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NOMENCLATURE

θr Angular resolution of the telescope.
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θCA Orientation of the crystal axis with respect to the x axis.
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D Telescope diameter.
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E Electric �eld.

Ex x component of the Electric �eld.

Ey y component of the Electric �eld.
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F Measurement matrix.
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fs Sampling frequency.
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Abstract

Estimation of Stokes vector components from an interferometric fringe encoded

image is a novel way of measuring the State Of Polarization (SOP) distribution across

a scene. Imaging polarimeters employing interferometric techniques encode SOP in-

formation across a scene in a single image in the form of intensity fringes. The lack

of moving parts and use of a single image eliminates the problems of conventional

polarimetry - vibration, spurious signal generation due to artifacts, beam wander,

and need for registration routines. However, interferometric polarimeters are limited

by narrow bandpass and short exposure time operations which decrease the Signal to

Noise Ratio (SNR) de�ned as the ratio of the mean photon count to the standard

deviation in the detected image.

A simulation environment for designing an Interferometric Stokes Imaging po-

larimeter (ISIP) and a detector with noise e�ects is created and presented. Users of

this environment are capable of imaging an object with de�ned SOP through an ISIP

onto a detector producing a digitized image output. The simulation also includes

bandpass imaging capabilities, control of detector noise, and object brightness levels.

The Stokes images are estimated from a fringe encoded image of a scene by means

of a reconstructor algorithm. A spatial domain methodology involving the idea of a

unit cell and slide approach is applied to the reconstructor model developed using

Mueller calculus. The validation of this methodology and e�ectiveness compared to

a discrete approach is demonstrated with suitable examples. The pixel size required

to sample the fringes and minimum unit cell size required for reconstruction are

investigated using condition numbers. The importance of the PSF of fore-optics

(telescope) used in imaging the object is investigated and analyzed using a point

source imaging example and a Nyquist criteria is presented.
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Reconstruction of fringe modulated images in the presence of noise involves choos-

ing an optimal sized unit cell. The choice of the unit cell based on the size of the

polarization domain and illumination level is analyzed using a bias-variance tradeo�

to obtain the minimum Mean Square Error. A similar tradeo� study is used to an-

alyze the choice of the bandpass �lters under various illumination levels. Finally, a

sensitivity analysis of the ISIP is presented to explore the applicability of this device

to detect low degrees of polarization in areas such as remote sensing.
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CHAPTER 1

Introduction

Imaging polarimetry is an emerging technology that is �nding increasing applica-

tions in the �eld of remote sensing, medicine, machine vision, bio sciences, and solar

astronomy across a wide range of wavelength - ultra violet (UV) to infra red (IR).

Polarization is one of the fundamental physical quantities that characterize electro-

magnetic �elds while others are wavelength, intensity and coherence [1]. Polarization

measurements yield unique information about the vector nature of the optical ra-

diation measured across a scene. This information is di�erent from the intensity

and spectral measurements from the scene [1]. Intensity measurements indicate the

magnitude of �ux in the wavelength range measured and spectral measurements,

hyper-spectral and multi-spectral imaging, indicate the distribution of power over

wavelength. Polarization measurements have been used study surface roughness [2],

geometry [3], measure stress and spatio-temporal birefringence [4, 5], target detection

in scattering and turbid media [6], reduce clutter [7], enhance contrast [1], and even

help with the diagnosis of retinas with pathology [8].

Polarization of an optical �eld can be represented by means a Jones vector in case

of coherent �eld or a Stokes vector in case of incoherent radiation. However, appli-

cations of passive polarimetry like remote sensing where the source is not controlled,

the polarization information is represented by means of Stokes vector images of the

scene being imaged. The Stokes vector can be written as follows:
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−→
S (x, y) =



S0(x, y)

S1(x, y)

S2(x, y)

S3(x, y)


=



IH(x, y) + IV (x, y)

IH(x, y)− IV (x, y)

I45(x, y)− I135(x, y)

IRHC(x, y)− ILHC(x, y)


(1.1)

where (x, y) indicates the spatial dependence of the energy from the scene.

IH , IV,I45, I135, IRHC and ILHC represent the horizontal, vertical, 45, 135, right hand

circular (RHC) and left hand circular (LHC) polarized energies from the scenes. The

Stokes vector elements are formed from time averaged intensities and sign of the indi-

vidual elements (S1, S2, and S3) in the Stokes vector indicates the dominating energy

from a particular polarization compared to its orthogonal counterpart. For example,

a positive sign and a non-zero value of the Stokes component S1 indicates dominat-

ing energy from the horizontally polarized component of the source compared to the

energy from the vertically polarized component. By de�nition in Equation 1.1 it is

apparent that the computation of Stokes vector images from a scene requires multiple

images or a single image must contain more information than found in a conventional

system. Using multiple images obtained with a linear polarizer and a combination of

a linear polarizer and a quarter wave retarder at various transmission axis and fast

axis orientations in front of the detector is a conventional way to compute the Stokes

vectors.

Polarization optics normally reduce the throughput of the system which causes a

reduction in the Signal to Noise Ratio (SNR) which can be compensated for by long

exposure times or multiple measurements either of which may not be a concern in

active polarimetry like ellipsometry and Mueller matrix polarimetry. However, Stokes

imaging polarimeters used in remote sensing may be so limited by practical aspects of

real time imagery which require short exposure times, such as motion of objects in the
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Figure 1.1: Pattern of linear polarizers (taken from [32]).

scene or motion of the sensor relative to the scene. The images recorded by a Stokes

polarimeter for polarimetric estimation must be made under similar conditions of

source-scene geometry, illumination levels and without any scene changes in between

image measurements. Conventional time sequential Stokes polarimeters employing

rotating retarders and polarizers require motorized stages that can introduce vibra-

tions apart from increasing the volume and complexity of the measurement system.

Moreover, the rotation systems are prone to vibration inducing beam wander. The

image shifts due to vibrations or beam wander causes the polarimetric data reduction

process to introduce artifacts in the Stokes images. In fact, image misregistration of

the order of 1/20th of a pixel have been shown to cause artifacts in the polarization

images [9] and registration algorithms [10] are required to correct for the rotation and

translation of the images.

Polarimeters enabling simultaneous measurement of Stokes vector elements can

be categorized into division of wave front [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] and

division of amplitude polarimeters [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. In division

of wave front polarimeters measurements are made across the wave front at di�erent

locations without any division in amplitude and in division of amplitude polarimeters
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the energy in the wave front is divided and passed through various polarization optics

before incident onto a detector.

An example of the division of wave front polarimeter is the division of focal plane

array (FPA) polarimeter [32] which has found its applications in a wide range of

spectrum - visible, short wave infra red (SWIR) and long wave infra red (LWIR)

[1]. In this polarimeter, a linear polarizer array with a pattern like the one shown

in Figure 1.1 is formed on a substrate using micro lithography and placed in front

of the detector. Each linear polarizer is about the size of a detector pixel and makes

a polarization measurement in a part of the wave front. Linear polarizers with four

di�erent transmission axis orientations are adjacent to each other and combine to-

gether to form a super pixel which assumes that the polarization of the incoming light

does not vary much over the four linear polarizers. There are no circular polarization

components measured and hence this is an incomplete polarimeter. This polarime-

ter requires more pixels compared to other polarimeters to represent the image and

Stokes parameters associated with a particular �eld of view. It also su�ers from ar-

tifacts due to intensity gradients and instantaneous �eld of view (IFOV) errors. The

�lms laid over the pixels can lead to small errors (IFOV) where the pixels in a unit

cell do not point in the same direction

One example of the division of amplitude polarimeter capable of measuring all

four Stokes components at all pixel locations is the four channel polarimeter shown in

Figure 1.2. This polarimeter has two polarization beam splitters (PBS), a half wave

retarder (HWR- fast axis oriented at 22.5 degrees with respect to x axis), a quarter

wave retarder (QWR-fast axis oriented at 45 degrees with respect to x axis) and four

detectors. The PBS used in this con�guration [32] have 80 % and 20 % transmissions

for the parallel and perpendicular components. A calibration procedure determines

the transfer Mueller matrix which is then used along with the detector measurements
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Figure 1.2: Four channel polarimeter (taken from [32]).

to reconstruct the incident Stokes vector elements. The mechanical alignment to the

required tolerances, spatial registration issues, complexity and size of this system are

the main drawbacks of this kind of polarimeter.

Another example of the division of amplitude polarimeter is the four detector

photopolarimeter shown in Figure 1.3. The input light beam is incident on each of

the detectors sequentially. Each time the incident light encounters detectors D1, D2,

and D3 a part of the light is absorbed and the other part is specularly re�ected to the

remaining detectors. The re�ection of detector D4 is minimal and absorbs most of

the light incident on it. The light absorbed by the detectors is a linear combination

of the Stokes components of the input light. The output of each of the detectors is

related to the Stokes vector of incident light by a Mueller matrix. The four detected

signals are related to the input Stokes vector by the following relation:
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Figure 1.3: Four detector photo polarimeter (taken from [32]).
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Where I is the vector of detector measurements and A is the Mueller matrix of

the instrument. The incident Stokes components are then reconstructed from:

−→
S̃ = A−1I

where
−→
S̃ is the estimated Stokes vector. This polarimeter is not generally used for

imaging and any modi�cations of this system to accommodate imaging applications

can be challenging.

Other polarimeters [32] that can perform simultaneous Stokes vector measure-

ments are Photopolarimeter using conical di�raction, Photopolarimeter using planar

di�raction and Parallel slab polarimeter. Like the four detector Photopolarimeter

these polarimeters are more suited for active polarimetry and would require consid-

erable modi�cations before they could be used for imaging polarimetry in areas like
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Figure 1.4: A simultaneous polarimetric imaging con�guration.

remote sensing.

One of the novel methods that enable simultaneous measurement of Stokes vec-

tor components is the interferometric imaging polarimetry that encodes polarization

information in the form of intensity fringes [34, 36]. This method of encoding po-

larization information provides simultaneous measurement of both time dependent

State Of Polarization (SOP) and space dependent SOP across the scene of interest.

A con�guration of the Interferometric Stokes Imaging Polarimeter (ISIP) is shown in

Figure 1.4.

The basic unit that provides this polarimeter the simultaneous imaging capability

is the Birefringent Crystal Assembly (BCA) which consists of four birefringent crystal

wedges combined to form two spatially varying retarders, and an analyzer (linear

polarizer). The BCA is placed at the focal plane of an imaging optical system - a

telescope and aligned with the �eld of view of the telescope. The image of an object or

a scene from the telescope is incident on the front face of the BCA and a polarization

dependent fringe modulated image exits the rear face of the BCA. A description of
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the construction and working principle of the BCA along with the variations in the

BCA used by researchers are provided in Chapter 2.

The telescope along with the BCA forms the Interferometric Stokes Imaging Po-

larimeter (ISIP) (Figure 1.4) which maps the SOP of the incoming light from an

object or scene into a fringe modulated image. The shapes of the fringes in the image

depend on the fast axis orientations of the SVRs, transmission axis of linear polarizer

(analyzer) and polarization of incident light. The spatial period of these fringes are

inversely related to the wedge angle of the spatially varying retarders in the BCA.

The fringe modulation is recorded by a detector array of pixels. The fringe modulated

image is usually corrupted by noise from the detector and its associated electronic

circuitry during the process of digitization. The process of designing an optimal con-

�guration for an ISIP involves choosing right values for the BCA - wedge angles and

thickness of the spatially varying retarders, and telescope design parameters - �eld of

view, diameter of the entrance pupil and focal length, and detector design parameters

- pixel size and array dimension.

Analysis of a fringe modulated image for various settings of these physical design

parameters is feasible with simulation models of the BCA, telescope and detector.

A simulation environment capable of creating models for each of the ISIP compo-

nents with user de�ned parameters is created in IDL and presented in Chapter 3.

While telescope and detector models are straightforward, the BCA model requires the

knowledge of Mueller matrices of the individual elements forming the BCA. Apart

from studying isolated e�ects on the output image like changes in fringe frequency

with wedge angle, the simulation also provides capabilities to image a user de�ned

object with de�ned SOP, including detector noise, broad band e�ects, and e�ects of

frame integration time.

The fringe modulated image from the detector has to be reconstructed into Stokes
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images in order to display the polarization content in the object or scene. This

process is achieved by means of a reconstructor algorithm which employs matrix

inversion or Fourier domain approaches. The basic methodology in the reconstruction

algorithm used in this work is similar to the previous work [34]. However, a new

Mueller model for the spatially varying retarders in the BCA and a slide approach

are used in the reconstruction procedure. The e�ectiveness of the reconstruction

algorithm and the improved performance of the slide approach over the conventional

discrete approach is demonstrated with reconstruction examples of calibration fringe

and generic fringe patterns. Calibration fringe patterns are the basic images obtained

during the calibration procedure by illuminating the BCA with light beams of known

uniform polarization and intensity. These images are required to derive the elements

of the measurement matrix and hence the synthesis matrix used in the reconstruction

procedure. Development of the algorithm, the idea of a unit cell, slide approach

and reconstruction examples of the calibration fringe and generic fringe patterns are

presented in Chapter 4.

Fringes that encode the polarization information are sampled by the detector

pixels that have �nite physical size. In order to produce a faithful reconstruction

of the polarization information it is important that the detector pixels record the

fringe modulations accurately. The size of the detector pixels should be chosen to

at least Nyquist sample the fringes for a faithful reconstruction of the Stokes vector

components. The fringes can be Nyquist sampled by either �xing the wedge angle of

the spatially varying retarders and choosing a suitable pixel size or vice versa. The

sampling requirements for the ISIP con�guration forms the main topic of analysis

and discussion of Chapter 5.

The reconstruction procedure with measurement matrices formed from unit cell

size of 2 X 2 is shown to have high condition numbers for fringes of varying spatial
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frequencies including Nyquist and hence not suited for the reconstruction procedure

as it can produce huge errors in the estimated Stokes images in the presence of noise.

The minimum size of the unit cell required for reconstruction with Nyquist sampled

fringes is shown to be 3 X 3. Finally, the importance of choosing a unit cell size that

Nyquist samples the Point Spread Function (PSF) of the imaging optics (telescope)

is discussed and demonstrated with a point source imaging example.

Measurements from most polarization sensing optical systems are corrupted by

the noise of detector and its associated circuitry which decreases the SNR in the

detections. To overcome this problem either multiple measurements or long exposure

times can been used. However, long integration time is not an attractive feature in

remote sensing applications for which the ISIP is being considered. Using multiple

measurements to overcome noise e�ects translates to using unit cells with increased

number of pixels in the reconstruction procedure. Although large unit cells ( > 3 X 3)

decrease the noise e�ects (variance), there is an accompanying increase in reconstruc-

tion errors (bias) and loss in spatial resolution. The terms bias and reconstruction

error essentially mean the same and the choice of one over the other will depend on

the context of the discussion. The choice of unit cells with dimensions > 3 X 3 in

the reconstruction of Stokes images under various noise levels is investigated using a

bias-variance tradeo� statistical approach which forms the �rst part of Chapter 6.

In the second part of Chapter 6, a similar approach is used to analyze reconstruc-

tions of fringe modulated images obtained when the light emitted or re�ected by the

object or scene has energy over a broad band. The fringe encoded image formed

under broad illumination su�ers from spatially periodic loss of visibility. The loss in

visibility with bandwidth is a characteristic on any interferometer. In the ISIP the

loss is due to the interference of multiple intensity fringe patterns of varying spatial

frequency formed due to the dispersive nature of the birefringent crystals in the ISIP.
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This problem is countered by the use of a bandpass �lter in the ISIP that limits

the spectral range over which the energy is collected by the ISIP. A larger band-

width implies less variance and an increase in bias due to the loss in visibility of the

fringes. Given the knowledge of source brightness and spectra of the source or scene,

a bias-variance tradeo� study for the broadband imaging case helps in the choice of

an optimal bandpass �lter.

Finally, the sensitivity of the ISIP is analyzed for shot noise limited detections.

Sensitivity of a polarimeter [33] in general is de�ned in terms of the minimum de-

tectable polarization which is the minimum detectable modulated �ux (polarized

energy from the source) against the statistical �uctuations from the unpolarized back-

ground. The modulated �ux in the case of the ISIP is the fringe modulations, the

depth of which ideally is equal to the Degree Of Polarization (DOP) of incident light

from the object or scene. Detection of the fringe modulations can be challenging in

cases where the unpolarized energy collected from background exceeds the polarized

energy from source or when the energy emitted or re�ected from the source or object

has a DOP < 1. In both cases the magnitude of polarized �ux with respect to the

total incident �ux on the entrance face of the BCA is greatly reduced and the fringe

modulations from the polarized �ux gets corrupted by the shot noise �uctuations

from the unpolarized portion. In the last part of Chapter 6 both cases of decrease

in DOP along with shot noise e�ects are considered and the Signal to Noise Ratio

(SNR) will be de�ned. The SNR of the estimations are analyzed as a function of

the DOP. The magnitude of the SNR variation with DOP is a decisive factor in the

applicability of the ISIP for measurements in the �elds of both active and passive

polarimetry.
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CHAPTER 2

Birefringent Crystal Assembly

The Interferometric Stokes Imaging Polarimeter (ISIP) is a common path interferom-

eter that encodes all the polarization information into a single image [34, 36]. This

imaging polarimeter has no moving parts and does not require users to register the

images to produce Stokes vector components. The ISIP is a novel device, and while

it certainly has some important limitations, it does not su�er from the same prob-

lems of conventional Stokes polarimeters (see Chapter 1). The ISIP consists of 1)

fore-optics (telescope) that image an object or scene 2) BCA and 3) a detector that

records the BCA traversed fringe modulated image. The terms fore-optics and tele-

scope will be used interchangeably throughtout this work depending on the context of

the discussion. The BCA is the primary component that makes the ISIP a snapshot

polarimeter. Hence a functional and physical description of the BCA is important

in order to understand the working principle of the ISIP. The simulation model of

the BCA used in this work is based on Jay S.Van Delden's polarimeter [34]. In this

Chapter the following aspects of the polarimeter are described:

• Physical and functional description of a BCA.

• BCA con�gurations used in other ISIPs.
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(a) Layout of the BCA (taken from [34]).

(b) A Realization of the BCA (taken from [35]).

Figure 2.1: Birefringent Crystal Assembly.
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2.1 Physical and functional description of a BCA

The layout of a BCA is shown in Figure 2.1a. The BCA consists of two spatially

varying retarders (SVRs), SVR 1 , SVR 2, and a linear polarizer as in Figure 2.1a.

Both retarders are constructed from uniaxial birefringent crystals. The double headed

arrows in Figure 2.1a indicate orientation of axis based on the optical element. These

arrows are along the direction of the crystal axis in the case of wedges and in the linear

polarizer, they indicate the orientation of the transmission axis. Single headed arrows

at each optical element in Figure 2.1a show the directions of the cartesian coordinates

x and y. Each of the spatially varying retarders is made of two wedges with a common

wedge plane. The direction of the wedge planes in SVR 1 and SVR 2 make 45 degrees

and 135 degrees with the x axis respectively and is shown as θwp under each retarder

in Figure 2.1b. The angles between the wedge planes and x axis do not matter as

long as the relative wedge angle of the SVRs is 90 degrees as it provides a spatial

varying phase retardation in orthogonal directions. The wedges in SVR 1 and SVR 2

are cut in such a way so as the crystal axis in each wedge is orthogonal to the other.

A light ray seeing refractive index ne in the �rst wedge would see no in the second

wedge and vice versa. In Figure 2.1b the crystal axis and its corresponding plane in

each wedge are shown in pink while the wedge plane in each wedge is shown in green.

The crystal axes of the �rst and second wedges which form SVR 1, make 30 degrees

and 120 degree angles with respect to x axis. Similarly, in SVR 2, the crystal axis of

the �rst and second wedges make 150 degrees and 60 degrees with respect to the x

axis. The angle of the crystal axis with respect to the x axis in each wedge is shown

in Figure 2.1b (θCA under each wedge) and is chosen to be di�erent from the angle of

the wedge plane. This di�erence causes the crystal axis plane to decouple from the

wedge plane in each wedge. When crystal axis planes are coupled in the direction of
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Figure 2.2: Visibility of fringe patterns.

the wedge plane in both SVRs, input light linearly polarized in the direction parallel

or perpendicular to the crystal axis in the entrance wedge will not be modulated. The

lack of modulation for input polarization orientations - 45, 135, 225, and 315 degrees

with respect to x axis, is shown by zero visibilities in Figure 2.2. Hence decoupling

the wedge plane from the crystal axis plane ensures that all linear polarizations are

modulated into fringe patterns.

When a light ray of arbitrary polarization is incident on the entrance surface of

SVR 1, the polarization of the ray can be projected onto axes perpendicular and

parallel to the crystal axis. These projections determine the amplitude of the light

waves travelling at two speeds. The wedges in the SVRs are made of positive uniaxial
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birefringent crystal which implies that in the �rst wedge of SVR 1, the faster wave

experiences an ordinary index (n0) perpendicular to the crystal axis and the slower

wave experiences extraordinary index (ne) along the crystal axis. The polarization

of any light wave incident on the �rst wedge can be projected onto vectors parallel

and perpendicular to the crystal axis with a possible phase di�erence between them.

The paths taken by the light wave with these polarizations are called the ordinary

and extraordinary rays, respectively. As is common practice the waves themselves

are referred to as extraordinary rays (e-rays) and ordinary ray (o-rays). In the �rst

wedge the e-ray and o-ray see the same physical path length but di�erent optical

path lengths due to the di�erent refractive indices as seen by these rays. On reaching

the wedge plane, the o-ray sees refractive index ne, and e-ray sees refractive index no

from the second wedge. In the second wedge, the o-ray from the �rst wedge travels

as the e-ray, and the e-ray travels as o-ray. Hence the rays in SVR 1 are named oe

secondary ray and eo secondary ray respectively.

Due to the oblique incidence at the wedge plane, the oe and eo secondary rays get

refracted in di�erent directions according to Snell's law:

ne ∗ sin θ1 = no ∗ sin θeo , no ∗ sin θ1 = ne ∗ sin θoe

where θ1 is the incident angle of the e-ray and o-ray at the oblique plane, θeo and

θoe represent new directions of the eo and oe secondary rays in the second wedge of

SVR 1. This change in direction makes the eo and oe secondary rays see di�erent

physical path lengths while traversing the second wedge. Both oe and eo secondary

rays acquire an optical path di�erence (OPD) based on their transverse position of

entry at the �rst wedge. The transverse coordinates on the entrance face of the �rst

wedge for which there is zero optical path di�erence between eo and oe secondary
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rays is called the mechanical center-line axis of the system. Assuming the wedges

are identically shaped, the OPD between the oe and eo secondary rays is linearly

proportional to the distance between the mechanical center-line axis and point where

the ray entered the �rst wedge as measured along the common wedge plane.

The divergent eo and oe secondary rays exit SVR 1 and are incident on the �rst

wedge of SVR 2. The eo ray gets coupled into the eigen modes of the �rst wedge of

SVR 2, giving rise to rays eoe & eoo and similarly oe ray gives rise to rays oeo & oee.

At the wedge plane oeo & eoo rays see a refractive index ne and oee & eoe rays see no

respectively. Thus four tertiary eigen rays are created in the second wedge of SVR 2

: oeoe, eooe, oeeo and eoeo. Due to the oblique incidence at the wedge plane of SVR

2 these tertiary rays get refracted in di�erent directions and emerge from the back

surface of SVR 2 diverging from one another. These tertiary eigen rays, after passing

through SVR 2, have undergone a phase retardation whose gradient is orthogonal to

the one imposed by SVR 1. A close look at Figure 2.1b reveals that the oeoe and

eooe tertiary rays will be linearly polarized at 60 degrees while oeeo and eoeo tertiary

rays will be polarized at 150 degrees.

Finally, the unique mapping system created by the ISIP is complete when the

tertiary eigen rays pass through a linear polarizer that transmits only that component

of the electric �eld that is parallel to its transmission axis. Thus the tertiary eigen rays

exiting the linear polarizer are all polarized identically causing their corresponding

wave fronts to interfere and produce a unique polarization mapping in the form of an

irradiance fringe pattern. The polarization of the input ray has been encoded into a

unique irradiance fringe pattern. There are no restrictions on the transmission axis

orientation of the linear polarizer.

Since every wave front incident on the ISIP creates four tertiary wave fronts, this

device can be analyzed as a four beam common path interferometer. To observe the
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fringes from this interferometer, the four beams must be diverging relative to each

other and the detector needs be placed conjugate to a plane where the beams are

still overlapping. If a telescope is used in front of the ISIP, a �nite PSF is created

on the entrance face of the ISIP and the detector must be placed so that the four

PSFs overlap substantially. If the beams or the PSFs diverge signi�cantly before the

detector then there will be no interference.

In this section an attempt has been made to explain the construction and working

principle of the ISIP as much as to give a basic framework for the further work. The

Figures 2.1a and 2.1b are taken from Van Delden's work [35]. A more detailed de-

scription and analysis on the construction and functionality of the device has already

been done by Van Delden [35].

2.2 BCA con�gurations used in other ISIPs

The BCA assembly used by Oka [36] as in Figure 2.3 is similar to Van Delden's

con�guration [35, 34]. This assembly consists of a two prism pairs and an analyzer

forming the BCA while a CCD image sensor records the intensity output. The prism

pairs PR1 and PR2 are made out of birefringent crystals and the analyzer is a linear

polarizer. The arrows in the prism pairs as in Figure 2.3 indicate the direction of the

fast axis of the crystal with respect to the x axis in each prism. In the analyzer the

arrow indicates the direction of the transmission axis with respect to the x axis.

The di�erences in the con�gurations used by Oka [36] and Van Delden [34] are

in the choice of direction of the wedge planes, fast axis orientations in the prisms

(wedges), and crystal material. The direction of the wedge planes used by Van Delden

coupled into both x and y directions while in Oka's con�guration the direction of the

wedge plane was either in x or y direction. Such choices of directions for wedges would

be easier to fabricate assuming that the dimensions of the BCA is equal in x or y
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Figure 2.3: BCA con�guration used by Oka (taken from [36]).

Figure 2.4: BCA using Savart plates (taken from [39]).

direction Oka's con�guration is a modi�cation of the spectroscopic polarimeter with a

channeled spectrum [44] while Van Delden's con�guration is the �rst of its kind. The

fast axis orientations in the crystal wedges (prisms) in Van Delden's con�guration

were 30, 120, 150 and 60 degrees with respect to the x axis respectively while the

prisms in Oka's con�guration had 0, 90, 45 and −45 degree fast axis orientations

with respect to the x axis. The crystal material used by Van Delden was Yttrium

Vanadate while Oka used calcite.

The operating principle of these two con�gurations is the same - each incident
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wave front or ray splits into four tertiary wave fronts or rays and the linear polarizer

makes the wave fronts to have the same polarization thereby interfering them to

produce an intensity modulated fringe pattern. However, the di�erence in choice of

the wedge plane and fast axis orientations cause the fringe patterns to have di�erent

shapes for input beams of identical polarization.

The BCA con�gurations using birefringent prisms can be di�cult to fabricate

due to the small wedge angle and physical dimensions involved. Moreover, the beam

splitting at the wedge planes causes problems in applications requiring high spatial

resolution measurements. To overcome this limitation Oka, et.al [39] constructed a

BCA con�guration using Savart plates as shown in the Figure 2.4. Several researchers

including Dereniak, et.al [38, 8, 39] have used BCA con�gurations involving Savart

plates to reconstruct Stokes images from outdoor and retinal measurements. This

assembly consists of two Savart plates of di�erent thickness, a half wave plate and an

analyzer (linear polarizer). Each Savart plate is made of two uniaxial crystals and

the transmission axis of the analyzer is oriented at 0 degrees with respect to the x

axis and the fast axis of the half wave plate is oriented at 22.5 degrees with respect

to the x axis. In the assembly shown in Figure 2.4 lens L1 has been used to collimate

the light from the measurement sample while the lens L2 images the light exiting the

analyzer onto the detector.

A Savart plate splits the input light into ordinary (o) and extraordinary (e) com-

ponents and provides a lateral shear for the extraordinary component at the output.

Therefore, an input beam of light is sheared to two output beams of orthogonal po-

larizations travelling in the same direction. The amount of shear depends on the

thickness of the Savart plate and the direction of shear makes an angle of 45 degrees

with respect to the x axis. In the design developed by Oka, et.al [39] the fast axis

birefringent crystal slices forming each Savart plate is oriented at ±45 degrees with
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respect to the x axis. The half wave plate with its fast axis oriented at 22.5 degrees

with respect to x axis rotates the electric �eld vector by 45 degrees enabling the sec-

ond Savart plate to shear the beams exiting the �rst Savart plate to form four output

beams travelling in the same direction. The linear polarizer oriented at 0 degrees

with respect to the x axis passes only the horizontal component of the four beams.

The imaging lens focuses all four beams exiting the linear polarizer causing them to

interfere at the detector plane to form intensity fringes.

The main draw back to both the birefringent and Savarte crystal assemblies is

the dispersive nature of the crystal material which results in a loss of fringe visibil-

ity as the number of interfering wavelengths increases. Consequently the bandwidth

over which light is collected has to be limited and a bandpass �lter is used with the

BCA and Savart plate crystal assembly con�gurations. Narrow bandwidth operations

of these assemblies can result in low SNR in the measured Stokes parameters. To

overcome this problem, Dereniak, et. al [37] have developed a con�guration involv-

ing a dispersion corrected polarization Sagnac interferometer that can detect Stokes

components either S1 and S2 or S2 and S3.

\
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CHAPTER 3

Simulation Description

Simulations in this work require accurate models of some of the components of

the ISIP and the capability to include real e�ects similar to those that occur during

practical imaging. A familiar software environment (IDL) is used to achieve these

ends. Components of the ISIP that require modeling are the telescope, BCA, and

detector while the e�ects that need inclusion are detector noise, and broad band

e�ects. Detailed descriptions of the models and methods involved along with user

inputs are presented in a logical fashion. The developed simulation model is then

used to present an example where an object with de�ned SOP is imaged through the

developed telescope and BCA models. The imaged object is presented as a fringe-

modulated image with detector noise.

An important assumption of this simulation is that the entire BCA including the

detector is assumed to be e�ectively at the focal plane. Hence, there is no need to

model the Fresnel propagation of light between the elements of the BCA. For this

assumption to be valid, BCA and the detector must be placed within the depth of

focus of the telescope or equivalently, the BCA can be contained in the telescope

depth of focus and relay optics can be used to image the interference plane onto a

detector. The telescope used with the BCA must produce a beam slow enough to

neglect the e�ects of di�raction.

A clear idea of the methodology used in simulating various components and e�ects

are presented in the following sections of this Chapter:
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• A telescope model

• BCA models

• Modeling �nite bandwidth

• A detector model with noise e�ects

• IDL implementation

• User inputs

• Simulation example

3.1 A telescope model - monochromatic illumination

The fore-optics used in the ISIP is a telescope that images a scene or object

onto the BCA. The purpose of modeling the telescope is to generate a PSF that

models di�raction and aberrations, if required. A narrow �eld of view of an ISIP is

considered since the sampling requirements would make the fabrication of the wide

�eld instruments expensive. The sampling requirements for the ISIP is discussed

later in Chapter 5. For a narrow �eld of view the �eld dependent aberrations can be

neglected and the imaging system can be treated as an linear shift invariant system

also known as an isoplanatic system. The pupil function of the telescope is simple

circle with no secondary obscuration.

In case of linear shift-invariant incoherent imaging, the incoherent transfer func-

tion (Pincoh) is the scaled version of the complex auto-correlation of the pupil function

and the optical transfer function (OTF ) is the normalized version of the complex

auto-correlation of the pupil function [40]:
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(a) Coherent transfer function. (b) Incoherent transfer function.

(c) Incoherent PSF.

Figure 3.1: Telescope model.
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Pincoh(ρ) =
Ac

(λp)2
[tpupilF t∗pupil](λpq)

OTF (ρ) =
Pincoh(ρ)

Pincoh(0)
=

[tpupilF t∗pupil](λpq)

[tpupil F t∗pupil](0)

where tpupil is the pupil function, ρ is the frequency domain variable, p is the

distance of the object from the pupil [40], λ is the wavelength of the light used, Ac

is a constant with units of area, F represents auto-correlation , ∗ represents complex

conjugate, and q is the distance of the image plane from the pupil [40]. The support of

the optical transfer function (OTF ) is twice as large as the coherent transfer function

(Pcoh) due to the auto-correlation operation. Hence, to create a correct OTF , the

pupil function must be embedded in an array of size greater than or equal to twice

the size of the pupil function before the auto-correlation can be computed. The

incoherent PSF (pincoh) is computed by the inverse Fourier transform of Pincoh:

pincoh(
−→r ) =

Ac
(λp)4

∣∣∣∣Tpupil(−−→rλp)

∣∣∣∣2 .
Modi�ed forms of the IDL FFT routines to include checker boarding are used to com-

pute the forward and inverse Fourier transforms. Checker boarding is done to move

the zero-frequency component to the center of the array. This provides an easy way

of visualizing a Fourier transform with the zero-frequency component in the middle of

the spectrum. In case of matrices the quadrants one and three and quadrants two and

four are swapped. Figures 3.1a, 3.1b, and 3.1c show a coherent transfer function (20

pixel radius), incoherent transfer function, and incoherent PSF of a telescope model

on a 512 X 512 pixel array. These �gures represent an oversampled array - the PSF



44

has been sampled by an array that has more number of pixels than it needs since

the circumference of OTF does not touch the edges of the array. This is actually an

requirement for the ISIP and reason for this the additional pixel requirement can be

explained as follows:

The image formed by the ISIP can be written as

im(x, y) = (ob(x, y) ∗ pincoh(x, y))×
6∑

n=1

an(x, y)Cn(x, y)

where ob(x, y) is the intensity distribution of the object, pincoh(x, y) is the inco-

herent PSF, n = 1, 2, 3, 4, 5, 6 represent horizontal, vertical, 45, 135, RHC, and LHC

polarizations and Cn(x, y) are the associated calibration fringes.

Taking Fourier transform on both sides :

F {im(x, y)} = F {(ob(x, y) ∗ pincoh(x, y))} ∗ F

{
6∑

n=1

an(x, y)Cn(x, y)

}

F {im(x, y)} = ({F (ob(x, y)} ×OTF ) ∗ F

{
6∑

n=1

an(x, y)Cn(x, y)

}
(3.1)

The Fourier transform of the calibration fringes have delta functions (approxi-

mately) at spatial frequencies that encode the polarization information and at each

position of the delta function there will be a scaled copy of ({F (ob(x, y)} × OTF ).

The spatial frequencies encoding the polarization information must be su�ciently

high to avoid aliasing the side lobes into the main lobe. When the OTF is spread

till the edges of the array, the energy from the the side lobes is arti�cially folded into

the lower frequencies of the unmodulated image and aliasing occurs as a result. The

sampling requirements for the ISIP will be discussed in detail in Chapter 5.
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3.2 BCA models

The BCA can be modeled with a matrix using either Jones or Mueller calculus

depending on the requirements of the simulation. The Mueller matrix and Jones

matrix representing the BCA map the Stokes vectors and Jones vectors of the input

light to the corresponding Stokes vector and Jones vector of output light. Stokes vec-

tors represent the polarization of incoherent light by intensity vector elements while

the Jones vectors represent polarization of coherent light through electric �eld vector

elements. A Mueller model is useful when the input light is incoherent, partially po-

larized or a combination of both. However, when the input light is spatially coherent

a Mueller model cannot carry phase information associated with the �elds as it maps

Stokes vectors whose components are scalar values of intensities and hence cannot be

used to study the associated interference e�ects. On the other hand, a Jones model

is suitable for studying the e�ects of complete and partial coherence but cannot be

used in simulations where the input light is partially polarized or incoherent. When

the light from the scene is partially coherent the overlapping energies from di�erent

portions of the object interfere to produces fringes apart from the ones from the same

portion of the object. Hence a need for both models arises based on the DOP and

coherency of input light.

The development of both Mueller and Jones models are presented in this section

and proper use of the models should be made based on e�ects that need to be observed.

The Jones model presented in this section is not a comprehensive one and would

require further work to include e�ects of spatial coherence in imaging objects that

have complete or partial spatial coherency. In this work, objects and scenes imaged

through the BCA are assumed to be spatially incoherent and the light from it can

be partially and arbitrarily polarized. Hence the Mueller model is preferred over
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Jones model for the simulation purposes of this work. The choice of Mueller model

also presents a convenient framework for reconstruction in the form of a set of linear

equations since the detector measurements are directly in intensities. The linear

equations and reconstruction procedure based on the Mueller model is presented in

Chapter 4.

3.2.1 Mueller Model

The Mueller model provides a direct intensity to intensity mapping and uses the

following retarder matrix [41] for modeling the SVRs

M(φ, 2θ) =



1 0 0 0

0 cos2 2θ + cosφ sin2 2θ (1− cosφ) sin 2θ cos 2θ − sinφ sin 2θ

0 (1− cosφ) sin 2θ cos 2θ sin2 2θ + cosφ cos2 2θ sinφ cos 2θ

0 sinφ sin 2θ − sinφ cos 2θ cosφ


Where φ is the phase shift o�ered by the retarder and θ is orientation of fast axis of

the retarder with respect to the horizontal axis (x axis) and φ = (2π/λ)∗ OPD. In

case of SVRs, the phase shift φ is not a constant and depends on value of OPD at

the transverse location (x,y). The transverse position dependence of OPD is due to

the wedge shape in each retarder that causes retarder thickness to vary as function of

the transverse coordinates and orientation of the crystal axis in each wedge forming

the SVRs. Therefore both φ and OPD are now written as functions of the transverse

coordinates i.e. φ(x, y) and OPD(x, y). The 2θ dependence of M indicates that the

spatially varying retarder is the same when rotated by angles that are integer multiples

of 180 degrees and this idea is generally true for Mueller matrices representing optical

elements. The Mueller matrix for the ISIP or crystal assembly is written as product
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of the individual Mueller matrices of the SVRs and linear polarizer

MISIP (x, y) = MLP (2θTA) MSV R2(φ2(x, y), 2θ2) MSV R1(φ1(x, y), 2θ1) (3.2)

MLP (2θTA) = (1/2) ∗



1 cos 2θTA sin 2θTA 0

cos 2θTA cos2 2θTA sin 2θTA cos 2θTA 0

sin 2θTA sin 2θTA cos 2θTA sin2 2θTA 0

0 0 0 0


(3.3)

Where θTA is the orientation of transmission axis of linear polarizer with respect

to horizontal axis (x axis).

MSV R1(φ1, 2θ1) =



1 0 0 0

0 cos2 2θ1 + cosφ1 sin2 2θ1 (1− cosφ1) sin 2θ1 cos 2θ1 − sinφ1 sin 2θ1

0 (1− cosφ1) sin 2θ1 cos 2θ1 sin2 2θ1 + cosφ1 cos2 2θ1 sinφ1 cos 2θ1

0 sinφ1 sin 2θ1 − sinφ1 cos 2θ1 cosφ1


(3.4)

θ1 is the orientation of fast axis of SVR 1 with respect to horizontal axis (x

axis) and φ1 is the phase di�erence o�ered by SVR 1 and is dependent on transverse

coordinates (x,y):

φ1(x, y) = (2π/λ)OPD1(x, y)
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The transverse coordinate dependence of φ1 and φ2 is not explicitly shown in

Equations 3.4 and 3.5 due to space constraints.

MSV R2(φ2, 2θ2) =



1 0 0 0

0 cos2 2θ2 + cosφ2 sin2 2θ2 (1− cosφ2) sin 2θ2 cos 2θ2 − sinφ2 sin 2θ2

0 (1− cosφ2) sin 2θ2 cos 2θ2 sin2 2θ2 + cosφ2 cos2 2θ2 sinφ2 cos 2θ2

0 sinφ2 sin 2θ2 − sinφ2 cos 2θ2 cosφ2


(3.5)

θ2 is the orientation of fast axis of SVR 2 with respect to horizontal axis (x axis)

and φ2 is the phase di�erence o�ered by SVR 2 and is transverse position dependent

φ2(x, y)

φ2(x, y) = (2π/λ)OPD2(x, y)

Inserting Equations 3.5 , 3.4 , and 3.3 in Equation 3.2 and using θTA= 0 degrees

, we obtain

MISIP (x, y) = (1/2)



F0(x, y) F1(x, y) F2(x, y) F3(x, y)

F4(x, y) F5(x, y) F6(x, y) F7(x, y)

F8(x, y) F9(x, y) F10(x, y) F11(x, y)

F12(x, y) F13(x, y) F14(x, y) F15(x, y)


(3.6)

where



49

F0(x, y) = 1 (3.7)

F1(x, y) = (cos2 2θ1 + cosφ1(x, y) sin2 2θ1)(cos2 2θ2 + cosφ2(x, y) sin2 2θ2)

+ ((1− cosφ2(x, y)) sin 2θ2 cos 2θ2)((1− cosφ1(x, y)) sin 2θ1 cos 2θ1))

− (sinφ2(x, y) sin 2θ2)(sinφ1(x, y) sin 2θ1) (3.8)

F2(x, y) = (cos2 2θ2 + cosφ2(x, y) sin2 2θ2)((1− cosφ1(x, y)) sin 2θ1 cos 2θ1))

+ ((1− cosφ2(x, y)) sin 2θ2 cos 2θ2)(sin2 2θ1 + cosφ1(x, y) cos2 2θ1)

+ (sin 2θ1 cos 2θ1)(sinφ2(x, y) sin 2θ2) (3.9)

F3(x, y) = −(cos2 2θ2 + cosφ2(x, y) sin2 2θ2)(sinφ1(x, y) sin 2θ1)

+ ((1− cosφ2(x, y)) sin 2θ2 cos 2θ2)(sin 2θ1 cos 2θ1)

− (sinφ2(x, y) sin 2θ2)(cosφ1(x, y)) (3.10)
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F4(x, y) = F0(x, y), (3.11)

F5(x, y) = F1(x, y), (3.12)

F6(x, y) = F2(x, y), (3.13)

F7(x, y) = F3(x, y). (3.14)

and

F8(x, y) = F9(x, y) = 0

F10(x, y) = F11(x, y) = 0

F12(x, y) = F13(x, y) = 0

F14(x, y) = F15(x, y) = 0 (3.15)

.

It can be seen from Equations 3.11, 3.12, 3.13, 3.14, and 3.15 that the horizontal

orientation of linear polarizer transmission axis with respect to the x axis in the BCA

makes the �rst two rows in the MISIP (x, y) matrix the same and rest of the rows

zeros. Similarly, a 45 degree orientation of the linear polarizer with respect to the x

axis would make the �rst and third rows the same and rest of the rows zeros. But a

linear polarizer oriented at 22.5 with respect to the x axis would make only the fourth

row zero. The rest of rows will not be zeros. However, the last row will always remain

zero irrespective of the transmission axis orientation with respect to the x axis since

the light exiting the BCA is always linearly polarized.

A linear polarizer transmission axis orientation of θ degrees with respect to the
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x axis does not imply that the BCA is opaque to incident light polarized at θ + 90

degrees (with respect to x axis) since the light rays exiting the second SVR 2 will

always be polarized either along the direction of the crystal axis of the second wedge

in SVR 2 or in a direction orthogonal to it. Though the polarization of the incident

light does not determine the exiting polarization orientation of light rays from SVR 2,

it does determine the electric �eld amplitude and associated intensity of each exiting

light ray.

The polarization of the input light and light exiting the crystal assembly are

modeled by Stokes vectors
−→
S in and

−→
S out respectively. If the SOP is changing across

the input beam of light then the Stokes vectors
−→
S in and

−→
S out have to include spatial

dependence in their representations, i.e
−→
S in(x, y) and

−→
S out(x, y)The input

−→
S in(x, y)

is mapped to
−→
S out(x, y) by the relation

−→
S out(x, y) = MISIP (x, y)

−→
S in(x, y) (3.16)

where

−→
S in(x, y) =



S0(x, y)

S1(x, y)

S2(x, y)

S3(x, y)


,
−→
S out(x, y) =



S
′
0(x, y)

S
′
1(x, y)

S
′
2(x, y)

S
′
3(x, y)


(3.17)

andMISIP (x, y) is given by Equation 3.2. When the matrix multiplication in Equation

3.16 is performed, the analytical form of the output light intensity O(x, y) or S
′
0(x, y)

which is �rst element of the vector
−→
S out(x, y) in Equation 3.17 is obtained as :
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O(x, y) = S
′

0(x, y) = (1/2)[S0(x, y)F0(x, y) + S1(x, y)F1(x, y)

+ S2(x, y)F2(x, y) + S3(x, y)F3(x, y) ] (3.18)

This is also the expression for the intensity of the light as seen by the detector.

3.2.2 Jones Model

The Jones model provides a mapping from the input electric �eld to the output

electric �eld and uses the following retarder matrix when the fast-axis of the retarder

is at θ degrees with respect to the horizontal axis:

JRet(θ) = JRot(−θ) JRet(0) JRot(θ) (3.19)

Where JRet(0), JRet(θ) are the Jones matrices of the retarders when the fast-axis

of the retarder is at 0 and θ degrees with respect to the horizontal axis, JRot(θ)is the

Jones matrix of a rotator and

JRot(θ) =

 cos θ sin θ

− sin θ cos θ

 , JRet(0) =

 eiφ 0

0 1

 (3.20)

where φ is the phase di�erence o�ered by the retarder. Evaluating Equation 3.19,

the general form of a retarder at θ degrees with respect to horizontal axis is obtained

as:

JRet(θ) =

 eiφ cos2 θ + sin2 θ eiφ cos θ sin θ + sin θ cos θ

eiφ cos θ sin θ + sin θ cos θ eiφ sin2 θ + cos2 θ

 (3.21)
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The Jones matrix for the ISIP can be written as the product of the individual

Jones matrices of the SVRs and linear Polarizer:

JISIP (x, y) = JLP (θTA) JSV R1(φ2(x, y), θ2) JSV R1(φ1(x, y), θ1) (3.22)

where

JSV R1(φ1(x, y), θ1) =

(3.23) eiφ1(x,y) cos2 θ1 + sin2 θ1 eiφ1(x,y) cos θ1 sin θ1 + sin θ1 cos θ1

eiφ1(x,y) cos θ1 sin θ1 + sin θ1 cos θ1 eiφ1(x,y) sin2 θ1 + cos2 θ1

 (3.24)

JSV R2(φ2(x, y), θ2) =

(3.25) eiφ2(x,y) cos2 θ2 + sin2 θ2 eiφ2(x,y) cos θ2 sin θ2 + sin θ2 cos θ2

eiφ2(x,y) cos θ2 sin θ2 + sin θ2 cos θ2 eiφ2(x,y) sin2 θ2 + cos2 θ2

 (3.26)

JLP (θTA) =

 cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

 (3.27)

Evaluating Equation 3.22 using Equations 3.24, 3.26, and 3.27 with θTA = 0 we

obtain

JISIP (x, y) =

 J1 J2

J3 J4

 (3.28)
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where

J1 = (eiφ1(x,y) cos2 θ1 + sin2 θ1)(eiφ2(x,y) cos2 θ2 + sin2 θ2)

+ (eiφ2(x,y) cos θ2 sin θ2 − sin θ2 cos θ2)(eiφ1(x,y) cos θ1 sin θ1 − sin θ1 cos θ1) (3.29)

J2 = (eiφ2(x,y) cos2 θ2 + sin2 θ2)(eiφ1(x,y) cos θ1 sin θ1 − sin θ1 cos θ1)

+ (eiφ2(x,y) cos θ2 sin θ2 − sin θ2 cos θ2)(eiφ2(x,y) cos2 θ2 + sin2 θ2) (3.30)

J3 = 0 (3.31)

J4 = 0 (3.32)

The incident �eld is represented by
−→
E in =

 Ex

Ey

 . When the SOP varies across

the incident beam,
−→
E in becomes space dependent i.e

−→
E in(x, y) =

 Ex(x, y)

Ey(x, y)

 and

corresponding output �eld is given by
−→
E out(x, y) =

 E
′

x(x, y)

E
′

y(x, y)

. The mapping

from
−→
E in(x, y) to

−→
E out(x, y) is given by the relation:

 E
′

x(x, y)

E
′

y(x, y)

 = JISIP (x, y)

 Ex(x, y)

Ey(x, y)

 (3.33)
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and output intensity as seen by the detector is given by:

O(x, y) =
∣∣∣E ′

x(x, y)
∣∣∣2 +

∣∣∣E ′

y(x, y)
∣∣∣2 . (3.34)

The Mueller matrix modeling followed in section 3.2.1 is based on Van Delden's

work [35]. However, the retarder model used in this work are adopted from [41], while

the model followed by Van Delden is taken from [42].

3.2.3 Comparison of Mueller and Jones BCA models

To validate the BCA models, outputs from both Mueller and Jones calculus are

compared. For this purpose, fringe patterns from individual models for input beams

with uniform intensity and �xed polarization are created. These beams are assumed

to be collimated and illuminate the entire entrance face of the BCA. Three uniform

beams are used for illumination (one at a time) and the polarization of these beams

are �xed to be horizontal, 45 and Right Hand Circular (RHC) respectively. The

reason for the choice of polarization and number of beams will be evident from the

discussion of the reconstruction algorithm in Chapter 4

Fringe patterns created with collimated beams of uniform intensity and polariza-

tion (horizontal, 45, and RHC) are the calibration fringes. These patterns can be

viewed as basis fringes or eigen fringes where a fringe pattern produced by the BCA

for an arbitrary input polarization state can be expressed as a linear combination of

the calibration fringes. The depth of modulation (visibility) of the fringe patterns

including the calibration fringes produced by the BCA depend on DOP of input light

with the maximum depth (visibility = 1) and minimum depth (visibility = 0) oc-

curring for input light with DOP = 1 and DOP = 0 respectively. To create the

calibration fringes from both Jones and Mueller models, input light beams of DOP

= 1 are used. Figure 3.2 shows calibration fringes from the Mueller (left column)
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Figure 3.2: Calibration fringes and di�erenceimages.

and Jones (center column) models of the BCA generated using the dispersion rela-

tion of Yttrium Vanadate (uniaxial crystal material in the BCA), their corresponding

di�erence images (right column), and root mean square error values (RMSE). The

maximum fringe intensity value in both Mueller and Jones calibration images is unity

and the minimum value is zero. The small magnitude of RMSE values of the di�er-

ence images indicate that the calibration fringes are identical and hence both models

are similar.

3.3 Modeling �nite spectral bandwidth

In most practical applications the objects and scenes imaged by ISIP emit light in

a wide range of wavelengths. A near monochromatic operation of the ISIP is almost

impossible even with a narrow bandpass �lter as it causes a signi�cant decrease in the

system throughput and poses a challenge when imaging objects of low illumination
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Figure 3.3: Broad band imaging e�ects on the horizontal calibration fringes.

levels. The two e�ects that have to be taken into account during broad band imaging

are the fore-optics e�ect and dispersion e�ect of the uniaxial crystal wedges used in

the BCA. The angular resolution of the telescope is given by:

θr = 1.22 (λ/D)

where λ is the wavelength of the light and D is the diameter of the telescope pupil.

The rate of change of angular resolution with wavelength and pupil diameter changes

are given by

dθr/dλ = 1.22/D

and

dθr/dD = (−1.22λ)/D2

.Using the condition that the rate of change in angular resolution dθr with respect
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to wavelength and diameter should be the same, a relation between the change in

pupil diameter, change in wavelength, initial wavelength, and initial pupil diameter

is obtained as:

dD = −D0 (dλ/λ0)

where D0, λ0 are the initial pupil diameter and wavelength. λ0 is the central

wavelength when a bandpass �lter is used and D0 is the user de�ned pupil diameter

corresponding to λ0. Therefore a PSF due to broad band imaging can be modeled as

a summation of individual PSFs obtained with scaled pupil diameters. The number of

summations over a wavelength range in the simulation is a user input and reasonable

increments in wavelength gives accurate results with less computational time com-

pared cases with small increments in wavelength. For example, PSF computations for

every 5nm increment is reasonable in imaging applications over a wavelength range

of 400nm - 700 nm.

The wedges forming SVRs of the BCA are made from the same uniaxial crystal

and hence have the same dispersion relation which formulates the variation of the

refractive indices - both ordinary and extraordinary, as a function of wavelength of

incident light. This variation causes multiple fringe patterns (one for each wave-

length) with varying periods to interfere at the image plane causing a washout in

fringe visibility at the outer edges of the fringe-modulated image. The washout e�ect

gets increasingly pronounced and begins to a�ect the inner regions of the image as

the number of interfering fringe patterns with di�erent periods (due to di�erence in

wavelengths) increases. Figure 3.3 shows the e�ects of broad band imaging on the

horizontal calibration fringes with Yttrium Vanadate crystal wedges for the BCA and

a central wavelength of 600 nm for the bandpass �lter.
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3.4 A detector model with noise e�ects

The images of objects and scenes from the ISIP or calibration fringe images from

the BCA are detected and digitized by a CCD detector. During the process of de-

tection and digitization of an analog image, a detector and the electronic circuitry

associated with it introduces noise that is a combination of both signal dependent

noise and signal independent noise. An example of signal dependent noise is the shot

noise while dark noise is an example of signal independent noise. The noise from the

detector and its electronic circuitry can be divided into three main categories [61]:

Photon noise and shot noise: These terms are frequently used interchangeably

when the sources of noise in detectors are discussed. Photon noise usually refers to

the random arrival of discrete photons while shot noise is the noise associated with

the random generation of electrons in the photo-detector material. The quantum

nature of the light reaching the detector is not considered in most cases and hence

the photon noise may be safely neglected by assuming a constant �ux incident on

the detector. However, the photo-electrons produced due to the discrete light-matter

interaction results in shot noise which is modeled by a Poisson distribution that obeys

the discrete probability law:

Pn = e−a ∗ an/n!

where a is the mean and variance of the distribution and Pn is the probability of

receiving n photon-electrons over a time interval T .

Dark noise: This signal independent noise occurs due to the random variation

in thermal generated electrons (dark current) by the silicon material of the CCD

detector and depends on the temperature of the device. There are two types of

noise associated with the dark current - dark current shot noise and dark current
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non-uniformity noise. The shot noise component follows Poisson statistics similar to

the shot noise created by the photo-electrons. Dark current non-uniformity is the

variation of the dark current from pixel to pixel in the detector due to di�erences in

dark signal generation rates. This non-uniformity is either not random or varies very

slowly relative to other random e�ects. The bias due to thermal current buildup can

be removed by a subtracting an appropriate dark current averaged frame acquired

under identical conditions of temperature and integration time as the image with the

shutter of the camera closed. However, the noise �uctuations due to dark current

cannot be removed from the image.

Read noise: The process of reading out the accumulated charge, conversion

into a voltage for quanti�cation (analog to digital (A/D) conversion), and subsequent

processing adds noise at every stage but the entire system noise is combined into one

term - read noise. The major source of read noise in a CCD is due to the random

amount of charge left behind at each pixel during the charge transfer of the read out

process. Other major sources of read noise include reset noise, Johnson or white noise

and �icker noise.

Reset noise occurs when the charge accumulated by the detector is converted

to a voltage by means of a sense capacitor and a source-follower ampli�er. The

uncertainty of reference voltage set at the sense capacitor due to thermal variations

in the channel resistance of the reset transistor (usually a metal-oxide semiconductor

�eld e�ect transistor (MOSFET)) generates noise. Hence the reference level of the

sense capacitor is di�erent for each pixel and the reset noise can be modeled as:

Nreset =
√

4 ∗ k ∗ T ∗B ∗R

where Nreset is the noise voltage on the sense node, k is Boltzmann's constant
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(joules/kelvin), T is temperature (kelvin), B refers to noise power bandwidth (hertz),

and R is the e�ective channel resistance (ohms).

Johnson noise occurs due to the thermal noise generated by the resistance of the

output ampli�er MOSFET and is governed by the Johnson white noise equation.

This noise is independent of frequency and when the e�ective resistance is the output

impedance of the source-follower ampli�er, the following equation models the white

noise:

Nwhite =
√

4 ∗ k ∗ T ∗B ∗Rout

where Nreset is the noise voltage on the sense node, Rout is the output impedance

of the ampli�er (ohms), k is Boltzmann's constant (joules/kelvin), T is temperature

(kelvin), and B refers to noise power bandwidth (hertz).

Flicker noise is commonly referred to as ( 1
f
) noise because of its inverse depen-

dence on frequency and the pixel read-out rate of the CCD determines the signi�cant

frequency variable. This noise is generally accepted as occurring due to the interface

states in the image sensor silicon which turns on and o� randomly according to di�er-

ent time constants and the noise magnitude decreases with an increase in frequency.

Beyond a certain frequency known as the ( 1
f
) corner frequency this noise levels o�

and a white noise �oor is reached. The power spectrum of �icker noise has been

empirically modeled as:

S4V (ν) =
αH ∗ V

2

N∗ | ν |

where V is the mean voltage, N is the mean number of free carriers αH is called

Hooge constant and ν is the frequency variable.

Other noise sources that can be included under the read noise category
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are generation-recombination noise, electronic interference and clock-jitter noise.

Generation-recombination (GR) noise is a thermal e�ect where the conductivity of

a semi-conductor varies due to changes in carrier density concentrations and can be

viewed as �uctuations in resistance of the specimen. When an electric �eld is applied

the resistance �uctuations lead to conductivity �uctuations which is the source of

this noise and must be considered. The power spectral density of the GR current

�uctuations is written as:

S∆i(ν) =
V 2
o

N ∗R
∗ (2 ∗ τ)

(1 + (2 ∗ π ∗ ν ∗ τ)2

where V0 is the applied voltage, N is the mean density of free electrons, R is the

mean resistance, and τ is the lifetime of the electron in the free state. The CCD de-

tector has electronic circuitry including the CCD preampli�er, CDS signal processor,

and ADC which operate at a micro-volt level and are highly sensitive to electronic

interference. Additional electronics include digital electronics for camera operations

and a switching power supply for providing internal voltages for other necessary op-

erations. The switching operations produce electronic noise which can interfere with

low-level CCD signals either through radiation or conduction introducing signi�cant

noise in images. This noise is uncorrelated in the frequency domain and is the main

source of structured noise in the CCD bias frame. GR noise can be minimized by

careful circuit board layout and isolation, shielding and grounding, signal rise-time

control, �ltering, and carefully considered timing.

The processing and transfer of the accumulated charge to the output of the CCD

requires a number of clocking circuits, which is controlled by a master clock. Clocking

noise or clock-jitter noise can result from operation of these circuits if the clock signal

is fed through to the output waveform. This noise increases with signal and follows
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a square-root relation to clocking frequency.

Apart from these sources of noise an additional e�ect that needs consideration

is the Photo Response Non-Uniformity (PRNU) of the pixels in the detector. This

can be viewed as a variation in the sensitivity or quantum e�ciency of the pixels to

convert light into electrons. Hence an image of a uniformly illuminated �at-�eld will

re�ect a faint checker board pattern at the individual pixel level. An image processing

technique of �at-�elding can be utilized to remove the pattern caused due to pixel

quantum e�ciency variation. This technique involves the subtraction of a separately

acquired �at-�eld image from the image frames and is used depending on application

as it can increase shot noise by a factor of 1.414.

The detector model used in this work assumes the following:

1. The pixels of the detector have the same sensitivity and quantum e�ciency.

2. The pixel read-out occurs at high frequency. Hence the e�ect of 1
f
noise is

negligible.

3. The �ux of light incident on the detector is constant over the integration time

and hence the photon noise may be neglected.

4. The charge stored in each pixel is read through the same circuitry hence the

ampli�er bias e�ects are the same for each individual pixel.

5. The additive noise at the pixels are uncorrelated, independent, and identically

distributed while the shot noise mean varies from pixel to pixel.

6. The detector is linear in the wavelength region of operation and all higher order

e�ects are neglected.
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For the purpose of this work, noise sources discussed until now may be considered in

one of two categories - shot noise and read noise. At every pixel in the detector shot

noise from the photo-electrons created from the light-matter interactions is modeled

through a Poisson distributed random variable when the number of Photon Detection

Events (PDE) collected is less than a certain threshold value. The mean and variance

of the Poisson distributed random variable is the number of PDE value at each pixel.

In IDL the Poisson distributed random variable can be created with the randomn

function (with keyword Poisson set and equal to the number of PDE). When the

energy at a pixel exceeds a certain threshold intensity value, the noise can be modeled

through a normally distributed random variable with mean and standard deviation

equal to the number of PDE and its square root respectively. In IDL this is achieved

by scaling the randomn function (with a /normal keyword) by the standard deviation

and adding the mean value (number of PDE) to the scaled function. A threshold

value of 20 PDE per pixel is used to separate the Poisson and Normal distribution.

All noise e�ects apart from the photo-electron shot noise can be combined as read

noise and is modeled as an additive normally distributed random variable with a

speci�ed mean and variance. In IDL this noise is modeled by scaling the randomn

function (/normal keyword set) with user speci�ed standard deviation and adding a

user speci�ed mean to it.

3.5 User inputs

The simulation used in this work is intended to provide the user with the capa-

bility to image an object or scene of user-de�ned resolution and SOP onto a noisy

detector of speci�ed dimensions through telescopes and BCAs of varying pupil sizes
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and con�gurations respectively. The user is able to include a band-pass �lter in the

imaging assembly by specifying a wavelength range over which light is collected by the

telescope, model brightness of the object to be imaged, and background intensity by

specifying the number of Photon Detection Events from each source at the detector

per exposure time of the camera.

The user inputs for this simulation that model the telescope, BCA, object, and

detector are as follows:

1. Telescope diameter, focal length, Field Of View (FOV): The diameter

of the telescope pupil used in the simulation is modeled as a circle of user-

de�ned telescope diameter. This circle is also the the coherent transfer function

(Pcoh) of the telescope used. If a bandpass �lter is used, this diameter is de�ned

with respect to the central wavelength of operation. Both �eld of view of the

telescope and its focal length determine the transverse dimensions of the BCA

and detector which are the same for the purposes of this work. The magnitude

of the FOV must be small enough to neglect the �eld dependent aberrations and

choice of focal length should re�ect a slow system so as to neglect di�raction

e�ects.

2. Wavelength: This input speci�es a wavelength or band of wavelengths over

which light is collected. The energy of light collected at each speci�ed wave-

length remains the same for the bulk of this work.

3. Crystal refractive indices and Crystal axis orientation: The ordinary

and extraordinary refractive indices in each wedge of the uniaxial crystal wedges

used in the BCA is computed from the dispersion relation provided by the user.

The orientation of the crystal axis with respect to the x axis in each wedge (also



66

provided by the user) along with the dispersion relation and wedge angle, are

used to compute the magnitude and direction of the OPD o�ered by each SVR.

4. Crystal wedge angle and SVR thickness: The crystal wedge angle deter-

mines the magnitude of the deviation angles of the interfering wave fronts at the

output of the BCA. Increasing the wedge angle causes faster deviation of wave

fronts resulting in interference fringes of higher frequency and increased disper-

sion e�ects at relatively narrow bandwidths. The magnitude of the thickness

of each SVR along with the refractive indices and wedge angle determine the

optical path length seen by the eigen rays and hence the OPD between them.

5. Object de�nition and SOP distribution: This user input de�nes the reso-

lution of the input object or scene, and SOP distribution across it. The number

of pixels used to represent the input and its SOP is required to be greater than

the number of pixels used to represent detector array.

6. Number of pixels to represent detector array: Once the detector dimen-

sion has been �xed by choice of FOV and focal length for the telescope, the

changes in number of pixels in the detector changes the size of individual pixel

sampling the image since the detector is assumed to be an array of pixels of

identical size and shape.

7. Number of Photon Detection Events (PDE) from background, fore-

ground and source: With these inputs the user can control the amount of

energy (polarized and unpolarized) collected from the source as well as the en-

ergy from the background and foreground of the source combined into one term,

to model the e�ects of imaging objects of varying intensities.

8. RMS read noise in electrons: The strength of read noise (models all noise ef-
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fects apart from shot noise) can be modeled by an additive normally distributed

random variable of user speci�ed mean and standard deviation.

3.6 IDL implementation

The IDL implementation of the simulation procedure is based on Equations 3.18

and 3.34. These equations have spatial-dependence and for evaluation purposes would

require a de�nition of a grid along the direction transverse to the propagation direc-

tion. The discrete points of the grid are de�ned as the transverse coordinates on the

entrance face of the BCA. The distance between two adjacent points of the grid is

the physical distance between two light rays traced through the BCA. The dimension

of the grid is a user input to the simulation and the user chooses the number of rays

that need to be traced through the BCA. The dimension of the grid is normally the

same as the one used for representing the transverse Stokes variation of the object

and doesn't have to be the same as the number of pixels in the detector.

Ray tracing can be viewed as an mapping of the input polarization de�nition at

these discrete points of the grid to output intensity values. Incase of models using

Mueller calculus, polarization of an input ray at a transverse location de�ned by a

Stokes vector is mapped to an output intensity value by Equation 3.18. In Jones

calculus the polarization of the input ray de�ned by an input electric �eld vector is

mapped to an output electric �eld vector which is then converted to an intensity value

by Equation 3.34

The array of output intensity values in both Stokes and Jones simulation models

have the same dimensions as the grid and is downsampled to the required dimensions

by averaging neighboring intensities. The number of intensity values to be averaged
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depends on the size of pixel used in the detector model and can be varied based on

requirement. The averaging process desired is achieved using the rebin function in

IDL.

Equations 3.34 and 3.18 have a built-in functional dependence on the phase di�er-

ence of SVR 1 (φ1) and SVR 2 (φ2) evaluated at these points. The analytical forms

for the phase di�erences are from Van Delden's work ([35]). The phase di�erences at

the transverse coordinates of the entrance face are calculated based on BCA design

values (inputs) determined by the user.

The simulation process is now simpli�ed into a few well-de�ned steps:

1. De�ne the transverse positions on the entrance face of the crystal assembly for

ray tracing.

2. De�ne the polarization of the light rays (Stokes or Jones vector) at these trans-

verse locations.

3. Compute φ1 and φ2 at the transverse locations based on user inputs of wave-

length of the light used, dispersion relation for the uniaxial birefringent crystal,

thickness of the SVR, and the wedge angle.

4. Using the user input for the orientation of the transmission axis of the linear

polarizer compute the output intensity array corresponding to the polarization

states de�ned on the entrance face of the BCA.

5. Downsample the output intensity array to appropriate dimensions by averaging

neighboring intensity values.
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Polarization of input light Intensity transmission of the BCA

Horizontal 0.44
Forty �ve (45) 0.40

RHC 0.50

Table 3.1: Transmission of the BCA.

3.7 Simulation example

An example demonstrating use of the developed simulation methodology to image

an object through a telescope model and BCA onto the detector is presented in this

section. A �satellite� object with SOP distribution as in Figure 3.4a is de�ned on

a 512 X 512 array and is used as an input object for this simulation. The DOP of

light exiting from all parts of the satellite object is chosen to be unity and hence the

exiting light is completely polarized. A telescope (pupil radius = 20 pixels, FOV =

0.28 degrees, and focal length = 2 meters) images the input object onto the entrance

face of the BCA. The uniaxial crystal wedges in the BCA is chosen to be made out of

Yttrium Vanadate. The wedge angle used is 0.825264 degrees, and the crystal axes

in the wedges of SVR 1 are oriented at 30 (left wedge) and 120 (right wedge) degrees

with respect to the x axis while in SVR 2, the crystal axes are oriented at 150 (left

wedge), and 60 (right wedge) degrees with respect to the x axis. The thickness of each

SVR is 10mm, wavelength used for imaging is 600 nm and orientation of transmission

axis of the linear polarizer is chosen to be 0 degrees with respect to the x axis.

The image (Figure 3.4b) formed on entrance face of the BCA is of same dimensions

(512 X 512 array) as the object and is normalized to have 50,000 photo detection

events from the completely polarized object (DOP = 1). The normalized image is

now propagated through the BCA assembly onto the detector. This propagation in

a mathematical sense is using the input design values, Stokes vectors, and dispersion

relations to compute intensity (Equation 3.18) in the output plane (immediately after
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(a) Satellite object (input). (b) Image on the entrance face of the
BCA.

(c) Noise free fringe modulated output
image.

(d) Noisy fringe modulated output im-
age.

Figure 3.4: Simulation object and images at various stages.
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the linear polarizer) and at the same transverse location as that of the image on the

entrance face of the BCA. The image at the output plane has PDE less than 50,000

since the intensity transmittance of the BCA depends on the incident polarization

state and is always less than 1 for any incident polarization state. The number of PDE

at the image plane for a polarized input beam is a product of the number of photons

incident on the entrance face of the BCA and intensity transmittance corresponding

to the input polarization. The intensity transmission of the BCA design used in this

work is shown in Table 3.1.

The image after propagation through the BCA is discretized to dimensions 256

X 256 to simulate a detector array with a pixel size of 19.4 micron. Figure 3.4c

shows the discretized detector image before noise is added and detector image after

corrupted with shot noise and read noise (normal distribution with mean =0 and

standard deviation = 15) is shown in Figure 6.2.
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CHAPTER 4

Reconstructor Algorithm

A single image formed with the light that has passed though the BCA, either

in a telescope con�guration or a uniform beam con�guration, contains complete po-

larization information encoded in the form of modulation of fringes. Stokes images

are estimated from this fringe modulated image to present the polarization informa-

tion. The modulated image to Stokes images conversion is done by a reconstructor

algorithm. Reconstruction algorithms can be developed to use frequency domain or

spatial domain measurements. In frequency domain algorithms [36], the fringe coded

image is Fourier transformed and the amplitudes at speci�c spatial frequencies are

used to compute the Stokes images. For algorithms based on spatial domain, the

intensity values of the detector pixels are used to obtain the Stokes images. Several

researchers including Oka, et al. [43, 44, 4, 5], Dereniak. et al.[45] have used the

polarization information in the frequency domain for: the reconstruction of Stokes

images; spatio-temporal stress analysis; characterizing spatio-temporal birefringent

properties; and spectroscopic measurement of SOP. However, Van Delden [34] used a

spatial approach to compute the Stokes images.

The reconstruction algorithm proposed and developed in this work is an extension

of Van Delden's work [34] and hence based on the spatial domain approach. The

concepts of a unit cell, polarization domain, pixel and detector geometry are addressed

before the actual reconstruction algorithm is developed. The assumptions behind the

algorithm, its step-wise development, and validity in terms of ability to reconstruct

Stokes images under di�erent SOP of input light are presented in a methodical fashion.
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In this work the words reconstruction and estimation have been interchangeably, and

essentially mean the same. This Chapter consists of the following topics :

• Unit cell, polarization domains, pixel and detector geometry.

• Reconstruction algorithm based on the Mueller approach.

• Reconstruction of calibration fringes.

4.1 Unit cell, polarization domain, pixel and detector geometry

Understanding the sampling requirement for the detector and its pixels is essential

for the development of the reconstruction algorithm. The detector is an array of pixels,

which can be of di�erent shapes and sizes. However, in this work the detector and its

pixels are of rectangular and square shapes respectively as shown in Figure 4.1a. For

simulation purposes, the physical dimensions of the detector and useful aperture of

the crystal assembly are the same. In other words, it is assumed that the light beam

diverges little after it passes through the crystal assembly before incident onto the

detector. Equivalently, the electric �eld leaving the BCA can be relayed with some

magni�cation to the plane of the detector array. The relayed and magni�ed beam is

assumed to have the same extent as the exposed area of the detector.

Adjacent pixels of the detector combine to form a unit cell. The concept of a

unit cell is important since it forms the basic unit over which Stokes reconstructions

are performed. The physical dimensions of a unit cell depends on the size of the

individual pixels making the unit cell and total number of the pixels in the unit cell.

Figure 4.1a depicts a unit cell, which contain 9 pixels, as a part of the detector. In
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(a) Detector and unit cell model.

(b) Sampling the polarization domain with a unit cell.

Figure 4.1: Geometry of the detector, unit cell and idea of a polarization domain.
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this work, the unit cell chosen will have equal number of rows and columns i.e. square

shaped unit cells.

The unit cell size for reconstruction is chosen based on the size of the polarization

domains in the image. Polarization domains are regions within the image where the

polarization and intensity of light varies little. For the derivation of the algorithm,

the size of the unit cell is assumed to be a less than the minimum polarization domain

(Figure 4.1b). A quantitative discussion of the size of the unit cell with respect to

the polarization domain will need the introduction of fore-optics and hence delayed

till Chapter 5. Since polarization domains are regions within the fringe coded image

incident on the detector, the physical size of the polarization domain is measured in

units of pixels at the detector plane and an appropriate choice of unit cell size has to

be made.

The concept of polarization domain and assumption of unit cell size compared

to the polarization domain leads to a very important inference in this work: the

polarization and intensity of incident light varies slowly over a unit cell. The choice

of unit cell size does not a�ect the derivation of reconstruction algorithm as long it

is smaller than the polarization domain.

In his work, Van Delden [34] limited the size of unit cell to 2 X 2 and reconstruc-

tions were performed in the absence of shot noise and read noise. Since information

theory allows the reconstruction of the 4-element Stokes vector from four pixel mea-

surements, a 2 X 2 unit cell can infact be used to reconstruct the polarization state

over a unit cell. However in this work, the problems of using 2 X 2 unit cells and

advantages of larger unit cells for Stokes reconstruction under presence of shot noise

and read noise will be addressed. The issues of sampling, choosing pixel sizes, size of

unit cells, and reconstruction errors in the presence of noise are important and are

the focus of Chapters 5 and 6.
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The reconstruction algorithm presented in the next section is essentially an ex-

tension of Van Delden's approach [34] to larger unit cells. However, with the retarder

model Van Delden [42] used, the simulation method used in this work produced cal-

ibration fringes with either negative values or visibility < 1 for input light of DOP

= 1 which does not accurately model the working principle of the BCA. Hence, in

this work, a di�erent retarder model [41] is used in the modeling the BCA. Moreover,

the small angle approximation used by Van Delden [35] - the angle of refraction of

the secondary and tertiary rays in the SVRs are assumed to be small due to the

limit imposed on the value of the wedge angle i.e. wedge angle < 0.2 radians is not

considered in this work.

4.2 Reconstruction based on Mueller approach

The reconstruction algorithm developed in this part of the work is based on the

Mueller matrix model in section 3.2.1. The intensity of light exiting the crystal

assembly is given by Equation 3.18:

O(x, y) = S
′
o(x, y) = (1/2)[S0(x, y)F0(x, y) + S1(x, y)F1(x, y) + S2(x, y)F2(x, y) +

S3(x, y)F3(x, y)]

where O(x, y) represents the intensity of exiting light,

S0(x, y), S1(x, y), S2(x, y), S3(x, y) are the Stokes components of the light incident

on the entrance face of the BCA,

F0(x, y), F1(x, y), F2(x, y), F3(x, y) are the �rst row Mueller matrix entries (see

Equation 3.6) and given by Equations 3.7, 3.8, 3.9, and 3.10. Given that F0(x, y) is a

constant (Equation 3.7), it is seen from Equation 3.18 that F1(x, y) for an actual in-

strument can be computed with the knowledge of S0(x, y), S1(x, y), O(x, y) when the

parameters S2(x, y), S3(x, y) are made zeros. In fact, the horizontal calibration fringe

output from the instrument can be readily used to compute F1(x, y) since S0(x, y) is a
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known quantity, S2(x, y) = S3(x, y) = 0 , S1(x, y) = S0(x, y) and O(x, y) is the output

intensity. Similarly, F2(x, y) and F3(x, y) for an actual instrument can be computed

from the 45 and RHC calibration fringe patterns respectively. This leads to an impor-

tant inference, to compute the Stokes images from the fringe modulated image, only

three calibration fringe patterns (horizontal, 45 and RHC) are needed. This infer-

ence is validated when it is noted that the orthogonal fringe patterns (horizontal and

vertical, 45 and 135, RHC and LHC) are complementary to each other and add up

to the same constant value when beams used to create them have the same intensity.

In general, the BCA does not produce any fringe pattern (zero visibility) when the

incident light, a uniform beam or an image from the telescope, on the entrance face

of the BCA is unpolarized. In fact the BCA produces an output image with same

constant value across it when a uniform intensity beam (unpolarized) illuminates its

entrance face. Hence a constant (zero visibility) across the image implies that the

light in the image is unpolarized. So two complementary fringe patterns with the

same amplitude adding together to form a constant value, for example:



A

A

0

0


+



A

−A

0

0


=



2A

0

0

0


as required. A is the intensity of the individual input beams.

Consider the unit cell shown in Figure 4.2. This unit cell with 9 pixels is used to

present the development of the algorithm. The detector is made of several such unit

cells and the reconstruction algorithm has to be run over each unit cell in order to

compute the Stokes images over the complete �eld of view of the detector. Each pixel

in the unit cell sees an intensity of incident light given by Equation 3.18. A modi�ed
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Figure 4.2: Pixel representation in a unit cell.

version of Equation 3.18 for a unit cell is introduced as:

On = (1/2)[S0 + S1Fn1 + S2Fn2 + S3Fn3] (4.1)

where n stands for the pixel number within the unit cell. F0(x, y) is dropped

from the equation since its value is unity. The spatial dependence of S0, S1, S2, S3

has also been dropped since the light over a unit cell varies little in intensity and

polarization (based on the inference made in section 4.1). The continuous spatial

variation of O,F1, F2, and F3 is discretized by adding n as an additional subscript

to them i.e. On, Fn1, Fn2, and Fn3 In essence, Equation 4.1 models the detector's

digitization e�ect on incident light.

For the unit cell shown in Figure 4.2, the intensity of light as seen by each pixel

based on Equation 4.1, is written as follows:
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O1 = (1/2)[S0 + S1F11 + S2F12 + S3F13]

O2 = (1/2)[S0 + S1F21 + S2F22 + S3F23]

...

O9 = (1/2)[S0 + S1F91 + S2F92 + S3F93] (4.2)

Thus a set of linear equations that map the input Stokes vector to the output

pixel intensities is created. The set of Equations 4.2 is now written in the following

matrix form:



O1

O2

...

O9


= (1/2)



1 F11 F12 F13

1 F21 F22 F23

...
...

...
...

1 F91 F92 F93





S0

S1

S2

S3


(4.3)

or

−→
O = F

−→
S

and
−→
S̃ = ((FTF)−1FT)

−→
O

where

F = (1/2)



1 F11 F12 F13

1 F21 F22 F23

...
...

...
...

1 F91 F92 F93


, (4.4)
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O =



O1

O2

...

O9


,
−→
S =



S0

S1

S2

S3


and

−→
S̃ =



S̃0

S̃1

S̃2

S̃3


.

The matrix F is of dimensions (N2
r )X 4 , where Nr is the number of rows in the

unit cell while O is a matrix of dimensions (N2
r )X 1. The vectors

−→
S and

−→
S̃ represent

the input Stokes vector and estimated Stokes vectors respectively.

In order to compute the Stokes components in the unit cell, the inverse problem

−→
S̃ = ((FTF)−1FT)

−→
O

is solved and each pixel in the unit cell has the same Stokes components S̃0, S̃1, S̃2, and

S̃3. Since the matrix F (dimensions (N2
r ) X 4) is not a square matrix, ((FTF)−1FT)

is computed using the pseudo inverse and not the regular matrix inversion.

In theory, a 2 X 2 unit cell is the minimum sized unit cell needed to reconstruct the

Stokes images from the single fringe coded detector image. This size would produce

a set of four equations as in Equation set 4.2 and the size of the F matrix would be

4 X 4 which is su�cient to reconstruct the four Stokes parameters S̃0, S̃1, S̃2, and S̃3

in that unit cell. But there are some practical problems in using a 2 X 2 unit cell

which are addressed in Chapter 5.

After the Stokes components are reconstructed for a particular unit cell, the next

reconstruction can be performed on a completely new unit cell adjacent to the previous

one and this process can be continued until the reconstruction is completed over the

entire detector array. This kind of reconstruction method is termed as a discrete

reconstruction method. However, in this work, a slide reconstruction method (slide
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(a) Slide reconstruction.

(b) Averaging array.

Figure 4.3: Reconstruction technique.



82

(a) Input object.

(b) Detector image.

Figure 4.4: Circular object and fringe modulated image.
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approach or slide reconstructor) is employed for estimating the Stokes components

over the entire detector array. This concept is illustrated in Figure 4.3a. Once the

Stokes components in the red unit cell are estimated, the 3 X 3 kernel is slid by

a pixel either along the column (pink unit cell) or row (blue unit cell), and Stokes

components are estimated again. In the case of a column slide by a pixel, the Stokes

components for pixels 2, 3, 5, 6, 8, and 9 are estimated twice: once in the red unit

cell and a second time in the pink unit cell. Similarly, for a row slide by a pixel,

the Stokes components for 4, 5, 6, 7, 8, and 9 are estimated twice: once in the red

unit cell and a second time in the blue unit cell. The process of sliding the kernel

and estimating the Stokes components continues until the entire detector is spanned.

Based on the location in the detector array and size of the unit cell, each pixel gets

multiple reconstructions for the same Stokes component. Whenever this situation

arises, the average value of the multiple reconstructions of the Stokes component is

taken.

The pixels at the corners of the detector are estimated once and pixels towards the

center of the detector are estimated multiple times. When the size of the unit cell is 3

X 3, the edge of the detector is estimated once and center of the detector is estimated

9 (3×3) times. To keep track of the number of estimations of each pixel in the detector

array, an integer array is created. In this array, each pixel position is incremented

by one each time the kernel uses the corresponding pixel for reconstruction. When

the kernel spans the detector completely, this array contains a complete account of

how many times each pixel is estimated, whereby an appropriate averaging can be

applied to each pixel. Integer values by which each pixel is averaged is demonstrated

in Figure 4.3b.

Slide approach is useful when larger unit cells are used for the reconstruction of

images with signi�cant noise. In addition to this bene�t, the slide approach provides a
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(a) S0, S1, S2, S3images from discrete reconstructor method.

(b) S0, S1, S2, S3 images from slide reconstructor method.

Figure 4.5: Reconstructed Stokes images using a 3 X 3 unit cell.

smoothing e�ect on the edges in images (polarization changes occurs usually at edges)

and greatly reduces the reconstruction errors associated with it. Reconstruction is

performed over the entire detector and no pixels are left out. As an example, a

horizontally polarized circular object (100 pixel radius de�ned on a 512 X 512 array)

or beam with a diameter less than the physical dimensions of the entrance face of

the BCA as shown in Figure 4.4a, is imaged through the BCA onto the detector and

discretized to 256 X 256 to model the averaging e�ect of the pixels in the detector.

Figure 4.4b shows the discretized fringe modulated image from the detector without

any noise. The Stokes images are reconstructed using both discrete reconstruction

method (Figure 4.5a) and slide reconstruction method (Figure 4.5b). An Error Metric

(EM) of the following form:

EM =
∑

S0, S1, S2, andS3

Avg(
abs(TSI −RSI)

TSI
) (4.5)
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Figure 4.6: Comparison of reconstruction methods.
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is evaluated for both cases. TSI and RSI refer to the True Stokes Image and Recon-

structed Stokes Image respectively. EM is only evaluated for regions of the image

for which the incident intensity value is greater than zero. Figure 4.6 shows the vari-

ation of the error metric as a function of the number of pixels in the unit cell and

it is seen that the slide reconstruction method performs relatively better than the

discrete method. The e�ectiveness of slide reconstruction method due to the built-in

averaging will be much more evident in Chapters 5 and Chapter 6, where the Stokes

images are reconstructed under various conditions (di�erent illumination levels and

noise).

4.3 Reconstruction of calibration fringes

Calibration fringes are created by directing beams of light (one at a time) into

the crystal assembly at normal incidence. These beams are uniform in intensity

and polarization (see section 3.2.3). In practical environments, a polarization state

generator (PSG) or polarization calibration optics, along with a uniform source, can

be used to generate such beams. The polarization calibration optics would be a

linear polarizer and a quarter wave plate (designed to be e�cient at the wavelength

of interest) while the uniform sources could be an integrating sphere, a sheet of

spectralon, the daylight sky, or even the defocused moon. The integrating sphere

and spectralon is preferable compared to other sources as the light from them are

unpolarized and the output intensity will not change as the linear polarizer in the

calibration optics is rotated. However, if uniform polarized sources are used then

total energy changes can be compensated by rescaling the calibration fringes to have

the same total number of counts.

The calibration fringes obtained from the crystal assembly are imaged by the de-

tector. In order to reconstruct these calibration fringes into meaningful Stokes images
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Figure 4.7: Reconstruction of horizontal calibration fringes.

Figure 4.8: Reconstruction of 45 calibration fringes.
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Figure 4.9: Reconstruction of RHC calibration fringes.

Figure 4.10: Reconstruction of a generic fringe pattern.
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and test the developed algorithm, the slide reconstructor is applied on the calibra-

tion fringe images and the results are in Figures 4.7, 4.8, and 4.9. The maximum

amplitude and minimum amplitude of the fringes in each of the calibration fringe

images is equal to one and zero respectively. The mean and standard deviation are

the metrics used to test the validity of the slide reconstructor. While the magnitude

of the mean value of a particular reconstructed Stokes image gives an idea about the

intensity of the incident light in that Stokes component, the sign shows its preferential

direction. The standard deviation shows the variation of the incident light intensity

over a particular Stokes image. Since the test cases use uniform beams, the mean

value of the Stokes images should be close to the ones shown in the components of

the input Stokes vector and the standard deviation should be negligible (Figures 4.7,

4.8, and 4.9). It is evident that the reconstructed images: S0_images, S1_images,

S2_images, and S3_images are in excellent agreement with the polarization and in-

tensity of the input light. Considering the values of the mean and standard deviation,

the reconstruction error is negligible.

To test the algorithm further, the slide reconstructor is applied to a fringe pattern

created by a generic beam. This fringe pattern is also produced by a beam of light

whose intensity and polarization are uniform. The polarization in this case is not

purely horizontal or 45 or RHC but a mixture of each as shown in Figure 4.10. The

mean and standard deviation values of the reconstructed Stokes images compared to

the Stokes parameters of the input beam, shown in Figure 4.10, reveal that the slide

reconstructor estimates are accurate even when the input beam has a combination

of polarizations. Thus, a reconstruction algorithm de�ned as a slide reconstructor

is successfully created, tested and is now ready to be used for the reconstruction of

fringe modulated images.
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CHAPTER 5

Sampling Requirements

Cameras or Imaging systems use detector arrays to convert analog images to

discretized digital images. The images in the case of the ISIP, either calibration

fringe images or object-images, contain fringes that carry polarization information.

The modulation of these fringes has to be preserved during the discretization and

digitization process of the detector by a careful choice of pixel size. The optimal pixel

size is chosen based on the condition number variation of the measurement matrix

with pixel size. If the polarization information is included in the image along with a

projection of the object, basic information theory considerations mean the density of

pixels per unit area must be higher than the density required for the image without

polarization information. The e�ects of increased number of pixels (larger unit cells)

on condition number of the measurement matrix is also investigated.

The presence of a upper limit on the size of the unit cell relative to the PSF

will be shown in this Chapter. This limit relates the unit cell size to PSF of the

optical system (telescope) used in imaging the object or scene. The validity of the

proposed limit is tested by a simulation whereby a point source equally polarized in

S0, S1, S2, and S3 is imaged through an optical system (telescope) of �xed PSF size.

The detected image (fringe coded) is then reconstructed into Stokes images using unit

cells of increasing dimensions. An error metric is evaluated for each case and plotted

as a function of the number of unit cells sampling the PSF. This Chapter consists of

the following sections:
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• Tracing rays, pixel size and detector model.

• Singular value decomposition and condition numbers.

• Choosing pixel sizes, wedge angles and unit cells based on condition number as

a metric.

• Nyquist sampling the PSF.

5.1 Tracing rays, pixel size and detector model

The fundamental ideas of the Mueller model approach and polarization to fringe

mapping have been developed in section 3.2.1. These ideas involve computations at

various locations on the transverse spatial plane de�ned at the entrance face of the

crystal assembly. Light rays are traced through the assembly at these locations. In the

Mueller matrix model, tracing the light rays is equivalent to multiplying the Stokes

vectors of the input light with the combined Mueller matrix of the crystal assembly

to produce output Stokes vectors. The density of the traced light rays depends on

the choice of locations (grid) on the transverse spatial plane.

In this work it is assumed that the light passing through the crystal assembly

does not diverge signi�cantly before it is incident on the detector or equivalently,

the interference plane is relayed onto the detector with some magni�cation from the

relay optics. Hence an image of the detector projected on the entrance face (or clear

aperture) of the crystal assembly would have the same physical dimensions as the

entrance face of the BCA. Relay optics with a given magni�cation can be used to

project the �eld near the BCA onto the detector, but there is no loss of generality

in assuming unit magni�cation. Such a projection would help in the visualization
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of spatial locations of the light rays that correspond to each pixel of the detector

array. Propagating these light rays through the crystal assembly and averaging their

corresponding output intensities would produce a discretized intensity value which

is the output from that pixel of the detector. Repeating the procedure over the

entire spatial plane would give the complete intensity outputs for all the pixels in the

detector array.

A bundle of light rays can be traced through the crystal assembly by appropriate

choice of locations (grid dimensions) on the spatial plane. The number of rays to be

averaged per pixel will depend on the ray spacing and size of each detector pixel. In

the simulation model used in this work, a square grid is used to de�ne the position

of rays on the entrance face of the BCA and these rays are propagated through the

crystal assembly to form an output array of intensity values. This array is downsam-

pled by averaging neighboring intensity values to a lower dimensional array based on

pixel sizes in the detector array. The ray spacing is chosen so the same number of

rays (4 rays) is averaged in each detector pixel. This kind of an approach su�ciently

models the actual detector with no noise.

The choice of pixel size is in�uenced by the highest frequency of the image con-

tent. For incoherent imaging the highest frequency is normally determined by the

pupil diameter and wavelength. Detector pixel size is selected based on the Whitaker-

Shannon sampling theorem: the sampling frequency, fs (inverse of the pixel dimen-

sion) is selected to be at least twice the highest spatial frequency content, fmax con-

tained in the image i.e fs ≥ fmax. Pixel sampling at spatial rates smaller than this

minimum will result in energy at relatively high frequencies being aliased into lower

frequencies, causing the sampled image to di�er from an idealized or continuous rep-

resentation. In images from the ISIP, the maximum spatial frequency are from the

fringes encoding the polarization information as the scene variations would be slowed
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Figure 5.1: Magnitude of Fourier spectrum of the calibration fringes.
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compared to the calibration fringes by a correct choice of PSF and unit cell size

(section 5.4).

From the Fourier spectrum of the calibration fringes in Figure 5.1 it is seen that

the highest spatial frequency in each of the calibration fringe image is the same.

Hence, a pixel size chosen to Nyquist sample one calibration fringe pattern should

su�ciently sample others. The process of decreasing the pixel sizes (where the size of

clear aperture, physical size of the detector and wedge angle are �xed) that sample

the calibration fringes results in an increased number of computations due to the

increase in grid dimensions de�ned on the entrance face of the BCA. The number

of required computations varies as a square of the factor by which the pixel size is

reduced. For example, when the pixel size is reduced by a factor of two the required

number of computations increases by a factor of four and the computation time for

both simulation and reconstruction increase by a factor of 3 each. As the pixel size is

further decreased the the grid dimensions will increase further and computation times

will increase signi�cantly. To avoid this problem, pixel size and number of pixels in

the detector array is �xed at a desired value and changes to wedge angle are used to

adjust the period of the calibration fringes until the chosen pixel size Nyquist samples

the calibration fringes. There is no loss in generality in our conclusions.

In Figure 5.2 the side lobe corresponding to the highest frequency content and the

central peak in the Fourier spectrum of the horizontal calibration fringes are shown.

It is seen that the side lobes corresponding to the highest frequency component have

a spread and the side lobes start moving away from the central peak as the wedge

angle (with �xed pixel size) of the SVRs is increased.

The detector model used in this work can be analyzed using a frequency domain

representation. In the Fourier domain each pixel represents a frequency band equal

to the inverse of the total array size in the spatial domain. These frequency domain
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Figure 5.2: The changes in position of side lobe as function of the wedge angle.
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pixels discretize the central and side lobes (Figure 5.2) to produce an array of complex

values in the Fourier domain. The side lobes in Figure 5.2 move over these frequency

domain pixels (away from the central lobe) as the wedge angle of the SVRs is increased

and appear to have di�erent spreads in the discretized array based on the position of

its peak with respect to the frequency domain pixels. The varying spreads of the side

lobes makes the de�nition of Nyquist sampling challenging.

A small initial wedge angle that positions the peak of the side lobe at the center of

a frequency domain pixel and close to the central lobe was selected by trial and error.

This was visually con�rmed by noting the minimum spread and maximum amplitude

of the side lobe. Moreover, it was noted that there is a linear relationship between

the wedge angle and fringe frequency of the calibration fringes - doubling the wedge

angle doubled the fringe frequency. New wedge angle increments are chosen as the

positive integer multiples of the initial small wedge angle so that the peaks of the

side lobes maintain their position with respect to a frequency domain pixel thereby

keeping the spread of the side lobe equal. As the wedge angle is incremented, Nyquist

sampling in this work is de�ned to occur when the outer-tail value of the side-lobe at

the edge of the array reaches 0.2 % of the side lobe peak.

The Nyquist sampling of calibration fringes produced by a BCA of transverse di-

mensions 4.97 mm by 4.97 mm and thickness 10mm with a 256 X 256 detector array

of pixel size 19.42 micron occurs at a wedge angle of 1.105 degrees. The Nyquist sam-

pled calibration fringes are shown in Figure 5.3. In summary, the Nyquist sampling

in this work is achieved by the following steps:

1. The physical dimensions of the detector (4.97 mm by 4.97 mm) is assumed to

be the same as the entrance face of the BCA.
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2. A detector array of chosen dimensions (256 X 256 pixels) samples the calibration

fringes.

3. The physical dimensions of the BCA's clear aperture and the array dimensions

detector determines the pixel size (19.42 micron).

4. The choice of the grid dimensions determines the ray trace locations on the

front face of the BCA.

5. Light rays at the grid locations are propagated through the BCA to form output

intensity array.

6. The output intensity array is downsampled from 512 X 512 to 256 X 256 (4 rays

per pixel) by averaging neighboring intensities to form the discretized detector

output array.

7. The wedge angle of the crystal assembly is adjusted until the determined pixel

size Nyquist samples the calibration fringes.

5.2 Singular value decomposition and condition numbers

The Linear System used in this work is of the form:

−→
O = F

−→
S (5.1)

where



98

Figure 5.3: Nyquist sampled calibration fringes.
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F = (1/2)



1 F11 F12 F13

1 F21 F22 F23

1
...

...
...

1 FM1 FM2 FM3



−→
O =



o1

o2

...

oM


,
−→
S =



S0

S1

S2

S3


and M represents total number of pixels in the unit cell. The meaning of each

vector, matrix and their elements are explained in section 4.2. In Equation 5.1,

F (Measurement matrix) can be a non-square matrix and its size depends on the

number of pixels in the unit cell. A decomposition of the matrix F using singular

value decomposition gives insight into the natural sensitivity of the problem described

in Equation 5.1. The matrix F can be written as:

F = UσVT (5.2)

F =

 U





σ1 0 0 0

0 σ2 0 0

0 0 σ3 0

0 0 0 σ4

...
...

...
...



 VT



where F is a M X 4 matrix, U is a M X M real unitary matrix (UTU = 1), V is a
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M X 4 real unitary matrix (VTV = 1) and σ is a M X 4 diagonal matrix of singular

values.

The rows of VT form an orthonormal basis for the row space of F and are the

eigen vectors of FTF. The columns of U form an orthonormal basis for the column

space of F and are the eigen vectors of FFT. The singular values on the diagonal of

σ are the square root of the non-zero eigen values of FTF and FFT. Representation

of F based on Equation 5.2 and it's action on
−→
S can be interpreted as follows:

1. p = VT−→S . The input vector
−→
S is projected onto an orthonormal basis for the

row space of F resulting in the vector p of size 4 X 1. The elements of p are

result of the inner product between the basis vectors (rows of VT) and
−→
S .

2. g = σp. The elements of p are weighted or ampli�ed by their respective singular

values to form the M X 1vector g.

3. d = Ug. The gain weighted elements of g now become the coe�cients that

multiply the respective columns of U in the linear combination of the columns

of U that form the 4 X 1 vector d.

A similar analysis can be applied to the inverse problem. In the case of the inverse

problem where
−→
S is estimated, Equation 5.1 becomes

−→
S̃ = ((FTF)−1FT)

−→
O (5.3)

where ((FTF)−1FT) is the pseudo-inverse of F, and

((FTF)−1FT) = V(1/σ)UT
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((FTF)−1FT) =

 V





1/σ1 0 0 0 · · ·

0 1/σ2 0 0 · · ·

0 0 1/σ3 0 · · ·

0 0 0 1/σ4 · · ·



 UT

 (5.4)

When noise is present Equation 5.3 can be written as:

−→
S̃ = ((FTF)−1FT)(

−→
O + n)

−→
S̃ = ((FTF)−1FT)

−→
O + ((FTF)−1FT)n (5.5)

and

E = ((FTF)−1FT)n.

Where n is the noise and E represents the error term due to noise. When one of

the singular values σr, r = 1, 2, 3, or 4 is zero, the measurement matrix F will not

be full ranked and the corresponding inverse term in the central matrix of F−1 i.e.

1/σr is replaced by zero. If a singular value is zero, there are Stokes vectors that will

generate d vectors that are indistinguishable from noise or are identically zero. This

implies that there will be polarization states that lie in the null space of the F matrix

and cannot be measured. In cases where the ratio of the largest to smallest singular

value is large, signi�cant errors in the reconstruction process can occur through the

ampli�cation of noise (error term) in Equation 5.5.

The matrices F and ((FTF)−1FT), generally are referred to as the measurement

and synthesis matrix respectively. The measurement matrix condition number has
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been used in the literature to quantify the stability of inverting measured data to

Stokes parameters. Condition numbers are capable of providing con�gurations with

measurement matrices that do not have zero or small singular values. The condition

number κ (κ2 condition number in this work) is based on the norm (L2 norm) of a

matrix A [46] and is de�ned as:

κ(A) = ‖A‖ ∗
∥∥A−1

∥∥
where ‖‖stands for the norm

‖A‖ = max
x 6=0

‖A ∗ x‖
‖x‖

(matrix norm)

where x is a vector and when A is not a square, A−1 is computed through pseudo-

inverse. The norm of A measures the largest amount by which any vector is ampli�ed

by matrix multiplication. The norm of the identity matrix is 1. The di�erent condition

numbers that are used in general are the κ1, κ∞, and κ2 condition numbers, which

di�er in the norms they use: κ1 uses L1norm, κ∞ uses L∞norm, and κ2 uses L2

norm. These condition numbers provide di�erent measures of system conditioning.

Although the values of κ1, κ∞, and κ2 condition numbers are di�erent for a given

measurement matrix, they are bounded by the relations [47]:

1

n
κ1(A) ≤ κ1(A) ≤ nκ∞(A),

1

n
κ∞(A) ≤ κ2(A) ≤ nκ∞(A),

1

n2
κ1(A) ≤ κ∞(A) ≤ n2κ1(A).
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where n is the row size or the column size when the measurement matrix is square. In

this work the κ2 condition number or the L2 condition number (L2cn or cn) is used and

evaluated as the ratio of the largest to the smallest singular value of the measurement

matrix. Singular values are evaluated using the singular value decomposition shown

in Equation 5.2. A clear relationship between cn and the singular values of the

measurement matrix is now established and can be used.

5.3 Choosing pixel sizes, wedge angles and unit cells using condition number as a

metric

Many researchers have used condition number as a metric to design optimal po-

larimeters. Ambirajan and Look [48, 49] derived the optimum rotation angles for a

Stokes polarimeter consisting of a quarter-wave plate and a linear polarizer by max-

imizing the determinant and minimizing the condition number of the system mea-

surement matrix. Azzam [50] showed that the instrument matrix is non-singular and

all Stokes vectors can be determined when the input polarization states are linearly

independent and lie on the vertices of the maximum volume tetrahedron inscribed in-

side a Poincare sphere. Twietmeyer and Chipman [51], Smith [53], Savenkov [52] have

used condition numbers to design Optimal Mueller matrix polarimeters. Sabtake, et

al [54, 55] used condition numbers, singular value decomposition, and related �gures

of merit to derive an optimal rotating retarder Stokes polarimeter. Tyo [56] used con-

dition numbers for the optimal design of rotating compensator, variable retardance,

and rotating analyzer Stokes vector polarimeters. Tyo [57] also used condition num-

bers to �nd the optimum retardances for an imaging variable retardance polarimeter

that equalized the noise in the reconstructed Stokes parameter images. DeMartino,
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et al. [58, 59] and Garcia-Caurel, et al. [60] used condition numbers for the design of

spectroscopic polarimeters using photo elastic modulators and liquid crystal variable

retarders.

For a conventional imaging polarimeter the measurement matrix is made of con-

stants and terms that have a functional dependence on the parameters of the retarders

and polarizers in the assembly. Most work involving design of optimal polarimeters in

the past has been focused on deriving the optimal retardance, retarder, or polarizer

orientation that minimizes the condition matrix of the measurement matrix. The

choice of pixel size in the detector of a conventional imaging polarimeter is not a

concern as long as the pixels capture the highest spatial frequency in the image of

the scene. The highest possible frequency in the scene is set by the pupil diameter

and wavelength. However in ISIP, the measurement matrix is made from the pixel

measurements of calibration fringes. The pixels must Nyquist sample the calibration

fringes that modulate the scene as well as the scene.

Minimizing the condition number reduces the noise sensitivity of the Stokes es-

timation problem. The task of making the measurement matrix least singular by

minimizing the condition number can be seen as an optimization problem. Either the

pixel size or wedge angle is altered (while �xing the other) and the resultant change

in the condition number of the measurement matrix is evaluated. In this work, the

detector parameters - array size & number of pixels, and physical dimensions are

maintained constant while the wedge angle is changed in small increments. Measure-

ment matrices for each wedge angle increment are constructed from corresponding

F1, F2, and F3 unit cell matrices using the slide procedure (refer to Section 4.2).

Consequently an entire array of condition numbers for each wedge angle increment

is generated as the unit cell is slid over the entire detector. The statistical measures

(mean and standard deviation) of the resulting condition number array are computed
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over the array for each wedge angle and stored.

From Equation 4.3, atleast 3 measurements are required to uniquely estimate

S1, S2 and S3. The smallest square unit cell is 2 X 2 pixels and the analysis is started

with this unit cell size. The mean and standard deviation of each condition number

array is evaluated and plotted as a function of the wedge angle (Figure 5.4).

It can be seen that mean and standard deviation of condition numbers are large

and there is not a wedge angle that minimizes the condition number everywhere

on the array. Analysis of the condition number array corresponding to the wedge

angle of 1.105 reveals that the maximum condition number in the array is 12027.655,

and mean condition number is 111.838. Figure 5.5 and Figure 5.6 show regions of

high condition number in the condition number array through white lines and peaks

respectively. It is seen that these regions are periodic in nature and the measurement

matrix F corresponding to the maximum condition number is given by :

F =



0.5 0.217402 −0.410956 0.0110547

0.5 0.158836 −0.360095 0.172931

0.5 −0.200860 −0.152217 −0.348243

0.5 −0.238476 −0.398790 −0.0191638


A singular value decomposition of this F matrix according to Equation 5.2 yields

the U, σ, and VT matrices as follows :

U =



−0.546426 0.706072 0.448539 0.0411586

−0.448835 −0.0412970 −0.546543 0.705785

−0.448778 0.0408876 −0.546294 −0.706038

−0.546411 −0.705751 0.449074 −0.0410260


(5.6)
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Figure 5.4: Mean and std-dev condition number for a unit cell size 2 X 2.
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Figure 5.5: Natural log of condition number array surface (2D) for the 2 X 2 unit cell
at Nyquist sampling.
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Figure 5.6: Natural log of condition number array surface (3D) for the 2 X 2 unit cell
at Nyquist sampling.
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σ =



1.23341 0 0 0

0 0.000102547 0 0

0 0 0.240795 0

0 0 0 0.472081


(5.7)

VT =



−0.806892 0.217244 0.545153 0.0673716

−0.429649 0.303754 −0.696725 −0.487555

−0.405373 −0.754537 −0.346576 0.382403

−0.000127816 0.539641 −0.311878 0.781997


(5.8)

Looking at the singular values (along the diagonal) in σ matrix (Equation 5.7) it

can be seen the second singular value is negligible compared to the largest condition

number and can be approximated to zero. Hence the rank of the measurement ma-

trix is e�ectively only 3. From a conventional Stokes polarimeter perspective, this

measurement matrix is not capable of measuring the input Stokes vector which lies

in the direction of the row vector of VT corresponding to the 0.000102547 singular

value. In the case of ISIP there will be an input Stokes vector whose fringe pattern

will not be observable by the system. Hence the polarization state (Stokes vector)

cannot be measured in that particular unit cell. In order to show this, a calibration

fringe pattern for the input Stokes vector

−→
S =



1

−0.33638462

0.77157029

0.53993025


is created with the Nyquist sampling wedge angle 1.105. The 2 X 2 matrix of the
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calibration fringe output at the location corresponding to the maximum condition

number is found to be :

 0.262018 0.262103

0.262093 0.262178

 .

The same procedure when repeated for the orthogonal input Stokes vector

−→
S =



1

0.33638462

−0.77157029

−0.53993025


yields the following 2 X 2 calibration fringe matrix:

 0.73798230 0.73789747

0.73790679 0.73782198



The intensity variation in the unit cells for the input polarization states considered

is of the order of 10−5. Detector pixels are normally capable of 8-bit, 12-bit, or 16-bit

digitized outputs. Hence a pixel can only detect intensity variations of the order of

w 10−4 (assuming a 12-bit output). Thus the two polarization states (Stokes vectors)

would e�ectively yield the same measurement on the order of 10−4, constant energy in

the unit cell. In practical experiments where detectors are used, the small variations

in the fringe modulation in the unit cells would most likely not be detected under

the presence of noise and stable reconstruction of these orthogonal polarization states
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Angle(degrees) = cos−1(
(row i).(row j)
|row i||row j| ) where i and j=1,2,3 or 4 with i 6=j.

row 1 row 2 row 3 row 4

row 1 0 35.78 degrees 38.52 degrees 3.26 degrees
row 2 35.78 degrees 0 60.74 degrees 38.51 degrees
row 3 38.52 degrees 60.74 degrees 0 35.8 degrees
row 4 3.26 degrees 38.51 degrees 35.8 degrees 0

Table 5.1: Angle between the rows of the measurement matrix corresponding to the
largest condition number: 12027.655 (2 X 2 unit cell case).

would not be possible.

A further analysis on the angles of the normalized vectors of each row of the

measurement matrix with respect to others are shown in Table 5.1. It is seen that

the angle between normalized vectors of rows 1 and 4 is 3.26 degrees, which means

that these rows are highly dependent. Rows 1 and 4 of the measurement matrix are

obtained from �rst and fourth pixel energies of the calibration fringe unit cells. A

close look (Table 5.2) reveals that there is not much variation in intensity along the

diagonal in each of these calibration unit cells. It would be di�cult to tell these states

apart by looking at pixels 1 and 4.

A unit cell, irrespective of size, would have a phase relative to the fringe pattern

at its boundary when the number of pixels either along the row or column is not an

integer multiple of the fringe periods. A 2 X 2 unit cell is capable of measuring only

a single spatial frequency along its row and column. Any spatial period smaller or

greater then 2 pixels is invisible to the 2 X 2 unit cell. When the spatial period is

smaller than 2 pixels Nyquist sampling criteria is violated and a spatial period greater

then 2 pixels causes the fringes to have a phase relative to the unit cell boundary.

With unit cells greater than 2 x 2 when the spatial period becomes lesser than the

number of pixels along the row or column reconstructions may still be possible.
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Unit cell (Horz calibration fringe) =

Pixel 1 Pixel 2
0.28599 0.658834
Pixel 3 Pixel 4

0.299141 0.261524

Unit cell (45 calibration fringe) =

Pixel 1 Pixel 2
0.08904 0.139905
Pixel 3 Pixel 4

0.347784 0.101210

Unit cell (RHC calibration fringe) =

Pixel 1 Pixel 2
0.511051 0.672935
Pixel 3 Pixel 4
0.15756 0.480835

Table 5.2: Unit cells of the calibration fringes corresponding to the largest condition
number: 12027.655

Unit cell (Horz calibration fringe) =

Pixel 1 Pixel 2
0.432254 0.489894
Pixel 3 Pixel 4

0.140293 0.177919

Unit cell (45 calibration fringe) =

Pixel 1 Pixel 2
0.0475029. 0.424524
Pixel 3 Pixel 4

0.280777 0.194344.

Unit cell (RHC calibration fringe) =

Pixel 1 Pixel 2
0.513325. 0.0880955
Pixel 3 Pixel 4

0.652929 0.388828

Table 5.3: Unit cells of the calibration fringes corresponding to the condition number:
10.6
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Unit cell (Horz calibration fringe) =

Pixel 1 Pixel 2
0.545471 0.316935
Pixel 3 Pixel 4

0.554863 0.0791612

Unit cell (45 calibration fringe) =

Pixel 1 Pixel 2
0.151905 0.0735146
Pixel 3 Pixel 4

0.599612 0.421125

Unit cell (RHC calibration fringe) =

Pixel 1 Pixel 2
0.242824 0.514003
Pixel 3 Pixel 4

0.0943990 0.577780

Table 5.4: Unit cells of the calibration fringes corresponding to the condition number:
66.46

The phasing of the unit cell (of any size) with respect to the calibration fringes

causes a periodic variation in condition number over the detector array. The 2 X 2 unit

cell reconstructions are sensitive to this phasing than unit cells of higher dimensions.

The phasing of the 2 X 2 unit cells with respect to the calibration fringes creates

regions in the detector image where adjacent pixel intensity variations are small. The

overlap of such regions in all calibration fringe images- horizontal, 45 and RHC, with

minimal intensity variation in the same direction produces measurement matrices with

high condition number. Since the calibration fringes are periodic over the detector

array, these regions will also be periodic as shown in Figure 5.5. However, for a

monochromatic illumination for which the ISIP is designed there are 2 x 2 regions in

the detector with condition numbers 10.6 and 66.46. The unit cells of the calibration

fringes corresponding to these condition numbers are shown in Figures 5.3 and 5.4.

In these regions the Stokes parameters can be estimated with a 12 bit detector.

If the 2 X 2 unit cell is exactly one calibration fringe period in both x and y
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dimensions the condition number would be constant over the entire detector array.

The value of the constant condition number would depend on the starting phase of

the fringes and can be varied in every unit cell at the same time by shifting the fringes

across the array. The condition number can by controlled by a shift achieved by the

lateral movement of the detector or the BCA. Even a small tilt of the camera or BCA

can be used to achieve this as long as the camera plane remained in focus. However,

an accidental misalignment which is common in practical experiments can drive the

condition number to a high value leading to the reconstructions being unstable. Hence

a sensor alignment with the fringes is hard to achieve and maintain in a practical

environment.

The calibration fringes of the ISIP have di�erent periods in the x and y dimensions

which implies that the 2 X 2 unit cell cannot be made exactly one fringe period in both

directions. Hence the phasing problem will always exist. Moreover, when the ISIP

is used in broad band illumination the fringe period is bound to change due to the

dispersion e�ects of the BCA uniaxial crystals. Consequently the discussion of fringe

period becomes meaningless in a broad band illumination situation. All the above

factors suggests the 2 X 2 unit cell reconstructions can be sensitive to alignment,

fabrication errors and bandpass operations making its application impractical though

mathematically correct.

The utility of 2 X 2 unit cell reconstruction is explored in other sampling scenarios

such as oversampled calibration fringes. Various wedge angle con�gurations that

provide oversampling with the existing detector dimensions are used and the condition

number array of each case is analyzed. The statistics of the condition number array

for each of the wedge angle con�guration are computed and tabulated (Table 5.6). At

high wedge angles, the fringe periods are smaller and pixels undersample. At lower

angles where the pixels are over sampling, the mean and standard deviation of the
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Wedge angle (degrees) Mean cn Std-dev of cn Max cn Number of cn > 104

0.39 5068 46896 1053022 1155
0.455 1076 5620 88360 1170
0.52 772 3880 53524 1078
0.585 21212 912762 1.5× 108 3281
0.65 372 1677 64171 524
0.715 301 1425 30886 283
0.78 3140 150756 19161688 423
0.845 178 702 8777 0
0.91 155 678 14056 113
0.975 407 8660 551306 84
1.04 119 571 11944 100

Table 5.6: Statistics on the condition number arrays in oversampled cases (2 X 2 unit
cell).

condition number increase. This is due to the fact that the 2 X 2 unit cell can see

only one frequency in each dimension and the phase of he fringes becomes increasingly

important. At wedge angle of 0.585 which is almost half the Nyquist sampling rate,

2 pixels would see half a period and would have the same intensity when the fringes

are in phase. Consequently there would be regions of high condition numbers which

is re�ected through the maximum, mean and standard deviation values in Table 5.6.

Based on the presence of high condition numbers and previous analysis at Nyquist

sampling, it maybe inferred that there are regions on the detector where certain

polarization states cannot be distinguished from others. In addition noise e�ects will

be dominant and reconstructions with a 2 X 2 unit cell are not practical. The Stokes

estimates with 2 X 2 unit cells are unstable due to its sensitivity to the presence of

noise and round o� errors. New condition number arrays are constructed using 3 X

3 unit cells with wedge angles maintained the same as in the 2 X 2 unit cell case and

the analysis is repeated.

Figure 5.7 shows the variations of the mean and standard deviation condition num-
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Figure 5.7: Metrics of condition number arrays for a unit cell size 3 X 3.
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ber with increasing wedge angle. It can be seen that that the minimummean condition

number 3.2846778 occurs at wedge angle: 1.105 degrees, when pixels Nyquist sample

the calibration fringes. This is an important result as it indicates that the choice of

pixel size that Nyquist sampling the calibration fringes and a unit cell size of 3 X 3

makes the reconstructor �well-conditioned� or less sensitive to the presence of noise in

measurements which is quite often the case when imaging scenes of low illumination

levels. The mean condition number curve in Figure 5.7 decreases with increase in

wedge angle beyond 1.4 degrees. This is due to the aliasing e�ects which cause high

frequency calibration fringe pattern to look like a lower frequency pattern. Though

the condition number for this aliased fringe pattern seems low, the bias introduced

into the reconstruction procedure causes signi�cant errors in estimating the Stokes

components. The issues of bias, variance, and root mean square error is addressed in

Chapter 6.

The con�guration - pixel size: 19.42 micron, wedge angle: 1.105 and a unit cell size:

3 X 3, can be considered to be optimal (for the wavelength (600nm) and the aperture

size(5mm X 5mm)) when the signal levels are considerably higher than the noise

levels. However, larger unit cells (> 3 X 3) are needed for Stokes reconstruction when

noise is signi�cant as it provides more measurements. In addition, with larger unit

cells, the slide reconstructor provides more estimations for the same Stokes component

at most pixels. A higher averaging is possible as a result, reducing the noise in the

reconstructed Stokes components. With larger unit cells the measurement matrix

F gets more rectangular (more rows added, number of columns �xed at 4) while

the condition number may vary. This variation is analyzed from condition number

arrays constructed for each larger unit cell case with the wedge angle maintained at

1.105 degrees. Figure 5.8 shows the variation of mean and standard deviations of

condition number in the arrays as a function of number of pixels in the unit cell. It
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Figure 5.8: Condition numbers of larger unit cells.
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can be seen that the mean condition number varies little beyond a 4 X 4 unit cell (16

pixels) and the values of the mean condition number are in agreement with the limit

(
√
N − 1 =

√
3 = 1.732, where N is the number of Stokes components estimated)

proposed by Tyo [56]. A low condition number value constant over the detector array

indicates that the noise ampli�cation in the reconstruction process is minimum. The

same holds true for unit cells greater than 3 X 3. Condition numbers do not re�ect

the e�ects of averaging or increased throughput (scenes with high illumination levels).

These e�ects should be take into consideration when the choice of a unit cell size is

made based on condition numbers.

5.4 Nyquist Sampling the PSF

The imaging systems used with an ISIP that map the SOP of the input light from

an object or a scene needs to be analyzed from a PSF perspective. There are two main

reasons for an analysis based on this perspective. First, ISIPs encode polarization

information of the light from the scene in the form of intensity fringes. A serious

problem is likely to occur if the image of the scene has intensity variations similar to

the calibration fringes. The reconstruction algorithm may generate false polarization

signals in such situations as intensity modulations from the polarization signal and

scene variations cannot be di�erentiated. As a result, an imaging system with a PSF

that maps the scene variations slower than the calibration fringe variations at the

detector plane is required for use with the ISIP.

A second reason for a PSF analysis is that the reconstructor algorithm developed

in Section 4.2 is based on the assumption that the polarization and intensity of the

incident light is uniform over a unit cell and the size of the unit cell is smaller than

the polarization domain (Section 4.1). The polarization of regions in the image whose

scale is smaller than the size of a unit cell cannot be resolved. PSFs play an important
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(a) Nyquist sampling the PSF with pixels.

(b) Nyquist sampling the PSF with unit cells.

Figure 5.9: Nyquist sampling the PSF.
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(a)True image (b) Fringe modulated image

Figure 5.10: Point source images: True image and Fringe modulated image.

S0 image S1 image S2 image S3 image

Figure 5.11: Reconstructed Stokes images of the point source.

role in determining the size of these polarization domains as a PSF relates the object

intensity distribution and image intensity distribution through a convolution. The

PSF chosen will be required to produce an image such that the measurement of SOP

of the smallest object (a point source) is possible.

Both requirements can be met by placing a limit on the size of unit cell used

in the reconstruction procedure with respect to the PSF. This limit is the Nyquist

sampling of the PSF - the physical length (either along the row or the column) of

two unit cells should be less than or equal to PSF half width, 1.22×λ× F/# and

such a limit is most likely to reduce the reconstruction errors in the Stokes images. In

conventional imaging systems that record only intensity variations from the scene, the

Nyquist sampling requirement is shown in Figure 5.9a. This requirement ensures the
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slow variations of the image with respect to the pixels. The size of the pixels ensure

all spatial frequencies out to the band set by the aperture are adequately sampled.

However, in case of the ISIP the modi�ed Nyquist sampling requirement is shown in

Figure 5.9b. Two unit cells Nyquist sample the PSF and the pixels forming the unit

cells Nyquist sample the calibration fringes as shown in section 5.3. The requirement

of two unit cells per 1.22×λ× F/# ensures that the scene variations are not faster

than the calibration fringe variations.

In order to show the e�ect of unit cell size Nyquist sampling the PSF, a point

source equally polarized in S1, S2 and S3 is imaged through a telescope model with

PSF half width (1.22×λ× F/#) of 15 pixels - measured from the discretized PSF

image from the detector. Stokes images are reconstructed with unit cells of increasing

dimensions. The size of the pixels used in the detector is 19.42 microns which makes

the PSF half width 210 microns. The size of the unit cells are increased from an initial

dimension of 3 X 3 to a �nal dimension of 20X 20 by integer increments. Figure 5.10

shows the true image (without crystal assembly) and fringe modulated image (with

crystal assembly) obtained from a telescope with PSF of half width 1.22×λ× F/# =

15 pixels ( 15 × 19.42 micron = 291 micron). And Figure 5.11 shows Stokes images

reconstructed from the fringe modulated image using a 3 X 3 unit cell.

The Stokes images reconstructed in each PSF case are then used to form the Error

Metric (EM):

EM =
∑

S0,S1,S2,S3

Avg(
abs(TSI −RSI)

TSI
) (5.9)

Where TSI is the True Stokes Image and RSI is the Reconstructed Stokes Image.The

Error Metric is evaluated at regions where the value of the PSF is greater than 1%

of its peak value. In Equation 5.9 both true image and reconstructed images are
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Figure 5.12: Error metric as a function of number of unit cells sampling 1.22 lamda
F/#
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functions of S0, S1, S2, and S3. The error metric is evaluated each time the Stokes

images with a di�erent unit cell size are reconstructed. The evaluated error metric

is plotted as a function of the number of unit cells per 1.22×λ× F/# (Figure 5.12).

It is seen that when the unit cells sample the PSF at rates lesser than Nyquist the

Error Metric curve becomes exponential. Hence, to keep the reconstruction errors to

a minimum, it is important that the unit cells sample PSF at rates greater than or

equal to Nyquist. The Nyquist sampling requirement of the PSF is not limited to

ISIP class of polarimeters, this limit also applies to polarimeters that use micro-grid

polarizers at the focal plane detector arrays.

A similar analysis of the PSF is done in the Fourier domain for the same point

source imaging example. In section 3.1 of Chapter 3, the analytical form of the fringe

modulated image in the Fourier representation is derived. When the object imaged

through the BCA is a �at �eld, the magnitude of the Fourier transform of the fringe

modulated image based on Equation 3.1 is identical to one of the patterns in Figure

5.1 where the spread of the side lobes are minimal. However, when the object imaged

is of smaller size like a point source, the image, unlike the �at �eld, does not �ll the

detector �eld. This causes the spread of the central and side lobes in the Fourier

domain to increase. The spread of the central and side lobes can be noticed in the

magnitude image (Figure 5.13) of the Fourier transform of a point source.

The size of the entrance pupil of the fore-optics and pixels determine the size of the

PSF in the discretized image from the detector. With the pixel size chosen to Nyquist

sample the calibration fringes, the size of the PSF depends on the choice of the fore

optics. An increase in the size of the entrance pupil from any initial value decreases

the PSF half-width (1.22×λ × F/#) providing better spatial resolution. However,

this decreases in PSF width is accompanied by increasing spread of the central and

side lobes in the Fourier domain resulting in aliasing as shown in Figure 5.14. As
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(a) A three dimensional perspective.

(b) A two dimensional perspective.

Figure 5.13: Magnitude of the Fourier transform of a point source (PSF width -
1.22×λ× F/# = 16 pixels).
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(a) A three dimensional perspective.

(b) A two dimensional perspective.

Figure 5.14: Magnitude of the Fourier transform of a point source (PSF width -
1.22×λ× F/# = 7 pixels).
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Figure 5.15: E�ect of varying PSFs in the Fourier domain.
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the PSF shrinks the peaks of the side lobes become harder to detect resulting in the

inability of the reconstruction of Stokes images. The ratio of the side lobe peak (2)

to the central peak (1) in Figure 5.14 is calculated from Fourier transforms of fringe

modulated images obtained with PSFs of decreasing half-widths. In Figure 5.15 the

variation of this ratio as function of the number of pixels per 1.22×λ × F/# of the

PSF is shown. It is inferred that the side lobe peaks are not a�ected by the expanding

central lobe as long as the PSF half-width is greater than or equal to 6 pixels. Any

PSF half-width less than 4 pixels makes the side lobe peak indistinguishable from the

expanding central lobe. The 6 pixel limit for a constant ratio between the side lobe

and central lobe is in agreement with the minimum required unit cell (3 X 3) and

proposed PSF Nyquist sampling requirement (Figure 5.9b). The concept of Nyquist

sampling the PSF with regions over which the polarization will be assumed constant

applies to both Fourier and spatial reconstructors.
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CHAPTER 6

Bias-Variance tradeoff and Sensitivity Analysis

In problems involving estimation of parameters, an introduction of a bias may actually

provide an improvement compared to unbiased estimator. The performance of an

estimator x̃ can be expressed by its Mean Squared Error (MSE) and is generally

written as:

MSE =< (x− x̃)2 >

MSE =< (x2 − 2xx̃+ x̃2− < x̃ >2 + < x̃ >2) >

MSE = x2 − 2x < x̃ > + < x̃ >2 + < x̃2 > − < x̃ >2

MSE = (x− < x̃ >)2+ < x̃2 > − < x̃ >2

MSE = Bias(x̃) + V ariance(x̃) (6.1)

Bias(x̃) = (x− < x̃ >)2 (6.2)

V ariance(x̃) =< x̃2 > − < x̃ >2 (6.3)
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, where x and x̃ represent the true value and estimated value respectively. The lack of

bias does not imply a low MSE and often, a minimum value for the MSE is achieved

when a proper tradeo� is found between the bias of the estimator and its variance.

The slide reconstruction is an estimator for the Stokes parameters S0, S1, S2, and

S3 from the pixel measurements of the detector array. For the purposes of slide

reconstruction, x̃ and x are the estimated Stokes image and true image corresponding

to the estimated Stokes image respectively. Hence x̃ and x are replaced by S̃i and Si

where i = 1, 2, or 3. The assumption of the slide reconstructor estimation is that the

intensity and polarization of the light over a unit cell varies slowly. It is established in

Chapter 5 that a 2 X 2 unit cell is not suitable for reconstruction and the minimum

required unit cell size is 3 X 3. Choice of unit cells with dimensions greater than 3 X 3

introduces higher bias when the unit cells sample the PSF at rates less than Nyquist.

However the increased number of pixels measurements in the unit cell reduces the

variance in Equation 6.1 when noise is present. The summation of the higher bias

and reduced variance with a higher dimension (> 3 X 3) unit cell can produce a lower

MSE compared to a 3 X 3 unit cell case depending on the brightness of the object

being imaged and its associated noise levels at the detector. The Mean Square Error

(MSE), in Equation 6.1 compares the Stokes estimations obtained with unit cells of

increasing dimensions and is written as follows:

MSE = Bias(S̃i) + V ar(S̃i)

Where V ar is the variance and Si is the true value of the Stokes parameter with

i = 0, 1, 2, and 3.

For the case of the slide reconstructor, MSE is a two dimensional array computed

for each of the Stokes estimations S̃0, S̃1, S̃2, and S̃3. A scalar value representing the
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MSE for each of the Stokes estimations can be calculated using a pixel average:

< MSE >P=

N∑
n=1

MSE

N

= PAB + PAV

where PAB is the Pixel Averaged Bias and PAV is the Pixel Averaged Variance.

PAB =

N∑
n=1

Bias

N

PAV =

N∑
n=1

V ar

N
.

The symbol <>P indicates a pixel average within the same image, n represents

the pixel number and N is the total number of pixels. In this work, <>P is evaluated

for regions in the estimated Stokes images that correspond to an energy greater than

or equal to 1% of the peak energy in the true image. The detector image obtained

without the BCA is the true image. The use of the term MSE will refer to the

pixel averaged quantity < MSE >P and the explicit use of the averaging operator is

avoided in rest of this work.

The metric MSE is also used to study the bias-variance tradeo� issues when the

light energy from the scene or object is distributed across a wide range of wavelengths.

Under this circumstance the BCA produces a fringe pattern with a visibility that is

periodically attenuated due to wavelength dispersion. In other words, it's the angu-

lar dispersion of the fringes as a function of wavelength that causes a spatial beat
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phenomena in visibility. A bandpass �lter is required to limit the band of wavelength

over which energy is collected. A �lter of bandwidth 50nm would increase the light

energy collected compared to 10nm �lter assuming that the energy at each nm of the

incident light is the same. However, the modulation of the fringes starts decreasing

at the outer regions of the image and continues inwards as the transmission width

of the bandpass �lter is increased. The loss of modulation of the fringes causes re-

construction errors in the estimated Stokes components S̃1, S̃2, and S̃3 thus a�ecting

the MSE calculations. For a �xed object brightness, the choice of the reconstruc-

tion region in the image a�ects the bias and variance di�erently as the width of the

bandpass �lter is increased. The bias-variance tradeo� for di�erent object brightness

levels at various regions across the image is investigated by evaluating the metric,

Normalized MSE (NMSE), as a function of the bandwidth.

In the �nal section the Signal to Noise Ratio (SNR) is evaluated for shot noise

limited cases as the DOP of the incoming light is decreased. The modulation of the

fringes encoding the polarization information depend on the DOP of input light with

the maximum modulation (visibility = 1) occurring for input light of DOP =1 and

minimum modulation (visibility = 0) occurring for input light of DOP = 0. Unlike

dispersion e�ects where the modulation of fringes is not the same for all illuminated

regions of the detector, the decrease in DOP (< 1) of input light causes a uniform

decrease in the modulation of fringes across all illuminated regions of the detector.

Shot noise and read noise inhibit the detection of the fringes when either the noise

level becomes comparable to the signal or the DOP of input light decreases or both.

Shot noise limited �at �eld cases are chosen to study the SNR as a function of the

DOP of input light. This Chapter consists of the following sections:
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• Bias-variance tradeo�: Choosing unit cell size.

• Bias-variance tradeo�: Dispersion e�ects.

• Sensitivity analysis: Shot noise limited detection.

6.1 Bias-variance tradeo� : Choosing unit cell size

In the estimation of the Stokes parameters the slide reconstructor uses the equation

−→̃
S = ((FTF)−1FT)

−→
O

to reconstruct S̃0, S̃1, S̃2, and S̃3 images. F is the measurement matrix constructed

from the calibration fringes given by Equation 4.4 , ((FTF)−1FT)is the synthesis

matrix representing the least square inverse of the measurement matrix F,
−→
O is

the vector of intensity values from the pixels of the unit cell and
−→̃
S is the vector

representing the estimated Stokes parameters. The size of the matrix ((FTF)−1FT)

and vector
−→
O depends on the number of pixels in the unit cell. The measurement

matrix F and vector
−→
O are of dimensions M X 4 and M X 1 respectively, where M is

the number of pixels in the unit cell.

For a system with well-conditioned measurement matrix and high numerical pre-

cision, the bias term would be dominant compared to the variance in MSE (Equation

6.1) when the signal levels dominate noise levels. The magnitude of the bias term

depends on the size of the unit cell used for the Stokes reconstruction - larger bias

values for unit cells > 3 X 3 that sample the PSF at rates lesser than Nyquist. In

imaging of scenes with spatial features, an increase in size of the unit cell would cause

the variance term to decrease, and bias term to increase. The decrease in the variance
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is due to the increased number of measurements within a unit cell and a consequent

increase in the number of rows in the measurement matrix F. For example, a unit

cell of size 3 X 3 would provide 9 measurements (9 rows in the measurement matrix)

while a unit cell of size 4 X 4 would provide 16 measurements (16 rows in the measure-

ment matrix). Moreover, with unit cells of higher dimensions, the slide reconstruction

procedure o�ers averaging over a larger number of estimations for each of the Stokes

components - a maximum of 9 estimations for unit cell size 3 X 3 and a maximum of

16 estimations for unit cell size 4 X 4 (see Section 4.2).

For cases where the incident light is of DOP = 1 and monochromatic, the MSE

may or may not increase as the unit cell size is increased depending on the SNR in

the detected image. The SNR is de�nes as follows:

SNR =
Mean photon count

Standard deviation

The noise levels are dominant than signal level when the energy of the light col-

lected from the objects or scenes are lower than the energy due to noise of the detector

and its associated electronic circuitry. The signal level at the detector can be less than

the noise due to low brightness of the object or scene being imaged, transmission prop-

erties of components (�lters) used along with the collection optics, and short exposure

times of the camera.

The objects and scenes imaged by the ISIP can be of di�erent sizes and shapes at

various brightness levels. The lateral spread of light incident on the BCA's entrance

aperture can vary from a size of the PSF of the collection optics (when imaging a

point source such as a star) to that of the entire physical extent of the entrance face

of the BCA (when calibration fringes are generated). Hence the polarization domain

can be of varying sizes and shapes based on the object or scene being imaged.
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The bias-variance tradeo� study is done for three di�erent objects - a point source,

satellite object and a uniform �at �eld as shown in Figure 6.1a, 6.1c, and 6.1b. The

point source and satellite object are imaged by the ISIP while the �at �eld is mod-

eled as a beam of uniform intensity and polarization illuminating the entire entrance

face of the BCA without any fore-optics in front of it. In both cases the images

from the BCA are recorded by a detector model whose pixels Nyquist sample the

calibration fringes. The telescope model used in the ISIP assembly has a PSF width

(1.22×λ×F/#) of 15 pixels in the discretized detector image of the PSF. The point

source and uniform �at �eld are modeled as completely polarized (DOP = 1) sources

with equal amounts in energy in S1, S2, and S3 Stokes components. However, the

satellite object in Figure 6.1c has di�erent polarizations across it - central circular re-

gion has horizontal polarization, left rectangular region has 45 polarization, and right

rectangular region has RHC polarization. The total amount of energy in S1, S2, and

S3 Stokes components of the satellite object are approximately the same, though the

intensity is less in the circular region compared to the rectangular regions. The wave-

length of light from these di�erent regions are same (monochromatic) and completely

polarized (DOP = 1).

The number of PDE at the detector is varied during the imaging -

104, 105, 106, and 107 PDE for point source, 105, 106, 107 , and 108 PDE for the satel-

lite object and 106, 107, 108, and 109 PDE for the �at �eld, to model di�erent bright-

ness levels of the objects. Both shot noise and read noise are included in the �nal

image. The read noise for each pixel is identically distributed and has been modeled

as an additive normally distributed random variable with a RMS value of 15 electrons
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(a) Point source.

(b) Flat �eld.

(c) Satellite object.

Figure 6.1: Objects used in the imaging.
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Figure 6.2: Noisy images: Point source Left to Right: 104 PDE, 105 PDE, 106 PDE,
and 107 PDE.

Figure 6.3: Noisy images: Satellite object Top to Bottom: 105 PDE, 106 PDE, 107

PDE , and 108 PDE.
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Figure 6.4: Noisy images: Flat �eld Top to Bottom: 106 PDE, 107 PDE, 108 PDE,
and 109 PDE.
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Point Source
Object brightness level SNR

104 PDE 18
105 PDE 158
106 PDE 876
107 PDE 3115

Flat �eld
Object brightness level SNR

106 PDE 252
107 PDE 2010
108 PDE 9335
109 PDE 31392

Satellite object
Object brightness level SNR

105 PDE 56
106 PDE 497
107 PDE 2768
108 PDE 9850

Table 6.1: SNR values for detector images obtained at various object brightness levels.

per pixel and per read out operation. The SNR of the detector image of the objects -

point source, �at �eld, and satellite object, at di�erent brightness levels are shown in

Table 6.1. The SNR has been calculated based on regions in image that have atleast

1% of the peak energy in the true image.

The averaging operation in Equations 6.2 and 6.3 requires multiple estimated

frames of the same Stokes component. Hence a stack of 100 images with di�erent

realizations of shot noise and read noise are created from the noise free image of the

objects. Figure 6.2 shows a realization of the noise corrupted image for each of the

objects for increasing number of PDE at the detector. The number of PDE in each

of the noise corrupted image have been de�ned at the entrance face of the BCA. The

number of PDE per pixel in the detector image without the BCA for sources - point
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Point Source
Brightness level (PDE) Average number of PDE per pixel

104 30
105 297
106 2970
107 19696

Flat �eld
Brightness level (PDE) Average number of PDE per pixel

106 61
107 610
108 6104
109 61035

Satellite object
Brightness level (PDE) Average number of PDE per pixel

105 30
106 295
107 2950
108 29507

Table 6.2: Average number of PDE per pixel at various brightness levels of point
source, �at �eld, and satellite object.

source, �at �eld, and satellite object, at various brightness levels are de�ned in Table

6.2 and this number has to be multiplied by the appropriate intensity transmission

values in Table 3.1 in order to calculate the PDE at the detector plane when the

BCA is present. The slide reconstruction procedure with an initial unit cell size of 3

X 3 is used to produce 100 di�erent estimations for each of the Stokes components

S0, S1, S2, and S3. The procedure is repeated with higher dimension unit cells (up

to 20 X 20) with 100 di�erent estimations for the Stokes components every time the

reconstruction is run with an incremented unit cell size.

The MSE metric along with the PAB and PAV for each of the Stokes components

are evaluated and plotted as a function of number of unit cells per 1.22 × λ × F/#

for the point source and satellite object as in Figures 6.5, 6.6, 6.7, 6.8, 6.13, 6.14,

6.15 , and 6.16 respectively. For the �at �eld (Figure 6.9, 6.10, 6.11, and 6.12) the
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metrics are plotted as function of the number of pixels in the unit cell since there are

no fore-optics in front of the BCA.

In the case of the point source and satellite object it is seen that a low brightness

level where the noise levels are signi�cant (104 PDE (SNR = 18) and 105 PDE

(SNR = 56) in Figures 6.5 and 6.13), increasing the size of the unit cell used in the

reconstruction results in a monotonic decrease in MSE. The decrease in the variance

(PAV ) is dominant than the increase in the bias (PAB) for each of the Stokes

components. However, when the signal level becomes nominal in the point source

case (105 PDE (SNR = 158) in Figure 6.6) the metric MSE decreases till the number

of the unit cells sampling PSF half width (1.22 × λ × F/#) is approximately two,

a further increase in unit cell size causes increasing bias (PAB) e�ects to dominate

the decreasing Variance (PAV ). For the nominal signal level of the satellite object

(106 PDE (SNR = 497) Figure 6.14) the number of unit cells sampling the PSF

half width (1.22 × λ × F/#) can be increased beyond two and the MSE would still

decrease. The reason for this decrease is due to the fact that the intensity roll o�

from the center of the polarization domains is slow for the satellite object compared

to the point source. Consequently the bias in the satellite object increases at a slow

rate compared to the point source. Another important result to be noted in Figure

6.14 (satellite image) is the di�erence in the bias curves for S1, S2, and S3, the curve

for S1 rises at a slower rate compared to S2 and S3. The S1 curve corresponds to

the circular central region (Figure 6.1c) which is larger compared to the rectangular

region on either side. Consequently, the central circular region would have a large

polarization domain and slow increase in bias compared to rectangular regions as

seen in the bias plots Figure 6.14. As the signal level increases further ( 106 PDE

(SNR = 876) and 107 PDE (SNR = 3115) for the point source in Figures 6.7 and

6.8; 107 PDE (SNR = 2768) and 108 PDE (SNR = 9850) for the satellite object in
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Figure 6.5: Point source: MSE, bias, and variance curves (104 PDE).
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Figure 6.6: Point source: MSE, bias, and variance curves (105 PDE).
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Figure 6.7: Point source: MSE, bias, and variance curves (106 PDE).



145

107PDE

0 1 2 3 4 5
Number of unitcells per 1.22 Lamda F/#

0

5.0•105

1.0•106

1.5•106

M
S

E

S0
S1
S2
S3

107PDE

0 1 2 3 4 5
Number of unitcells per 1.22 Lamda F/#

0

1•106

2•106

3•106

4•106

5•106

P
ix

el
 A

ve
ra

ge
d 

B
ia

s 
(P

A
B

)

S0
S1
S2
S3

107PDE

0 1 2 3 4 5
Number of unitcells per 1.22 Lamda F/#

0

100

200

300

400

P
ix

el
 A

ve
ra

ge
d 

V
ar

ia
nc

e 
(P

A
V

)

S0
S1
S2
S3

Figure 6.8: Point source: MSE, bias, and variance curves (107 PDE).



146

106PDE

0 100 200 300 400
number of pixels in unit cell

0

50

100

150

200

250

300

M
S

E

S0
S1
S2
S3

106PDE

0 100 200 300 400
number of pixels in unit cell

0

1

2

3

4

P
ix

el
 A

ve
ra

ge
d 

B
ia

s 
(P

A
B

)

S0
S1
S2
S3

106PDE

0 100 200 300 400
number of pixels in unit cell

0

50

100

150

200

250

300

P
ix

el
 A

ve
ra

ge
d 

V
ar

ia
nc

e 
(P

A
V

)

S0
S1
S2
S3

Figure 6.9: Flat �eld: MSE, bias, and variance curves (106 PDE).
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Figure 6.10: Flat �eld: MSE, bias, and variance curves (107 PDE).
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Figure 6.11: Flat �eld: MSE, bias, and variance curves (108 PDE).
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Figure 6.12: Flat �eld: MSE, bias, and variance curves (109 PDE).
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Figure 6.13: Satellite object: MSE, bias, and variance curves (105 PDE).
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Figure 6.14: Satellite object: MSE, bias, and variance curves (106 PDE).
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Figure 6.15: Satellite object: MSE, bias, and variance curves (107 PDE).
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Figure 6.16: Satellite object : MSE, bias, and variance curves (108 PDE).
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Figures 6.15 and 6.16) the reconstruction error due to bias e�ects of increased unit

cell sizes dominates the decreasing variance and the Nyquist sampling rate (2 unit

cells per 1.22×λ×F/#) has to be satis�ed when the choice of unit cell size is made.

In case of the �at �eld, there is no bias due to the physical size of unit cell chosen.

The lack of bias is due to the uniform intensity and polarization over the unit cell.

With increased number of pixels in the unit cell the variance decreases at all light

levels (106 PDE (SNR = 252), 107 PDE (SNR = 2010), 108 PDE (SNR = 9335)

, and 109 PDE (SNR = 31392) PDE) as seen in Figures 6.9, 6.10, 6.11 , and 6.12.

The decrease in variance dominates any change in bias. The metric MSE in the case

of �at �eld follows the variance as the magnitude of the variance is high compared to

the bias at all light levels.

In reconstruction of polarization domain sizes less than the �eld of view of the

detector the number of unit cells sampling the 1.22 × λ × F/# width of the PSF is

in�uenced by the SNR of the image from the detector. Flat �eld (covering the entire

detector �eld) reconstructions do not have bounds on the size of the unit cells as there

is no PSF involved and hence there are no bias-variance tradeo�s. In such cases the

minimum size unit cell is 3 X 3 and maximum sized unit cell is the dimension of the

detector �eld.

The bias and variance curves for S0 are di�erent for all objects due to increased

energy compared to S1, S2, and S3. The increased energy makes the bias for S0 rise

fast and variance decrease slow compared to S1, S2, and S3 in the point source case

as the size of the unit cell is increased. In the �at �eld case, the variance decrease

for S0 is also slow compared to other Stokes components. For the case of the satellite

object (Figures 6.13, 6.14, 6.15, and 6.16) the S0 bias is averaged over the circular and

rectangular regions. Consequently the rise in bias for S0 falls in between S1, S2, and

S3 while the variance decrease for S0 is slow compared to other Stokes components.
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6.2 Bias-variance tradeo�: Dispersion e�ects

The BCA in the ISIP is made of positive uniaxial birefringent crystal wedges

whose refractive indices - ne and no vary with wavelength of incident light. Due to this

dispersive nature of the crystals, the spatial period of the intensity fringes encoding

the polarization information depend on the wavelength of input light. Hence, input

light having �nite spectral width results in a fringe pattern that can be approximated

as a summation of individual fringe patterns corresponding to discrete wavelengths

in the band. This summation results in a loss of fringe visibility due to destructive

interference of the individual fringe patterns and this loss starts out at the edges of

the image proceeding towards the center as the wavelength spread increases. For

a narrow �eld of view the e�ects of angular dispersion of the birefringent crystals

are pronounced at the edges of the image compared to the center. Consequently,

a smaller spectral bandpass a�ects the visibility of the fringes at the edges of the

image compared to the center. The visibility is related to the wavelength spread

of input light by a Fourier transform. The wavelength spread of incident light on

the BCA is usually limited by a bandpass �lter used in the ISIP con�guration. The

use of a relatively narrow bandpass �lter preserves the modulation of the fringes

in most parts of the image and is useful when imaging objects or scene of high

brightness levels. However, the use of a narrow bandpass �lter can reduce the signal

level when objects or scenes of low brightness are imaged thereby making the fringe

modulation undetectable in a noisy image. A wide bandpass �lter lets more light in

compared to a narrow bandpass �lter thereby increasing the signal level compared

to noise level The increase in signal level is accompanied by a loss of fringe visibility

starting from the edge of the image and moves towards the center preventing faithful

reconstruction of the polarization information. Since the polarization and temporal
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Figure 6.17: Dispersion e�ects of the BCA.

coherence are intimately related, use of a relatively wide bandwidth introduces some

intrinsic bias in the estimation of the polarization at a particular wavelength; that is,

if the polarization is a rapidly varying function of wavelength, using a relatively wide-

band �lter could result in signi�cant bias independent loss in visibility. With objects

and scenes of increasing brightness levels, the reconstruction error varies across the

image as the bandwidth is increased gradually from a narrow band to a wider band.

To show the dispersive e�ects of the BCA, a �at �eld with DOP = 1 and equal

energies in each of the Stokes components - S1, S2, and S3 across a wide range of
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wavelength (400nm to 700nm) is chosen to be the source of input light. A bandpass

�lter limits the wavelength spread of the input light incident on the entrance face of

the BCA and the energy in each nm of incident light is assumed to be equal. The

dispersion e�ects of the BCA for a 50 nm bandwidth is shown in Figure 6.17 with

Regions 1, 2, 3, and 4 chosen to study the e�ects of increased bandwidth with input

�at �elds of the same polarization and di�erent brightness levels. Region 1 is close

to the centre of the image while Region 4 is the part of the image where the visibility

decreases signi�cantly for a 50 nm bandwidth. The noise free fringe modulated image

obtained for each bandwidth value is corrupted with 100 di�erent realizations of shot

noise and read noise to form a stack of images. The slide reconstruction procedure is

then used on each image of this stack to produce 100 di�erent estimations for each

of Stokes estimations - S̃0, S̃1, S̃2, and S̃3. This process is then repeated for stacks

from di�erent bandwidths thereby producing 100 di�erent estimations for all Stokes

components for each bandwidth value.

In this study, the bias is mainly due to the loss in modulation of the fringes

with increased bandwidth and the variance in the reconstructed components is due

to the presence of noise in each of the individual image in the stack. The metrics -

Normalized Mean Squared Error (NMSE), Pixel Averaged Normalized Bias (PANB)

, and Pixel Averaged Normalized Variance (PANV ) for Regions 1, 2, 3, and 4 are

evaluated are follows:

NMSE =
MSE

S2
i

= PANB + PANV
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Figure 6.18: Region 1: Normalized MSE, Normalized Bias, and Normalized Variance
- 105 PDE.
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Figure 6.19: Region 2: Normalized MSE, Normalized Bias, and Normalized Variance
- 105 PDE.
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Figure 6.20: Region 3: Normalized MSE, Normalized Bias, and Normalized Variance
- 105 PDE.
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Figure 6.21: Region 4: Normalized MSE, Normalized Bias, and Normalized Variance
- 105 PDE.
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Figure 6.22: Region 1: Normalized MSE, Normalized Bias, and Normalized Variance
- 106 PDE.
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Figure 6.23: Region 2: Normalized MSE, Normalized Bias, and Normalized Variance
- 106 PDE.
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Figure 6.24: Region 3: Normalized MSE, Normalized Bias, and Normalized Variance
- 106 PDE.
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Figure 6.25: Region 4: Normalized MSE, Normalized Bias, and Normalized Variance
- 106 PDE.
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Figure 6.26: Region 1: Normalized MSE, Normalized Bias, and Normalized Variance
- 107 PDE.
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Figure 6.27: Region 2: Normalized MSE, Normalized Bias, and Normalized Variance
- 107 PDE.
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Figure 6.28: Region 3: Normalized MSE, Normalized Bias, and Normalized Variance
- 107 PDE.
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Figure 6.29: Region 4: Normalized MSE, Normalized Bias, and Normalized Variance
- 107 PDE.
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Figure 6.30: Region 1: Normalized MSE, Normalized Bias, and Normalized Variance
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Figure 6.31: Region 2: Normalized MSE, Normalized Bias, and Normalized Variance
- 108 PDE.
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PANB =
PAB

S2
i

PANV =
PAV

S2
i

.

Where i = 0, 1, 2, or 3. The metrics MSE , PAB , and PAV have been normal-

ized by the true value S2
i since the total incident energy in each of the polarization

states changes as the transmission width of the bandpass �lter is changed. The nor-

malized metrics for Regions 1, 2, 3, and 4 are plotted as a function of the bandwidth

for various �at �eld brightness levels. The brightness levels used - 105, 106, 107, and

108 PDE, represent the number of PDE collected over the entire �eld per nm and per

exposure time.

The NB,NV, and NMSE as a function of bandwidth at various brightness lev-

els for Regions 1, 2, 3 and 4 (Figures 6.18 - 6.33) con�rms the competing e�ects of

increasing bias due to loss in fringe modulations and decreasing variance due to in-

creased throughput. At a given region in the detector or image plane, and a nominal

light level, an optimal transmission width of the bandpass �lter exists, which bal-

ances the bias and variance e�ects. For light levels lower than the level yielding an

optimum, the decrease in variance dominates the increase in bias as the bandwidth

increases and the NMSE decreases monotonically. For light levels higher than the

level yielding an optimum, the increase in bias dominates the variance reduction as

the bandwidth increases. with a resulting monotonic decrease in NMSE. The domi-

nance by bias or variance can be noticed by either the monotonic increase or decrease

in NMSE of the Stokes parameters as function of bandwidth.

In Region 1, for cases of object (�at �eld) brightness 105 and 106 PDE, the decrease

in variance dominates the bias changes resulting a monotonic decrease in NMSE for
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all estimated Stokes components with increased bandwidth as seen in Figures 6.18

and 6.22. When the object brightness is at 107 PDE a tradeo� between the bias

and variance for Region 1 is achieved with a bandpass �lter of 15nm (Figure 6.26).

An increased source brightness 108 PDE causes the bias to dominate the variance

changes resulting in a monotonic increase in NMSE (Figure 6.30). Region 1 is

located at the center of the image plane where the e�ects of the angular dispersion of

the crystal wedges are comparatively minimal. Hence, the NMSE has a minimum

at a relatively higher energy compared to Regions 2, 3, and 4. For Region 2, the

minimum NMSE occurs at two source brightness levels - 106 and 107 PDE , and at

bandwidths, 25 nm and 10 nm respectively (6.23, and 6.27). Region 3 exhibits the

the minimum NMSE at the same source brightness levels as Region 2 at bandwidths

20nm and 10 nm respectively (6.24, and 6.28) while Region 4 exhibits the tradeo�

at source brightness level of 106 PDE and a bandwidth of 20nm (6.25). The source

brightness level of 105 PDE causes a monotonic decrease in NMSE with increased

bandwidth for Regions 2,3, and 4 (Figures 6.19, 6.20, and 6.21). However, Regions

2, and 3 exhibit a monotonic increase in NMSE with increased bandwidth at source

brightness level of 108 PDE (Figures 6.31, and 6.32) while Region 4 shows a similar

pattern at two source brightness levels - 107 and 108 PDE (Figures 6.29 and 6.33).

Region 4 is further away from the center of the detector compared to the other

considered regions and most likely to be a�ected by e�ects of angular dispersion at

comparatively low brightness levels. This is con�rmed by the monotonic increase in

NMSE with increased bandwidth at 107 and 108 PDE source brightness levels (6.29,

and 6.33) while Regions 3 and 4 show this pattern at a higher source brightness level

of 108 PDE (Figures 6.31, and 6.32).
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6.3 Sensitivity analysis: Shot noise limited detection

The polarization information in the detector image is in the form of modulations in

fringe intensity and the depth of these modulations is ideally equal to the DOP of the

input light. As the DOP of the input light decreases the reconstruction of the Stokes

components becomes di�cult as the fringe modulations are lost against the statistical

�uctuations of the detector noise, this happens even for relatively bright sources.

These �uctuations can be due to the light-matter interactions from either unpolarized

portion of the �ux from the source and detector or unpolarized background �ux and

detector or both. All polarimeters su�er due to noisy measurements and it is essential

to perform a sensitivity analysis of the instrument to ascertain its capability to detect

polarization information in the presence of noise. The sensitivity of a polarimeter

according to [33], is de�ned as the minimum modulated polarization �ux needed to

exceed the statistical �uctuations in the �ux from to the unpolarized background and

unpolarized portion of the source. However, in an ISIP, the sensitivity is the minimum

DOP required to produce interference fringes statistically distinguishable from noise.

In the sensitivity analysis of the ISIP the �ux from the source and background is

assumed to be constant and the �uctuations are from the light-matter interactions

(incident light and detector interactions) and read out process. The cases chosen for

the sensitivity study of the ISIP are shot noise limited cases. The reason for this

choice is to address a fundamental sensitivity - a sensitivity independent of detector

parameters such a readout noise which varies not only with detector technology, cost,

cooling, and material but also with readout speed.

A �at �eld with DOP =1 and equal amounts of energy in S1, S2, and S3 is imaged

through the BCA. The total energy in the �at �eld is adjusted such that the the

number of PDE per exposure time for a detector with 256 × 256 pixels is equal to
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1.64× 107 . At this light level used for calculations, the detector the RMS read noise

of 5 electrons is negligible relative to shot noise �uctuations. The total variance due

to the shot noise and read noise in the detection process are as follows:

Shot noise total variance = 1.64× 107

Readnoise total variance = 256× 256× 25 u 1.64× 106

V ariance ratio =
Shot noise total variance

Read noise total variance
= 10

and hence a shot noise limited detection scenario is created. In the �rst case of

sensitivity analysis, the total number of the PDE at the detector is maintained at

1.64× 107 (constant total energy) and the DOP of the incident �at �eld is decreased

in steps from an initial DOP of 1 to a �nal DOP of 0.05. In the second case, the

total number of photons from the completely polarized �at �eld is maintained at

1.64 × 107 PDE per exposure time at the detector (constant polarized energy) and

the number of the PDE from the background in increased in steps such that DOP of

the combination - background and the polarized portion of the incident light, is in

the same range (1 ≤ DOP≥ 0.05) as that of the former case.

The metric chosen for the sensitivity analysis of the ISIP is the Signal to Noise Ra-

tio (SNR). The SNR for a Stokes component estimator S̃i of some Stokes component

Si , i = 1, 2 or 3 can be written as follows ([62]):

SNRS̃i
=

〈
S̃i

〉
[
E
{

(S̃i −
〈
S̃i

〉
)2
}] 1

2

=

〈
S̃i

〉
√
σ2
S̃i

(6.4)
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Figure 6.34: Signal to Noise Ratio (SNR) as a function of source DOP (shot noise
limited case).
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Figure 6.35: Signal to Noise Ratio (SNR) as a function of change in DOP due to
unpolarized background (shot noise limited case).
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where
〈
S̃i

〉
is the expected mean value of S̃i, σ

2
S̃i
is the variance, E(∗) indicates

the expectation operator.

Sensitivity analysis does not involve any bias-variance tradeo� study since there is

not any bias to consider as only narrow-band, e�ectively monochromatic illumination

is used in the simulations. In this case, the fringe visibility is not a function of

�eld angle, because there is e�ectively no dispersion. The fringe modulated image

of the polarized �at �eld is corrupted with 100 di�erent realizations of shot noise

and read noise to form a stack of 100 noise corrupted images. The Stokes images

are reconstructed for every noise corrupted image in the stack with a 3 X 3 unit

cell (minimum required unit cell size) and the estimated images are then used to

evaluate SNR as in Equation 6.4 for every detector pixel. The evaluated SNR is

then averaged over all the estimated pixels to form avg_SNR for each of the Stokes

components and the entire process is repeated for various DOP settings for both

unpolarized background and partially polarized source cases. Figures 6.35 and 6.34

shows the avg_SNR variations with DOP for the individual Stokes components in

the unpolarized background and partially polarized source cases respectively.

As seen in Figures 6.35 and 6.34, for DOP > 0.6 the SNR of estimations for

the S1, S2, and S3 components are linear. For cases of a) unpolarized background

is added and b) DOP is decreased, the SNR drops signi�cantly - u 5 (unpolarized

background) , and u 2 (partially polarized source), from an initial value of about

20 for the Stokes components S̃1, S̃2, and S̃3 when the DOP is reduced from unity to

0.1. The ISIP is more sensitive for the Constant Polarized Energy (CPE) case at all

DOP but the sensitivity rolls o� more severely at low DOP than the Constant Total

Energy (CTE) case. Both CPE and CTE behave linearly until a DOP =0.5 or so.

The drop in SNR is due to the �uctuations from the background and unpolarized

portion of the source.
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As the unpolarized �ux of the source is increased the overall polarization decreases

resulting in fringes with reduced modulation depth or visibility (< 1). The shot noise

�uctuations from unpolarized �ux follows Poisson statistics and the variance of the

�uctuations increases as a square root of the incident unpolarized energy. Hence, an

increase in unpolarized portion of the incident energy of the source is accompanied

by a simultaneous decrease in fringe modulation of the polarized �ux and increase

in shot noise �uctuations. This results in reduced SNR in the Stokes estimations

of incident light with low DOP as the fringe modulations are lost in the shot noise

�uctuations from the unpolarized portion of the incident light. However, the SNR

in the estimation of the Stokes component S0 remains constant with changes in DOP

in the partially polarized source case.

When the unpolarized �ux from the background is increased the depth of the

fringe modulations remains constant. However the magnitude of the shot noise �uc-

tuations from the unpolarized background increases making the fringe modulations

less detectable. This results in reduced SNR in the Stokes estimations S1, S2, and

S3 of incident light with decreasing DOP. However an increased amount of overall

energy increases the SNR in the S0 estimation with decrease in DOP.

as the total incident energy is constant and shows an increase with decrease in

DOP in the unpolarized background case. This increase of S0 SNR with decreasing

DOP in the latter case is due to the increase in unpolarized energy from the back-

ground and a constant polarized energy from the source which results in an overall

increase in the total incident energy.

6.3.1 Design Considerations

Another important consideration in the sensitivity of the ISIP is the design of the

BCA. Design parameters such as the orientation of the fast axis in the uniaxial crys-
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tal wedges of the SVR and transmission axis of the linear polarizer determines the

shapes of the calibration fringes and its modulation depth. These parameters have

to be chosen in a way that the calibration fringe shapes for horizontal, 45 , and RHC

polarization states are as di�erent as possible from each other. The reconstruction

algorithm must be able to uniquely identify these polarization states from their cor-

responding fringe patterns. Another important consideration in the design of the

BCA is the visibility or modulation depth of the fringes produced for various input

polarization states. An ideal design would produce fringe patterns with visibility =

1 for all input polarization states of DOP = 1. The modulation depth of the fringe

patterns, and noise level in the detection process determine the sensitivity of the ISIP.

The modulation depth must be approximately equal to the DOP of incident light for

the ISIP to have the optimal sensitivity. The sampling requirements in the previous

chapters have been assumed to be met in this discussion.

With the orientation of the analyzer transmission axis with respect to the x axis

�xed, one way to choose the fast axis orientations of retarders that give optimal

sensitivity is to calculate the ratio of the inner product of the vectors formed from

the unit cell pixel measurements of two calibration fringe images to the product of

their individual modulation depths. The value of this ratio for various combination

of retarder angles forms a surface known as the ratio surface. The value at any point

on on this surface is a function of the retarder angles used. Since the reconstruction

algorithm requires three calibration fringe images - horizontal, 45, and RHC, a total

of three ratio surfaces one for each combination of calibration fringe images can be

calculated for various retarder angle settings. Choosing the fast axis orientations for

SVR 1 and SVR 2 based on the minimum value of the product of the ratio surface

can be used to design the BCA. For each SVR, the choice of fast axis orientation in

the front wedges �xes the fast axis orientation in the rear wedge completing the SVR.
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This is due to the construction requirement that the fast axis orientation in the rear

wedge must orthogonal with respect to the front wedge's fast axis orientation. This

means that although there are four retarder wedges in the two SVR assemblies, there

are only two free design parameters. All fast orientations discussed here are with

respect to x axis. The following methodology is suggested as a starting point towards

an optimal design for users who wish to design a desired BCA for an ISIP: .

R1 =

−→
UH .(
−→
U45)T

V H × V 45

R2 =

−→
U45.(

−−−→
URHC)T

V 45 × V RHC

R3 =

−→
UH .(
−−−→
URHC)T

V H × V RHC

where
−→
UH ,
−→
U45, and

−−−→
URHC are the vectors constructed from the horizontal, 45 ,

and RHC calibration unit cells. VH , V45, and VRHC are the visibility values of the hor-

izontal, 45 , and RHC calibration fringes. R1, R2, and R3 represent the ratio surfaces

formed from horizontal and 45, 45 and RHC, and horizontal and RHC calibration

fringe data.

Norm R1 =
R1

Max(R1)

Norm R2 =
R2

Max(R2)

Norm R3 =
R3

Max(R3)
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R = Norm R1 ×Norm R2 ×Norm R3

WhereNorm R1, Norm R2, andNorm R3 represent the normalized ratio surfaces

formed from ratio surfaces R1, R2 and R3 respectively. R is the surface formed from

the product of individual normalized ratio surfaces.

Fast axis angle 1 = x coordinate of Min(R)

Fast axis angle 2 = y coordinate of Min(R)

where Fast axis angle 1 and Fast axis angle 2 are the fast axis orientations in the

front wedges of SVR 1 and SVR 2.

Another way of choosing the retarder angles that give the maximum modulation

over the largest range of input polarization angles. The BCA with the retarder angles

chosen should provide maximum modulation for input light ( = 1) of all possible

polarization orientations. The BCA con�guration used in this work has retarder

angle1 = 30 degrees and retarder angle 2 = 150 degrees. The variation of the visibility

of the fringes obtained with this BCA con�guration for input light ( = 1) of all

possible linear polarization orientations are shown in Figure 6.36. It can be seen

that the visibility of the fringes generated for input polarization orientations of 120

and 310 degrees drops to 0.6. The ISIP with this BCA con�guration is likely to

be sensitive to shot noise �uctuations when it measures incident light with linear

polarization orientations close to 120 degrees and 310 degrees with respect to the x

axis. The modulation depth of the fringes for these polarization states is relatively

small compared to the other linear polarization states. Hence the fringes from the
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Figure 6.36: Visibility of Fringes obtained for linearly polarized input light.
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120 degree and 310 degree input polarization states will be corrupted by shot noise

�uctuations at a relatively high and would cause reconstruction errors associated with

it to be high compared to other linear input polarization states.

It is shown that the sensitivity of the ISIP is closely related to the design of the

BCA. Hence an optimal design procedure for the BCA involving a RMSE metric can

be developed as a part of future work to improve the performance of the ISIP.
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CHAPTER 7

Summary, Conclusions, and Recommendations

Interferometric Stokes imaging is a novel technique with signi�cant potential in polar-

ization measurement applications as it records all the required information in a single

image. The appealing features of an ISIP are its compact size, lack of moving parts,

and lack of errors from the image misregistration that occur due to beam wander

or vibrations in the measuring assembly. An ISIP uses simultaneous imaging tech-

nique to record all the polarization information across the scene in form of a fringe

modulated image. Mueller calculus is used to write the intensity measurement of the

fringe modulated image as a linear combination of the product of input Stokes vector

and calibration fringe derived measurement. The assumptions of uniform polarization

and intensity of incident light over a unit cell leads to formation of a linear system

of equations. The solution of the system of equations is the estimation of Stokes

components for a unit cell and this approach is the basic idea for the reconstruction

procedure. A slide approach employed for the reconstruction gives multiple Stokes

component estimations for the same unit cell and average values are computed. This

approach was shown to reduce errors associated with reconstruction at the edges and

gave better estimations compared to a discrete reconstruction approach.

The wedge angle of the SVRs are adjusted till the chosen pixel size in the detector

Nyquist sampled the calibration fringes. With the pixels Nyquist sampling the cali-

bration fringes, the measurement matrices formed with 2 X 2 unit cells are found to

unsuitable for reconstruction due to the presence of high condition numbers and the

minimum sized unit cell size required is established to be 3 X 3. The PSF spread of
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the fore- optics and the importance of Nyquist sampling it with the unit cell is shown

with a point source imaging example.

Bias-variance tradeo� approach by varying the unit cell size is used to obtain

a minimum MSE in the presence of noise. The optimal unit cell size required for

reconstruction is shown to depend on the SNR and size of the polarization domain.

A similar study is used to analyze the e�ects of bandwidth and illumination changes

on the reconstruction error at various regions of the detector �eld. It is shown that

the optimal choice of the bandpass �lter depends on the location of the polarization

domain with respect to the detector �eld and brightness of the source. Finally, a

sensitivity analysis is done for a shot noise limited detection scenario and found that

the SNR in the estimated Stokes images decreased signi�cantly at low degrees of

polarization. The fringe modulations of a source becomes less detectable due to the

shot noise �uctuations from the increased �ux from the unpolarized background or

the unpolarized portion of the source.

Although the ISIP shows a lot of promise in remote sensing and bio science ap-

plications there are a few inherent disadvantages associated with it. First, the beam

splitting at the wedge plane of the SVRs results in a loss of spatial resolution in the

detected image ([63]). The second and the most important disadvantage of the ISIP

is its inability to measure polarization due to loss in visibility of the fringes under

broad band illumination. Consequently, a bandpass �lter is required to be used which

causes a further reduction in the throughput of the system apart from the reduction

from the linear polarizer used in the ISIP. Finally, the precision required for the small

wedge angles and physical dimensions of the birefringent crystals forming the SVRs

makes the fabrication process di�cult.

The loss in spatial resolution issue has been addressed and the SVRs in the ISIP

have been replaced by Savart plates ([39]). However, this system still su�ers from the
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loss of fringe visibility when used under broad band illumination conditions. Replace-

ment of the Savart plates with di�raction gratings to obtain a dispersion compensated

polarization Sagnac interferometer (DCPSI) has improved the interferometric polari-

metric detection capabilities under broad band illumination ([37]) The DCPSI uses a

snapshot technique and is capable of measuring either S1 and S2 or S2 and S3 under

white light illumination.

Based on this work it is inferred that the main problem of the use of ISIP in

remote sensing applications is its sensitivity. The shot noise �uctuations from the

unpolarized �ux - either from the back ground or unpolarized portion of the source or

both, corrupts the fringe modulations at low degrees of polarization. This limits the

use of the ISIP to applications where the �ux from the background is not signi�cant

and the light from the scene or object being measured has a high . Hence with

the current design, instrumentation, and reconstruction approach the use of ISIP for

making polarization measurements would most likely bene�t applications in active

polarimetry.

Modi�cations in the existing design, addition of new components, and a change

in reconstruction approach can improve the SNR in the Stokes estimations from

the fringe modulated image of the ISIP. The use of SVRs with achromatic wedges,

dispersion correctors, optimal bandpass �lter, and image intensi�er in front of the

detector are the recommended changes in the ISIP con�guration that needs investi-

gation. The SNR in the estimated Stokes images may increase if a Fourier domain

approach is employed especially in reconstruction of fringe modulated images at low

degrees of polarization. This recommendation is made considering the possibility

of noise energy being lower than the fringe energy at the spatial frequencies encod-

ing the polarization information. Figure 7.1 illustrates the potential cases that can

bene�t from each of the reconstruction approach. The Stokes estimations from the



190

(a) Flat �eld with = .05 and DC component removed in the Fourier domain.

(b) Noisy point source image with = 1.

Figure 7.1: Potential uses of Fourier approach and Slide reconstruction spatial ap-
proach.
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Slide approach for noisy �at �eld fringe modulated image (Figure 7.1a) formed with

a beam of light equally polarized in S1, S2 and S3 was found to have a SNR of u 1

in Figure 6.34. However, the Fourier domain of the noisy �at �eld image in Figure

7.1a reveals signi�cant fringe power at spatial frequencies that encode polarization

information that can be possibly used to generate Stokes estimations of higher SNR (

> 1) with a Fourier reconstruction approach. Similarly, the Fourier domain of a point

source image formed with equal polarization in S1, S2 and S3 (Figure 7.1b), corrupted

with noise, reveals the lack of fringe power at the same spatial frequencies. However,

Stokes reconstruction of this noisy point source is possible with the spatial domain

reconstruction approach as shown in Chapter 6. Thus the development of a Fourier

transform based Stokes estimation algorithm along with the existing spatial approach

can increase reconstruction capabilities for a wide range of polarization scenarios.

Another important application that needs investigation is the use of ISIP to mea-

sure polarization of spatially coherent objects which would require a comprehensive

development of the Jones model. Such a development would enable the study of in-

terference e�ects from the di�erent spatial regions of the object at the detector plane

and the reconstruction issues associated with it.
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