$- AAB--1215256- CDE--1215256-

<=#(=();- AAB--1215256- CDE--1215256-

32

!"#$%&"' (()''*+*,+,-' ./0''*+*,+,-'

!"#$%12345' (()''*+*,+,-' ./0''*+*,+,-'

67389:&;%&#&2' (()''*+*,+,-' ./0''*+*,+,-'

67389:&;%8:"<' (()''*+*,+,-' ./0''*+*,+,-'

67389:&;%=24272' (()''*+*,+,-' ./0''*+*,+,-'

67389:&;%<2=6' (()''*+*,+,-' ./0''*+*,+,-'

!"#$%&"'"(%)*'('+,-.#*/0-*'% 1.22"(%1.34"-25(".3% 6*(-"*7*%1.34"-25(".3%

7=%9">=' ?@A''B+C+,-' ./0''B+C+,-'

7=%8:&>3' ?@A''B+C+,-' ./0''B+C+,-'

7=%6D%=2&E' ?@A''B+C+,-' ./0''B+C+,-'

7=%6D%<2=6' ?@A''B+C+,-' ./0''B+C+,-'

>3' ?@A''B+C+,-' ./0''B+C+,-'

>3%6D%=2&E' ?@A''B+C+,-' ./0''B+C+,-'

>3%6D%<2=6' ?@A''B+C+,-' ./0''B+C+,-'

=:"427%&:E73E2' ?@A''B+C+,-' ./0''B+C+,-'

!">#72=62:&' ?@A''B+C+,-' ./0''B+C+,-'

16;' ?@A''B+C+,-' ./0''B+C+,-'

$#>&<' ?@A''B+C+,-' ./0''B+C+,-'

$#>&<%6D' ?@A''B+C+,-' ./0''B+C+,-'

$#>&<%6D%<2=6' ?@A''B+C+,-' ./0''B+C+,-'

&2F%ED%<2=6' ?@A''B+C+,-' ./0''B+C+,-'

3"F' ?@A''B+C+,-' ./0''B+C+,-'

9>"8%13"!' ?@A''B+C+,-' ./0''B+C+,-'

9>"8%#&2' ?@A''B+C+,-' ./0''B+C+,-'

D#9' ?@A''B+C+,-' ./0''B+C+,-'

6D7' ?@A''B+C+,-' ./0''B+C+,-'

D735' ?@A''B+C+,-' ./0''B+C+,-'

6D7%D735%<2=6' ?@A''B+C+,-' ./0''B+C+,-'

9>"=2%#D' ?@A''B+C+,-' ./0''B+C+,-'

627>82&%728#43"%83&>3"' ?@A''B+C+,-' ./0''B+C+,-'

627>82&%728#43"%:77:;3E:#&' ?@A''B+C+,-' ./0''B+C+,-'

=>E>72%728#43"' ?@A''B+C+,-' ./0''B+C+,-'

=E39"2%728#43"' ?@A''B+C+,-' ./0''B+C+,-'

=>E>72%=E39"2%728#43"%&>8F27' ?@A''B+C+,-' ./0''B+C+,-'

$37E%728#43"%675#' ?@A''B+C+,-' ./0''B+C+,-'

$37E%728#43"%63&E1' ?@A''B+C+,-' ./0''B+C+,-'

$37E%728#43"%675#%63&E1%&>8F27' ?@A''B+C+,-' ./0''B+C+,-'

=9":&E' ?@A''B+C+,-' ./0''B+C+,-'

362' ?@A''B+C+,-' ./0''B+C+,-'

$#>&<%<72==:&;' ?@A''B+C+,-' ./0''B+C+,-'

=9":&E%362%$#>&<%<72==:&;%<2=6' ?@A''B+C+,-' ./0''B+C+,-'

2D38%3!E27%ED' ?@A''B+C+,-' ./0''B+C+,-'

82<=%;:42&%:&%#!!:62' ?@A''B+C+,-' ./0''B+C+,-'

8*99%&"'"(%% 1.22"(%1.34"-25(".3% 6*(-"*7*%1.34"-25(".3%

<2&E3"%&>8%E22E1' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%6#&<:E:#&' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%<7I;%82E1#<' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%F#EE"2%%F2<' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%936:!:27%>=2' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%6372%E592'' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%!"#==2=' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%!"#>7:<2%E##E193=E2' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%!"#>7:<2%=>99"282&E' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%!"#>7:<2%<#=2'' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%<2&E:=E' ?@A''B+GH+,-' ?@A''B+GH+,-'

<2&E3"%"3=E%4:=:E' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%4#:<%&#%6#&627&=' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%4#:<%$2E%<:3927=%9<35' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%4#:<%6#&627&=' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%4#:<%<2=6' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%=E##"%&#%6#&627&='' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%=E##"%9<35' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%=E##"%E592' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%=E##"%>=2%#!' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%=E##"%6#&627&=' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%=E##"%<2=6' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%4#:<%=E##"%!72J>2&65' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%4#:<%=E##"%6#882&E=' ?@A''B+GH+,-' ?@A''B+GH+,-'

2":83E:#&%EE%&#' (()''B+GH+,-' ./0''B+GH+,-'

2":83E:#&%EE%%97#62==' (()''B+GH+,-' ./0''B+GH+,-'

2":83E:#&%EE%<35' (()''B+GH+,-' ./0''B+GH+,-'

2":83E:#&%EE%&:;1E' (()''B+GH+,-' ./0''B+GH+,-'

2":83E:#&%EE%4#:<%#&"5' (()''B+GH+,-' ./0''B+GH+,-'

2":83E:#&%EE%=E##"%#&"5' (()''B+GH+,-' ./0''B+GH+,-'

2":83E:#&%EE%4#:<%3&<%=E##"' (()''B+GH+,-' ./0''B+GH+,-'

82&=2=%&#&2' (()''B+GH+,-' ./0''B+GH+,-'

82&=2=%3;2%3E%#&=2E' (()''B+GH+,-' ./0''B+GH+,-'

82&=2=%72;>"37' (()''B+GH+,-' ./0''B+GH+,-'

33

!"#$"$%"&"'(%)*($+ ,,-++./01/23+ 456++./01/23+

!"#$"$%7''"89:*'+ ,,-++./01/23+ 456++./01/23+

!"#$"$%7''"89:*'%)"$;+ ,,-++./01/23+ 456++./01/23+

!"#$"$%;'*!<$+ ,,-++./01/23+ 456++./01/23+

!"#$"$%;'*!<$%$"&"'7=(+ ,,-++./01/23+ 456++./01/23+

!"#$"$%'":7"&")%>7=?+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%!7:A+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%!7:A%=(<"+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%B97;"+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%$@)*+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%8*=@'*)"+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%)'A%C9*#7=7=(+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%)*7'(+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%)*7'(%$<)+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%D'97=$%&"8$+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%D'97=$%&"8$%$<)+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%'")%!"*=+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%@=?"'%!"*=+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%!"*=%$<)+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%!&+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%;*:;79!+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%D"+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%@=?"'+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%&7=*!%)"$;+ ,,-++./01/23+ 456++./01/23+

#9='7=7@#%&7=*!%C9*#7=7=(+ ,,-++./01/23+ 456++./01/23+

<!?%!*B@'5E+ ,,-++./01/23+ 456++./01/23+

<!?%$9'8"'(+ ,,-++./01/23+ 456++./01/23+

<!?%*::"'8(%'"*;=7@#%=@%!")$+ ,,-++./01/23+ 456++./01/23+

<!?%'"*;=7@#%=@%7!!9#7F*=7@#+ ,,-++./01/23+ 456++./01/23+

<!?%!")7;*=7@#$+ ,,-++./01/23+ 456++./01/23+

<!?%$@;7*:%?7$=@'(+ ,,-++./01/23+ 456++./01/23+

<!?%=@G*;;@%9$"%%D*!7:(+ ,,-++./01/23+ 456++./01/23+

<*'"#=%<*=7"#=%;@#;"'#$+ ,,-++./01/23+ 456++./01/23+

@<=?@%#@%;@#;"'#$++ ,,-++./01/23+ 456++./01/23+

@<=?@%;@#;"'#$+ ,,-++./01/23+ 456++./01/23+

@<?=@%)"$;'7<=7@#+ ,,-++./01/23+ 456++./01/23+

@<=?@%&7$7@#%$;'""#%*=%$;?@@:+ ,,-++./01/23+ 456++./01/23+

@<=?@%&7$7@#%$;'""#%@<=?@%@<=@!+ ,,-++./01/23+ 456++./01/23+

@<=?@%&7$7@#%$;'""#%:*$=%&7$7=+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%)*(;*'"+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%)*(;*'"%=(<"+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%)*(;*'"%>?"'"+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%$;?@@:+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%$;?@@:%>?"'"+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%$;?@@:%A0H%8'*)"+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%?78?%$;?@@:+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%;@::"8"+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%;@::"8"%("*'+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%>@'A+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%#@%;@#;"'#$+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%;@#;"'#$+ ,,-++./01/23+ 456++./01/23+

)*(;*'"%$;?@@:%)"$;'7<=7@#+ ,,-++./01/23+ 456++./01/23+

$:""<%#@%;@#;"'#$+ ,,-++./01/23+ 456++./01/23+

$:""<%)9'*=7@#%=?'@98?%#78?=+ ,,-++./01/23+ 456++./01/23+

$:""<%)9'*=7@#%>*A"$+ ,,-++./01/23+ 456++./01/23+

$:""<%)9'*=7@#%=7!"$<)*(+ ,,-++./01/23+ 456++./01/23+

$:""<%#*<$%&*:9"+ ,,-++./01/23+ 456++./01/23+

$:""<%#*<$%=7!"$<)*(+ ,,-++./01/23+ 456++./01/23+

$:""<%#*<$%?@9'$<)*(+ ,,-++./01/23+ 456++./01/23+

$:""<%?@9'$<##78?=+ ,,-++./01/23+ 456++./01/23+

$:""<%<'@G:"!$%>7=?+ ,,-++./01/23+ 456++./01/23+

34

!"#$%&'() *($+'&,%-'($)

!"#$%&'()*$+&,-*&.)/#(0/1&/+)/&2-&0-/&(3#1/&4(/& 56'&

!"#$%&'()*$+&,-*&.)/#(0/1&74&)88&.-11#78(&,#(821& 56'&

9-::#/&)88&1($/#-01&-,&;"*1(&<11(11:(0/�&2#,,(*(0/&-*2(*1& =>?&

@*).+&2)/)&.-#0/1�$8"2#0A&$+)0A#0A&.*(B#-"1&.-#0/1& 56'&

<$$(11&@*).+(*&7(,-*(&)04&.-#0/1&+)B(&7((0&*($-*2(2&4(/& =>?&

'C#/$+&7(/C((0&0-*:)8&;"*1(&<11(11:(0/&)02&@*).+(*& =>?&

9-::#/&)88&1($/#-01&-,&'#$%&D#1#/�&2#,,(*(0/&-*2(*1& EEF&

9-::#/&)02&*(/*#(B(&2*)C#0A1&),/(*&"1#0A&/+(&G02-&,()/"*(& EEF&

9-::#/&)88&1($/#-01&-,&?(88&D#1#/�&2#,,(*(0/&-*2(*1& EEF&

'C#/$+&7(/C((0&)88&1/)/(1�&)88&-*2(*1�&/+(&-B(*)88&141/(:& 56'&

9+($%&,-*�B)8#2&(0/*#(1�&)88&,#(821& =>?&

