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Abstract

The thesis is devoted to the investigation of the initial-value problem for linearized

Euler equations utilizing an idealized one-reaction detonation model in the case of

three-dimensional perturbations in a circular pipe.

The problem is solved using the Laplace transform in time, Fourier series in the

azimuthal angle, and expansion into Bessel’s functions of the radial variable.

For each radial and azimuthal mode, the inverse Laplace transform can be pre-

sented as an expansion of the solution into the normal modes of discrete and contin-

uous spectra. The dispersion relation for the discrete spectrum requires solving the

homogeneous ordinary differential equations for the adjoint system and evaluation of

an integral through the reaction zone.

The solution of the initial-value problem gives a convenient tool for analysis of

the flow receptivity to various types of perturbations in the reaction zone and in the

quiescent gas.
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1. Introduction

The word “detonation” comes from the Latin word detonare - to expend thunder.

This type of combustion has been known for quite a long time. In 1747 James [2]

stated that “Detonation may be look’d upon as a Kind of Calcination, perform’d in

the Fire, by Means of Nitre, and other sulphureous Substances”. As to experimental

investigations, in 1799 it was published that “Professor Wurzer, of Bohn, ... obtained

a detonation which rendered him deaf for several days” [3].

In the present consideration the combustion will be analyzed for gaseous media

only. In general, there are two types of combustion waves in gases: detonation and

deflagration. The latter is the most common combustion phenomenon - a deflagration

wave propagates with subsonic velocity (with respect to the reactants ahead of the

wave) by means of diffusion of heat and mass. The burning medium heats the adjacent

region of reactants to the ignition temperature and the combustion wave moves on.

The characteristics of detonation are different.

A detonation process propagates with a supersonic velocity. The general scheme

is the following: reactants are adiabatically compressed by the leading shock wave,

then the species undergo preparative chemical changes inside an induction zone, that

comes right after the shock. The induction zone is followed by the region where the

reaction processes occur, converting the prepared reactants into products - this region

is called the reaction zone. The density and pressure decrease through the reaction
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zone, providing the shock wave with energy to propagate further into the reactants.

Unlike the detonation in solids, the first systematic studies of detonation in gases

were reported only in the end of the XIXth century. Two groups of French scientists

examined the behavior of gaseous explosives to find the reasons of firedamp acci-

dents in mines. In 1881 Berthelot and Vieille [4] and independently Mallard and Le

Châtelier [5] published, with a two-week difference, their first experimental results.

The measured reaction propagation speed was strikingly high - 2.5 kilometers per

second. The subsequent work of the French scientists and the thorough experiments

by Dixon [6] led to a number of theoretical models and explanations of the detonation

phenomenon.

The first qualitative theory to predict detonation speed was formulated indepen-

dently by Chapman [7] (in 1899) and Jouguet [8, 9] (in 1905). It is worth noting that

V. A. Mikhelson was the very first person to develop a similar theory of detonation

in gases. His paper was published in Russia in 1893 [10], but the publication was un-

known to the non-Russian scientific world, and the theory was named after Chapman

and Jouguet only.

The flow model, called the CJ model, depicts one-dimensional combustion waves

propagating through a reactant that is assumed to be a perfect gas. The scheme of

the flow is shown on Fig. 1.1.

Let the wave propagate with velocity D into quiescent medium of density ρq and

pressure pq - the initial state of gas. Then, let the reaction products have velocity
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Figure 1.1: Chapman-Jouguet detonation flow scheme in a fixed laboratory system
of coordinates.

ub, density ρb and pressure pb at the point where the variations of state parameters

are negligible - the point of the final state of gas. Then the conservation of mass and

momentum, written in the system of coordinates attached to the wave, gives

ρb (D − ub) = ρqD

pb − pq = ρqubD

(1.1)

By elimination of ub, these two equations can be written as one:

ℜ = ρ2
qD

2 − pb − pq

νq − νb

= 0 (1.2)

where ν = ρ−1 is the specific volume. In p − ν plane Eq. (1.2) describes a straight

line called the “Rayleigh line” [11] which has a constant slope equal to −ρ2
qD

2, the

squared mass flux per unit area.

The energy conservation condition for the wave can be written in the following
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form

eb + pbνb +
1

2
(D − ub)

2 = eq + pqνq +
1

2
D2 (1.3)

where eb = e (pb, νb), eq = e (pq, νq) are specific internal energies. The elimination

of ub and D from Eq. (1.3) by means of Eqs. (1.1) gives the equation of so called

“Hugoniot curve” [12]:

H = eb − eq −
1

2
(pb + pq) (νq − νb) = 0 (1.4)

Therefore, the Hugoniot curve (1.4) is a rectangular hyperbola in p− ν plane.

Once the initial state parameters are given, the Hugoniot curve determines the

locus of all possible final states for any detonation velocity D. For an ideal gas the

equation of state and the internal energy definition can be written as

pν = RgT,

eq = Cv,qTq =
pqνq

γq − 1
,

eb = Cv,bTb − Q̃ =
pbνb

γb − 1
− Q̃,

(1.5)

where Q̃ is the reaction heat release, Rg is a gas constant, Cv is specific heat of the gas

at constant volume, and γ = Cp/Cv is specific heat ratio. From now on it is assumed,

that γq ≈ γb ≈ γ is known, as the chemical details of the combustion mechanisms are
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rather complicated, and are beyond the scope of the present research.

The amount of heat released in a specific reaction is assumed to be constant.

The value of Q̃ can be found with the help of standard codes, such as CEA [13] and

STANJAN [14], so it is considered to be known as well.

So far, there are five unknowns, νb, pb, ub, D and eb, for four equations, Eqs. (1.1),

Eq. (1.4) and Eq. (1.5). One more constraint is needed to close the system. Further

analysis of p− ν plane may provide ideas for the possible closure.

The conservation relations (1.2) and (1.4) must be satisfied all at once, so only the

points of the lines’ intersection on p − ν plane give the steady detonation solutions.

Three possible scenarios are shown on Fig. 1.2.

Figure 1.2: Diagram of Rayleigh lines and Hugoniot curve for Chapman-Jouguet
detonation model.

For D = D1 the slope of the Rayleigh line is large enough to cross the Hugoniot

curve two times. So there are two solutions: a weak detonation at point W , and a
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strong, or overdriven, detonation at point S. It can be shown that the final state

speed for the strong solution is subsonic, D − u < c =
√
γpν, while for the weak

solution it is supersonic, D − u > c. If the Rayleigh and Hugoniot lines are tangent,

D = DCJ , then there is a unique solution called the CJ point, and for this point the

final state flow is sonic, D − u = c. For D = D2 there are no intersections, thus no

detonation solution is possible for D < DCJ .

The strong solution cannot be sustained for detonations that propagate freely:

the flow at the final state is subsonic and the shock wave can be attenuated by

perturbations propagating upstream to the shock [15]. Therefore, the strong solution

can be neglected in the further analysis of unsupported detonations. The weak and

CJ solutions are discussed below.

Chapman [7] postulated that the tangent solution, or solution with minimum ve-

locity is the only possible detonation regime, as this velocity value agrees remarkably

well with the experimental results. Jouguet [8] proposed the solution with sonic ve-

locity of reaction products to be the correct one. Also he noted that this solution

corresponds to the minimum change of entropy during the reaction. It can be shown

that the arguments of Chapman and Jouguet are equivalent.

The CJ criterion of minimum velocity provides the closure for the system of Eqs.

(1.1), (1.4) and (1.5). Also it allows to predict values of detonation velocity within the

accuracy of several percent. Nevertheless, the postulate neither explains the exclusion

of weak detonations, nor can it be justified from the physical fundamentals of the flow.
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Almost forty years after the Chapman and Jouguet hypothesis, in the beginning

of 1940s, Zel’dovich [16], von Neumann [17] and Döring [18] independently introduced

a detonation theory that extends the CJ results by the investigation of the reaction

zone.

In the ZND theory it is assumed that the shock wave is much thinner than the

zone of chemical reaction. This assumption is physically reasonable, as the number

of intermolecular collisions that can bring a molecule to a mechanical equilibrium is

much lower than the number of collisions that can initiate a chemical reaction. The

scheme of ZND detonation structure is shown on Fig. 1.3.

Figure 1.3: ZND detonation flow scheme in a fixed laboratory system of coordinates.

The reaction progress, λ, in the quiescent gas ahead of the wave is zero, λ = 0.

The shock that leads the wave is a jump discontinuity that adiabatically compresses

the gas. The shock is followed by the induction zone where the dissociation processes

develop and the matter is converted to the reacting state with a slight variation of

thermodynamic parameters, i.e. density and pressure. The induction zone is followed
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by the reaction zone that ends at the final state plane, the same as in CJ model. The

flow in the reaction zone is steady in the coordinate system connected to the shock.

The shock and the reaction zone propagate together at the detonation velocity D.

As the solution is steady between the shock and the final state, the conservation

of mass and momentum are the same as for CJ model. The equations (1.1) hold

between any points in the assumed constant state. The energy definition now depends

on the reaction progress variable λ that varies from 0 for the fresh mixture, to 1 for

completely burnt medium:

e (p, ν, λ) =
pν

γ − 1
− λQ̃, (1.6)

and the Eq. (1.4) is transformed to the form

H = e (p, ν, λ) − e (pq, νq, 0) − 1

2
(p+ pq) (νq − ν) = 0 (1.7)

The p− ν diagram for the generalized energy equation is shown on Fig. 1.4.

The detonation is steady through the reaction zone, so there is only one value for

the velocity of shock wave. Thus the single variable λ defines the state completely

as the state point moves down the Rayleigh line. On Fig. 1.4 it is shown that

immediately behind the shock the state point is N , that lies on the Hugoniot curve

λ = 0 (the gas is compressed adiabatically). As the reaction proceeds the state point
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Figure 1.4: Diagram of Rayleigh lines and Hugoniot curves for ZND detonation model.

moves down the Rayleigh line until the end of reaction zone at point S. At each

point on the Rayleigh line between N and S there is a unique value of λ determined

from the Hugoniot relation. The corresponding values of p and ν can be found from

conservation conditions (1.2) and (1.7).

Thus the state is completely specified at every point between the initial point N

and the point of the strong detonation regime S. The strong solution is excluded for

an unsupported detonation, so the only possible option for the detonation to exist is

the tangency point, or CJ regime. For the case of the overdriven detonation, both CJ

and strong solutions are possible. However, the weak solution W is still obtainable,

but only in the case when the partially reacted Hugoniot curves (0 < λ < 1) intersect

each other [17]. Such cases are called pathological detonations [15] and are beyond
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the scope of present analysis.

The ZND theory adopts an inviscid flow model. To show that the omission of

viscous effects is reasonable, the estimate of Reynolds number should be performed.

It can be done from the intermolecular collision point of view [19] as follows.

Using the Boltzmann distribution law, the probability for one molecule to achieve

an energy E in one collision is estimated as exp
(

−Ẽ/RT
)

, where R is universal

gas constant. Therefore, the required number of collisions can be estimated as ncol ≈

exp
(

Ẽ/RT
)

. The velocity of the medium behind the shock can be written asD−us ≈

cs, where cs is the sound speed behind the shock. The length of the reaction zone

can be estimated as ∆ ≈ lfpncol, where lfp is a mean free path of a particle in the

reaction zone. Let νs be the kinematic viscosity of the gas behind the shock wave,

and the viscosity can be estimated as νs ≈ cslfp. The Reynolds number estimate is

then

Res =
(D − us) ∆

νs

≈ cs∆

cslfp

≈ ncol (1.8)

and, for the typical values of activation energy, Ẽ = 50 kcal/mole, and temperature

T = 2000 K, the number of collisions is estimated as ncol ≈ 3 · 105 >> 1, therefore,

the inviscid flow model is valid for the investigations of detonation phenomenon.

The one-dimensional ZND theory is the base of theoretical detonation research

even today. However, the experiments show that the nature of detonation is es-

sentially three-dimensional. The so-called spinning detonation is an example of the

phenomenon’s complexity. In 1926, Campbell and Woodhead [20] observed that det-
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onation in circular pipes exhibits a highly luminous region which traces a helical path

along the walls of the pipe at a nearly constant angular frequency.

Later it was shown that for normally detonating mixtures the spin detonation

regime is the only possible detonation regime near the limits of propagation of the

shock [19]. Lee [15] called the spinning detonation “... nature’s last resort for main-

taining the detonation mode of combustion for most mixtures”. The structure of the

phenomenon was studied carefully and comprehensively by Voitsekhovskiy, Mitro-

fanov and Topchiyan [21] and Schott [22].

The detonation waves are considered to be intrinsically unstable. Williams [23]

states that “few, if any, real combustible gas mixtures admit stable planar Chapman-

Jouguet waves”: the loss of stability leads to three-dimensional structures in the flow.

The investigation of detonation instability mechanisms, even with the implementation

of one-dimensional ZND theoretical model, can provide the physical explanation of

the variety of experimental results.

The analysis of detonation stability was initiated by Shchelkin in 1959 [24]. He

considered the simplified model of the phenomenon called square-wave detonation:

the shock is followed by an induction zone with constant thermodynamic parameters,

and the reaction is completed instantaneously at the end of the induction zone. The

similar flow behavior can be achieved at the limit of large activation energies, E → ∞.

The qualitative results of Shchelkin were followed by work of Zaidel who performed

the conventional stability analysis of the square-wave model in 1961 [25]. The review



33

of the square-wave model analysis was presented by Erpenbeck in 1963 [26], where it

was shown that the model leads to an enumerable infinite set of discrete modes that

may have an arbitrary large growth rate in time. However, even with the existence

of the growing modes, the square-wave model is attractive due to its simplicity.

In 1980s Buckmaster with coworkers performed the asymptotic analysis of the

square-wave detonation, for E → ∞ (see [27], [28]). The calculated spectrum of the

problem still possessed the modes with unbounded growth rate. Nevertheless, the

numerical studies of detonations with high activation energies performed by Short in

1997 [29] depicted the reasonable agreement, in a certain range of parameters, between

the asymptotical analysis of the square-wave model and the stability calculations

based on ZND flow model.

The stability analysis of the steady ZND detonation was established by J.J. Erpen-

beck in series of papers in 1960s. The first paper [30] treated the initial-value problem

for the linearized reactive Euler equations for a one-reaction unbounded flow. The

base steady state was considered as one-dimensional overdriven ZND flow and the

perturbations were assumed to be three-dimensional and time-dependent. The sys-

tem of partial differential equations was converted to an inhomogeneous ODE system

by means of Fourier transform in spatial transverse coordinates and Laplace trans-

form in time. It was shown that the solution may have poles at the right-hand side of

the Laplace variable plane and thus the flow may be unstable. The dispersion relation

for the poles was formulated in explicit form but was not solved numerically. Instead,
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Erpenbeck [31] used the principle of argument in order to establish the existence of

the poles in the case of idealized one-reaction detonations.

In his works Erpenbeck studied the stability of step shocks [32], the case of two-

reaction detonation [33], the stability problem with zero activation energy [34], and

with the transverse spatial wavelength limit 2π/ε → 0 (where ε is the transverse

wave number) [35]. Also he treated the nonlinear stability problem for one- and two-

dimensional detonations [36, 37]. The summary of the detonation stability research

over the decade can be found in the Erpenbeck’s paper published in 1969 [38].

Another method to deal with the stability problem is the normal-mode approach.

In this method the perturbations are assumed to depend exponentially on time,

exp (τt) where τ has to be determined. The system of partial differential (Euler)

equations is converted to an inhomogeneous system of ordinary differential equations

in the shock-attached coordinates. The boundary conditions are set both on the

shock and at the end of the reaction zone. In 1963 Pukhnachev [39, 40] applied this

technique to the problem of idealized CJ detonation in round pipes. Abouseif and

Toong [41] gave an approximate linear one-dimensional analysis for the normal mode

instabilities.

In 1990 Lee and Stewart [42] investigated the one-dimensional detonation ex-

pansion into normal modes, providing the thorough analysis of the neutral stability

boundaries and the behavior of the unstable spectra in the space of the heat release Q,

activation energy E and overdrive factor f . They integrated the ODE system start-
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ing with the post-shock values (x = 0+) for the velocity, pressure, specific volume,

and reaction progress perturbations. At the end of the reaction zone (x → +∞),

the solution’s boundedness constraint was formulated as an algebraic relation for the

perturbations. This constraint served as the dispersion relation, solved with the help

of a shooting algorithm in order to find the eigenvalue τ . The initial guess for the

shooting procedure was provided by means of a “carpet search” technique. The anal-

ysis was extended to the two-dimensional perturbations by Sharpe [43] and Short and

Stewart [1]. The normal mode analysis of detonation stability in a confined cylindrical

geometry was performed by Kasimov and Stewart [44].

The thorough overview of detonation research and stability investigations can

be found in the book by Wildon Fickett and William C. Davis [45]. The recently

published work of John H. S. Lee [15] considers the detonation phenomenon from its

physical fundamentals and gives the present state-of-art in the detonation research.

The normal-mode approach had been used in hydrodynamic stability theory for a

long time before Morkovin [46] and Reshotko [47] showed that the receptivity problem

also plays important role in understanding of the flow response mechanics. The pos-

sible strategy is to solve the initial value problem corresponding to a system of partial

differential equations describing the flow. This method involves the Laplace trans-

form in time to obtain the formal solution. The inverse Laplace transform leads to an

expansion of the solution into normal modes of continuous and discrete spectra. The

mode weights correspond to receptivity of the flow to the given initial perturbation.
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The example of the application of this technique is given in the paper of Forgoston

and Tumin [48], where the method is applied to solve the initial value problem in

hypersonic boundary layers. Tumin [49] revisited the Erpenbeck’s approach by solv-

ing the initial-value problem for one-dimensional idealized detonation and showing

that the acquired discrete spectrum is equivalent to the spectrum of the conventional

normal mode analysis.

The initial-value problem for detonation in a circular pipe has not been considered

yet. Erpenbeck [38] stated that this problem “involves some unsolved complications”.

The objectives of the present work are the following: to solve the initial-value

problem for three-dimensional perturbations in a circular pipe in idealized planar

one-reaction detonation wave and to solve the receptivity problem for different types

of initial disturbances.

Chapter 2 of this dissertation is devoted to the formulation of the problem, consid-

eration of steady-state solutions and derivation of the governing equations for pertur-

bations. In Chapter 3 the initial-value problem is formulated and the transformation

of the system of governing partial differential equations to the ODE system is shown.

In Chapter 4 the discrete spectrum of the problem is considered. Chapter 5 is devoted

to the spectrum calculations. Chapter 6 represents the numerical results of receptiv-

ity analysis for different types of initial perturbations. The explicit form of equations,

supplemental derivations and numerical results can be found in Appendices.
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2. Problem Formulation

2.1 Governing Equations

The inviscid flow described by the Euler equations for a reactive gas is considered in

this section. An ideal gas participates in a first-order, irreversible reaction without

mole and specific heat change. It means that the number of moles of the reactant is

negligible with respect to the total number of moles present in the pipe.

Thus, the gas constant, Rg, and the specific heat ratio, γ, are the same for the

quiescent gas and in the reaction zone. We consider three-dimensional perturbations

in a one-dimensional base flow. One can state the continuity, momentum, energy and

the reaction progress equations in the laboratory frame as follows:

Dρ

Dtl
+ ρ∇l · ul = 0

Dul

Dtl
+

1

ρ
∇lp = 0

Dh

Dtl
− 1

ρ

∂p

∂tl
= 0

Dλ

Dtl
= ω

(2.1)

where ρ, p, and ul are the density, pressure and velocity respectively; D/Dtl =

∂/∂tl +ul ·∇l is the substantial derivative and superscript ‘l’ indicates the laboratory

frame quantities. The total enthalpy is h = e+p/ρ+ul2/2, where e = p/(γρ−ρ)−λQ̃
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is the specific energy for an ideal polytropic gas, λ is the reaction progress variable

(λ is equal to zero in the quiescent gas, and grows to unity for the completely burnt

mixture), and Q̃ is the dimensional heat release.

The first-order reaction rate is assumed in the form ω = k̃(1 − λ) exp(−Ẽ/RgT ),

where Ẽ is the dimensional activation energy, T is the temperature, and k̃ is a nor-

malization constant. The system of equations is supplemented by the equation of

state for an ideal gas, p = ρRgT . The energy equation can be rewritten in terms of

pressure as

Dp

Dtl
+ γp∇l · ul − (γ − 1) Q̃ρω = 0

The shock wave is considered as a discontinuity with Rankine-Hugoniot jump

conditions:
ρ
(

ul − Dl
)

· n
∣

∣

+
= ρ

(

ul − Dl
)

· n
∣

∣

−
= m

p+ − p− = m2

(

1

ρ−
− 1

ρ+

)

ul · t1

∣

∣

+
= 0, ul · t2

∣

∣

+
= 0

p+

(γ − 1) ρ+

− p−
(γ − 1) ρ−

=
1

2
(p+ + p−)

(

1

ρ−
− 1

ρ+

)

λ+ = λ−

(2.2)

where subscript ‘+’ stands for the parameters in the media after the shock wave, and

subscript ‘−’ corresponds to the parameters of quiescent media before the shock wave.

The vector n is the unit normal, and vectors t1, t2 are independent unit tangents to

the shock surface. The vector Dl = nD is the shock velocity.
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We use the parameters of the steady one-dimensional flow for scaling of the gov-

erning equations and the conditions on the shock. Density of the steady flow, ρs, its

pressure, ps, and the speed of sound behind the shock, cs are the dimensional scales

of the problem. The half-reaction zone length, lc, is the characteristic length scale:

it is the distance from the shock to the point where the reaction progress variable

reaches the value of one half. The time scale is represented by ratio, tc = lc/cs.

2.2 Steady State

We use cylindrical coordinate system, where the laboratory frame variables are rl,

φl, zl, tl - radial, angular, axial coordinates and time respectively, and the wave

propagates along the axial coordinate zl heading to zl = −∞. The steady-state

parameters can be found from the system of conservation laws stated in a frame

moving with the shock [50, 30]. The dimensionless distributions of pressure, p∗,

velocity, u∗z, and density, ρ∗, are written as

p∗ = b1 + (1 − b1)
√

1 − b2βλ∗, u∗z =
1 − p∗

γMs

+Ms, ρ∗ =
Ms

u∗z
(2.3)

where superscript ‘∗’ indicates the steady-state values, Ms is the Mach number of

the flow behind the shock in the frame moving with the shock wave, and b1, b2 are
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constants:

Ms =
(γ − 1)D2

q + 2

2γD2
q − γ + 1

, b1 =
1 + γD2

q

2γD2
q − (γ − 1)

, b2 =
2γM2

s (γ − 1)

(1 − b1)
2 (γ + 1)

(2.4)

The steady dimensionless detonation velocity, Dq, is scaled with the speed of sound

in the quiescent gas. The dimensionless heat release, β = Q̃/RgTs, is based on the

temperature behind the shock, Ts. The dimensionless reaction rate, ω∗, is defined as

ω∗ = k (1 − λ∗) exp (−θ/T ∗) (2.5)

where θ = Ẽ/RgTs is the dimensionless activation energy, and k is the constant

determined from the scaling:

k =

∫ 1/2

0

u∗z
1 − λ∗

exp (θ/T ∗) dλ∗. (2.6)

The steady-state flow is characterized by the overdrive factor f = (Dq/DCJ)2,

where

DCJ =

√

1 +
(γ2 − 1)Q

2γ
+

√

(γ2 − 1)Q

2γ
(2.7)

is the Chapman-Jouguet detonation velocity scaled with the speed of sound in the

quiescent gas (the shock Mach number), and Q = Q̃/RgTq is the dimensionless heat
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release scaled with the quiescent gas temperature, Tq. Another important steady-

state parameter is the dimensionless activation energy scaled with Tq, E = Ẽ/RgTq.

Also, it is convenient to express the reaction progress variable, λ∗, as a function of

distance from the shock wave, z. The integration of the last equation in (2.1) gives

the necessary relationship:

z =

∫ λ∗

0

u∗z (λ)

ω∗ (λ)
dλ =

1

k

∫ λ∗

0

u∗z (λ)

1 − λ
exp (ρ∗θ/p∗) dλ (2.8)

Equations (2.3)-(2.8) completely describe the steady base flow according to the ZND

detonation model. The examples of the steady flow parameters’ behavior are given

below.

Figures 2.1-2.4 illustrate the reaction progress variable λ∗ as a function of z, and

the flow parameters as functions of λ∗.
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Figure 2.1: Steady state profiles, γ = 1.2, f = 1, Q = 50, E = 20.
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2.3 Governing Equations for Perturbations

The governing system of equations (2.1) is linearized over the steady-state mean flow.

First, the coordinate system is shifted from the laboratory frame to the one attached

to the perturbed shock. The transformation to the shock-attached frame is done as

follows:

t = tl, r = rl, φ = φl, z = zl −Dst− ψ (r, φ, t) (2.9)

where Ds < 0 is the detonation velocity scaled with the speed of sound behind the

shock, and ψ (r, φ, t) is the perturbation of the shock surface. The perturbation ψ is

included into the coordinate transformation because the derivatives of the base flow

in axial direction, d/dz, are not equal to zero. Therefore, a shift of the shock is ac-

companied by perturbations of local parameters stemming from the non-uniformity of

flow in z direction. The particle velocity is measured with respect to the unperturbed

shock wave frame:

uz = ul
z −Ds. (2.10)

In principle, one can measure velocity with respect to the perturbed shock as it

was introduced in [44]. However, this choice is not crucial because it leads just to

redefinition of the streamwise velocity perturbation.

The six dependent variables - density, three velocity components, pressure and

reaction progress can be written in vector notation as q = (ρ, ur, uφ, uz, p, λ)T
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(superscript T stands for transposed). The perturbation is introduced as

q = q∗ + q′

where q∗ = (ρ∗, 0, 0, u∗z, p
∗, λ∗)T is the base flow vector determined in the previous

section, and q′ =
(

ρ′, u′r, u
′

φ, u
′

z, p
′, λ′

)T
is the perturbation vector. Before the

linearization with respect to disturbances, q′ and ψ, the progress rate ω is expanded

in Taylor series about the steady-state solution,

ω = ω∗ +
∂ω∗

∂ρ∗
ρ′ +

∂ω∗

∂p∗
p′ +

∂ω∗

∂λ∗
λ′ + ...

After the linearization procedure, the governing equations (2.1) are recast in the

shock-attached system of coordinates as follows

∂q′

∂t
+ Ar

∂q′

∂r
+ Aφ

1

r

∂q′

∂φ
+ Az

∂q′

∂z
+ Cq′ − gt

∂ψ

∂t
− gr

∂ψ

∂r
− gφ

1

r

∂ψ

∂φ
= 0 (2.11)

where Ar, Aφ, Az, and C are 6 × 6 matrices. The column vectors gt, gr, and gφ

depend on the axial gradients of the base flow. If ρ∗, u∗z, p
∗ and λ∗ are constant,

then the column vectors disappear and the shock perturbation ψ does not appear in

the governing equations. In this case, one can also exclude ψ from the coordinate

transformation (2.9). The matrices and vectors of the system (2.11) are presented in
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Appendix A.

The linearized Rankine-Hugoniot conditions on the shock can be written in the

form

q′ (r, φ, z = 0+, t) =Yq′ (r, φ, z = 0−, t) +

+ht
∂ψ (r, φ, t)

∂t
+ hr

∂ψ (r, φ, t)

∂r
+ hφ

1

r

∂ψ (r, φ, t)

∂φ

(2.12)

Matrix Y and vectors ht, hr and hφ are presented in Appendix B. One can

recognize from Eq. (2.12) that the perturbation introduced in the quiescent gas,

q′ (r, φ, z = 0−, t), enters the problem as the boundary condition depending on time.

The vector q′ (r, φ, z = 0−, t) is treated as known, because the perturbations in the

fresh mixture can be determined rather easily.
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3. Initial-value Problem

We consider the solution of Eq. (2.11) that satisfies the following initial condition:

t = 0 : q′ (r, φ, z, 0) = q0 (r, φ, z) , ψ (r, φ, 0) = ψ0 (r, φ) (3.1)

where q0 = (ρ0, ur,0, uφ,0, uz,0, p0, λ0)
T is the initial disturbance that satisfies the

Rankine-Hugoniot condition on the shock. The term ψ0 represents the initial pertur-

bation of the shock surface. Also we impose the non-penetration boundary condition

on the wall of the pipe:

r = a : u′r (a, φ, z, t) = 0 (3.2)

where a stands for the radius of the pipe.
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3.1 Fourier and Laplace Transforms of the Perturbation Equations

We begin with the expansion of the perturbations in Fourier series with respect to

the azimuthal variable φ:

q′ (r, φ, z, t) =
1

2π

∑

n

qn (r, z, t) exp (inφ),

q0 (r, φ, z) =
1

2π

∑

n

q0,n (r, z) exp (inφ);

ψ (r, φ, t) =
1

2π

∑

n

ψn (r, t) exp (inφ),

ψ0 (r, φ) =
1

2π

∑

n

ψ0,n (r) exp (inφ)

(3.3)

where n is an azimuthal wave number. Then, applying the Laplace transform with

respect to time:

q̂n (r, z, τ) =

∫

∞

0

qn (r, z, t) e−τtdt

ψ̂n (r, τ) =

∫

∞

0

ψn (r, t) e−τtdt

(3.4)

we arrive to the following system:

τ q̂n + Ar
∂q̂n

∂r
+ Aφ

in

r
q̂n + Az

∂q̂n

∂z
+ Cq̂n − τgtψ̂n − gr

∂ψ̂n

∂r
− gφ

in

r
ψ̂n =

= q0,n − gtψ0,n

(3.5)
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The shock conditions, Eq. (2.12), are recast as follows:

q̂n (r, z = 0+, τ) =Yq̂n (r, z = 0−, τ) +

+ht

(

τ ψ̂n (r, τ) − ψ0,n (r)
)

+ hr
∂ψ̂n (r, τ)

∂r
+ hφ

in

r
ψ̂n (r, τ)

(3.6)

3.2 Eigenfunction Expansion

The inhomogeneous system of equations (3.5) is solved with the help of the eigenfunc-

tion expansion method [51]. Consideration of the homogeneous system (3.5) leads to

the separation of variables in the following form:

q̂n (r, z, τ) =

















ρn (z, τ)R (r)
ur,n (z, τ)Ur (r)
uφ,n (z, τ)Uφ (r)
uz,n (z, τ)Uz (r)
pn (z, τ)P (r)
λn (z, τ) Λ (r)

















, ψ̂n (r, τ) = ψn (τ) Ψ (r) (3.7)

We substitute this form of variables into the homogeneous system of equations and

arrive to the Bessel equations for the functions R, Ur, Uφ, Uz, P , Λ and Ψ that

depend on radius r and the separation constant k. The explicit form of separation is

the following [44, 52]:

R (r) = Uz (r) = P (r) = Λ (r) = Ψ (r) = Jn (kr) ,

Ur (r) =
dJn (kr)

dr
, Uφ (r) =

Jn (kr)

r
,

(3.8)
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where Jn (kr) is a Bessel function of the first kind. The azimuthal index n is the order

of the Bessel functions. The boundary condition (3.2) leads to the discrete spectrum

of knl that is found from the equation

dJn (knlr)

dr

∣

∣

∣

∣

r=a

= 0 (3.9)

where subscript l stands for the number of the root of this equation.

Therefore, we are looking for a solution of inhomogeneous system (3.5) in the form

of the eigenfunction expansion:

q̂n (r, z, τ) =
∞
∑

l=1

















ρnl (z, τ) Jn (knlr)
ur,nl (z, τ) knlJ

′

n (knlr)
uφ,nl (z, τ) Jn (knlr) /r
uz,nl (z, τ) Jn (knlr)
pnl (z, τ) Jn (knlr)
λnl (z, τ) Jn (knlr)

















, ψ̂n (r, τ) =
∞
∑

l=1

ψnl (τ) Jn (knlr) (3.10)

or in matrix-vector form

q̂n (r, z, τ) =
∞
∑

l=1

Jl (r)qnl (z, τ) (3.11)

where Jl is the 6 × 6 expansion matrix shown in Appendix C.

The values of roots knla are shown in Table 3.1.
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n = 0 1 2 3 4 5 6 7

l = 1 3.8317 1.8412 3.0542 4.2012 5.3176 6.4156 7.5013 8.5778

2 7.0156 5.3314 6.7061 8.0152 9.2824 10.5199 11.7349 12.9324

3 10.1735 8.5363 9.9695 11.3459 12.6819 13.9872 15.2682 16.5294

4 13.3237 11.706 13.1704 14.5859 15.9641 17.3128 18.6374 19.9419

Table 3.1: Roots knla of Eq. (3.9), where l represents number of the root, n is the
order of Bessel function.
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3.3 Equations for the Amplitude Functions

The eigenfunctions for the case of the ordinary circular pipe are the Bessel functions

of the first kind. The functions have the following orthogonality property [53]:

∫ a

0

Jn (knlr) Jn (knmr) rdr = δlmdm

dm =
k2

nma
2 − n2

2k2
nm

J2
n (knma)

(3.12)

where δlm is the Kronecker delta, and knm is the m-th root of Eq. (3.9). With the

help of the condition (3.12) the equations for the amplitude functions of the expansion

(3.10) can be derived as

Az
dqnm

dz
+ (τI + Cm)qnm − (τgt + gr + ingφ)ψnm = D0 (z) (3.13)

This is an inhomogeneous system of ordinary differential equations with the axial

coordinate z as an independent variable. The 6 × 6 coefficient matrix Cm and the

initial-data vector D0 are given in Appendix D.

The main difficulty in derivation of the system (3.13) is the appearance of terms

with an infinite sum in the continuity and the energy equations. The treatment of

the term and the derivation of Eq. (3.13) are given in Appendix E.
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The fully transformed shock condition is written as

qnm (z = 0+, τ) =Yqnm (z = 0−, τ) +

+ht (τψnm (τ) − ψ0,nm) + (hr + inhφ)ψnm (τ) ,

(3.14)

where ψ0,nm is the coefficient of the initial shock perturbation.

3.4 Solution of the Amplitude Function System

We are searching for the bounded solution of the initial-value problem (3.13)-(3.14).

In order to write down the solution of Eq. (3.13) that satisfies the shock boundary

condition (3.14) and is bounded at z → ∞, we can implement the method of variation

of parameters. That is we need to analyze the fundamental solutions of the homo-

geneous system (3.13) at z → ∞. From now on, we consider overdriven detonation

(f > 1) to avoid singularities in the inverse of matrix Az. The homogeneous system

is written as

dqnm

dz
+ A−1

z (τI + Cm)qnm = 0 (3.15)

The system has six fundamental solutions: Qj, j = 1, ..., 6. We consider the analytical

behavior of the solutions at z → ∞ in the following form [30]

Qj (z) = Qj∞ exp (µjz) (3.16)
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where the characteristic numbers µj can be written as

µ1 =
u∗
∞
τ + c∞

√

τ 2 + k2
nmc

2
∞

(1 −M2
∞

)

c2
∞

(1 −M2
∞

)
,

µ2 =
u∗
∞
τ − c∞

√

τ 2 + k2
nmc

2
∞

(1 −M2
∞

)

c2
∞

(1 −M2
∞

)
,

µ3 = µ4 = µ5 = − τ

u∗
∞

, µ6 = −τ + C
(66)
∞

u∗
∞

,

(3.17)

where C
(66)
∞ is the element of matrix Cm at z → ∞; the mean velocity, u∗

∞
, the speed

of sound, c∞, and the Mach number, M∞, correspond to the flow parameters in the

burnt gas.

For the overdriven case, M∞ < 1, one can see that the first fundamental solution,

Q1 (z), is unbounded at z → ∞ as Re (µ1) > 0 for Re (τ) > 0. The other fundamen-

tal solutions decay exponentially downstream from the shock wave. The amplitude

vectors Qj∞, j = 1, ..., 6 are presented in Appendix F.

Using these properties of the fundamental solutions, one can write down the

bounded solution of Eq. (3.13) in the following form:

qnm (z, τ) =
6
∑

j=2

(

aj +

∫ z

0

(yj, F) dz′
)

Qj + Q1

∫ z

∞

(y1, F) dz′,

F = F1 + F2ψnm, F1 = A−1
z D0, F2 = A−1

z (τgt + gr + ingφ) ,

(3.18)
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where yj are fundamental solutions of the adjoint system of equations:

dy

dz
−
[

A−1
z

(

τ̄I + C̄m

)]T
y = 0 (3.19)

where the bar stands for complex conjugation. The dot product is defined as (y,F) =

6
∑

i=1

ȳiFi, with ȳi and Fi being the i-th components of vectors y and F respectively.

The fundamental solution, yj, of Eq. (3.19) can be obtained as a vector that

is composed of cofactors of the j-th column of the matrix of the fundamental solu-

tions Q = [Q1, Q2, ..., Q6] and is divided by det (Q) [54] with complex conjugation.

Therefore, the fundamental solutions have the following property:

(yj,Qk) = δjk, j, k = 1, ..., 6 (3.20)

where δjk is Kronecker delta. At z → ∞, the adjoint fundamental solutions can be

written in exponential form: yj (z) = yj∞ exp (−µ̄jz), j = 1, ..., 6. The amplitude

vectors, yj∞, are given in Appendix G.

The coefficients a2, ..., a6 and the shock displacement ψnm can be found from the

boundary conditions on shock, Eq. (3.14). Particularly, the shock displacement can
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be represented as a ratio:

ψnm = −U
V

= −(y1 (0) , Yqnm (0−) − htψ0,nm) +
∫

∞

0
(y1, F1) dz

(y1 (0) , τht + hr + inhφ) +
∫

∞

0
(y1,F2) dz

(3.21)

where the denominator V depends on τ and knm.

As the coefficients and the shock displacement are known (see Appendix H), the

solution (3.18) is known as well, and therefore, applying the expansion (3.10), we can

write the formal solution of the initial-value problem as the inverse Laplace transform

qn (r, z, t) =
1

2πi

∫ σ+i∞

σ−i∞

q̂n (r, z, τ) eτtdτ , (3.22)

where the path of integration lies on the right-hand side of singularities of q̂n.

The solution q̂n may have singularities on the complex plane τ , where the denom-

inator in Eq. (3.21) is equal to zero:

V (τ, knm) = (y1 (0) , τht + hr + inhφ) +

∫

∞

0

(y1,F2) dz = 0 (3.23)

Roots of Eq. (3.23), τs, were of the main interest for Erpenbeck [30, 31]. The

limited power of computers at that time should explain why he did not try to solve

Eq. (3.23) directly. Although zeros of V in the complex plane τ were associated with

unstable modes, Erpenbeck did not discuss closing of the path of integration in Eq.
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Figure 3.1: The integration path in an evaluation of the inverse Laplace transform
with respect to τ .

(3.22) to explain how the residue values at the poles will originate in the solution. In

addition to the poles, there are two branch points, as µ1 and µ2 of the solution (3.18)

contain the square root of a complex number,
√

τ 2 + k2
nmc

2
∞

(1 −M2
∞

). Therefore,

the branch points are located at τ = ±iτc = ±iknmc∞
√

1 −M2
∞

. These points

represent acoustic cut-off frequencies of the problem: the acoustic perturbations with

−τc < Im (τ) < τc die out exponentially [55].

In order to evaluate the inverse Laplace transform (3.22), one may consider a

closure of the integration path. One of the options is shown on Fig. 3.1, where the

path is kept at Re (τ) ≥ 0. This choice provides the bounded solution at z → ∞,

and the result of the integration can be represented as a sum of the residue values
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associated with roots of Eq.(3.23) and an integral along the imaginary axis, Im (τ),

qn (r, z, t) =
∑

m,s

JmRmsqDM,s (z, knm, τs) e
τst +

1

2πi

∫ i∞

−i∞

∑

m

Jmqnm (z, knm, τ) e
τtdτ

(3.24)

If a pole occurs on the imaginary axis, the path has to be deformed around the pole

keeping Re (τ) > 0. Tumin [49] showed that the choice of the path around the poles on

the imaginary axis is crucial for constructing a solution consistent with the causality

principle.

The result, Eq. (3.24), can be interpreted as an expansion of the solution of the

initial-value problem into the modes of discrete and continuous spectra. The vectors

qDM,s in Eq. (3.24) are the discrete modes, and their weights, Rms, are the receptivity

coefficients:

Rms = −
[

(y1 (0) , Yqnm (0−) − htψ0,nm) +
∫

∞

0
(y1, F1) dz

]

τ=τs

(∂V/∂τ)τ=τs

(3.25)

The derivation of Rms and qDM,s is given in Appendix I.

The modes of continuous spectrum come from fundamental solutions Q1, ...,Q6

evaluated at τ = il, where l is a real parameter (angular frequency). Their physical

interpretation can be given based on the asymptotic behavior at z → ∞. For example,

the fundamental solution Q1 represents the upstream acoustic mode. One can see

that the solution, Eq. (3.18), does not have the upstream acoustic mode at z → ∞,
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whereas the mode does exist upstream of the introduced initial perturbation. The

fundamental solution Q2 represents the downstream acoustic wave, whereas Q3, Q4

and Q5 represent two vorticity modes and the entropy mode.

At some fixed value of coordinate z, one also may consider a closure in the left-

hand side of the complex plane τ , as shown on Fig. 3.2. In this case, the input from

the continuous spectrum will be reduced to evaluation of integrals along the branch

cuts. Although the solution can also have poles at Re (τ) < 0, their input will be

exponentially small for t→ ∞.

Figure 3.2: An alternative integration path in an evaluation of the inverse Laplace
transform with respect to τ for a fixed value of z.
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4. Discrete Spectrum

We begin the consideration of the discrete modes with the analysis of the normal-

mode approach to the problem.

The conventional normal mode analysis of stability of detonations in a circular

pipe [44] could be formulated in the shock-attached coordinate system as the following

inhomogeneous system of ordinary differential equations (with ψnm = 1):

Az
dϑ

dz
+ (τI + Cm)ϑ = τgt + gr + ingφ (4.1)

with the initial condition at the shock

ϑ (0+) = τht + hr + inhφ (4.2)

In the normal mode analysis, it is assumed that there is the following relation between

the azimuthal and radial velocity components:

uφ,nm (z) = inur,nm (z) (4.3)

and the system of equations (4.1) is reduced to a system of five equations. One can

recognize that Eq. (4.3) means zero axial vorticity of the normal modes.
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It can be shown that after exclusion of uφ,nm (z) and the third equation in (4.1),

the system of equations will be the same as the system of Eqs. (27) in the paper by

Kasimov and Stewart [44] (up to the difference in the definition of the streamwise

velocity perturbation: uz,nm in the present work is equal to u′z + τ in [44]).

Solution of Eqs. (4.1) has to be bounded at z → ∞. Kasimov [52] derived a

radiation condition in a differential form taking into account that in the leading order

the perturbation of the reaction progress variable, λnm, is negligible in the burnt gas.

Thus, Eqs. (4.1), initial conditions (4.2) together with the radiation condition at

z → ∞, that will be discussed later, represent an eigenvalue problem for discrete

spectrum τ = τs.

Following Tumin [49], one can show that the discrete spectrum in the normal

mode analysis is equivalent to the discrete spectrum stemming from the initial-value

problem formulation, i.e., to the roots of Eq. (3.23). The analysis is given in Appendix

H.

The vectors qDM,s, that are the parts of the initial-value problem solution (3.24),

are also the solution of the system (4.1)-(4.2) and are bounded at z → ∞. Therefore,

qDM,s are equivalent to eigenfunctions stemming from the normal mode analysis. The

discussion of qDM,s is given in Appendix I.

Because the solution (3.24) does not include Q1 at z → ∞, and the adjoint solution

y1 is orthogonal to the other fundamental solutions, Q2, ...,Q6, the rear boundary
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condition (the radiation condition) can be written straightforwardly as

lim
z→∞

(y1, qnm) = 0 (4.4)

Using the first adjoint fundamental solution (G.1), one can write the radiation con-

dition as the following algebraic relation at z → ∞:

ur,nmk
2
nmu

∗

∞
+ τuz,nm − pnm

1

γρ∗
∞
c∞

√

τ 2 + c2
∞

(1 −M2
∞

) k2
nm+

+
λnmC

(56)
∞ u∗

∞
[τ 2 − u∗2

∞
k2

nm]

γρ∗
∞

[

u∗2
∞
c2
∞
k2

nm − τc2
∞
C

(66)
∞ − τ 2c2

∞
+ C

(66)
∞ u∗

∞
c∞
√

τ 2 + c2
∞

(1 −M2
∞

) k2
nm

] = 0

(4.5)

The perturbation of the reaction progress variable, λnm, is exponentially small in the

burnt gas. Thus, the leading order of the radiation condition will be:

ur,nmk
2
nmu

∗

∞
+ τuz,nm − pnm

1

γρ∗
∞
c∞

√

τ 2 + c2
∞

(1 −M2
∞

) k2
nm = 0 (4.6)

The main difference between the perturbations in a circular pipe and the perturba-

tions in an unbounded domain, studied in [30, 31, 29, 1, 56] is that the perturbations

confined in a pipe have discrete spectrum of the radial modes associated with zeros

in Eq. (3.9). For a given pipe radius, the radial eigenfunctions are determined by the

discrete values of knm, m = 1, 2, .... However, the eigenvalue problem in z direction,



65

Eqs. (4.1), (4.2), and (4.6), is independent of the pipe radius itself. It means that “z

eigenvalue problem” for τj, that determines growth rate of the perturbation in time,

should be the same for the pipe detonations and for detonations in an unbounded

domain. The transformations,

k2
nmur,nm = −iku′2, kmn = k (4.7)

where u′2 is the velocity component that is perpendicular to the mean flow direction

(in notation used in [29, 1, 56]) and k is the corresponding wave number, establish the

equivalence of the eigenvalue problems in a circular pipe [44, 52] and in an unbounded

domain [29, 1, 56].

In the case of an unbounded domain, parameter k is a real parameter representing

the Fourier transform in direction perpendicular to the mean flow. Having applied

the transformation (4.7) to the radiation condition (4.6) and skipping indexes, one

can find

−iku′2u∗∞ + τuz − p
1

γρ∗
∞
c∞

√

τ 2 + c2
∞

(1 −M2
∞

) k2 = 0 (4.8)

The constraint (4.8) was derived in [27] and was used in [29, 1] for the analysis of

three-dimensional perturbations.
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5. Spectrum Calculations

For the numerical implementation, we solve the reduced systems of differential equa-

tions of the direct, Eq. (4.1), and adjoint, Eq. (3.19), problems. Both systems contain

five differential equations obtained by exclusion of the third component of the direct

solution qnm, and by deletion of the third component of the adjoint solution y, re-

spectively.

The direct problem was solved numerically starting from the shock conditions

(4.2) and finishing at some point z = zmax situated far from any changes of flow

characteristics. After obtaining the solution, the radiation condition, Eq. (4.6), was

used to find the eigenvalue.

The adjoint problem was solved in a different way: we started with the asymptotic

solution, Eq. (G.1), as an initial data at z = zmax, and integrated the equations

toward the shock, z = 0+. Then we used the dispersion relation (3.23) to find an

eigenvalue. Both approaches, direct and adjoint, led to the same set of eigenvalues.

The direct and adjoint eigenvalue problems were solved by means of an iterative

algorithm based on Newton’s method. The initial guess for the Newton’s method was

supplied by code based on multi-domain spectral collocation method (SCM). Further

details of the implemented numerical methods are discussed in Appendix K.

In the case of one-dimensional perturbations, the SCM technique was utilized

with the rear-boundary condition included into the algorithm [57]. The inclusion was
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possible because the boundary condition was a linear function of the eigenvalue τ .

Fig. 5.1 illustrates the eigenvalue map for one-dimensional perturbations obtained

with the help of three-domain SCM at f = γ = 1.2, E = Q = 50. Number of

polynomials for each domain in this example is N = 100.

In the case of three-dimensional perturbations, the rear-boundary condition (4.6)

cannot be expressed in a form of polynomial with powers of τ . Therefore, the conven-

tional methods ([58, 59]), that are developed for problems where eigenvalues appear

in a nonlinear form, cannot be applied and we had to enforce homogeneous boundary

conditions on the perturbation at some large distance zmax. Such boundary condition

brings the discretized continuous spectrum (along the imaginary axis) into the map

together with spurious modes.
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Figure 5.1: Eigenvalue map for one-dimensional perturbations obtained with the help
of three-domain spectral collocation method.



68

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

f =   = 1.2,  E = Q = 50,
                             k = 1

 

 

 

r

i

Figure 5.2: Eigenvalue map for three-dimensional perturbations obtained with the
help of three-domain spectral collocation method.

The spectrum for three-dimensional perturbations is displayed on Fig. 5.2 for the

following set of parameters: f = 1.2, γ = 1.2, E = Q = 50 and k = 1 (because knm

in this analysis is a parameter, we omit the subscripts of the azimuthal mode and the

radial modes numbers): there are four distinct discrete unstable modes and discretized

continuous spectrum. One more discrete mode is hidden among the atomized debris.

Figure 5.3 shows the behavior of function based on the radiation condition equa-

tion (4.6):

RC (z) = k2u∗
∞
ur,nm (z) + τuz,nm (z) − pnm (z)

1

γρ∗
∞
c∞

√

τ 2 + c2
∞

(1 −M2
∞

) k2, (5.1)

where parameter k = 1, and the considered eigenvalue is τ = τr + iτi = 0.39516 +
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Figure 5.3: Real and imaginary parts of the function RC (z), Eq. (5.1).

i0.74902 = τM1 - the mode with the lowest frequency τi on Fig. 5.2. The function

RC (z) can be used as an indicator: if RC vanishes for large z values, then the

eigenvalue really belongs to the discrete spectrum.

Figure 5.4 demonstrates the real and imaginary parts of the eigenfunction qnm =

(ρnm, ur,nm , uz,nm, pnm, λnm)T that corresponds to the eigenvalue τM1. Numbers in

the legends indicate the components of the eigenfunction vector qnm.
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Figure 5.4: Real (a) and imaginary (b) parts of the eigenfunctions at τ = 0.39516 +
i0.74902, f = 1.2, γ = 1.2, E = Q = 50 and k = 1. Numbers 1 through 5 indicate
components of the vector qnm.
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Figure 5.5 shows the real and imaginary parts of the adjoint solution, y, at the

same parameters as in Fig. 5.4.

Figure 5.6 illustrates dependence of the eigenvalues on the parameter k for nine

modes. One may compare these plots with Figures 7a and 7b in paper of [1], re-

spectively. The comparison simply illustrates the statement that the spectra of the z

eigenvalue problem for a circular pipe and an unbounded domain are equivalent. The

lines represent results obtained from the analysis of both direct and adjoint problems,

whereas the symbols represent the results of [1].
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Figure 5.5: Real (a) and imaginary (b) parts of the eigenfunctions of adjoint problem
at τ = 0.39516 + i0.74902, f = 1.2, γ = 1.2, E = Q = 50 and k = 1. Numbers 1
through 5 indicate components of the vector y.
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Figure 5.6: Stability spectrum showing (a) Re (τ) vs k and (b) Im (τ) vs Re (τ) for
the nine unstable modes at f = γ = 1.2, E = Q = 50. Lines - results from analysis
of the direct and adjoint problems; the symbols - the results of [1].
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6. Receptivity Analysis

6.1 Initial Perturbations Placed in Quiescent Gas

6.1.1 Axial Vorticity Perturbation

The first case to be investigated is an azimuthal velocity perturbation, u′φ, localized

in the pipe at z ∈ [−z2,−z1], where z = 0 is the shock location. The medium inside

the interval rotates with constant speed w. The perturbation at the shock location

can be written as a function of time as

u′φ (r, φ, z = 0−, t) = (H (t− t1) −H (t− t2))wr, (6.1)

where H is a Heaviside function, t1 is the time that takes the shock wave to arrive to

the point −z1, t1 = z1/Ds, t2 is the time when the shock arrives to the end-point of

perturbation, −z2, and t2 = z2/Ds.

In other words, the rigid-body rotation of a localized portion of quiescent gas

which is approached by the shock wave of speed Ds is considered in this section.

The transformed perturbation, after Fourier expansion and Laplace transforma-

tion, has the following form:

ûφ,0 (r, z = 0−, τ) =
wr

τ

(

e−τt1 − e−τt2
)

. (6.2)
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There is no dependence on φ, therefore the only nonzero coefficient of Fourier expan-

sion (3.3) is the coefficient with azimuthal index n = 0.

The Bessel expansion of the azimuthal component of velocity is shown in Appendix

E, and the transformed initial perturbation is

uφ,0m (z = 0−) =a0m
w

τ
(exp (−τt1) − exp (−τt2)) ,

a0m =
1

d0m

∫ a

0

J0 (k0mr) r
3dr,

(6.3)

note that r =
∑

m

a0mJ0 (k0mr) /r, and k0m are the roots of Eq. (3.9).

For the considered perturbation the azimuthal index n = 0, therefore, the axial

vorticity term (E.27) is equal to zero. The receptivity coefficient (3.25) is found to

be zero as well with the help of the properties of the matrix Y and the fundamental

vector y1. Thus, the solution of the initial-value problem does not include discrete

modes.

The azimuthal velocity component can be derived as

uφ,0m (z, τ) = uφ,0m (z = 0−) exp

(∫ z

0

− τ

u∗z
dz′
)

, (6.4)

and all other components of the amplitude solution (3.18) are equal to zero. The
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general solution of the initial-value problem, Eq. (3.24), can be written as

u′φ (r, z, t) = wr

[

H

(

t− t1 −
∫ z

0

dz′

u∗z

)

−H

(

t− t2 −
∫ z

0

dz′

u∗z

)]

. (6.5)

The perturbation dynamics is the following: the rotating portion of fresh gas is

reached by the detonation shock, squeezed by it, and then the portion evolves in the

reaction zone with the speed depending on the axial coordinate z and the baseflow

velocity u∗z. The example of solution (6.5) in t− z plane is shown on Fig. 6.1.
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Figure 6.1: The boundaries of perturbation (6.5) depending on time t and axial
coordinate z, baseflow parameters are E = Q = 50, f = γ = 1.2.

The considered example illustrates that a perturbation associated with the axial
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vorticity only does not generate modes from discrete spectrum. The example serves

to point out that the continuous spectrum is required in order to accommodate such

perturbations. In the past, the issue was overlooked and the continuous spectrum has

not been mentioned until the recent work of Tumin [49].
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6.1.2 Periodic Perturbations

Another example of a quiescent gas perturbation to be considered is an axisymmetric

isobaric density disturbance proportional to sin w̃zl. After performing the Fourier

and Bessel expansions with Laplace transform, one can write the perturbation in the

leading order (i.e., neglecting the input of shock displacement) as:

ρ0m (z = 0−, τ) = −B0m
w

w2 + τ 2
(6.6)

where B0m = 1
d0m

∫ a

0
J0 (k0mr) rdr and subscript ‘0’ indicates that the disturbance is

axisymmetric. The frequency is written as w = w̃|Ds|, where Ds < 0 is the detonation

velocity scaled with the speed of sound behind the shock, cs.

If the eigenvalue τs is close to ±iw, then the amplitude of ρ0m (z = 0−, τ) may

become large and lead to resonance. Such eigenvalue can be expected to influence

the long-term dynamics due to its large initial amplitude, even if its growth rate is

small compared to the other unstable modes. However, the resonance contribution is

compensated by the continuous spectrum for large time scales, as it was derived by

C. Chiquete in [56].

The general solution is represented by Eq. (3.24). Any initial perturbations in the

reaction zone and perturbations of transversal velocity components are absent, so the

term in the receptivity coefficient (3.25) that includes D0 is equal to zero. Therefore,
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the coefficients for the considered perturbation can be written as Rms = B0mrms,

where

rms = − (y1 (0) ,Yq0m (0−, τ))

(∂V/∂τ)

∣

∣

∣

∣

τ=τs

(6.7)

with q0m (0−, τ) = (ρ0m (z = 0−, τ) , 0, 0, 0, 0, 0)T /B0m.

The example of flow receptivity to the isobaric density perturbation for the first

discrete mode is shown on Fig. 6.2. The parameter set is the following: E = Q = 50,

γ = f = 1.2, the radial parameter k = 2 and the eigenvalue τ1 = 0.13128 + 1.20838i,

and w varies from 0 to 5.

The behavior of the first mode on radial parameter k is shown on Fig. 6.3: the

mode approaches the imaginary axis Re (τ) = 0 with the increase of k thus leading

the mode to a resonance. In the vicinity of the resonance (w ≈ 1.3), the input from

the continuous spectrum has to be taken into account as well (see [56]).
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Figure 6.2: Maximum of pressure perturbation in the first discrete mode for the
isobaric density initial perturbation placed in the quiescent gas, with k = 2, f = γ =
1.2, E = Q = 50.
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Figure 6.3: Trajectory of the first mode in the complex plane τ , the radial number k
varies from 0 to 2.3, f = γ = 1.2, E = Q = 50.
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6.2 Initial Perturbations Placed Inside the Reaction Zone

6.2.1 Axial Vorticity Perturbations

The vorticity perturbation of the same type as in Section 6.1.1 is under consideration,

but now the rotating portion of gas is placed inside the reaction zone:

q′ (r, φ, z, 0) =
(

0, 0, u′φ (r, φ, z, 0) , 0, 0, 0
)T
, (6.8)

where the azimuthal velocity component u′φ (r, φ, z, 0) = (H (z − z1) −H (z − z2))wr,

z1 is the left boundary and z2 is the right boundary of perturbation, z1 < z2; w is the

angular velocity of rotation. For now, the perturbation has no azimuthal dependence.

The Fourier and Bessel expansions with Laplace transformation lead to the fol-

lowing form of the initial perturbation:

uφ,0m (z, 0) = a0mw (H (z − z1) −H (z − z2)) (6.9)

where 0 in subscripts means that n = 0 for the considered perturbation, and the

coefficients a0m are defined by Eq. (6.3). Using the properties of matrix Y and of

the adjoint fundamental solution y1, one can find that the axial vorticity term (E.27)

and the receptivity coefficient (3.25) are zeros for the considered perturbation (6.8).

The solution of the transformed system, Eq. (3.18), includes only the azimuthal
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velocity component:

uφ,0m (z, τ) = exp

(

−
∫ z

0

τ

u∗z
dz

)∫ z

0

exp

(

∫ z′

0

τ

u∗z
dz′′

)

uφ,0m (z, 0)

u∗z
dz′ (6.10)

The inverse transformations lead to the general solution of the following form:

uφ (r, z, t) =
wr

2πi

∫ i∞

−i∞

exp

(

τt− τ

∫ z

0

dz

u∗z

)

×

×
[

∫ z

0

exp

(

∫ z′

0

τ

u∗z
dz′′

)

H (z′ − z1) −H (z′ − z2)

u∗z
dz′

]

dτ

(6.11)

This is the solution for the initial perturbation (6.8) that has no dependence on φ.

The perturbation boundaries evolve along the characteristics

t−
∫ z

0

dz

u∗z
= constant (6.12)

which are shown on Fig. 6.4 for z1 = 0.2 and z2 = 0.3.

Although the considered solution stems from the results of Section 6.1.1, the anal-

ysis is repeated for the purpose of clarity of the next example where the perturbation

has an azimuthal dependence.
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Figure 6.4: The boundaries of perturbation (6.11) depending on time t and axial
coordinate z, the baseflow parameters are E = Q = 50, f = γ = 1.2.
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The initial perturbation (6.8) with inclusion of periodic azimuthal dependence has

the following form:

u′φ (r, φ, z, 0) = wr (H (z − z1) −H (z − z2)) e
ilφ, (6.13)

the transformed perturbation is

uφ,0nm (z) = anmw (H (z − z1) −H (z − z2)) , (6.14)

where the coefficients are the same as the ones defined in Section 6.1.1 for the per-

turbation in quiescent gas. The axial vorticity term can be written as Gm = gmBnm

where

gm (z) = exp

(

−τ
∫ z

0

dz′

u∗z

)∫ z

0

exp

(

τ

∫ z′

0

dz′′

u∗z

)

H (z′ − z1) −H (z′ − z2)

u∗z
dz′

(6.15)

and the transversal coefficient is

Bnm =
inw

dnm

[∫ a

0

rJn (knmr) dr

]

(6.16)
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The receptivity coefficient can be represented as Rms = rmsBnm, where

rms =

∫

∞

0
(y1,A

−1
z D0) gmdz

∂V/∂τ

∣

∣

∣

∣

τ=τs

(6.17)

with D0 = (ρ∗, 0, d3, 0, γp∗, 0)T . The component d3 has no influence on the coeffi-

cient due to the form of vector y1, so it is not shown in the explicit form.

The behavior of the maximum values of pressure perturbation, max |p|, with the

weights rms, for different values of z1, z2, k and τs are presented on the following

figures.

As in Section 6.1.1, the first example describes the perturbations with the same

value of z1 but with different values of z2. Fig. 6.5 demonstrates the behavior of

max |p| for the first three discrete modes and z1 = 0.5. The parameter k = 1 and the

flow parameters are the same as in Fig. 6.4.

The behavior of max |p| is similar to the example of vorticity perturbation outside

of the reaction zone, Fig. ??: the values of max |p| become constants for large z2.

For perturbations inside the reaction zone the adjoint solution y1 has the major

influence on max |p|: the maxima of pressure distributions become constants due to

the vanishing of y1 for large values of z (see Fig. 5.5).

Again, the flow is more receptive to the discrete modes of lower frequency and to

the one-dimensional perturbations rather than for three-dimensional ones, as shown

on Fig. 6.6.
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Figure 6.5: Maximum of pressure perturbation in the discrete modes 1, 2 and 3 for
vorticity perturbation placed inside the reaction zone, with fixed z1 = 0.5 and z2

varying from 0.5 to 5.

Figure 6.7 shows the values of max |p| for perturbations of fixed width, ∆z =

z2 − z1 = 0.2 with the same parameters as in Fig. 6.5. The values of max |p| for

the first mode and for different values of k are presented on Fig. 6.8. The flow is

more receptive to disturbances that possess lower frequency and that are closer to the

shock wave. The one-dimensional perturbations possess more influence on the flow

than the perturbations with k ≈ 1.
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0.5 to 5.
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Figure 6.7: Maximum of pressure perturbation in the discrete modes 1, 2 and 3 for
vorticity perturbation placed inside the reaction zone, with fixed ∆z = z2 − z1 = 0.2
and z1 varying from 0.2 to 2.
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6.2.2 Adiabatic Perturbations

Consider the following initial perturbation placed in the reaction zone:

q0 (r, φ, z) = qrc
δ (r − r0) δ (φ) δ (z − z0)

r
(6.18)

where qrc = (−ρ∗2, 0, 0, 0,−γp∗ρ∗, 0)
T

represents the adiabatic perturbation. This

initial perturbation has the following Fourier transform

q0,n (r, z) = qrc
δ (r − r0) δ (z − z0)

r
(6.19)

Expansion into the Bessel functions gives

q
(1)
0,nm (z) =

1

dm

∫ a

0

q
(1)
0,n (r, z) rJn (knmr) dr = −ρ∗2Jn (knmr0)

dm

δ (z − z0) ,

q
(5)
0,nm (z) =

1

dm

∫ a

0

q
(5)
0,n (r, z) rJn (knmr) dr = −γp∗ρ∗Jn (knmr0)

dm

δ (z − z0)

(6.20)

Consider perturbations located on the axis (r0 → 0). In this case, the perturbation

is axisymmetric and only terms with n = 0 are to be considered. Then, the receptivity

coefficient can be recast as follows:

Rms =
2rms

a2J2
0 (k0ma)

(6.21)
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where the coefficient

rms = − (y1, A−1
z qrc)

(∂V/∂τ)

∣

∣

∣

∣

τ=τs, z=z0

. (6.22)

The values of max |p| of adiabatic perturbation for the first three modes are shown

on Fig. 6.9, the value of radial parameter is fixed and equal to unity, the position of

perturbation, z0 varies from 0 to 2, the flow parameters are the following: E = Q = 50,

f = γ = 1.2. The magnitude of pressure maxima for all modes is almost the same,

the values of max |p| decay as the perturbation is moved away from the shock.

Figures 6.10-6.12 demonstrate the behavior of max |p| for Mode 1, Mode 3 and

Mode 5 for different values of k. The one-dimensional perturbations, with k << 1,

are still surpassing the perturbations with k ≈ 1 for Mode 1, but for higher-frequency

modes the flow is more receptive to the three-dimensional perturbations.
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Figure 6.9: Maximum of pressure perturbation in the discrete modes 1, 2 and 3 for
adiabatic perturbation placed inside the reaction zone, with z0 varying from 0 to 2.
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Figure 6.10: Maximum of pressure perturbation in the first discrete mode for adiabatic
perturbation placed inside the reaction zone, with z0 varying from 0 to 2.
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Figure 6.11: Maximum of pressure perturbation in the third discrete mode for adia-
batic perturbation placed inside the reaction zone, with z0 varying from 0 to 2.
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Figure 6.12: Maximum of pressure perturbation in the fifth discrete mode for adia-
batic perturbation placed inside the reaction zone, with z0 varying from 0 to 2.
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7. Conclusions

The initial-value problem for perturbations in a circular pipe was solved using the

Laplace transform in time.

The inverse Laplace transform leads to the expansion of the solution into the

modes of discrete and continuous spectra. The discrete modes represent the waves

propagating upstream and downstream the flow. The advantage of the initial-value

problem is associated with evaluation of the normal-mode amplitudes depending on

the initial perturbations.

As it was noted in Chapter 4, the discrete modes have zero axial vorticity. It means

that initial perturbations having nonzero axial vorticity are to be accommodated by

the modes of the continuous spectra.

The solution allows evaluation of amplitudes of the unstable modes. The consid-

ered examples illustrate that there is a variety of paths for their excitation.

The periodic perturbations placed in the quiescent gas may lead to a resonance

caused by discrete modes, but the continuous spectrum has to be taken into account

because it can compensate the contribution of discrete modes.

Examples of initial adiabatic perturbations within the reaction zone demonstrate

that the flow is more receptive to three-dimensional perturbations. In addition,

three-dimensional unstable modes may have larger growth rates than one-dimensional

modes. Both these factors are consistent with experimental observations that real
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detonation waves have three-dimensional structure.
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Appendix A: Matrices of Governing Equations

Nonzero elements of matrices in the linearized Euler equations (2.11), the superscripts

(ij) stand for (i, j)-th matrix element:

A(12)
r = ρ∗, A(25)

r =
1

γρ∗
, A(52)

r = γp∗;

A
(13)
φ = ρ∗, A

(35)
φ =

1

γρ∗
, A

(53)
φ = γp∗;

A(ii)
z = u∗z, i = 1, ..., 6,

A(14)
z = ρ∗, A(45)

z =
1

γρ∗
, A(54)

z = γp∗;

C(11) = C(44) =
du∗z
dz

, C(12) =
ρ∗

r
,

C(14) =
dρ∗

dz
, C(41) =

u∗z
ρ∗
du∗z
dz

,

C(51) = −κ
(

ω∗

ρ∗
+
∂ω∗

∂ρ∗

)

, C(52) = γ
p∗

r
, C(54) =

dp∗

dz
,

C(55) = γ
du∗z
dz

− κ
∂ω∗

∂p∗
, C(56) = −κ∂ω

∗

∂λ∗
,

C(61) = −∂ω
∗

∂ρ∗
, C(64) =

dλ∗

dz
,

C(65) = −∂ω
∗

∂p∗
, C(66) = −∂ω

∗

∂λ∗
,
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where κ = β (γ − 1) ρ∗.

Nonzero components of vectors in the linearized Euler equations (2.11), the su-

perscripts (i) stand for i-th vector component:

g
(1)
t =

dρ∗

dz
, g

(4)
t =

du∗z
dz

, g
(5)
t =

dp∗

dz
, g

(6)
t =

dλ∗

dz
;

g(2)
r = g

(3)
φ =

1

γρ∗
dp∗

dz
.
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Appendix B: Matrices of Rankine-Hugoniot Conditions

Nonzero elements of vectors and matrices of the linearized condition on the shock,

Eq. (2.12):

Y (11) =
D2

q (γ + 1)
(

4 +D2
q (γ − 1)

)

(

2 +D2
q (γ − 1)

)2 , Y (14) =
4

(γ + 1)D2
qMs

,

Y (15) = − 2

(γ + 1)M2
s

, Y (22) = Y (33) = Y (66) = 1,

Y (41) = −
2Ms (γ + 1)D2

q
(

2 + (γ − 1)D2
q

)2 , Y (44) =
D2

q (γ − 1) − 2

D2
q (γ + 1)

, Y (45) =
2

(γ + 1)Ms

,

Y (51) =
2γM2

s (γ + 1)D4
q

(

2 + (γ − 1)D2
q

)2 , Y (54) =
4γMs

γ + 1
, Y (55) =

1 − γ

γ + 1
;

h
(1)
t = − 4

(γ + 1)D2
qMs

, h
(4)
t =

2
(

D2
q + 1

)

D2
q (γ + 1)

, h
(5)
t = −4γMs

γ + 1
;

h(2)
r = h

(3)
φ = |Ds| −Ms.

Here the value Dq represents the speed of the shock scaled with the speed of sound

in the quiescent gas (shock Mach number). The value |Ds| is the speed of the shock

scaled with the speed of sound behind the shock, cs; Ms is the flow Mach number

behind the shock, and γ is the specific heat ratio.
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Appendix C: Matrix of Bessel Expansion

The diagonal matrix of the eigenfunction expansion (3.11) is represented as

Jl (r) =

















Jn

dJn/dr 0
Jn/r

Jn

0 Jn

Jn

















where Jn = Jn (knlr) is the Bessel function of the first order.
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Appendix D: Matrices of Transformed Equations

The matrices of the transformed system (3.13) are represented in this Appendix. The

superscripts (ij) stand for (i, j)-th matrix element; the elements of matrices Ar, Aφ,

Az and C from the general system (2.11) are also shown to depict the equations’

transformations:

C(11)
m = C(44)

m = C(11) = C(44) =
du∗z
dz

,

C(12)
m = −k2

nmrC
(12) = −k2

nmA
(12)
r = −k2

nmA
(13)
φ = −k2

nmρ
∗,

C(14)
m = C(14) =

dρ∗

dz
,

C(25)
m = A(25)

r =
1

γρ∗
,

C(35)
m = inA

(35)
φ =

in

γρ∗
,

C(41)
m = C(41) =

u∗z
ρ∗
du∗z
dz

,



103

C(51)
m = C(51) = −κ

(

ω∗

ρ∗
+
∂ω∗

∂ρ∗

)

,

C(52)
m = −k2

nmrC
(52) = −k2

nmA
(52)
r = −k2

nmA
(53)
φ = −k2

nmγp
∗,

C(54)
m = C(54) =

dp∗

dz
,

C(55)
m = C(55) = γ

du∗z
dz

− κ
∂ω∗

∂p∗
,

C(56)
m = C(56) = −κ∂ω

∗

∂λ∗
,

C(61)
m = C(61) = −∂ω

∗

∂ρ∗
,

C(64)
m = C(64) =

dλ∗

dz
,

C(65)
m = C(65) = −∂ω

∗

∂p∗
,

C(66)
m = C(66) = −∂ω

∗

∂λ∗
,

where κ = β (γ − 1) ρ∗.
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The superscript (i) stands for the i-th vector element:

D
(1)
0 =

1

dm

∫ a

0

ρ0,n (r, z) Jn (knmr) rdr −
dρ∗

dz
ψ0,nm − ρ∗Gm (z) ,

D
(2)
0 =

1

dm

∫ a

0

[∫ r

0

ur0,n (r′, z) dr′
]

Jn (knmr) rdr,

D
(3)
0 =

1

dm

∫ a

0

uφ0,n (r, z) Jn (knmr) r
2dr,

D
(4)
0 =

1

dm

∫ a

0

uz0,n (r, z) Jn (knmr) rdr −
du∗z
dz

ψ0,nm,

D
(5)
0 =

1

dm

∫ a

0

p0,n (r, z) Jn (knmr) rdr −
dp∗

dz
ψ0,nm − γp∗Gm (z) ,

D
(6)
0 =

1

dm

∫ a

0

λ0,n (r, z) Jn (knmr) rdr −
dλ∗

dz
ψ0,nm,

where ψ0,nm is the coefficient of the initial shock perturbation,

ψ0,nm =
1

dm

∫ a

0

ψ0,n (r) Jn (knmr) rdr,

and Gm represents the axial vorticity term derived in Appendix E.
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Appendix E: Equations for the Amplitude Functions

The derivation of the system of amplitude coefficients is considered in this Appendix.

For the derivation of amplitude equations here will be considered the system (3.5),

the Bessel expansion (3.10) and the orthogonality property of Bessel functions (3.12):

τ q̂n + Ar
∂q̂n

∂r
+ Aφ

in

r
q̂n + Az

∂q̂n

∂z
+ Cq̂n − τgtψ̂n − gr

∂ψ̂n

∂r
− gφ

in

r
ψ̂n =

= q0,n − gtψ0,n

(3.5)

q̂n =
∞
∑

l=1

















ρnl (z, τ) Jn (knlr)
ur,nl (z, τ) knlJ

′

n (knlr)
uφ,nl (z, τ) Jn (knlr) /r
uz,nl (z, τ) Jn (knlr)
pnl (z, τ) Jn (knlr)
λnl (z, τ) Jn (knlr)

















, ψ̂n =
∞
∑

l=1

ψnl (τ) Jn (knlr) (3.10)

∫ a

0

Jn (knlr) Jn (knmr) rdr = δlmdm

dm =
k2

nma
2 − n2

2k2
nm

J2
n (knma)

(3.12)

To derive the system of the ordinary differential equations, we substitute the

expansion (3.10) into the system (3.5) and consider each equation of the system

separately.
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Continuity equation. Substitute the eigenfunction expansion into the continuity

equation:

∞
∑

l=1

(

τρnl + u∗z
dρnl

dz
+ ρ∗

duz,nl

dz
+
du∗z
dz

ρnl +
dρ∗

dz
uz,nl − τ

dρ∗

dz
ψnl

)

Jn (knlr) +

+
∞
∑

l=1

ρ∗ur,nl

(

k2
nlJ

′′

n (knlr) +
1

r
knlJ

′

n (knlr)

)

+
in

r2
ρ∗

∞
∑

l=1

uφ,nlJn (knlr) =

= ρ0,n (r, z) − dρ∗

dz
ψ0,n (r)

(E.1)

Equation (E.1) is multiplied by rJn (knmr) and integrated with respect to the radius,

r, from zero to a. Taking into account the orthogonality condition (3.12) and the

Bessel equation for Jn (knlr):

k2
nlJ

′′

n +
1

r
knlJ

′

n = −k2
nlJn +

n2

r2
Jn (E.2)

one can derive from Eq. (E.1) that

τρnm + u∗z
dρnm

dz
+ ρ∗

duz,nm

dz
+
du∗z
dz

ρnm − k2
nmρ

∗ur,nm +
dρ∗

dz
uz,nm − τ

dρ∗

dz
ψnm+

+
nρ∗

dm

∫ a

0

∞
∑

l=1

(nur,nl + iuφ,nl)Jn (knlr) Jn (knmr)
dr

r
= ρ0,nm (z) − dρ∗

dz
ψ0,nm

(E.3)
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where the initial amplitude coefficient is written as

ρ0,nm (z) =
1

dm

∫ a

0

ρ0,n (r, z) Jn (knmr) rdr,

ψ0,nm =
1

dm

∫ a

0

ψ0,n (r) Jn (knmr) rdr.

(E.4)

The last term in the left-hand side of Eq.(E.3) contains an infinite sum that will

be considered after the equations’ expansion.

Radial momentum equation. Substitute the eigenfunction expansion into the

radial momentum equation gives

∞
∑

l=1

(

τur,nl + u∗z
dur,nl

dz
+

1

γρ∗
pnl −

1

γρ∗
dp∗

dz
ψnl

)

knlJ
′

n (knlr) = ur0,n (r, z) (E.5)

Equation (E.5) is integrated with respect to r from zero to r, then the result is

multiplied by rJn (knmr) and integrated again with respect to the radius, r, from zero

to a:

τur,nm + u∗z
dur,nm

dz
+

1

γρ∗
pnm − 1

γρ∗
dp∗

dz
ψnm−

− 1

dm

∞
∑

l=1

(

τur,nl + u∗z
dur,nl

dz
+

1

γρ∗
pnl −

1

γρ∗
dp∗

dz
ψnl

)

Jn (knl0)

∫ a

0

Jn (knmr) rdr =

= ur0,nm (r, z)
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where the initial amplitude coefficient is written as

ur0,nm (z) =
1

dm

∫ a

0

(∫ r

0

ur0,n (r′, z) dr′
)

Jn (knmr) rdr. (E.6)

Taking into account that Jn (0) = 0 for n > 0 and

∫ a

0

rJ0 (k0mr) dr =
a

k0m

J1 (k0ma) = − a

k0m

J ′

0 (k0ma) = 0 (E.7)

due to the boundary condition (the same properties are taken into account in deriva-

tion of the shock boundary condition for ur,nm (0+) in (3.14)), one can derive the

following amplitude equation:

τur,nm + u∗z
dur,nm

dz
+

1

γρ∗
pnm − 1

γρ∗
dp∗

dz
ψnm = ur0,nm (z) (E.8)

Azimuthal momentum equation. Substitute the eigenfunction expansion into

the azimuthal momentum equation:

∞
∑

l=1

(

τuφ,nl + u∗z
duφ,nl

dz
+

in

γρ∗
pnl −

in

γρ∗
dp∗

dz
ψnl

)

Jn (knlr)

r
= uφ0,n (r, z) (E.9)
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Multiply Eq.(E.9) by r2Jn (knmr) and integrate with respect to the radius, r, from

zero to a. The result is the following:

τuφ,nm + u∗z
duφ,nm

dz
+

in

γρ∗
pnm − in

γρ∗
dp∗

dz
ψnm = uφ0,nm (z) (E.10)

where

uφ0,nm (z) =
1

dm

∫ a

0

uφ0,n (r, z) Jn (knmr) r
2dr. (E.11)

Axial momentum equation. Substitute the eigenfunction expansion into the ax-

ial momentum equation:

∞
∑

l=1

(

τuz,nl + u∗z
duz,nl

dz
+

1

γρ∗
dpnl

dz
+
u∗z
ρ∗
du∗z
dz

ρnl +
du∗z
dz

uz,nl − τ
du∗z
dz

ψnl

)

Jn (knlr) =

= uz0,n (r, z) − du∗z
dz

ψ0,n (r)

(E.12)

Using orthogonality of the Bessel functions, Eq. (3.12), one can derive from Eq.

(E.12) the following result:

τuz,nm + u∗z
duz,nm

dz
+

1

γρ∗
dpnm

dz
+
u∗z
ρ∗
du∗z
dz

ρnm +
du∗z
dz

uz,nm − τ
du∗z
dz

ψnm =

= uz0,nm (z) − du∗z
dz

ψ0,nm

(E.13)
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where

uz0,nm =
1

dm

∫ a

0

uz0,n (r, z) Jn (knmr) rdr. (E.14)

Energy equation. Substitute the eigenfunction expansion into the energy equa-

tion:

∞
∑

l=1

[

τpnl + γp∗
duz,nl

dz
+ u∗z

dpnl

dz
− β (γ − 1)

(

ω∗ + ρ∗
∂ω∗

∂ρ∗

)

ρnl +
dp∗

dz
uz,nl+

+

(

γ
du∗z
dz

− β (γ − 1) ρ∗
∂ω∗

∂p∗

)

pnl − β (γ − 1) ρ∗
∂ω∗

∂λ∗
λnl − τ

dp∗

dz
ψnl

]

Jn (knlr) +

+
∞
∑

l=1

γp∗ur,nl

(

k2
nlJ

′′

n (knlr) +
1

r
knlJ

′

n (knlr)

)

+ γp∗
in

r2

∞
∑

l=1

uφ,nlJn (knlr) =

=p0,n (r, z) − dp∗

dz
ψ0,n (r)

(E.15)

One can multiply Eq. (E.15) by rJn (knmr) and integrate with respect to the radius,

r, from zero to a. Taking into account the orthogonality condition (3.12) and the

Bessel equation (E.2), the following result can be achieved:

τpnm + γp∗
duz,nm

dz
+ u∗z

dpnm

dz
− β (γ − 1)

(

ω∗ + ρ∗
∂ω∗

∂ρ∗

)

ρnm − k2
nmγp

∗ur,nm+

+
dp∗

dz
uz,nm +

(

γ
du∗z
dz

− β (γ − 1) ρ∗
∂ω∗

∂p∗

)

pnm − β (γ − 1) ρ∗
∂ω∗

∂λ∗
λnm − τ

dp∗

dz
ψnm+

+
nγp∗

bm

∫ a

0

∞
∑

l=1

(nur,nl + iuφ,nl) Jn (knlr)Jn (knmr)
dr

r
= p0,nm (z) − dp∗

dz
ψ0,nm

(E.16)
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where

p0,nm =
1

dm

∫ a

0

p0,n (r, z) Jn (knmr) rdr. (E.17)

The equation (E.16) contains the same infinite sum as the continuity equation

(E.3). The term with the sum will be considered after the expansion of the reaction

equation.

Reaction rate equation. Substitute the eigenfunction expansion into the equation

for the reaction rate:

∞
∑

l=1

[(

τ − ∂ω∗

∂λ∗

)

λnl + u∗z
dλnl

dz
− ∂ω∗

∂ρ∗
ρnl +

dλ∗

dz
uz,nl −

∂ω∗

∂p∗
pnl −

− τ
dλ∗

dz
ψnl

]

Jn (knlr) = λ0,n (r, z) − dλ∗

dz
ψ0,n (r)

(E.18)

The same procedure as for the above equations leads to the following form of the

amplitude equation:

(

τ − ∂ω∗

∂λ∗

)

λnm + u∗z
dλnm

dz
− ∂ω∗

∂ρ∗
ρnm +

dλ∗

dz
uz,nm − ∂ω∗

∂p∗
pnm − τ

dλ∗

dz
ψnm =

= λ0,nm (z) − dλ∗

dz
ψ0,nm

(E.19)

where

λ0,nm =
1

dm

∫ a

0

λ0,n (r, z) Jn (knmr) rdr. (E.20)
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Analysis of the term with an infinite sum. The main obstacle in resolving the

amplitude equations is associated with the infinite sum

Gm (z) =
n

dm

∫ a

0

∞
∑

l=1

(nur,nl + iuφ,nl) Jn (knlr) Jn (knmr)
dr

r
(E.21)

that appears in Eqs. (E.3) and (E.16). One can show that this sum is associated

with the axial vorticity perturbation and that it can be found from the given initial

data. In other words, the sum in Eqs. (E.3) and (E.16) can be considered as a known

function.

Using the radial and azimuthal momentum equations from the system (2.11), one

can find the following first-order linear partial differential equation:

∂Ωz

∂t
+ u∗z

∂Ωz

∂z
= 0 (E.22)

where Ωz is a perturbation of the axial vorticity:

Ωz =
1

r

(

∂ru′φ
∂r

− ∂u′r
∂φ

)

(E.23)

Solution of Eq. (E.22) can be easily found with the help of the method of char-

acteristics. In order to be consistent with the adopted eigenfunction expansion, the

Fourier transform in φ, the Laplace transform in time, and the eigenfunction expan-
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sions for the velocity components (3.10) are implemented here. After all transforma-

tions, the following equation can be written:

[

τ + u∗z
∂

∂z

] ∞
∑

l=1

(uφ,nl − inur,nl) knlJ
′

n (knlr) = rΩz0,n (r, z) (E.24)

where Ωz0,n (r, z) is the Fourier transform of the axial vorticity distribution at t = 0.

Equation (E.24) is integrated with respect to r from zero to r, the result is multi-

plied by inJn (knmr) /r and integrated with respect to the radius, r, from zero to a.

Hence one can find the following differential equation for Gm (z):

τGm + u∗z
dGm

dz
= F0,m (z) (E.25)

where the initial data term is

F0,m (z) =
in

dm

a
∫

0





r
∫

0

r′Ωz0,n (r′, z) dr′



 Jn (knmr)
dr

r
. (E.26)

Solution of Eq. (E.25) can be written in the following form:

Gm (z) = K0 exp



−τ
z
∫

0

dz

u∗z



+ exp



−τ
z
∫

0

dz

u∗z





z
∫

0

F0,m (z′)

u∗z (z′)
exp



τ

z′
∫

0

dz′′

u∗z



dz′

(E.27)



114

where K0 is the perturbation of the axial vorticity coming from the quiescent gas. If

there are no perturbations of the axial vorticity at t = 0, i.e. F0,m = 0 and K0 = 0,

we have Gm (z) = 0.

Now, the amplitude equations can be written in the solvable vector-matrix form

as follows:

Az
dqnm

dz
+ (τI + Cm)qnm − (τgt + gr + ingφ)ψnm = D0 (z) (3.13)

where D0 is known function of the coordinate z and the Laplace variable τ depending

on initial distribution of perturbations.
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Appendix F: Fundamental Solutions of the Direct Problem

Fundamental solutions of the direct system (3.15) can be written in the form Qj (z) =

Qj∞ exp (µjz), j = 1, ..., 6 for z → ∞. The amplitude vectors Qj∞ are shown in this

section.

Q1∞ =





















p∗
∞

τ+u∗

∞
c∞ρ∗

∞

√
τ2+c2

∞
(1−M2

∞
)k2

nm

c2
∞

u∗2
∞
− c2

∞

in (u∗2
∞
− c2

∞
)

−u∗
∞
τ − c∞

√

τ 2 + c2
∞

(1 −M2
∞

) k2
nm

γ
(

p∗
∞
τ + u∗

∞
c∞ρ

∗

∞

√

τ 2 + c2
∞

(1 −M2
∞

) k2
nm

)

0





















,

Q2∞ =





















p∗
∞

τ−u∗

∞
c∞ρ∗

∞

√
τ2+c2

∞
(1−M2

∞
)k2

nm

c2
∞

u∗2
∞
− c2

∞

in (u∗2
∞
− c2

∞
)

−u∗
∞
τ + c∞

√

τ 2 + c2
∞

(1 −M2
∞

) k2
nm

γ
(

p∗
∞
τ − u∗

∞
c∞ρ

∗

∞

√

τ 2 + c2
∞

(1 −M2
∞

) k2
nm

)

0





















,

Q3∞ =

















1
0
0
0
0
0

















, Q4∞ =

















0
1
0

−k2
nm

u∗

∞

τ

0
0

















, Q5∞ =

















0
0
1
0
0
0

















,

Q6∞ =





























−
ρ∗
∞

(

(

C
(66)
∞ +τ

)2
−k2

nm
u∗2
∞

)

C
(66)
∞

−u∗2
∞

−inu∗2
∞

u∗
∞

(

C
(66)
∞ + τ

)

−C(66)
∞ γu∗2

∞
ρ∗
∞

γ
p∗
∞

[

(

C
(66)
∞ +τ

)2
−k2

nm
u∗2
∞

]

−C
(66)
∞

2
u∗2
∞

ρ∞

C
(56)
∞





























,
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where n is the azimuthal index, knm is the m-th root of the boundary-condition

equation (3.9). Also, ρ∗
∞

is density, u∗
∞

is mean velocity, c∞ is the speed of sound

and p∗
∞

is pressure in the burnt medium. The symbols C
(56)
∞ and C

(66)
∞ stand for the

elements of matrix Cm at z → ∞.
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Appendix G: Fundamental Solutions of the Adjoint Problem

Fundamental solutions of the adjoint system (3.19) can be written in the form yj (z) =

yj∞ exp (−µ̄jz), j = 1, ..., 6 for z → ∞. The conjugate form of the amplitude vectors

yj∞ up to normalization factors are shown in this section.

ȳ1∞ =





















0
k2

nmu
∗

∞

0
τ

− c∞
γp∗

∞

√

τ 2 + k2
nmc

2
∞

(1 −M2
∞

)
C

(56)
∞ u∗

∞(τ2
−k2

nm
u∗2
∞)

γp∗
∞

(

−τ
(

C
(66)
∞ +τ

)

+k2
nm

u∗2
∞

)

+C
(66)
∞ γu∗

∞
c∞ρ∗

∞

√
τ2+k2

nm
c2
∞

(1−M2
∞

)





















, (G.1)

ȳ2∞ =





















0
−k2

nmu
∗

∞

0
−τ

− c∞
γp∗

∞

√

τ 2 + k2
nmc

2
∞

(1 −M2
∞

)
C

(56)
∞ u∗

∞(τ2
−k2

nm
u∗2
∞)

γp∗
∞

(

τ
(

C
(66)
∞ +τ

)

−k2
nm

u∗2
∞

)

+C
(66)
∞ γu∗

∞
c∞ρ∗

∞

√
τ2+k2

nm
c2
∞

(1−M2
∞

)





















,

ȳ3∞ =



















−1
0
0
0
1

γc2
∞

−C
(56)
∞

C
(66)
∞ γc2

∞



















, ȳ4∞ =

















0
τ 2

0
τu∗

∞

τ
γρ∗

∞

0

















, ȳ5∞ =

















0
ink2

nmu
∗2
∞

τ 2 − k2
nmu

∗2
∞

inτu∗
∞

inτ
γρ∗

∞

0

















, ȳ6∞ =

















0
0
0
0
0

−C(56)
∞

















,

where n is the azimuthal index, knm is the m-th root of the boundary-condition

equation (3.9). Also, ρ∗
∞

is density, u∗
∞

is mean velocity, c∞ is the speed of sound
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and p∗
∞

is pressure in the burnt medium. The symbols C
(56)
∞ and C

(66)
∞ stand for the

elements of matrix Cm at z → ∞.
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Appendix H: Derivation of Coefficients for Solution of Trans-

formed System

The amplitude coefficients aj and shock displacement ψnm are derived here.

For the derivation of coefficients we will need the formal solution of the amplitude

system:

qnm =
6
∑

j=2

(

aj +

∫ z

0

(yj, F) dz′
)

Qj + Q1

∫ z

∞

(y1, F) dz′

F = F1 + F2ψnm, F1 = A−1
z D0, F2 = A−1

z (τgt + gr + ingφ) ,

(3.18)

and the condition on the shock front:

qnm (0+) = Yqnm (0−) + ht (τψnm − ψ0,nm) + (hr + inhφ)ψnm, (3.14)

Substitution of Eq. (3.18) into condition (3.14) leads to

− ψnm

[

Q1 (0)

∫

∞

0

(y1,F2) dz + (τht + hr + inhφ)

]

=

= Yqnm (0−) − htψ0,nm −
6
∑

j=2

ajQj (0) + Q1∞

∫

∞

0

(y1,F1) dz

(H.1)

Dot product of (H.1) and y1 (0) gives the following equation for the displacement of
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the shock ψnm:

− ψnm

[∫

∞

0

(y1,F2) dz + (y1 (0) , τht + hr + inhφ)

]

=

= (y1 (0) ,Yqnm (0−) − htψ0,nm) +

∫

∞

0

(y1,F1) dz,

we use the orthogonality of direct and adjoint fundamental solutions: (yi,Qj) = δij,

where δij is Kronecker delta, as yi are vectors composed of cofactors of the j-th

column of the matrix of the fundamental solutions Q = [Q1, Q2, ..., Q6] which is

divided by det (Q) [54].

Then we can extract ψnm as

ψnm = −U (τ, knm)

V (τ, knm)
(H.2)

where

U = (y1 (0) ,Yqnm (0−) − htψ0,nm) +

∫

∞

0

(y1,F1) dz, (H.3)

V =

∫

∞

0

(y1,F2) dz + (y1 (0) , τht + hr + inhφ) . (H.4)

In the same fashion, dot product of Eq. (H.1) and yj (0), j = 2, ..., 6 give the

equations for the coefficients aj:

aj = (yj (0) ,Yqnm (0−) − htψ0,nm) − U

V
(yj (0) , τht + hr + inhφ) (H.5)
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The explicit form of Eq. (3.18) is

qnm =

=
6
∑

j=2

[

(yj (0) ,Yqnm (0−) − htψ0,nm) +

∫ z

0

(yj,F1) dz
′

]

Qj + Q1

∫ z

∞

(y1,F1) dz
′−

− U

V

(

6
∑

j=2

[

(yj (0) , τht + hr + inhφ) +

∫ z

0

(yj,F2) dz
′

]

Qj + Q1

∫ z

∞

(y1,F2) dz
′

)

(H.6)
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Appendix I: Derivation of the General Solution

The integral of the inverse Laplace transform, the receptivity coefficients, and the

formula of the general solution are discussed in this Appendix.

When all terms of the amplitude solution (3.18) are known, and we can go back-

ward through the transformations to obtain the formula for perturbations q′ (r, φ, z, t).

The Bessel expansion gives the following series:

q̂n (r, z, τ) =
∞
∑

m=1

Jm (knmr)qnm (z, τ)

Then the integral of the inverse Laplace transformation can be written as

qn (r, z, t) =
1

2πi

∫ σ+i∞

σ−i∞

q̂n (r, z, τ) eτtdτ =

=
∑

s

Rse
τst +

1

2πi

∫ i∞

−i∞

q̂n (r, z, τ) dτ ,

(I.1)

where the first term is the summation over all poles τs - zeros of the denominator

V (τ) with Re (τs) > 0 - the part of the integral due to the discrete spectrum of the

problem. The second term is the integral over the imaginary axis, the contribution of

the continuous spectrum to the solution. The integration contour used in the inverse

Laplace transformation is shown on Fig. 3.1.

Each element of the sum in the discrete spectrum term of Eq. (I.1) can be written
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as:

Rs =
∞
∑

m=1

Jm (knmr)RmsqDM,s (z, knm, τs)

The weight coefficient Rms is produced from the evaluation of residue at the pole τs:

Rms = Res

(

U

V
, τs

)

=
U

∂V/∂τ

∣

∣

∣

∣

τ=τs

,

where the numerator U is given by Eq. (H.3), denominator V - by Eq. (H.4), and

the partial derivative ∂V/∂τ can be evaluated with finite differences.

The explicit form of the vector qDM,s follows from the last line of Eq. (H.6):

qDM,s =

=

[

6
∑

j=2

[

(yj (0) , τht + hr + inhφ) +

∫ z

0

(yj,F2) dz
′

]

Qj + Q1

∫ z

∞

(y1,F2) dz
′

]

τ=τs

(I.2)
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Appendix J: Equivalence of Spectra

The equivalence of the discrete spectrum stemming from normal-mode and present

analyses is considered in this Appendix.

Equivalence of the dispersion relationship. Consider the dot product of (4.1)

and the first fundamental solution (G.1) of the adjoint problem (3.19)

(

y1,
dϑ

dz

)

+
(

y1, A−1
z (Cm + τI)ϑ

)

−
(

y1, A−1
z (τgt + gr + ingφ)

)

= 0 (J.1)

After integration by parts of (J.1) with respect to z from zero to infinity, and using

Eq. (3.19), we arrive at the following relationship:

(y1 (0) , ϑ (0)) +

∫

∞

0

(

y1, A−1
z (τgt + gr)

)

dz = 0,

or, with the help of Eq. (4.2):

(y1 (0) , τht + hr + inhφ) +

∫

∞

0

(

y1, A−1
z (τgt + gr + ingφ)

)

dz = 0, (J.2)

which is exactly the same as (3.23).
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Equivalence of the solutions. The normal-mode system (4.1) and the system

(3.13) for the amplitude functions possess the same solutions of direct and adjoint

homogeneous systems, Qi and yi respectively (i = 1, ..., 6).

Therefore, the solution of (4.1) that is bounded at z → ∞ can be written in the

form

ϑ =
6
∑

j=2

(

αj +

∫ z

0

(yj,F2) dz
′

)

Qj + Q1

∫ z

∞

(y1,F2) dz
′ (J.3)

where F2 = A−1
z (τgt + gr + ingφ). Coefficients αj can be found from the initial

condition (4.2): substitution of the solution (J.3) into (4.2) gives

6
∑

j=2

αjQj + Q1 (0)

∫ 0

∞

(y1,F2) dz
′ = τht + hr + inhφ, (J.4)

then, by multiplication of Eq. (J.4) on yj (0), and with implementation of orthogo-

nality of asymptotic solutions, we get the coefficients:

αj = (yj (0) , τht + hr + inhφ)

The solution ϑ is equal to

ϑ =
6
∑

j=2

(

(yj (0) , τht + hr + inhφ) +

∫ z

0

(yj,F2) dz
′

)

Qj +Q1

∫ z

∞

(y1,F2) dz
′ (J.5)
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and, evaluated at τ = τs, it is exactly the discrete mode vector qDM,s, given by Eq.

(I.2).

Thus, we can conclude that the discrete spectra found by both normal-mode and

present analyses are identical, and that the normal-mode solution is included into the

present solution of the initial-value problem.
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Appendix K: Numerical Methods

In the numerical integration of the differential equations several different solvers were

used.

In the first solver, the IMSL routine DIVPAG implementing Gear’s BDF method

[60] was utilized. The second code was based on LAPACK package, and the calcula-

tions were performed using DDASSL subroutine developed by L. R. Petzold (down-

loaded from software repository of the National Institute of Standards and Technol-

ogy). The third solver was developed by means of Mathematica, the computational

system by Wolfram Research. All solvers were found to be efficient for solution of

direct and adjoint problems. A shooting procedure together with Newton’s algorithm

was used in order to find a root of Eqs. (4.6) (direct problem) and (3.23) (adjoint

problem).

The shooting method requires an initial guess of the eigenvalue τs. Multi-domain

spectral collocation method (SCM) with Chebyshev polynomials was utilized to find

the eigenvalues that could be used in the shooting iterations. The method is thor-

oughly explained in [57] for the case of one-dimensional detonations. The LAPACK

solver ZGGEV and subroutine DG6CCG of IMSL FORTRAN library were used in

SCM investigations of spectrum.

The SCM calculations need large amounts of computing power to investigate cases

with many domains and high numbers of collocation nodes. Such massive calculations
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were conducted with the help of the CFD laboratory of the University of Arizona.



129

Appendix L: Supplemental Receptivity Results

The dependence of maximum values of pressure distribution max |p| on overdrive

factor f , activation energy E and heat release Q are described here.

The results are demonstrated for Mode 1 (see Fig. 5.6) with the radial parameter

k fixed and equal to unity, γ = 1.2. The dependence of coordinates of Mode 1 on f is

shown on Fig. L.1. The curves start at f = 1.01, as the value of f = 1 is beyond the

scope of the present research, and end at f = 4.14, where the discrete mode merges

with the continuous spectrum.
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Mode 1,  E = Q = 50,  k = 1
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f

Figure L.1: Dependence of coordinates of the first discrete mode on overdrive factor
f , for k = 1, E = Q = 50.
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The behavior of coordinates of Mode 1 with respect to E are shown on Fig. L.2.

The range of E from 0 to 50 is covered.
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Figure L.2: Dependence of coordinates of the first discrete mode on activation energy
E, for k = 1, Q = 50 and f = 1.2.

The dependence of coordinates of Mode 1 on Q is shown on Fig. L.3. The

considered range of Q is between 20 and 50, as the values Q < 20 for constant

activation energy E = 50 are difficult to analyze due to the stiffness of the problem.

Three types of perturbations are considered: vorticity perturbation placed out-

side of the reaction zone (see Section 6.1.1), vorticity perturbation placed inside the

reaction zone (Section 6.2.1) and adiabatic perturbation placed inside the reaction

zone (Section 6.2.2).
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Figure L.3: Dependence of coordinates of the first discrete mode on heat release Q,
for k = 1, E = 50 and f = 1.2.

Vorticity perturbations inside the reaction zone. The two considered types of

vorticity perturbations are now placed inside the reaction zone. For the disturbance

with fixed boundary z1 = 0.5, the receptivity results are shown on Figs. L.4-L.6: flow

receptivity increases with increase of f and decrease of Q, the effect of the activation

energy change is small.

The fixed-width perturbation is described by Figs. L.7-L.9. The flow receptivity

decays with distance from the shock wave, as well as with decrease of E, and increase

of f and Q.
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Figure L.4: Maximum of pressure perturbation in the first discrete mode for vorticity
perturbation placed inside the reaction zone, with fixed z1 = 0.5 and z2 varying from
0.5 to 5. The dependence is shown for three values of the overdrive factor f .

Adiabatic perturbations inside the reaction zone. The receptivity of the flow

to adiabatic perturbations analyzed in Section 6.2.2 is described on Figs. L.10-L.12

for different values of f , E and Q. The flow becomes more receptive to the considered

perturbation with increase of activation energy E, and decrease of heat release Q and

overdrive factor f .
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Figure L.5: Maximum of pressure perturbation in the first discrete mode for vorticity
perturbation placed inside the reaction zone, with fixed z1 = 0.5 and z2 varying from
0.5 to 5. The dependence is shown for three values of the activation energy E.
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Figure L.6: Maximum of pressure perturbation in the first discrete mode for vorticity
perturbation placed inside the reaction zone, with fixed z1 = 0.5 and z2 varying from
0.5 to 5. The dependence is shown for three values of the heat release Q.
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Figure L.7: Maximum of pressure perturbation in the first discrete mode for vorticity
perturbation placed inside the reaction zone, with fixed ∆z = z2 − z1 = 0.2 and z1

varying from 0.2 to 3. The dependence is shown for three values of the overdrive
factor f .
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Figure L.8: Maximum of pressure perturbation in the first discrete mode for vorticity
perturbation placed inside the reaction zone, with fixed ∆z = z2 − z1 = 0.2 and z1

varying from 0.2 to 2. The dependence is shown for three values of the activation
energy E.
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Figure L.9: Maximum of pressure perturbation in the first discrete mode for vorticity
perturbation placed inside the reaction zone, with fixed ∆z = z2 − z1 = 0.2 and z1

varying from 0.2 to 2. The dependence is shown for three values of the heat release
Q.
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Figure L.10: Maximum of pressure perturbation in the first discrete mode for adi-
abatic perturbation placed inside the reaction zone at z = z0. The dependence is
shown for three values of the overdrive factor f .
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Figure L.11: Maximum of pressure perturbation in the first discrete mode for adi-
abatic perturbation placed inside the reaction zone at z = z0. The dependence is
shown for three values of the activation energy E.
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Figure L.12: Maximum of pressure perturbation in the first discrete mode for adi-
abatic perturbation placed inside the reaction zone at z = z0. The dependence is
shown for three values of the heat release Q.
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[9] E. Jouguet. Mécanique des Explosifs. Octave Doin et Fils, Paris, 1917.

[10] V. A. Mikhelson. O normalnoy skorosti vosplameneniya gremuchih gazovyh sme-
sey (On normal ignition velocity of explosive gaseous mixtures). Imperial Moscow
University Scientific Bulletin, Phys. & Math. Ser., 10:1–92, 1893. In Russian.

[11] J. W. S. Rayleigh. Theory of sound. Dover Publications, second edition, 1976.

[12] P.-H. Hugoniot. Sur la propagation du mouvement dans les corps et plus
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[18] H. B. Döring. Über den detonationsvorgang in gasen. Ann. Phys., 435:421–436,
1943.

[19] Ya. B. Zel’dovich and A. S. Kompaneets. Teoriya Detonatsii. Gostekhizdat,
Moscow, 1955. English translation: Theory of Detonation. New York, Academic
Press, 1960.

[20] C. Campbell and D. W. Woodhead. The ignition of gases by an explosion-wave.
Part I. Carbon monoxide and hydrogen mixtures. J. Chem. Soc., pages 3010–
3021, 1926.

[21] B. V. Voitsekhovskiy, V. V. Mitrofanov, and M. Ye. Topchiyan. Struktura fronta
detonatsii v gazakh. Technical report, Izdatel’stvo Sibirskogo Otdeleniya AN
SSSR, Novosibirsk, 1963. English translation: The structure of a detonation
front in gases. Wright-Patterson Air Force Base Report FTD-MT-64-527, 1966.

[22] G. L. Schott. Observations of the structure of spinning detonation. Phys. Fluids,
8(5):850–865, 1965.

[23] F. A. Williams. Combustion Theory. The Benjamin/Cummings Publishing Com-
pany, Inc., second edition, 1985.

[24] K. I. Shchelkin. Two cases of unstable combustion. Zh. Eksp. Teor. Fiz., 36:600–
606, 1959.

[25] R. M. Zaidel. Ob ustoychivosti detonatsionnyh voln v gazovyh smesyah (The
stability of detonation waves in gaseous mixtures). Dokl. Akad. Nauk SSSR
(Phys. Chem. Sect.), 136:1142–1145, 1961.

[26] J. J. Erpenbeck. Structure and stability of the square-wave detonation. In Ninth
Symposium (International) on Combustion, pages 442–453. Academic Press,
1963.



139

[27] J. D. Buckmaster and G. S. S. Ludford. The effect of structure on the stability
of detonations I. Role of the induction zone. In Twenty-first Symposium (Inter-
national) on Combustion, pages 1669–1676. The Combustion Institute, 1986.

[28] J. D. Buckmaster and J. Neves. One-dimensional detonation stability: The
spectrum for infinite activation energy. Phys. Fluids, 31:3571–3576, 1988.

[29] M. Short. Multidimensional linear stability of a detonation wave at high activa-
tion energy. SIAM Journal on Applied Mathematics, 57(52):307–326, 1997.

[30] J. J. Erpenbeck. Stability of steady-state equilibrium detonations. Phys. Fluids,
5(5):604–614, 1962.

[31] J. J. Erpenbeck. Stability of idealized one-reaction detonations. Phys. Fluids,
7(5):684–696, 1964.

[32] J. J. Erpenbeck. Stability of step shocks. Phys. Fluids, 5(10):1181–1187, 1962.

[33] J. J. Erpenbeck. Steady detonations in idealized two-reaction systems. Phys.
Fluids, 7(9):1424–1432, 1964.

[34] J. J. Erpenbeck. Stability of idealized one-reaction detonations: zero activation
energy. Phys. Fluids, 8:1192–1193, 1965. Research notes.

[35] J. J. Erpenbeck. Detonation stability for disturbances of small transverse wave-
length. Phys. Fluids, 9(7):1293–1306, 1966.

[36] J. J. Erpenbeck. Nonlinear theory of unstable one-dimensional detonations. Phys.
Fluids, 10(2):274–289, 1967.

[37] J. J. Erpenbeck. Nonlinear theory of unstable two-dimensional detonation. Phys.
Fluids, 13(8):2007–2026, 1970.

[38] J. J. Erpenbeck. Theory of detonation stability. In Twelfth Symposium (Inter-
national) on Combustion, pages 711–721. The Combustion Institute, 1969.

[39] V. V. Pukhnachev. Ob ustoichivosti detonatsii Chepmena-Zhuge (The stability
of Chapman-Jouguet detonations). Dokl. Akad. Nauk. SSSR, 149:798–801, 1963.
In Russian.

[40] V. V. Pukhnachev. Ob ustoichivosti detonatsii Chepmena-Zhuge (The stability
of Chapman-Jouguet detonations). Prikl. Mekh. Tekh. Fiz., 6:66–73, 1963. In
Russian.

[41] G. E. Abouseif and T. Y. Toong. Theory of unstable one-dimensional detona-
tions. Combust. Flame, 45:67–94, 1982.



140

[42] H. I. Lee and D. S. Stewart. Calculation of linear detonation instability: one-
dimensional instability of plane detonation. J. Fluid Mech., 216:103–132, 1990.

[43] G. J. Sharpe. Linear stability of idealized detonations. Proc. R. Soc. Lond. A,
453:2603–2625, 1997.

[44] A. R. Kasimov and D. S. Stewart. Spinning instability of gaseous detonations.
J. Fluid Mech., 466:179–203, 2002.

[45] W. Fickett and W. C. Davis. Detonation: Theory and Experiment. Dover Pub-
lications, 2000. Republication of the original work published in 1979 by the
University of California Press, Berkley.

[46] M. V. Morkovin. Critical evaluation of transition from laminar to turbulent
shear layers with emphasis on hypersonic traveling bodies. AFRL Report AFF
DL–TR–68–149, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB,
OH, USA, 1969.

[47] E. Reshotko. Boundary-layer stability and transition. Annu. Rev. Fluid Mech.,
8:311–349, 1976.

[48] E. Forgoston and A. Tumin. Initial-value problem for three-dimensional dis-
turbances in a hypersonic boundary layer. Phys. Fluids, 17, 2005. Paper No.
084106.

[49] A. Tumin. Initial-value problem for small disturbances in an idealized one-
dimensional detonation. Phys. Fluids, 19(106105), 2007.

[50] W. W. Wood and Z. W. Salsburg. Analysis of steady-state supported one-
dimensional detonations and shocks. Phys. Fluids, 3(4):549–566, 1960.

[51] E. Zauderer. Partial Differential Equations of Applied Mathematics. Wiley &
Sons, third edition, 2006.

[52] A. R. Kasimov. Theory of instability and nonlinear evolution of self-sustained
detonation waves. PhD thesis, University of Illinois at Urbana-Champaign, 2004.

[53] G. B. Arfken and H. J. Weber. Mathematical Methods for Physicists. Har-
court/Academic press, San Diego, fifth edition, 2001.

[54] E. Kamke. Differentialgleichungen. Lösungsmethoden und Lösungen. Akademis-
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