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ABSTRACT

Views of giftedness have evolved from unilateral notions to multilateral 

conceptions.  The primary purpose of this study was to investigate the psychological 

validity of the three-mathematical minds model (M³) developed by the author.  The M³ is 

based on multilateral conceptions of giftedness to identify mathematically gifted students. 

Teachings of Poincare and Polya about mathematical ability as well as the theory of 

successful intelligence proposed by Sternberg (1997) provided the initial framework in 

the development of the M³.  A secondary purpose was to examine the psychological 

validity of the three-level cognitive complexity model (C³) developed by the author.  The 

C³ is based on studies about expertise to differentiate among gifted, above-average and 

average-below-average students at three levels.  

The author developed a test of mathematical ability based on the M³ and C³ with 

the collaboration of mathematicians.  The test was administered to 291middle school 

students from four different schools.  The reliability analysis indicated that the M³ had 

a .72coefficient as a consistency of scores.  Exploratory factor analysis yielded three 

separate components explaining 55% of the total variance.  The convergent validity 

analysis showed that the M³ had medium to high-medium correlations with teachers’ 

ratings of students’ mathematical ability (r = .45) and students’ ratings of their own 

ability (r = .36) and their liking of mathematics (r = .35).  Item-subtest-total score 

correlations ranged from low to high.  Some M³ items were found to be homogenous 

measuring only one aspect of mathematical ability, such as creative mathematical ability,
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whereas some items were found to begood measures of more than one facet of 

mathematical ability. 

The C³ accounted for 41% of variance in item difficulty (R square = .408, p

< .001).  Item difficulty ranged from .02 to .93 with a mean of .29.  The analysis of the 

discrimination power of the three levels of the C³ revealed that level-two and level-three 

problems differentiated significantly among three ability levels, but level-one problems 

did not differentiate between gifted and above average students.  The findings provide 

partial evidence for the psychological validity of both the M³ and C³ for the identification 

of mathematically gifted students. 
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CHAPTER I

INTRODUCTION

Conceptions of giftedness vary among scholars within a field, as well as among 

those in different fields.  This diversity can be explained in part by remarkable growth in 

knowledge about human intellectual abilities in the last century because of the work of 

those with keen intellects.  More divergent approaches to the study of giftedness are 

available, both in general and to the assessment of mathematical ability. 

Multidisciplinary studies, in particular, have provided sound evidence about the 

nature of human ability that partially supports divergent theories of ability in which

people can be gifted in domains or in processes.  Three models of giftedness, for example,

have emerged from divergent theories: general giftedness influenced by the theory of 

general intelligence-g (Spearman, 1904), domain specific giftedness influenced by the 

theory of multiple intelligences (Gardner, 1983, 1999), and process giftedness influenced 

by the theory of the triarchic mind (Sternberg, 1988, 1997).  The theorists postulated 

thoughtful principles and found evidenceto support their theories.  For example, 

Spearman relied on correlational and factorial evidence to support his theory of general 

intelligence; Sternberg generally used information processing data to support his process-

oriented theory of the triarchic mind; and Gardner made use of evidence from different 

disciplines to support his domain-oriented theory of multiple intelligences. 

Following theoretical developments, other issues related to the conceptualization 

and assessment of giftedness have emerged.  Ideas related to these issues are abundant 

(Heller, Monks, Sternberg & Subotnik, 2000; Sternberg & Davidson, 1986).  Probably 
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the most prevalent question is whether giftedness emerges in different forms.  Although 

the notion of multiple forms of giftedness has received sufficient egalitarian applause 

from a sociological point of view, how these forms can be assessed and determined 

objectively has not been given enough attention.  The assessment of multilateral 

giftedness in mathematics is the main subject of this study.  

As suggested by the title of this study, the author believes that the assessment of 

mathematical giftedness should include three forms of giftedness: experts, analysts and 

creators.  Note that these forms of giftedness, the three mathematical minds, are kinds of 

giftedness that can be measured at particular levels of performance on an expertise 

continuum. I do not intend to discover some hidden potential that may show up one day 

or never.  As a matter of fact, the model might constitute a foundation for assessment 

practices of both mathematical competence and mathematical potential, rather than those 

of only mathematical potential or only competence.  That is to say, the assessment of 

competence also includes the assessment of potential because competence does not 

develop without potential.  The differentiation is similar to that between buds and blooms; 

that is, buds have promise to flower while blooms already have done so.  In fact, how 

potentially gifted students are identified also is questionable, because most tests 

measuring potential employ items that are thought to be free of domain knowledge and 

experience.  Yet, giftedness, particularly expertise and creativity, belongs to a domain 

(Chi, Glaser & Farr, 1988; Csikzentmihalyi, 1997; Gardner, 1999; Sternberg & Lubart, 

1995).  My reason for relating giftedness to expertise is that giftedness develops upon 

learning and exposure in a domain of human performance.  Numerous interviews with 
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and biographies of youngsters who participated in competition at the Athens 2004 

Olympics indicated that many years of hard body and mind work were needed to 

demonstrate superior performance. 

I think that mathematics is no different from other disciplines in the development 

of exceptional performance.  Only child prodigies, who are one in a million, are born 

mathematicians, but most who become expert mathematicians deliberately work many 

years to develop their skills.  As Sternberg (1998) postulated, abilities are forms of 

expertise, so giftedness is developing an expertise, whether in the form of analysis, of 

creativity or of domain expertise and whether in mathematics or in other domains.  

Significance of the Study

The questions the author seeks to answer in this study are of two kinds.  One 

group of questions pertains to theoretical issues in the assessment of mathematical ability 

to identify mathematically gifted students.  The author proposes to assess mathematical 

ability from a multilateral point of view.  Unilateral practices for the assessment of 

mathematical giftedness are criticized from a multilateral point of view.  A multilateral 

practice involves the assessment of several essential facets of ability.  The three-

mathematical minds model (M³) postulated by the author is an alternative to unilateral 

practices to assess the analytical, creative and knowledge aspects of mathematical ability.  

The second group of questions is related to item development that is used to measure 

different types of ability at different levels.  The three-level cognitive complexity model 

(C³) offered by the author is a way to assess mathematical ability at different levels.  

Furthermore, the author offers to use differential item functioning to validate item 
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constructs and to develop theory-driven ability tests as a supplement to the traditional 

differential item functioning practices.  Note that any problems to be discussed below 

pertain directly or indirectly to the need for the three-mathematical minds model or the

three-level cognitive complexity model. 

Theoretical Concerns

One central paradigm in the assessment of human abilities is that what is 

measured by an ability test must be of essential use in the domain of knowledge if the 

ability test is to have educational value.  Sternberg (1996), for example, stated that 

performance in mathematics courses and on ability tests usually does not predict 

effectively who succeeds as a mathematician.  The prediction failure of many ability tests 

and school grades is in part due to the fact that they often measure only some aspects of 

mathematical ability such as analytical ability, memory or mathematical knowledge.  As 

Sternberg asserted, someone can get away with good memory and analytical skills until 

one attains the highest level of education.  By the same token, Poincare (1952b) believed

that many people are thought gifted because of their great mental power for recall; 

however, they are not gifted in the real sense of productive mathematics because they 

lack the ability to apprehend the harmonious structure of mathematics.  Here, I do not 

blame assessment practices that have been undertaken by some researchers, but I believe 

that the problemremains unsolved to some extent.  The main source of this enduring

problem does not result totally from assessment practices, but from narrowly-defined 

theoretical underpinnings of these practices.  In other words, some researchers have 

conceptualized mathematical ability in only one way as a unified construct that could be 
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applied in all branches of mathematics, while they have overlooked its many aspects in 

their assessment practices.  

From this author’s vantage point, one theoretical solution for a comprehensive 

assessment of domain abilities is to view a domain from multiple angles; that is, what 

cornerstones are those on which the domain is built.  The extensive review of the 

empirical and theoretical literature by this author indicated that there indeed exist 

cornerstone abilities that play crucial roles in production, reproduction and in problem 

solving in many knowledge domains.  The three-mathematical minds model to be 

discussed extensively in the next chapter is the effort of the author to integrate 

psychological, philosophical and mathematical models to assess mathematical ability 

multilaterally, which includes analytical mathematical ability as a source of analytical 

minds, creative mathematical ability as a source of creative minds, and mathematical 

knowledge as a source of knowledge expert minds.  The model, based on studies about 

expertise, on ideas of mathematicians about mathematical ability, and on the theory of 

successful intelligence (Sternberg, 1997), is an instrument for developing theory-driven 

tests of mathematical ability to assess students’ three primary cognitive abilities for 

production, reproduction and problem solving in the domain of mathematics.  

At this point in the discussion, I should pay some attention to the term 

“mathematician” to pinpoint intellectual tools of mathematicians and to explicate the 

need for multilateral assessment.  Poincare (1952b), who was a genius in mathematics 

and a philosopher of mathematical reasoning, asserted that the abilities to store and recall 

information do not necessarily make a person a real mathematician. A mathematician is 
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the one who can discover mathematical rules and make useful constructions with 

mathematical entities.  The importance of mathematical ability, in this creative form

possessed by real mathematicians, was enunciated by the greatest mathematicians.  Polya 

(1954a) extensively quotes such statements from Descartes, Gauss, Kepler, Laplace, and 

Poincare.  These mathematicians stated that creative ability is of the highest importance 

to a mathematician because discoveries are of the utmost importance for the advancement 

of mathematics and discoveries arethe result of creative ability. In the course of 

discoveries, mathematicians usually start with making conjectures based upon a feeling 

of intuition or a priori synthetic judgment (Poincare, 1958).  Then, they induce

mathematical orders or rules, make generalizations and specializations through 

demonstrations, transfer rules from known problems to unknown problems through 

analogy, and end up with reasonable conclusions.  At the final step, these new 

conclusions are verified through mathematical deductions (Poincare, 1952a; Polya, 1954a, 

b).  This course of discovery involves the ability to think in a flexible fashion.  Flexible 

thinking necessitates the ability to shift cognitive functioning in multiple directions

breaking through cognitive blocks and restructuring thinking so that a problem is viewed 

from multiple perspectives.

If creativity is central to the advancement of mathematics, then a test should 

differentiate between those who will be creative mathematicians and those who will not.  

An integration of mathematicians’ ideas in the assessment of mathematical ability can 

make an invaluable contribution to the identification of mathematically gifted students 

who will be creative mathematicians.  One way to achieve this integration is to take a 
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mathematical approach combined with psychometric and information processing 

approaches.  The mathematical approach can help researchers understand how real

mathematicians solve complex problems and how they go through discoveries.  

Psychometric and information processing approaches can guide researchers to develop 

scientific methods to measure mathematical ability possessed by mathematicians.  For 

example, mathematicians of the productive kind extensively use induction, deduction, 

analogy and selection.  They need extensive mathematical domain knowledge while they 

need few computational skills or little memory because computation or memory does not 

make productions (Ironically, technology already has takenthe part of computational 

skills).  

An ability, such as creativity, to be measured by some tests is not neutral with 

respect to whether the level of a person’s ability is aresult of inherited characteristics, of 

learning or of a combination of them.  Carroll (1996) articulated that the estimate of an 

individual’s level of ability in terms of some tasks is only a documentation of the 

individual’s capability at a given time to perform these tasks.  However, it does not say 

much about how ability has developed or can develop through learning over time.  For 

this reason, and because knowledge and ability often interact in superior cognitive 

performance (Weisberg, 1999), an assessment of cognitive abilities also should measure 

the current learning level – or factual domain knowledge – of an individual in a domain.  

This type of assessment, in turn, provides a more comprehensive evaluation of an 

individual’s retrospective and prospective intellectual performance in the domain.  The 

preponderance of research (Weisberg) also reveals that domain knowledge is associated 
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significantly with creative achievement.  Weisberg further asserted that domain 

knowledge is the only factor that accounts for creative achievement after statistically 

controlling for intellectual and personality attributes.  This finding, especially, is true for 

the domain of mathematics because it is very abstract in nature and usually is acquired by 

schooling. 

Researchers who have studied expertise have reported key findings about how 

domain knowledge is acquired by schooling and by deliberate practices, and how 

expertise should be measured as acquisition of domain-specific knowledge in students.  

One of the key findings is that experts have different knowledge structures from novices 

(Chi., Glaser., & Farr, 1988).  In other words, experts differ from novices in the ways 

they store, recall and use information, not necessarily in the strength of their innate 

abilities (Ericsson, 2003).  Further, researchers who empirically studied students reported

that teaching, training or deliberate practices improved students’ cognitive abilities, 

including induction, deduction, domain knowledge and insight (Ansburg & Hill, 2003; 

Dollinger, Levin, Robinson, 1991; Ferrara, Brown & Campione, 1986; Gray, Pinto, Pitta 

& Tall, 1999; Klauer, Meiser & Naumer, 2000; Miyazaki, 2000; Vartanian, Martindale & 

Kwiatkowski, 2003).  As I pointed out in the foregoing discussion, these abilities also 

should be the core elements in the assessment of mathematical ability because the major 

purpose of the assessment is to inform teaching-learning and thinking practices.Studies 

on expertise have important implications not only for instruction but also for assessments 

related to developing proclivities, abilities and competencies.  Because studies on 

expertise are rather new compared to those on other abilities, few researchershave 
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studied both expertise and abilities together, and few expertise theorists have integrated 

tests of abilities in their research.  Likewise, few abilities theorists have used tests of 

expertise in their research.  Sternberg and Grigorenko (2003) proposed that insufficient 

communication between these two areas of human studies brought about a lack of 

comprehensive accounts on how abilities, competencies and expertise relate to each other.  

Because expertise is more related to the acquisition of domain knowledge and to its 

representation in long term memory, assessment of mathematical ability also should 

contain tests that measure developing expertise knowledge, as well as tests that measure 

analytical and creative abilities. 

Methodological Concerns 

Factorial level concerns.  Researchers who have used factor analysis to examine 

intelligence often have employed subtests to measure a variety of cognitive processes in 

domains of intelligence, such as verbal or quantitative, but not in process domains, such 

as analytical or creative.  This type of investigation usually yields a second stratum factor, 

such as quantitative reasoning; that is, mathematical ability was found as an aspect of 

general ability (Carroll, 1996).  By the same token, researchers who have used factor 

analysis to investigate mathematical ability usually included subtests that measured a 

mixture of mathematical reasoning and knowledge.  This type of investigation, on the 

other hand, resulted in a measurement of general mathematical ability.  Therefore, like 

the theory of general intelligence “g,” a general theory of mathematical ability has 

prevailed in the assessment of mathematical ability.  I call this overarching mathematical 

ability by the capital letter “M,” and other aspects of mathematical ability, such as 
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creative mathematical ability, with “Mc.”  Indeed, this notion of general mathematical 

ability might be psychologically credible.  However, mathematical ability deserves more 

research to find out whether an assessment of multilateral facets of mathematical ability 

is more promising as a way to identify mathematically gifted students.   

Item level concerns.  An assessment model should be validated not only on the 

factorial level but also on the item level.  The problem to be discussed here is whether an 

item functions differently in the assessment of different types of mathematical ability, 

and whether differential item functioning provides evidence for the validity of the three-

mathematical minds model.  The point of discussion, thus, is related to item validity and 

homogeneity.  Carroll (1996) maintained that one of the major problems of current item 

development practices is to determine the homogeneity of items.  Item Response Theory 

researchers (IRT, [Embretson & McCollam, 2000]), for example, assume that all items in 

a test are homogeneous in the sense that they measure the same ability.  Item 

homogeneity is subjectively judged by the test constructor in the beginning of item 

development; that is, the test constructor develops a series of items, similar in format and 

content but that vary in difficulty, and that measure the same ability.  Because of no 

initial item validation, the homogeneity becomes a serious matter; thus, a test might 

measure unintended abilities, in addition to thoseabilities it is developed to measure.  

What needs to be done at this point of analysis is a kind of item construct validity.  In 

nature, this validity looks like the general notion of test construct validity, but should be

applied at the item level.  The rationale behind my assumption is that every item is 

developed to measure a construct, just as every test is.  One way to accomplish such an 
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item validation is to carry out further analysis of item discriminations and difficulties 

based on different ability groups.  This examination provides information about whether

an item discriminates between those who are high in one type of ability and those who 

are high in another type of ability.  I would call such a situation “functional deviation,” if 

items differentiate between unintended abilities, and such items “functionally deviated 

items,” showing functional deviations.  Items of functional deviationcan be said to lack 

construct validity (especially divergent validity) because they measure some abilities they 

are not developed to measure, as well as abilities they are developed to measure.  Other 

items that measure what they need to measure could be called “functionally fitted items”

and the situation “functional fitness.”

Differential Item Functioning (DIF) has been used to analyze items demonstrating 

different functions for different groups of individuals.  DIF analysis often has been 

applied to members of such groups as gender, race, ethnicity, region, socioeconomic and 

second language learners (Linn, 1993).  This mode of analysis also can shed light on

practices in the assessment of mathematical ability if applied to members of high ability, 

average ability, high-average ability and low ability in mathematical ability in general as 

well as in mathematical domain knowledge, analytical mathematical ability and creative 

mathematical ability in particular.  In turn, this mode of analysis also indicates whether 

the item measures only the intended ability or some other abilities, as well. For example, 

an item developed to measure analytical ability also can discriminate highly between high 

and average domain knowledge if it requires some domain knowledge. 
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Application of DIF to different types of ability is different from the conventional 

approach, in which the composite score often is used to estimate item discrimination and 

difficulty indexes (Anastasi & Urbina, 1997), which usually results in overlooking low 

discriminative items that might be good measuresof different aspects of ability if factor 

scores areused as the base.  The point is that one item can have a low discrimination 

level for an ability such as analytical mathematical ability while the same item can be a 

good measure of another ability such as creative mathematical ability, depending upon 

which factor score is used as the base on which the item discrimination index is estimated.  

The use of different factors as the base can provide evidence about whether an item is a 

good measure of the ability under measurement.  For example, one item can discriminate 

very well between high analytical ability and low analytical ability; however, the same 

item does not necessarily discriminate between high creative ability and low creative 

ability.  Indeed, the same item can discriminate against high creative ability because the 

type of psychological construct the item measures can be very different from that to 

measure creative ability.  Therefore, test developers should disclose what each item 

measures and the purpose of each item should be aligned with the purpose of the 

assessment.  The point is that if the purpose of an assessment tool is to identify 

analytically gifted students, then each item must to be scrutinized to determine whether it 

also discriminates between those who are high in other abilities.     

Item cognitive complexity. As I partially enunciated problems surrounding item 

homogeneity in the foregoing discussion, another issue is why an item is difficult and

what makes an item difficult for some individuals.  Sternberg (2002) stated that sources 
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of item difficulty must be developed psychologically through a systematic approach. 

Likewise, Lohman (2000) maintained that a good psychometric test is the collection of 

items of different difficulty levels.  From a psychological point of view, an assessment 

model, such as the one undertaken by the author, should be informative about what it is 

that makes some items more difficult than others.  The author’s hypothesis is that item 

difficulty varies as a result of the performance levels of individuals as demonstrated in a 

domain.  Performance level in a domain means that item difficulty comes from two 

sources, respectively.  The very first one is the function of the content of an item –

content domain – corresponding to an intellectual domain.  For example, a problem of the 

analytical mathematical kind can be very difficult for a group of individuals who have 

strong creative mathematical ability but have weak or average analytical ability, or vice 

versa; thus, the type of ability plays the major role in item difficulty.  The second source 

is the function of the cognitive complexity level of an item.  For example, calculus 

problems can be too advanced for average middle school students because these students

do not have that level of knowledge, but it is appropriate for high school students; thus, 

the level of an item plays the major role in item difficulty.  Further, a few problems that 

are constructed at significantly different difficulty levels are enough to measure a single 

construct. 

One theoretical and methodological model for item development is cognitive 

complexity, an approach that includes both performance level and performance domain.  

Different models of complexity approaches exist.  According to levels of cognitive 

complexity models, for example, thinking can be measured at different levels (McDaniel 
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& Lawrence, 1990) and according to the learning-development approaches, learning and 

cognitive development can be measured at different qualitative levels (Biggs & Collins, 

1982; Pegg, 2003).  However, the most current theories and research on cognitive 

complexity are concerned with the quality or complexity of students’ responses to 

problems, not that of the item itself.  The approach for the development of item 

complexity the author undertakes in this study is the development of items according to 

performance level as a cultivation of experience in mathematics, such as novice as first 

level, developing experts as second level and experts as the third level. In this model, 

titled three-level cognitive complexity, each item measures a specific level of a particular 

ability because of the level of cognitive demand the item poses to the problem solver.  

Cognitive demands are established on some psychological sources, such as demands for 

knowledge, or for analytical ability or for creative ability.  While an individual can be at 

the third level in analytical ability, the same person can be at the first or second level in 

other abilities.  Further, if a test, such as the one undertaken by the author, measures three 

different abilities, such as three mathematical minds, at three complexity levels, a 3 x 3 

profile of an individual can be obtained from the performance of that particular person on 

the test.  Table 1 shows how this comparison can be made by standings of individuals A, 

B, and C according to the combination of the three-mathematical minds with the three-

level cognitive complexity model.  
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Table 1.1

Integration of the three-mathematical minds and the three-level cognitive complexity 

model for the assessment of mathematical ability to identify mathematically gifted 

students

Types of MindsCognitive 

Complexity Analytical Creative Expert

Level 1 A C B

Level 2 B A C

Level 3 C B A

Purpose

The primary purpose of this study was to investigate the psychological validity of 

the three-mathematical minds model for the assessment of mathematical ability to 

identify mathematically gifted students.  The secondary purpose was to examine the 

psychological validity of the three-level cognitive complexity model for the development 

of psychologically-constructed test items. 

Research Questions and Hypotheses

The first three questions and associated hypotheses are related to the three 

mathematical-minds model.  The last two questions and their associated hypotheses are 

related to the three-level cognitive complexity model. 

1. How theoretically valid is the three-mathematical minds model (M³)? 
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a. What is the underlying structure of mathematical ability?

b. How are the components of mathematical minds hypothetically constructed as 

mathematical expertise, analytical mathematical ability, and creative 

mathematical ability associated?

c. How are subcomponents hypothetically constructed as knowledge of algebra, 

of geometry and of statistics; linear syllogism, conditional syllogism and 

categorical syllogism; and as induction, insight, and selective attention 

associated?

2. What are the psychometric properties of the M³ test battery? 

a. How reliable is the M³?

b. What convergent validity doesthe M³ havewhen students’ liking of 

mathematics, their rating of their own mathematical ability and teachers’ 

rating of students’ mathematical ability are used as converging variables?  

c. Does the M³ differentiate between students of various grade levels?

d. How valid is the internal consistency of the M³ for item-total score, item-

subtest and subtest-total score correlations?

3. Which M³ items are good measures of mathematical knowledge, analytical 

mathematical ability and creative mathematical ability? 

4. How psychologically valid is the three-level cognitive complexity model?  

a. What relations, if any,exist among item cognitive complexity (ICC), item 

difficulty (ID) and item discrimination (D)? 

b. Hypothesis – ICC significantly predicts ID.
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5. How do the three ability groups, gifted (above95%), above average (85-94%) and 

average and below-average (below 85%) as identified by the composite score, differ 

in their performance on the items at different levels of cognitive complexity?

a. Null hypothesis –No significant difference exists between the performance of 

gifted studentsand that of above average students on items at the third level of 

cognitive complexity only. 

b. Null hypothesis – No significant difference exists between the performance of 

above average students and that of average and below average students on 

items at the second and third levels of the cognitive complexity.

c. Null hypothesis – No significant difference exists among the performance of 

the three ability groups on items at the first level of the cognitive complexity. 



30

CHAPTER II

LITERATURE REVIEW

This chapter is an overview of theories and research about the nature of 

mathematical ability in general and of mathematical giftedness in particular.  In the first 

part, I will discuss the nature of mathematical ability, mostly referring to mathematicians’

ideas about mathematical reasoning to set the theoretical ground for this study.  In the 

second part, I will discuss different mathematical minds as a way to study and assess 

mathematical ability and to identify mathematically gifted students.  The third part

includes a discussion of psychological and neuropsychological theories and research 

about analytical ability, creativity and expertise to provide support to the study of 

different mathematical minds.  Finally, at the end of the third part, Iwill propose the 

three-mathematical minds model (M³) for the assessment of mathematical ability.

Mathematical ability can be studied from multiple perspectives including

branches of mathematics as a discipline of knowledge and cognitive processes of 

mathematical ability as a discipline of thought.  The road a researcher takes to study 

mathematical ability often is influenced by the paradigms of the discipline in which the 

researcher works. I find three disciplines essential for the study of this ability: 

philosophy, psychology and mathematics.  My attempt will be to integrate these 

disciplines to study mathematical ability.  I find no restrictions but do find directions and 

positions about how to study mathematical ability.  Others can choose other ways 

depending on their convictions. 
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Part I

The Nature of Mathematics 

Mathematics is intriguing, in that researchers from a variety of disciplines have 

been keen on the study of mathematics.  The involvement of a wide range of disciplines 

in the study of mathematics, the viewing of mathematics from multiple angles, has 

brought about a rich and wide body of knowledge.  Researchers from any discipline who 

attempt to study mathematical ability, however, are expected to ask how to define the 

domain of mathematics, how knowledge is produced in this domain, and what tools 

mathematicians use to produce knowledge.  I will use Shaw’s classification (1918) to 

frame the points of my discussion about the nature of mathematics while enriching my 

argument with the teachings of the mathematicians Poincare and Polya about 

mathematical ability.  According to Shaw, the study of mathematicscan be classified in 

many ways such as the content of mathematics, the central principles of mathematics, and 

the methods of mathematics.  The scope of my discussion will be the central principles 

that define the structure of mathematics and the methods that characterize the processes 

of knowledge production and problem solving. 

First, it is essential to pinpoint the subject-matter of mathematics to understand 

how the principles and methods of mathematics apply to the subject matter.  The content 

of mathematics includes static mathematics and dynamic mathematics.  Static 

mathematics is composed of numbers leading to arithmetic, of figures leading to 

geometry, of arrangements leading to tactic, and of propositions leading to logistic.  

These divisions are of the static kind because any objects being studied in this way are 
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given fixed entities or some collection of entities.  Dynamic mathematics, on the other 

hand, includes operators leading to operational calculus, hypernumbers leading to algebra, 

processes leading to transmutations, and systems leading to general inference.  These 

divisions are of the dynamic kind because objects of this type are transitions rather than 

states. 

Central Principles of Mathematics

In each subject-matter of mathematics, Shaw (1918) argued that four central 

principles of mathematics appear: forms, invariance, functionality, and inversion.  Form 

or structure is the particular character or property of constructions.  Kempe (as cited in 

Shaw, 1918) claimed that the study of mathematical properties of any subject-matter is 

only a study of form.  Forms appear in numbers, figures, arrangements or any other 

constructions.  Regularity and harmony, for example, are important characteristics of 

mathematics and can be seen in numerical or geometric constructions.  Consider, for 

example, natural numbers.  Every even number is followed by an odd number: 1, 2, 3, 4, 

5… and vice versa.  There is more in this regularity.  Every number is increased by one 

that is n + 1.  This simple example indicates to us some evidence of how mathematical 

entities are ordered by some rules, which, indeed, are particular characteristics of natural 

numbers.  The rule is n + 1 in the above example; so, when an individual studies natural 

numbers, s/he studies the form of natural numbers composed of particular features or 

rules. 

How is regularity related to the other principles of mathematics?  Mathematics is 

far more than simple facts; rather, it is structured on relations between mathematical facts
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and on relations between relations.  Hardy (1940) asserted mathematics is much deeper 

than what nonmathematicians think.  According to Hardy, a mathematician works like a 

painter or a poet.  A painter makes patterns with color, a poet makes patterns with words, 

and a mathematician makes patterns with ideas (pp.25):

The mathematician’s patterns, like the painter’s and the poet’s, 

must be beautiful; the ideas, like the colors or the words, must fit together 

in a harmonious way.  Beauty is the first test: There is no permanent place 

in the world for ugly mathematics.

While the structure or the form defines the particular character of constructions, 

such as natural numbers, invariance is the common characteristic of any class.  The 

structure and invariance can be observed not only in relations between mathematical 

entities that form a class, but also between relations of relations, showing functionality.  

That is, forms of each kind correspond to each other in one to one, one to many, and 

many to many ways.  A relation, for example, can be analogous to another relation.  

Consider this example on relations of relations.  In mathematics, something always is 

analogous to another that is higher or simpler in structure.  A square is analogous to a 

cube in that the relationship between them is that a cube is composed of six squares in 

surface; and the area of a square (n) is analogous to that of a cube, that is 6n.  Now, 

consider a triangle and a prism.  The relationship between a square and a cube is exactly 

analogous to that of the relationship between a triangle and a prism.  A prism consists of 

four triangles in surface, and the area of a prism is that of four times a triangle, that is 4n.  
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Methods of Mathematics

Methods mathematicians use to carry out investigations are of four kinds.  The 

first is the scientific method from which mathematicians borrowed methods of 

observation, experimentation, analysis and generalization.  Sylvester (as quoted in Shaw, 

1918, pp. 169), for example, stated that most of the great ideas of modern mathematics 

emanated from observations.  The arithmetical theory of forms, for instance, is rooted in 

observations of such geniuses as Euler and Jacobi.  Likewise, mathematicians use 

generalizations, just like natural scientists do, to apply an idea or an equation to solve a 

variety of problems.  Poincare’s discovery of Fuchsian functions (1958) is a good 

example for mathematical generalizations in that Fuchsian functions could be used to 

solve differential equations and algebraic equations, and to express coordinates of 

algebraic curves.  Generalization is crucial in mathematics in that mathematics proceeds 

from the particular to the general (Poincare, 1952a).  According to Hardy (1940), a 

serious mathematical idea or a theorem should be general that can be applied in many 

mathematical constructs.  The theorem should be able to be extended and be typical of 

other theorems of its kind.  Therefore, mathematicians always attempt to generalize 

propositions they have obtained, such as from the particular instance a + 1 = 1 + a, to a 

more general statement a + b = b + a.  The process is proof by recurrence according to 

Poincare such that we show that a theorem is true for n = 1; then if it is true for n – 1, it is 

true for n.  Then we conclude that it is true for all integers.  

The second method mathematicians use to carry out investigations is the 

intuitional method.  This method, very often criticized by strict logicians, is an a priori
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synthetic from Poincare’s perspective (1952b).  In essence, a person immediately 

discerns what the problem is and what missing elements are crucial for the solution.  For 

example, some people say, aha, I know what the answer is,” when they are given a 

perplexing or puzzle-like problem.  They often are not able to explain where or how the 

answer pops into their heads, but they say, “I just know it.”  Therefore, the intuitional 

findings or solutions do not come about through some reasoning processes, such as 

dissecting, comparing, contrasting, or relating; instead, they occur through gestalts.  

Intuitive people usually think with pictures, diagrams, or other visuals.  Indeed, Poincare 

called creative mathematicians geometers, postulating that creative mathematicians are 

those who work with geometry, use tables, diagrams and other visuals in their work.  

Poincare further argued that it is almost impossible to find even one diagram in the work 

of many mathematicians considered uncreative by Poincare.  Furthermore, intuition is not 

restricted to the visual representation of problems, according to Shaw; rather, intuition

expands the capability for insightful thinking.  Riemann, for example, connected the 

deformation of surfaces and the theory of algebraic functions through insights just like 

the insight of Poincare who argued the curves by an intuitive study.  Shaw (1918, pp.175)

pointed out the importance of intuition in mathematics by saying that: 

It is the intuition method that enables mathematicians to pass in the 

direction just opposite to that of logic, namely, from the particular to the 

general.  It is primarily a method of discovery and often starting from a 

few particular cases is able to see in them theorems that are universally 

true. It must be accompanied by a keen power of analysis and ready 
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perception of what is essential.  It often happens that hasty generalizations 

would lead to results that are valid for many cases, for the analytical 

power must be very keen. 

Another method mathematicians always use in problem solving is called the

“deductive method.”  Because all mathematicians have to use deduction to prove their 

postulates, mathematics has come to be viewed as a deductive science.  In the deductive 

method, individuals deduce conclusions from given premises or information.  The 

conclusion is drawn from the general to the particular.  According to Shaw (1918), 

deduction is used in two ways: first, it is the method of exposition of results, and 

secondly, it is the method of verification.  The deductive method, however, usually is 

used as a means of verifying theorems or confirming conjectures.  

Although the deductive method is a tool for certainty, it is not a tool for creativity.  

Consider this syllogism.  All humans are mortal.  Alice is human so Alice is mortal.  The 

first sentence is a true statement, a premise.  The second sentence is a reality and a valid 

conclusion.  Nothing is new in this statement.  Further, consider the following syllogism.  

All prime numbers are dividable only by themselves and by one.  Seven is a prime 

number; therefore, seven is dividable only by itself and by one.  Here, an axiom or a 

theorem exists about prime numbers that was postulated by its discoverer.  The logic we 

followed to prove this theorem is the product of deduction.  We did not discover 

something new or did not add anything to the original theory.  Therefore, the most 

essential use of the deductive method is to verify our knowledge.  A new theory always is 
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in need of such verifications because it often is discovered through induction or intuition, 

or through our common sense, whose products are not always correct.  

The fourth method, but perhaps not the last, is the creative method.  As 

enunciated before, mathematics usually is construed as a demonstrative discipline of 

science that relies on certainty or only proofs by pure deduction.  However, deduction is 

only one aspect of mathematics (Poincare, 1952a; Polya, 1954a).  Polya maintained that 

mathematics has two facets.  One is the deductive facet that is the rigorous side of 

mathematics.  The second facet is induction that is related to inventions in mathematics. 

In the making of knowledge, mathematics is no different from other disciplines.  

Consider this general process of a discovery: A mathematician has to make conjectures 

about a mathematical theorem before he proves it.  Successively, he conjectures the 

method of proof before he works out the details.  He has to combine observations or 

information selectively and use analogies.  To Descartes every problem he solved became

a rule that served as an analogy to solve other problems (Polya, 1962).  He enunciated 

that any new mathematical truths he discovered depended on a few principal problems.  

What happens at the end of a mathematician’s discovery or any creative work is 

generalization; that is, a mathematical discovery should be applicable to a wide range of

domains, which is the actual discovery.  Because I will discuss mathematical inventions 

in detail in the following sections, I shall end my discussion of the creative method with 

what Shaw (1918) said about it.  According to Shaw, the stamp of the great 

mathematician is what he creates as a new set of mathematical entities.  These entities 

usually arise as a response to the need for solutions that are applicable in many domains.  
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The Nature of Mathematical Ability

Conceptions of Mathematical Ability

Conceptions of mathematical ability vary among scholars who have been

involved in the psychological and philosophical study of mathematics.  No doubt a 

psychological study of human abilities has had much influence on the conceptions 

because the controversy of “can do” or “has done” (potential vs competence) is seen in 

these conceptions.  For example, Thurstone (1950) defined ability as what an individual 

can do while Werdelin (1958) defined it as what an individual has done during the 

measurement.  Carroll (1996) suggested that the definition of ability must be related to 

variations over individuals and their threshold levels of difficulty in successfully 

performing some defined class of tasks.  According to this suggestion, ability is 

highlighted by the tasks used in the measurement.  

Conceptual variations among psychologists come partially from different weights 

attached to the different facets of mathematical ability.  These conceptions can be at the 

practical or theoretical level.  In these conceptions, both the aspects of mathematics as a 

domain of knowledge and the aspects of mathematical thinking as a discipline of thought 

can be seen.  Therefore, the conceptions may vary depending on beliefs about the nature 

of mathematics as a knowledge domain or as a thought domain.  For example, Griffin 

(2000) considered math as a set of conceptual relations between quantities and numerical 

symbols.  In this definition, the branch of numbers is emphasized as a crucial aspect or 

branch of mathematics and the definition is rather theoretical.  
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Thomas (the definition is cited in Werdelin, 1958) differentiated between 

different aspects of mathematical ability at a practical level.  He emphasized abstraction, 

logical reasoning, spatial perception, and intuitive power, as well as the ability to use 

formulas, mathematical imagination, and the ability to construct mathematical gestalts.  

Note that Thomas’ definition includes thought processes.  Cameron’s definition (1925), 

however, is more practical.  He defined the most essential facets of mathematical ability 

as the power of analysis of combinations and reconstructions of its elements in a new 

way, as the power of comparison and classification of numerical and spatial data, as the 

power of concrete imagination and facility in mechanical operations, and as the ability to 

apply general principles and to manipulate abstract quantities.  Notice that Cameron 

emphasized both processes and branches of mathematics in the definition.  Werdelin 

(1958) also addressed multiple aspects of mathematical ability in the definition at a 

practical level.  He defined mathematical ability as the ability to understand the nature of 

the mathematical problems, symbols, methods and proofs; to learn them, to retain them in 

the memory and to reproduce them; to combine them with other problems, symbols, 

methods and proofs; and to use them when solving mathematical tasks.  A contemporary 

psychologist Howard Gardner (1999) used logic and mathematics together in his 

conception of mathematical ability as logical-mathematical intelligence.  According to 

him, logical-mathematical intelligence is the capacity to analyze problems of the 

mathematical kind logically, perform mathematical operations and study problems 

scientifically.  Obviously, this definition is much more general than the others.
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Conceptions of mathematicians and of philosophers of mathematics differ from 

those of psychologists.  Logic and intuition are main concepts in mathematicians’

conceptions, and power of memory has little importance in mathematical ability.  

Poincare (1952b), for example, enunciated that it is not a strong memory or attention or 

mental calculation that makes people mathematicians, but it is the intuition that enables 

them to feel, to see and to conceive the structure or relations among mathematical entities.  

Poincare believed that this ability does not belong to everyone, but to those who are in a

condition of discovery.  Poincare stated that people with great memory and attention and 

the capacity for analysis also can be gifted in mathematics.  They can learn every detail

of mathematics, but they lack the ability to create or to discover.  

Another type of mathematical mind is the mental calculator who usually is 

uneducated, but can make very complicated calculations very quickly (Hadamard, 1954).  

According to Hadamard, such talent is very different from mathematical ability, and only 

a few eminent mathematicians possessed such talent.  Hadamard asserted that exceptional 

calculators can show remarkable characteristics.  They carry out remarkable calculations 

without willful effort that is activated in their unconscious.  Ferrol, for example, was able 

to do such complex calculations.  Ferrol’s statements indicated that answers to problems 

came to his mind suddenly as if someone had whispered in his ear.  However, Ferrol is an 

exceptional case, and he was good at algebra as Hadamard said.  According to Poincare, 

however, mental calculation is not a characteristic of mathematicians of the productive 

kind.  Many known mathematicians, including Poincare himself, were not good 
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calculators.  Indeed, Poincare confessed that he forgot the multiplication tables many 

times. 

In addition, Polya (1954a, 1954b) proposed two kinds of reasoning underlying 

mathematical ability.  One is demonstrative reasoning, usually called deductive reasoning 

or logic.  This mode of thinking belongs to analysts. The principal function of 

demonstrative reasoning is to distinguish a proof from a conjecture or a valid argument 

from an invalid argument; thus, demonstrative reasoning ensures certainty in 

mathematics.  The other type of reasoning is plausible reasoning, usually called inductive 

reasoning in psychology; though plausible reasoning is a more comprehensive 

phenomenon that includes induction, analogy, and other similar constructs.  Polya 

considered these particular reasoning tools as particular cases of plausible reasoning or 

the entire reasoning process.  The primary function of plausible reasoning is to 

differentiate a more reasonable conjecture from a less reasonable conjecture by providing 

logical evidence.  This mode of thinking belongs to creators.  The two types of reasoning 

are not in a polar fashion, but they complete each other in mathematical problem solving. 

Factorial Structure of Mathematical Ability

Factor analytic studies of mathematical ability are as old as the history of factor 

analysis itself.  In this section, I briefly discuss what factor analyses of cognitive abilities 

have revealed about the nature of mathematical ability.  Mathematical ability takes many 

forms, depending on the nature of the mathematical task.  Mathematical tasks also vary, 

depending on the branches of mathematics such as arithmetic, algebra, geometry, 
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numbers or statistics, and on the cognitive processes such as induction, deduction or 

computation.  

One of the earliest quantitative investigations of mathematical ability, before

factor analytic methods, is the one by Rogers (1918).  Rogers constructed a variety of 

tests, which covered many branches and processes in mathematics as well as productive 

and reproductive aspects of mathematics, to examine different aspects of mathematical 

ability.  The mode of the analysis was correlation coefficients.  The coefficients of 

correlation ranged from .01 to .59.  After further analysis of combined test scores, Rogers 

concluded that geometric, algebraic and even verbal abilities were equally important to 

mathematical ability.  She maintained that mathematical ability is a complex confluence 

of a number of loosely connected capacities. However, Spearman’s and Werdelin’s 

reanalysis of Rogers’ data, using factor analysis, (as reviewed in Werdelin, 1958) 

revealed a different picture.  In the reanalysis, a geometric, an algebraic (mostly 

numerical) and a verbal factor were found.  Note that all factors are related to the domain 

of knowledge, not to that of cognitive processes. 

Following the advent of factor analysis, studies of mathematical ability seemed to 

be more informative.  At least four or five factors underlying mathematical ability were 

found repeatedly.  A numerical factor was found in major factor analytic studies of 

mathematical ability (Spearman, 1927; Thurstone, 1938; Werdelin, 1958) consisting 

mostly of addition, multiplication and other arithmetical problems.  Spearman stated that 

the numerical factor was one factor common to arithmetic over and above g.  Another 

common factor found was related to visual or spatial tasks that required the manipulation 
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of objects in two and three dimensional space, implying a connection between the ability 

to visualize and geometric ability.  However, the relationship between the numerical 

factor and the spatial factor is controversial in that the correlations between these two 

factors were found positive in some studies and negative in others (Werdelin).  Other

common factors in factor analytic studies related to mathematical ability were the 

reasoning factors, consisting mostly of induction (number series) and deduction tasks 

(syllogisms) (Thurstone, 1938; Werdelin, 1958).  Werdelin also found a deduction factor 

separate from the general reasoning factor underlying mathematical ability.  Other factors, 

such as verbal and scholastic factors reflecting school grades and achievement tests, also 

were found in these studies.  

Carroll (1993) reanalyzed four hundred eighty studies using exploratory factor 

analysis.  Many of the studies also had datasets relevant to mathematical ability.  His 

reanalysis indicated a hierarchical structure in cognitive abilities, similar to other theories 

proposed earlier (Cattell, 1971).  Carroll suggested a three-stratum theory whereby 

cognitive abilities can be classified hierarchically in terms of their generality into general, 

broad and narrow factors. At the highest level is the general ability (g); broad abilities 

are located in the second stratum, such as crystallized and fluid intelligence, and narrow 

factors are in the first stratum.  In his reanalysis, Carroll found quantitative ability under 

the second-stratum factor, fluid intelligence. No unique mathematical ability existed 

according to the reanalysis.  However, some first-level factors were found.  These first 

level factors were general sequential reasoning, quantitative reasoning and induction.  

However, Carroll (1996) suggested that fluid intelligence was related to mathematical 
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ability because most reasoning activities under the fluid intelligence were associated with 

logical and quantitative concepts.  Further, he concluded that fluid intelligence could be 

estimated separately from“g” because fluid intelligence did not correlate perfectly with 

“g” in many analyses.  Although Carroll never suggested the existence of a unique 

mathematical ability, his conclusion implicitly communicates that what usually 

distinguishes fluid intelligence from other factors is the existence of many mathematical 

tasks under fluid intelligence factor. 

Factor analytic studies have enlightened researchers about many aspects of

mathematical ability. However, as happens in many statistical analyses, many findings 

may be artificial, depending on the number, type and difficulty of tasks.  Another 

drawback of most factor analytic studies is how the reasoning tasks were different from 

the knowledge tasks used in prior studies were not clear.  Most tasks used in these studies 

seem to measure aspects of analytical mathematical ability, leaving out essential tasks 

underlying mathematical creativity.  Mathematical creativity never was mentioned with 

the exception of Sternberg’s study, which indicated that separate analytical and creative 

abilities existed in mathematics (Sternberg, 2002).  However, in Carroll’s reanalysis 

(1993) under the second-stratum broad retrieval ability, first level factors representing 

some aspects of creativity, such as originality and fluency, were found.  Nonetheless, 

these factors were conceptualized as retrieval ability, far from referring to mathematical 

creativity.  Therefore, processes and branches in mathematics deserve more factorial 

investigations with a focus on aspects of mathematical creativity, along with other 

mathematical reasoning components.  As a final point of this section, I would like to 
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express that although factor analytic studies help understand the psychological structure 

of mathematical ability, they are not a tool for understanding how mathematicians solve 

problems and go through discoveries.  A deeper understanding can be gained from 

mathematicians themselves about their ability. 

Mathematical Ability from the Mathematician’s Point of View

The focus of this part of the chapter is on the most essential components of 

mathematical ability from the vantage points of Poincare and Polya.  Particularly 

important is the argument I will carry out about how creative mathematical problem 

solving is achieved using inductive and insight tools; therefore, the discussion starts with 

mathematical induction and ends with insightful thinking.  

Mathematical induction.  Polya (1954a) defined mathematical induction as a 

process of discovering general laws by observation and combination of particular 

instances.  According to Polya, inductive reasoning is a component of plausible 

reasoning.  In very general terms, plausible reasoning implies a series of inductive 

processes followed by demonstrative phases.  Induction is carried out mostly by 

conjectures.  Polya maintained that knowledge is produced primarily by conjectures.  

Some conjectures are highly credible and reliable, such as those in general laws of 

science, while some conjectures are neither credible nor reliable, such as those in 

newspapers.  While mathematical knowledge is ensured by demonstrative reasoning, we 

strengthen our conjectures by plausible reasoning.  A mathematical proof, for example, is

demonstrative reasoning, but a weather broadcast belongs to plausible reasoning because 

variations might happen in weather estimates.  
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Let us see first how the process of plausible reasoning is carried out during 

mathematical problem solving; then, we can realize better the full importance of 

inductive reasoning as an underpinning tomathematical reasoning.  Let us first analyze 

the solution of a number problem, consisting of several phases as proposed by Polya 

(1954a).  Most people are able to discern properties of integers, such as 1, 2, 3, 4, 5….  

They can distinguish odd and even numbers, and know the squares, such as 1, 4, 9, and 

the primes, such as 2, 3, 5, 7, and 11.  Some people may be able to observe intriguing

relations between numbers that others do not see. 

Consider these equations 3 + 7 = 10, 13 + 17 = 30, and 23 + 37 = 60.  A good 

mathematical mind discerns the relations between these numbers.  The numbers, 3, 7, 13, 

17, 23 and 37 all are odd numbers, and a deeper analysis indicates that they also are 

primes; thus they are odd primes.  An analysis of their sums indicates that they all are 

even numbers (10, 30 and 60).  This first step of analysis revealed some relations or 

similarities between these numbers.  A second-step analysis indicated that the equations 

are analogous to each other in terms of their structural relations.  Then, a conjecture can 

be made as a third step based on the initial analysis of our observation; that is, the sum of 

two odd primes is an even number.  Poincare deemed this entire initial process or the 

discernment of harmonious relations a “prior synthetic judgment,” which is fundamental 

to mathematical creativity. 

The initial attempt yielded a conjecture.  We still need to go further and further, 

and find particular cases that verify the conjecture.  When we take more even numbers as 

sums, such as 12, 14, 16 and 18, there still are odd primes that verify the conjecture.  An 
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analysis of the numbers 2 and 4, however, indicates that they cannot be split into a sum of 

two odd primes; therefore, we need a more specific statement: Any even number that is 

neither a prime nor the square of a prime is the sum of two odd primes.  This last step 

was a generalization derived from the particular examples; namely, the examples 

proceeded from the particular cases of 3, 7, 13, and 17 to all odd primes, and from 10, 20, 

and 30 to all even numbers, and then to a general relation: even number = prime + prime. 

This statement or conclusion is a conjecture in essence, indicated by particular 

cases and obtained by induction.  It is, by no means, proved yet.  Thus, it deserves further 

investigation. What we have carried out so far is the first stage of the inductive process 

according to Polya and a prior synthetic judgment followed by an incomplete induction 

according to Poincare.  Now, we shall continue our analysis further to complete a total

induction or plausible reasoning. 

A systematic examination of even numbers as sums of two primes, for example, 

from 6 to 100 can provide further support for the conjecture or prior synthetic judgment.  

A tabulation of all these numbers such as, 6 = 3 + 3, 8 = 3 + 5…98 = 37 + 61, 100 = 43 + 

57, indicates that our conjecture is true for all even numbers from 6 to 100.  However, 

such instances still do not prove the theorem because numbers are limitless.  Although a 

single verification does not prove the theorem, each verification increases confidence in 

the conjecture by providing further support; that is, each verification renders the 

conjecture more credible and makes it more plausible according to Polya.  

The entire process discussed above indicates that a conjecture was conceived by 

prior synthetic judgment from some relations between numbers.  Particular instances 
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were investigated to verify the conjecture; demonstrations were used for other instances, 

and the conjecture was found true in all cases; as a result a general statement was made.  

Mathematical discoveries, therefore, involve several phases that include generalization, 

specialization, analogy, and induction.  These processes often are used together in the 

discovery.  The previous example discussed above indicated the analogy of three 

relations: 3 + 7 = 10, 3 + 17 = 20 and 13 + 17 = 30; then a generalization from the 

particular odd numbers to all primes, which were obtained by induction.  Finally, a 

specialization from the conjectural statement to particular cases such as 6 and 8 was 

verified by deductions. 

Analogy in mathematics.  Laplace enunciated that in mathematical science the 

principal instruments to discover the truth are induction and analogy (as cited in Polya, 

1954a).  An essential part of mathematical knowledge is stored in the form of formerly 

proven theorems.  According to Polya, almost no problems are unrelated to formerly 

solved problems.  Indeed, he claimed that if such problems do exist, they would be 

insoluble.  When people encounter a problem, they make use of previously solved 

problems, using their results or their methods, or the experience they acquired while 

solving them.  However, in the case of problems too ill-structured to choose or to relate to 

a problem, people usually search for links by analogy.  An analogy might mean many 

similar aspects between objects, which in turn brings the idea of regularity or order in the 

mathematical world.  As stated before, this is a tool for the discoverer in mathematics. 

When solving most mathematical problems, people use previous experience to 

guide their thinking and solutions for problems just as mathematicians do.  Use of prior 
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learning can take several forms.  People can recall an appropriate formula from memory, 

such as that for computing the area of a circle, and apply it to the solution of the new 

problem. If a proper formula cannot be found, students most likely will try two other 

options (Novick, 1992).  One option is to develop a solution or solution strategies on their 

own by simply using their general knowledge of mathematical facts and procedures.  

Another option is to relate the new problem to a specific problem, previously encountered, 

and to transfer some aspects of the prior problem-solving experience to the new situation.  

Notice that this is not a mere transfer of prior knowledge; rather, much more thinking 

exists in this last option, an analogy.  However, according to Poincare (1952b), an 

ordinary analogy does not guide discoveries; rather, the kinds of analogies leading to 

discoveries are much more deeply hidden.  Like Gestalt psychologists, Poincare believed 

that such analogies involve an uncommon penetration into the problem situation while 

giving up old habits of thinking.  

Now we shall see how the use of analogies can be a major instrument for 

discoveries.  We shall start with an example in solid geometry related to the partition of 

space on which Polya worked (1954a): Into how many pieces, at most, is space divided 

by five planes, provided that the planes are in a general position (no two planes are 

parallel)?  At a glance, geometric visualization of all the partitions affected by five planes 

is too difficult to see, and is more difficult or even impossible if the planes are more than 

five.  In fact, finding the number of partitions even is very difficult if the planes are more 

than ten. In such circumstances, the main tool of a mathematician is to devise easy 

analogous problems to develop a model.  This method of analogous model development 
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often is used in mathematical science (Polya, 1954a).  Polya articulated that using simpler 

problems that are similar to the present problem could be a promising analogy.  These 

simpler problems also are accessible to our geometric intuition.  Going back to our 

original problem, a single plane splits a space into two pieces; two planes cut it into a 

maximum of four pieces; three planes divide it into eight parts and four planes divide it 

into fifteen parts at most.  This underlying similarity can help us to estimate the number 

of partitions in a space made by five or more planes.  However,more analogy exists in 

spatial geometry. 

An analogous relationship exists between points, lines, planes and spaces.  This

analogy can be used to solve problems related to points on a line, lines on a plane and,

lastly, planes on a space.  Let’s start with the easiest, point-line relation, and then line-

plane relation.  One point splits 1 line into 2 parts; 2 points divide it into 3 parts; 3 points 

cut it into 4 parts; 4 points divide it into 5 parts; and 5 points split it into 6 parts; and n

points split it into n + 1 different parts. Now we shall look at lines on planes to continue 

our analogy one step further.  Again, no lines are parallel as in a space-plane problem.  A 

plane is divided by 1 line into 2 parts, by 2 lines into 4 parts, by 3 lines into 7 parts, and 

by 4 lines into 11 parts. Here, a pattern appears in all cases.

Table 2.1, similar to the one designed by Polya, shows this pattern.  This table

containing some mathematical regularity is a challenge to creative ability according to 

Polya.  The task is to induce the relation and to discover the rule.  Note that we have 

come to this point, the table, by a variety of little analogies.  More discoveries can be 

made from the table by the use of inductive reasoning and selective combinations of 
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particular elements. The result is not a simple juxtaposition of elements; rather each 

combination (number of divisions in the table) communicates some regularity or 

connection among the elements of the juxtaposition. 

Table 2.1

Number of divisions of a space by the number of dividing planes, of a plane by the 

number of dividing lines, and of a line by the number of dividing points. 

Number of dividing  

elements

Divisions of line 

By points

Divisions of plane 

By lines

Divisions of space 

by planes

0 1 1 1

1 2 2 2

2 3 4 4

3 4 7 8

4 5 11 15

5 … … …

N N + 1 N N

Our original problem was to search for the number of divisions in a space made 

by 5 planes.  The last column presents regularity: 1, 2, 4, and 8. This regularity is the 

successive powers of 2.  The next term is 15. It does not fit into this regularity.  Then, we 

look at the third column, divisions of plane by lines, as it is analogous to the last column, 

divisions of space by planes.  We induce that every entry in the third column is the sum 
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of two other entries; that is the number above it and the number to the left of it, such as 4 

+ 7 = 11 (italicized in the table).  This pattern continues.  After finding the order, we can 

verify it in more cases.  A mathematician often uses recursive reasoning (a branch of 

mathematical induction) to prove the rule because he cannot work out all numbers, for 

they are infinite.  If we proceed further by recursive reasoning, we can find the rule and 

develop the formula: 1 + n + n (n – 1)/2, which gives the number of divisions of a plane 

by lines.  We already found that 1 + n is the number of divisions of a line by points. 

If we proceed by recursive reasoning and apply it to the last column, under which 

divisions of space by planes are represented, we also can discover the pattern, the rule 

and the formula to find the number of divisions of space.  For instance, four planes divide 

space into 15 parts as seen in the table.  Our inductive reasoning indicates that 15 is the 

sum of 8 and 7; that is the entry above 15 and the entry left of 8.  When we continue such 

reasoning, we discover that five planes divide space into 26 parts; that is 11 + 15 = 26.  

Indeed, if we continue further, we will see that this pattern continues, as well.  In sum, we 

used several branches of mathematical inductive reasoning to solve a problem that 

initially seemed too challenging to our minds. 

Selection, attention, and insight in mathematics.  According to Polya (1954a) and 

Poincare (1952b), induction and analogy are major instruments for mathematical 

discoveries.  Also important instruments for discoveries are selection, attention and 

insight. Poincare (391) proclaimed that, “discovery is selection.”  Polya underscored 

“selective attention” during a problem solution. Selection occurs, first, in understanding 

the problem.  A good mathematical mind becomes selective during problem solving 
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(Polya, 1954b).  A filter can be a good analogy to a selectively working mathematician.  

S/he filters out what is related to the problem under investigation and what is unrelated to 

it, and s/he identifies what is known and what is unknown.  Then, s/he works with the 

information that is promising to the solution. 

Poincare (1952a) deemed that the ability to discern what information is promising 

for the solution is a prior synthetic judgment.  According to him, a creative 

mathematician, by intuition, feels the interconnectedness of elements in a situation.  What 

does Poincare really mean by intuition?  It is the insight ability to discern, at a glance,

harmonious relations between mathematical entities.  According to Poincare (1952b), this 

intuition helps people to see harmonies and relations hidden among juxtaposed elements. 

Some people do not have this ability of apprehension of relations.  He claimed that one 

could be a mathematical creator without a great power of attention and memory, but he 

could not be a creator without this feeling of intuition.  A mathematical demonstration is 

not a simple juxtaposition of syllogisms; it consists of syllogisms placed in a certain order, 

and the order is more important than the elements themselves.  Poincare believed that if 

an individual has the ability to discern this order, s/he does not need to recall all the 

elements of the juxtaposition because each element places itself in the position prepared 

for it in the mind of a creator. 

Second, selection also occurs in mathematical constructions.  A mathematician 

must work selectively while constructing mathematical combinations.  Mathematical 

discovery is not the making of combinations with mathematical entities that are already 

known; rather it is constructing new combinations that are useful (Poincare, 1952b).  A 
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real mathematical discoverer has to discern the useful combination among numerous 

others.  In mathematics, the number of samples or cases is so numerous that the entire life 

of a mathematician would not be enough to examine all samples to prove a conjecture or 

to make combinations that are promising.  What a mathematician really needs to do to 

discover is to choose among numerous samples or combinations with a view to 

eliminating those that are useless.  According to Poincare, this selective combination 

must be felt with insight and not be formulated; only then comes proof as a result of 

insightful thinking. 

Another distinguishing feature of mathematical problem solving that leads to 

discoveries is the phase in which a problem solver questions himself by selecting the 

direction he takes to solve a problem (Polya, 1954a).  In such problems, a problem solver 

often has to redirect his attention and his strategies selectively, restructure the problem, 

and sometimes interpret it from very different angles.  According to Poincare (1952b) 

useful combinations come to a creator’s mind as a result of a preliminary shift after 

restructuring the problem.  In the same line of thinking, Gestalt psychologists of 

insightful thinking proposed that solutions to perplexing problems often come after 

restructuringa problem (Ducker, 1945). 

Selection also plays an important role in finding analogies.  Promising analogies 

come from the use of selective working.  In other words, a mathematician selectively 

looks for underlying structures between a target problem and a source problem.  For 

example, the use of dominant functions as an analogy has served to solve numerous 

problems.  Poincare’s discovery of Theta-Fuchsian is an example of selective analogy.  
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He was guided by the analogy with elliptical functions.  The remainder was just a 

justification of his discovery with a series of deductive processes. 

Part II

Searching for Different Mathematical Minds

From the foregoing discussion, two types of mathematical abilityemerged; in 

other words, two kinds of ability characterize two types of mathematical minds – one that 

is analytical and one that is creative.  In this part, I will discuss these two kinds of 

mathematical minds in detail.  The third mind that I believe is important for 

understanding and assessing mathematical ability is the expert mind.  I will discuss expert 

minds later.  However, I point out at the onset that mathematical expertise, although more 

related to mathematical knowledge than cognitive processes, might be much more related 

to mathematical analysis and creativity than I consider.  That is to say, analysts and 

creators differ in their use of cognitive processes while experts differ in their knowledge 

structure, having specialized knowledge.  

Analysts and Creators

Poincare (1958) thought of two kinds of mathematical minds: Analysts or 

logicians and Creators or intuitionists.  These two minds work differently and contribute 

to science differently.  Creators make discoveries of theorems. Analysts, on the other 

hand, usually do microscopic work by analyzing mathematical rules, axioms, 

combinations or theorems the creator already has discovered.  The primary thinking tool 

of analysts is logic. Syllogisms or deductive reasoning are the particular cases of this 

logic.  The primary thinking tool of creators is mathematical induction by rule discovery, 
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analogy or mathematical constructions.  Let’s read this distinction from Poincare’s words

(pp.197):

It is impossible to study the works of the great mathematicians, 

without noticing…two entirely different kinds of minds. The one sort are 

above all preoccupied with logic; to read their works, one is tempted to 

believe they have advanced only step by step, after the manner of a 

Vauban who pushes on his trenches against the place besieged, leaving 

nothing to chance. The other sort are guided by intuition and at the first 

stroke make quick but sometimes precarious conquests, like bold 

cavalrymen of the advance guard.

According to Poincare (1958), the nature of their minds makes mathematicians

either analysts or creators, and this can be seen in the way they approach a novel problem.  

That is, not only do the two minds work differently, but also the ways these two minds 

deal with a problem make them different.  Analysts approach a problem by their logic 

whereas creators approach the same problem by their intuition.  That is to say, the nature 

of the problem does not change the nature of thinking of the two minds.  Let’s read it 

more precisely from Poincare’s language (pp.197): 

The method is not imposed by the matter treated.  Though one 

often says of the first that they are analysts and calls the others geometers, 

that does not prevent the one sort from remaining analysts even when they 

work at geometry, while the others are still geometers even when they 

occupy themselves with pure analysis….Nor is it education which has 
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developed in them one of the two tendencies and stifled the other.  The 

mathematician is born, not made, and it seems he is born a geometer or an 

analyst. 

Further, the former is weak in visualizing space, and the latter is weak in long 

calculations and soon can become tired of perplexing calculations.  Although Poincare 

believed that a mathematician is born eitheran analyst or a creator, this notion is very 

controversial from the psychological point of view, if not from the philosophical 

standpoint, given the fact that human cognition is prone to so much development if 

nurtured.  For example, Polya (1957, 1962) enunciated that students can learn 

mathematical problem solving in many waysthrough purposeful practices, whether 

analysis or synthesis in nature. 

Poincare’s contrast (1958) between ancient mathematicians’ intuitional approach 

and contemporary mathematicians’ logical approach is even more intriguing.  The works 

of ancient mathematicians indicate that they treated problems by intuition, so they can be 

classified as intuitionalists.  However, an analysis of their work shows the work of a 

logician in their discoveries.  According to Poincare, an evolution from the intuitive 

approach to the analytical approach has emerged.  What makes contemporary 

mathematicians logicians is what the field requiresof them; that is to say, the field 

requires rigorous and certain proofs, which cannot be accomplished only by intuition.  In 

fact, intuition sometimes can deceive people on their hypotheses unless intuition is 

supported by strict logic or analysis.  However, pure logic can lead to tautologies, not to 

discoveries. 
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Intuition is not limited to only one kind, and it is not just feeling. Consider these 

mathematical axioms: 1) Any numbers of quantities that are equal to another quantity 

also are equal to each other; 2) if a theorem is true for the number 1, and true for n + 1 

and for n, then the theorem can be proven for all whole numbers.  The first axiom is a 

result of formal logic or, so to speak, a microscopic analysis.  How about the second

axiom?  It cannot be solved by pure logic or analysis, neither by intuitive imagination.  It 

is a synthetic a priori judgment and the intuition of pure number, which, according to 

Poincare, can give a rigorous proof and is real mathematical reasoning.  Then, what is the 

role of logic in inventions?  The major role of logic is the analysis of mathematical 

constructions to prove them.  Thus, both logic and intuition have their essential roles in 

mathematics: “Logic, which alone can give us certainty, is the instrument of 

demonstration; intuition is the instrument of invention” (Poincare, 1958 p. 207). 

Experts as Knowledge Masters

In the forgoing section, I discussed analysts and creators as two types of minds in 

mathematics and compared how they differ in mathematical problem solving, 

purposefully excluding experts from the scope of the discussion.  I find expertise more 

related to domain knowledge, knowledge representation in memory and experience in the 

domain; whereas, I consider analysts and creators more related to the way they approach 

a problem and the way their minds deal with problems and novelty.  Here, I will discuss 

experts as masters of domain knowledge, the third kind of mind in mathematics. 

First, what is expertise?  The electronic version of Encyclopedia Britannica 

Dictionary 2003 includes the following definition:  having, involving or displaying 
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special skill or knowledge derived from training or experience.  An expert is one with the 

special skill or knowledge representing mastery of a particular subject.  This definition 

implies at least the following:  1) expertise involves extensive training or experience in 

the form of relevant knowledge.  2) It must be demonstrated.  3) It must be activated in 

the relevant domain.  Grigorenko (2003) also made such an analysis of expertise in the 

definition of expertise.  Expert knowledge is linked to the knowledge base and building 

this knowledge base is associated to extensive training.  In the definition, as Grigorenko 

also stated, individuals encounter two limiting factors.  First, an individual usually 

demonstrates expert performance in one domain or in a limited number of domains when 

compared to the individual himself -within individual comparison.  Second, expert 

performance is compared to other individuals in the same domain to draw some 

distinguishing line between experts, developing experts and novices.  However, the last 

point is not free of controversy. For example, rejecting the idea of expertise as intrinsic 

to a person, Connell, Sheridan and Gardner (2003) asserted that someone cannot have 

expertise; rather, an individual can have competencies of coordinated skills and factual 

knowledge that help her/him to solve problems or create products that are valued in a 

culture.  Therefore, the field or the culture defines expertise about meeting some 

predetermined criteria set by the field. 

The theories of expertise have been influenced by studies of masters, experts and 

novices in chess.  For example, using a think-aloud procedure in a pioneering study, 

DeGroot (1965) investigated expert chess players’ strategies.  DeGroot concluded that the 

knowledge experts acquired playing chess over a prolonged time enabled them to 
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outperform their opponents.  DeGroot drew a direct line between knowledge base, 

experience and expertise.  Experts were better at recognizing meaningful chess 

configurations.  DeGroot thought that the better recall ability of experts was related to 

their extensive knowledge base while Chase and Simon (1973) asserted that experts’ 

better recall ability could be explained simply by their better memories.  According to 

theories of expertise (Chase & Simon, 1973; DeGroot, 1965), expertise is characterized 

by domain-specific knowledge.  Consider the major features of experts’ knowledge 

(Bransford, Brown & Cocking, 2000):  Experts have mastered extensive content 

knowledge in organized ways that enable them to understand the deep structure of the 

subject matter; however, experts’ knowledge cannot be characterized as isolated facts.  

Their knowledge is organized around principles and big ideas and reflects practical 

applicability in specific situations.  This knowledge organization helps them to discern 

meaningful patterns of information and to retrieve relevant knowledge fluently.  The 

superior recognition ability of experts was explained by the way they chunk information 

into meaningful, relational and familiar patterns in their memory (Bransford, Brown & 

Cocking).  In an analysis of DeGroot’s study and Chase and Simon’s study, Grigorenko 

(2003) concluded that the organization of experts’ knowledge base rather than only 

superior recall ability was the major factor that distinguished experts from novices.  

Further, based upon my own analysis of studies on expertise, expertise also can be 

explained by the interaction effect of recall and the knowledge base. 

Other points of view and lines of research that need to be discussed are related to 

deliberate practice and expertise.  Individuals having these views usually undervalue the 
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importance of innate abilities, but underscore the importance of deliberate practice.  

Expert performance is accounted for by such factors as early involvement in domain-

related activities, early training and the amount of relevant experience (Ericsson, 2003).  

Based on empirical data and extensive literature review, Ericsson stated that expertise is 

primarily acquired and that learning mechanisms primarily explain this acquisition, not 

the innate abilities because changing an individual’s innate potential associated with

learning is impossible.  Although this is a very extreme view that undervalues an 

individual’s genetic endowment in explaining expert performance, this view also is very 

important in pointing out the importance of deliberate practice associated with expertise.  

According to Ericsson, the key principle to attain expert performance is not mere practice, 

but continuously increased challenges that improve the performance beyond the current 

level. 

Expertise in mathematics.  My discussion of expertise, hitherto, has been related 

to general views of expertise.  How, then, is expertise related to mathematics?  An 

expectation of superior performance from someone who lacks knowledge in mathematics

is rather unimaginable.  First, I will discuss the kinds of knowledge an individual needs to 

solve mathematical problems as Mayer proposed (1991, 2003).  Then, I will discuss 

expertise in mathematics and how it is related to the kinds of knowledge in mathematical 

problem solving. 

According to Mayer (1991, 2003) successful mathematical problem solving 

requires knowing the kind of knowledge needed in each phase for solutions.  The first 

phase is problem representation; that is, the problem solver translates the problem and 
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integrates problem elements into mental representations.  The second phase is problem 

solution wherein the problem solver plans a solution strategy and, then, executes this 

strategy to produce solutions.  In problem representation an individual needs linguistic, 

semantic and schematic knowledge to understand the problem and translate it into 

internal representations. Linguistic knowledge helps one to understand the meaning of 

words or sentences in a problem.  However, if the problem statement does not contain 

any words or phrases, a problem solver may not need linguistic knowledge to solve the

problem.  An algebraic problem such as 2y = x; y = 1; x =? does not require linguistic 

knowledge.  Semantic knowledge is based upon the kind of facts, rules or theorems in 

problem solving.  An example is that one straight line divides a space into two equal 

halves.  Semantic knowledge is important in mathematical problem solving, in that many 

mathematical problems require at least simple facts for solutions.  For example, an 

individual who has no knowledge of graphs will spend a great deal of timeunderstanding 

and solving time-rate-distance problems provided that he has not learned the formula

distance = time x rate.  Needless to say, semantic knowledge sets up the foundation for 

high performance in mathematics.  Without this kind of factual knowledge, one hardly 

performs at a higher cognitive level.  While semantic knowledge constitutesthe 

foundations in mathematical problem solving, another kind of knowledge is needed to 

make connections between chunks of information or mathematical facts and distinguish 

irrelevant from relevant information to integrate the relevant.  This type of knowledge is 

called schematic knowledge; namely, knowledge of problem types (Mayer, 1991).  

Schematic knowledge constitutes the bridge between single facts.  For example, knowing 
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that all area problems are based on a length x width relationship helps a problem solver

carry out further or harder area problems, such as the area of a cube or a prism rather than 

the area of a square or a rectangle.  When a problem solver recognizes that a problem 

involves area, s/he activates schemas related to area formulas.  

In problem solution an individual needs at least two types of knowledge as 

proposed by Mayer (1991).  One is strategic knowledge, which the individual uses to plan 

and monitor a problem solution.  Strategic knowledge usually plays its role after the 

individual understands and builds the mental representation of a problem.  The individual 

can set up some plans or strategies to execute the solution, such as determining subgoals, 

reducing or isolating elements.  Polya (1957) also suggested a set of strategies for 

effective mathematical problem solutions, such as finding similar but easier problems and 

going backward in the solution process.  However, neither model of strategic knowledge 

is related to factual mathematical knowledge; rather, they involve skills or knowledge of 

problem solving processes.  Another type of knowledge in problem solution is called 

procedural knowledge, the knowledge of how to carry out a sequence of operations such 

as computations.  For example, in finding the area of a rectangle, a problem solver needs 

to know how to multiply two numerical values, say 3 and 4, to get the correct answer.  

Notice that this stage of problem solving involves a rather basic cognitive process, 

computation. 

Experts’ knowledge in mathematics.  In the foregoing sections I discussed ideas of 

mathematicians about how mathematics is a science of structure and relations and how 

the knowledge of structural features of problems is much more important than those of 
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surface features.  Therefore, only isolated, factual, mathematical knowledge does not 

suffice in demonstrating expert performance; rather, knowledge needs to be structured in 

a way that enables the recall of chunks of information in an interconnected manner, 

which helps the problem solver discern structural relations among elements of a problem. 

Mathematics experts, for example, were able to recognize quickly patterns of information 

in situations that entailed specific classes of mathematical solutions.  Physicists were able 

to recognize problems of river currents and problems of headwinds and tailwinds in 

airplanes as involving similar mathematical principles, those of relative velocity (Hinsley, 

Hayes & Simon, 1977). 

The kind of knowledge experts posses that enables them to recognize problem 

types is characterized as involving an organized, conceptual structure or what is called 

schematic representation of knowledge in memory.  This type of representation of 

knowledge, as opposed to isolated facts, enables experts to think around principles when 

encountering a problem while novices tend to solve problems by attempting to recall 

specific formulas that could be applicable to the problem.  For example, Hinsley, Hayes 

and Simon (1977) investigated schematic representation of high school and college 

students.  They presented students with a problem that was a distance-rate-time problem,

but they included irrelevant information about a triangular relationship.  Hinsley and 

colleagues found that the participants used either distance-rate-time schema or triangle 

schema to solve the problem.  They concluded that the participants’ schema influenced 

what they looked for in the problem statement and, thus, their choice of problem solution.
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Consider the following line of research on knowledge representation differences 

among experts, developing experts and novices in mathematics. Silver (1981) asked 

seventh graders to classify 16 arithmetic word problems into groups. Each problem 

overlapped with one or more problems both in its mathematical structure and in its story 

context.  Students were grouped into three levels of proficiency representing three levels 

of expertise: good, average and poor based on their performances in solving arithmetic 

story problems.  Expert students classified problems according to similarities in their 

mathematical structures while novices grouped problems based on their story contexts.  

Schoenfeld and Herrmann’s experimental study (1982) provided evidence that 

representation differences between experts and novices were related to knowledge 

differences, not ability differences.  Students’ representations of a set of problems before 

and after instruction and also compared their representations to college professors’ 

representations.  The findings indicated that students’ representations shifted from 

grouping problems according to their surface features to structural features as a result of 

the instruction, though their representations still were not similar to those of professors 

after the instruction.  Further, Aaronson and So (as cited in Novick, 1992) investigated 

how much time expert problem solvers allocated tospecific components of problems and

compared their allocation to novice problem solvers.  Novice problem solvers spent most 

of their time on words that represented surface features of problems, such as objects and 

actors, while expert problem solvers spent most of their time on the components that 

represented structural features of problems, such as units and operations. 
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In addition to knowledge representation, mathematics experts also differ in their 

level of semantic knowledge.  Concerning students’ developing expertise and their level 

of knowledge, Ni (1998) investigated 7 and 8 year-old children’s performance on 

classificatory reasoning tasks that required sorting dinosaurs into class-memberships and 

into class inclusion.  Children were tested to determine their cognitive levels as pre-

operational or concrete operational using Piagetian conservation and classification of

quantitative tasks.  Children’s expertise level was determined by measuring their 

knowledge level about dinosaurs.  The findings indicated that levels of expertise were 

found to have a significant effect on children’s sorting performance.  Children with high 

expertise were more able to base their sorting on domain-relevant solutions, including 

both perceptual (surface) and implicit features (structural) while children with low 

expertise based their sorting on perceptual-domain relevant features and domain-

irrelevant features.  Also, my own research (Sak & Maker, 2003) involved first through

6th grade students’ level of factual or semantic knowledge and their use of numerical 

strategies in mathematics.  After statistically controlling the effect of age, semantic 

knowledge still had a significant effect on the students’ use of numerical strategies. 

Students with high knowledge were betterable to produce more strategies and were more 

likely to elaborate on the strategies they produced.  Likewise, Ostad (1998) investigated 

2nd, 4th, and 6th grade mathematically normal and mathematically disabled children’s 

performance on arithmetic word problems and on number fact problems and their use of 

task-specific strategies to solve the problems.  Mathematically normal children used 

verbal and material strategies in the early grades, and they advanced in mental strategies 
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as they advanced in school.  Mathematically disabled children primarily used material 

and verbal strategies at all grades.  The author concluded that the poor performance of 

mathematically disabled children might be explained by retrieval problems and working 

memory problems, along with their insufficient conceptual knowledge.  These three 

aforementioned studies indicate that a domain-specific knowledge base helps children to 

process and recall task-specific information more efficiently and helps them apply 

strategies more effectively.  

As a final remark, let’s assume some secondary students are developing experts.  

A student, for example, with strong memory can recall many facts related to a given 

problem.  This student,having only factual knowledge, can be thought at the first level of 

expertise or as a novice.  What else s/he needs is the knowledge to relate each piece of 

information to other chunks of information stored in her or his memory.  For example, 

knowing the formula to calculate the area of a square drawn in a triangle, whose sides are 

defined, may not be enough for this student to find the area.  Obviously, the solution of 

this problem requires some knowledge of relationships between a square and a triangle.  

The student who can solve this problem may be thought to be at the second level of 

expertise, or developing expertise, when compared to others who have similar experience.  

A third level maybe beyond the relational knowledge.  This level can be characterized as 

schematic or conceptual knowledge as elaborated by theorists of expertise.  Here, the 

student has a knowledge representation that enables her or him to solve mathematical 

problems that require inferring relations of relations between chunks of information or 

applying to a mathematical theorem that looks irrelevant at first glance.
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Reconsider the above square-triangle example.  If more demand is added for this 

problem in a way that the problem also requires square-triangle-side-angle relations.  The 

student needs to link relations between sides and angles of a square and those of a 

triangle to find the solution, thereby, connecting chunks of information stored in the 

memory.  The student at the first level of expertise, or novice level, has difficulty in 

solving the third problem because the solution of the third level problem is more related 

to conceptual representation of facts than isolated representation of single facts.  Note 

that this model of classification of levels of expertise can apply to a group of people who 

have similar experience in a knowledge domain, such as a group of elementary students, 

a group of high school students or a group of graduate students in mathematics.  The 

levels of expertise also can be applied to a more extreme comparison of groups, such as 

high school students as novices, college students as developing experts and college 

professors as experts. 

Part III

Psychological and Neuropsychological Investigations of Creativeand 

Analytical Abilities

The purpose of this part of the literature review is to providepsychological and 

neuropsychological supports to the idea of differing mathematical minds.  The mode of 

support includes empirical research findings about analytical and creative abilities 

directly or indirectly related to mathematical ability.  I draw some distinguishing lines 

between the two abilities from research findings in a spectrum of studies on human 

abilities. 
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Creativity is a rare trait, and it involves dealing with novelty.  Analytical ability 

involves analysis, comparison, contrasting and evaluating, not necessarily novelty.  The 

consensus among researchers is that creativity is a higher order “emergenetic” trait 

(Eysenck, 1995; Martindale, 1999a, 1999b).  That is, creativity is a manifestation of the 

confluence of several genetic, cognitive, personality and environmental factors 

(Sternberg & Lubart, 1995).  The confluent nature of creativity also accounts for 

distribution in that while any trait (e.g., intelligence) related to creativity may be 

distributed normally in the population, the distribution of genius is not.  Eysenck (1995) 

articulated that all the necessary traits for creativity would occur simultaneously in 

anyone but geniuses.  To Poincare (1958), while all creative people also are analytical, 

analytical people are not necessarily creative.  

Successful Intelligence: A Psychological Theory of Creative, Analytical and

Practical Minds

Perhaps the first process-oriented theory of intelligence that psychologically 

specified creativity and analytical ability separately is the theory of successful 

intelligence.  Sternberg (1997) proposed the theory of successful intelligence based on 

process skills, which were conceptualized in his earlier theory of the triarchic mind 

(1988).  According to Sternberg, intelligence has three aspects that underlie the theory of 

successful intelligence: creative, analytical and practical abilities.  According to this 

theory, a common set of processes underlies all aspects of intelligence. These processes 

are thought universally important, but they may show developmental differences in 

different contexts.  For example, Sternberg (2002) asserted that solutions to problems in 
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one culture might be intelligent while they are not in another culture.  However, the 

intellectual processes used in solutions are the same.  Defining a problem and translating 

strategies to solve problems, for example, exist in any culture. 

Analytical ability involves the use of the components of intelligence in analyzing, 

comparing, contrasting, evaluating and judging relatively familiar problems. Thinking 

occurs at an abstract level.  Sternberg (1977) analyzed analytical kinds of problems, such 

as syllogisms and analogies, into components to understand the information processing 

origins of individual differences in analytical ability.  Encoding, inference and 

comparison were found to be important processes in the solving of analytical problems.  

Particularly interesting was the finding that good reasoners allocated more time in the 

encoding phases, which Sternberg interpreted in his finding that good reasoners also used 

their metacomponents efficiently (e.g., defining a problem, and planning and monitoring 

problem solution).  On the other hand, creative ability is invoked when the information 

processing components of intelligence are applied to relatively novel problems or 

situations to create, design, imagine, suppose, explore, invent or discover; that is, novelty 

and production are the focus.  For example, Sternberg (1982) investigated how people 

dealt with novel uses of some words, as opposed to their conventional uses, such as blue-

green and grue-bleen.  The information processing component requiring people to switch 

from conventional uses and novel uses or backward and forward was a good measure of 

the ability to cope with novelty.  In addition, practical ability involves solving real life 

problems and is related to tacit knowledge.  However, I conceptualize practical ability as 
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the knowledge aspect of expertise, since it is more related to knowledge and experience.  

Sternberg (2002) also stated that tacit knowledge is acquired by experience. 

Sternberg and his colleagues have carried out a series of studies to investigate the 

validity of the theory of successful intelligence (a complete review in Sternberg, 2002; 

Sternberg, Castejon, Prieto, Hautakami, & Grigorenko, 2001; Sternberg, Grigorenko, 

Ferrari, & Clinkenbeard, 1999), using the Sternberg Triarchic Abilities Test (STAT).  

Their factorial research supported the triarchic theory of intelligence, revealing separate 

and uncorrelated analytical, creative and practical factors.  STAT measured three kinds of 

ability in three domains: analytical, creative and practical abilities in verbal, figural, 

quantitative domains.  Quantitative analytical ability was measured through a test of 

number series.  Students had to figure out what came next in a series of numbers. I think 

this part of the test may involve some aspects of creative ability because students have to 

discover rules that form number series.  Rule discovery is an important aspect of 

mathematical creativity according to mathematicians (Poincare, 1952b; Polya, 1954a).  

Creative ability was measured by a test of novel number operations.  Students were

presented with rules that defined what operations students had to use.  For example, 

“flix” involves numerical manipulations that differ as a function of whether the first of 

two operands is greater than, equal to, or less than the second.  From my point of view, 

this kind of problem or operation might be novel to students in the first encounter; 

however, once they start to solve problems of the same nature, problem solving would be 

easier and no longer novel, because students automatically would know what to do to 
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solve problems of the same nature.  Further, quantitative practical ability was measured 

by scenarios, requiring students to solve real life problems using mathematical skills. 

Psychological Investigations into Creativity and Analytical Ability

According to the neural network model of creativity, creative individuals have 

access to higher numbers of potentially useful mental associations (Martindale, 1981, 

1995).  However, a creative person must eliminate less promising alternatives prior to 

testing the potentially more promising ones.  That is, the creative process is characterized 

by the generation and subsequent selection of hypotheses (Eysenck, 1993; Simonton, 

1989).  The theory behind this lies in the context of chance-configuration theory.  

Campbell (1960) argued that creativity is the result of a two-step process.  The first step, 

referred to as blind variation, involves the generation of heterogeneous mental activity, 

which gives rise to a set of configurations or potential hypotheses.  The second step 

involves subjecting those configurations to selection, thereby reducing unsuccessful 

configurations and arriving at the most viable hypothesis.  What is important here is what 

helps eliminate unpromising ideas and what processes are used in the generation of 

heterogeneous hypotheses and the subsequent elimination of them.  Selection seemingly 

plays a major role in the confirmation of the most useful hypotheses among many. 

In an attempt to understand the relationships among creativity, inductive 

reasoning and selection, Vartanian, Martindale and Kwiatkowski (2003) tested 

participants using the Alternate Uses Test and Wason’s 2-4-6 rule discovery test.  The 

former is a divergent thinking test while the latter is a test of rule discovery by inductive 

reasoning.  The results of the study revealed that performance on the 2–4–6 task was 
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related to potential creativity, as measured by fluency scores on the Alternate Uses Test.  

That is, the group that was successful in discovering the rule generated more 

confirmatory and disconfirmatory hypotheses than the unsuccessful group.  Fluency 

accounted for a significant amount of variance in rule discovery in the step-wise 

regression analysis.  The authors concluded that fluency, as in the ability to generate 

ideas, was associated with success on the 2–4–6 task because participants with higher 

fluency scores would generate more hypotheses, thereby increasing the probability of 

discovering the target rule.

Another line of research in the psychological and neuropsychological 

investigations about creativity is related to the influence of selective attention on 

creativity.  Cognitive attention on given information to solve problems has been debated 

as one source of mathematical creativity (Poincare1957; Polya, 1954a).  The controversy 

is that focused attention promotes the generation of strong associations while diffused 

attention supports the generation of remote associations (Finke, Ward & Smith, 1992; 

Martindale, 1995).  That is to say, individuals who disperse their cognitive resources 

more easily might be more likely to generate more unusual associations than are those 

whose cognitive resources are more narrowly focused.  Researchers in this line of study, 

however, suggest that those who are creative and routinely allocate their attention in a 

diffuse manner have more difficulty completing the target task than do those who are less 

creative and who maintain a more narrow focus.  For example, Dykes and McGhie (1976) 

found that under certain conditions, highly creative individuals showed more shadowing 

errors on a dichotic listening task than did less creative individuals.  Rawlings (1985) 
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reported that creative individuals showed more intrusion errors on the shadowing task 

than did less creative individuals; however, compared to the less creative participants, 

creative individuals showed a better memory for the secondary information.  That is, 

creative individuals were better able to complete a task that required diffuse attention (i.e., 

the memory task) than were the less creative individuals, but the pattern was reversed for 

a focused attention task such as shadowing.  In addition, Mendelsohn and Griswold (1966) 

found that, when solving anagrams, creative individuals were more likely to take 

advantage of incidentally presented hints than were those who scored lower on a measure 

of creativity.  Mendelsohn’s review of empirical research also showed a positive 

relationship between measures of attentional capacity and non-verbal and verbal 

indicators of creativity.

According to the present author, a diffuse attentional strategy would result in 

trivial outcomes if not supported by focused attention.  That is, although creative 

individuals seem to have a propensity toward allocating attention broadly, when the 

situation demands, they must be able to focus their cognitive resources on certain parts of 

the situation.  In fact, Martindale (1995), in his description of a connectionist model of 

creativity as discussed before, asserted that the ability to change cognitive states between 

defocused and focused attention is a crucial characteristic of creative thinking.  For 

example, Dallob and Dominowski (1993) found that when participants’ attention was 

experimentally drawn to certain aspects of insight problems (focused or selective 

attention) solution rates increased significantly. 
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An important question related to creativity, analytical ability and selective 

attention is whether the pattern of resource allocation or diffuse attention as a trait 

possessed by individuals different in creative and analytical ability.  Here, creative 

thinking is thought of as the ability to generate associations or relations.  Analytical 

ability is thought of as the ability to dissect, divide or analyze parts, aggregates or 

juxtapositions.  Martindale (1995) discussed analytical and creative thinking by saying 

that a creative insight is not possible with deductive reasoning because the conclusion is 

implicit in the premises, and creative productions usually require remote associations.  

One assumption based on the notion of selective attentional differences between creative 

people and analytical people is that the acquisition of a large amount of information 

during problem solving might result in a trade-off of crucial processing capacity.  That is, 

for some types of problems (e.g., deductive reasoning problems) gathering incidental 

information may not allow efficient and effective processing of more central information.  

Because analytic thinking involves an evaluation/dissection of the problem elements, 

sustained focus on the problem elements is required for solution—attention directed to 

peripheral items simply wastes cognitive resources (Dykes & McGhie, 1976).  That is to 

say, analytical thinkers should not exhibit an inclination to diffuse attention.  Therefore, 

the propensity to allocate attentional resources to aspects of the problem solving situation,

which are not obviously central, should be uniquely characteristic of creative thought and 

not exhibited by analytical thinkers.  To test this assumption and to investigate selective

attentional differences between analytical thinkers and creative thinkers, Ansburg and 

Hill (2003) tested participants, using the Remote Associates Test (RAT) to measure 
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creativity, a variety of deductive problems to measure analytical thinking, and a variety 

of focal and control anagrams, along with some peripheral cues.  

Those who tended to make unusual connections were more likely to allocate their 

attention in a diffuse manner than were those who were more analytical.  Ansburg and 

Hill (2003) suggested that allocating attention broadly was not a strategy routinely 

employed by all good problem solvers.  Instead, this cognitive trait was one that 

distinguished creative problem solving from other kinds of problem solving.  The finding 

that creative thinkers used a different cognitive resource allocation strategy from 

analytical thinkers also is consistent with the view that creative problem solving is 

distinct from other kinds of problem solving.  For example, Shaw and Conway (1990) 

found that during a word-detection task creative individuals were more sensitive to 

nonconscious information than were less creative individuals.  That is, highly creative 

thinkers were more likely to produce unconsciously primed solutions than were the less 

creative thinkers.  Schooler, Ohlsson, and Brooks (1993) found that when participants 

were forced to become aware of their problem-solving procedures through verbalization, 

insightful problem solving was inhibited.  Shaw (1992) suggested that creative 

individuals gather information using attentional processes that might occur unconsciously.  

According to Shaw, this unmonitored stream of information activates prior knowledge 

and can account for the suddenness with which creative solutions come into 

consciousness.
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Neuropsychological Investigations about Creativity and Analytical Ability

Neuropsychological researchers also have investigated the structure and the 

functions of the brain related to analytical and creative abilities.  Kris (1952), for example, 

distinguished among primary process thinking, which is analogical, and free associative

thinking, commonly associated with creativity, and secondary process thinking, which is 

logical and reality-oriented, commonly associated with analytical thinking.  

Neuropsychological research implies that creative people are more flexible along the 

primary process–secondary process continuum and that creative insights are more likely 

to occur in a primary process mode of cognition (Martindale, 1989).  Deductive 

reasoning, for example, represents a form of secondary process thinking (Martindale, 

1995); whereas inductive thinking, characterized by the generation or discovery of 

original ideas, can be associated with primary process thinking.

Creativity, analytical ability, and hemisphericity. According to Martindale 

(1999a), the right hemisphere of the brain operates in a primary-process fashion while the 

left hemisphere operates in a secondary-process fashion.  Researchers in this line of 

reasoning suggest that verbal, sequential, and analytical processing occur in the left 

hemisphere, while right-hemisphere capabilities involve parallel and holistic processing 

of nonverbal stimuli and creativity. In other words, the right frontal lobe is more 

involved in spontaneous production of non-verbal representations; whereas, the left lobe 

may exert control and secondary evaluative and verbal analysis.  For example, Martindale, 

Hines, Mitchell and Covello (1984) found that creative people had significantly more 

right- than left-hemisphere activity as measured by an electroencephalography (EEG), as 
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opposed to low creative people on a creativity task, but not on a non-creativity task.  In 

their study, student artists showed much greater right than left hemisphere activity during 

the drawing test than did the control group.  They also included a reading task to measure 

asymmetry during a noncreative task.  On this task, artists showed more asymmetry than

did the control group, but in the opposite direction from that found during the drawing 

task.  Left hemisphere activation was greater than right hemisphere activation, and this 

was more the case for the artists than for non-artists.  Thus, Martindale and his colleagues

concluded that creative people relied more on the right hemisphere than the left 

hemisphere.  Also, Hoppe and Kyle (1990) examined patients with commissurotomy 

(split-brain) as well as normal subjects, and they concluded that creativity depended on 

whether the presentational symbolization and imagery in the right hemisphere were

available to the left hemisphere via the corpus callosum. 

Another method of study of hemisphericity that might be related to creativity is 

the use of right and left hand advantages and right and left visual field priming.  For 

example, Poreh and Whitman (1991) compared undergraduate right-handed males on a 

variety of creativity tests such as the Torrance Test of Creative Thinking Verbal and 

Figural forms, the Remote Associates Test, and Verbal Closure based on participants’ ear 

advantage (hemispheric dominance).  They found that verbal convergent scores varied as 

a function of hemisphericity.  Scores on this factor were found to be higher for all 

subjects with a right ear advantage (left hemisphere dominance).  They concluded that 

verbal processing and verbal convergent scores were significantly related to 



79

hemisphericity. Also important was that individuals with a left ear advantage generated a 

small number of ideas when processing nonverbal stimuli. 

Another neuropsychological method to study thinking and brain functions is the 

measurement of regional cerebral blood flow (CBF).  Carlsson, Wendt, and Risberg 

(2001) investigated the relationship between creativity and hemispheric asymmetry as 

measured by CBF.  They found that the highly creative group used bilateral prefrontal 

regions when doing the Brick task (a creativity test), while the low creative group used 

functions predominantly on the left side.  When the activation response during the 

fluency task was compared with that of the Brick task, the highly creative group showed 

increases in all three bilateral prefrontal areas.  The low creative group showed more

decreases and had an unchanged level only in the left anterior prefrontal region.  

Furthermore, the superior frontal regions seemed to play a special part in this 

investigation.  Good performance on the Brick task was negatively correlated with high 

activity both in the left and in the right region.

Creativity and cortical activation.  According to cortical activation and coherence 

theories, creative individuals are distinguished from noncreative ones by the distributed 

pattern of their cortical activation and the coherence among the regions of their brain 

(Martindale, 1999a). Cortical activation and coherence characteristics help creative 

people think of a creative idea because the spread of activation across a wide associative 

horizon makes it more likely that two distant nodes may be simultaneously activated and 

that a coherence between these nodes is established to form a novel composite concept.  

For example, Martindale and Hines (1975) measured the amount of EEG alpha wave 
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activity, an inverse measure of cortical arousal, while subjects took the Alternate Uses 

Test (AUT), the Remote Associates Test, and an intelligence test.  High creative 

participants showed a differential amount of cortical activation across the three tasks, 

whereas low creative participants did not.  Creativity, as measured by the Remote 

Associates Test, was connected with a tendency to exhibit differential amounts of alpha 

on different types of cognitive tasks, while creativity, as measured by the Alternate Uses 

test, was connected with a tendency to exhibit a high percentage of basal alpha on a 

variety of cognitive tasks.  The finding does make psychological sense becausethe 

Alternate Uses Test is primarily a measure of ideational fluency or the ability to come up 

with a large number of ideas.  The Remote Associates Test, on the other hand, requires 

both producing cognitive elements and putting these elements together to come up with a 

correct answer.  Thus, both focusing and defocusing abilities would seem necessary for 

good performance on it.  Creativity, as measured by either the RAT or the AUT, is 

associated with exhibition of a high percentage of basal alphas while taking the Alternate 

Uses Test. In contrast, creativity as measured by either test is not associated with greater 

alpha abundance during the basal or feedback conditions.  This finding supports the 

hypothesis of an association between creativity and low cortical activation, specifically 

during tasks that call for or allow creativity. 

Creativity, analytical ability and neural coherence. Electrical relatedness in some 

way reflects the functional relationship among brain areas (Sheppard & Boyer, 1990).  

Nunez (1995) argued that decreased overall coherence obtained among the regions of the 

brain when a cognitive task is performed could indicate that cognitive processing 
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involves a general shift from more global to local operation. On the other hand, Petsche 

(1996) suggested that increases in coherence might indicate closer cooperation of the 

brain areas; whereas, a coherence decrease shows that brain regions become functionally 

more separate.  In both cases, the number of coherence changes centered on an electrode 

could be an indicator of the functional importance of this region for the task.  Thatcher 

and Walker (1985) demonstrated a negative correlation between coherence increase and 

IQ.  Notice that IQ mostly is a measure of analytical ability.  Petsche (1997), who also 

correlated coherence measures with scores on a text composition task, found that most of 

the correlations obtained in males were positive and related to the left hemisphere.  Note 

that the left hemisphere hosts analytical ability.  In another study, Petsche (1996) 

compared coherence changes in people while they were performing creativity tasks in 

verbal, visual and musical domains.  He further demonstrated that acts of creative 

thinking were characterized by a greater coherence increase between occipital and 

frontopolar electrode sites than in the solution of more closed problems.

Perhaps Jausovec’s study (2000) is more related to the cooperation of brain 

regions with creative and analytical abilities.  He investigated the differences in cognitive 

processes related to creativity and intelligence using EEG coherence and power measures.  

He compared intelligent, creative and average people in coherence and power measures 

(alpha wave) while participants were solving open and closed problems.  Intelligent 

people were those who had high IQs, and creative people were those who had high scores 

on a creativity test, but not necessarily high IQs.  He found that creative individuals 

displayed more inter- and intra-hemispheric cooperation among the far distant brain 
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regions.  He concluded that generally increased coherence, together with more selective 

involvement of cortical zones, reflect the specificity of functions among the areas of the 

brain that, in turn, is related to creativity.

In conclusion, the research briefly discussed above implies that creativity and 

analytical ability might be very different, but they are not distinct process abilities 

because some processes underlie both abilities.  At least, this distinction is my personal 

conviction based on the research findings.  First, creativity requires cooperation among

many regions of the brain to generate remote or original associations or products, and 

analytical thought occurs among nearer regions, particularly in the left frontal part of the 

brain which results in strong, connected associations that may be weak in originality.  

Second, creativity involves both focused and defocused attention on a problem situation 

while analytical thought requires only focused attention.  In the context of creativity, an 

individual needs to generate diverse ideas.  The production of diverse ideas is facilitated 

by defocused attention. Then, the individual selectively eliminates ideas that are 

unpromising for the problem solution.  The selective elimination of ideas is facilitated by 

focused attention.  In the context of analytical thought, an individual does not necessarily

need to perform the first step, namely, production of many heterogeneous ideas or 

hypotheses.  However, the individual has to analyze each piece to verify what has been 

found new or has been discovered in the first step.  My conclusion is that an individual 

can have very strong analytical and creative abilities or only one of them, depending on 

the person’s biological and experiential background.  
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Part IV

The Three-Mathematical Minds Model

The discussion in this chapter provides partial support for the idea of different 

mathematical minds.  In this part, I offer the three-mathematical minds model to the study 

and assessment of mathematical ability.  Before I discuss the model, I will present my

conceptions of mathematical ability and of mathematical giftedness. 

From the author’s point of view, mathematical ability is the biopsychological 

potential to reproduce mathematical constructions or to produce new and useful 

constructions or to learn mathematical facts, rules, theorems, or laws that could be 

activated in mathematical problem solving.  Mathematical giftedness is the mathematical 

competence demonstrated in the form of production, reproduction or problem solving in 

any branch of mathematics at a given time and is recognized as remarkable by members 

of mathematical communities (e.g., teachers or mathematicians).  A mathematically 

gifted person is the one who demonstrates outstanding competence compared to his or 

her age, grade or experience peers to perform logical analysis of mathematical 

constructions, to produce new constructions or to solve mathematical problems that are 

recognized as being exceptional within the person’s context.  

Consider that underlying differences exist between mathematical ability and 

mathematical giftedness in the above definitions.  The former reflects biopsychological 

potential while the latter is a form of demonstrated potential at a certain level of 

competence that is recognized as superior by members of mathematical communities.  

The second distinction is the emphasis placed upon productive, reproductive, and 
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problem solving components and upon different branches of mathematics, such as space 

or numbers.  That is, an individual demonstrating remarkable competence in one or all 

components in any of the branches of mathematics may be thought the mathematically 

gifted. 

The three-mathematical minds model, therefore, is aligned with the above 

definitions.  This modelis a tool to reconcile various views in thatgiftedness can emerge 

in many forms as postulated by Sternberg (2000), such as analysts, experts, creators, or in 

the interaction of any of them as seen in figure 2.1.  Figure 2.2 shows how the three 

minds differ in certain aspects.  They differ in three aspects, respectively.  The first 

difference is the cognitive components, such as memory, intuition or logic, to carry out 

cognitive tasks.  The second is cognitive tasks, such as domain facts, novelty or 

ambiguity.  Finally, they differ in their end-products as a result of applying certain 

cognitive components in different tasks, such as knowledge production or reproduction.  

In this model, expert mathematical minds differ from the others in their knowledge 

representation, amount of knowledge, and in experience, but not necessarily in their

cognitive ability and styles. Their knowledge is specialized, representing domain-

specificity or task-specificity; therefore, their cognitive end-products are internalized 

knowledge.Unlike experts, creators and analytical thinkers manifest themselves more as 

a function of their thinking, such as the differences in their brains’ neural activation, the 

way they approach a problem, their focused or diffused attention, their logic or intuition, 

and the way they deal with information, such as to search for novelty or to search for 
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ambiguity.  Although experts, too, differ in their thinking compared to novices, this 

difference stems mostly from the nature of their knowledge.  

I am certain that every mental work is achieved through many cognitive processes; 

but the one that remarkably differentiates creative people from the other types, analytical 

and knowledgeable, is the work of the unconscious, which I have not addressed yet.  The 

unconscious may initiate a spectrum of ideas, which Poincare (1952b) compared to 

scattering atoms.  According to Hadamard (1945), the unconscious might have levels that 

may vary in the proximity to the conscious.  Some levels at which remote ideas 

congregate may be deeper while other levels at which near ideas come together may be 

superficial.  The former characterizes a creative mind while the latter depicts an 

analytical kind.  Further, the processes I have discussed hitherto can behave differently in 

different mathematical minds.  For example, Hadamard said that the extent to which our 

minds work freely can be a plausible reason why we are more an intuitive type or a 

logical type, because scattered ideas can be brought into life depending on the extent to 

which our mind takes a direction of thought either narrower or wider.  The former is 

typical of the analytical type.  The latter is the distinctive mark of the creative type.  

Figure 2.1 shows that it is plausible to think of mathematical giftedness in seven 

forms.  That is, giftedness may be conceptualized based on the interactions of the three 

minds.  For example, the interaction of expertise and analytical ability produces an expert 

analyst, who is competent both in domain knowledge and in analysis.  The interaction of 

expertise and creativity makes a creative expert, who is a good intuitive free thinker and 

has remarkable domain knowledge.  By the same token, the interaction of analysis and 
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creativity gives birth to a creative analyst, who has both good, logical judgment and an a 

priori synthetic judgment.  Finally, the interaction of all brings into being a “master,” 

who demonstrates remarkable analytical ability, domain knowledge, and creative 

productivity who, no doubt, is very rare. 

In conclusion, I have proposed the three-mathematical minds model to the study 

and assessment of mathematical giftedness.  Although they differ in many respects, they 

by no means are distinct constructs; rather, fundamental knowledge and skill components 

underlie all three.  However, it is plausible to study, to assess, and to teach for all three 

types; otherwise, one type would be overlooked at the expense of the others (Sternberg, 

2000).  The rest of this study deals with the author’s empirical research to investigate the 

psychological validity of the three-mathematical minds model in the assessment of 

mathematical giftedness. 
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Figure 2.1.  The three-mathematical minds model and seven forms of mathematical 

giftedness. This model is based on patterns of giftedness proposed by Sternberg (2000) 

and studies on expertise (Chi, Glaser, & Farr, 1988).
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Figure 2.2.  Major instruments of mathematical minds applied in cognitive tasks, and their end-products
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CHAPTER III

METHOD

This chapter includes descriptions of participants involved in this study, 

procedures used to develop test items according to the three-mathematical minds model 

and the three-level cognitive complexity model.  Finally, statistical data analyses used to 

answer the research questions are presented. 

Participants

The total number of participants was 291.  Participants included 6th, 7th and 8th

grade students from four different schools.  Schools A and B were located in one city and 

school D was in another city.  School C waslocated in a rural area.  All schools were

located in the southwestern part of the United States. The socioeconomic status of 

students in each school varied from lower to upper.  Students of the schools A and D 

came mostly from middle class families.  Students of the schools B and C came mostly 

from low-middle class families.  The participants’ ages ranged from 10.5 to 15.5.  The

mean age was 13.04.  In addition, tables 3.1, 3.2, 3.3 and 3.4 show frequency and 

percentage distributions of the participants by school, grade, gender and race. 

Procedures

A test of mathematical ability was developed through multiple steps and used to 

assess the participants’ mathematical ability.  The procedures used in the test 

development and administration of the test follow. 
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Table 3.1

Frequency of participants by school

School Frequency Percent

A 41 14.1

B 27 9.3

C 71 24.4

D 152 52.2

Total 291 100.0

Table 3.2

Frequency of participants by grade

Grade Frequency Percent

6 63 21.6

7 117 40.2

8 111 38.1

Total 291 100.0
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Table 3.3

Frequency of participants by race

Race Frequency Percent

American Indian 4 1.4

Asian 10 3.4

Black 7 2.4

Mexican American 42 14.4

White 210 72.2

Other 18 6.2

Total 291 100.0

Table 3.4

Frequency of participants by gender

Gender Frequency Percent

Female 133 45.7

Male 158 54.3

Total 291 100.0
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Instruments 

The test of mathematical ability was developed based on the three-mathematical 

minds model and the three-level cognitive complexity model.  The test contained nine 

subtests for a total of 27 problems.  Each subtest had three problems (see Appendix A for 

the entire test battery).  

In addition to mathematics problems, the test booklet included two questionnaire 

items about students’ liking of mathematics and their beliefs about the strength of their 

mathematical ability.  They rated their liking and beliefs on a five-point scale, responding 

to the two questionnaire items below: 

A. How much do I like mathematics?  (a) very much  (b) much  (c) some  (d)  a little  

(e) not at all

B. How am I in mathematics?  (a)  excellent  (b) good  (c) ok  (d) weak  (e) very 

weak

Another questionnaire item was the teachers’ rating of students’ mathematical ability.  

The cover page of the test booklet included a space for the teacher to rate each student’s 

ability according to the following scale.  The teachers, who filled out the boxes after 

students completed the test, rated each as follows (Appendix C):  

5) highly talented; 4) has high ability but not necessarily talented; 3) average; 2) 

weak ; 1) very weak

Development of the Test of the Three-Mathematical Minds (M³)

Collaboration with experts.  A team of experts, with the leadership of the author

developed mathematics problems according to the three-mathematical minds (M³) and
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the three-level cognitive complexity model (C³), as seen in table 3.5.  The content and 

complexity of items will be discussed later in this chapter.  The team consisted of the 

following members: two mathematicians, one with a Ph.D in the science of mathematics 

and the other had a Ph.D in mathematics education; two middle and high school 

mathematics teachers; and the author, who specialized in the assessment of cognitive 

abilities, creativity and giftedness. 

First, the author developed twenty-seven sample problems to measure the three 

aspects of analytical mathematical ability, creative mathematical ability and mathematical 

knowledge at three levels of cognitive complexity.  Then, the sample problems were sent

to the mathematicians for their review prior to the author’s initial meetings with them.  

Afterward, the author met with each mathematician twice to review, to revise and to 

develop new problems.  The first meeting resulted in modifying four problems, 

developing 20 new problems, keeping three original problems unchanged, and omitting 

20 problems.  The second meeting ended with modifying 22 problems, developing five 

new problems, keeping three original problems unchanged, and omitting two problems; 

thus, having a total of 30 problems. 

In the second phase, the final 30 problems, of which 27 were main and 3 were 

additional problems, were sent to the teachers to review the content and difficulty level of 

each problem according to the level of 8th grade students’ mathematical ability.  The 

teachers used the following scale to rate problems: 1) very easy, 2) easy, 3) average, 4) 

difficult, and 5) very difficult.  They rated the difficulty level of each problem by 

comparing it to other problems in the same subtest.  For example, the problems in the 
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insight subtest were compared only to each other, not to other problems in the other 

subtests.  The reason for such a rating procedure was the author’s conviction that only 

problems of the same psychological nature could be compared in their psychological 

difficulty.  The teachers’ ratings of problems’ difficulty later were used in the construct 

validity of the three levels of the cognitive complexity model discussed later.  

Because of strong agreement between the author and the mathematicians on the 

difficulty level of the problems, I predicted high correlations between item cognitive 

complexity (ICC) levels of the 30 problems and the teachers’ ratings of item difficulty for 

8th grade students; however, correlational analysis indicated low and nonsignificant 

correlations, contradicting the initial agreements.  The correlations were .14 between the 

ICC levels and the ratings of the first rater, and .25 between the ICC levels and the 

ratings of the second rater.  On the other hand, the two teacher raters agreed at a high 

level.  The correlation coefficient was .82 between the raters (p<.01).  The analysis of 

ICC and teacher ratings for each problem showed that problems in the induction and 

insight subcomponents were in conflict.  The main reason for the conflict, perhaps, was 

the fact that these problems were not developed according to C³, but the author and the 

mathematicians agreed on the difficulty level of each problem.  Therefore, I set out a 

third phase, during which I revised 7 problems, replaced 3 problems, and omitted 3 

additional problems.  The teachers’ ratings on the problems in the insight and induction 

subtests also were integrated in the final revision.  Then, the mathematicians reviewed the 

final problems before the test was given to the participants.  Table 3.5 shows the contents 

and the psychological sources of the ICC levels revised after the final phase.  
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Item Content and the Use of the Three-Mathematical Minds Model in Item Development

All problems included in the test were developed to measure some aspects of the 

three-mathematical minds as seen in table 3.5: knowledge component, analytical 

component, and creativity component.  Each component had three subcomponents.  

Problems in each subcomponent hypothetically were developed to measure an aspect of 

one of the minds.  The knowledge component consisted of problems with algebra, 

geometry and statistics subcomponents.  The analytical component contained problems of 

linear, categorical and conditional syllogism subcomponents.  The creativity component 

was made up of problems of induction, insight and selection subcomponents.  The 

discussion of the theoretical and technical background for item development in each 

component, as well as in each subcomponent follows. 

Knowledge expert.  Studies on expertise provided the theoretical background in 

the development of knowledge problems.  Three branches of mathematics (algebra, 

geometry and statistics) were used to develop three separate classes of problems.  The 

theoretical purpose of these subtests was to measure factual, relational and schematic 

knowledge to distinguish between those who demonstrated the knowledge of a novice

and those who demonstrated knowledge possessed by experts.  Algebra problems 

required knowledge of substitution, transposing, and factoring, as well as that of solving 

an algebra word problem by translating it into an equation with two unknowns.  

Geometry problems required knowledge of area, perimeter, and of angles as well as 

knowledge of relationships between area and perimeter.  Statistics problems required 

knowledge of rate, percent, interest and data tables. 
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Table 3.5

Item development according to the three-mathematical minds with the three-level

cognitive complexity model

Construct Cognitive Complexity

Minds Subcomponents Level I Level II Level III

Algebra Factual
Relational 

knowledge

Conceptual-

schematic  

knowledge

Geometry Factual
Relational 

knowledge

Conceptual-

schematic  

knowledge

Knowledge

Expert

Statistics Factual
Relational 

knowledge

Conceptual-

schematic  

knowledge

Analytical
Linear 

Reasoning
5 elements

5 elements

+

additions

6 elements + 

coefficients + 

divisors
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Table 3.5 – continued 

Construct Cognitive Complexity

Minds Subcomponents Level I Level II Level III

Conditional 

Reasoning
One condition Two conditions

Two conditions

Double negation

Analytical
Categorical 

Reasoning

Two sets:

one superset

one subset

Three sets:

 dissections

one superset

one subset

Four sets:

one intersection

two dissections

two supersets

two subsets

Discovery –

Induction

Free 

classification
one relation

one rule

one relation

Insight Team agreement Team agreement Team agreement

Creative

Selection
Selective 

encoding

Selective 

encoding +

Selective 

combination

Selective 

encoding +

Selective 

combination +

Selective 

comparison
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Analytical ability.  Works of mathematicians Poincare and Polya and of 

psychologist Sternberg provided insights in the development of the analytical items.  

Analytical ability was measured by three deductive subcomponents: linear reasoning, 

conditional reasoning and categorical reasoning.  The theoretical purpose of these 

subcomponents was to measure analytical mathematical ability to distinguish between 

novice analysts and expert analysts.  Problems in this component were presented in the 

forms of numerical or geometrical notations or a mixture of both, such as A > B.  In other 

words, these problems were transformations of typical deductive word problems, such as 

Mike is taller than Sally, who is shorter than Frank; or Mike is 5 years older than Bob and 

Bob is 3 years younger than Cathy; or Adam works three times as much as does Bob who 

works twice less than Cathy.The reasoning behind the use of mathematicalnotations

instead of words in syllogistic problems was thata pilot study undertaken by the author 

(Sak, 2004) indicated that a problem with algebraic symbols had a better discrimination 

level in measuring analytical mathematical ability than did the same problem given in a 

word format. 

In linear syllogism, two or more quantitative relations were given between each of 

two pairs of items, depending on the cognitive complexity of the item.  One item of each 

pair overlapped with an item of another pair, such as A < B and B > C.  The task of the 

problem solver was to figure out relationships between the nonoverlapping terms, and to 

verify a logical conclusion.  In conditional syllogism, one condition was presented with 

five conclusions, of which only one option satisfied the condition.  The following is an 

example of a conditional syllogism problem: If x < 0, then: (a) x² > 2x; (b) x² < 3x; (c) x² 



99

< 0; (d) x² < x + x; (e) x³ > x². In categorical syllogism, participants had to figure out 

relationships between members of classes.  Group memberships were presented in a table.  

The following is an example of a categorical word problem: In Ms. Flores’ farm, half of 

the meat-eating animals also can eat plants.  Half of the plant-eating animals also can eat 

meat.  Sixteen animals only eat meat.  How many animals cannot eat meat?

Creative Ability.  This component, too, was framed on the works of 

mathematicians Poincare and Polya and psychologist Sternberg.  Creative ability was 

measured by three subcomponents: Induction, selection and insight.  The theoretical 

purpose of these subtests was to measure the creative mathematical ability to distinguish 

between novices and creative experts.  The following is the review of the subcomponents. 

Induction problems can be characterized either by mathematical rule discovery or 

by rule production.  In rule discovery problems, the task of the individual was to discover 

a rule(s) that was constructed by the author between a series of numbers or 

commonalities between numbers and those between figures, such as side-corner-angle 

relations.  The following was an example of this kind: what is the sum of internal angles 

of a shape that has 14 sides, given that the sum of internal angles of a triangle is 180, a 

the sum of internal angles of a square is 360 and a pentagon’s is 540 degrees.  The task of 

the individual was to figure out the relationships between the number of sides and the 

sum of the internal angles of the shapes to find the rule.  In this case, the rule is (n –

2)180.  In the rule production problem, a set of numbers was presented.  An individual 

had to develop or generate his or her own rule or identify commonalities between the 

numbers, such as grouping numbers from 1 to 20 based on a rule.  
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Selection problems can be characterized by finding out relevant or irrelevant 

information, by selective encoding, by selectively combining encoded information and by 

analogizing combinations to other constructions that are presented in the problem stem or 

amonganswer options, as related to the solution of the problem.  The theoretical purpose 

of these problems was to measure selection in problem solving as articulated by Poincare 

(1952a) and Polya (1954a) and as theorized by Davidson and Sternberg (1984).  Three 

types of selection problems were used.  The first kind wasselective encoding; an 

individual had to find out relevant or irrelevant information for the solution.  The 

following is an example of this kind: In a classroom, twenty percent of the students 

passed mathematics; thirty percent passed English; and forty percent passed both.  What 

information is NOT required to find the number of students in the classroom? (a) number 

of students who passed math; (b) number of students who passed English; (c) number of 

students who passed both; (d) percentage of students who failed both classes; (e) number 

of students who failed both classes.  The second kind of problem requiredboth selective 

encoding and selective combination; the individual first had to encode related elements in 

a problem and then find out which combination of given information was the correct 

combination for the solution.  The third kind of problem required selective encoding,

selective combination, and selective comparison; an individual had to perform selective 

encoding and selective combination and selectively comparehis/her combination to a 

given construction. 

The insight subcomponent contained problems of mathematical recreations.  The 

theoretical background of these problems came from Gestalt psychology, according to 
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which an insight might occur through restructuring thinking and problems or through 

gestalts.  Thus, the theoretical purpose of this subtest was to measure ability to restructure 

both thinking and problems.  The task of an individual wasto think in a flexible and 

unconventional modeor to scatter thinking over the problem to see the big picture.The 

following was an example of this kind:  Write a fraction whose numerator is smaller than 

its denominator and whose result is larger than its numerator.  An individual has to give 

up thinking only of positive numbers and start to think in negative numbers to come up 

with a correct answer for this problem, such as -8/2 = -4. 

Levels of Item Cognitive Complexities in Item Development

Item cognitive complexity refers to psychological sources of item difficulty, such 

as levels and kinds of knowledge or cognitive processes a problem requires for the 

solution.  The difficulty level of each problem used in this study was developed 

according to the three-level cognitive complexity model proposed by the author (see table 

3.5).  Consider the model below. 

The three-level cognitive complexity model (C³) was developed psychologically 

according to a performance continuum on which novice and expert people can be 

categorized, based on their intellectual performance on some tasks that are related to the 

domain of mathematics.  Figure 3.1 shows the continuum on a triangular shape.  The 

triangle gradually gets more intense in color from the left side to the right side.  The 

intensity of color is a connotation of intellectual complexity, less developed on the left 

and better developed on the right.  In other words, the more an individual moves to the 

right, the more proficiently s/he performs on intellectual tasks.  The continuum also gets 
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narrower from the left to the right representing the distribution of expertise in a domain.  

Novices, for example, are in the beginning of developing expertise, as compared to 

experts.  That is to say, they have not been exposed enough to the domain, or could not 

benefit as much as could experts from the same amount of experience to master necessary 

skills and knowledge.  Their performance is not recognized as superior or exceptional by 

members of the field in which the domain is located.  Because the continuum reflects a 

developmental performance, people may be found at every point on the continuum.  Note 

that the model was not developed based on a conception of giftedness that favors the 

measurement of pure capacities (experience free) in mathematics; rather, it was 

developed based on a conception of giftedness in which giftedness is demonstrated 

performance of resulting from the interaction of domain experience and developed 

mathematical skills. 

Based on the continuum, therefore, expertise can be measured at different levels.  

Although I used three levels, novices, developing experts and experts, other levels might 

be found by dividing the continuum at different points that have psychological meaning.  

For example, another group of people, as masters, can be added at the highest level.  

However, the point of dissection should be about where giftedness is scattered as a form 

of expertise.  A psychologically credible answer, probably, is to apply a developmental 

approach to distinguish among ability groups.  That is, people, whose performance is 

recognized as being superior by members in a field (e.g., scientists, mathematicians or 

math teachers) compared to their experience peers, can be thought gifted.  When this 

developmental approach is applied in the classification of school children, a good 
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comparison may be made by comparing students at the same grade level in the same 

school.  

Figure 3.1.  Distribution of expertise and knowledge and skills development in experts. 

In this study, therefore, a specific ability or a psychological construct was 

measured at three levels only by three problems.  In other words, each subtest had three 

problems developed to measure a particular psychological construct at a particular 

cognitive complexity level, such as novices at the first level and experts at the third level. 

Novices were expected to solve only first level problems while experts were predicted to 

solve problems at all levels.  

The source of cognitive complexity was established on the level of cognitive 

demands for a particular cognitive ability or for some particular mathematical knowledge 

that a problem posed to the problem solver. Table 3.5 showsthe three-level cognitive 

complexity model embedded in the three-mathematical minds model.  The first level 

 Novices Developing Experts                                   Experts
 Level 1 Level 2                                                       Level 3

Continuum of Expertise

Knowledge or Cognitive Domain 2

Knowledge or Cognitive Domain 1
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problems constituted the simplest problems and the third level problems were the most 

complex ones.  For example, a knowledge problem at the first level of cognitive 

complexity entailedknowing and recalling only one fact for the solution such as the area 

of a triangle.  A problem at the second level requiredrecalling two facts and relating 

these facts for the solution, such as finding the sum of the internal angles of a triangle 

given one internal angle and one external angle.  A problem at the third level necessitated

a conceptual knowledge for the solution, such as drawing two different shapes that had 

equal areas but unequal perimeters.  Notice thatlevel one and level two problems require 

novice knowledge, isolated facts, while a level three problem requires schematic 

knowledge; that is the relationship between the area and perimeter of a geometric shape.  

The difficulty levels of the problems in each subtest were established in an 

ascending order.  In addition to the knowledge problems mentioned above, here are some 

sample linear syllogistic problems from the test batteryin the form of algebraic notations.  

They are similar in structure and in purpose to measure linear syllogism, but they are 

different in their cognitive complexities (see appendix A for the other problems’ 

characteristics): 

1. A > B; C > D; D > E; E > A.  Which is the second largest?

2. a = b + 1; c = d + 3; a = f + 3; b = d + 2.  Which is the smallest?

3. A = 3B; C = 2D; F = G/2; D = A/2; 2D = 3G.  Which is the smallest?

Notice that the first problem is the easiest one because it requires a single pair-

wise comparison of five elements.  This problem has no such quantifiers as coefficients, 

additions or divisors.  It involves encoding of five elements and inferring relationships 
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between each pair and, then, comparing each pair to the other pairs.  The second problem, 

on the other hand, has one additional element along with additions such as a = b + 1.  

This problem is more difficult than the fist one because it requires the employment of 

more encodings and inferences at a more abstract level because it also requires 

comparing and eliminating additions.  Obviously, the addition of quantifiers, such as plus 

one or two, to the elements, puts more demands on processes of abstract thinking and on 

those of working memory.  The third problem is more difficult than the second one 

because each element in the third problem has a coefficient or a divisor while the second 

problem only has additions.  The third problem also has one additional element.  Note 

that processing multiplication and division is more difficult than processing addition from 

the cognitive developmental perspectives.  

Item Format

Two types of item formats were used.  Most items were presented in a multiple-

choice format consisting of a problem stem and five answer options.  Only one option 

was correct in these types of problems.  The second format was open problems – more 

than one method and solution or more than one method but only one solution was 

acceptedas correct. 

Item Scoring 

One point was given for each correct answer in both multiple choice and open 

problems.  No point reduction was taken for wrong answers.  
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Test Administration

Mathematics teachers administered the test during students’ regular mathematics 

classes in the beginning of the spring semester of the 2004-2005 school-year.  The testing 

was done in one sitting, taking about 45 minutes.  The teachers read standard instructions 

before the testing (Appendix C).  

Data Analysis

Research Question 1

This research question was about associations between different types of 

mathematical ability.  Correlational analyses were used to examine associations between 

the hypothesized mathematical abilities.  Exploratory factor analysis was used to examine 

the nature of mathematical ability. 

Research Question 2

This research question was related to psychometric properties of the M³ test 

battery.  Kuder-Richardson reliability analysis was performed to answer the reliability

question.  Bivariate correlation coefficients were determined to analyze the convergent 

validity of the test battery when students’ rating of their liking of mathematics, their 

rating of their own mathematical ability and teachers’ rating of students’ mathematical 

ability were used as converging variables. Point biserial correlations were used to 

examine item-total test and item-subtest relationships to provide information about the 

construct validity of the M³.  Analysis of Variance (ANOVA) was used to examine 

performance differences of students at different grade levels. 
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Research Question 3

This research question was developed to determine which M³ items were good

measures of mathematical knowledge, analytical mathematical ability, and creative 

mathematical ability. This research question was investigated to provide additional 

information about the construct validity of the M³.  In this analysis, items constituted

cases, just like individuals.  Each item had a continuous discrimination index in each 

component.  General Linear Modeling (GLM) Repeated Measures were used to analyze 

differences between discrimination indicesderived from component scores, as well as 

from the composite score. 

Research Question 4

This research question was about associations between item cognitive complexity 

(ICC), item difficulty (ID) and item discrimination (D).  The underlying assumption was

that ICC is the major source of item difficulty, which accounts for variance in item 

discrimination.  A Standard Regression Analysis was used to answer this research 

question and to test an associated hypothesis, as well as bivariate correlations to explore 

associations among the ICC, ID and D. 

Research Question 5

This research question was related to discrimination powers of items of different 

cognitive complexity.  The underlying assumption was that gifted students (above 95% of 

the total participants), as identified by the composite score, outperform the rest of the 

participants in different degrees on items of different cognitive complexity.  A 

nonparametric Chi-Square analysis was used to analyze differences in the proportions of
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the groups passing at each item.  A MANOVA was used performance differences of the

ability groups on three levels of cognitive complexity. 

Item Analysis

Point biserial item-total test and item-subtest correlational analyses were used to 

analyze whether the M³ items measured mathematical ability in the direction the entire 

test battery measured.  In addition to point biserial correlations, the classical item 

discrimination model was used to explain item discrimination.  I applied the classical 

mathematical model to different ability groups, with a focus on comparing the gifted 

group to nongifted groups to find out which items were good measures of mathematical 

knowledge, creative mathematical ability and analytical mathematical ability.  Item 

discrimination looks at the proportion passing an item based on total test score.  In this 

study, I estimated item discrimination indices based on the composite score.  Also, the 

performance of the upper and the lower percentiles were compared on the factor scores to 

investigate further validity evidence at the item level.  Table 3.6 shows how this 

comparison can be made.  The capital letters represent different ability levels on a 

percentile scale while composite, expertise, analytical and creativity scores indicate types 

of abilities.  
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Table 3.6

The estimation of item discrimination indices based on different levels of different types 

of mathematical ability 

Item discrimination estimated based on

Item Composite

*A      **B  ***C 

Expertise

A        B       C

Analytic

A        B       C

Creativity

A        B       C

1

2

3

…

Note. *the comparison of the upper 27% and the lower 27%; **the comparison of the 

upper 85% and 50 to 84%; and ***the comparison of the upper 95% and 84%. 
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CHAPTER IV

RESULTS

This chapter includes findings for the research questions, which were investigated 

in this study.  First, each research question will be reintroduced in the order in which it 

was introduced in the first chapter, and research findings will be presented. 

Research Question 1

How theoretically valid is the three-mathematical minds model (M³)? 

a. What is the underlying structure of mathematical ability? As stated in the 

previous chapter, the M³ items were hypothetically grouped into nine categories; 

therefore, a subtest-level factor analysis was used to answer this research question.  The 

nine subtests of the M³ were subjected to principal components analysis (PCA) to 

examine the theoretical validity of the three-mathematical minds model.  Prior to 

performing PCA, the suitability of data for factor analysis was assessed.  Inspection of 

the correlation matrix revealed the presence of coefficients of .3 and above.  The Kaiser-

Meyer-Oklin value for sampling adequacy was .81, exceeding the recommended value 

of .6 (Kaiser, 1974).  The Barlett’s Test of Sphericity reached statistical significance (p 

< .001), whichsupported the factorability of the correlation matrix. 

The initial, unrotated PCA of the nine subtests revealed the presence of three 

components with eigenvalues exceeding 1.  As seen in table 4.1, Component 1 explained 

31.31% of the total variance; Component 2 explained 12.32%; and Component 3 

accounted for 11.40% of the total variance respectively.  Also, table 4.1 shows initial 

factor loadings with .30 or above values for the unrotated PCA.  Because only three 
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components had an eigenvalue above 1, these three components were investigated further, 

using Varimax rotation with Kaiser Normalization.  Factors that had less than .40

absolute values were not reported in the rotated solution.  The three factor solution 

explained 55.03% of the variance, with Component 1 contributing 29.30%, Component 2 

contributing 13.58% and Component 3 contributing 12.16%.  These components were 

labeled as follows:  the knowledge-reasoning component, the creativity component and 

the analytical component.  Table 4.3 shows the rotated factor solution for subtests and 

their loadings for each component.  According to the three factor solution and subtest 

loadings, geometry, algebra, statistics, linear syllogism, conditional syllogism, and 

induction subtests were assigned in the first, the knowledge component; the selection 

subtest were assigned in the second, the creativity component; and categorical syllogism 

was assigned in the third, the analytical component.  Because the insight component 

loaded equally on the first and second components, it was not assigned in a component by 

this author. 

Although the factor analytic findings partially supported the three-mathematical 

minds model yielding three separate components, four subtests did not fit into the 

components for which they were developed.  The induction subtest was developed to 

measure an aspect of the creative mind, but this subcomponent was found in the 

knowledge-reasoning component.  Conditional and linear syllogism subtests were 

developed to measure the analytical mind, but they too were found in the knowledge-

reasoning component.  Finally, the insight subtest was developed one aspect of the 
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creative mind, but it loaded equally on the Knowledge component and the Creativity 

component. 

Table 4.1

Unrotated component matrix

Component

Subtest 1 2 3

Geometry .778

Conditional Syllogism .700 .310

Algebra .612

Statistics .594

Linear Syllogism .593 -.309

Insight .550 .417

Induction .546 -.339

Categorical Syllogism .794

Selection .568 .662

Total Variance Explained %31.31 %12.32 %11.40
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Table 4.2

Total variance explained by each component

Initial Eigenvalues

Component Total % of Variance Cumulative %

1 2.82 31.31 31.31

2 1.11 12.32 43.62

3 1.03 11.40 55.02

4 .82 9.1 64.11

5 .76 8.43 72.55

6 .73 8.15 80.70

7 .71 7.92 88.62

8 .56 6.20 94.81

9 .47 5.19 100.00
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Table 4.3

Varimax rotation for the three factor solution for the M³

Component

Subtest 1 2 3

Geometry .74

Linear Syllogism .65

Algebra .63

Statistics .63

Induction .58

Conditional Syllogism .58

Selection .85

Insight .43 .44

Categorical Syllogism .83

Total Variance Explained %29.30 %13.58 %12.16
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b. How are the subcomponents of the M³ (hypothetically constructed as 

knowledge of algebra, of geometry and of statistics; as linear syllogism, conditional 

syllogism and categorical syllogism; and as induction, insight, and selection) associated?

The relationships among the subcomponents of the M³ were investigated using Pearson 

Product-Moment correlation coefficient.  Preliminary analyses were performed to check 

the assumptions of normality, linearity and homoscedasticity.Algebra, statistics and 

induction subtests distributed normally.  Geometry, linear syllogism, conditional 

syllogism, categorical syllogism, insight and selection subtests were positively skewed.  

That is, scores were scattered around low performance (see Appendix A). 

Table 4.4 shows a number of statistically significant and nonsignificant 

correlations among the subtests, with the highest associations among the knowledge 

subtests, linear syllogism, conditional syllogism, insight and induction subtests.  

Categorical syllogism and selection subtests had the lowest associations with the other 

subtests.  In fact, the categorical subtest did not have any significant correlations with any 

other subtests, and the selection subtest had a statistically significant, but low correlation 

only with the induction subtest (r = .16; p < .05).  The disassociations of the latter two 

subtests also were substantiated with factor analysis as reported in the previous research 

question.

c. How are the components of the M³ (theorized as mathematical expertise, 

analytical mathematical ability, and creative mathematical ability) associated? 

Although factor analysis did not reveal three subtests in each component, the nine 

subtests were grouped in three components rationally, but not factor analytically, to 
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examine relationships among the three minds.  As discussed in Chapter 3, algebra, 

geometry and statistics subtests were grouped in the Knowledge component; linear 

syllogism, conditional syllogism and categorical syllogism subtests were grouped in the 

analytical component; and selection, insight and induction subtests were grouped in the 

creativity component.  As seen in table 4.4, statistically significant correlations existed 

among the components ranging from middle to middle-high correlations.  The knowledge 

component had the highest correlations with the other components and the M³ composite 

(.49, .44, .84, p < .01).  The creativity and analytical components had lower correlations 

with each other compared to the knowledge component. 

Table 4.4

Bivariate correlations among allM³ components

Component Analytical Creative M³ composite

Knowledge .49** .44** .84**

Analytical .41** .82**

Creative .72**

** Correlation is significant at the 0.01 level (2-tailed).
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Table 4.5

Bivariate correlations among all M³ subcomponents

Variables Geo. Stat. L. Syllo. Co. Syllo. Ca. Syllo. Select. Induct. Insight M³ comp.

Algebra .35** .30** .28** .34** .05 .03 .24** .21** .57**

Geometry .36** .42** .47** .03 .09 .34** .36** .73**

Statistics .25** .26** .01 .03 .26** .24** .57**

L. Syllogism .26** .08 .02 .25** .17** .59**

Co. Syllogism .03 .16** .26** .38** .67**

Ca. Syllogism .10 .13* .00 .32**

Selection .06 .07 .30**

Induction .12* .55**

Insight .50**

Note.  ** Correlation is significant at the 0.01 level (2-tailed).  * Correlation is significant at the 0.05 level (2-tailed).
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Research Question 2

What are the psychometric properties of the M³ test battery?

a. How reliable is the M³?  The purpose of this research question was to examine 

the consistency of scores in the M³.  Kuder-Richardson reliability analysis was carried 

out to investigate the reliability of the M³.  The analysis showed a .72 coefficiency level, 

slightly exceeding the minimum desired level .70 for consistency of scores for 

psychological tests.  

b. What is the convergent validity of the M³ when students’ liking of mathematics, 

their rating of their own mathematical ability and teachers’ rating of students’ 

mathematical ability are used as converging variables?  This research question was 

investigated to examine if the M³ correlated with other variables with which it 

theoretically should correlate.  Partial correlation coefficients were computed, while 

grade was controlled in the equation, to investigate the relationships between teachers’ 

rating of students’ mathematical ability, students’ rating of their own mathematical ability 

and their liking of mathematics and the M³ subcomponents (see table 4.6 for bivariate 

correlations among student variables).  Correlations ranged from low to high-medium, 

with the majority of correlations being statistically significant, as seen in table 4.7.  This 

finding provided partial evidence for the convergent validity of the M³.  Particularly 

important were the correlations between the M³ composite and the other variables.  These 

correlations, medium to high-medium were as follow: .45 between the M³ composite and 

teachers’ rating (p < .01), .36 between the M³ composite and students rating of their own 

ability (p < .01) and .35 between the M³ composite and students’ rating of their liking of 
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mathematics.  Teachers’ rating of students’ mathematical ability had higher correlations 

with the M³ and its subcomponents than students’ rating of their own mathematical 

ability and their liking of mathematics, as seen in table 4.7. 

Table 4.6

Bivariate correlations among all student variables

Variable Age

Teacher 

Rating

Student 

Liking

Student 

Rating

Grade .84** -.13 -.07 -.17**

Age -.14 -.13* -.21**

Teacher Rating .58** .50**

Student Liking .55**

Note.  ** p < .01,  * p < .05 (2-tailed)

c. Does the M³ differentiate among students of various grade levels? The purpose 

of this research question was to examine whether the M³ showed developmental variance.  

Levene’s test for homogeneity of variances in scores of the groups showed no violation 

(p = .077; p is required to be greater than .05).  A one-way between-groups analysis of 

variance (ANOVA) was conducted to inspect performance differences of 6th, 7th and 8th

grade students on the M³ composite (see table 4.8 for mean performance for each grade 

level).  
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Table 4.7

Partial correlations between student variables and the M³ components and 

subcomponents

Component Grade Age

Teacher 

Rating

Student 

Liking

Student 

Rating

Algebra .02 -.03 .26** .20** .21**

Geometry .16** .11 .33** .25** .33**

Statistics .06 -.02 .38** .24** .34**

Linear Syllogism .14* .07 .23** .11 .08

Conditional Syllogism .13* .05 .31** .24** .27**

Categorical Syllogism .03 .02 .09 .16** .01

Selection .05 .01 .13 .07 .07

Induction .13* .04 .29** .19** .22**

Insight .16** .10 .25** .18** .19**

Knowledge .11 .03 .42** .32** .40**

Analytical .15** .07 .32** .26** .19**

Creative .18** .07 .35** .24** .26**

M³ Composite .18** .07 .45** .35** .36**

Note.  The effect of grade was removed.  ** Correlation is significant at the 0.01 level (2-

tailed).  * Correlation is significant at the 0.05 level (2-tailed).
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The analysis indicated statistically significant differences among the grades (F [2, 

288] = 7.5, p < .001, see table A.7).  The effect size, calculated using eta squared, was .05, 

a medium effect.  Post-Hoc tests using Tukey Honestly Significant Difference (HSD)

revealed the following mean differences among the grades (table A.8).  Eighth graders 

performed significantly higher than 7th and 6th graders (p < .01 and p < .05, respectively).  

This finding provided developmental evidence for the construct validity of the M³.  

Although no significant performance difference existed between 7th and 6th graders on the 

M³ composite, sixth graders performed slightly higher than 7th graders (p = .89).  This 

finding shows a contradiction for the developmental evidence obtained in the previous 

finding. 

d. What is the internal consistency of the M³ for item-total score, item-subtest and 

subtest-total score correlations?  In this research question, the purpose was to analyze the 

degree to which test items and subtests were homogenous or heterogeneous. In other 

words, an attempt was made to determine whether the M³ items measured a unified 

construct or multiple constructs.  The degree of homogeneity or heterogeneity of a test 

has some relevance to its construct validity.  Because the M³ is a measure of multilateral

aspects of mathematical ability, an investigation of item homogeneity and heterogeneity 

in the M³ provides information about its construct validity.  Point biserial correlations 

between the items and the M³ composite and between the items and the subtests were 

computed.  As seen in table 4.9, correlations between the items and the M³ composite 

ranged from low to high, with all correlations being statistically significant except for 

item 26.  It had a very low and statistically nonsignificant correlation with the M³ 
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Table 4.8

Mean and standard deviation for student variables and the M³ subcomponents by grade

Grade

Variable 6

  M          SD

7

 M        SD

8

M        SD

Total

M       SD

Teacher Rating 4.00 .95 3.45 1.08 3.50 1.41 3.59 1.23

Student Liking 3.06 1.57 2.87 1.30 2.78 1.43 2.88 1.41

Student Rating 3.89 .96 3.39 1.00 3.36 1.08 3.49 1.04

Algebra 1.60 .66 1.50 .71 1.61 .72 1.55 .70

Geometry .67 .90 .72 .86 1.01 .90 .82 .90

Statistics 1.11 .86 1.08 .80 1.21 .79 1.13 .81

Linear Syllogism .73 .87 .76 .72 1.01 .90 .85 .83

Conditional Syllogism .81 .82 .89 .83 1.09 .99 .95 .89

Categorical Syllogism .82 .92 .62 .79 .85 .94 .75 .88

Selection .52 .72 .49 .62 .59 .67 .54 .66

Induction .90 .79 .91 .66 1.11 .71 .99 .71

Insight .32 .56 .27 .47 .53 .69 .38 .59

M³ Composite 7.49 3.99 7.23 3.26 9.03 3.94 7.98 3.77
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composite (r = .06, respectively).  Though the correlations weresignificant, items 2, 6, 

and 15 correlated with the M³ composite at low levels. 

The second mode of analysis was point biserial correlation computed between the 

items and the subtests to examine the homogeneity and heterogeneity of the items.  In 

other words, I assumed that an item was supposed to correlate highly with the subtest in 

which it was located to showhomogeneity and to correlate at a low level with a subtest in 

which it was not located to show heterogeneity.  As seen in table 4.9, correlations ranged 

from low negative to very high positive correlations.  For example, the correlation 

coefficient was -.12 between item 26 and the subtest selection in which it was not located 

(p < .05).  The correlation was .88 between item 7 and the subtest insight in which it was 

located (p < .01).  What should be read from table 4.9 are correlations between the items 

and the subtests in which they are located.  Items  had a high or very high correlation with 

the subtest in which they were located; whereas, items  had a very low to medium 

correlation with the subtest in which these items were not located.  Only item 24 had a 

medium correlation with the statistics subtest in which it was located, and item 26 had a 

medium level correlation with the insight subtest in which it was located; however, the 

correlations still were statistically significant (p < .01 for both items).  As seen in the 

table, the pattern of correlations provided partial support for both homogeneity and 

heterogeneity of the M³ because many items also had significant correlations with the 

other subtests in which they were not located; however, these correlations were low.  In 

addition, Appendix A provides inter-item correlations showing associations among the 

items. 
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Table 4.9

Item-subtest and item-total test point biserial correlations

Item Algebra Geometry Statistics

Linear 

Syllo.

Cond. 

Syllo.

Categor. 

Syllo. Selection Induction Insight Total

1 .24** .38** .29** .67** .17** .08 .01 .24** .08 .46**

2 .47** .08 .13* .05 .06 .00 -.09 .11* .04 .17**

3 .24** .29** .19** .21** .72** -.06 .01 .16** .29** .44**

4 .20** .76** .29** .30** .35** -.08 .03 .23** .29** .51**

5 .27** .34** .66** .29** .31** .01 .07 .23** .30** .51**

6 -.03 .05 .02 -.02 .09 .04 .69** .02 -.01 .16**

7 .15** .29** .22** .13* .31** -.05 .08 .19* .88** .41**

8 .24** .28** .29** .28** .29** .09 -.01 .69** .12* .47**

9 .14** .28** .16** .16** .61** -.01 .10 .08 .21** .37**

10 .17** .19** .12* .63** .21** .00 .01 .09 .22** .34**
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Table 4.9 – continued

Item Algebra Geometry Statistics

Linear 

Syllo.

Cond. 

Syllo.

Categor. 

Syllo. Selection Induction Insight Total

11 .10 .18** .11* .10* .23** .13* .08 .51** .15** .33**

12 .28** .75** .20** .35** .39** .08 .06 .22** .27** .56**

13 .18** .25** .67** .15** .20** -.04 -.03 .21** .19** .37**

14 .13* .14** .04 .09 -.02 .74** .06 .11* .05 .29**

15 -.03 -.06 -.05 .01 -.06 .79** .03 .06 -.02 .15**

16 .00 -.01 .03 .09 .17** .51** .13* .12* -.06 .21**

17 .80** .36** .26** .33** .34** .05 .10* .27** .23** .56**

18 .03 .09 .05 .04 .11* .11* .54** .05 .11* .22**

19 .05 .01 -.03 .03 .08 .03 .51** .04 .03 .14**

20 .10 .21** .06 .56** .11* .08 .02 .13* .03 .28**

21 .24** .30** .19** .20** .29** .07 .08 .11* .61** .42**
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Table 4.9 – continued

Item Algebra Geometry Statistics

Linear 

Syllo.

Cond. 

Syllo.

Categor. 

Syllo. Selection Induction Insight Total

22 .28** .35** .17** .14* .62** .12* .20** .25** .24** .50**

23 .54** .13* .14** .05 .16** .04 -.03 .02 .09 .23**

24 .13* .15** .38** .05 .07 .16** .12* .13* -.02 .25**

25 .07 .15** .04 .05 -.04 .03 .05 .58** -.04 .18**

26 .02 .08 -.03 -.03 .09 .01 -.12* -.06 .36** .06

27 .26** .56** .27** .21** .24** .11* .13* .30** .18** .49**

Note.  * Correlation is significant at the 0.05 level.  ** Correlation is significant at the 0.01 level.
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Research Question 3

Which M³ items represent good measures of mathematical knowledge, analytical 

mathematical ability and creative mathematical ability?  

The purpose of this research question was to examine which M³ items were good 

measures of mathematical knowledge, creative mathematical ability and analytical 

mathematical ability.  This type of analysis provides evidence for item homogeneity and 

heterogeneity in construct validity.  Item discrimination analysis was used to examine 

item characteristics.  The index for item discrimination was computed based on a 

comparison of the performance of the upper 25th percentile group and that of the lower 

25th percentile group on the M³ composite, as well as on the components. 

Table 4.10 shows discrimination indices for each item computed based on the M³ 

composite and its components as well as mean indices and standard deviations for each 

component.  Discrimination indices ranged from -.02 (negative discrimination) to .84 

(very high positive discrimination).  These indices mean that some items were 

homogenous, measuring similar constructs, whereas some items were heterogeneous,

measuring separate constructs.  The M³ composite had a mean of .41 discrimination index 

and the knowledge component had a mean of .30 discrimination index.  Both indices

were moderate levels of discrimination for general mathematical ability, as measured by 

the composite.  The analytical and creativity components had low levels of 

discriminations for general mathematical ability as measured by the composite (.29 

and .24, respectively).  
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Table 4.10

Item difficulty, item cognitive complexity and item discriminations 

Item ID ICC

D

Composite

D

Knowledge

D

Analytical

D

Creative

1 .36 1 .62 .48 .59 .15

2 .93 1 .12 .13 .06 .02

3 .42 1 .60 .44 .57 .27

4 .41 1 .77 .79 .39 .32

5 .58 1 .80 .74 .40 .35

6 .27 1 .19 .05 .10 .41

7 .30 1 .58 .39 .25 .61

8 .67 1 .64 .48 .43 .45

9 .20 2 .44 .28 .40 .20

10 .23 2 .41 .22 .41 .16

11 .09 2 .27 .14 .17 .27

12 .30 2 .76 .68 .47 .30

13 .34 2 .48 .59 .18 .22

14 .31 1 .39 .14 .49 .12

15 .30 2 .14 -.01 .47 .08

16 .15 3 .21 -.02 .31 .09



129

Table 4.10 – continued

Item ID ICC

D

Composite

D

Knowledge

D

Analytical

D

Creative

17 .51 2 .84 .82 .45 .37

18 .17 2 .26 .06 .09 .29

19 .10 3 .12 -.01 .08 .22

20 .26 3 .36 .15 .36 .09

21 .06 2 .30 .18 .15 .20

22 .33 3 .72 .42 .58 .39

23 .13 3 .19 .22 .05 .02

24 .15 3 .27 .25 .11 .13

25 .22 3 .20 .10 .01 .41

26 .02 3 .03 .02 .03 .03

27 .11 3 .40 .32 .24 .27

Mean .29 2 .41 .30 .29 .24

SD .20 .83 .24 .26 .19 .15

Note.  Item difficulty range: .80-1.00 very easy, .60-.79 easy, .40-.59 moderately difficult, 

20-39 very difficult and .00-.19 extremely difficult.  Item discrimination range: .50 and 

above high, .30-49 moderate, .15-29 low, .00-.15 very low and negative. 
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A second mode of analysis was performed usingthe General Linear Modeling 

(GLM) Repeated Measures.  Repeated Measures were used to analyzefurther if 

statistically significant differences existed between discrimination indices derived from 

component scores, as well as from the composite score.  Four levels of within-subjects 

factors(composite, knowledge, analytical and creativity) were defined for use in the

GLM Repeated Measures.  Prior to the GLM, Mauchly’s test of sphericity was performed 

to inspect the homogeneity of variance-covariance matrices to assure the validity of the F 

statistic for use in the univariate test.  No violation existed (p < .001).  The GLM 

Repeated Measures indicated a statistically significant difference among the measures 

(F(3, 24) = 35.65, p < .001; Wilks’ Lamda = .18; partial eta squared = .82).  The effect 

size of .82 is very large.  This finding suggests that not all items were homogeneous, and 

some itemswere good or poor measures of multilateral aspects of mathematical ability.  

Findings related to the items will be discussed in the next chapter. 

Research Question 4

How psychologically valid is the three-level cognitive complexity model (C³)?  

The purpose of this research question was to explore associations among item 

cognitive complexity (ICC), item difficulty (ID) and item discrimination (D).  The 

underlying assumption was that ICC was the major source of item difficulty.  Bivariate 

correlation was used to explore associations among ICC, ID and D.  Standard Regression 

Analysis was used to analyze further this research question and to test an associated 

hypothesis.
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a) What relations, if any, exist among item cognitive complexity (ICC), item 

difficulty (ID) and item discrimination (D)? The relationships among ICC, ID and D 

were investigated using the Pearson Product-Moment Correlation Coefficient.  As seen in 

table 4.11, ICC had a high and statistically significant correlation with ID (r = .64, p

< .01), which provided evidence for the validity of the three-level cognitive complexity 

model.  Meanwhile, ICC had medium and statistically significant correlations with the 

discrimination indices except that the correlations between ICC and D computed based 

on the creativityand analytical components were not statistically significant.  

Table 4.11

Bivariate correlations among ICC, ID and D

Variable ICC ID

D- 

Composite

D- 

Knowledge

D- 

Analytical

Item Difficulty (ID) .64**

D-Composite .43* .43*

D-Knowledge .39* .46* .93**

D-Analytical .37 .32 .72** .49**

D-Creativity .33 .18 .55** .45* .15

Note.  ICC was reversed.  ** Correlation is significant at the 0.01 level (2-tailed). * 

Correlation is significant at the 0.05 level (2-tailed).
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Moreover, ID had high-medium and statistically significant correlations with the 

discrimination indices computed based on the composite and the knowledge component 

(r = .43, p < .05; r = .46, p < .05); while it did not have statistically significant 

correlations with the discrimination indices on the analytical and creativity components (r 

= .32, .18, p > .05 for both correlations).  High or medium correlations found in this study 

between ID and D did not provide support for the validity of the three-level cognitive 

complexity model.  That is to say, a high correlation between item difficulty and item 

discrimination is not desirable. 

b. Hypothesis – ICC significantly predicts ID.  A Standard Regression Analysis 

was performed to test this hypothesis.  ICC was the independent variable as predictor and 

ID was the dependent variable.  As reported in the foregoing research question, ICC 

accounted for 41% of the variance in ID (R square = .408, p < .001).  As table 4.12 shows 

respective values of standardized and unstandardised Beta values, ICC had a statistically 

significant contribution to explainthe variance in ID.  Therefore, this hypothesis was 

accepted. 

Table 4.12

Summary of Standard Regression Analysis for ICC predicting ID

Variable

Unstandardised

Beta

Standardised 

Beta Standard Error Significance

ICC 15.49 .64 3.73 .000
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Research Question 5

How do the three ability groups, gifted (above 95%), above average (85-94%) and 

average and below-average (below 85%) as identified by the composite score differ in 

their performance on the items at different levels of cognitive complexity? 

This research question was investigated to determine if each level of the cognitive 

complexity model (C³) discriminated between different ability groups.  To analyze data, 

the items were put in three groups, level 1, level 2 and level 3, based on their cognitive 

complexity levels (as seen in table 4.13).  Participants also were categorized in three 

groups according to their performance on the total score: gifted (above 95%), above 

average (85-94%) and average and below average (below 85%).  Note that, grouping the 

participants based on their total scores on the M³ might contribute to performance 

difference among the groups on each cognitive complexity level; however, an analysis of 

group differences on each item and each complexity level might provide additional 

information about discrimination and difficulty characteristics of items.  

A MANOVA was used to investigate performance differences of the three ability 

groups on the three levels.  Preliminary assumption testing was conducted to check 

normality, linearity, univariate and multivariate outliers, homogeneity of variance-

covariance matrices, and multicollinearity.  Levene’s test indicated inequality of error 

variance in the level 1 and level 3 groups (p < .01 for both).  Therefore, an alpha level 

of .01 was set for determining significance levels for variables.  The analyses indicated a 

statistically significant difference among the ability groups on the combined dependent 

variables ([F(6, 572) = 68,42, p < .01; Wilks’ Lambda = .34; partial eta squared = .42]]. 
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Then, Post-Hoc tests were conducted using the Tukey Honestly Significant Difference 

test (HSD) to investigate the following hypotheses (table 4.14):

Null hypothesis – No significant difference exists between the performance of 

gifted students and that of above average students on items at the third level of cognitive 

complexity only. Post-hoc comparisons indicated that gifted students scored significantly 

higher than above average students on the level three items (p < .01; see table 4.13 for 

post-hoc comparisons and table 4.13 for group means).  However, gifted students also 

scored significantly higher than above average students on the level-two items (p < .01) 

but not on the level-one items.  Therefore, this null hypothesis was rejected. 

Null hypothesis – No significant difference exists between the performance of 

above average students and that of average and below average students on items at the 

second and third level of the cognitive complexity. Post-hoc comparisons indicated that 

above average students scored significantly higher than average and below-average 

students did on the level-one problems (p < .01), as well as on the level-two and level-

three problems (p < .01 for both differences).  Therefore, this null hypothesis was 

rejected. 

Null hypothesis – No significant difference exists among the performance of the 

three ability groups on items at the first level of the cognitive complexity. Post-hoc 

comparisons indicated that gifted students scored significantly higher than average and 

below-average students on the level-one problems (p < .01).  Similarly, above-average 

students scored significantly higher than average and below-average students on level-

one problems (p < .01).  Therefore, this null hypothesis was rejected.  Table 4.14 shows 
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that only one nonsignificant difference among the groups existed: the one between the 

gifted and above average group on the first level items (p > .05). 

A Chi Square test was used to examine differences in the proportions of each 

ability group passing each item.  Table 4.15 displays proportions of the ability groups 

passing each item and the Chi Square test results performed among group differences.  

According to Chi Square test, only items 2, 6, 15 and 19 did not differentiate significantly 

among the three ability groups.  Items 2 and 6 are first level problems.  Item 15 is a 

second level problem.  Item 19 is a third level problem. 

Table 4.13

Mean and standard deviation of performance of all ability groups on three levels of the C³

Ability Group

Complexity

Level

Gifted

N = 17

Above Average

N = 42

Below Average

N = 232

Mean 7.23 6.42 3.63
Level 1

Std Deviation .75 1.03 1.58

Mean 5.64 3.71 1.67
Level 2

Std Deviation 1.27 1.38 1.17

Mean 4.00 2.31 1.12
Level 3

Std Deviation 1.54 1.33 1.07
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Table 4.14

Tukey HSD Multiple Comparisons 

Complexity 

level (I) Group (J) Group

Mean Group 

Difference (I-J)

Std. 

Error p

Above Average .81 .42 .140

Gifted (≥ 95%) Average-Below 

Average (<85%)
3.60 .37 .000

Level 1

Above Average 

(85-94%)

Average-Below 

Average 
2.79 .24 .000

Above Average 1.93 .34 .000

Gifted Average-Below 

Average 
3.97 .30 .000

Level 2

Above Average
Average-Below 

Average 
2.04 .20 .000

Above Average 1.69 .32 .000

Gifted Average-Below 

Average 
2.88 .28 .000

Level 3

Above Average
Average-Below 

Average 
1.19 .19 .000
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Table 4.15

Chi Square test for group differences on each item and the proportion of the ability 

groups passing each item

Ability Group Chi Square Test

Item

Gifted

%

Above 

Average

%

Average, 

Below-

Average

%

Pearson Chi-

Square value

Asymp. Sig

(2-sided)

1 94.1 59.5 28.0 41.19 .000

2 94.1 97.6 92.2 1.63 .442

3 76.5 78.6 32.8 29.51 .000

4 94.1 78.6 30.2 55.62 .000

5 100.0 90.5 48.7 38.64 .000

6 41.2 33.3 24.6 3.29 .192

7 64.7 71.4 20.3 54.30 .000

8 94.1 92.9 60.3 23.00 .000

9 58.8 35.7 14.7 26.35 .000

10 47.1 50.0 15.9 29.63 .000

11 35.3 21.4 5.3 25.68 .000
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Table 4.15 – continued

12 100.0 64.3 19.0 76.27 .000

13 94.1 45.2 28.0 33.25 .000

14 64.7 40.5 26.3 13.27 .001

15 47.1 31.0 28.0 2.81 .256

16 41.2 19.0 12.1 11.37 .003

17 88.2 90.5 40.9 45.00 .000

18 52.9 16.7 14.7 16.32 .000

19 17.6 14.3 8.2 2.86 .240

20 58.8 33.3 20.0 12.70 .002

21 41.2 16.7 1.3 56.26 .000

22 94.1 61.9 22.8 55.70 .000

23 47.1 11.9 10.3 19.27 .000

24 35.3 23.8 11.6 10.22 .006

25 47.1 26.2 19.8 7.19 .027

26 0.0 7.1 1.3 6.41 .041

27 58.8 33.3 3.4 74.65 .000
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Summary of Findings

The exploratory factor analysis yielded three separate components partially 

supporting the three-mathematical minds model.  The three-factor solution explained 

55.03% of the variance.  Some subtests did not fit in the components in which they were 

expected to cluster.  The categorical syllogism and selection subtests did not correlate 

substantially with the other subtests.  This indicates low association with other thinking 

skills, whereas the other subtests had statistically significant correlations with each other. 

Regarding the M³ reliability, the Kuder Richardson analysis showed that the M³ 

test had a .72 coefficiency level as a consistency of scores.  The convergent validity 

analysis showed that the M³ had medium to high-medium correlations with teachers’ 

rating of students’ mathematical ability and students’ rating of their own ability and their 

liking of mathematics.  Another mode of analysis involved developmental differences 

among the 6th, 7th and 8th graders.  Eighthgrade students performed significantly higher 

than the other two groups, while 6th graders scored slightly higher than the 7th graders.  

Most of the items in theM³ had medium to high correlations with the components and the 

composite with the exception of one of the twenty-seven items. 

Item discrimination indices ranged from -.02 (negative discrimination) to .84 

(very high positive discrimination) depending on the component or the composite score 

on which item discrimination was computed.  GLM Repeated Measures indicated a 

statistically significant difference among the four types of discrimination indices.  Item 

difficulty analysis indicated that the difficulty level of the items ranged from .02 to .93, 

with a mean of .29, a difficult level.
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The three-level cognitive complexity model had a strong association with item 

difficulty and accounted for 41% of variance in item difficulty.  The analysis of

discrimination power of the three-level cognitive complexity model revealed that gifted 

students scored significantly higher than above average students on the level two and 

level three problems, but not on the level one problems.  Gifted students also scored 

significantly higher than average and below average students on the first, second and 

third level problems.  Four of the twenty-seven problems (two first-level problems, one 

second-level and one third level) did not discriminate significantly among the three levels 

of mathematical ability.  Research findings will be discussed in detail in the next chapter. 
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CHAPTER V

DISCUSSION AND CONCLUSION

The primary purpose of this study was to investigate the psychological validity of 

the three-mathematical minds model (M³).  The secondary purpose was to examine the 

psychological validity of the three-level cognitive complexity model (C³).  The author, 

along with mathematics experts, developed a test of mathematical ability according to the 

M³ and the C³.  The test was administered to 291 middle school students.  Comparative 

and correlational analyses were conducted to analyze data.  This chapter includes the 

discussion of research findings and implications, recommendations for future research 

and practice, and study limitations.  Research findings related to the three-mathematical 

minds model will be discussed first.  Then, research findings about the three-level

cognitive complexity model will be discussed.  

The Three-Mathematical Minds Model (C³)

Research Question 1

How theoretically valid is the three-mathematical minds model?  The factor 

analysis revealed three separate components out of nine subtests; that is, the three factor-

solution (expert minds, analytical minds and creative minds) provides the best fit to 

explainmathematical ability.  This finding supports the psychological validity of the 

three-mathematical minds model at the component level.  However, the finding partially 

supports the M³ at the subcomponent level, in that factor analysis yielded that some 

subcomponents of creative and analytical minds clustered in the knowledge component, 

contradicting the author’s theoretical position.  The author’s initial assumption was that 
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geometry, algebra and statistics subcomponents cluster in the knowledge component; the 

three syllogism subcomponents cluster in the analytical component; and insight, selection 

and induction subcomponents cluster in the creativity component.  The discussion of 

componential and subcomponential research findings follows.

Table 4.3 shows loadings of each subcomponent on the component in which it 

clustered.  According to the analysis, geometry, algebra, statistics, linear syllogism, 

conditional syllogism and induction cluster in the first component and explain almost 

30% of the variance.  This component can be labeled, with confidence, the knowledge-

reasoning component or expert mind.  An inspection of the subtests and problems in each 

subtest will support my label.  In chapter three, I stated that the third level problems in 

the knowledge component require some reasoning because these problems entail 

conceptual understanding of subject matter.  For example, the level three problem in the 

geometry subtest requires understanding perimeter and area relationships for the solution.  

Conceptual understanding means analyzing facts and relating them.  However, the fact 

that these subcomponents cluster with the linear syllogism, conditional syllogism and 

induction subcomponents is unexpected to this author.  Obviously, some overlap exists 

among the subcomponents.

What was unexpected was the clustering of induction, linear syllogism and 

conditional syllogism in the knowledge component.  They have low to medium, but 

statistically significant, correlations with the other subcomponents of the knowledge 

component.  An inspection of the problems in the induction subcomponent, which was 

supposed to cluster in the creativity component but clustered in the knowledge 
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component, indicates that the first level problem (categorizing numbers), and the second 

level problem(finding out the sum of the internal angles of a shape of 14 sides) can be 

solved by using mathematical knowledge, as well as by inductive processes.  However, 

the third level problem (finding out the number of turns of a wheel) does not require 

mathematical knowledge.  Needless to say, the first and second level problems contribute 

to the overlap between the knowledge component and the induction subcomponent from 

this author’s point of view.  Another reason for the overlap can be seen from the finding 

that the induction subcomponent has a higher correlation with the geometry 

subcomponent because the second level and the third level problems in the induction 

subtest also require spatial ability while the first level problem requires numerical ability.

The subcomponent conditional syllogism, which was expected to cluster in the 

analytical component, clustered in the knowledge component.  The conditional syllogism

has a similar nature of overlap as the induction subcomponent in that problems in the 

conditional syllogism were presented in algebraic expressions.  Conditional syllogism 

problems also require the use of coefficients and factors.  Therefore, the correlation 

between algebra and the conditional syllogism subtest is .34, a statistically significant 

finding (as seen in table 4.4).  As a matter of fact, the conditional syllogism correlates

with the geometry subcomponent at a higher level, .47.  This author believesthat the 

overlap between the conditional syllogism and the knowledge component is occurs 

because of the similar nature of the problems in the conditional syllogism and the algebra 

subcomponent.  Perhaps some students, who were not good at algebra, did not even 

attempt to solve conditional problems because of surface similarities between algebra and 
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the conditional syllogism problems.  The strong overlap between the conditional 

syllogism and the geometry subcomponent found in this study needs to be investigated 

further in future research related to the M³, in particular, and mathematics and 

mathematical ability, in general.  

Unlike conditional syllogism and induction subcomponents, the linear syllogism 

subcomponent does not have problems similar to algebra problems; however,it, too, 

clustered in the knowledge component.  Linear syllogism problems, in reality, require 

focused attention, as well as the comparing and contrasting aspects of analytical ability.  

Therefore, I predicted the linear syllogism subcomponent would correlate highly with the 

categorical syllogism, and cluster in the analytical component like the categorical 

syllogism, but it did not.  What made the linear syllogism subcomponent cluster in the 

knowledge component needs further investigation.  

Unlike the other subcomponents, which have multiple significant correlations 

with each other, the categorical syllogism subcomponent has very low correlations with 

the others.  The categorical syllogism subcomponent was found to be a separate 

component in factor analysis explaining 12% of the variance.  The categorical syllogism 

problems, like linear syllogism problems, require focused attention, contrasting and 

comparing.  Therefore, this component was labeled as an analytical component by this 

author.  The categorical subcomponent has a significant correlation, .13, withonly the 

induction subcomponent.  Categorical problems were presented in a table, and the test 

takers were supposed to figure out the number of individuals in intersecting and 

disjointed groups.  Here, an association exists between the induction and the categorical 
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problems.  However, the overlap is quite small, 1.6%.  Keep in mind that a significant 

correlation might exist between two variables with a large sample size.  Therefore, this 

correlation does not tell much about the relationship between the inductive processes and 

the categorical syllogism processes.  Indeed, the finding might be just an artifact of the 

sample size.  Furthermore, although the categorical syllogism subcomponent itself is a 

separate component in the factor analysis, the difficulty level of the categorical problems 

might have contributed to the distinction of this component.  Categorical problems have a 

meandifficulty level of .25, a very difficult level (see table 4.10).  Therefore, how much 

the difficulty level of categorical problems contributes to variance in the categorical 

subcomponent compared to the other components needs to be investigated further by this 

author to study mathematical ability both at the factorial level and at the item level. 

Like the categorical syllogism subcomponent, the selection and insight 

subcomponents together appear as a separate component in factor analysis (as seen in 

table 4.3).  However, the insight subcomponent contributes to both the first and second 

component equally.  Although its loading is slightly higher on the second component (.44) 

than that on the first component (.43), it was not assigned in the creativity component.

Therefore, the second component included only the selection subcomponent.  The insight 

subcomponent has a medium level correlation with the geometry subcomponent because 

two of the insight problems require spatial ability.  Therefore, the nature of the problems 

in the insight subcomponent might have contributed to the correlation between the insight 

subcomponent and the knowledge component.  An inspection of the correlational matrix 
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presented in table 4.4 indicates that the insight subcomponent hasweak associations with 

the other subcomponents.  

The second component was labeled as the creativity component or creative mind 

by this author because, as stated in the literature review, selection problems requires an 

unusual mode of thinking, selective thinking; therefore, selection problems are different 

from problems in the other subtests.  Recall that, as pointed out in the literature review 

(Davidson & Sternberg, 1984), many creative ideas come about through sorting out 

related and unrelated information and combining them selectively or through the use of 

analogies as in the third-level selective comparison problem in the selection 

subcomponent.  Overall, the selection subcomponent seems to measure a different aspect 

of human ability.  This difference can be seen more clearly from the point biserial item-

subtest correlations in table 4.9.  The problems in the selection subtest correlate 

significantly only with the total score of the selection subtest.  

The factorial findings of this study differ in some aspects from those of prior 

factor analytic studies of mathematical ability.  For example, Rogers’ study (1918) 

showed correlations among math subtests, ranging from .02 to .59.  Similarly, 

correlations among the subtests of the M³ range from almost .00 to .47.  Prior researchers 

such as Spearman (1927), Thurstone (1937) and Verdelin (1958) reported separate 

numerical and spatial-visual factors underlying mathematical ability.  In this study, the 

author did not find any separate numerical or spatial factors; instead, algebra, geometry 

and statistics subtests underlying numerical and spatial ability, respectively, clustered in 

the knowledge-reasoning component.  However, Verdelin also found a deductive factor 



147

(analytical ability in this study) that was separate from other mathematical factors.  

Likewise, the categorical syllogism subcomponent is a separate component from the 

other components in this study.  In addition, this study revealed a mathematical creativity 

component that has not been reported by other researchers with the exception of

Sternberg (2002). 

Research Question 2

What are the psychometric properties of the M³ test battery?

Reliability findings.  The reliability coefficient may be interpreted in terms of the 

percentage of score variance attributable to different sources.  For example, a reliability 

coefficient of .90 means that 90% of the variance in test scores is accounted for by true 

variance in ability measured, and 10% is explained by error variance. The mode of 

reliability analysisin this study was Kuder-Richardson reliability, a measure of interterm 

consistency.  The analysis yielded a reliability coefficient of .72.  This coefficient slightly 

exceeds the desired minimum level of the coefficient, .70 (Anastasi & Urbina, 1997).  

Al though the coefficients are above the minimum level, they are not very strong, 

in that over 25% of the variance in scores in the M³ is attributable to error variance.  The 

M³ is not a measure of a single trait, but a measure of multilateral aspects of 

mathematical ability.  That is, the items in the M³ are heterogeneous; therefore, the 

interitem consistency of the M³ should not be expected to be very high because the 

interitem consistency is influenced largely by the heterogeneity of the behavior domain 

sampled (Anastasi & Urbina, 1997).  In other words, the more homogeneous the domain, 

the higher the interitem consistency.  Recall that the M³ has nine subcomponents and 
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three components measuring separate aspects of mathematical ability.  Overall, the 

reliability findings provide partial evidence for the reliability of the M³ as a measure of 

unified mathematical ability and good evidence for the reliability of the M³ as a measure 

of multilateral aspects of mathematical ability.              

The Construct Validity of the M³

In this section, I will discuss research findings related to the convergent validity 

of the M³ first.  I will discuss research findings related to whether the M³ shows 

developmental evidence by differentiating among different grade levels and whether it 

shows internal consistency for item-total score, item-subtest and subtest-total score 

correlations. 

Convergent validity of the M³. Campbell (1960b) pointed out that a psychological 

test should correlate with other variables to which it should be related theoretically to 

show construct validity, meaning that the test measures what it intends to measure.  

Convergent validity, however, is only one way to investigate the construct-related 

validity of a psychological test.  Convergent validity can be investigated through the 

correlation of the same ability measured by different tests or through the correlation of 

similar abilities measured by the same or different tests.  The correlation between scores 

on aptitude tests and grades in math courses is one example of convergent validity.  In 

this study, the convergent validity of the M³ was investigated by correlating students’ M³ 

scores with teachers’ rating of students’ mathematical ability, students’ rating of their 

own mathematical ability and students’ rating of their liking of mathematics.  Note that 

the first two ratings are measures of students’ mathematical ability, also measured by the 
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M³.  The liking of mathematics is not a measure of mathematical ability, but it is 

associated with a student’s mathematical performance. 

Table 4.7 summarizes partial correlations among the aforementioned variables.  

Recall that the overlapping effect of grade is statistically controlled in the correlational 

analysis.  As read from the table, correlations between the M³ and the ratings range from 

medium to high-medium, with all correlations being statistically significant at the .01 

level.  The correlation between teachers’ rating and the M³ composite score is the highest 

among the others (r = .45), followed by students’ rating of their own ability (r = .36) and 

their liking of mathematics (r = .35).  What is interesting in the table is the pattern of 

correlations between the M³ components and the ratings.  Both teachers’ ratings and 

students’ ratings correlate with the knowledge component (r = .42 & .40) much higher 

than their ratings with the creativity (r = .35 & .26) and analytical component (r = .32 

& .19).  This author interprets these correlations to mean that teachers and students 

associate mathematical ability more with amount of mathematical knowledge and 

achievement in math classes than with creative and analytical ability.  Perhaps, some 

creativity and analytical problems also were unusual to the students, as some students 

commented about some problems on the test booklet by saying, “weird,” “different,”

“excellent,” “never seen” or “impossible solution.”  

Overall, these findings provide evidence for the convergent validity of the M³.  

The author’s future research agenda, however, should focus on associations between 

scores on the M³ and scores on another test of mathematical ability for a more clear-cut 

picture of the convergent validity evidence.  Also, further research is needed to determine 
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the relationship between scores on the M³ andgrades in mathematics classes or

performance on an achievement test to provide criterion-related validity evidence for the 

M³. 

Developmental differences among students of various grade levels. A major 

criterion used in the validation of a number of intelligence tests is age differentiation 

(Anastasi & Urbina, 1997).  However, the use of age in the validation of aptitude tests, 

such as the M³, is not appropriate because they measure ability that is influenced largely 

by school learning.  Therefore, the major criterion for aptitude tests should be grade 

differentiation, which is what the author used to check the M³ against grade to determine 

whether the scores in the M³ show a progressive increase with grade during middle 

school (6th through 8th grade).  

As reported in the foregoing chapter, the findings provide partial validity evidence 

about whether the M³ discriminates among different grade levels.  The partial evidence 

means that 8th grade students scored significantly higher than 7th and 6th grade students; 

however, the 6th graders scored slightly higher than the 7th graders.  Needless to say, the 

latter finding contradicts the former, even though the difference between the 6th graders 

and the 7th graders is not significant.  The discussion of this contradiction follows.

An inspection of table 3.2 indicates that a significant difference exists among 

sample sizes.  The size of the 6th grade is almost half that of the 7th grade.  This difference 

might have contributed to the performance difference between the 6th and 7th graders, 

favoring the 6th graders.  Another reason for the contradiction might come from the 

statewide achievement difference between 6th and 7th grade students.  My personal 
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conversation with one of the teachers who administered the M³ indicates that the 6th

graders scored higher than the 7th graders on a state-approved achievement test (L. 

Chandler, personal communication, January 13, 2005).  No reason has been found by 

state educators for this unexpected difference.  Further, developmentally, some peaks and 

slumps might exist in students’  performance during middle school.  For example, 

Torrance (1968) reported that children demonstrated an early peak in divergent thinking

followed by a slump around fourth grade, and a late increase.  Likewise, Sak and Maker 

(2003) found stagnancy in fluency of students in mathematics at fourth grade.  That is, 

children’s cognitive development may show curvilinear trajectories with peaks and 

slumps in one or more facets of their ability.  Interestingly, in the selection and insight 

subtests in this study, a slump exists around 7th grade and a peak around 8th grade.  

Briefly, the findings show partial, developmental evidence for the validity of the M³.  

Therefore, the author’s future research agenda includes administeringthe M³ to a 

different sample to see if the same or different results are obtained.  These findings also 

suggest that researchers should check a newly-constructed ability or achievement test for

grade differentiation.               

The internal consistency for item-total score, item-subtest and subtest-total score 

correlations.  Internal consistency correlations, whether based on items or subtests, show 

the homogeneity and heterogeneity of the test items used to measure the ability domain 

sampled by the test.  Therefore, the degree of homogeneity or heterogeneity of a test has 

some relevance to its construct validity.  In other words, the internal consistency 

correlations might provide evidence related to whether items in a test battery measure the 
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same construct, similar constructs or completely different constructs.  Anastasi and 

Urbina (1997) stated that correlations among items, subtests and the total score are 

expected to be significant if the test battery is constructed to measure a single, unified 

construct.  Because most psychological tests are developed to measure a unified construct, 

the degree of significance in correlations among items and between items and subtests of 

a test battery developed to measure separate abilities is unclear in the psychological 

literature.  The author’s assumption is that low correlations exist among items and 

between items and subtests that are developed to measure separate constructs even 

though they are parts of the same test battery.  For example, the M³ is designed to 

measure three aspects of mathematical ability; therefore, low correlations should be 

expected among items measuring different aspects of mathematical ability, such as the 

creative mind and the analytical mind.  On the other hand, high correlations should be 

expected among items measuring the same aspect of mathematical ability, such as the 

analytical mind. 

As seen in the point biserial correlational matrix in table 4.9, twenty-six of the 

twenty-seven items in the M³ test battery correlate significantly with the total score.  

Indeed, most correlations are within the range of medium to high, providing evidence of 

strong internal consistency of item-total score relationships.  In other words, the twenty-

six items differentiate among the respondents in the same direction as does the entire test 

battery.  However, item 26 have a low and nonsignificant correlation with the total score

showing low discrimination.  Therefore, this problem needs to be revised or removed 

from the test battery.  Furthermore, bivariate correlations between the subtests and the M³ 
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total score are significant, ranging from medium to high.  The correlations between items 

and the total score and the correlations between the subtests and the total score provide

evidence of internal consistency related to the construct validity of the M³ (see table 4.5

for multiple comparisons).   

The correlation pattern in table 4.9 also provides additional psychological 

evidence of the internal consistency of the M³.  What is most important in this pattern are 

the correlations between the items and the subtests in which the items are located and the 

correlations between the items and the subtests in which the items are not located.  As 

seen in the table, the items, such as 1, 10 and 20 located in the linear syllogism subtest, 

have high and significant correlations with the subtests in which they are located.  In 

other words, each linear syllogism problem, for example, differentiates among 

individuals in the same direction, as does the entire subtest linear syllogism.  This pattern 

repeats itself for the other subtests, as well.  However, the only items that do not have 

high correlations with their associated subtests are items 24 and 26, though they have 

moderate and significant correlations.  As pointed out in the foregoing discussion, these 

items may need further revision.  

To this author, more interesting than the high correlations are low positive and 

low negative correlations between the items and the subtests in which these items are not 

located.  In other words, these items and the subtests are not developed to measure the 

same constructs.  The correlation between item 25, an induction problem, and the subtest 

conditional syllogism, for example, is -.04, meaning that they do not measure the same 

ability and they differentiate among different abilities.  Low negative or low positive and 



154

nonsignificant correlations exist between most items of the M³ and the subtests that 

measure different constructs.  These findings show the internal consistency of the M³ at 

the item level and subtest level.  The findings also provide validity evidence for the three-

mathematical minds model, in that the items developed to measure one of the 

mathematical minds, such as the analytical mathematical mind, differentiates that mind 

from the other two minds and vice versa. 

Research Question 3

Which M³ items represent good measures of mathematical knowledge, analytical 

mathematical ability and creative mathematical ability?  The purpose of this research 

question was to attempt to find further evidence at the item level for the psychological 

validity of the M³ and for the assessment of multilateral facets of mathematical ability.

As stated before, an assessment model should be validated not only on the factorial level,

but also on the item level.  As Carroll (1996) maintained, one major problem of 

assessment practices is to determine the homogeneity or heterogeneity of items.  The 

particular interest of this author was to find out which M³ items were good measures of 

multilateral aspects of mathematical ability.  This type of analysis provides evidence for 

item homogeneity and heterogeneity of discrimination powers of items to differentiate 

among individuals who may have high ability in different ability areas within the same 

domain.  As pointed out in the first chapter, some items might show functional deviation, 

meaning that they measure abilities they theoretically are not constructed to measure.  On 

the other hand, some items might be functionally fit; they only measure abilities they are 

constructed to measure. 
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As noted previously, the mode of analysis was a comparison of the performance 

of the upper 25% of the composite and the components with that of the lower 25%.  Each 

item has four discrimination indices as a result of the use of four base scores: the 

composite, analytical, knowledge and creativity scores.  As reported in the foregoing 

chapter, GLM repeated measures yield very significant difference among the four groups 

of discrimination indices.  The effect size, computed by using Cohen’s d, is .82, a very 

large effect.  Therefore, discrimination indices for each item deserve further discussion. 

As seen in table 4.10, each item has discrimination indices, most of which differ 

significantly from each other.  Item one, for example, has a high discrimination for 

analytical minds, but has a low discrimination for creative minds.  That is, item one is a 

good measure of analytical ability, but only the use of problems like item one in ability 

tests will miss many creative minds.  Similarly, item 6 is a good measure of creative 

ability but it overlooks individuals who have high mathematical knowledge.  Findings 

that are more radical are the discrimination indices of items 15 and 16.  Although they 

differentiate analytical minds from nonanalytical minds, they discriminate against 

knowledge-expert minds.  That is to say, knowledge-expert minds will be overlooked 

when only analytical types of problems are used in ability tests.  Based on the 

discrimination indices presented in table 4.10, the author’s conclusions about each item 

are as follow: 

Problems 6, 7, 8, 18, 22 and 25are good measures of creative ability.  Problems 1, 

2, 10, 14, 15, 16, 20, 23, 24, and 26are not good measures of creative ability. 
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Problems 1, 3, 4, 5, 8, 9, 10, 12, 14, 15, 17, 20 and 22are good measures of 

analytical ability.  Problems 2, 6, 11, 18, 19, 21, 23, 24,25 and 26 are not good measures 

of analytical ability.

Problems 1, 3, 4, 5, 7, 8, 12, 13, 17, 22 and 27are good measures of mathematical 

knowledge.  Problems 2, 6, 11, 14, 15, 16, 18, 19, 20, 21, 25 and 26 are not good 

measures of mathematical ability. In fact, problems 15, 16 and 19 discriminate against 

knowledge-expert minds.

Problem 2 is too easy and problem 26 is too difficult; therefore, theyhave low 

discrimination levels.  They need further revision.

In addition, some items show functional fitness whereas others do not.  Items that 

show functional fitness, meaning that they measure highly or moderately one type of 

mathematical mind or only what they are supposed to measure, are creativity problems 6, 

11, 18, 19 and 25; analytical problems 9, 10, 14, 15, 16 and 20; and knowledge problems 

13 and 23.  The rest of the problems show functional deviations, meaning that they also 

differentiate more than one type of mathematical mind.  Interestingly, most of these 

problems are knowledge problems.  

Overall, some problems in the M³ are homogeneous, differentiating only one type 

of ability whereas some are heterogeneous, differentiating more than one type of 

mathematical ability.  Some problems have low discriminations not because they do not 

discriminate between high ability and low ability, but because they are just too difficult;

even some of the individuals with the highest abilities could not solve them.  Problems 11, 

21 and 23 are good illustrations of these types of difficult and low discriminating 
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problems.  As seen in table 4.15, only 35% to 47% of the top 5% of the participants 

passed items 11, 21 and 23.  On the other hand, 1% to 10% of the below-average students 

passed these items.  Therefore, discrimination indices of problems in an ability test 

should be computed based not only on a comparison of the upper 25% and the lower 25% 

but also on a comparison of the top 5% and above average individuals if the major 

purpose of the test is to differentiate between gifted and nongifted individuals.  To this

author’s best knowledge, no prior research exists about this type of item discrimination 

computation.  Finally, no prior researchers computed item discrimination based on 

different ability groups within the same domain (Linn, 1993).  Based on the findings in 

this study, the author suggests that test items should be validated not only based on item-

total score or subtest-total score correlations for their internal consistency, but also on 

item discrimination indices estimated based on factor scores.  This type of item validation

is essential particularly for ability tests that measure various aspects of human ability. 

The Three-Level Cognitive Complexity Model (C³)

Research Question 4

How psychologically valid is the three-level cognitive complexity model?  The 

author investigated the psychological validity of the three-level cognitive complexity 

model (C³) through correlational, regression and multivariate analyses and nonparametric 

analysis.  The author’s assumption was that item cognitive complexity, developed based 

upon the C³, was the major source of item difficulty.  As pointed out in the first chapter, a 

good psychological test consists of problems that are in an ascending level of difficulty 

(Lohman, 2000; Sternberg, 2002); however, the difficulty level of problems should have 
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psychological sources.  The psychological background of the C³ was discussed 

extensively in chapter three.  Sources of item cognitive complexity also were presented in 

chapter three.  Here, I will discuss research findings related to the psychological validity 

of the C³. 

As read from correlations in table 4.11, item cognitive complexity is associated 

significantly with item difficulty level (r = .64).  The association between the C³ and item 

difficulty was investigated further by regression analysis to find out how much variance 

in item difficulty was explained by the C³ or if the C³ was the major source of item 

difficulty.  As presented in table 4.12, the C³ is the major source of item difficulty, 

explaining 41% of the variance.  This finding provides support for the psychological 

validity of the C³, but the finding does not suffice as support for the effectiveness of the 

three levels in differentiating three ability groups: novices, developing experts, and 

experts.  Research question five and associated hypotheses aimed at finding out if the 

three levels differentiate among the groups.  The discussion of research question five 

follows. 

Research Question 5

How do the three ability groups, gifted (above 95%), above average (85-94%) 

and average and below-average (below 85%), as identified by the composite score, differ 

in their performance on items at different levels of cognitive complexity?  Three null 

hypotheses were tested to determine whether each level of the C³ differentiated among 

novices, developing experts and experts, or average-below-average, above average and 

gifted students, respectively.  The first null hypothesis is related to the discrimination 
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power of the third level problems between developing experts (average and below-

average students) and experts (the top 5% of students):no significant difference exists 

between the performance of gifted students and that of above average students on items 

at the third level of cognitive complexity only. In other words, only third level problems 

are supposed to differentiate between developing experts and experts according to the C³; 

whereas, the first and second level problems do not differentiate.  As post-hoc 

comparisons show in table 4.13, both level-two and level-three problems differentiate 

significantly between expert students and developing expert students; however, level-one 

problems do not differentiate between the two.  These findings imply that level-two 

problems are very difficult for developing expert students, so most of these students were 

unable to solve these problems correctly.  Therefore, level-two problems should be 

revised so that no significant performance difference exists between developing expert 

students and expert students on level-two problems.  The findings also indicate that level-

one and level-three problems function in the direction they were developed according to 

the three levels of the cognitive complexity model. 

The second null hypothesis is related to the discrimination power of level-two and 

level-three problems between developing experts and novices: No significant difference 

exists between the performance of above average students and that of average and below 

average students on items at the second and third level of the cognitive complexity.  In

other words, only level-two and level-three problems are supposed to differentiate 

between developing expert students and novice students according to the C³.  The 

findings presented in table 4.13 indicate that level-two and level-three problems 



160

significantly differentiate between the two groups; however, developing expert students 

also perform significantly higher than novice students.  As noted earlier, level-one 

problems do not differentiate between expert students and developing expert students. 

Therefore, level-one problems need further revision so that no significant performance 

difference exists between the two groups on level-one problems.  

The third null hypothesis is related to the discrimination power of the level-one 

problems among the three groups: no significant difference exists among the performance 

of the three ability groups on items at the first level of the cognitive complexity.  In other 

words, the first-level problems are not constructed to differentiate among the three groups 

according to the C³.  The findings presented in table 4.13 illustrate that the first-level 

problems do not differentiate between expert students and developing expert students, but 

do differentiate between the novice students and expert students and between novice 

students and developing expert students.  These findings mean that the first-level 

problems are difficult enough for novice students; thus, experts and developing experts 

outperform novices on the first-level problems as well as on the second and third level 

problems.  Therefore, as recommended in the foregoing discussion, level-one problems 

need further revision so that they do not differentiate significantly among the three ability 

groups.

Overall, the three-level cognitive complexity model deserves further research, 

particularly as to whether each level differentiates among the three ability groups in the 

direction assumed.  However, as discussed in research question four, the C³ accounts for 

a significant degree of variance in item difficulty (41%), meaning that item difficulty 
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comes from psychological sources, such as demand for mathematical knowledge, 

analytical mathematical ability or creative mathematical ability, developed according to 

the C³.  Although 41% of the variance in item difficulty is explained by the C³, what 

contributes to the rest of the variance is unknown.  Probably, other factors, such as the 

difficulty of language, the length of verbal statements, the clarity of graphs or some 

external factors, contribute to item difficulty as well.  Therefore, in future research related 

to the C³, the author may investigate the contribution of these factors to item difficulty as 

well as that of the C³.  The author also suggests that every newly-constructed test should 

be validated through the analysis of sources of item difficulty.  This type of analysis is 

missing in many ability tests.  This type of analysis should be carried out and reported in 

test manuals so that test users associate the difficulty of a test withthe characteristics of 

the students to be assessed. 

Study Limitations

A number of limitations exist in this study, most of which pertain to the sample.  

First, the number of the 6th grade students is much less than that of the 7th and 8th grade 

students.  This difference might have contributed to the performance variance among the 

groups.  Second, the sample is not an exact representation of the U.S. because it was 

drawn only from the southwest region of the country.  Proportions of gender and 

ethnicity in this study, however, are close to those of the U.S. in general.  

The test was given in the beginning of the spring semester; therefore, the 

participants had not completed their associated grade level.  As a result, they had not 

mastered mathematical knowledge and had not developed skills taught at the end of their 
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respective grade level.  The time of the school year in which the test was given might 

have contributed to item difficulty because problems were developed according to 8th

grade students’ level of mathematical ability as rated by mathematics teachers.  

Other limitations are related to the methodology.  First, the M³ items were 

hypothetically assigned into their subtests; therefore, a subtest factor analysis was used 

instead of an item factor analysis.  An item factor analysis is recommended for future 

research related to the M³. Second, although the conditional syllogism and linear 

syllogism subtests did not cluster in the analytical component, as reported by factor 

analysis, the author grouped them in the analytical component in the computation of 

multiple item discriminations based on component scores.  Likewise, the induction and 

insight subtests were grouped in the creativity component even though the induction 

subtest clustered in the knowledge component and the insight subtest loaded equally on 

the analytical and creativity componentsaccording to factor analysis.  The third 

limitation is related to ability grouping in research question five.  The participants were 

categorized into three groups according to their M³ total scores.  Because each item 

contributes to the participants’ total scores, some of the performance difference among 

the three ability groups on each level of the C³ might come from the relative contribution 

of each item.  Therefore, the author suggests that readers consider aforementioned 

limitations in their own interpretation of the research findings. 
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APPENDIX A

Crosstabulation of Participants

Inter Item Biserial Correlations

Distribution of Correct Answers in the M³
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Table A.1

Crosstabulation of participants by school, grade, gender and race

Race

School Grade Gender Asian Black Hispanic Indian Other White Total

Female 0 0 0 0 0 1 1

Male 0 0 0 0 0 5 56

Total 0 0 0 0 0 6 6

Female 0 1 1 0 0 1 3

Male 0 0 2 1 0 12 157

Total 0 1 3 1 0 13 18

Female 0 0 0 0 0 9 9

Male 0 0 3 1 0 4 8

A

8

Total 0 0 3 1 0 13 17

Female 0 1 3 0 0 2 6

Male 0 0 2 0 0 5 76

Total 0 1 5 0 0 7 13

Female 0 0 0 0 0 1 1

Male 2 2 4 0 1 1 10

B

7

Total 2 2 4 0 1 2 11
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Table A.1 – continued 

School Grade Gender Asian Black Hispanic Indian Other White Total

Female 0 0 1 0 0 1 2

Male 0 0 1 0 0 0 18

Total 0 0 2 0 0 1 3

Female 0 0 3 0 2 9 14

Male 0 0 2 2 3 10 177

Total 0 0 5 2 5 19 31

Female 0 0 2 0 0 17 19

Male 0 0 3 0 0 18 21

C

8

Total 0 0 5 0 0 35 40

Female 1 0 1 0 3 18 23

Male 2 0 0 0 1 18 216

Total 3 0 1 0 4 36 44

Female 4 0 5 0 0 20 29

Male 0 1 2 0 3 22 287

Total 4 1 7 0 3 42 57

Female 1 0 5 0 1 19 26

Male 0 2 2 0 4 17 25

D

8

Total 1 2 7 0 5 36 51
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Table A.2
Interitem biserial correlations

Item 2 3 4 5 6 7 8 9 10 11 12 13

1 .09 .13* .26** .26** .03 .07 .29** .15** .17** .13* .29** .22**

2 .09 .03 .10 .11 .06 .13* .00 .02 -.05 .06 .11

3 .26** .16** .00 .26** .20** .23** .21** .11 .21** .15*

4 .27** .02 .21** .20** .26** .15* .12* .29** .21**

5 .11 .31** .26** .22** .21** .06 .25** .19**

6 .04 .01 .08 .00 .04 .02 -.04

7 .13* .21** .18** .10 .23** .15**

8 .12* .12* .12* .19** .21**

9 .14* .13* .20** .08

10 .03 .18** .09

11 .18** .17**

12 .14*
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Table A.2 – continued 

Item 14 15 16 17 18 19 20 21 22 23 24 25 26 27

1 .11* -.00 .05 .29** .03 .05 .01 .05 .05 .01 .00 -.01 -.01 .24**

2 .06 -.06 -.00 .14* -.06 .04 -.03 .01 .02 .02 .01 .08 -.06 .10

3 -.08 -.09 .08 .25** .02 .01 .06 .17** .12* .05 .01 -.02 .07 .12*

4 .04 .16** -.05 .24** .05 .01 .15* .27** .17** .04 .00 .09 .08 .18**

5 .02 -.04 .04 .23** -.02 .02 .06 .18** .23** .14* -.13* .06 -.02 .17**

6 .04 .05 -.01 .04 -.05 .09 -.07 -.05 .09 -.02 -.04 -.01 -.09 .09

7 -.01 -.05 -.04 .17** .08 .01 -.01 .22** .15* .02 -.11 -.01 .06 .15**

8 .05 .07 .07 .29** -.03 .01 .10 .08 .24** -.02 .01 -.03 -.05 .20**

9 -.07 .01 .06 .09 .07 .01 .02 .13* .07 .17** -.06 -.09 -.01 .10

10 -.00 .01 -.02 .19** -.01 .02 .06 .18** .06 .06 -.13* .01 .04 .05

11 .10 .09 .10 .13* .11 .02 .03 .22** .21** .06 -.05 .03 -.04 .08

12 .13* .02 .00 .27** .06 .01 .18** .19** .34** .13* -.06 .04 .06 .22**
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13 .00 -.04 -.06 .21** .04 .04 -.04 .19** .14* -.02 -.06 -.01 -.00 .19**

14 .39** .04 .13* .07 .01 .04 .12* .11 .04 .05 .06 .06 .15*

15 .16** .02 -.02 .02 .01 .03 -.02 .02 .00 -.04 .01 .04

16 .02 .20** .06 .13* -.02 .19** .02 .06 .06 -.06 .04

17 .08 .06 .14* .22** .32** .09 -.00 .05 .05 .24**

18 .08 .04 .16** .13* -.01 .07 .04 -.07 .10

19 .10 .07 .15* -.02 -.03 .08 -.05 .03

20 .16** .14* .01 .09 .10 -.09 .09

21 .26** .17** -.06 -.06 .17** .15*

22 .11 -.10 .01 .10 .25**

23 .13* .02 .02 .13*

24 .02 -.02 .11

25 -.02 .23**

26 .03

Note. * Correlation is significant at the 0.05 level (2-tailed).  ** Correlation is significant at the 0.01 level (2-tailed).
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Table A.3

Number of correct answers in the total test battery

Number of correct 

answers Frequency Percent Cumulative Percent

1 8 2.7 2.7

2 4 1.4 4.1

3 23 7.9 12.0

4 17 5.8 17.9

5 21 7.2 25.1

6 28 9.6 34.7

7 39 13.4 48.1

8 39 13.4 61.5

9 30 10.3 71.8

10 23 7.9 79.7

11 12 4.1 83.8

12 11 3.8 87.6

13 7 2.4 90.0

14 12 4.1 94.2

15 5 1.7 95.9

16 3 1.0 96.9

17 3 1.0 97.9
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Table A.3 – continued 

Number of correct 

answers Frequency Percent Cumulative Percent

18 4 1.4 99.3

20 1 .3 99.7

21 1 .3 100.0

Total 291 100.0

Figure A.1.  Distribution of scores in the total test battery
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Table A.4

Number of correct answers in the knowledge subtest

Number of Correct 

Answers Frequency Percent Cumulative Percent

0 8 2.7 2.7

1 33 11.3 14.1

2 41 14.1 28.2

3 66 22.7 50.9

4 68 23.4 74.2

5 38 13.1 87.3

6 16 5.5 92.8

7 16 5.5 98.3

8 2 .7 99.0

9 3 1.0 100.0

Total 291 100.0
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Figure A.2.  Distribution of scores in the knowledge subtest. 
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Table A.5

Number of correct answers in the analytical subtest

Number of correct 

answers Frequency Percent Cumulative Percent

0 25 8.6 8.6

1 62 21.3 29.9

2 69 23.7 53.6

3 63 21.6 75.3

4 34 11.7 86.9

5 21 7.2 94.2

6 10 3.4 97.6

7 5 1.7 99.3

8 2 .7 100.0

Total 291 100.0
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Figure A.3.  Distribution of scores in the analytical subtest
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Table A.6

Number of correct answers in the creativity subtest

N Frequency Percent Cumulative Percent

0 37 12.7 12.7

1 70 24.1 36.8

2 109 37.5 74.2

3 44 15.1 89.3

4 23 7.9 97.3

5 6 2.1 99.3

6 2 .7 100.0

Total 291 100.0
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Figure A.4.  Distribution of scores in the creativity subtest
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Figure A.5.  Distribution of scores in the algebra subtest

Figure A.6.  Distribution of scores in the geometry subtest
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Figure A.7.  Distribution of scores in the statistics subtest

Figure A.8.  Distribution of scores in the linear syllogism subtest
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Figure A.9.  Distribution of scores in the conditional syllogism subtest

Figure A.10.  Distribution of scores in the categorical syllogism subtest

Conditional Syllogism

3.02.01.00.0

Fr
eq

ue
nc

y

120

100

80

60

40

20

0

Std. Dev = .89  

Mean = .9

N = 291.00

Categorical Syllogism

3.02.01.00.0

F
re

qu
en

cy

160

140

120

100

80

60

40

20

0

Std. Dev = .88  

Mean = .7

N = 291.00



180

Figure A.11.  Distribution of scores in the selection subtest

Figure A.12.  Distribution of scores in the induction subtest
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Figure A.13.  Distribution of scores in the insight subtest
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Table A.7

ANOVA for grade differences on the M³ composite

Variable

Sum of 

Squares df

Mean 

Square F Sig.

Between Groups 204.46 2 102.23 7.50 .001

Within Groups 3924.37 288 13.62

Total 4128.83 290

Table A.8

Post-Hoc comparisons of mean differences among all grades on the M³

95% Confidence 

Interval

Test Grade Grade

Mean 

Difference 

Std. 

Error Sig.

Lower 

Bound

Upper 

Bound

7 .26 .57 .89 -1.09 1.62
6

8 -1.54* .58 .02 -2.91 -.17

6 -.26 .57 .89 -1.62 1.09

7 8 -1.80* .48 .00 -2.95 -.65

6 1.54* .58 .02 .17 2.91

Tukey 

HSD

8
7 1.80* .48 .00 .65 2.95
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       Figure A.14. Percentage of three ability groups on the M³

         Figure A.15. Performance distribution of three ability groups on the M³
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APPENDIX B

The M³ Problems

Solutions of the Problems

Problem Characteristics 

Cover Page of the M³
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Table B.1

M³ problems and their order in the test booklet

Item 

Number Problems

1. A > B; C > D; D > E; E > A.  Which is the second largest?

(a) A

(b) B

(c) C

(d) D

(e) E

2. x + 9 = 27.  What is the value of x?

a) 36

b) 18

c) 9

d) 3

e) 27
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A

B

C

y 

x

3. If x > 0, which one is definitely correct? 

a) 2x > 1

b) x² > 1

c) x² > 2x

d) x² > x

e) none of the above

4. In the figure below, A and B lines are 

parallel, and the measure of angle y is 50.  

What is the measure of angle x?

a)140

b)110

c)120

d)50

e)130
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5. Sam and Mike are carrying books for the school library.  There are 64 books.  

How many books are left if Sam carries ¼ of the books, and Mike carries ⅛ of 

the books?

(a) 38

(b) 48

(c) 40

(d) 56

(e) 24

6. Thirty percent of students in a classroom play football; sixty percent play 

basketball, and ten students play both sports.  What is NOT required to find the 

total number of students in the classroom?

(a) number of students who play football

(b) proportion of students who play both football and basketball

(c) number of students who do not play basketball

(d) proportion of students who do not play football

(e) number of students who play basketball
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7. Suppose that you need to plant 5 trees in 2 rows, with 3 trees in each row in 

your backyard.  Draw your answer below.

8. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 25, 30

Make two different groups consisting only of the above numbers.  Use each 

number only once.  All numbers in each group must have some 

commonalities, or each group must be based on a rule.  Write under each 

group commonalities you have found among the numbers or the rule on 

which you have based your grouping.  Try to make the most original

grouping!  An example may be like this: some numbers are one digit and 

some are two digits, so one digit numbers can be placed in one box and two 

digits can be put in another box.  Now, you should make two different 

groups, as said above. 

Commonalitiesor the rule: 
________________________________
________________________________
___________________________
___________________________

Commonalitiesor the rule: 
________________________________
________________________________
___________________________
___________________________

Group 2Group 1
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9. If x < - 1 and y < x, which one is definitely correct?  

a) y² > x² 

b) y² < x² 

c) x² < 2y

d) 3x > y²

e) 2x < 2y

10. a = b + 1; c = d + 4; a = f + 4; b = d + 2.  Which is the smallest?

(a) c

(b) d

(c) b

(d) f

(e) a
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12

11. What is the sum of the internal angles of the shape “x” in the table? 

a) 1800  

b) 2520  

c) 1260   

d) 5040 

e) 2160

Shapes Sum of internal anglesNumber of sides

Triangle 180 3

Pentagon 540 5

Heptagon 900 7

X ? 14

12. What is the area of the shaded region in the figure below                                                                           

if the center of the circle also is 

the center of the square whose 

one side is 12 inches? 

a) 144 – 36 π

b) 144 – 12 π

c) 144 – 6 π

d) 48 – 6 π

e) 42 – 12 π
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13.

There are five different sizes of bottles of peanuts of the same quality as seen 

in the above table.  The table shows the amount of peanuts each bottle has and 

its cost.  Notice that some bottles have extra discounts or promotions. 

Which is the best buy for peanuts?

a) A

b) B

c) C

d) B and C

e) A and C

Bottles

Ounces

per bottle

Price

per bottle

Extra discount 

At check out

Promotion

A 18 $1.79 None None  

B 36 $5.40 %55 None 

C 6 $1.00 None Buy one get one 

free 
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Answer questions 14, 15, and 16 according to the table below.  The table 

shows the number or the proportion of students in school clubs.  You must read 

the table from the left to the right, not from the top to the bottom.  For 

example, the first row shows that there are 25 students in the chess club and all 

of them are in the technology club and none is in the poetry club.  The second 

row shows that half of the technology students are in the chess club and five 

technology students are in the art club.  

Clubs Chess Technology Poetry Art

Chess 25 All None ?

Technology Half ? ? 5

Poetry None Half 22 ?

Art ? All All ?

14. What is the number of students in the art club?

a) 22

b) 5

c) 6

d) 11

e) 17
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15. How many chess students also are in the art club? 

a) 5

b) 6

c) 14

d) 25

e) none

16. How many students in the technology club are neither in the chess club nor in 

the poetry club?

a) 3

b) 11

c) 22

d) 14

e) none
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x

A(-2,-3)

E(0,-1)

G(0,1)

 H F

y

N

M

O

 B(2,-3)

    C(2, 3)D(-2, 3)

17. If 2x – 3y = 2; y = 3z; and z = 2, what is the value of x? 

a) 10

b) 20

c) 6

d) 9

e) 8

18. Which combination of two triangles in the figure makes a square?  (A square 

has four equal sides).  The figure is not drawn on a scale. 

1. HDC

2. HFC

3. HOG

4. EOF

5. CNG

6. COF

7. ACD

a) 1 and 2 

b) 3 and 4

c) 7 and 13

d) 5 and 10

e) 6 and 9

8. NOC

9. AOH

10.AME

11.AFB

12.AHF

13.ACB
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4

8

19. Which combination of any two triangles in the above figure forms a rectangle 

similar to the 4 by 8 rectangle below?

a) COF and AOH

b) ABC and DCA

c) AMO and HOA

d) FOC and HOA

e) EOF and HOG

20. A = 3B; C = 2D; F = G/2; D = A/2; 2D = 3G.  Which is the smallest?

(a) G

(b) B

(c) F

(d) D

(e) C
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21. Consider that the numerator of a fraction is smaller than its denominator and 

the result of the fraction is larger than its numerator.  Write such a fraction by 

filling the boxes below. 

 Numerator

Result            

Denominator

22. If x² + y = 19 and y ≠ 3, which one is definitely correct?

a) x ≠ 4

b) x ≠ 3

c) x ≠ 2

d) x ≠ 1

e) x ≠ 0
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23. Mary worked 5 hours and Josh worked 6 hours in the first day, and together 

they made $71.  The second day Mary worked 3 hours and Josh worked 2 

hours, and together they made $33.  How much was Josh paid per hour? 

a) 7

b) 6

c) 5

d) 8

e) 6.5

24. Sally spent 62.5% her money to buy a car and deposited 1/8 of her money in 

her saving account at a rate of 6% interest.  One year later, she had $742 in her 

account.  How much did she pay for the car?

a) $742

b) $3710

c) $3500

d) $5600

e) 2100
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B
18

48

C
24

A
12

D

E
72

F
36

25. The figure shows a chain of six gear-wheels.  The number on each one shows 

how many gears that particular gear-wheel has.  How many times does F turn

when A moves clockwise 18 full turns? 

a) 3

b) 4

c) 6

d) 12

e) 18

26. Mr. Sanchez has a square farm. A tree stands 5 feet from and 90 degree 

diagonal to each corner as seen in the figure. How can he double his farm in 

area, which still is square, without cutting or removing the trees or without 

owning the land upon which the trees stand?  Draw your solution on the figure.
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27. Draw three different shapes that have equal perimeters but different areas.  

Prove your answer.
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Table B.2

Solutions of the M³ problems

Item

Number Solutions

1. Option D

Random values:

A = 20 and B = 19 (A > B), E = 21 (E > A), 

D = 22 (D > E), C = 23 (C > D); therefore,

C > D, D > E, E > A, and A > B

2. Option B

x = 27 – 9; x = 18

3. Option E

If x is a number between 0 and 1, then all the other options are wrong.

4. Option E

X is an alternative angle to y.  The sum of them must be equal to 180.
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5. Option C

64 – (64/4 + 64/8) = 40

6. Option D

Proportion of students who do not play football is not required because the 

number of football players or that of those who do not play football is not 

given.

7. Many solutions

An intersection between two rows is required, such as a shape of T, L, X,  V 

or a cross:

8. Many solutions

For example, 2, 4, 8, and 10 are divisible by 2 and 3, 9, and 15 are divisible 

by 3.

9. Option A

When two negative numbers are smaller than -1, the square of the smaller one 

always is larger than the square of the larger number.
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10. Option D

Random values:

a = 10, b = 9, c = 11, d = 7, f = 6

11. Option E

(n – 2) 180 is the rule to find the sum of internal angles of any shapes.  This 

can be induced from the number of sides and the sum of internal angles of the 

shapes given in the problem stem.  The second solution is adding 180 degrees 

with each additional side after the triangle.

12. Option A

The square’s area is 144 (12 x 12)

The circle’s area is 36 π because its radius equals to one half of the square’s 

one side (12/2)

13. Option B

Bottle B has the lowest price per ounce.  This can be found after a 55% 

discount is taken away from the total price and the remaining is divided by 

the amount per ounce.
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14. Option B

All art students are in the technology class and only 5 of the technology 

students are in the art class.

15. Option E

All art students are in the poetry class and none of the poetry students is in the 

chess class; therefore, there is no intersection between art class and chess 

class.

16. Option D

The number of students in the intersections and dissections among chess, 

technology and poetry classes should be taken into account for a correct 

solution.  The following is one way to find the correct solution: 

The total number of technology students is 50 because half of the technology 

class is in the chess class, which has 25 students.  Half of the poetry class, 

which is 11, is in the technology class.  No intersection between poetry and 

chess classes exists; therefore, the sum of 25 and 11 gives the total number of 

technology students who are either in chess or poetry class.  Finally, 50 – 36 

= 14 is the correct answer. 
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17. Option A

2x – 3y = 2; y = 3z; and z = 2

2x – 18 = 2

2x = 20; therefore, x = 10

18. Option D

Two triangles with equal bases and heights should be found. 

A 2 x 2 square is an example. 

Others are not square.  

19. Option E

A rectangle with sides in ½ rate should be composed from triangles in the 

graph; that is, selective encoding and combination should be carried out to 

construct an analogous side relation in the rate of 1/2 between two rectangles.

20. Option C

Random values:

A = 15, B = 5, C = 15, D = 7.5, F = 2.5, G = 5
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21. Many solutions

Negative numbers or decimals have to be used for a correct solution, such as

-6/2 = -3 

22. Option A

If y is not equal to 3, then x² cannot be 16; therefore, x cannot be 4.

23. Option B

5Mary + 6Josh = $71; 3Mary + 2Josh = $33

-3(3Mary + 2Josh) = $33; 5Mary + 6Josh = $71

-4Mary = -$28; Mary = $7 per hour

Josh = $6 per hour (substitute Mary in the first or second equation) 

24. Option C

25. Option C

Relation: Wheels increasing by multiples of 6 in gears. Rule: speed rate of 1/3
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26. One correct solution

27. Many solutions

For example, a square, a rectangle and a circle with 2 inches in perimeters 

will have areas from the largest to the smallest in the order of circle, square 

and rectangule.  That is, the area always becomes different in units no matter 

how the shape is changed even if the perimeter remains the same.  The 

following is an example: 

Square’s perimeter (2 x 2): 8 inches

Square’s area: 4 square inches

Rectangle’s perimeter (1 x 3): 8

Rectangle’s area: 3

Circle’s perimeter (π2.54): 8, respectively

Circle’s area: 5.06, respectively
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Table B.3

Problem complexity levels and cognitive components and subcomponents measured by 

each problem

Item

number Mind measured Subcomponent measured

Complexity 

level

1 Analytical Linear syllogism 1

2 Knowledge expert Algebra 1

3 Analytical Conditional syllogism 1

4 Knowledge expert Geometry 1

5 Knowledge expert Statistics 1

6 Creative Selection 1

7 Creative Insight 1

8 Creative Induction-rule production 1

9 Analytical Conditional syllogism 2

10 Analytical Linear syllogism 2

11 Creative Inductive rule discovery 2

12 Knowledge expert Geometry 2

13 Knowledge expert Statistics 2

14 Analytical Categorical syllogism 1

15 Analytical Categorical syllogism 2

16 Analytical Categorical syllogism 3
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Table B.3 – continued

Item

Number Mind measured Subcomponent measured

Complexity 

level

17 Knowledge expert Algebra 2

18 Creative Selection 2

19 Creative Selection 3

20 Analytical Linear syllogism 3

21 Creative Insight 2

22 Analytical Conditional syllogism 3

23 Knowledge expert Algebra 3

24 Knowledge expert Statistics 3

25 Creative Induction-rule discovery 3

26 Creative Insight 3

27 Knowledge expert Geometry 3
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Figure B.1.  Cover page of the test booklet

Please, read the instructions first, fill out this page and, then, go to the next page!

The mathematics test you are about to take has 2 questions about your perceptions of
mathematics and 27 mathematics problems you need to answer.  You have 45 minutes to 
complete the test. 

First Name: Grade: Gender:

Last Name: Date of Birth: Race:
African American____
American Indian_____
Asian____
Hispanic_____
White______
Other______________

For Teacher Use Only: 
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APPENDIX C

Student Questionnaire and Teacher Instruction
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Student Questionnaire

C. How much do I like mathematics?      

a. very much     

b. much     

c. some    

d. a little       

e. not at all

D. How am I in mathematics?                 

a. excellent      

b. good      

c. ok        

d. weak         

e. very weak



212

Teacher Instructions and Questionnaire 

Before the Test:

Please, read the following instructions before students start the test: 

You will solve some mathematics problems today.  The time for the test is 45 

minutes.  Results of this test will not affect your grade in any ways.  The researcher is 

interested in how you solve different mathematics problems.  Please, try your best!

After the Test: 

After all students finish the test, rate each student’s mathematical ability 

according to the following five-point rating scale.  Write the rating in the box designated 

for teacher use on the cover page of each test booklet: 

5) Highly talented    

4) Has high ability but not necessarily talented     

3) Average    

2) Weak     

1) Very weak

Thanks for your participation in this research. 
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APPENDIX D

Epilogue 
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Epilogue

Every snowball begins its journey as a snow flake so does every spring begin with 

only a flower.  In the beginning, Dr. Maker and I thought I should develop a new 

assessment of mathematical ability to identify mathematically talented students, although

we knew a lot of tests of mathematical ability in existed.  Coming from a psychological 

tradition, I started reading current studies on conceptions of mathematical ability and its 

assessment from a psychological vantage point.  Frankly speaking, I vehemently 

followed ideas of many contemporary psychologists; however, they provided little 

illumination about how a mathematician thinks and solves problems of the mathematical 

kind.  I learned little about the content and structure of mathematics from a psychological 

point of view.  However, I learned a lot about how to develop test items psychologically 

in order to assess mathematical ability objectively.  

Then, I began extensive reading about mathematics and mathematicians.  I 

discovered Poincare, Polya, Riemann, Russell and many others.  Later, I realized that I 

had gone into the history of mathematics.  I could not stop myself.  I went to the library 

to check out one book, but I left the library with many books.  I would not have finished 

this dissertation in time should I have not wittingly stopped delving into the writings of 

those who were both mathematicians and philosophers of mathematics.  

I was not a mathematician, nor have I become a mathematician during the writing 

of this dissertation.  However, I learned a lot about the philosophy and psychology of 

mathematical ability.  I studied the content of mathematics like a high school student and 

got very interested in theorems and the discovery of theorems in mathematics rather than 
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just the content of mathematics.  I inevitably admitted what Hardy once said, “…to many 

readers who never have been and never will be mathematicians,... there is more in 

mathematics than they thought” (Hardy, 1940, p. 77).  “Hah!” said I, after facing the 

phenomenon. 
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