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ABSTRACT

The first essay of this dissertation studies the determinants and effects of firms’ par-
ticipation in a voluntary pollution reduction program (VPR) initiated by government
regulators. This research presents empirical evidence in support of the “enforcement the-
ory” for VPRs, which predicts that (1) participation is rewarded by relaxed regulatory
scrutiny; (2) the anticipation of this reward spurs firms to participate in the program:;
and (3) the program rewards regulators with reduced pollution. The results also indicate
that firms’ VPR participation, and pollutant reductions themselves, were prompted by
a firm’s likelihood of becoming a boycott target and/or being subject to environmental
interest group lobbying for tighter standards.

In the second essay, a nonparametric regression estimator which can accommodate two
empirically relevant data environments is proposed. The first data environment assumes
that at least one of the explanatory variables is discrete. In such an environment, a
“cell” approach which estimates a separate regression for each discrete cell, has generally
been employed. The second data environment assumes that one needs to estimate a
set of regression functions that belong to different individuals. In both environments
the proposed estimator attempts to reduce estimation error by incorporating extraneous
data from the other individuals or “cells” when estimating the regression function for a
given individual or “cell”. The simulation results for the proposed estimator demonstrate
a strong potential in empirical applications.

In the third essay, the nonparametric approach proposed in the second essay is used
to estimate the parameters of the short-term interest rate diffusion. The nonparametric
estimators of the drift of the short rate proposed by Stanton (1997) and Jiang (1998) can

produce spurious nonlinearities due to the persistent dependence and limited sampling
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period of interest rates. The simulations show that the proposed estimator significantly
attenuates the spurious nonlinearities of Stanton’s nonparametric estimator. An empir-
ical study of the US term structure of interest rates is presented based on the proposed
estimator and two other competing models. The results suggest that the estimation of the
short rate diffusion parameters using additional data from yields of different maturities

has significant economic implications on the valuation interest rate derivatives.
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1. DISSERTATION INTRODUCTION

This dissertation is centered on nonparametric and applied econometrics with applica-
tions on environmental economics and financial economics.

The second chapter investigates the economic puzzle posed by profit-maximizing
firms’ voluntary overcompliance with pollution standards. Economists have advanced
a number of theories explaining why private firms voluntarily agree to overcomply with
environmental pollution standards given that such overcompliance comes at a cost. For
example, Arora and Gangopadhyay (1995, 1996) argue that participation in these pro-
grams may be motivated by firms’s desire to attract a clientele of “green consumers”
who are willing to pay a premium for goods produced in an environmentally friendly
way. Maxwell, Lyon and Hackett (2000) hypothesize that voluntary pollution reductions
may also deter lobbying by environmental constituencies for a tightening of regulatory
standards. The purpose of this chapter is to test the validity of these and other motives
of self-regulation using the Environmental Protection Agency (EPA)’s 33/50 program as
a research experiment. The chapter makes a significant contribution to the empirical
literature of environmental self-regulation in more than one way, testing (1) the extent to
which voluntary pollution reductions are driven by an enforcement bargain between the
regulator (EPA) and the regulated firm, and (2) the effects of implicit boycott threats
on a regulated firm’s overcompliance with pollution standards. The results show that a
firm’s history of inspections and corrective actions constitute a significant determinant
of participation in the 33/50 program and that the EPA reciprocated to voluntary par-
ticipation by easing regulatory oversight on participants. The findings also indicate that

firms’ participation and performance in the 33/50 program were motivated by likelihood
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of becoming a boycott target.

The third chapter develops a new nonparametric estimator designed to attenuate the
bias of ordinary nonparametric kernel estimators. Nonparametric methods have gained
wide acceptance in applied econometrics because they circumvent the issue of functional
form specification and are consistent under mild regularity conditions. Unfortunately,
such flexibility comes at a cost of a finite sample bias, which may be large in applied
work. Several estimators which reduce the bias have been proposed. For example Hjort
and Glad (1995) propose a semiparametric estimator which combines a parametrically
estimated pilot with a nonparametrically estimated correction factor in a multiplicative
fashion. The parametric pilot can be thought of as a prior for the shape of regression
function of interet whereas the correction factor adjusts the pilot if it does not satisfac-
torily capture the shape of the function being estimated. Consequently, the estimator
behaves like the parametric start if the parametric assumption is correct, while resem-
bling the nonparametric estimator otherwise. The estimator proposed in this chapter is
similar in spirit to Hjort and Glad’s; however, alternative data environments are consid-
ered, ones in which multivariate measurements from multiple experimental units (drawn
from the same population) are available. In these data environments, the proposed esti-
mator replaces the parametrically estimated pilot in the Hjort and Glad method with a
nonparametrically estimated pooled function. This is motivated by the fact that if the
different experimental units have identical regression curves then the optimal estimator
would pool the data and estimate one regression curve. If those unknown functions are
sufficiently similar, using the pooled estimator as a pilot in Hjort and Glad’s framework
would yield efficiency gains relative to the ordinary nonparametric estimators. Conse-
quently, the proposed estimator behaves like the pooled estimator when the regression

functions are identical while resembling the individual nonparametric estimator when
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the functions are dissimilar. The use of information from individuals possibly similar to
that of interest in the form a nonparametric pooled start represents the key conceptual
difference between the proposed estimator and the estimator of Hjort and Glad (1995)
and the main contribution of this chapter. Consistency and asymptotic normality of the
proposed estimator are established.

The fourth chapter is an application of the estimator proposed in the third chapter
to the estimation of the parameters of the short term interest rate diffusion. The size
of interest rate data (daily or higher-frequency data is readily available) and the low
dimensionality of the vector of covariates, which is one for single factor models, makes
it favorable to estimate the drift and diffusion functions of the short rate nonparamet-
rically as done by Ait-Sahalia (1996a, 1996b), Stanton (1997), Jiang (1998) and others.
Virtually all nonparametric estimators have found that the drift a the short rate in non-
linear, exhibiting a dramatic mean-reversion for high levels of the short rate. However,
Chapman and Pearson (2000) argue that the nonlinear pattern of the nonparametrically
estimated drift may be simply be an artifact of the bias of the nonparametric estimator
caused by the strong persistence of the short term yields. Heuristically, the persistence
of yield data implies that increasing the sample size does not necessarily translate into
increased information. Since yields of different maturities are available along the yield
curve and are known to have systematic co-movements, this chapter applies the nonpara-
metric estimator proposed in chapter three to the estimation of the short-rate diffusion
parameters. This chapter uniquely contributes to the term structure literature in that
unlike any of the current parametric and nonparametric methods, the proposed estima-
tor uses a panel of yields of different maturities instead of a single time-series or short
rate observations to estimate the drift and the diffusion functions. The estimator is for-

mally developed in the framework of correlated multivariate diffusion processes and its
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asymptotic properties derived.
The fifth chapter summarizes the findings in the three previous chapters and explores

avenues of future research.
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2. VOLUNTARY POLLUTION REDUCTIONS AND THE ENFORCEMENT OF
ENVIRONMENTAL LAW: AN EMPIRICAL STUDY OF THE 33/50 PROGRAM

2.1. Introduction

Why do private firms voluntarily over-comply with environmental regulations? For ex-
ample, over 1200 firms joined the U.S. Environmental Protection Agency’s (EPA) 33/50
program. In this program, firms pledged to reduce emissions of 17 key toxic pollutants
beyond targets required by law. Current voluntary EPA programs include “Energy Star,”
which seeks to decrease carbon dioxide emissions, and the “National Environmental Per-
formance Track,” designed to encourage environmentally proactive firms through rewards
and public recognition.

Economists have offered a number of theories to explain why profit-driven firms might
volunteer for costly pollution reduction efforts. Arora and Gangopadhyay (AG, 1995) ar-
gue that firms want to attract a clientele of “green consumers” who are willing to pay
more for goods produced in an environmentally friendly way (see also Arora and Cason
(AC), 1996). Voluntary pollution reductions may also deter lobbying by environmen-
tal groups for tighter legislative or regulatory standards (Maxwell, Lyon and Hackett
(MLH), 2000); spur tighter environmental standards that “raise rivals’ costs” (Salop and
Scheffman, 1983; Innes and Bial, 2002); avoid future environmental liability; and/or deter
boycotts by environmental interest groups (Baron, 2001; Innes, 2003).

However, there is another potential motive for voluntary over-compliance that has
received relatively little attention in the literature: A firm’s participation in a voluntary
pollution reduction program (VPR) may lessen the scrutiny of environmental authorities,

reducing the frequency of costly environmental inspections and enforcement actions. The
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EPA officially claims that such rewards are not offered to program participants.® Nev-
ertheless, such rewards, promised implicitly if not officially, may represent an optimal
government policy to promote participation in a VPR. The societal benefit of the VPR is
that it prompts participating firms to adopt management practices that reduce their costs
of pollution abatement, leading ultimately to pollution reductions (Maxwell and Decker,
2002).2 While intuitively compelling, the empirical strength of this “enforcement theory”
for VPRs has yet to be studied.

The purpose of this chapter is to examine (1) the empirical validity of this enforcement
based spur to participation in the EPA’s 33/50 program, among many other potential
participation motives, and (2) the related effects of program participation on both a
regulated firm’s pollution levels and the government’s enforcement activity. In studying
these issues, this work seeks to bridge two empirical literatures, one focusing on volun-
tary pollution reduction programs (e.g., AC; Khanna and Damon (KD), 1999; Videras
and Alberini (VA), 2000; Anton, Deltas and Khanna, 2004) and the other investigating
determinants and effects of government enforcement activities. The former literature
suggests that participation in voluntary pollution reduction programs is motivated, in
part, by green marketing (AC, KD, VA) and potential liability (KD, VA), with larger
firms found to be more likely to participate (AC, VA). In contrast to the focus of this
study, however, this literature does not study effects of voluntary over-compliance on

government enforcement and does not consider potential effects of boycott threats and

! With regard to the 33/50 program, the EPA has stated (EPA, 1992, p. 11): “Participation in the
program is enforcement neutral: a company will receive no special scrutiny if it elects not to participate
and receive no relief from normal enforcement attention if it does elect to participate.”

2 Maxwell and Decker (2002) show that a reduced probability of enforcement may result from a firm’s
adoption of abatement-cost-reducing investments, thus spurring these investments apriori. If regulators
can implicitly commit (a priori) to a flexible enforcement rate (as a function of the firm’s investment)
it can be shown that welfare is necessarily enhanced by the promise of reduced enforcement when firms
invest more by, for example, participating in a voluntary pollution reduction program. Miceli and
Segerson (1998) also stress benefits of voluntary pollution reduction programs in lessening tensions and
facilitating negotiations between enforcement agencies and polluting firms.



18

incentives for regulatory preemption (MLH).3

A number of papers study determinants of the government’s environmental enforce-
ment activity, and its impact on pollution (e.g., Magat and Viscusi, 1990; Gray and Deily,
1996; Laplante and Rilstone, 1996; Nadeau, 1997). This work provides evidence that gov-
ernment enforcement efforts tend to prompt pollution reductions, a conclusion for which
this work also finds support. However, most closely related to this study are papers that
focus on the government’s strategic use of enforcement tools to leverage desired conduct
from regulated firms. Harrington (1988) argues that the apparent paradox of low and
infrequent regulatory fines for environmental violations can be explained by the targeting
of enforcement resources to “bad” firms that prompts desired conduct from “good” firms,
despite low penalties for “good” firms’ violations.* Helland (1998) studies an additional
basis for targeting, the extent of a firm’s self-reporting of violations. Decker (2003) stud-
ies an additional reward that may be offered to “good” firms: more rapid environmental
permitting for new source construction. Both find evidence that these regulatory tools
are exploited in enforcement practice. A key finding of this research is that that regula-
tors use another instrument to target their enforcement activities: a firm’s participation
in voluntary pollution reduction programs.

The remainder of the chapter is organized as follows. Section Il provides a summary
of the 33/50 program. Section III discusses hypotheses on determinants of 33/50 par-
ticipation, firm pollution decisions, and government inspections that are tested in this

chapter. Section I'V discusses the data and the econometric modeling. Section V presents

3 VA consider the potential impact of prior regulatory fines on voluntary program participation,
finding some evidence that such enforcement actions make participation more likely. This chapter
studies the impact of regulatory inspections as well and, like KD, also models impacts on pollution.

1 See also related work by Harford and Harrington (1991) and Heyes and Rickman (1999). In
addition, consistent with this theory, Decker (2005) finds that government inspection activity responds
to reductions in reported toxic pollutant releases as well as reductions in regulated pollutant releases
and a good statutory compliance history.
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the estimation results. Finally, Section VI concludes.

2.2. The 33/50 Program

Started in 1991, the 33/50 program was the EPA’s first formal effort to achieve volun-
tary pollution reductions by regulated firms. The program sought to reduce releases of
seventeen toxic chemicals by a third by 1992 and by 50 percent by 1995, measured from
1988 baseline levels. The seventeen 33/50 chemicals are listed in Appendix A. Roughly
seventy percent of the 33/50 chemicals (by 1988 weight of releases) were air pollutants
(AC). Two of the chemicals (carbon tetrachloride and 1,1,1-trichloroethane) depleted the
stratospheric ozone layer and, hence, came under the Montreal Protocol’s provisions for
the phase-out of such substances; however, these two chemicals represented less than
fifteen percent of total 33/50 releases (in 1988).

The EPA initiated the 33/50 program shortly after creating the Toxic Release Inven-
tory (TRI), a database compiling information on toxic releases of all firms with ten or
more employees producing one or more of 320 targeted pollutants. In early 1991, the EPA
invited the 509 companies emitting the largest volume of 33/50 pollutants to participate
in the program; these companies were responsible for over three-quarters of total 33/50
releases as of 1988. In July 1991, the 4534 other companies with reported 33/50 releases
in 1988 were asked to participate as well. With additional enrollments through 1995, the
EPA invited a total of 10,167 firms to join the 33/50 program, and 1294 firms accepted.
The latter program participants accounted for 58.8 percent of 33/50 releases in 1990. In
this research, the focus is exclusively on firms that were eligible for the 33/50 program
in 1991, those invited in March and July of that year.

The 33/50 program was purely voluntary and its pollution reduction targets were not

enforceable. Despite the absence of apparent regulatory teeth, the EPA (1999) cites some
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aggregate statistics as indicators of the program’s success. Among reporting firms, total
33/50 releases declined by over 52 percent between 1990 and 1996, and net 33/50 releases,
excluding the two ozone-depleting compounds, declined by over 45 percent. In contrast,
non-33/50 TRI releases fell by 25.3 percent over this period. Moreover, rates of 33/50
release reductions were greater for program participants (down 59.3 percent between
1990 and 1996) than for non-participants (down 42.9 percent over the same interval).
However, these numbers may mask other hidden determinants of firms’ pollution. For
example, participating firms may have been more apt to reduce pollution, regardless
of participation in the 33/50 program. One of the goals in this chapter is to estimate
the pollution abatement that is attributable to the 33/50 program, controlling for other

relevant explanators and potential selection bias in program participation.

2.3. Hypotheses

Participation in the 33/50 program, although involving no enforceable commitment, re-
quired a firm to file a plan documenting how it proposed to reduce its emissions of target
pollutants. Indeed, more than 82 percent of participants stipulated specific pollution re-
duction targets. In addition, the program was accompanied by some technical assistance
to aid participants in realizing their target emission reductions (Khanna and Damon,
1999). Although the EPA, in its public statements, stressed the public recognition that
participation could bring, there is little evidence that such recognition occurred in the
broader public;® indeed, only with effort could a researcher obtain the names of program
participants. However, the process of planning for emissions reductions, including pos-

sible managerial changes and environmental auditing procedures, could yield the very

5 The EPA (1992) states that its “partnership programs offer recognition ... that can enhance
corporate image with customers, regulators, neighbors, and the media.”



21

reductions that were the program’s objective. To spur these innovations, and the par-
ticipation that promoted them, the EPA may have implicitly afforded participants less
scrutiny in its enforcement of pollution control laws, leading to fewer costly inspections
and enforcement actions for a participating firm (Maxwell and Decker, 2002). These
potential enforcement benefits of participation are over and beyond any anticipated re-
ductions in inspection rates due to reduced pollution.® The value of this regulatory
reward to 33/50 participation is expected to have been higher for firms that otherwise

anticipated greater regulatory scrutiny.

e Hypothesis 1. Firms with higher rates of government inspection and enforcement

action in previous periods are more likely to have participated in the 33/50 program.

e Hypothesis 2. 33/50 participants should have experienced lower rates of government

inspection and lower levels of pollution.

e Hypothesis 3. Government inspections should have prompted pollution reductions
(Harrington, 1988). In addition to enforcement considerations, a number of the-
ories suggest motives for participation in voluntary programs such as 33/50, and
for desired pollutant reductions as well. Next these implications are summarized,

followed by a discussion of each.

e Hypothesis 4. A firm was more likely to participate in the 33/50 program and to
achieve pollution reductions if it:
(a) had more contact with final consumers (green marketing);
(b) was a more likely object of a consumer / environmental group boycott (boycott

deterrence);

6 This empirical work distinguishes between direct effects of 33/50 participation on government
inspections, and indirect effects (when participation reduces emissions and thereby reduces government
enforcement activity). Note also that firms may be averse to inspections because of their potential to
ignite adverse public reaction in the media and financial markets (e.g., see Konar and Cohen, 2001).
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(c) was more exposed to potential liability because it was larger (with deeper pock-
ets) and/or operated in strict liability states (liability);

(d) was in a more concentrated industry and invested more in research and devel-
opment (raising rivals’ costs); and

(e) had a greater incentive and ability to preempt regulation because it was a larger
firm and operated in states with larger environmentalist constituencies (preempting

regulation).

A firm may be able to exploit “green consumerism” to establish a market niche for
goods produced in an environmentally friendly way (Arora and Gangopadhyay (AG),
1995); if present at all, such an ability is tied to a firm’s proximity to consumers (AC,
KD, VA). Following KD, this link is measured using a dummy variable that takes a value
of one if the firm sold a product directly to final consumers (FG for “final good”);” due to
potential economies of scale in “green marketing,” an interaction variable between FG and
a measure of firm size is also considered. AC indicate that green product differentiation
incentives are likely to be stronger in less concentrated industries. This conjecture runs
counter to Hypothesis 4(d) and is tested in this analysis using a standard measure of
industry concentration (HERF for Herfindahl index).

Firms may also be the potential object of consumer boycotts organized by envi-
ronmental interest groups (Baron, 2001; Innes, 2003; Henriques and Sadorsky, 1996).
Voluntary pollution reductions and participation in the 33/50 program may be actions
that a firm can take to deter such organized consumer action. The prospect of a boy-
cott is greater and hence, more likely to motivate a firm’s voluntary pollution reduction

when the firm’s products have good substitutes, are perishable, are sold publicly at a

7 AC argue that industry-aggregated advertising expenditures may also measure closeness to con-
sumers; however, because this measure may be an indicator of market power as well. Furthermore,
because of the prevalence of missing values for advertising data, even industry-aggregated, makes it aan
inneficient measure of closeness to consumers.



23

retail level, and are “visible” in the marketplace (Smith, 1990). For example, over the
recent past, environmental and animal rights activists have successfully challenged large,
“powerful” and visible firms such as McDonalds and Home Depot using boycott tactics
(Innes, 2003).2 To test for potential boycott threat effects in this chapter, a dummy
variable is constructed which takes on a value of one if a firm is in an industry that was
contemporaneously targeted for boycott.® This variable is denoted BC. Because boycott
threats are likely to be more acute when firms operate in states with larger environmen-
tal constituencies, an interaction variable between BC and the average per capita Sierra
Club membership in the home states of a firm’s plants (SIERRA) is also used.®

Larger firms, with deeper pockets, may voluntarily reduce pollution in order to avoid
potential liability for harm caused. Such incentives will be greater in states that levy
strict liability for environmental harm, as opposed to negligence liability (Alberini and
Austin, 1999). In an attempt to capture the liability motive for pollution reduction a
dummy variable taking a value of one if a plant’s home state has a strict liability statute
(STRICT) is used; for a firm, the strict liability variable is constructed by averaging
these zero-one values for the firm’s plants. Because liability effects are likely to be more

pronounced for larger firms, an interaction variable between STRICT and firm size (as

8 In 1999, McDonalds agreed to significant reforms in its supplier protocols for handling chickens after
boycott actions by the animal rights group PETA (People for the Ethical Treatment of Animals); Burger
King and Wendy’s quickly followed suit. Also in 1999, Home Depot agreed to phase out products using
old growth timber and to give preference to timber certified by the Forest Stewardship Council; other
major home improvement retailers, as well as home builders, have since made similar commitments.

9 The 1992-1993 issue of the National Boycott News lists products subject to contemporaneous
organized consumer boycott, including over 400 products made by over 100 firms. If a firm or plant in
the sample is in an industry that produces a targeted product (based on the firm’s or plant’s primary
SIC classification), the boycott variable is assigned a value of one for that firm or plant. It should
be pointed out that actual boycotts are rare. In fact, theory predicts that boycotts will generally be
deterred by cooperating firms (Baron, 2001). Hence, none of the firms in this sample were actually
boycotted. Rather, the boycott variable attempts to measure the potential likelihood that a firm might
face a boycott threat.

10 Tn principle, boycott effects may also be more acute for larger polluters. To test that hypothesis,
an interaction between BC and a firm’s 33/50 releases was included in the regressions, but with no
significant effects.
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measured by its number of employees, LEMP) is also considered.

In a concentrated industry, a firm that has developed cost-effective pollution abate-
ment methods may wish to over-comply with government environmental standards in
order to prompt tighter standards that disadvantage its rivals (Salop and Scheffman,
1983; Innes and Bial, 2002). This “raising rivals’ costs” motive for voluntary pollution
reductions is likely to be greater for firms that invest more heavily in research and de-
velopment, investments that make cost-saving innovations in environmental technologies
more likely. These effects are captured with variables measuring industry concentration
(HERF) and firm-level R&D expenditures (R&D).!

Finally, Maxwell, Lyon and Hackett (2000) argue that firms may voluntarily abate
pollution in order to prevent the enactment of more costly environmental regulation.
Environmental interest groups may, at a cost, lobby the government for tighter envi-
ronmental regulation. By abating pollution voluntarily, firms can reduce these groups’
incentive to lobby. Indeed, firms may be able to preempt lobbying by abating pollution
to a lesser extent than would otherwise be compelled by a successful lobbying campaign.
This motive for a firm’s pollution reduction and participation in the 33/50 program is
likely to be greater in states with larger environmental constituencies. In these states,
the public sensitivity to a firm’s pollution is likely to be greater, as are environmental
groups’ incentive and ability to successfully lobby the government for change. To test for
these effects, the per-capita Sierra Club membership in a plant’s home state (STERRA)

is used, averaged across plants to obtain a firm-level variable.

11 For judging “raising rivals cost” effects, it is expected that a firm’s total level of R&D is a relevant
indicator of a firm’s potential research advantage.
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2.4. The Data and the Econometric Modeling

Three equations are estimated in order to explain (1) firms’ participation in the 33/50
program (in 1991), (2) firms’ annual emissions of 33/50 pollutants (by weight, 1989-
1995), and (3) the government’s (State and Federal) annual number of environmental
inspections of firms’ facilities (1989-1995).

Several data sources are used to estimate these equations. Financial and employment
data was obtained from the Standard & Poor’s Compustat database. The EPA’s Office
of Environmental Information Records provided data on 33/50 participation, Federal and
State enforcement actions under the Clean Air Act (CAA) and the Resource Conservation
and Recovery Act (RCRA) (1988-1990), and facility-level government inspections under
the CAA (1988-1995).12 The Toxic Release Inventory (TRI) provided facility-level data
on 33/50 chemical releases, primary standard industrial codes (SIC), parent company
names, and facility locations. Firm-level 33/50 pollutant releases and inspections were
obtained by aggregating across each firm’s facilities. The Sierra Club provided data on
its state membership (from 1989-1995, measured per capita). The Maxwell, Lyon and
Hackett (2000) dataset provided information on state characteristics (1988), such as per
capita state spending on clean air laws, educational status (the number of bachelors
degrees per capita), the number of lawyers per capita, and indicators for whether the
state had a right-to-work law or strict environmental liability. The number of 1988
Superfund sites for which a firm was a potentially responsible party (PRP) was obtained
from the EPA’s Superfund Office. County attainment status (whether a facility’s home
county was designated by the EPA to be out of attainment with clean air laws) was

obtained from the EPA’s website (www.epa.gov/oar/oaqps/greenbk/anay.html). County

12" Attention is restricted to CAA inspections because the 33/50 program was principally an air toxics
program.
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population density (1990) was obtained from the U.S. Census.

This study focuses on manufacturing firms that operated in SICs 20-39 and were
invited to participate in the 33/50 program in 1991. Merging the Compustat and en-
vironmental datasets for these firms gave an unbalanced panel of 325 firms and 1257
facilities over the seven years, 1989-1995. The years 1989-1990 are included in order to
capture pre-program trends.

Tables 2.1 and 2.2 present variable definitions and descriptive statistics for the sample.

2.4.1. The Participation Equation

This section presents the results of a probit model of firms’ decisions to participate (or
not) in the 33/50 program. Attention is restricted to firms that chose to join (or not
join) the 33/50 program in 1991; hence, the probit estimation is performed using lagged
cross-section data for the one-time 1991 firm-level decisions.!® To test Hypothesis 1 (the
enforcement motive for participation), regressors include (i) the number of government
inspections of firm facilities in 1989-1990 (INSP89-90), (ii) an indicator that takes a value
of one if a firm had an enforcement action in the period 1989-1990 (ENFORCE), and (iii)
the number of Superfund sites for which a firm is a potentially responsible party (PRP).
Potential enforcement-driven rewards to 33/50 participation and pollution reductions are
expected to have been greater for firms with more Superfund involvement, as measured
by the PRP variable.

Critics of the 33/50 program suggest that firms joined because their prior (1988-1990)
emission reductions already placed them in near reach of the program’s goals (KD).
This effects are controlled for by including a variable measuring a firm’s 33/50 pollutant

reductions from 1988 to 1990 (DIFREL). In addition, industry effects are controlled for

BFirms invited to join the program in 1991 accounted for 88.6% of participants.
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by including dummy variables for the seven industries most heavily represented in the

sample (SICs 28, 33, 34, 35, 36, 37, and 38).

2.4.2. 'The Pollution Equation

Because the lagging and the use of a random effects model require that a firm has at least
3 years of observations, 6 firms are lost, leaving an unbalanced panel of 319 companies
for a total of 1879 firm-year observations. A number of econometric issues arise in this
panel.

First, there may be individual firm effects. Because of the relatively small sample of
firms from the population of 33/50 polluters also becaus there is a good deal of cross-
section data, the individual effects are modeled as random.

Second, as program participation occurred late in 1991, participation effects on pol-
lutions levels are captured only from 1992 onwards. Although participation decisions
were pre-determined in these years, there may nevertheless be sample selection bias.
Specifically, if the error in the participation equation is correlated with the error in the
pollution equation, then using actual participation decisions in the pollution equation
leads to biased and inconsistent estimates. For example, due to attributes not observed
in the data, 33/50 participants may have been more likely to reduce pollution even had
they not joined the program (the endogenous treatment problem identified by Heckman
(1978)). The data is allowed to reveal any such correlation by using actual participation
decisions and constructing a selection correction (an augmented inverse Mills ratio) to

remove any source of inconsistency.

14 The selection correction is achieved (following Vella, 1998) by constructing the fitted regressor,
IMR;;, where IMR;; = 0 for t <1991 and, for ¢ >1992,

P wi) —¢(¥'wi)
®(§'w:) (1—®(F'w:))

where P; is the participation dummy for firm i, is the estimated parameter vector for the probit estimation

IMR; = P

+ (1 - Pi)
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Because participation effects may (or may not) wane over the course of the program,
distinct effects are measured for each of the program years 1992-1995. This is done by
constructing four participation variables that measure the incremental effect of partici-
pation on pollution in a given year; for example, the coefficient on the 1993 participation
variable measures the pollution change from 1993 onwards that is attributable to a firm’s
participation in the 33/50 program.!®

Third, per Hypothesis 3, firms may make pollution decisions in view of their recent
history of government inspections. To test for these effects a firm’s lagged inspections-
per-facility (LINSPFAC) is used as an explanatory variable.'6

Finally, because a predicted regressor (the augmented IMR) is included in the re-
gression to obtain consistent parameter estimates, standard error estimates obtained by
conventional methods are inconsistent (Murphy and Topel, 1985). To obtain consistent

estimates of standard errors, the Murphy-Topel correction procedure is used.!”

2.4.3. 'The Inspection Equation

For this equation, the dataset is an unbalanced panel of 1257 facilities over seven years,
1989-1995, yielding 5703 facility-year observations. The dependent variable, facility-level

annual inspections, takes a count data form, with discrete and predominantly small

of the participation equation, wi is the firm i set of explanatory variables in the participation equation,
and ¢() and ®() are the normal density and distribution functions respectively.

15 The four regressors are constructed as follows: if P, is the participation variable for year ¢ (i.e taking
a value of zero for all years other than t), then the regrrssors are P* = tligf P, = 1992, ...,1995.
These variables are denoted PART92-PART95 (see table 2.1).

16 Lagging, while logically sensible, avoids any potential problem of joint determination. Because scale
effects on pollution are captured by including facility numbers as a regressor, the relevant measure of
inspection ativity is a firm’s annual inspections-per-facility.

17 Additionally, bootstrapped standard errors were also computed based on 250 bootstrapped pa-
rameter estimates generated by the multi-spage estimation of the pollution equation. The standard
error estimates from the bootstrap procedure are not reported but they are broadly consistent with the
Murphy-Topel-adjusted results that are reported in table 2.4 (see note 24).
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values.!® To account for thes properties, the dependant variable is assumed to be dis-
tributed Poisson, and the individual (random) effect normally distributed; the model is
estimated by maximum likelihood.'® A notable advantage of the random effects specifica-
tion, relative to the standard or the Fixed effects Poisson models, is that it accommodates
over-dispersion.

Third, contemporaneous inspections are posited to depend upon firm performance
(pollution and 33/50 program participation)with a lag. For example, program participa-
tion decisions were made by firms principally in the last two quarters of 1991, suggesting
that any effects on annual government inspections would arise in 1992 and beyond. For
these years, there is, in principle, the potential for sample selection bias with respect
to 33/50 participation effects, as in the pollution equation. However, in the inspection
equation, sample selection, if an issue at all, is expected to bias the estimates against
the hypothesized effect (Hypothesis 2 that participation lowers inspection rates). The
reason (per Hypothesis 1) is that participants are expected to be those who otherwise
experience higher inspection rates. Nevertheless, sample selection bias was accounted for
by implementing Terza’s 1998 two-step estimator.?? In doing so, no statistical evidence
for sample selection bias is found. The estimation therefore proceeds under a maintained

hypothesis of no selection correlation.

18 Tn the annual plant-level inspection data, 9.7 percent of observations are zero’s, 67.6 percent are
ones, 14.5 percent are two’s, and 8.2 percent are at least three, giving a clear case of count data.

19° A Poisson with gamma-distributed random effects was also estimated the qualitative results were
similar. Unfortunately, estimation of the model using the Hausman, Hall and Grilliches (1984) random
effects negative binomial model did not converged. This is a common problem with the random effects
negative binomial (see Cameron and Trivedi, 1998).

20 To my knowledge, Terza’s (1998) is the only known endogenous treatment correction for count data.
As in this model, Terza’s procedure assumes that the dependent variable is distributed Poisson, with a
normal random effect. However, for the purpose of this study, a drawback of this estimator is that it
assumes an observation-specific random effect, rather than the firm-specific effect that is posited in this
chapter.
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2.5. Results

2.5.1. 'The Participation Equation

Table 2.3 presents selected results from estimation of the participation equation. The
dependant variable is the 33/50 program participation dummy. The dataset is a cross-
section of 325 firms, with time-varying variables measured as of 1990. The hypothesis
that all the slope coefficients are jointly insignificant is rejected. The likelihood ratio test
of heteroscedasticity (Harvey 1976) due to firm differences in aggregate 33/50 releases
fails to reject the null of homoscedasticity at the 5% level for Models I and II; for Model
III, the null of homoskedasticity is rejected thus heteroskedasticiy-corrected estimates are
presented instead. Squared variables are denoted by an addition of “*” to the variable
and interactions variables are denoted with hyphens.

The three presented models are distinguished by inclusion (or exclusion) of the in-
teraction variables BC-SIERRA, HERF-RD, and FG-RELEASE; the alternate use of
lagged 33-50 releases (RELEASE) and employment (LEMP) as measures of firm size;
and the alternate use of total lagged inspections (INSP89-90) and its two components,
inspections-per-facility (LINSPFAC) and a firm’s number of facilities (FAC), to capture
inspection effects. In the latter regard, it is expected that a firm’s total scale of regulatory
interaction is likely to matter in judging potential enforcement rewards to participation
in the 33/50 program; hence the effects of facility numbers on participation (in the third
model) are interpreted as enforcement-driven.

For regressors deemed to be particularly important determinants of 33/50 participa-
tion, their squares are included in the models in order to capture potential non-linearities.
For example, one may expect regulatory scrutiny to be particularly acute when a firm is a

PRP for a large number of Superfund cites; hence, it is expected that 33/50 participation
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would increase with the square of the PRP variable. For similar reasons, squared terms
for the Sierra Club variable and the measures of firm scale (RELEASE, LEMP, and FAC)
are also included.

In all three models, a test for heteroskedasticity was conducted.?! In Models I and
II, homoskedasticity could not be rejected and thus present probit results under this
premise. In Model III, however, homoskedasticity was rejected and therefore the reported
estimation results are heteroskedasticity-corrected.

Several implications of table 2.3 merit emphasis. First, larger firms with larger 33/50
releases are found to have been more likely to participate in the 33/50 program. These
effects are consistent with a number of the theories / hypotheses discussed in Section
ITI. Larger polluters are likely to have been more sensitive to any enforcement benefits
of program participation; more able to preempt lobbying for tighter environmental reg-
ulations (MLH, 2000); more exposed to potential liability for environmental harm; and
more exposed to potential harm from boycott threats.

Second, let us turn to explanatory variables which can distinguish between different
hypothesized motives for program participation. Statistically significant (positive) pa-
rameter estimates on (1) the enforcement variables (PRP, ENFORCE, INSP89-90, LIN-
SPFAC, FAC), (2) the measures of boycott sensitivity (BC), and (3) per-capita Sierra
Club membership (SIERRA), suggest that the potential for implicit enforcement rewards,
boycott deterrence, and regulatory preemption (MLH, 2000) were important motives for
33/50 program participation.

Firms with higher levels of R&D were more likely to participate as well. This effect

is consistent with a “raising rivals cost” motive for program participation. However,

21 Tn testing for heteroskedasticity, standard practice is followed (e.g., Greene, 2000, Chapter 19) by
considering a variance that is a squared exponential function of exogenous data. In this study, the
exogenous data that posited to possibly drive any heteroskedasticity is the level of prior 33/50 releases.
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more research-intensive firms may also have participated because their costs of program
obligations (in lowered pollution) were smaller; they could thereby obtain other program
benefits (such as enforcement rewards and boycott deterrence) at lower cost. The results
provide mixed evidence on the effects of liability law. While the indicator for strict envi-
ronmental liability (STRICT) has an insignificant effect on participation, its interaction
with firm size (STRICT-LEMP) is statistically significant. Hence, to some extent, larger
firms with deeper pockets found a liability motive for 33/50 program participation.
However, this work did not find evidence that program participation was spurred by
incentives for “green marketing” (with statistically insignificant effects of proximity to
final consumers, FG, and its interaction with pollutant releases, FG-RELEASE). Thus,
by accounting for three other motives for program participation which are enforcement,
boycott deterrence, and regulatory preemption this study comes to a strikingly different

conclusion about the impact of “green marketing” incentives than does prior work (AC,

KD, VA).2

2.5.2. The Pollution Equation

Table 2.4 presents results from estimation of the pollution equation. The dependant
variable is RELEASE. The Breush-Pagan LM test of OLS vs. Random Effects rejects
the null of OLS. In all model variants, the coefficient on the augmented inverse Mills
ratio is statistically significant, providing evidence for sample selection (from program
participation decisions) in the predicted direction.

Several qualitative conclusions emerge from table 2.4. First and most important, the

results indicate that firms’ participation in the 33/50 program tends to lower pollution.

22 The selection models were also estimated without any boycott, Sierra Club, or enforcement variables
(other than PRPS). In these estimations, the interaction variables, FG-LEMP (in Models T and IT) and
FG-RELEASE (in Model IIT), had significant positive effects on participation, although FG did not.
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These pollution reductions are statistically significant in the first year of program oper-
ation (1992), but persist throughout the sample period (to 1995). Second, as in prior
work, this study finds that government inspections tend to lower firms’ pollution levels.
Although inspections have a direct effect on pollution that is statistically insignificant
(table 2.4), note that they also indirectly spur pollution reductions by promoting par-
ticipation in the 33/50 program (table 2.3). Third, firms may have been motivated to
lower pollution in order to preempt regulation (with a statistically significant negative
coefficient on SIERRA) and/or deter boycotts in states with large environmental con-
stituencies (with a statistically significant negative coefficient on BC-SIERRA). Fourth,
the threat of boycott tends to lower pollution, with a statistically insignificant direct
effect in addition to an indirect effect - spurring pollution reductions by inducing 33/50
participation (table 2.3). Fifth, the results show some evidence that pollution reductions
may have been motivated by research-intensive firms’ incentive to “raise rivals costs”
(with statistically significant negative coefficients on both firms’ R&D expenditures and
the measure of industry concentration, HERF). Finally, no statistically significant link
is found between pollution and either a firm’s proximity to final consumers or the pres-
ence of strict environmental liability (although the estimated effect of strict liability is
negative, as predicted).?> Hence, by accounting for potential effects of enforcement ac-
tivity, boycott deterrence and regulatory preemption incentives, again no evidence that
voluntary pollution reduction activity is motivated by incentives for “green marketing”

is found.

23 When using the bootstrap procedure to estimate standard errors (see note 15), the same conclusions
are obtained, with two qualifications. Using the bootstrap procedure, parameter estimates for the LRD
and BC-SIERRA regressors become statistically insignificant.
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2.5.3. The Inspection Equation

Table 2.5 presents results from estimation of the inspections equation. They show that
inspections tend to rise when a facility’s prior period pollution is higher, with enforcement
resources thus targeted to facilities for which inspectors can anticipate good prospects for
pollutant reductions. Inspection rates tend to fall when there is more environmentalist
pressure on firms, as measured by the Sierra Club variable; environmentalist pressure
thus seems to substitute for government inspections in promoting environmental objec-
tives.2 In addition, inspection rates tend to be higher at the facilities of larger firms
(with a statistically significant positive coefficient on the measure of firm size, EMP).
However, most important from the estimations is the link between 33/50 program par-
ticipation and government inspections. Program participation is estimated to have had
only a marginal impact on inspection rates in 1992, perhaps because program-sponsored
technical assistance took the form of some short-term government oversight. However,
program participants experienced statistically and quantitatively significant reductions
in their inspection rates from 1993 through 1995 (as indicated by the statistically signif-
icant negative coefficient on PART93). To help understand the quantitative significance
of these effects, table 2.5 also presents the estimated marginal impacts of 33/50 par-
ticipation on inspection rates in each of the program years, 1992-1995. It is estimated
that a firm’s 33/50 program participation translated into a cumulative reduction of .25
inspections over the 1992-1995 period or approximately 17 percent of the sample average
inspection rate (1.5 per year). Note also that a firm’s benefit of 33/50 participation, in

a reduced inspection burden, tends to persist throughout the program years, 1992-1995,

24 One might conjecture that environmentalism may spur pressure on government agencies for more
inspections; the results suggest, in contrast, that government agencies recognize the salutary effects of
environmentalism on firm performance and therefore reduce their inspection rates when firms are subject
to more environmentalist pressure. Similar logic may explain why the “right to work” variable has a
significant positive effect on inspection rates.
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even though pollution reduction benefits of participation tend to wane (table 2.4).2°

2.6. Conclusion

This chapter has studied why firms chose to participate in the EPA’s voluntary 33/50
pollutant reduction program; effects that this program had on firms’ pollution; and ef-
fects of program participation on subsequent government inspection activity. The study
finds empirical support for the “enforcement theory” of voluntary pollution reductions
(Maxwell and Decker, 2002). Specifically, program participation involves firm invest-
ments in environmental auditing and technology that lowers their pollution abatement
costs and thereby prompts pollution reductions (the pollution equation effect of pro-
gram participation). In view of this benefit, environmental authorities implicitly offer
regulatory rewards to program participants (the inspection equation effect of program
participation) that spurs participation by those firms who have the most to gain from such
regulatory rewards (the participation equation effect of prior inspections and pollutant
releases).

The results also support the hypotheses that firms participated in the 33/50 program
in order to forestall potential boycotts by environmental groups (Baron, 2001; Innes,
2003) and/or to preempt lobbying by these groups for tighter environmental regulation
and enforcement (MLH, 2000). Pollutant reductions, beyond those prompted by partic-
ipation in the 33/50 program, were another means by which firms sought to preempt
regulation and boycotts. However, in contrast to prior work that did not account for the

potential enforcement, boycott deterrence or regulatory preemption incentives found to

25 In the Poisson model with a gamma distributed firm effect, estimated impacts of 33 /50 participation
are similar to those presented in table 2.5, both in magnitude and statistical significance. However,
impacts of some other variables are somewhat different. For example, the Sierra Club (SIERRA),
boycott (BC), and right-to-work (RTW) variables do not have statistically significant effects in the
Poisson-gamma model.
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be important here, this work finds no support for the hypothesis that firms participated
in the 33/50 program, and/or reduced their pollution levels, in order to obtain any “green
marketing” advantages.

Overall, this work lends support to the view that voluntary pollutant reduction pro-
grams carefully combined with regulatory/ enforcement rewards for program participa-
tion can be useful and effective tools to reduce pollution and save government costs of
overseeing firms’ environmental performance. Voluntary programs may also offer firms
the opportunity to signal their environmental commitment to potential political adver-
saries and thereby deter costly boycotts and political conflicts. As a result, even when
consumer free-riding prevents firms from obtaining any “green premia” in the market-
place, a failure that would otherwise doom voluntary pollution reduction efforts, volun-

tary environmental programs can succeed.
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TABLE 2.1. Variable Definitions

Total firm releases of 33/50 pollutants (millions of pounds)
Lagged per-facility firm releases of 33/50 pollutants

Dummies that equal 1 if a firm is a 33/50 participant (note 16)
Number of a facility’s CAA inspections (annual)

Change in total firm releases of 33/50 pollutants from 1988-1990
Number of CAA inspections of firm facilities, 1989-90
Dummy that equals 1 if firm had an enforcement action

in 1989-90

Firm lagged inspections per facility (annual)

Number of Superfund sites for which a firm is a PRP, 1990
Dummies for a firm’s primary two-digit SIC class

Lagged firm expenditures on R&D ($millions) (annual)
Lagged number of firm employees (1000’s) (annual)

Number of firm facilities (annual)

Herfindahl index for firm’s two-digit SIC class

Dummy that equals one if firm operates in an SIC that

was subject to contemporaneous boycott, 1992

Dummy that equals one if firm produces a final good
(determined by a firm’s primary four-digit SIC class)

Firm percentage sales growth (annual)

Sierra Club members per capita in facility home state (annual),
averaged across facilities for the firm

Dummy that equals one if facility’s home state has a strict
liability statute, 1988, averaged for the firm

Dummy that equals one if facility’s home state has a
right-to-work statute, 1988, averaged for the firm

State expenditures on air quality programs in the facility’s
home state, 1988, averaged for the firm

Number of lawyers per capita in facility home state, 1988,
averaged for the firm

Percentage of college degrees in facility home state population
in 1990, averaged for the firm

Dummy that equals one if a facility’s home county is out of
attainment with clean air laws in any year, 1992-1995
Population density of facility’s home county, 1990



TABLE 2.2. Descriptive Statistics

Participants Non-participants
Variable Mean std deviation Mean std. deviation
DIFREL -0.1881 0.6243 | -0.0576 0.1833
RELEASE 0.8284 1.534 | 0.1044 0.1722
LEMP 34.4284 71.4741 | 5.0099 7.1058
HERF 0.4481 0.1443 | 0.4939 0.1633
PRP 5.4061 9.7499 | 1.0875 2.2301
ENFORCE 0.4242 0.4957 0.1 0.3009
INSP8990 13.4545 19.9592 2.6 4.7731
SIERRA 2.2982 1.065 | 2.5442 1.7208
STRICT 0.7588 0.3117 | 0.7768 0.3836
BOYCOTT (BC) 0.3818 0.4873 0.25 0.4344
FINAL GOOD (FG) 0.6606 0.4749 0.625 0.4856
LRD 211.7544 549.1934 | 18.3815 46.8655
RTW 0.2984 0.3131 | 0.2589 0.3972
SPENDAQP 1.1798 0.5806 | 1.2274 0.6524
LAWYERS 2.8539 0.758 | 3.2358 1.0209
EDUC 19.9476 2.8079 | 20.3976 3.4283
SIC 28 0.2121 0.4101 0.125 0.3318
SIC 33 0.097 0.2968 | 0.0563 0.2311
SIC 34 0.0545 0.2278 | 0.1063 0.3091
SIC 35 0.1576 0.3655 | 0.1875 0.3915
SIC 36 0.1273 0.3343 | 0.1438 0.3519
SIC 37 0.1515 0.3596 | 0.0625 0.2428
SIC 38 0.0545 0.2278 | 0.1313 0.3387
No of observations 165 160
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TABLE 2.3. Probit Estimation of the Participation Equation

Model I Model II Model III
Hypothesis tested Variable
estimate t-ratio | estimate t-ratio estimate t-ratio

Prior reductions DIFREL 0.6511 1.30 0.6536 1.30 0.3359 3.26
PRP -0.1199 -1.46 -0.1158 -1.42 -0.0836 -2.86
PRP? 0.0123 1.78 0.012 1.75 0.0095 3.67
ENFORCE 0.5037 1.96 0.4976 1.94 0.3201 3.45

Enforcement INSP8990 0.0281 1.78 0.0273 1.73

effects LINSP-FAC 0.0442 1.98
FAC 0.0387 4.75
FAC? -0.001 -11.96

Raising rivals HERF 1.6854 1.42 1.0804 0.92 1.073 3.56

costs RD 0.0043 2.42 0.0024 1.68
HERF-RD 0.0095 2.48

Preemption of SIERRA 0.594 1.96 0.5815 1.93 0.4303 2.97

regulations SIERRA?2 -0.0792 -2.17 -0.0802 -2.21 -0.0578 -3

Liability effects STRICT -0.3064 -0.94 -0.2753 -0.84 -0.0343 -0.22
STRICT-LEMP 0.0235 1.79 0.0221 1.71

Boycott BC 1.1176 1.67 0.9349 1.70 0.635 4.75

deterrence BC-SIERRA -0.082 -0.49

Green marketing FG 0.2981 0.81 0.3077 0.83 -0.048 -0.45
FG-RELEASE -0.009 -0.05
RELEASE 1.0593 2.07 1.0879 2.13

Firm-specific RELEASE? -0.1044 -1.27 -0.1047 -1.27

characteristics LEMP 0.0123 2.26
SPENDAQP -0.0285 -0.13 -0.0288 -0.13 -0.1048 -0.9
LAWYERS -0.0971 -0.40 -0.0858 -0.36 -0.2068 -2.07
EDUC -0.0158 -0.24 -0.0183 -0.28 0.0118 0.39
SIC 28 1.7053 2.40 1.7505 2.46 1.0189 4.65
SIC 33 1.4025 1.82 1.4383 1.86 0.8082 3.95

Industry fixed SIC 34 0.6709 1.16 0.6941 1.20 0.4876 3.13

effects SIC 35 0.9262 1.69 0.9549 1.74 0.8343 4.04
SIC 36 0.163 0.36 0.1683 0.37 0.4449 3.23
SIC 37 0.0546 0.10 0.0691 0.13 -0.1108 -0.76
SIC 38 0.9536 1.61 0.962 1.62 0.3442 1.51
CONSTANT -2.5068 -2.10 -2.4809 -2.07 -1.8096 -3.89

Chi-square (p-value) 176.74 (0.00) 181.78 (0.00) 182.6 (0.00)

LogL -139.586 -139.581 -139.0058

LogL (hetero) -139.3694 -139.271 -134.5313

No. observations 325 325 325
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TABLE 2.4. Random Effects Estimation of the Pollution Equation

Model I Model II Model III
Hypothesis tested Variable
estimate t-ratio estimate t-ratio estimate t-ratio
PRP -0.0195 -0.73 -0.0166 -0.60 -0.0271 -1.17
Enforcement PRP?2 0.0014 1.83 0.0013 1.65 0.0017 2.43
effects LINSPFAC -0.0181 -1.36 -0.0187 -1.29 -0.021 -1.67
FAC 0.0159 0.55 0.0183 0.55 0.0186 0.78
FAC? 0.0011 0.74 0.001 0.59 0.0011 0.94
Raising rivals HERF -0.611 -2.90 -0.4283 -1.93 -0.5427  -2.7326
costs LRD -0.0011 -8.03 -0.0012  -9.8267
HERF-LRD -0.002 -7.56
Preemption of SIERRA -0.121 -2.03 -0.1202 -1.90 -0.1307 -2.36
SIERRA?2 0.0135 1.71 0.0133 1.53 0.0142 1.93
regulations and BC -0.1395 -0.40 -0.1125 -0.33
boycott deterrence  BC-SIERRA 0.0029 0.07
Green marketing FG -0.0874 -0.31 -0.0552 -0.17 -0.0384 -0.13
FG-LEMP -0.0048 -1.10
PART92 -0.2016 -4.68 -0.2265 -4.7511 -0.20 -5.22
Effects of the PART93 -0.0249 -0.59 -0.0392 -0.92
33/50 program PART94 -0.0318 -0.76 -0.0393 -0.94
PART95 -0.059 -1.27 -0.0819 -1.73
Self-selection bias IMR 0.0888 2.48 0.1127 2.97 0.0649 1.94
LEMP 0.0271 10.19 0.0252 7.73 0.0309 8.49
Liability effects LEMP?2 -3.30E-05 -8.10 | -3.20E-05 -7.36 | -3.20E-05 -7.94
STRICT -0.0276 0.40 -0.021 -0.30 -0.0301 -0.45
Firm-specific SG 0.0001 1.05 0.0001 1.07 0.0001 1.04
effects and state RTW -0.0889 -1.16 -0.0962 -1.13 -0.0885 -1.22
characteristics EDUC -0.0003 -0.01 -0.0008 -0.05 0.0013 0.09
LAWYERS 0.0389 0.70 0.043 0.66 0.0287 0.53
SPENDAQP -0.0287 -0.60 -0.0342 -0.60 -0.0233 -0.51
SIC 28 -0.1779 -0.51 -0.1675 -0.48 -0.123 -0.40
SIC 33 -0.1639 -0.34 -0.0833 -0.16 -0.0971 -0.23
Industry fixed SIC 34 -0.2321 -0.63 -0.1975 -0.54 -0.1628 -0.50
effects SIC 35 -0.2655 -0.85 -0.2458 -0.79 -0.1902 -0.79
SIC 36 -0.0955 -0.32 -0.1109 -0.37 -0.1565 -0.62
SIC 37 0.1935 0.56 0.1939 0.55 0.1339 0.43
SIC 38 -0.035 -0.08 0.0117 0.027 0.0309 0.08
TIME -0.006 -0.85 -0.0029 -0.41 -0.0131 -2.03
CONSTANT 1.1712 1.50 0.7644 0.95 1.6864 2.36
No. obs 1879 1879 1879
R? 0.34 0.34 0.34
OLS vs RE test statistic 26640.88 2450.93 2634.86
Chi-square (1) 3.84 3.84 3.84
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TABLE 2.5. Random Effects Poisson Estimates of the Inspections Equation

Model I Model II
Variable estimate t-ratio | estimate t-ratio
PART92 -0.048 -0.524
Effects of the PART93 -0.2895 -2. 807 -0.1793 -2.23
33/50 program PART94 0.0934 0.889
PART95 -0.2619 -2.47
SIERRA -0.1628 -3.917 -0.1801 -4.526
BC 0.3086 1.515 0.5282 2.827
NONATTAIN -0.1844 -1.583 -0.0892 -0.82
CDENSITY 0.0019 0.698 -0.0008 -0.293
LRELFAC 0.00012 2.086 0.0002 3.296
LEMP 0.0033 6.615 0.0025 4.575
Firm-specific and SPENDAQP 0.5973 5.972 0.629 6.807
County characteristics RITW 0.2785 2.268 0.1975 1.639
EDUC 0.0042 0.136 0.0013 0.047
STRICT -0.1409 -1.109 -0.1106 -0.942
LAWYERS -0.0967 -0.856 -0.096 -0.941
SIC 28 -0.6679 -3.352 -0.4923 -2.887
SIC 33 -0.8669 -4.059 -0.6948 -3.718
Industry fixed SIC 34 -1.0863 -5.1 -0.7484 -4.033
effects SIC 35 -0.7271 -3.44 -0.5534 -3.084
SIC 36 -1.3818 -6.212 -1.4104 -6.475
SIC 37 -0.8024 -4.784 -0.9492 -5.739
SIC 38 -1.0381 -3.147 -0.7565 -2.574
CONSTANT -9.4063 -3.146 -6.5026 -2.823
TIME 0.0865 2.678 0.0537 2.184
Number of Observations 5703 5703
Log-likelihood -4026.99 -4031.17

Marginal Effects of Participation for Each Year

Year Marginal effect  t-ratio

1992  -0.0348 -0.852
1993  -0.1698 -3.436
1994  -0.1255 -2.269

1995  -0.2469 -3.436
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3. NONPARAMETRIC REGRESSION UNDER ALTERNATIVE DATA ENVIRONMENTS

3.1. Introduction

Let (X;;,Y5), ¢ = 1,..,n5,j = 1,...,J be a sample of RP*! valued random vectors
where Yj; represents a response variable and X;; is a p-dimensional vector of explanatory
variables. In many empirical situations it is necessary to estimate a set of regression

curves, say one for each experimental unit of interest, which can be arranged as
Yij = m;(Xy) + € (3.1)

where j denotes the j™" experimental unit, and €; is a zero-mean and finite-variance
error process. This research is concerned with the estimation of the conditional mean
E(Y|X = z). Kernel regression estimators based solely on individual samples such as the
Nadaraya-Watson and the locally linear kernel estimators have become widespread be-
cause they circumvent the risk of functional misspecification inherent to their parametric
counterparts and provide consistent estimates under mild regularity conditions.

The standard Nadaraya-Watson estimator of the conditional mean m;(z) is given by

_ S YK (Xij — x)
Sty K (X5 — )

i (x) (3.2)

where h; is the smoothing parameter and K, (u) = - K(

; ) with K (u) being the kernel

h
function. Denoting pp = [ 2K (z)dz and R(K) = [ K?(z)dz, the standard properties of

the Nadaraya-Watson estimator are

1

Elmj(z) —m,(z)] = §M2h?{m;'($) 4 2m;- (2) fi(@)

()
Var[m,(z)] = %Jromj/nj) (3.4)

}+o(h?), (3.3)
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where f;(z) is the marginal density function of X;; evaluated at support point z. Since
the bias is O(h3) and h; = h;(n;) goes to 0 as n; goes to oo, it follows that the Nadaraya-
Watson estimator is consistent. However, a drawback is its finite sample bias which can
be quite large. Several papers have proposed estimators which reduce the bias (Hardle
and Browman, 1988; Hjort and Glad, 1995; Glad, 1998, among others). One such bias-
correction estimator, Hjort and Glad (1995), is of particular interest because of the ease
with which it can be implemented. Hjort and Glad (1995) propose a semiparametric
estimator which combines a parametrically estimated pilot with a nonparametrically
estimated correction factor. The parametric pilot can be thought of as a prior for the
shape of m,;(x) whereas the correction factor adjusts the pilot if it does not satisfactorily
capture the shape of m;(z). Consequently, the estimator behaves like the parametric start
if the parametric assumption is correct, while resembling the nonparametric estimator
otherwise.

The estimator proposed in this chapter is in the same realm as Hjort and Glad’s
(1995); however, alternative data environments are considered where the researcher has
data from possibly similar regression functions. If those unknown functions are identical,
the optimal estimator would pool the data and estimate one regression curve. If, however,
those unknown functions are sufficiently similar, using the pooled estimator as a pilot
in Hjort and Glad’s framework would yield efficiency gains relative to the Nadaraya-
Watson estimator. The use of extraneous data in the form a nonparametric pooled
start represents the key conceptual difference between the proposed estimator and the
estimator of Hjort and Glad (1995).

Two empirically relevant data environments are considered. The first data envi-
ronment assumes that at least one of the explanatory variables is discrete. While this

situation is easily accommodated in a parametric framework, the continuity assumptions
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required for nonparametric regression are violated. As a result, a separate nonparamet-
ric regression estimation is required for each discrete value. For example, if one of the
explanatory variables is discrete and may take values {0, 1,2, 3}, the sample must be par-
titioned according to the four discrete values into four cells where a separate regression
function is undertaken for each. Recently, Racine and Li (2004) developed a nonpara-
metric estimator that smoothes across the discrete values, thereby reducing variance at
a cost of increased bias. Conversely, the proposed estimator attempts to reduce bias by
utilizing the entire data set. The second data environment assumes that one needs to
estimate a set of regression curves rather than a single regression curve. Empirically, this
situation arises often and led Altman and Casella (1995) to develop a Stein-type Bayesian
nonparametric estimator that uses empirical Bayes techniques pointwise across the func-
tion space to reduce estimation error. This latter data environment can be viewed as a
generalization of the former with each of the discrete cells representing an experimental
unit.

The remainder of this chapter is organized as follows. The second section introduces
the proposed estimator and investigates its asymptotic properties. The third section

presents the simulation results. The final section summarizes the findings.

3.2. A Nomnparametric Estimator with a Pooled Start

Underlying the proposed estimator is that there exists a prior belief that the conditional
means are similar in shape. If the curves were identical, that is, if mq(z) = ma(x) =
...my(xz) = m(z), one would simply pool the data and estimate a common curve. Con-
versely, if the conditional means were dissimilar, the pooled estimator is inappropriate.
A primary strength of the proposed estimator is that the form or extent of similarity

among the curves is not required; in most empirical applications the form or extent of
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similarity is unknown. The Hjort and Glad estimator is adapted to the context of model
(3.1) by combining pooled and individual nonparametric estimators. As a result, the
proposed estimator, which is denoted the nonparametric estimator with a pooled start
(NEPS), resembles the pooled estimate if the curves are identical or similar and the in-
dividual (Nadaraya-Watson) estimate if the curves are dissimilar. The NEPS estimator

of conditional mean m;(x) is

mp(Xij)
Ziil Khj (Xij — )

The estimator is implemented in two steps. The first step pools the data from all exper-

nj Mp(x)
_ Yoty Yijlm e 1 K (Xij — 2) (55)

imental units to estimate a single curve denoted 772, (x). This step introduces extraneous
information from the pooled dataset that is potentially relevant to the estimation of the
conditional mean of interest. The second step consists of multiplying the pooled estimate
by a nonparametrically estimated correction factor () to account for individual effects.
The NEPS estimator is designed to outperform the standard Nadaraya-Watson estimator
when the hypothesis of similarity is tenable, but also produce reliable estimates when
the curves are dissimilar.

Note that both the pooled and the individual functions can be estimated by a higher
order kernel-weighted polynomial, for example the locally linear kernel (degree 1). The
locally linear estimator is preferable in most applications as it does not have the boundary
bias problem of the Nadaraya-Watson estimator (degree 0). In the simulations results to
follow, the locally linear kernel is used to estimate both the pooled pilot and the individual
estimators. However, the asymptotic results are presented only for the Nadaraya-Watson
estimator (see for example Ruppert and Wand (1995) for asymptotic properties of the

higher order kernel-weighted polynomial).
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3.2.1. Asymptotic Properties of the NEPS Estimator

In deriving the asymptotic properties of the NEPS estimator, the following assumptions
are required:

Al. The Xj;s are i.i.d. and independent of the error process €;;, which is also i.i.d.

A2. The density function f;(z) and the conditional mean m;(z) € C?(©) with finite
second derivatives and f;(z) # 0 in ©, the neighborhood of point z.

A3. The kernel function K (z) is bounded, real-valued, with the following characteristics:
(i) [ K(z)dz =1, (ii) K(z) is symmetric about 0, (iii) [ 22K (z)dz < oo, (iv) |z|K(|z]) —
0 as [z| = oo, (v) [ K*(z)dz < co.

A4. h; = 0and njh; 00V ji=1,..,J.

A5. It is assumed that h, — 0 and njh, — 00 V j =1, ...., J where h,, is the smoothing
parameter for the pooled estimator.

2+6
, Eleij|*™, and [ |K(w)|*™ are finite for some § > 0.

myp ()
AG. B| 2

Proposition 3.1

1. Under assumptions A1-A4, the mean and variance of the proposed estimator are:

Bliy(a) = my(a)] = S {rf(o) + 2r) B ) +olh) (3
Varling(a)] = e s Ol + (Vi) ), (3.7)

J
where N =3 ": | n;.

2. Under assumptions A1-A6, m;(z) has a limiting normal distribution

where B(h;) = 3pahi[my(z)r] (z) + 2my (z)r) f;(i)] and ¥; = -2~
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Proof: See appendix.

Equations 3.4 and 3.7 show that the variances of the Nadaraya-Watson estimator and

the NEPS estimator differ by O(mhﬁmh;L ______ +mhp)

, which is negligible by A5. The bias
of the NEPS estimator is not a function of the slope and curvature of the true regression
function as it is for the Nadaraya-Watson estimator (see equation 3.3). Rather, the bias
is a function of the slope and second derivative of the correction factor r;(z). If the
nonparametric pilot m, coincides with or is proportional to the true function m;, then
rj(z) will be a straight line and r; = r; = 0. This implies that the leading terms of
the bias will vanish. Similarly if m,(z) and m(x) are sufficiently similar, the correction
factor will be less variable than the individual conditional mean, hence leading to bias
reduction. Interestingly, the pooled start does not have to be a good approximation of
m;(z) for the NEPS estimator to remain competitive to the Nadaraya-Watson estimator

in moderate samples.

3.2.2. Computational Issues

The ratio mT:](D)(z 1) can be highly influential in regions when X;; is far from z. Also, it is

possible that 72, (X;;) and m,(z) have different signs. Following Hjort and Glad (1995),

the ratio mf’(’)(z 3,) should be substituted by

. 10
my(z)

1y (Xi5)

7

1

that is, truncating values below % and above 10 to make the estimator robust to these
local effects. Additionally, when the number of curves J is large, selecting the “optimal”
extraneous data to be included in the nonparametric pilot is not trivial. This problem

is analogous to the choice of instruments in instrumental variable estimation when the

number of instruments is large or the choice of the functional form of the parametric pilot
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in Hjort and Glad (1995). A cross-validation procedure to select the extraneous data to
be included in the pooled start can be used. The cross-validation procedure consists of
alternating the pooled start from the set formed by the J curves, for a total of 27 possible

pooled guides, and then choosing the one whose loss function is the lowest.

3.2.3. Smoothing Parameter Considerations

Implementation of the proposed estimator requires the selection of two smoothing pa-
rameters. There are many ways to choose the smoothing parameters. Both h, and h can
be chosen by minimizing the asymptotic mean integrated squared error (AMISE) of the
proposed estimator. The smoothing parameters can also be selected by cross-validation,
either sequentially or simulteneously. Sequential selection of the smoothing parameters
consists of first choosing h, to minimize the cross-validation function of 1m,(z) and then
picking h to minimize the cross-validation function of 7;(z). Alternately, h, and h can

be chosen simultaneously by minimizing the cross-validation function of 7,(x):
nj
5 —i 2
> (i (x) = m;(a))
i=1
where m]_’(x) is the usual “leave-one-out” estimator of /m;(x). It is noted that the latter

approach is preferrable and, although more computationally intensive, is easily applicable

in empirical work.

3.3. Finite Sample Simulations

This section conducts Monte Carlo simulations to investigate the empirical applicability
of the NEPS estimator compared to the Nadaraya-Watson and other related estimators.

Prior to the simulation results a terse review of two related estimators is provided.



49

3.3.1. The Racine and Li Estimator

The objective of the Racine and Li estimator is to nonparametrically estimate regression
functions with discrete independent variables without having to partition the data. Sup-
pose the researcher has data on one experimental unit: Y; a scalar response variable, X
a vector of continuous variables, and X¢ an r-dimensional vector of discrete regressors.
The Racine and Li estimator smoothes the continuous variables by a c-variate kernel

while the discrete variables are smoothed as follows

1 if X3 = ¢
d _.d _ it t
S(Xis 2, A) = { A otherwise ,0 < A <1 (3.9)
where X2 is the ¢ component of the vector X¢. The Racine and Li estimator is
~RL(, .c ,.d\ __ Zz]\il Y;Wh:/\(Xica xc’ de: md)
mE ) = S (3.10)

izt Wha (X7, 2, X{, 29)
where W, (X¢, z¢, X8, 1) = Kp(X¢ — 2¢) [ [}, S(X&, 28, N).

In a context of multiple curve estimation as laid out in equation (3.1), the “discrete”
smoother S(.,\) controls the inclusion of extraneous information by assigning a weight
of 1 to observations belonging to the experimental unit of interest and a weight of A
to observations from the remaining experimental units. The boundedness of A within

the unit interval allows the Racine and Li estimator to nest both the pooled (A=1) and

Nadaraya-Watson (A=0) estimators.

3.3.2. The Altman and Casella Estimator

The Altman and Casella model assumes a fixed and balanced design for the predictor
variable so that (3.1) can be rewritten as Y;; = m;(X;) + ¢; with X; = i/n;. It is

also assumed that each curve can be written as m;(X;) = m(X;) + n;(X;); that is, the
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curve for experimental unit j at design point X; is the population mean curve plus a
term which captures the deviation from the population mean curve. Underlying this last
assumption is the fact that the curves are all sampled from the same population. Denote
m; the nonparametric estimate of m;. Given that m; is biased, it can be expressed as
mj = ¢; +v; where v; is an error term such that E[v;] = 0 and Var[v,;] = a?/n. Altman
and Casella form a hierarchical model (1;|¢; is normally distributed, and ¢; and m; are

jointly normally distributed) and derive the posterior mean of m; as

m;(z) = m(z) + a(z)[m,(z) — ¢(x)]. (3.11)
In practice, the hyperparameters are replaced by sample estimates, which leads to the
Altman and Casella estimator for experimental unit j

M€ () = G + 6(2) [ (x) — m(x)] (3.12)

where 3, = %Z‘j]:l Yz; is the cross-individual sample mean of the data at design point
z, &(x) = o?‘o_%;‘)(”) is the ratio of the covariance between the data and the nonparametric
estimates and the variance of the nonparametric estimates, and m(z) = %ijl m;(x).
The reader is directed to Altman and Casella (1995) for a complete derivation of their
model. Note that this estimator uses the data from the other experimental units in the
population in the regression of the curve of interest through 7 (z) and 9. If the individual
curves are similar, then [r7;(t) — m(t)] goes to zero and the final estimates behave like
9 which is unbiased for the population mean curve. Altman and Casella note that their

estimator performs better when the number of experimental units is sufficiently large so

that y, provides a good approximation to the population mean.
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3.3.3. Simulation Design

In the first experiment a random design regression is considered whith the explanatory
variable being uniformly distributed on the [0,1] interval. The second experiment forces
the explanatory variable to be equispaced on the [0,1] interval as required by the Altman
and Casella estimator. For each experiment two scenarios are investigated. In the first
scenario, which is referred to as the “case of identical curves,” four identical curves were
generated: my(z) = ma(x) = ms(z) = my(z) = sin(bnz). Individual-specific errors
differentiate the data across experimental units. This is the ideal case for the NEPS
estimator. In the second scenario, which is referred to as the “case of dissimilar curves,”

four very dissimilar curves were generated (see figure 3.1). The four curves are

mi(z) = sin(157x); (3.13)
mo(z) = sin(brx); (3.14)
ms(z) = .3e(04=29°) L 72615, 4nq (3.15)
my(zr) = 10e7%, (3.16)

Unlike in density estimation where the Marron and Wand densities (1992) are commonly
used to study the finite sample performance of density estimators, there are no standard
test functions in the regression case. However, the curves used here have also been
employed in similar simulations (Hurvitch and Simonoff, 1998; Ruppert, Sheather, and
Wand, 1995; Herrmann,1997). The choice of these two extreme scenarios is motivated
by the fact that in empirical settings it is impossible to know if the conditional means
are similar, identical, or dissimilar.

Following Hurvitch and Simonoff, for both scenarios, the error term for individ-
ual j is assumed to be normally distributed with mean zero and variance equal to

0.25 x (range of (m,(z)). Throughout the simulations, a Gaussian kernel is used. For
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computational expediency, the smoothing parameters for the pooled and the proposed
estimator are chosen by sequentially minimizing the integrated squared errors of m,(z)
and m;(z), with the comfort that the proposed estimator would have performed at least

as well had we chosen the smoothing parameters simultaneously.

FIGURE 3.1. Graph of the Four Conditional Means
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3.3.4. Results

Tables 3.1 and 3.2 report the average mean integrated squared error (MISE) of the four
curve estimates respectively for the random and fixed designs for samples sizes 50, 100,
and 500 with 500 simulations. The average mean integrated squared bias (MIB?) is also

reported as the NEPS estimator is designed to reduce bias.
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Table 3.1 presents the results of the first simulation experiment where a random
design regression is used. LLK denotes the locally linear kernel estimator, R&Li is the
Racine and Li estimator, and NEPS is the proposed estimator. For the “case of similar
curves” the NEPS estimator significantly outperformed the LLK estimator in all sample
sizes. The superior performance of the NEPS estimator is attributable to a lower bias as
seen in table 3.1, confirming the derived theory. The R&Li estimator also outperformed
the LLK estimator but not to the extent of the NEPS. Interestingly, the NEPS estimator
also has a lower MISE than the LLK estimator for the sample sizes of 50 and 100 in
the “case of dissimilar curves.” An intuitive explanation of this somewhat surprisingly
good performance is that the LLK estimator is a special case of the NEPS estimator
with m,(z) being equal to a constant V x. However, a “flat start” is quite conservative
for most curves, including those curves considered in these simulations. Therefore m,(z)
need not be a great approximation of the conditional mean of interest for the NEPS
estimator to perform well. This result was also found by Hjort and Glad (1995) and
Glad (1998) and represents a strength of their idea. Formally, if m,(z) is such that

fi(=) fi(=)

(
7 (£)my(z) + 2ry(a)my (@) 55| < mS () + 2mi (@) 35

|, the NEPS estimator will have
a smaller asymptotic mean squared error than the Nadaraya-Watson estimator as the
variances are essentially the same for large J. The R&Li estimator remained competitive
because of its ability to revert to the LLK estimator by having 5\]- — 0 when the curves
are dissimilar.

Table 3.2 reports the results of the second experiment where a fixed design is used.
A&C denotes Altman and Casella’s nonparametric empirical Bayes estimator. The NEPS
estimator outperformed the LLK estimator and the A&C estimator when the conditional
means are identical. Asin the random design case, the NEPS remained competitive to the

LLK estimator for the samples sizes of 50 and 100 even when the similarity assumption
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is inappropriate. The performance of the A&C estimator is somewhat disappointing,
which could be explained by the small number of experimental units (J = 4) considered
in the simulations. Altman and Casella (1995) noted that J needs to be large for their
estimator to perform well relative to the LLK estimator. In general empirical Bayes
estimators require a large number of experimental units and few design points per unit

to perform well.

3.4. Conclusion

This chapter has proposed a computationally simple nonparametric regression method
which admits two empirically relevant data environments. The method was designed to
achieve bias reduction by incorporating extraneous information from curves which are
thought to be similar to the curve of interest. Consistent with the derived theory, the
simulation results indicate that the NEPS estimator has a strong practical potential in
small to moderate samples. It outperformed the LLK estimator when the curves were
identical and did not lose much efficiency when the curves were very dissimilar. The
proposed estimator also performed admirably against the related estimators of Racine

and Li and Altman and Casella.
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TABLE 3.1. Average Estimation Error of the Four Furves: Case of a Random Design

Case of similar curves

LLK R&Li

NEPS

MISE MIB? MISE MIB?

MISE MIB?

50 10.644 5.6111 3.8884 2.6365 2.6987 0.3431

100 5.7383  3.5223 2.3816  1.7222 1.4638 0.1710

500 1.9022 1.3000 0.5883 3064 0.3915  0.0553

Case of dissimilar curves

n LLK R&Li NEPS
MISE MIB? MISE MIB? MISE MIB?

50 18.5100 14.3130 20.3510 16.2460 18.1560 12.7090

100 14.8060 12.3190 15.5110 12.9280 14.5970 11.0740

500

12.2757 11.3895 15.1869 14.8708

13.4409 12.2039



TABLE 3.2. Average Estimation Error of the Four Curves: Case of a Fixed Design

Case of similar curves

n LLK A&C NEPS
MISE MIB?* MISE MIB> MISE MIB?
50  5.6786 1.5812 7.8547 0.0152 2.7299 0.3296
100 3.1335 0.6486 7.4178 0.0149 1.5254 0.1980
500 0.8969 0.2003 6.6718 0.2652 0.6154 0.0273

Case of dissimilar curves

n LLK A&C NEPS
MISE MIB?> MISE MIB> MISE MIB?
50  12.4690 8.9958 18.3277 9.1848 11.9579 7.3078
100 4.4908 2.0037 11.1970 3.1989 5.1113 1.7449
500 1.1113 0.2649 11.1993 4.6252 2.7831 0.3238
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4. NONPARAMETRIC ESTIMATION OF THE SHORT RATE DIFFUSION FROM A PANEL
OF YIELDS

4.1. Introduction

Substantial efforts have been devoted to modeling the short-term interest rate, which
is generally believed to be the most important state variable driving the dynamics of
interest rate term structure. Continuous-time univariate models of short rate, r;, are

typically specified as the following time-homogenous It6 process:
dry = p(ry)dt + o(ry)dwy

where w; is the standard Brownian motion with ¢ € [0,7]. Most existing interest rate

models are nested in the parametric specification of Ait-Sahalia (1996b):
dry = (g + aumy + ory + agry ) dt + or] dwy;

where both the drift function and diffusion function are specified to capture potential
nonlinearities. Various restrictions on the parameters of the above model lead to the
Vasicek (1977) model (o = a3 = 0,7 = 0), the Brennan and Schwartz (1980), the
Courtadon (1982) model (o = a3 = 0,7 = 1), the Cox Ingersoll Ross (CIR) (1985)
model (ay = a3 = 0,7 = 1/2), the Cox, Ingersoll and Ross (1980) model (ap = oy =
ay = a3 =0, v = 3/2), the CEV models of Chan, Karolyi, Longstaff and Sanders (1992)
(ap = a3 = 0), etc.

While the main appeal of the parametric models is the tractability and potential
closed form bond prices and prices of interest rate derivative securities, the main concern
about these models is the risk of model misspecification. Empirical studies have provided

evidence rejecting most popular parametric diffusion models of the short rate, see e.g.
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Chan, Karolyi, Longstaff and Sanders (1992), Ait-Sahalia (1996b), Andersen and Lund
(1997), and Hong and Li (2005) among others. Further analysis also confirms that
mispecified models can have significant economic implications on the pricing of interest
rate derivative securities, see e.g. Backus Foresi and Zhin (1995) and Canabarro (1995).
For the above reasons, nonparametric modeling of the short rate dynamics has received
considerable attention in the finance literature in recent years. In a pioneering work, Ait-
Sahalia (1996a) proposes a nonparametric estimator of the diffusion function based on a
parametrically specified drift function. Jiang and Knight (1997) propose a nonparametric
kernel estimator of the diffusion function, and a nonparametric estimator of the drift
function using the diffusion function estimator as well as the nonparametric marginal
density estimator. Nicolau (2003) refines the estimators in Jiang and Knight (1997)
to reduce the finite sample bias of the diffusion function estimator. Stanton (1997)
proposes nonparametric estimators of the drift and diffusion functions based on various
orders of approximation of the It6 process. Bandi and Phillips (2003) generalize Stanton’s
nonparametric approach to the situation of recurrent diffusion processes, circumventing
the necessity of a stationary density.

The empirical evidence from the model specification tests in Ait-Sahalia’s (1996b)
and nonparametric drift function estimates in Stanton (1997) and Jiang (1998) suggest
that the drift function of the short rate is nonlinear. In particular, the nonparametric
test in Ait-Sahalia (1996b) provides evidence that the linear drift function of popular
parametric models is the principal source of model misspecification. The nonparametric
drift function estimates in both Stanton (1997) and Jiang (1998) share the feature that
the short-term interest rate exhibits very little mean reversion, that is behaves like a
random walk for interest rate below 15% but has a dramatically high mean reversion at

higher levels of the short rate. Conley, Hansen, Luttmer, and Scheinkman (1997) report
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similar results where the estimated drift function is nonzero only for rates below 3% or
above 11%. The findings of a nonlinear drift have, however, been challenged by Pritsker
(1998) and Chapman and Pearson (2000) among others. Pritsker (1998) shows that the
nonparametric test in Ait-Sahalia’s (1996b) has a poor finite sample performance because
of persistent dependence in daily interest rates resulting in a slow convergence of the non-
parametric density function estimator. The Monte Carlo simulations in Chapman and
Pearson (2000) show that Stanton’s drift function estimator can produce spurious non-
linearities even when the underlying drift function is truly linear. What is troublesome
is that the spurious nonlinearlity has a similar pattern as in the empirical application in
Stanton (1997). Chapman and Pearson argue that a combination of the truncation of
the “observed” short rates and a finite sample creates artificial patterns of nonlinearity
near the boundaries of the support. Abhyankar and Basu (2001), and Li, Pearson and
Poteshman (2004) provide formal results supporting Chapman and Pearson’s explana-
tion. They show that if the truncation of the observed short rate process is accounted
for, the resulting drift is nonlinear even if the drift of the unrestricted process is linear.
Using a Bayesian approach, Jones (2003) shows that the nonlinearity of the estimated
drift is contingent on the assumed prior distribution and the stationarity or lack thereof
of the interest rate process. The assumption of stationarity and the use of “flat” priors
contribute strongly to the finding of nonlinear mean reversion.

The ongoing debate about the linearity or nonlinearity of the drift function under-
scores the difficulty of identifying and estimating the drift function. This chapter applies
the nonparametric method developed in the previous chapter to the estimation of the
short rate diffusion process with a focus on the drift function estimation. The key con-
ceptual difference between the proposed estimator and existing parametric and nonpara-

metric estimators of the short rate diffusion is that the new estimator uses extraneous
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interest rate observations beyond the short rate. That is, it uses information from a panel
of yields of different maturities instead of a single time series of short rates. Intuitively,
if the drift functions of interest rates with different maturities are identical or sufficiently
close, then the efficient estimator of the drift function would pool the data of all the
interest rates. If the drift functions are dissimilar, using the pooled estimator as a pilot
may still yield efficiency gains relative to the ordinary estimator which relies only on the
short rate observations.

It is known in the literature that while increasing sampling frequency is helpful for
the identification and estimation of the diffusion function, it is the increasing of sampling
period that is crucial for the identification and estimation of the drift function. Evidence
in Pritsker (1998), Chapman and Pearson (2000) and Jones (2003) suggests that as a
result of the strong persistence of interest rates, identifying the drift function requires a
long sampling period. Thus, the pooled data offers more incremental information about
the drift function than the diffusion function. Evidence from the simulations herein sug-
gests that the proposed estimator significantly attenuates the spurious nonlinearities of
the Stanton drift function estimator. It is noted that the proposed estimator is partic-
ularly appealing for the estimation of short rate diffusion process as the bond yields of
different maturities are available along the yield curve. Moreover, while the yields of
different maturities may be determined by different economic factors, they tend to be
highly correlated with systematic co-movements. This is because the short rate is the
most important factor driving the dynamics of the term structure.

To further investigate the short rate diffusion process, the proposed method is applied
to US data using a time series of 50 years of daily 3-month T-bill yields. This is compared
to the typical 20 to 30 years of data used in most studies. Additionally, five time series of

yields with maturities ranging from 6 months to 10 years are also employed to implement
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the proposed estimator. Each of these additional series has 42 years of daily observations.
The empirical results suggest that the short rate drift function is nonlinear at high levels
of interest rate. However, the level of mean reversion is significantly weaker than that
documented in Stanton (1997) and Jiang (1998).

The remainder of the chapter is structured as follows. The next section outlines
the proposed estimator of the drift function and derive its asymptotic properties. Sec-
tion II performs Monte Carlo simulations to assess the finite sample properties of the
proposed estimator, in comparison with the Stanton (1997) estimator. In section III,
an empirical application of the proposed estimator is undertaken using US interest rate
data. Economic implications of alternative short rate drift functions are also examined
using simulated bond prices and prices of interest rate derivative securities. Section IV

concludes.

4.2. Nonparametric Estimation of the Short Rate Diffusion from a Panel of Yields

Consider the following one-factor diffusion model for the short rate {r,gl),t > 0}:

dry? = i (r")dt + o1(r{")dw(”,  (The model) (4.1)

where w(" is a standard Brownian motion, u;(.) and 02(.) are respectively the drift

and diffusion functions. In addition to the above short rate, let us assume that there
are additional J — 1 interest rates {rgj),t > 0},j = 2,....,J which follow the diffusion

processes:
drid) = 1 (réj))dt +0; (r,gj))dw?gj), (The auxiliary models), (4.2)

where 1;(.) and ¢73(.) are respectively the drift and diffusion functions of r,gj ), and the

standard Brownian motions ng ), j=1,---,J are potentially correlated. The short rate
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model in (4.1) is termed as “The model” since it is the model of interest and the one
needed to be estimated, and the models in (4.2) as “The auxiliary models” since these
models, as illustrated later in this chapter, are used only to improve the estimation of
“The model”. If the short term rate (rgl)) is taken to be, say, the yields of the three-month
Treasury bill, then the auxiliary rates could be the yields with longer than three-month
maturities, including the yields on Treasury bills, Treasury notes, and Treasury bonds.
It is noted that the only restriction on the auxiliary model is that the state variable r,gj )
also follows a diffusion process. Thus interest rate observations of other countries with
similar economic fundamentals and monetary policies can also be used. Without loss of
generality, all the realized rates are assumed to be equispaced over the time period [0, T
with § = T'/n being the sampling interval.

Nonparametric modeling of the short rate diffusion has generated a great deal of
interest in recent years mainly because it eliminates the potential risk of misspecifying
the functional forms of the drfit and diffusion functions under mild regularity conditions.
Various nonparametric estimators of the drift and diffusion functions have been proposed
in the literature (see Ait-Sahalia, 1996; Jiang and Knight, 1997; Stanton, 1997; Bandi
and Phillips, 2003; Nicolau, 2003 etc). A fully nonparametric estimation of the drift
and diffusion functions based on a discretization of (4.1) was first proposed by Stanton
(1997). In particular, with the discretization interval § > 0, a first-order approximation

of the discretized process yields

1
() = 5B |(riys =) s =] +00), (43)

1 2
20) = 38 | (s =) 1) =] + 000) (4.4



63

which can be consistently estimated by

n—1 1 1 1
~ 12 10 (T((til)é - Tgé)) Ky, <T§5) - 7“)
M1 (T) = g 1 ) ) (45)
t—0 Kn (Ttd - T)

n—1 1 1 2 1
~ 1 > i (r((t—)f—l)é - 7}55)) Ky, (Tt(a) - 7") A
i) = 5 ——— (4.6)
t=0 Br\Tes — T

where Kj,(+) is kernel density function that satisfies common regularity conditions.! The
statistical properties, in particular the bias and variance, of the drift function estimator
are given in the following proposition.

Proposition 4.1

Given the common regularity conditions for the short rate process (see appendix)
and for the function Kj(-) (see chapter three), suppose that h — 0,6 — 0,nh — oo, as

n — oo and T'h — oo, the bias and variance of the Stanton estimator are:

Blin(r) (1] = (R + 2 () + 405+ o02)
Var([g(r) — ui(r)] %ﬁ%ﬂ +o(Th)™*

where q(r) = {1 (r)pa(r) + 502 (r)pi(r)}, m(K) = [ 2 K(2)dz,

and R(K) = [ K*(2)dz.

Proposition 4.1 shows that the bias of the Stanton estimator can be large in regions
where the slope and curvature of the underlying drift function are influential, in other
words when the true drift function is nonlinear. Thus using the Stanton model to estimate
the drift of the short rate diffusion process has the potential of generating erroneous
results. Simulation results in Chapman and Pearson (2000) show that Stanton’s drift

estimator can produce spurious nonlinearities for high levels of the short rate. Chapman

!Estimators based on higher order approximations are also constructed in Stanton (1997). Fan and
Zhang (2003) indicate that higher order approximations will reduce discretization bias, but at a cost of
an increased variance.
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and Pearson (2000) argue that a combination of the truncation of the “observed” short
rates and a small sample create artificial patterns of nonlinearity near the boundaries of
the support.

To further understand the difficulty of estimating the drift function, let us examine
the relevant properties regarding the drift and diffusion functions. It is well known (see
e.g. Merton (1980)) that based on data sampled over a short time interval, even though
the diffusion term can be estimated very precisely when the sampling interval is small,
the estimate of the drift coefficient tends to have low precision (see Ait-Sahalia (1996)
for an example of the Geometric Brownian motion process). The intuition behind the
relative difficulty of identifying and estimating the drift term versus the diffusion term
is as follows. It is noted that in (1) the drift term is of order dt and the diffusion term
is of order V/dt, as (dw;)? = dt + O((dt)?), i.e., the diffusion term has lower order than
the drift term for infinitesimal changes in time. Therefore, the local-time dynamics of
the sampling path reflects more of the properties of the diffusion term than those of the
drift term, which suggests the possibility of identifying the diffusion term from high-
frequency discrete sampling observations. For the same reason, the drift term cannot
be estimated precisely based on the local-time dynamics of such sampling paths without
further constraints. Not surprisingly, approximations of the drift function from high
frequency data, such as the ones suggested by Stanton (1997), can be very non-robust
and the estimates can be very sensitive to the sampling path.

The simulation results in this chapter lend support to the findings in Chapman and
Pearson (2000) and provide further evidence that the identification and estimation of the
drift function ultimately depends on that of the unconditional distribution of the interest
rate process. The link between the identification and estimation of the drift function and

the unconditional density of the short rate process is formally established in the following
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relation. Consider the case where the diffusion process is either strictly stationary or has
a limiting probability density function. From the Kolmogorov forward equation, the drift
term of the diffusion process in (1) is related to the diffusion function and the marginal

density of the process as follows:

1 0.,
= o) 501 (P (7)) (4.7)

pa(r)

where p;(-) is the marginal density function of the short rate process. It is obvious that
with a well identified diffusion function, the identification and drift function estimation
is equivalent to that of the marginal density of the process. A well-known property of
the short rate is its high persistence over time.? The high persistence makes interest
rate stay around certain levels over extended time period. Such property leads to the
fact that interest rate observations over even reasonably long time period can only offer
us restricted or truncated information of the short rate distribution. This observation
is consistent with the argument in Chapman and Pearson (2000), Abhyankar and Basu
(2001), and Li, Pearson and Poteshman (2004). For instance, from the plot of the daily
3-month T-bill yields, the yields are never below 2% for the entire period of 1960s to
1990s. In addition, the high interest rate observations only occur during the late 1970s
and early 1980s with relatively fewer observations of large daily interest rate changes.
Existing studies, such as Stanton (1997), have typically used interest rate observations
during this sampling period. Extending the sampling period, however, beyond this period
back to the 1950s or to early 2000s offers significant number of interest rates observations
below 2% with the lowest observation at 0.55%.

The hope thus rests in extending the sampling period instead of sampling frequency

2 A statistical issue involved in the nonparametric estimation of the drift function from highly persis-
tent data is the optimal choice of bandwidth which can be substantially different from that under the
iid conditions. The simulations as well as those in Chapman and Pearson (2000) both confirm that the
optimal choice of bandwidth helps to reduce the spurious bias. However, the improvement is limited.
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in order to provides reliable estimates of the drift term. The time period of historical
observations of interest rate is nevertheless inevitably limited, making the new approach
of using an expanded information set to improve the estimation of the drift function
particularly appealing.

The proposed method is similar in spirit to the method of indirect inference in that the
parameter estimates of the short rate are obtained using information about the remaining
J — 1 diffusion processes whose parameters are possibly similar to those of the short rate
diffusion. For this reason the additional diffusion processes are referred to as “auxiliary
models”. While both the drift and diffusion functions are estimated in the empirical
application, the theoretical results and simulations are focussed on the estimation of the
drift. This is motivated by the difficulty of identifying the drift nonparametrically as
underlined earlier.

Let u,(r) be a function of r, the proposed estimator of the drift function builds on

the identity

_ - pa(r)
i) = mplr) 1S (4.8)
= pp(r)e(r) (4.9)

where ¢(r) is called the “correction factor” and is defined on a set where p,(r) # 0 (see
Hjort and Glad, 1995; Glad, 1998a, 1998b). If the functional form of u,(r) was known

then the function ¢(r) can be estimated nonparmetrically by

e (T(l) 77.(1)) 1
. 1 il (t‘::():(;))m ‘]Kh(Tga) —-)
é(r) = 5 e ey (4.10)
t=0 Kn(ry —7)

. (rlrns=745), (1)

motivated by the fact that F] o1y =r1]=c(r).

6/1]1(7}5 )

However, in empirical applications, the functional form of x,(r) is unknown. Hence

a feasible estimator of the drift is obtained by replacing p,(r) by its estimate. Under the
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above conceptual framework discribed above, p,(r) can be estimated nonparametrically

by pooling the yields of all the J securities, i.e

R ]_ Z] 1 Z ( (t+1)(5 T?Etjs)) th (Tég) T)
Zj:l > im0 Kn, (ths - T)

With an estimator of p,(r) at hand, the new estimator of the drift of the short rate

(4.11)

wi(r) is given by

fia(r) = fp(r)er)

(t+1)6 Tgé)) K (1)
- 1 2t0 7(15] n(res” —7)
= (T
e o Ky — )

(4.12)

The proposed estimator is designed so as to reduce the finite sample bias of the
Stanton estimator. Intuitively, if the drift functions are identical, that is if y; = ps =
..ty = i then ¢é(r) is an estimate of unity and the efficiency gains in this case are
substantial because the proposed estimator behaves like the pooled pilot. In general when
() is not distant from g;(r) then fi,(r) is more efficient than the Stanton estimator
because the correction factor is less rough than p;(r) resulting in bias reduction. The
correction factor ¢(r) adjusts the pooled pilot if the drift functions are dissimilar so that
the proposed estimator resembles the Stanton estimator.

Proposition 4.2

Under the assumptions of proposition 4.1, the bias and variance of the proposed

estimator are:

Elin(r) — m(r)] = %m(K) [ (r) + 20’(7“)2,1 E:;]up(r) +U(r) ()8 + o(h?)
Varia() = ()] = S o)+ 82) + ofrny

where h, is the smoothing parameter of the pooled data, and I(r) = {c(r)c(r) +

507 (r)c"(r)}.
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The variance of the new estimator is approximately the same as that of the Stanton
estimator when J is large, but the biases may substantially differ. The bias of the new
estimator depends on the slope and curvature of the correction factor ¢(r) while the bias
of the Stanton estimator is a function of the slope and curvature of the drift function
p1(r) in (4.1). Consequently, when the “prior function” is identical to the drift of the
short rate, that is u,(r) = p1(r), the correction factor ¢(r) = Z;—E:; is a line about 1 hence
d(r) = '(r) = 0. As a result the finite sample bias of the new estimator is reduced
to a negligible order. Intuitively, if u,(r) is not too different from g (), the correction
factor will ocsillate around unity thus having less curvature than p;(r) which leads to
bias reduction.

Proposition 4.3

In addition to the assumptions of proposition 4.1, suppose that nh®> — 0, and vVnhd —

0, the new estimator has a limiting normal distribution:

VTh(i(r) = 1 (r)) + 0p(1) = N(0, O(r)) where O(z) = BOAL

pi(r)

Proposition 4.3 shows the asymptotic equivalency of fi;(r) and fi;(r) under slightly
stronger conditions than those in propositions 1 and 2. Both estimators converge to the
same normally distributed random variable. Intuitively there exists a large enough sam-
pling period T beyond which any marginal information is inconsequential in improving
the precision of the Stanton estimator. Thus any bias-correction by the new estimator
must be in finite samples as discussed above.

The approach proposed in this chapter is particularly relevant for the estimation of
the short rate diffusion as the yields of different maturities are available along the yield
curve. While the yields of different maturities may be determined by different economic
factors or market forces, empirical evidence suggests that the yield curve tends to behave

systematically. In particular, the expected changes of yields of different maturities are
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highly correlated. This is supported by the evidence of the principal component analysis
in Litterman and Scheinkman (1991). Litterman and Scheinkman report that there are
three major factors driving the dynamics of the US yield curve, namely the level of
short rate, the slope of the yield curve, and the curvature of the yield curve, a result for
which this study also finds support. In particular, the short rate as the level factor itself

accounts for nearly 80% variations of the whole yield curve.

4.3. Simulations

In this section Monte Carlo simulations are performed to assess the finite sample per-
formance of the proposed drift function estimator. The simulations are designed with
two goals. The first goal is to revisit the findings of Chapman and Pearson (2000). To
evaluate the finite sample properties of the Stanton estimator, Chapman and Pearson
simulate interest rate data from a CIR process and find that the drift function estimate
is linear only in the center of the support, deviating severely from the true (linear) drift
on both boundaries, in particular for interest rates above 14%. The second goal of the
simulation is to investigate whether the use of additional interest rate data from similar
diffusion processes can attenuate the bias of the short rate drift function estimate. For
computational expediency, only one auxiliary model is considered in the simulation ex-
periment. The CIR and Vasicek diffusion processes are used to model the dynamics of
the short and auxiliary rates.

The CIR processes for the short rate and the auxiliary rate are specified respectively
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as

dri) = 0.8537(0.08571 — r?)dt + 0.1566dw"
dr® = 1 x0.8537(0.08571 — r{)dt + 0.1566 + /7w
dwPdw® = pdt, (4.13)

where the parameter values are set to equal those in Chapman and Pearson. The Vasicek

processes for the short rate and and the auxiliary rate are respectively defined as:

dr) = 0.261(0.0717 — rM)dt + 0.02237VrWdw
dri? = k%0.261(0.0717 — r{)dt + 0.02237/ + r@dw”  (4.14)

dwt(l) dw,gz) = pdt, (4.15)

where the parameter values are set to equal those in Ait-Sahalia (1999b) estimated for
the 7-day Eurodollar rate. The same parameters are also used by Nicolau (2003) in his
simulations.?

The parameters k, 7, p in the auxiliary model are specified at different values in the
simulations in order the investigate the effect of different factors. The following five cases

are considered in the simulations.

e Case I (benchmark): k = =1 and p = 0. This is the ideal situation for the use of
the proposed method since both the drift and diffusion functions of the auxiliary
model are identical to those of the short rate model. The information from the

auxiliary model is no different than that from the short rate model.

e Case II (mean reversion effect): v =1, p=0, k = 0.75,1.25, and 1.5. In this case,
the short rate model and the auxiliary model converge to the same long-run mean,

but at different speeds. This case focuses on the effect of the mean-reversion level

3Chapman and Pearson (2000) only used a square-root diffusion process in their simulations.
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of the auxiliary process, or the difference in the drift of the auxiliary process, on

the performance of the proposed estimator.

e Case III (diffusion effect): k =1, p = 0, v = 0.75,1.25, and 1.5. In this case,
the short rate process and the auxiliary have identical drift functions, but different

diffusion functions. The auxiliary process is more (less) volatile when v > (<)1.

e Case IV (correlation effect): k =~ =1 and p = 0.2,0.4, and 0.8. This case allows
us to examine the impact of level of correlation between the short rate model
and auxiliary model on the performance of the new drift function estimator. As
mentioned earlier, the yields of different maturities along the yield curve tend to

be correlated with systematic co-movements.

e Case V (mixed processes): Instead of restricting both the short rate model and
auxiliary model to follow the same type of processes as in cases I through IV, in this
simulation it is assumed that the short rate r§” follows a Vasicek process while the
auxiliary interest rate r§2) follows a CIR process. This case is particularly interesting
because in empirical applications the short rate model and the auxiliary model may
have different functional forms for the diffusion component. For example, empirical
evidence suggests that yields with longer maturities are noisier than short term

yields

Two thousand paths were generated for the short rate model and the auxiliary models.
Each path simulates 31 years of daily data. Observations in the first year are discarded to
eliminate the start-up effects, which results in daily observations of 30 years. When p # 0,
the short rate model and the auxiliary model are simulated jointly. More specifically, for
the Vasicek processes, starting values are drawn from the marginal normal distributions

and subsequent values are obtained from the transitional bivariate normal density. For
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the CIR processes, the starting values are drawn from the marginal Gamma distributions
and the subsequent values are simulated using the Milshtein discretization scheme. With
the simulated sampling paths, the Stanton estimator as well as the proposed estimator for
the drift function of the short rate process are implemented. Throughout the simulations,
a Gaussian kernel is used and the bandwidth is the one that minimizes the integrated
squared error (ISE).

The drift function estimates of the Vasicek and CIR short rate processes for the bench-
mark case are plotted in Figures 4.1 and 4.2 (Panels A and B), together with the true
drift function. In Figure 4.1, the naive bandwidth is used for both the Stanton estimator
and the new proposed estimator. The results are overall consistent with the findings
in Chapman and Pearson (2000). In particular, the Stanton estimates display a signif-
icant nonlinearity at the end-points or boundaries of the support. Chapman and Pear-
son (2000) argue that such nonlinearity in the estimated drift function results from two
sources, the truncation of the observed interest rates within the interval [Tﬁgn, 7‘%&4 , and
the well-known boundary bias of the nonparametric estimator. While the new method
has a much reduced nonlinearity towards the boundaries, it remains a poor estimate of
the linear drift function.

Figure 4.2 plots the drift function estimates of both the Stanton estimator and the new
proposed estimator for the Vasicek and CIR models using the ISE-minimizing bandwidth.
The results of both estimators are substantially improved compared to those in Figure
4.1 where the naive bandwidth is used. The “spurious” nonlinearities in the Stanton
estimates are dramatically reduced. Mild nonlinearities are observed at the end points
of the support because of the well-known boundary bias problem. The difference in the
results also highlights the importance of the smoothing parameter. When the smoothing

parameter is appropriately chosen the Stanton estimator performs well in the interior
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of the support. As expected, the new estimator significantly outperforms the Stanton
estimator with visibly less bias towards the boundaries. Since in this simulation, the
auxiliary model is identical to the short rate model, the effect of using the auxiliary model
is equivalent to doubling the sample size or the sampling period. The improvement of
the new estimator is similar to that in Chapman and Pearson where 15,000 or 60 years
of daily observations instead of 7,500 or 30 years of daily observations are used.

Tables 4.1 and 4.2 report the mean integrated absolute bias (MIAB) and the root
mean integrated squared error (RMISE) of alternative estimates for the drift function
of the Vasicek and CIR processes. Panels A and B (the benchmark case) of tables 4.1
and 4.2 confirms that the proposed estimator has substantially lower bias relative to the
Stanton estimator for both the Vasicek and CIR models. With the optimal bandwidth,
the MIAB of the new estimator is just over 20% of the bias of the Stanton estimator with
the RMISE also substantially reduced.

The bias and RMISE of the new and Stanton estimators for the remaining cases are
also reported in tables 4.1 and 4.2. No plots are produced for these estimates for brevity.
Panel C (case II) reports the performance of the new estimator when the auxiliary model
has the same type of process but a different mean reversion parameter for the Vasicek
and CIR models, respectively. The results indicate that allowing the auxiliary process
to have a somewhat faster or lower mean-reversion (case II) does not significantly affect
the bias of the new estimator relative the benchmark case for the Vasicek model. For
the CIR model, when k& = 1.5, the bias has more than doubled relative to the benchmark
case but remains considerably under the bias of the Stanton estimator. The admirable
performance of the proposed estimator in this case can be explained by the fact that the
drift functions p;(r) and py(r) are not far apart hence the correction factor oscillates

around unity, thus is easier to estimate than the underlying true drift of the short rate.



74

The results reported in Panle D (case III) show that the performance of the new estimator
relative to the benchmark is improved when the auxiliary rate is more volatile than the
short rate. This is because an increased volatility also means less persistence of the
auxiliary rates, thus more information.

The results in Panel E (case IV) of tables 4.1 and 4.2 indicate that a low (p = .2)
to moderate (p = .4) correlation between the Wiener processes wM and w® does not
drastically affect the performance of the new method relative to the benchmark case.
However, for p = 0.8, the RMISE if the new estimator deteriorates for both the Vasicek
and the CIR models. Intuitively, as p — 1 the observations become more and more
similar, reducing the information added by the auxiliary process.

How does the new estimator perform when the auxiliary model is different from the
model to be estimated? To answer this question, a case where the auxiliary model
is the CIR process while the model to be estimated is the Vasicek process is studied.
The Vasicek model is simulated using the parameter values in Nicolau and the auxiliary
CIR process is simulated using the parameters in Chapman and Pearson. The mean
integrated absolute bias (MIAB) and root-mean integrated squared error (RMISE) of
the new estimator with 2,000 replications are reported in Panel F of Table 4.1, which
are equal to 0.0989 and 1.087, respectively. The MIAB is about twice that of the new
estimator for case I where both the auxiliary and the short rate processes followed a
Vasicek diffusion but is less than half of the bias of the Stanton estimator. The root-
mean integrated squared error (RMISE) of the new estimator is also considerably lower
than that of the Stanton estimator. The good performance of new estimator is explained
by the functional similarity between the underlying drifts even though the processes are
not identical.

The performance of the proposed estimator in these finite sample experiments is
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quite satisfactory. The incorporation of additional observations from auxiliary interest
rate processes has the effect of expanding the local information even in the edges of
the support thus leading to bias reduction. The simulation experiments also show that
the new estimator performs most admirably against the Stanton estimator even if the
drift functions of the short and the auxiliary rates are not identical. This represents a
strength of the proposed estimator since in empirical estimation, it impossible to know
if the processes are dissimilar, similar and if so to what extent. Overall, the simulations

indicate a strong potential for the new estimator in empirical applications.

4.4.  Empirical Application

4.4.1. The Data and Estimation Results of the Short Rate Diffusion Parameters

The data in this empirical analysis consists of daily US 3-month T-bill rates from January
1954 to November 2004 with 12,704 daily observations over more than 50 years. This
data has the longest sampling period among all existing studies. The additional yields
along the yield curve are from February 1962 to November 2004 with 10,676 observations
for the 6-month T-bill, 1-year T-bill, and 3-, 5-, and 10-year T-notes. The 3-month T-bill
yields are used to proxy for the short rate. In other words, there are 12,704 observations
on the short rate process which is the one to estimate and 10,676 observations on each
of the five additional “auxiliary” diffusion processes. Figure 4.3 plots the time series of
the daily 3-month Treasury yields and the daily changes in panels A and B, respectively.
The time series plot reflects the wide range of observations of the 3-month T-bill yields
over the sampling period, and the first difference reflects some large changes of the 3-
month T-bill yields from day to day. The visibly large daily changes of 3-month T-bill

yields are associated with the unusually high levels of yields during the later 70’s and
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early 80’s, indicating different behavior of interest rate at different levels. Descriptive
statistics of the data are reported in table 4.3. The average yields of different maturities
suggest that the yield curve is overall upward sloping, and the standard deviations of
the daily yield changes suggest that the yield curve is more volatile over the short end
than the long end. Both skewness and kurtosis statistics indicate that interest rates
are non-normally distributed. The minimum and maximum observations confirm again
the wide range of interest rates over the sampling period. For instance, the 3-month
T-bill yield has a minimum value of 0.55% and a maximum value of 17.14%. Although
the autocorrelations in the interest rate level decays very slowly, those of the day-to-day
changes are generally small and are not consistently positive or negative. The augmented
Dickey-Fuller nonstationarity test is used to check whether the interest rate follows a unit
root process. The augmented Dickey-Fuller test statistic for the 3-month T-bill rates has
a value of -2.86 which is compared to the 10% critical value of -2.57. That is, the null
hypothesis of nonstationarity is rejected at the 10% significance level for the 3-month
T-bill time series. Since the test is known to have low power, even a slight rejection
means that stationarity of the series is very likely. Similar results are obtained for the
time series of yields with longer maturities.

Table 4.4 also reports the correlation matrix and principal components of daily interest
rate changes. The correlation matrix suggests that the changes of interest rates along the
yield curve are highly correlated. For instance, the daily changes of 3-month and 6-month
T-bill yields have a correlation of nearly 86%. The principal component analysis reports
similar results as in existing studies. Namely, there are mainly three factors driving the
dynamics of yield curve, the level, the slope and the curvature. In particular, the short
rate explains more than 80% of the total variation of the yield curve dynamics, suggesting

the importance of modeling the short rate process.
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With the panel of yields, the proposed estimator is implemented along with the CIR
and the Vasicek models. Figure 4.4 plots the nonparametric drift function estimates
based on the new estimator using 3-month and 6-month yields (Panel A) as well as the
yields of all maturities (Panel B), together with the Stanton nonparamnetric estimates
and the CIR linear drift function using only the 3-month T-bill yield. The 95% pointwise
confidence bands of the new estimator are also plotted. Panel A of Figure 4.4 suggests
that both the Stanton nonparametric drift function estimates and the new drift func-
tion estimates are highly nonlinear and significantly different from the CIR linear drift
function, particularly at high level of interest rate. However, even though the Stanton
estimates are visibly different from the new estimates with the new drift function esti-
mates exhibiting less nonlinearity or mean reversion, the Stanton estimates stay within
the 95% confidence band of the new estimates. This is expected since the 6-month t-bill
yields are highly correlated with the 3-month t-bill yields and add only limited informa-
tion to the drift function estimation of the 3-month t-bill process. On the other hand,
in Panel B where all the yields of various maturities up to 10 years are used in the drift
function estimation, there is further difference between the Stanton estimates and the
new estimates of the drift function. Noticeably, the new drift function estimates become
more flat relative to those plotted in Panel A. The use of information from the yields
of different maturities produce more efficient estimates of the drift function. More in-
terestingly, the Stanton estimates are now outside the 95% confidence band of the new
estimates for high level of interest rate.

The diffusion function estimate using the yields of all maturities is plotted in Panel
A of Figure 4.5, together with the Stanton estimate and CIR diffusion function using
only the 3-month T-bill yield. Note that the diffusion function estimates have a much

narrower 95% confidence band relative to the drift function estimates, further confirming
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that the inference of the diffusion function is much reliable. Again, both the Stanton and
new diffusion function estimates are highly nonlinear, with the volatility of short rate
process increasing sharply first as interest rate level increases and then drops off slightly
at the very high level of interest rate. Relative to the Stanton estimates, however, the
new diffusion function estimates suggest less dramatic increase of volatility as interest
rate increases. In particular, the Stanton estimates are substantially above new diffusion
function estimates for high level of interest rate. This is consistent with the drift function
estimates. It is also noted that the CIR diffusion function is extremely low compared to

both the Stanton and new estimates.

4.4.2. Implications of the Drift Function on Bond Pricing and the Valuation of Interest

Rate Derivatives

This section examines the implications of drift function estimates on the prices of both
zero-coupon bonds and interest rate derivatives. Unlike assets such as equity or foreign
currency where the drift function of the underlying asset return process does not appear
in the risk-neutral process, the drift function of the interest rate enters directly into
its risk-neutral counterpart. The risk-neutral process corresponding to the short rate

diffusion defined in (4.1) is given by

diy = (u(7e) — M7e))dt + o (ry)diy (4.16)

where A(7;) = Ao(7¢)o(r) is the market price of interest rate, and w; is a standard
Brownian motion under the equivalent martingale measure Q).

The market price of interest rate can be nonparametrically estimated following the
procedure in Jiang (1998). Since the market price of interest rate risk is fully determined

by the short rate, it can be straightforwardly estimated from any two non-dividend paying
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assets. Suppose Y (ry, T) represents the yield with r; at ¢t and maturity 7 =7 — ¢, and
dY (ry, 7) = a(re, 7)dt + K(ry, T)dWy

Following It6’s lemma and using (6), an estimator of time-stationary Ay(r;) can be derived

as

5\ (T ) . Yd(rt’leTZ) + %(7—12’{/2(7‘75,7—1) _— T§H2(Tt,T2)) + TQO{(Tt’TQ) — 7_104(7'75,7'1)
o\’t) —

(4.17)

Tok(re, To) — T1K(T, T1)
where 7, =T; —t,i =1,2,Yy(ry, 71, 70) = Y (ry,71) — Y (14, 72) is the yield spread between
maturities 7y and 7. The 3-month and the 10-year yields are used to estimate the market
price of interest rate risk, which is plotted in Panel B of Figure 4.5.

The prices of interest rate derivative securities can be computed based on the sim-
ulation of the risk-neutral process in (4.16). Simulations of the sample path are often
performed using either the Euler scheme or the Milshtein scheme in the literature. In

this chapter, the Milshtein scheme is employed:

T?m+1)T/n = T%T/n +(M(TZLT/n - )\(T?nT/n))T/ n+o (T%T/n)(W(erl)T/n - WmT/n)

+502 (T ) (Winaiyr/n = Wanzya)® = T/n) (4.18)

with 7y = ro. It is noted that the Milshtein scheme has better convergence rates than
the Euler scheme for the convergence in LP()) and the almost sure convergence (see
Talay, 1996). In financial applications of the Monte Carlo simulation methods, a number
of variance reduction methods have been proposed, e.g. the control variate approach,
the antithetic variate method, the moment matching method, the importance sampling
method, the conditional Monte Carlo methods, and quasi-random Monte Carlo methods
(see, e.g. Boyle, Broadie and Glasserman, 1996). In these simulations, the antithetic
variate method is employed in reducing the sample variance. The conditional expectation

of the final payoff under the risk-neutral dynamics gives the prices of the interest rate
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contingent claims. Since the behavior of the drift is only debated at the relatively high
levels of short rate, it has potentially the highest impact on the valuation of interest rate
caps. For this reason the proposed estimator is used to price various interest rate caps.

First the impact of the proposed drift estimator on the valuation of bonds is analyzed.

Valuation of Bond Prices The price of a zero-coupon bond with face value P(ry, T, T)
=1 is given by
T
P(rot,T) = EQfeap{— /t Fudu)]

To investigate the impact drift function estimate on the bond price, zero-coupon
bond prices are generated using three alternative estimations of the drift and diffusion
parameters, the CIR estimates, the Stanton estimates, and the estimates of the proposed
method. The prices are computed based on 2000 simulated risk-neutral interest rate paths
using the Milshtein scheme and the antithetic variate method to reduce the variability
of the results. Two thousand simulated bond prices with maturities of 3, 6-month, 1, 3,
5, 10, and 30 years are computed using the proposed estimator, the Stanton estimator
and CIR estimator. Converting the prices to yields, the yield curves with three starting
values of interest rate are plotted in Figure 4.6. The 95% confidence bands of the proposed
estimator are also calculated and plotted with the yield curves. As expected, the yields
of the Stanton estimator are significantly higher than the yields implied by the proposed
estimator for higher interest rates, which is consistent with the fact that the proposed

estimator has a lower mean-reversion at higher levels of interest rate.

Valuation of Interest Rate Cap Prices The value of a interest rate cap is determined
by its cash flow over its contract period. The cash flows of an interest rate cap with a

notional principal equal to $100 at time ¢ are:

100 x max[(Y (¢t — At;t) — Ys)At; 0] (4.19)
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where t = ty;t9;- - - ;t, are the payment dates (reset of At occurs in advance before the
payment date), t,, is the last payment date and is often referred as the cap tenor, n is the
number of payment dates, Y (¢ — At;t) is the annualized cap interest rate over the period
(t—At; t], Ys is the annualized cap strike rate. The cap prices are reported in table 4.5 for
different strikes prices (in basis points), tenors (in years), and annualized spot rates. The
results are based on 2000 simulated interest rate paths under the risk neutral measure.
Again the antithetic variate method is used to reduce the variance of the simulated prices.
The prices implied by the proposed estimator are found to be significantly different from
the Stanton prices and the CIR prices at the 95% level. Consistently with the plots of
the drifts, the prices implied by the new estimator are higher that the Stanton prices for

higher interest rates as expected.

4.5. Conclusion

This chapter has proposed a nonparametric estimator for the short rate diffusion process.
The proposed estimators attempts to reduce the bias of Stanton’s nonparametric esti-
mator by exploiting information from a panel of yields of different maturities including
the observations proxying for the short rate. The simulation results indicate that the
proposed estimator significantly attenuates the spurious nonlinearities of the Stanton es-
timator. Using the longest time-series of short rate observations used in empirical studies
(50 years of the US three-month treasury bill) and six additional time-series on US trea-
sury bills and bonds, the estimator proposed in chapter III is applied to the estimation
of the parameters of the US short-term interest rate. The empirical findings corroborate
the results of Stanton (2000) and Jiang (2000) about the nonlinearity of the short rate
drift function for high levels of interest rate, however, the mean-reversion is significantly

weaker in the results of this study.



82

TABLE 4.1. The Simulation Results of Vasicek Model

MIAB RMISE MIAB RMISE MIAB RMISE

Panel A: Benchmark Stanton (1997) estimator
hiia hropt

1.8317 7.8938 0.2400  2.3810

Panel B: Benchmark new panel estimator (Case I: k =y =1, p = 0)
hiid hopt

0.6001 5.4872 0.0530  0.8769

Panel C: Effect of mean reversion (Case II: v =1, p = 0)
K =0.75 k=1.25 k=15

0.0521 0.8650 0.0526  0.9997 0.0571 1.0533

Panel D: Effect of diffusion (Case III: kK =1, p = 0)
v =.75 v=1.25 vy=1.5

0.0873 1.3223 0.0.0459  0.8759 0.0477  0.7237

Panel E: Effect of correlation (Case IV: k =y = 1)
p=0.2 p=04 p=0.8

0.05550 1.0431 0.0656 1.1520 0.0878 1.4972

Panel F: Effect of mixed models (Case V: sk =v =1, p =0)
Auxiliary model: CIR

0.0.0989 1.087

Note: MIAB and RMISE denote mean integrated absolute bias and root mean
integrated squared error, respectively.
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TABLE 4.2. The Simulation Results of CIR Model

MIAB RMISE MIAB RMISE MIAB RMISE

Panel A: Benchmark Stanton (1997) estimator
hiia hopt

1.2597 10.4216 0.3581  3.7215

Panel B: Benchmark new panel estimator (Case I: k =y =1, p = 0)
hiiq hopt

0.4025 4.4719 0.0798 1.9198

Panel C: Effect of mean reversion (Case II: vy =1, p =0)
Kk =0.75 Kk =1.25 k=15

0.1038 1.7411 0.1275  1.9506 0.1998 2.2551

Panel D: Effect of diffusion (Case III: K = 1, p = 0)
~v=.75 v=1.25 vy=1.5

0.1433  2.1651 0.0459 1.6588 0.0402 1.8696

Panel E: Effect of correlation (Case IV: kK =y =1)
p=0.2 p=04 p=0.8

0.0828  2.1345 0.0952  2.3223 0.1441 2.9607

Note: MIAB and RMISE denote mean integrated absolute bias and root mean
integrated squared error, respectively.



TABLE 4.3. Summary Statistics of Interest Rates
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T Mean* StDev Skew Kurt Min Max p1 P2 03 P4

Panel A: Summary Statistics of Daily Interest Rates

r3M 5.226  2.848 1.060 1.684 0.550 17.140 0.999 0.998 0.996 0.995

r6M 5910 2.730 0.927 1.415 0.800 15.930 0.999 0.998 0.997 0.996

rlY 6.365 2.932 0.945 1301 0.880 17.310 0.999 0.998 0.997 0.996

r3Y 6.795 2.741 0.907 0.989 1.340 16.590 0.999 0.998 0.997 0.996

r5Y 7.009 2.630 0.959 0.878 2.080 16.270 0.999 0.998 0.997 0.997
rl0Y  7.229 2515 0.969 0.656 3.130 15.840 0.999 0.999 0.998 0.997
Panel B: Summary Statistics of Daily Interest Rate Changes

Ar3M  -0.609 0.102 0.202 26.11 -1.270 1.340 0.139 0.018 -0.024 0.039
Ar6M  -0.618 0.090 0.296 23.74 -1.100 1.170 0.116 0.039 -0.001 0.031
ArlY -0.758 0.092 -0.194 21.39 -1.080 1.100 0.115 0.045 -0.001 0.033
Ar3dY -0.665 0.081 -0.180 13.26 -0.790 0.920 0.117 0.029 0.003 0.004
Ar5Y  -0.440 0.076 -0.305 11.42 -0.770 0.720 0.112 0.026 -0.001 -0.006
Arl0Y 0.103 0.068 -0.273 10.08 -0.750 0.650 0.088 0.029 -0.005 -0.018

Note: * The mean for the daily change of interest rate has a magnitude of 10~%.
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Correlation Matrix and Principal Components of Daily Interest Rate

Panel A: Correlation Matrix of Daily Interest Rate Changes

Ar3aM  Ar6M

ArlY Ar3Y ArbY Arl0y

Ar3M
Ar6 M
ArlY
Ar3Y
Ar5Y

1.0000

0.8564 1.0000

0.7462 0.8720
0.6076 0.7451
0.5684 0.7063
Ar10Y 0.5039

0.6343

1.0000
0.8546
0.8121
0.7434

1.0000
0.9401 1.0000
0.8754 0.9251

1.00000

Panel B: Principal Components of Daily Interest Rate Changes

Factor %
1 8.8759 8.6152 9.0454 7.6667 7.0018 5.8645 0.809
2 -5.1705 -2.3409 0.2146 2.8958 3.2404 3.2790 0.121
3 2.1203 -1.4016 -2.5534 0.2010 0.9380 1.4054 0.034
4 0.7978 -2.2113 1.4981 0.4569 -0.2175 -0.6072 0.017
5 -0.0270 0.2172 -0.7848 1.7024 0.2252 -1.5623 0.013
6 -0.0048 0.0429 -0.0851 0.7668 -1.3537 0.6892 0.006




TABLE 4.5. Parametric and Nonparametric Valuation of Interst rate Caps

Spot Rate Cap Tenor Strike Price
-50 -25 0 25 50
0.05 3 3.0199  2.4089 1.8709  1.4165 1.0466

(0.2464) (0.3383) (0.4424) (0.5407) (0.5632)
32331 26177 20711 1.6060  1.2258
3.1532  2.6323  2.1743  1.7814  1.4520

5 6.4768 54566  4.5331  3.7213  3.0345
(0.4099) (0.5556) (0.7283) (0.8718) (0.9703)
7.3886  6.3579 54090  4.5544  3.8082
6.6175 57646  4.9992  4.3284  3.7409

0.10 3 2.6807 2.1420  1.6708  1.2729  0.9543
(0.4617) (0.5656) (0.6414) (0.6857) (0.6718)
2.5740  2.0554  1.6015 1.2294  0.9374
3.4744  3.0183  2.6048 22379  1.9177

5 53480  4.9561  3.6810  3.0033  2.4348
(0.9528) (2.2740) (1.2479) (1.3360) (1.3735)
55414  4.2644  3.9160  3.2447  2.6825
7.1835  6.8973 57762  5.1683  4.6162

0.15 3 27397 23277  1.9669  1.6567  1.3906
(1.0298) (1.0851) (1.1081) (1.0933) (1.0464)
2.2901  1.9074  1.5744  1.2932  1.0589
3.6975  3.2755  2.8883  2.5391  2.2284

5 55923  4.9561  4.3834  3.8767  3.4329
(2.2146) (2.2740) (2.2988) (2.2866) (2.2392)
4.8808  4.2644 37174  3.2435  2.8393
7.5667  6.8973  6.2738  5.7041  5.1817

Note: Cash flows are paid over a one-year period according to the formula: 100 x max[(Y (t—
1;t)—Ys)At; 0] with Y (¢—1, t) being the annually compouded 12-month interest rate, and Yg
the strike price of the cap, which is the difference between the strike rate and the prevailing
spot rate. The fours elements from top to bottom are: the nonparametric prices using the
proposed estimator, its standard errors (in parentheses), the nonparametric prices using the
Stanton estimator, and finally the CIR prices.

86
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FIGURE 4.1. The Drift Function Estimates of the Vasicek and CIR Models with the
Naive Bandwidth

Panel A: The drift function estimates of the Vasicek model
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FI1GURE 4.2. The Drift Function Estimates of the Vasicek and CIR Models with the
Optimal Bandwidth

Panel A: The drift function estimates of the Vasicek model
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FIGURE 4.3. Daily and Daily Changes of US 3-month T-bill Yields

a. Daily U.S. 3—month T—bill Rates (January 1954 —— November 2004)
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FIGURE 4.4. The Nonparametric Drift Function Estimates
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F1GURE 4.5. The nonparametric Diffusion Function and Market Price of Risk Estimates
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FIGURE 4.6. The simulated Yield Curves from Alternative Short Rate Processes
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5. DISSERTATION CONCLUSIONS

The passage of the Emergency Planing and Community Right-To-Know Act in 1986
and the subsequent creation of the Toxic Release Inventory have dramatically lowered
informational asymmetries between consumers and the financial markets on one hand
and polluting firms on the other. Consequently, corporate environmental responsibility
is no longer limited to compliance with mandatory pollution regulations. As evidence
has suggested in recent empirical literature and in this study, it also includes proactive
policies of self-regulation. The research in the second chapter can be extended in more
than one direction. Since the EPA-sponsored VPRs are not enforceable, most of the em-
pirical literature has focused on studying the effectiveness of such programs. However,
the mechanism by which a voluntary program achieves pollution reductions is yet to be
investigated empirically. It could be that participation in a VPR, in and of itself, creates
greater environmental consciousness on the part of corporate management, thus leading
to pollution reductions. Or it could be that participation in these programs leads to the
adoption by firms of environmental management policies such as the creation of an envi-
ronmental audit department or the adoption of total quality environmental management,
which are responsible for long-term environmental improvements. Another potential re-
search avenue is the empirical study of the bi-directional links between environmental
innovation and VPRs. It would be very interesting to know if participation in these
overcompliance programs triggers an increase in environmental technological innovation
in terms of an increase in environmental patents or if only firms with the technological
edge at the onset are more likely to participate.

As seen in the simulations herein, the new estimator developed in the third chapter
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of this manuscript works admirably well against the ordinary nonparametric estimator
as well as a number of related estimators when the regressions functions are identical.
Equally importantly, the proposed estimator did not lose much efficiency against the
individual nonparametric estimator even when the curves are quite different. This and
the fact that knowledge of the extent of similarity is not required to be known or modeled
represent the main strengths of the estimator. The empirical application of the new
estimator in chapter four illustrates the ease with which it can be implemented. The new
estimator can be applied to a variety of empirical problems. For example, when rating
crop insurance policies, the proposed method can be used to estimate the temporal
process of county yields more precisely by incorporating information from neighboring
counties within, say the same crop-reporting district. Other applications of the proposed
estimator include the estimation of the growth curves in general when more than one

experimental unit is available.



A. List oF THE CHEMICALS TARGETED By THE 33/50 PROGRAM.

Benzene Lead and Compounds Tetrachloroethylene
Cadmium and Compounds | Mercury and Compounds Toluene
Carbon Tetrachloride Methyl Ethyl Ketone Trichloroethane
Chloroform Methyl Isobutyl Ketone Trichloroethylene
Chromium and Compounds Methylene Chloride Xylenes

Cyanides

Nickel and Compounds

Source: 33/50 Program The final record, EPA march 1999
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B. PROOF OF PROPOSITION 3.1.

In what follows the subscript j is dropped for simplicity.

1. Under assumptions A1-A4, the mean and variance of the proposed estimator are

Bli(s) - m(z)] = ush? [7"”<w>+2r'<x)f'(””)

f(z)
Var[m(z)] = % + O(h/n + (Nhy)™h). (B.2)

] mp(z) + o(h?) (B.1)

p(z) mp(z)

Proof: m(z) = %E" K, (X, —x) <%) (mp(Xi)>' A Taylor series expansion of (X)) around

mp(z)
mp(X;)

yields

() ~ - ; RN mp(z) | 1p(x) — mp(T)

().

The expressions

1< € My(x) —my(x
_ZKh(XZ_I)AZ P( ) XP( )
n < flz)  mp(Xi)

and

1 . )G mp(z) 1hp(X;) — mp(Xi)
Dl T FN0 & R b

2
&
B
N
>
|
&
&
213
&
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Ay
f(=)

proposed estimator.

where is the proposed estimator with a non-random start. First let’s find the bias of the

E(A, — mp(z)r(z)f(z) = my(z)E <n—1 > Kn(Xi —2)(r(X) + € — r(w)))
=1

= my(z)E <n1 En: Kp(Xi — z)(r(X;) — T(w)))
by the law of terated cxpectations

= my(o) [ Ka(Xs — ) (r(X0) — r(a) F(X)AXs

— my(a) /K(w) (r(z + hw) — r(z)) £(z + hew)dw
after a change of variable

#2 (mp()f (2)r" (@) + 2mp(@) (@)1 (2)) pa(K) + o(h?).

Denote B and B2 respectively the first and second terms of B,,.

B(BY) = B Ku(X: —)r(X0)Ex, (np(a) — my(a))
i=1

_ %mhf, <mg(x) + 2m! (x) 9@, 0(h§)> E (% S Kn(Xi - :U)T(Xi)>

= Bias(y(z) (r(z)f(z) + O(h?)).

where g(z) is the density of the pooled data.

Similarly, it can be seen that E(B2) = Bias(my(z) (r(z)f(z) + O(h?)).

Since B, = B} — B2, it follows that E(B,) = 0 ignoring terms of O(h*) and smaller order (s.0)
terms. Hence E(m(z) — m(z)) = ﬁE(An — my(z)r(z) f () + 0,(1).

Now turning to the variance. It is easily verified that

Var[A,] = 0?(nh) ' R(K) f(x) + O(h/n).
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Also, Var(By)) = Var(B}) + Var(B2) — 2Cov(B, B2)).
Var[Ex,(By)] = Var[n™' ) r(Xi) Kn(X; — z) Ex; (iy(x) — my(x))]
i=1

_ O(h;;)Var[% f: (X)) Kn(X; — )]
= o(hy) -
E[Varx,(B,)] = E(Vm"xi[% ér(Xi)Kh(Xi — x)(rhyp — mp)])
- 0[(th)—1]%132”: r2(X)K2(X; — z) +
=
Ol(NHy) ) 32 X0 (X~ K (X — ) - BB
i
= 0[(th)_1]%E z”; (X)) Kjp (Xi — ) +

n(n — 1)

O[(Nhy)~'] [Br(X1)Kn(X1 - z)]* + O(hy)

= o((Nhp) ™) + O((Nhy) " + hy)

Since Var[B;] = Var|Ex,(B;)] + E[Varx;(B;)] and using the fact that hj o (Nhy)™* for
optimal rate of convergence of the asymptotic MISE of 7n,(z), it follows that Var[Bl] =
O(Nhp)™1) + o(Nhy) L.

Similar calculations give Var[B2] = O(Nh,)~!)+0(Nh,)~!. Let us find the covariance between
B} and B2. First, note that

Ex; x; [(p(x) — mp(z) (hp(X;) — mp(X;)] = Covx; x; (thp(x), p(Xi))+

Bx,x, () — mp (@)} B [0 (X;) — my ()]

Furthermore, the covariance between 7, (z) and 7, (X;) is given by

o? z—X;
Cov(rp(z), hp(X;)) = WKOK( :

), where K o K is the convolution Kernel.
It follows that

Cov(By, By) = O((Nhp)™") +o((Nhy) ™).
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Using the same procedure as above, it is found that
Cov(A,,B,) = O(Nh,)™! after ignoring s.o terms.

It follows that Var[m(z)] = o?(nhf(z))*R(K) + O(h/n) + O(Nh,)~!. This completes the

first part of the proof.

2. Under the assumptions A1-A6, m(x) has a limiting normal distribution:

Write (1a(z) — m(z))f(z) = Cn + Dn + 0p(h2) where

Co = mp—(g”)zmxi — )(r(Xi) - ()

" 1=1
—l—l ZKh(Xi — 2)r(X;) (1 (z) — mp(z))
=1
Ly mple)
_ ; Kp(X; — ) m:(Xz-)r(Xz)(mp(Xi) —my(X;)
and

_ my(x) € -
D= zzz;mzn(Xz')Kh(XZ )

From the first part of the proof of the theorem, it can be seen that

2
E(Cy) = % (mp(@)f (@)r" () + 2my(2) f'(2)r' (2)) p2(K) + o(h?)

and that

1
?’Llhp +n2hp+ ...... -I-thp).

Var(Cy) = o(h?) + O(

By assumption A5, njh, — oo V j = 1,...., J; hence the last term of the variance of C;, can be
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ignored for a reasonably large J. Combining the expectation and variance of C,, it follows that

Cn = E(Cn)+0p(h2)
h2

= 5 (mp(@)f ()" () + 2my (2) ' (@) (2)) pa(K) + 0y (1)

= f(@)B(h) +0p(h%);

Similarly, E(D,) = 0 and Var(D,) = (nh) ! (c?R(K)f(z) + o(1)) . D, is a triangular

array of i.i.d. random variables; thus, under assumption A6,

(2) |

+4é
(nh)_5/2E ‘% E |€i|2+6E | K (X; — m)|2+5 h~' >0 as n — oo.
mp i

Hence we can apply Liapounov’s central limit theorem to obtain v/nh(D,) — N(0, f2(z)X).

Since plimf(z) = f(z), it also follows that

Vnh(m(z) — m(z) — B(h)) = \/rﬁ% + 0p(1) = N(0,%). (B.4)

This completes the second part of the proof.
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C. PROOF OF PROPOSITIONS 4.2 AND 4.3.

The methodology of proof adopted here closely follows closely that of Nicolau (2003). The
following regularity conditions are required:
(1) each of the J interest rate processes satisfies assumption Al in Nicolau (2003), i.e each
process has a unique strong solution,
(2) each of the J interest processes satisfies assumptions A1l and A2 in Nicolau (2003), i.e each
process has an invariant density p;(r),j = 1...J,
(3) under assumption A4 in Nicolau (2003), the short rate diffusion process is p-mixing, meaning
that for square integrable functions v, (r) and wy(r), p(v, (), w,(r)) — 0 as n — oo,
(4) the Kernel function K (u) satisfies assumption A4 in chapter two.

Again for notational convenience the superscript (1) indicating the short rate and the sub-
script (1) indicating its drift and density are omitted. The proof of propositon 4.1 is similar to
the proof of proposition 4.2 thus not provided.

C.1. Proof of Proposition 4.2

fp(r) pp(r)

A Taylor series expansion of 7inred) around 10 (res) yields
n—1
X 1 (rt4+1)5 — T5) [ pp(r) ]
r) o~ — Ky (ris —
,Lt( ) np(T) pn h( to T) 5 /'Lp(rtﬁ)
n—1 ~ ~
L Ky (s — ) =) lr) =) _ ) ) 1)
np(r) = é pip(Tts) pip(T1s) fip(Tts)
1
= N An + Bn
p(r)[ ]
Bla(r) — ()] = —— B(An — pplr)e(r)p(r) + ——E(By) + 0,(1)
M 1% p(?") n Hp p p(r) n p
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A ~ 1)
B(An = pp(r)e(r)p(r)) = (ZKH -1) t;;f(m . —c(r)1>

= Mp_() (Z Kp(re —r)fe(re) +1(re)d — C@")])
- /K olr + h2) + (3 + h2)d — e(r)|f (r + hz)dz
= pp(r){l(r)é + %#2( )[¢" (r)p(r) + 2 (r)p'(r)]} + o(h® + 6)
It is can be seen that E(B,) = 0 after ignoring terms of the orders h;}, hf,é and smaller.

Hence

2

Bli(r) — u(r)] = )13 + o (B[ (r) + 2c'<r>jj'1—§’;§1} To(h +4).  (C.)

where [(r) is as defined in proposition 4.2. Now turning to the variance, we have:

Varlp(r)] = [Var(ﬁf(l:)) + Var(pBE:)) +2Q] where Q = Cov(%, 1%)
An ] g ((An = D)p(r)
var i) = ver (58

2(y n-l Tiis — T
B0y LS Kyt - [T

p2(r) n —0 5Np(7't)
n—1
1 1 1
= ———Var{— g(TtJa""(t—l—l)J)}
2
p(r)?> Th vn t=0
where
rt(; — r T(t+1)8 — )
K -
9(Tt6,T(t11)6 [ 5Mp (145) —elr)]
Let

3(ri5,rrn)s) = 9(res, Te41)5) — E(9(ress r41)6))-
E§(rt5,7(14+1)5) = 0 and E(§*(r45,7151)8)) = E(9*(res, Tt+1)6)) — [B(9(res, T(e41)5))]*-

B(g(rus:esns) = up<r)\/§E{%iKh<m—r)[M—c(r)]}

5,“17(7"156)
= pp(r)VhSO(R? +68) = 0



9, \0

r

E(g*(ri5,7(t+1)5)) = Mp(T)EEKZ(Tt‘Sh_ )E[{r(?;;ir;;w )i
= i) /KQ(z)[a2(r +ha) + O(h%)]%dz

= o2(r)R(K)f(r) + O(h* +6) < >

The next step is to find the autocovariance function of g(rss,7(;4.1)5)- For t =0,

rg— 7T rs—T., T§—T0

Blg(ro; ra)g(rsiras)) = ui(?“)éE[K( DKL E — a) »
26 —
e itial]
By the law of iterated expectations,
Blg(rosra)g(rairan)) = 1) B2 "){(elro — efr))? + 003}

= 1p(r)s / K*(2)[(c(r) + O(h) = ¢(r))* + O(8)][p(r) + O(h)]dz

= p2(r)O(h* +6) — 0.
Under assumption 4 of Nicolau, the process is p-mixing, hence for ¢t > 1

[E(g(ro;rs)g(res; re+1)5))| < |E(g(ro;rs)g(rs;ras))| — 0.
Applying lemma 9 of Nicolau (2003), it follows that

A, 11
Va’lr[ﬁ(,r)] = (Th,) p(r)2 (E[g (rtﬁaT(t+1)J)] +0( ))

o*(r)R(K) + o(1)
(Th)p(r)

Now turning to the covariance function Q.

n

|
—

Cov(Ap, Bn) = 15 E(91(r5)92(ris)) + % > El91(ri5)92(rvs) — E[A4)E[B)]

t

Il
=)

t<t!

where g1(ry5) = Kp(res — 1) ("'(t+1)65—7't6) NI:JIES;), and

92(r1s) = Ki(rss —r) Bl [ feflcunlel — mlrifctd stk
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(C.2)
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First let us focus on the second expression of the covariance. By the law of iterated expectations,

it follows that for ¢ = 0 and ¢' = 1, E(g1(ro)ga(rs)) = O(h*h3 + h?§), driven by the fact that

E(fip(r) — pp(r)) = O(h + 0).

Again by assumption 4 of Nicolau, the process is p-mixing, thus, for ¢’ > 1
| E(g1(r0)92(r(1s))| < |E(g1(r0)ga(r5))| = O(h*hy + h?8) — 0. (C.3)

It follows that fgzt < E(91(rt5)g2(rps)) is negligible. Furthermore, the first term in the
covariance expression, H%E(gl (145)g2(rss)), is of the order of o((Th)~!) while the last term
E(Ay)E(By) = O(1)O(hy, + h26)

Similar calculations show that

Var(Bp) = ((fopw) v(r) (C.4)

where g(r) is the density of the pooled data, y(r) < oo, and N = JT.

C.2. Proof of Proposition 4.3

Let Bp(r) = fip(r) — pp(r). It can be easily shown that the pooled drift function estimator is

weakly consistent, that is Bp(r) = ey — 0 in propability as N — oo.

Write
. _ (Aa(r) = p(r) p(r)
fi(r) —p(r) = H(r)
 (A0) — )~ etr)By(r) + () By(r)) ()
B p(r)
o pp(r) T Tet1)s — T8
~ nhp(r) ;K( h 1 Spap(res) )
1 = Teg — T\ T(t+1)s — Tto
i 2o K DG —eoen)
1 = s Tt41)s — Tts pp(T)
. k(8T — c(r)}en)

nhp(r) =0 h Spp(res)  pp(res)
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Th o (B0) = ur)) T Lo 903 (e41)s)
p()( ) = VR0 +VTh[C,] + VTh[Dy)

where g(r45;7(111)5) is as defined earlier, and

. 1 inil T — T 7"(,5_|_1)5—’I"t_cr .
R N D S A e rom e A

B 1 in_l 75 — 7T\ T+1)8 — Tt5 fup(T) —e(r)e
R RN (3T LD R I A e o e o D

Using Slutsky’s theorem, it can be proved that vVTh[Cy] = VTh[D;] = 0,(1), thus asymp-

totically negligible.

ﬁ S 9(ressret1)s) ﬁ S 9(resiT+1)s)

7 VROR0) ) VRIOP™)
is enough to show that = > — N(0,1)

Since have the same asymptotic distribution, it

-1
120 9(TesiT(t+1)8)

o(r)/R(K)p(r)

E(g(ris;Te41)8)) = 11y (r)Vh6{O(h? + §)}( see proof of proposition 4.2), hence
n—1
1
E(—= Y 9(risireins)) = mp(r)(Vahd +vVnh§)O(V6) = 0 (C.5)

n
t=

o

under the assumptions of proposition 4.3, and
E(g%(r4s; T(t4+1)5)) — 0%(r)R(K)p(r) (see proof of proposition 4.2) (C.6)
Futhermore
E(g(ro;s)g(res; T141)5)) — 0 V¢ > 1 (see proof of proposition 4.2) (C.7)

It follows from equations (C.5),(C.6),(C.7), and Lemma 9 of Nicolau (2003) that:

= > gl ea) > NO ) R(E)p(0) (c3)
t=0
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