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ABSTRACT

This dissertation studies three public transit operations control strategies with 

automatic vehicle location (AVL) data available. Specifically, holding control, stop-

skipping control and vehicle dispatching with swapping are investigated. Moreover, AVL 

data from Tucson, Arizona are employed to investigate the methodologies for deriving 

vehicle operating parameters.

The problem of holding vehicles at multiple holding stations can be modeled as a 

convex mathematical programming problem which can be solved to near optimality by a 

proposed heuristic. A simulation study on the holding problem suggests that holding 

control based on the proposed problem formulation can effectively reduce the total 

passenger cost. Also, multiple holding stations may offer more opportunities to regularize 

vehicle headways so that holding vehicles at multiple stations can further reduce the 

passenger cost compared to holding vehicles only at a single station. 

Stop-skipping is investigated to respond more rapidly to vehicle disruptions 

occurring in the middle of a route. Based on a preliminary analysis of the basic stop-

skipping policy, a policy alternative is constructed. The stop-skipping strategy is 

formulated separately for both policies as a nonlinear integer programming problem. The 

problem solution relies on an exhaustive search method. Another simulation study is 

conducted to examine how the performance of the two policies change with the passenger 

distribution pattern, the vehicle disruption location and length, and the vehicle travel time 

variability. The simulation result suggests selective superiority of the two policies.
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The vehicle dispatching problem investigates the potential of integrating real-time 

swapping into the vehicle dispatching strategies at a transit transfer terminal. With a 

hypothetical study design, simulation is employed again to evaluate the significance of 

real-time swapping by comparing the performance of a swapping-holding combined 

strategy with the holding-only strategy. A sensitivity analysis is also employed to 

compare these two strategies among key transit operating factors. 

Finally, using three different understandings (assumptions) of vehicle operating 

behavior, regression methods are proposed for using AVL data to derive the vehicle 

running speeds and passenger boarding rates, which serve as inputs to the operations 

control models. The regression results show that the day-specific operating behavior may 

not be appropriate, and that operating behavior combining both trip-specific and day-

specific effects seems to be slightly superior to the trip-specific behavior overall.
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CHAPTER 1     BACKGROUND

1.1. Introduction

In the past decade, public transit has played a growing role within the multi-modal 

transportation system in many urban areas. An increasing number of commuters resort to 

the public transit system for commuting to and from work/school. The capacity of the 

public transit system is mostly defined by the network design, route layout and the 

operating schedule. However, the effectiveness of the system capacity and the system 

operational performance are largely determined by the system operating conditions. In a 

majority of the urban areas in the United States, traffic congestion has become 

increasingly common, especially in central urban areas. For instance, according to the 

2001-2025 Regional Transportation Plan developed by the Pima Association of 

Governments (PAG, 2001), the vehicle-miles traveled are expected to increase by 75 

percent from 2000 to 2025 while vehicle-hours traveled are anticipated to increase by 87 

percent; travel under heavily congested roadway conditions is expected to increase from 

22 percent in 2000 to 31 percent in 2025; and travel under severe congestion is expected 

to increase from about 5 percent in 2000 to 23 percent in 2025. As a result, public transit 

service has become more subject to the traffic environment, and public transit operations 

has become more variable, which may lower the system reliability and add extra travel 

time and inconvenience to transit riders. In the long run, this may result in the loss of 

ridership.  

Operations control has been long employed by transit agencies in United States for 

a variety of purposes, such as to improve the transit system performance, to restore the 



15

service from disturbance and/or disruption, as well as to reduce the system cost from the 

perspectives of both operators and transit passengers. For a fixed-route transit service, 

service frequency may imply different passenger arrival processes at the stops.

Passengers are more likely to consult with the published schedule to ride the bus coming 

every half hour than to take the bus coming every five minutes. In the Transit Capacity 

and Quality of Service Manual (TCRP, 1999), the frequent transit service is referred to as 

a service with an operating headway less than or equal to 10 minutes on average. For 

frequent transit service, the passengers do not need to consult a schedule. 

Correspondingly, the transit service with the average operating headway larger than 10 

minutes is called infrequent transit service. 

For frequent transit service, Welding (1957) showed that passengers arriving at stop 

can be assumed to be a random process, and the average passenger waiting time at the 

stop can be expressed as follows:

( ) ( )
( )





+=



hE

hVhEwE
2

1
 (1-1)

Wherein, 

( )wE : Average passenger waiting time;

( )hE : Expected headway between successive vehicles; and,

( )hV : Variance of headways.

Equation (1-1) implies that, for frequent transit service, the passenger waiting time 

is not only defined by the predetermined service headway but also by the operating 

stochasticity. 
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Due to the different passenger arrival processes, operation control strategies may 

function differently for the transit services of different frequencies. For example, holding 

control is one of the most commonly used transit operations control strategies by transit 

agencies. It involves delaying a vehicle’s departure time at the specified point(s) along a 

transit route.  For the infrequent service, since passengers arrive at stops according to the 

schedule, holding control is often implemented to delay a vehicle running ahead of 

schedule until the scheduled departure time, so as to avoid passengers missing the vehicle. 

On the contrary, for a frequent transit service, holding control may be employed to 

regularize the vehicle headway distribution, whether or not the vehicle is currently 

operating on schedule. Holding the vehicle just because it arrives slightly earlier than 

scheduled may not make much sense, since the following vehicle will come shortly 

anyway for the frequent transit service, and the passengers missing the vehicle can catch 

the next one without incurring unacceptable extra waiting time. As indicated by equation 

(1-1), for the frequent transit service, regularizing the vehicle headways, or equivalently 

reducing the vehicle headway variance at the stops downstream of the control point, is of 

the utmost importance for the operations control to improve the system performance. 

1.2. Current Practice of Operations Control

Determining the optimal transit operation control strategies can be seen as a 

decision-making process, and the information used to input to the decision-making 

process can be roughly grouped into two categories:

Static Information: the route layout, timetables (schedules), average passenger 

demand at stops, etc.; and,  
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Dynamic information: vehicle location, vehicle running time, vehicle dwell time, 

headway distribution, schedule adherence, etc. 

In a public transit system, the route layout is rarely subject to change, and the 

operating timetable is only updated on relatively infrequent basis, such as monthly or 

seasonally. In addition, the passenger demand at stops is essentially determined by the 

land use within the vicinity of the stops, so it can be basically seen as a constant during a 

specified time period, e.g. peak hours. In view of the steady nature of these factors, we 

consider them and the like as the static information, and generally assume that they are 

perfectly known, or can be easily collected or derived, for the operations control 

decision-making process.

However, the static information can only function as part of the basis on which the 

operations control decision is made. Dynamic information, e.g. vehicle running time,

dwell time, headway variance, schedule adherence and many other factors that change 

with traffic conditions, are also indispensable for evaluating the transit operating 

performance, and in turn, judging whether or not an operation control strategy is 

advantageous. Furthermore, both headway variance and schedule adherence are defined 

by the vehicle arrival time or departure time at stops, which makes the estimation of the 

vehicles’ arrival time or departure time crucial for the operations control decision-making. 

This will be further discussed in detail in the following chapters, and a specific study of 

vehicle operating parameters and travel time forecasting is introduced in Chapter 5.



18

1.3. AVL

Before the 1990’s, there were very few technologies being able to collect, process 

and distribute the dynamic information efficiently for the transit system. Consequently, 

the public transit operations control decisions were often made locally with fairly limited 

information. It may not be reasonable to expect that operations control decisions made in 

such a way can bring anything more than service improvement at a local level. 

As an echo to the calls for more advanced technology to facilitate public transit 

fleet management, in 1991, the Federal Transit Administration (FTA) launched the 

Advanced Public Transportation Systems (APTS) program to coordinate all federally-

sponsored transit Intelligent Transportation System (ITS) programs and initiatives, with 

Automatic Vehicle Location (AVL) systems as one of the core technologies. In 

Advanced Public Transportation Systems: The State of the Art Update 2000 (Federal 

Transit Administration, 2000), AVL systems are defined as the computer-based vehicle 

tracking systems that function by measuring the real-time position of each vehicle and 

relaying the information back to a central location. A typical AVL system employed by 

transit agencies is illustrated in Fig. 1.1.
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Fig. 1.1. Schematic of an AVL System Used in a Transit Agency (Federal Transit Administration, 2000)

For transit agencies, the AVL system makes it possible to manage the transit fleet in

a real-time manner. Vehicle locations, which may be translated into vehicle trajectories, 

can be collected, stored and processed into a specific form at the vehicle dispatching 

center, and can provide a wealth of information to examine the propriety of the timetable, 

to evaluate the transit service performance in terms of either schedule adherence or 

operating headway regularization, and specifically to predict vehicles’ future trajectories 

on a real-time basis. 

Furthermore, with the predicted vehicle trajectories and the transit system operating 

performance, along with the continuously-updated real-time vehicle location information, 

the AVL system can provide many advantages for operations control decision making. 

The latest vehicle location information continuously contributes to the decision making 

process. Also, rather than the vehicle operators, the central dispatch, with more complete 

knowledge of the overall transit system operation, decides the operations control. This
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can make the control strategy mostly free of the deficiencies of the decision made locally 

with limited information.

1.4. Study Objectives and Scope

The study objectives and scope of this dissertation is illustrated in Fig. 1.2.

Fig. 1.2. Study Objectives and Scope

1. Single Route Based

� Diminish vehicles’ 
headway variance along 
a single route;

� Reduce overall cost of 
passengers served by the 
route.

� Multiple transit routes 
are involved;

� Minimize the passenger 
transferring cost through 
reducing the possibility 
passengers miss the 
connection. 

Frequent Transit Service

2. Transfer Synchronization Based

Study Objectives & Scope

Infrequent Transit Service

Operation Control Strategies

Vehicle Trajectory 
Prediction should 
consider the 
interactions between 
vehicles.

3. Vehicle Trajectory 
Prediction Model 
Development 

� Holding Control at 
Multiple Holding 
Stations

� Stop-Skipping 
Control 

� Vehicle Dispatching with 
Swapping at Terminal
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As shown in Fig. 1.2, the operation control strategies can be loosely divided into 

two categories in terms of the purpose and function: namely, single route-based control 

strategies, and transfer synchronization-based control strategies. Single route-based 

strategies aim to diminish the vehicles’ headway variance along a single transit route so 

as to reduce the overall cost (in terms of waiting time) to the passengers served by the 

route. In comparison, multiple transit routes are involved for the transfer synchronization-

based strategy. This strategy is applied to enhance the passenger transfer coordination at a 

transfer point so as to minimize the passenger transferring cost through reducing the 

possibility that passengers miss the connection. Relatively, the detailed operating 

characteristics of each individual route are not of major concern for the transfer 

synchronization-based strategy. This study deals with both single route-based and 

transfer synchronization-based operations control strategies, though no intention is paid 

to be exhaustive. Specifically, this study formulates the problems for two single route-

based operations control strategies that are most commonly used in practice by transit 

agencies, namely the holding control problem and the stop-skipping control problem. 

Furthermore, the control strategies’ performance is examined within the context of real 

time implementation through simulation studies.  Also, this study investigates the 

potential of swapping vehicles operating on multiple routes that connect at a common 

terminal for facilitating passenger transfers.  

As also shown in Fig. 1.2, though operations control can be employed for transit 

services of different frequencies, the holding control and stop-skipping control problem 

studied in this dissertation focuses on only the frequent transit service, with the vehicle 
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headway regularization along a single transit route as the major concern. Furthermore, to 

differentiate from the similar studies on the holding control problem and the stop-

skipping control problem, the holding control problem studied in this dissertation focuses 

on holding transit vehicles at multiple holding stations, rather than at a single holding 

station. The stop-skipping control problem emphasizes on the real time application of 

stop-skipping control with different policies in that the stop-skipping control can be 

applied whenever it is needed to respond more rapidly to the vehicle disruption. In the 

past studies, stop-skipping control is generally treated as a vehicle dispatching strategy at 

the terminal, and the policy guiding how stops are skipped has obvious shortcoming since

it may need to force some onboard passengers to get off the vehicle before their 

destinations. 

For the transfer synchronization-based operations control problem, the past research 

has indicated that only infrequent transit service can benefit from the operations control. 

This will confine the study of the problem of vehicle dispatching with swapping to be 

applied only to the relatively infrequent transit services. Furthermore, this study on the 

problem of vehicle dispatching with swapping makes a significant contribution in the 

area of transit operation control in that it is the first to investigate vehicle swapping 

within the context of a real-time application.

Moreover, consistent with a majority of the previous studies on operations control 

for frequent transit service, the studies on the single route based operations control, 

specifically holding control and stop-skipping control in this dissertation, again assume 

that the vehicle downstream trajectories can be precisely predicted. This dissertation also 
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develops methods to predict the vehicle trajectories, using a recursive vehicle trajectory 

evolution to explicitly model the interactions between different vehicles, as shown in Fig. 

1.2. Furthermore, the methodologies proposed in this dissertation focus on deriving the 

transit vehicle operating factors using AVL data collected specifically from a low-level 

AVL system, which does not provide directly the measures of the vehicle operating 

parameters, e.g. vehicle running speeds and passenger boarding rates. 

The remainder of this dissertation is organized into four chapters, addressing the 

holding control problem, the stop-skipping control problem, the vehicle swapping 

problem, and the AVL data analysis, respectively. Though the study design, problem 

formulation and notation within the three operation control problems may share some 

common parts, all chapters are relatively independent of each other, and each of them 

constitutes a stand-alone study. Furthermore, for the sake of maintaining the consistency 

of style throughout the dissertation, the following three chapters for the operations 

control problems all start with the literature review on the pertinent problem, followed by 

problem introduction, formulation and solution, then a simulation study to examine the 

performance of the control strategy, and conclusions. The AVL data analysis is much 

different, but the core part of the chapter is still the methodology and mathematical 

formulation.

1.5. Glossary of Terms

For the sake of clarity and uniformity, some major terms that appear in later 

chapters are defined here.
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Public Transit: A type of service which is delivered by public transit agencies and 

operates on established schedules along fixed routes so as to move relatively large 

ridership between designated stops.

On-Call Service: A type of transit service in which the transit vehicle only stops to 

serve the stops/stations in response to calls from passengers, either for boarding or 

alighting, or both.

Dwell Time: The time incurred by a transit vehicle for decelerating to a stop, for 

passenger boarding and alighting at the stop, for accelerating from the stop, and for re-

entering the traffic stream.

Vehicle Trajectory: The transit vehicle’s course along the transit route, which can 

be depicted both temporally and spatially with the vehicle’s location and the associated 

time when the vehicle’s location is recorded.

Vehicle Running Time: Vehicle travel time over a route segment(s), excluding the 

dwell time at stop(s), but including the intersection delay time.

Vehicle Travel Time: The time incurred to a transit vehicle for traveling certain 

distance, including both running time over the route segment and the dwell time at stop(s). 

Vehicle Running Speed: The distance traversed divided by the vehicle running time.

Vehicle Operation Speed: The distance traversed divided by the vehicle travel time.

Vehicle Headway: The time difference between two successive vehicle departures 

at one specific stop.

Headway Variance: The variance of the vehicle headways observed at a specific 

stop during the time period of interest.
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Schedule Adherence (or Schedule Deviation): The difference between a vehicle’s 

actual departure time and the scheduled departure time at a stop.

Holding: A strategy to hold a vehicle at a stop/station for a specified amount of time 

to reduce the passenger waiting time and improve the service reliability downstream.

Threshold-Based Holding: A type of headway-based holding strategy with a 

headway threshold. A vehicle is required to be held to make its leading headway at least 

as large as the predefined threshold value.

Stop Skipping (also called vehicle expressing): A strategy to improve the vehicle 

operation by skipping several stops so as to catch up the schedule or improve the 

headway distribution downstream. 

Vehicle Swapping: A strategy to swap the vehicles among different routes so that 

the service reliability can be improved, and the overall passenger delay as well as the 

probability that passengers miss the connection at a transfer terminal may be reduced.

Vehicle Overtaking: The following vehicle overtakes the leading vehicle.

Automated Passenger Counting (APC) Device: A device used to count passengers 

getting on and off a vehicle.

Automatic Vehicle Location (AVL) System: A computer-based vehicle tracking 

system that measures the real-time location of a vehicle and relays this information to a 

central location.
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CHAPTER 2     HOLDING CONTROL AT MULTIPLE HOLDING STATIONS

2.1. Introduction

Among all the transit operations control strategies currently employed in practice by 

transit agencies in the U.S., holding control is undoubtedly the most commonly used one. 

Holding control involves keeping a vehicle at a station for a period of time, in order to 

improve the service performance (minimizing passenger waiting time).

Barnett (1974) developed a model for holding a vehicle at a chosen control point. 

He proposed a solution algorithm for constructing an approximately optimal dispatching 

strategy at the control point in terms of minimizing the delay for both at-stop and in-

vehicle passengers. This strategy is a threshold-based holding control. In specific, a 

threshold headway is determined. At the control point, if the vehicle headway is less than 

the threshold, the vehicle is held until the threshold. If the vehicle headway is greater than 

the threshold, the vehicle is dispatched immediately. Barnett’s algorithm was tested using

data from a Boston subway line to propose service improvements. Abkowitz and Tozzi 

(1986) conducted a study for evaluating the sensitivity of headway-based holding control 

to various boarding and alighting profiles, headways, and other characteristics of route 

operations. They found that profiles with passengers boarding at the middle and alighting 

at the end of a route produce the most significant passenger waiting time savings with 

holding control. Also, the increase in the initial headway variation and amount of parking 

permitted along a route are likely to deteriorate route reliability and thus improve the 

effectiveness of the holding strategy. At about the same time, Abkowitz et al.  (1986) 

investigated the effects of a threshold-based holding control strategy on reducing the 
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headway variation at stops downstream of the control point. Their simulation results 

indicated that the headway variation does not increase linearly along a route. Also, the 

study results showed that it is preferable to locate the control point just prior to a group of 

stops where many passengers are boarding; and, the threshold headway is sensitive to the 

number of passengers onboard the bus at the control point. In addition, this study 

concluded that the optimal holding control could result in a 3-10 percent reduction in 

total passenger waiting cost. Later, Abkowitz and Lepofsky (1990) conducted a before-

after study for evaluating the effectiveness of the threshold-based holding strategy on 

several bus routes chosen from the MBTA in Boston. The results from this study were 

not conclusive; however, it still appeared that certain route segments might have 

benefited from the holding actions. O’Dell and Wilson (1999) developed a deterministic 

model of a rail system and mixed integer programming formulations for the holding and 

short-turning problems. Three holding strategies, holding each train at any station, 

holding each train at the first station it reaches after the disruption occurs, and holding 

each train at an optimally chosen station, were considered and formulated. Study results 

based on the MBTA Red Line showed that passenger waiting time can be significantly 

reduced by applying the controls. 

With the advent of the AVL and APC (automatic passenger counting) technologies, 

the real-time vehicle location information is incorporated by many researchers into their 

studies. Furth (1995) developed a strategy to deal with a vehicle operating behind 

schedule, given the existence of an intelligent system providing information about vehicle 

location, vehicle load, and number of passengers waiting at stops. In his study, the 
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problem is formulated as a constrained non-linear optimization problem, to decide: how 

many vehicles following the initially delayed vehicles should be held; the location at 

which each vehicle should be held; and, the amount by which each vehicle should be held. 

Study results show that the optimal solution is a gradual increase in the overall headway 

from the first vehicle, whose headway is short, until the last vehicle with headway 

returning back to the base headway. Ding and Chien (2001) formulated a real-time 

operational control model in which the vehicle departure time at each stop is optimized so 

that the headway variance weighted by passengers at each stop can be reduced. The

proposed real-time control model was tested by simulation based on a high frequency 

light rail transit route in the city of Newark, New Jersey, and the simulation results 

demonstrated the average passenger waiting time can be significantly reduced by 

applying the proposed control model. 

Hickman (2001) presented an analytical model for optimizing the holding time at a 

given control point in the context of a stochastic vehicle operations model. In this study,

the single vehicle holding problem is a convex quadratic program in a single variable, 

and is easily solved using gradient or other line search techniques. Eberlein et al.  (2001) 

also formulated an analytic model using a rolling-horizon approach, using AVL 

information. The problem can be effectively solved by a proposed heuristic. The study 

results showed significant reductions of passenger waiting time at stops. Fu and Yang 

(2002) investigated both the threshold-based holding control model and an optimal 

holding control model by considering both a vehicle’s preceding and following headways,

with the assumption that the future bus arrival time at the control stop can be predicted
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with real-time location information. Based on a simulation, the study results indicated

that: the control point should be placed at the bus stop with high demand and located 

close to the middle of the route; two control points are more preferable than only one; 

holding control is fairly robust with respect to the control parameter, control strength or 

headway threshold; and, real-time bus location information can help reduce passenger in-

vehicle time and bus travel time when a number of control points are used.

Zhao et al. (2001) present a distributed control approach based on multi-agent 

negotiation (between a bus agent and a stop agent) for the holding problem. The 

negotiation in this study is conducted based on the marginal cost and marginal benefit of 

a hold, negotiated between a vehicle and the set of stops on the route. Also, the 

comparison between the negotiation algorithm and other commonly used strategies was 

conducted through simulation, and study results indicated that the negotiation algorithm 

is robust to different transit operating environments. 

From the literature review above, one may see that it is commonly concluded that 

holding can undoubtedly improve the performance of transit service by diminishing the

vehicle headway variance and schedule deviation, and hence can reduce passenger 

waiting time, if the control location is judiciously selected.  However, some of the 

previous studies also pointed out either explicitly or implicitly that the transit operating 

stochasticity still plays a role in the vehicles’ trajectories downstream of the control point 

after holding is applied. Based on the equations developed in their study, Abkowitz et al.

(1986) concluded that:

The reduction in headway variation at points downstream of the 
control point is not uniform. The maximum benefits of the control strategy 
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are accrued by passengers at stops immediately downstream of the control 
point. Stops that are far from the control point may not be impacted 
significantly. (Abkowitz et al.  1986 , p. 78-79)

Furthermore, Turnquist and Blume (1980) showed that there might be multiple 

points qualifying as holding point candidates along the route. Though not clearly 

indicated in the study, choosing one qualified location as the control point does not imply 

that the others cannot still be qualified as control points, while some correlation certainly 

exists between the potential holding points.  Abkowitz and Tozzi (1986), Abkowitz et al.

(1986) and Fu and Yang (2002) all presented desirable conditions to deploy a control

point to hold a vehicle(s). However, it can often be seen that a route may have favorable 

conditions on separate segments, which might justify multiple control points.

Moreover, it has been assumed by a majority of the previous studies that the transit 

vehicle trajectories downstream of the holding station can be predicted precisely with the 

currently available information, typically from AVL technology; or, the vehicle 

arrival/departure time at the stop can be depicted by the best-fit probabilistic distribution 

built on the historical data, if they are subject to random variation. However, in reality, as 

the transit vehicle’s running time and dwell time may be both subject to significant 

variability, it becomes fairly difficult, if not impossible, to precisely predict vehicle 

trajectories far downstream of the holding station. 

Seneviratne and Loo (1986) have analyzed the vehicle travel time data from two 

transit routes in Halifax, Nova Scotia, Canada, and found out that fundamental to a 

realistic analysis of a bus route is proper segmentation; that is, routes may be broken into 

route segments within which operations is fairly homogeneous. 



31

In summary, it appears possible that holding control can be implemented at multiple 

stations, especially when the transit route is relatively long with many stops. This 

conclusion is based on the premise that separate route segments may need separate 

operations control actions. 

The problem of holding control at multiple holding stations is to decide multiple 

vehicles’ holding times at multiple holding stations. Therefore, holding vehicles at 

multiple holding stations can essentially be seen as a three-dimensional decision problem: 

the vehicle holding time at a particular stop is one dimension, the control vehicle is the 

second dimension, and the holding station is the third dimension. Eberlein et al. (2001) 

have presented efforts to compare the benefits from holding vehicles at multiple holding 

stations and from holding at only one single holding station. Their study concluded that 

holding the vehicles at more than one holding station did not show any significant 

advantages, using a numerical example based on a real-life transit route. However, the 

observation may be not sufficiently conclusive due to the limitations of the tested 

passenger loading/boarding profiles. 

Although the holding control at multiple stations involves three dimensions of the 

problem, this study only examines two dimension of the problem, namely to determine 

the holding times for multiple vehicles at a given set of holding stations. In the remainder 

of this chapter, the problem of holding vehicles at multiple holding stations is formulated 

as a mathematical programming problem within the context of a deterministic service 

model to optimize the vehicle holding times so as to minimize the total passenger cost. A 

heuristic is proposed to solve for the optimal holding times through decomposing the 
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overall problem into smaller problems and solving the smaller problems iteratively to 

achieve global solution. Furthermore, a CRN (Common Random Number) simulation 

study is conducted to compare the holding control at a single holding station and the 

holding control at multiple holding stations in terms of the total passenger cost. The basic 

structure of this chapter is also depicted in Fig. 2.1.

Fig. 2.1 Chapter Flowchart (Holding Control)

Fig. 2.1 shows that the problem formulation can help identify the important factors 

that may affect the performance of holding control. These identified impacting factors 

Problem Formulation – Mathematical 
Programming Problem
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� In-vehicle passenger onboard time
� At-stop passenger waiting time

2. Constraints
� Recursive vehicle trajectory functions
� Assumption of no vehicle overtaking

Problem Solution
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problems; 
2. Solve the smaller problems recursively to 

approximate the global optimal solution.

Identify the factors that affect 
the performance of holding 
control significantly:
1. Random factors: 

passenger boarding rates, 
passenger distribution 
ratio and vehicle travel 
time variability;

2. Deterministic factors: 
passenger boarding 
profiles and service 
frequency

Comparison Simulation Study
1. Use identified impacting factors to develop simulation 

scenarios;
2. Use CRN (Common Random Number) simulation to 

simulate the dynamics of vehicle trajectory evolution and 
holding control.

Simulation Results for single station 
and multiple station holding control

1. Optimal vehicle holding times
2. Minimal total passenger cost

Compare the performance of single 
station and multiple station holding 
control in terms of the passenger cost 
reduction, across different factors.
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can be further used to construct simulation scenarios to conduct a CRN based comparison 

simulation study (under each simulation scenario, use the holding problem formulation 

and solution method to seek optimal vehicle holding times and total passenger cost) to 

compare how holding control at a single holding station and holding control at multiple 

holding stations relatively perform in terms of the total passenger cost reduction. 

Specifically, the remainder of this chapter is organized into three sections. Section 2.2

formulates the general holding problem with either a single holding station or multiple 

holding stations. A heuristic based on an analytical model is also described in this section. 

Section 2.3 provides a hypothetical simulation study designed to demonstrate the 

effectiveness of the algorithm developed in Section 2.2, and to compare the performance 

of holding vehicles at multiple stations and at only a single station in terms of the 

passenger cost reduction being achieved from the control. Finally, Section 2.4 concludes 

this chapter and presents the direction for future research on the holding problem.

2.2. Problem Formulation and Solution

As argued in Eberlein et al. (2001), the holding control problem can be formulated 

in the context of a deterministic model of transit operations. In a similar manner, the 

problem formulation for holding control at multiple stations will be again presented using 

a deterministic model in this chapter.

2.2.1. Model Formulation

For the sake of simplifying the analysis that follows, several assumptions are made:

� Vehicle overtaking is not a major concern;
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� The passenger arrival rate at any one particular stop and vehicle average travel 

time between adjacent stops are given during the time period of interest; 

� The number of alighting passengers at a stop is proportional to the number of 

passengers onboard; and,

� Vehicle capacity is not considered.

One may argue with the first assumption of no vehicle overtaking, but this 

assumption can be justified when: transit service is provided at high frequency, but the 

average headway is still relatively large, e.g. larger than 5 minutes; and, when traffic 

conditions do not change abruptly during the time period of interest, so that vehicle 

running times only differ randomly from one trip to another. 

Therefore, the assumption of no vehicle overtaking may hold in the situations likely 

to satisfy the conditions above. Furthermore, holding control at multiple holding stations 

helps regularize vehicle trajectories for multiple times, which may greatly reduce the 

chance for vehicle overtaking to occur. This will be further discussed later in the chapter.

Before the holding control problem is formulated, the major variables are defined

below.

h ji, : Leading headway for the ith vehicle at stop j;

d ji, : Departure time for the ith vehicle at stop j;

a ji , : Arrival time for the ith vehicle at stop j;

l ji , : Onboard passengers of the ith vehicle when it departs from stop j;

H vj k, : Holding time for the jth vehicle at holding station vk ;
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B ji , : Passengers boarding the ith vehicle at stop j;

A ji , : Passengers alighting from the ith vehicle at stop j;

λ j : Passenger arrival rate at stop j;

r ji, : Running time between stop j and stop j+1 for vehicle i;

q j : Passenger alighting proportion at stop j;

ββα 21,, : Parameters defining the passenger boarding process. α  represents the 

vehicle acceleration, deceleration, door open and close, and clearance time; β1  is the

average passenger boarding time; and, β 2  represents the average passenger alighting 

time at a bus stop;

vk : Index of the kth holding station as a stop;

bk : Index of the earliest dispatched vehicle among those operating on the segment 

( vk 1− , vk );

ek : Index of the latest dispatched vehicle among those operating on the segment 

( vk 1− , vk ];

M: Total number of holding stations;

N: Total number of stops on the route;

O: Total number of vehicles operating within the time period of concern;

V: Holding station set { v1 , v2 ,..., vM }. 

X jni ,, : The ratio of the number of passengers boarding at stop n and alighting at 

stop j to the total number of passengers boarding at stop n for vehicle i. This ratio is 

originally derived from the historical data, but it is also subject to change when a vehicle 
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passes a stop and the real number of passengers boarding and alighting at the stop is 

obtained. 

B ji, : In contrast to B ji , , B ji,  represents the real number of passengers boarding

vehicle i at stop j;

A ji, : In contrast to A ji , , A ji, represents the real number of passengers alighting 

from vehicle i at stop j;

:,P ji  The probability that stop j is skipped by vehicle i;

:,Q ji  The probability that stop j is served by vehicle i; and,

D jni ,, : The expected number of passengers boarding vehicle i at stop n and alighting 

at stop j.

As described in Chapter 1, determining the optimal control strategies is a decision-

making process, which is essentially adaptive in nature due to the continuously changing 

traffic conditions and other operation factors. For such an adaptive decision-making 

process, a deterministic model is appropriate to formulate the problem of holding 

vehicles at multiple stations. Within an entirely deterministic context, it is meaningless to

consider holding one vehicle at all holding stations within one decision-making cycle, 

because all effects resulting from holding vehicles at downstream holding stations can be 

mostly achieved by holding the vehicle at the first holding station it will arrive. More 

specifically, with M holding stations available, the transit route can be divided into M+1

segments either bounded by two consecutive holding stations as ( vk , vk 1+ ), or by a 

terminal and a holding station as (1, v1 ) or ( vM , N). The vehicles [ bk , ek ] operating on 
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each segment ( vk 1− , vk ) make up of the control vehicle group for the holding station, and 

all vehicles dispatched later are called the impacted vehicles whose trajectories will be 

affected by the operations control implemented on the control vehicles. It is further 

assumed that all vehicles within the control group are only considered to be held at the 

holding station vk  in one decision-making cycle. Obviously, those vehicles operating on 

the segment ( vM , N] are not subject to control. More concisely, the multiple holding 

problem can be described as:

At any point in time a decision is made, determine the holding times for vehicles at 

only the immediate downstream holding station, while multiple holding stations are 

available.

Specifically, the holding problem formulated in this study is to decide the holding 

times of the control vehicles [ bk , ek ] at the holding station vk , given the currently 

available vehicle locations collected by AVL technology. In the real adaptive decision-

making process, the problem formulation will be used again and again to determine the 

optimal holding strategies based on the latest vehicle operations information. Obviously, 

the control vehicles’ trajectories from their current locations to the holding station to 

which they belong are not affected by the holding control decision. Accordingly, there 

are two separate stages to make a holding decision. The first stage is to predict the ready-

for-departure times (holding time is not included) for the control vehicles [bk , ek ] at the 

holding station vk , and another stage is to decide the control vehicles’ planned departure 

times (including holding time) at the holding station. For both stages, how to model the 

vehicle trajectory evolution dynamics is of the utmost importance. The vehicle trajectory 
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evolution dynamics for the two stages can be modeled either identically or in different 

manners.

Furthermore, for real-time holding control, two issues merit particular concern. One 

is the proximity of the modeled vehicle trajectory evolution dynamics and the real 

dynamics; and, probably more importantly, another one is the effectiveness of the 

problem solution method. The first stage, namely to predict the control vehicles’ 

trajectories up to the corresponding holding station, does not depend on the solution. 

Hence, a more detailed and accurate vehicle trajectory evolution dynamics model can be 

formulated. On the contrary, a simpler vehicle trajectory evolution dynamics model is 

desirable for the second stage to ensure the problem can be solved effectively.

Stage 1:  Predict the trajectories of the control vehicles and impacted vehicles up to 

the corresponding holding station

As defined in the first chapter, for an on-call transit service, whether or not the 

vehicle stops to serve a particular stop depends on whether there are passengers calling 

for boarding or/and alighting at the stop. This may be represented as the probability of 

serving or bypassing the stop, and is used in the operations control problem formulation 

to predict vehicles’ trajectories. Kikuchi and Vuchic (1982) analyzed the optimal number 

of stops and vehicle operation policy for transit route operations. In the study, the number 

of actual vehicle stops is estimated by assuming Poisson passenger arrival pattern for on-

call service. Also, the probability of a vehicle bypassing a stop is determined as the 

probability of no passengers calling for either boarding or alighting at the stop. Banks 

(1984) improved the representation of the Poisson model to estimate the number of 
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stoppings for a vehicle, by differentiating the passenger arrival rates at different stops. 

Powell and Sheffi (1983) employed a binomial distribution to estimate the number of 

passengers alighting at a stop, given the number of onboard passengers and the 

probability of a randomly chosen passenger on the bus alighting at this stop. They also 

used a Poisson process to compute the number of boarding passengers at the stop, given 

the passenger arrival rate. Furth (1986) treated the passenger demand (including both 

boarding and alighting demand) at a particular stop as Poisson random variables. 

Hickman (2001) derived the number of passengers alighting and boarding at a stop based 

on the properties of binomial and Poisson random variables respectively. To be consistent 

with these past studies, Poisson and binomial distributions are used in the holding 

problem and the stop-skipping control problem in next chapter. However, the binomial 

distribution will be used in a slightly different manner as introduced in following parts of 

this chapter.

At each time instant when a holding control decision is made, each vehicle 

trajectory between the current vehicle’s position and the downstream holding station can 

be predicted using the equations (2-1) through (2-10) as follows.

Throughout the dissertation, the passenger arrivals at each stop are assumed to be a 

Poisson process, and more specifically, all passengers boarding at any particular stop will 

be seen as coming from the same family with certain probability of alighting at each 

specific downstream stop. As a result, a binomial distribution can be appropriately 

employed to estimate the probability of each passenger boarding at stop n and alighting at 
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stop j. Along with the assumed Poisson process for passenger arrivals, the probability of 

the vehicle i skipping stop j can be determined as below.

( )[ ]daXP jijij
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
∏ −= λ (2-1)

The first term on the right hand side of (2-1) is the probability that no onboard 

passenger calls for alighting at stop j, and the second term represents the probability that 

no passenger is waiting at stop j for boarding when vehicle i approaches the stop. 

The probabilities of vehicle serving a stop and skipping a stop are supplemental to 

each other.

PQ jiji ,, 1−= (2-2)

The vehicle arrival time at each stop would be r ji 1, −  later than the departure time at 

the upstream adjacent stop.

rda jijiji 1,1,, −− += (2-3)

The vehicle departure time at each stop includes the vehicle dwell time, which 

consists of the passenger boarding time, alighting time, as well as the constant part 

accounting for door open/close and so on at the stop, whose expected value is also 

determined by the probability of a vehicle serving that particular stop.  Mixed use of 

simultaneous and sequential passenger boarding and alighting process have been found in 

previous studies. However, one may also see that the sequential passenger boarding and 

alighting process has been adopted by a majority of the previous studies to formulate the 

operations control problem due to its relatively simple mathematical form. For the sake of 

being consistent with the previous studies and being able to compare the results on a 
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common basis, the holding control problem in this dissertation also formulates the 

vehicle dwell time based on the sequential passenger boarding and alighting process, 

which gives equation (2-4) as follows,

ABQad jijijijiji ,2,1,,, ⋅+⋅+⋅+= ββα (2-4)

In equation (2-4), the departure time d ji, of vehicle i at stop j is the total of vehicle 

arrival time a ji ,  and the vehicle dwell time at stop j, which includes the average constant 

part of the vehicle dwell time Q ji,⋅α , passenger boarding time B ji ,1 ⋅β  and passenger 

alighting time A ji ,2 ⋅β . 

Vehicles are not allowed to overtake each other. Therefore, the vehicle i cannot pull 

into stop j until the vehicle i-1 leaves the stop. 

ad jiji ,,1 ≤− (2-5)

The number of passengers alighting at a particular stop is simply the total of all 

passengers boarding from upstream stops and, at the same time, having the destination at 

this stop.
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The average number of passenger boardings is the product of the vehicle headway 

and the average passenger arrival rate.

( )ddB jijijji ,1,, −−⋅= λ  (2-7)

Passenger distributed between stops is a proportion ( X jni ,, ) of the passengers 

boarding at the origin stop.
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XBD jninijni ,,,,, ⋅= (2-8)

For all of the stops that have been passed by the vehicles, all the variables defined 

by (2-1) through (2-7) are assumed known. This adds the following two equations (2-9) 

and (2-10). The D jni ,,  can also be modified with the observed passenger boardings at stop 

n and an algorithm can be used for updating X jni ,, . In the algorithm, the decision-making 

process keeps track of the number of passengers which boarded ( B ni, ) at all upstream 

stops and that have alighted ( A ni, ) previously. The control system also assumes the 

passengers actually alighting at a stop come proportionately from those passengers 

remaining on board. When the vehicle passes a stop j, the decision-making process 

obtains immediately the number of passengers A ji,  alighting at the stop j, and in turn 

updates the passenger O/D distribution ratio X jni ,,  for n < j. Herein, j represents the stop 

just passed. In turn, for all downstream stops n > j, each X nji ,,  is updated proportionately 

in terms of its own magnitude and the net change of X jni ,,  (n < j). 

BB jiji ,, =  (2-9)

AA jiji ,, =  (2-10)

Certainly, the methodology employed in this holding control problem and in the 

stop-skipping control problem in the next chapter can also accommodate the case without 

passenger counting devices to collect the real number of passengers boarding and 

alighting at each stop. For such a case, one may simply substitute the expected values for 

the real numbers in equations (2-9) and (2-10). 
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One may wonder how to acquire the X jni ,, , which could be a prohibitive task for 

the transit agency. Besides directly using historical data, a simple way to generate X jni ,,  

is to use the passenger boarding and alighting data from a ride-check survey, which is 

relatively easy to conduct. With these data, one may estimate the ratio using the origin-

destination (O/D) estimation methods, e.g. the maximum entropy method with the 

number of boarding passengers as the production and the number of alighting passengers 

as the attraction. For example (the simplest case), X jni ,,  can be expressed as 
∑−
=

1

1
,

,

j

l
li

ji

B

A
, and 

this means that all passengers boarding the vehicle at the upstream stops have the equal 

probability of alighting at stop j. 

Stage 2: Decide the control vehicles’ departure times at the corresponding holding 

stations

As argued at the beginning of the problem formulation, the problem solution is 

another major concern. An over-sophisticated problem formulation may add difficulty to 

the problem solution. A tradeoff point may need to be achieved to balance the amount of 

details included in the problem formulation and the ease of the problem solution. For the 

sake of simplifying the problem solution, it is specifically assumed that the passenger 

boarding time dominates passenger alighting time at most stops/stations along route, so 

that the passenger boarding time can be used as the vehicle dwell time. This assumption 

is often true due to the fact that passengers usually take a longer time to board a vehicle 

than to get off a vehicle, and it is particularly true for the downtown-oriented transit 

service with few passengers alighting at the stops along the route before the stops/stations 
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in downtown. This assumption yields equation (2-11) with the last term removed from 

the right hand side of equation (2-4).

BQad jijijiji ,1,,, ⋅+⋅+= βα (2-11)

With the predicted control vehicles’ ready-for-departure times at the corresponding 

holding stations, for a transit route with M holding stations numbered in ascending order 

with ‘1’ representing the one closest to the dispatching terminal, the holding problem can 

be formulated as follows.
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(2-12)

In this objective function, the first two components represent the total passenger 

waiting time at stops, and the third term defines the delay experienced by the onboard 

passengers at the holding stations. In the second component, since the vehicles from the 

first non-dispatched vehicle e 11+ to O are assumed to be the impacted vehicles not 

subject to control, their departure times at each stop will be determined solely by the 

vehicle trajectory evolution dynamics. Also, the vehicle O+1 is a dummy vehicle which 

serves to avoid biasing the objective reduction due to the possibly earlier-than-scheduled 

arrival times of the vehicle O at each stop. Herein, the vehicle O+1 is assumed to operate 

exactly on schedule. Though not salient, it can be seen in the objective function that the 

departure times of vehicles [ bk , ek ] at each holding station vk are the decision variables.

Each vehicle’s departure time at any stop other than the holding station to which it 

‘belongs’ (e.g. [ bk , ek ] belongs to holding station vk ) is entirely determined by its
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arrival time and dwell time at the stop. The dwell time in turn is essentially defined by the 

time the leading vehicle departed as well as the passenger arrival rate at the stop. 

If  Vj∉  or ( Vvj k ∈= and [ ]ebi kk ,∉ )

( ) ( )λβλβα jjijjiji drdd ji ⋅−⋅⋅−++= −−− 1,111,1, 1, (2-13)

Equation (2-13) can be directly derived from the relationship below:

( )ddrdd jijijjijiji ,1,11,1,, −−− −⋅⋅+++= λβα  (2-14) 

Equation (2-14) is to say that vehicle i’s departure time at stop j is the total of its 

departure time at stop j-1, the vehicle running time r ji 1, −  between stops j-1 and j, and the 

vehicle dwell time at stop j, which includes a constant vehicle dwell time α  and the 

passenger boarding time ( )dd jijij ,1,1 −−⋅⋅ λβ . To be noted here is that the number of 

passenger boardings for vehicle i at stop j is the product of vehicle i’s headway 

( )dd jiji ,1, −−  and the average passenger boarding rate λ j  at stop j. 

Otherwise, i.e. for those currently operating vehicles (other than the non-dispatched 

vehicles) at the corresponding holding stations, the vehicle holding time will define the 

vehicle’s departure time. Specifically, the vehicle departure time after holding is a 

holding time H ji ,  later than the ready-for-departure time calculated with equation (2-13).

( ) ( ) Hdrdd jijjijjijiji ,1,111,1,, 1 +⋅−⋅⋅−++= −−− λβλβα     (2-15)

However, any currently operating vehicle ei 1≤  cannot be held as late as the time 

when the vehicle i+1 arrives to avoid vehicle overtaking. The vehicle i+1’s arrival time 

at stop j can be expressed as rd jiji 1,11,1 −+−+ + .

rdd jijiji 1,11,1, −+−+ +≤ (2-16)
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Vehicle holding time must be positive. 

0, ≥H ji (2-17)

The number of onboard passengers when a vehicle departs from a stop is 

determined by the number of passengers boarding and alighting at the stop and the 

number of onboard passengers as the vehicle arrives at the stop.

ABll jijijiji ,,1,, −+= − (2-18)

The number of passengers boarding a vehicle is the product of the average 

passenger arrival rate and the vehicle’s leading headway. 

( )ddB jijijji ,1,, −−⋅= λ (2-19)

The number of passengers alighting from a vehicle is assumed to be proportional to 

the number of onboard passengers. q j  can be calculated based on the estimated X jni ,,  

values and is assumed fixed and identical for all vehicles.

qlA jjiji ⋅= − 1,, (2-20)

Equations (2-18) through (2-20) can be combined into one single equation as,

( ) ( )ddqll jijijjjiji ,1,,, 11 −−⋅+−⋅−= λ (2-21)

In the model formulation, the decision variable can be either the vehicle holding 

times (for vehicles ei 1≤ ) or equivalently the vehicle departure times at the 

corresponding holding stations, due to the linear relationship between them. From now on,

in this chapter, the decision variable is arbitrarily chosen as the departure times of 

vehicles [ bk , ek ] at each holding station vk , and accordingly the equation (2-15) is 

modified into the inequality below to remove the holding time variable H ji , .
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( ) ( )λβλβα jjijjijiji drdd ⋅−⋅⋅−++≥ −−− 1,111,1,, 1 (2-22)

In the objective function, the holding time H vi k, can be replaced by:

( ) ( )λβλβα vvkivvivikvi kkkkk drdd viH ⋅−⋅⋅−++−= −−− 1,111,1,, 1, (2-23)

Equations (2-13) through (2-23) together define the feasible region for each 

decision variable. Specifically, inequalities (2-22) and (2-16) together set the lower and 

upper bounds respectively for the decision variables.

The problem solution proposed in the subsequent sub-sections is focused on the 

problem formulation for the second stage of the holding problem, given that the control 

vehicles’ ready-for-departure times at the corresponding holding stations have already 

been successfully predicted. 

2.2.2. Proposed Heuristic

With the problem definition and formulation in the previous sub-section, one may 

see that the departure time of a vehicle within the control group [ bk , ek ] at the stops on 

the downstream segment [ vk , vk 1+ ] is only determined by a subset of the decision 

variables as follows.

)( ,, dfd vbjb kkk
=   if vjv kk 1+<≤ (2-24)

),,,( ,,1,, dddfd vibvbvbjib kkkkkkk +++ = K   if vjv kk 1+<≤  and eib kk ≤+ (2-25) 

Herein, )(•f is a linear function of the decision variables. Furthermore, the 

departure times of vehicles [bk , ek ] at the stops further downstream of the subsequent 

holding station, say v mk + , will be determined by more decision variables as follows.
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),,,,,,,,( ],[],[,,1,, 111 dddddfd vebvebvibvbvbjib mkmkmkkkkkkkkkkk +++++++++ = KK vjv mkmk 1+++ <≤

(2-26) 

In equation (2-26), if v mk 1++ does not exist, it will be substituted by the end terminal 

of the route.

With the transformation using (2-24) through (2-26), and substituting the linear 

expression of the vehicle departure times for the counterparts in the objective function, 

the holding control problem formulation has a general form of:

( ) ( )•+•= fFZMinimize  (2-27) 

S.T. jCg jj ∀≤•)(

Herein, )(•g j is a linear function of decision variables; ( )•F is a quadratic function, 

which consists of two quadratic functions, the squared form of a linear function of 

decision variables; )(•f again is a linear function of the decision variables; C j  is 

constant; and, j varies from 1 up to twice the number of currently operating vehicles 

upstream of the most downstream holding station, since each decision variable is subject 

to two constraints with the form of the inequalities (2-22) and (2-16). Therefore, this 

problem formulation is a convex problem with a convex objective function and a set of 

linear constraints. Such a problem can be solved to optimality by many classical 

techniques.  However, the scale of the problem is not necessarily small when the route is 

long with many stops and many vehicles operating at the same time.

A solution algorithm is developed by decomposing the overall problem, namely the 

problem of holding vehicles at multiple holding stations, into several two-dimensional 
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problems. Furthermore, the two-dimensional problem is further decomposed into one-

dimensional problems, which eventually can be solved analytically. 

Before getting into the details of the algorithm, a proposition about the vehicle 

overtaking is presented to have more insights about how vehicle overtaking may affect 

the performance of the holding control decided with the problem formulation without 

considering vehicle overtaking explicitly.

Proposition 1:

Given h2  and h3 as the real headways of vehicle 2  (the control vehicle’s first 

following vehicle) and 3 (second following vehicle) at stop j, respectively, 

if ( )λβλβ jjhh ⋅−⋅⋅≥ 1132 1 holds, the real objective value is always less than the model 

objective value on the route segment downstream of where the vehicle overtaking occurs.

Stop

Real Vehicle Trajectory without Allowing Overtaking

Time

Vehicle 1

Vehicle 3

Vehicle 2

Vehicle 0

Η1Η1

η1

η2 h3

h2

Η3

Η2

k

Overtaking Point

Model Vehicle Trajectory in Problem Formulation

Fig. 2.2. Comparison of Model Trajectory and Real Trajectory

Proof of Proposition 1:
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Though the problem formulation for holding control at multiple holding stations 

cannot avoid vehicle overtaking, it essentially represents the vehicle overtaking as a 

negative headway. However, the negative headway still contributes positively to the 

objective since the headway term is always squared in the objective function. On the 

other hand, the vehicle overtaking may not be allowed in practice. For such a case, if the 

following vehicle catches up to the leading vehicle, the trajectory of the following vehicle 

will overlap the leading vehicle’s trajectory. On the other hand, if overtaking is allowed, 

these two vehicles may overtake each other alternately without ever getting very far apart, 

and thus the two vehicles’ trajectories can still be seen as overlapping. Based on these 

two aspects, a difference exists between the vehicle trajectories as formulated and the real 

vehicle trajectories when vehicle overtaking does occur.

As shown in the Fig. 2.2, as vehicle 1 (the control vehicle) overtakes vehicle 0 (the 

boundary vehicle), the trajectory of vehicle 1 will follow the thin line after the overtaking 

point according to the model. However, the solid line represents the real vehicle 

trajectories if overtaking is not allowed. Accordingly, HHH 321 ,, are defined as the 

vehicle headways derived from the model formulation, and, in contrast, hhh 321 ,,  as the 

real vehicle headways ( 01 =h due to the trajectory overlap). For each stop k downstream 

of where the overtaking occurs, such headway patterns and the magnitude of ηη 21,  (the 

difference between the model trajectory and real trajectory) can be easily seen and 

derived by mathematical induction based on equation (2-13) as:

( ) Hjj 1111 1 ⋅⋅−⋅= λβλβη and ( ) ηλβλβη 1112 1 ⋅⋅−⋅= jj (2-28) 
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If only vehicle 0, 1 and 2 are considered, it can be obviously seen graphically that 

the real objective value with only the three vehicles is less than the model value. As 

vehicle 3 is included in, the model objective value can be expressed as:

( ) ( ) ( ) ( )ηηηϖηηη 213112
2
3

2
2213

2
112

22
1 22 +⋅−+⋅+++=−−++++ hHhhhhHhH (2-

29) 

Herein, ϖ is a positive value.  As can be seen directly from equation (2-28), 

( ) ( ) ( ) ( ) ( )λβλβηηηηη jjHhHhhHh ⋅−⋅⋅+⋅−+⋅=+⋅−+⋅ 11113112213112 12222

(2-30)

Therefore, if 

( )λβλβ jjhh ⋅−⋅⋅≥ 1132 1 , (2-31) 

It is always true that the model objective value is larger than the real objective 

value. ( )λβλβ jj ⋅−⋅ 11 1  is actually a very small number generally on the order of 0.1 or 

less. h2  in the equation is essentially the departure time difference between vehicle 2 and 

vehicle 0 at stop j. Therefore, unless the vehicle trajectory pattern is extreme, inequality 

(2-31) holds, and it is true that the model objective value is larger than the real objective 

value for the four vehicle case. Based on the same argument, it can be easily inferred that 

even when more vehicles are included into consideration, the proposition is still true. �

Since the model formulation proposed in this chapter does not explicitly include 

overtaking, this proposition states that a solution to the model formulation will have a 

larger (or higher) objective value than would occur if overtaking were included. In this 

way, the model formulation for the problem of holding vehicles at multiple stations as 
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proposed is more conservative, in that it will recommend a larger overall objective value 

from holding actions than would be seen if overtaking were included explicitly. This may 

imply if one sees the service improvement from the holding control, the improvement is 

even more significant than what can be seen from the problem solution if vehicle 

overtaking occurs.

The following sub-sections start with the simplest problem, holding a single vehicle 

at a single holding station, then gradually add complexity to the problem to achieve the 

full problem solution for the problem of holding multiple vehicles at multiple stations. 

Holding a Single Vehicle at a Single Holding Station (PSS)

The complexity of the holding problem lies in the fact that any adjustment to the 

departure time of one particular vehicle at a stop will in turn change this vehicle’s 

trajectory downstream of the stop, and also affect many following vehicles’ trajectories. 

Therefore, while considering holding one particular vehicle, it is also necessary to 

account for the following vehicles (impacted vehicles), as well as one leading vehicle, 

which functions as a boundary vehicle on the solution. If we expand the impacted

vehicles up to the vehicle O, all vehicles upstream of any one of the holding stations, 

including all non-dispatched vehicles within the time window of interest, can be simply 

categorized into two groups:

Holding Group: the vehicles within this group will be considered for holding; and,

Non-Holding Group: the vehicles within this group will not be held, but they are 

assumed to be affected by the holding control decision for the holding group.
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For the problem of holding one vehicle at a single holding station, only one control 

vehicle is within the holding group, and the non-holding group consists of all other 

impacted vehicles up to vehicle O, including the boundary vehicle immediately ahead of 

the control vehicle. Accordingly, the PSS can be seen as a one-dimensional problem due 

to the single decision variable.

Though presented for the overall problem, problem formulation (2-27) and the 

general vehicle departure time equations (2-24) through (2-26) can still apply to the PSS

problem. Obviously, all impacted vehicle trajectories downstream of the holding station 

can be derived with the equations of the same form as (2-26). An univariate convex 

problem can be easily solved by many techniques. However, since the PSS problem 

solution is the core of the overall heuristic, an analytical solution is employed to solve the 

PSS problem in this study. The problem is solved exactly using an analytical method. The 

analytical solution can be obtained with the differential equation regarding the control 

vehicle’s departure time at the holding station, and the global optimal solution to PSS is

either at the analytical solution, or at one of the extreme points.

Holding Multiple Vehicles at a Single Holding Station (PMS)

As more than one vehicle is included into the holding group for a single holding 

station, the holding problem upgrades to the PMS problem. For a particular holding 

station vk , [bk , ek ] constitutes the holding group, and all vehicles following the vehicle 

ek  up to the vehicle O, along with the vehicle 1−bk , make up the non-holding group. 

Equation (2-22) basically says that the decision variables are dependent of each 

other ( d ji,  is dependent on d ji ,1− ). Therefore, for the general form of the problem (2-27), 
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each of the linear constraints may include multiple decision variables. With no intention 

beyond the purpose of making the concepts clearer and of simplifying the problem 

solution, some special treatment of the transit holding station is implemented.

By inspecting equation (2-15), theoretically, the holding control can be realized by 

either postponing the vehicle departure time for H ji ,  at the holding station, or delaying 

the vehicle arrival time by an equivalent amount of time ( )H
jji λβ ⋅−⋅ 1, 1 . 

If the holding control is considered as a means to delay the vehicle’s arrival time, 

the holding problem becomes an equivalent problem of how to optimize the vehicle 

arrival time at the holding station. However, delaying one vehicle’s arrival time at a stop 

would not affect the arrival times of other impacted vehicles. To clarify this idea, a 

simple treatment on the route and station is made by introducing a dummy stop to 

separate the vehicle arrival process and departure process at each holding station. This 

dummy stop is inserted just upstream of the holding station to represent the vehicle 

arrival process, and will function as the surrogate of the original holding station, as 

shown in Fig. 2.3. 
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si 1− si 1+si 2+si si 3+

Conceptual Control Stop Original Control Stop

Terminal

Holding Station (Original 
Control Stop)
Dummy Stop (Conceptual 
Control Stop)

Stop

Link

Fig. 2.3. Typical Transit Route with Multiple Holding Stations (Holding Control)

With this ‘physical’ treatment,

� The original holding station becomes a regular stop. Furthermore, it is assumed 

that all passenger boarding and alighting still occurs at the original control stop, 

with none at the dummy stop. The dummy link connecting the dummy stop and 

the original holding station has a length of zero;

� The dummy stop becomes the holding station, at which the vehicle arrival times

are exactly identical to the departure times if no control is implemented. The 

vehicle ready-for-departure times (i.e. arrival times) at the dummy stop are thus

independent of each other; 

� The transit route operating process (the process of propagating arrival and 

departure times at downstream stops) remains the same as would be without any 

treatment; and,

� The control vehicles’ holding times are independent of each other, since no 

boarding and alighting occurs at the dummy stop and the interdependency of the 
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holding times has to be realized through the passenger boarding and alighting 

process, as one may see from equation (2-14).

However, it must be pointed out that the fourth observation only holds when vehicle 

overtaking will not occur, because the dummy stop treatment still cannot prevent the 

occurrence of the vehicle overtaking at the original holding stations. The dummy stop 

treatment itself does not actually change the nature of the problem, but adds a little more 

conceptual clarity. If the holding control at the dummy stop does not lead to vehicle 

overtaking at the original holding station, the holding times are essentially independent of 

each other at the original holding station even without the dummy stop treatment. 

However, as argued in Proposition 1, the vehicle overtaking rarely occurs in the given 

problem context.

With all treatments introduced above, the PMS problem still possesses a convex 

objective function with linear constraints. However, with the dummy stop treatment, the 

decision variables are independent of each other within the constraints. With this 

additional characteristic, a solution algorithm for the PMS problem is developed.

The solution algorithm basically employs an iterative process to decompose the 

PMS problem into separate PSS problems. The algorithm tries to hold only one vehicle 

which can reduce the overall objective value the most at each iteration. It finally

converges at the point that no holding control over any single vehicle can reduce the 

objective value further.

In more detail, the solution algorithm (H1) can be elaborated into following steps.

Step 1: Initialization. 
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Set a threshold for algorithm convergence;

Predict the current departure times at the holding station for all vehicles in 

the holding group using equation (2-4), and set these current departure times 

as the Departure Time Lower Limit (DTLL). At the same time, the DTLL 

will also function as the Departure Time Upper Limit (DTUL) for the 

preceding vehicles; 

Set the current departure times as the solution 1;

Compute the total passenger cost (objective value) based on solution 1, and 

set this passenger cost as the Previous Passenger Cost (PPC); 

Set n = 2.

Step 2: For iteration n:

Optimize the departure time for each individual vehicle within the holding 

group [ bk , ek ] by solving the PSS problem analytically for each vehicle 

sequentially in the order that the vehicle is dispatched, with all other 

vehicles’ departure times remaining the same as in solution n-1.

Step 3: If all optimized vehicle departure times from step 2 are earlier than or the 

same as in solution n-1, go to step 5; otherwise, identify the vehicle whose 

optimized departure time leads to the minimum total passenger cost among 

all optimized departure times; 

Update the corresponding vehicle departure time in solution n-1with this 

new vehicle departure time; and, set the minimum total passenger cost as the 

Current Passenger Cost (CPC); 
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Step 4: Check the proximity of CPC to PPC. If CPC is within the convergence 

threshold of PPC, go to Step 5; otherwise, PPC = CPC, n = n+1, and go to 

Step 2;

Step 5: Stop. 

Following these steps, in each iteration, each vehicle’s departure time is optimized 

conditionally on other vehicles’ departure times inherited from the last iteration, and H1 

captures the most efficient vehicle’s departure time in terms of the overall passenger 

waiting time reduction to conclude the iteration. The interacting behavior between all 

control vehicles’ departure times is hence realized by consecutive iterations.

Based on the algorithm above, proposition 2 is developed.

Proposition 2: 

H1 can solve the problem PMS to optimality.

Proof of Proposition 2:

� First, the solution from the algorithm is a KKT (Karush-Kuhn-Tucker) point.

For the minimization problem, as the solution satisfies the following conditions, it 

is a KKT point.

( ) ( )
0

1
=∂

∂⋅∑+∂
∂

= x

xg

x

xf

i

jm

j
j

i

λ (2-32) 

( )[ ] 0=−⋅ xgC jjjλ mj ,,1K=

The H1 algorithm stops at where the objective cannot be improved by changing the 

value of any single decision variable xi . Based on this, there exist two cases: (1) non-

binding constraints, and (2) binding constraints regarding xi .
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For case (1), 
( )
x

xf

i∂
∂

must be zero. Otherwise, the objective can always be improved 

by changing xi . The KKT condition is satisfied by setting all multipliers λ j  for the 

constraints with xi  as zeros.

For case (2), 
( )
x

xf

i∂
∂

 can be either negative or positive. Independence of the decision 

variables in the constraints through the dummy stop treatment implies only two 

constraints, say nth and lth constraints, in the general form of the problem formulation as 

presented by (2-17) can have and only have xi , 

bx ni ≤ , and  (2-33) 

bx li −≤−   Herein bb ln >   (2-34) 

bb ln ,  are both positive and only one of the two constraints above can be binding. If 

(2-33) is binding, then 
( )
x

xf

i∂
∂

has to be negative. Otherwise, the objective improvement 

can be achieved by decreasing xi .  Meanwhile, 
( )

x

xg

i

j

∂
∂

 is 1 only when nj = , otherwise,

it equals zero. Therefore, the KKT conditions can be satisfied by simply setting λn  as 

( )
x

xf

i∂
∂− , which is a positive value, and λ l  as zero. If (2-34) is binding, it can be proved 

similarly that the KKT condition can be satisfied by setting λ l  as 
( )
x

xf

i∂
∂

 and λn  as zero.

� KKT conditions are necessary and sufficient for local optimality.

� For a convex problem, the local minimum is also the global minimum.
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Therefore, proposition 2 is true and the solution from H1 can solve the PMS 

problem to optimality. 

Holding Multiple Vehicles at Multiple Holding Stations (PMM)

As a final extension of the previous two problems, the full version of the holding 

problem is to hold multiple vehicles at multiple holding stations (PMM). As introduced 

earlier, holding multiple vehicles at multiple holding stations does not consider holding 

each vehicle at all downstream holding stations in one decision-making cycle; instead, 

each vehicle is only considered to be held at the immediate downstream holding station. 

However, even with such a simplification, the problem becomes more complicated since 

the departure time ( d ve kk , ) of the last control vehicle ( ek ) of the downstream holding 

station ( vk ) is always dependent on the departure time ( d vb kk 11, −− ) of the first control 

vehicle ( bk 1− ) of its immediately upstream holding station ( vk 1− ), and vice-versa. In 

considering this fact, a heuristic (H2) is developed to search for a solution that can 

approximate the global optimum to the full problem. 

This heuristic decomposes the overall problem into PMS problems first, then again 

uses iterations to mimic the interaction among the control vehicles ( bk 1−  and ek ) at 

different holding stations. In more detail, the heuristic (H2) is described below.

Step 1: Initialization.

Set a threshold for algorithm convergence; 
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Check all en-route operating vehicles. Set [ bk , ek ] as the Holding Group

and all following vehicles up to vehicle O, along with vehicle ek 1+ , in the 

Non-Holding Group, for each holding station vk ;

Predict all en-route vehicles’ trajectories without holding, and set all 

vehicles’ departure times at the corresponding holding stations together as 

the solution 1;

Compute the total passenger cost (objective value) based on solution 1, and 

set it as the Previous Passenger Cost (PPC);

Set n = 2;

Step 2: For iteration n.

for i =M to1

Solve the single holding station problem PMS by using H1 for holding 

station vk , based on the solution n-1.

Update the corresponding parts in the solution n-1 with the new 

optimized departure times for [ bk , ek ] at holding station vk .

end 

Step 3: Solution n = Solution n-1;

Compute the total passenger cost based on the solution n, and set it as the 

Current Passenger Cost (CPC); 

Compare CPC and PPC. If CPC  is within the convergence threshold of 

PPC, go to Step 4; otherwise, PPC = CPC , n = n+1, go to Step 2.

Step 4: Stop.
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Always starting with the most downstream holding station in each iteration at Step 

2, the heuristic solves the PMS problem for each holding station sequentially in 

descending order. Though it has been represented in the heuristic description, it is useful

to point out again that, when the heuristic solves the PMS problem for a particular 

holding station vk , all trajectories of the control vehicles belonging to all its upstream 

holding stations will function as impacted vehicles. Certainly, the trajectories of the 

boundary vehicle(s) and impacted vehicles affect the solution of the PMS, and the 

revision of these trajectories is just the essence of the iterative process that the heuristic 

H2 employs. The heuristic eventually converges at the point at which the objective 

cannot be improved significantly by changing any vehicle’s departure time at the 

corresponding holding station.

Proposition 3:

If no vehicle ek ’s (i = 1,...,M-1) trajectory is bound by the immediately following 

vehicle’s arrival time, algorithm H2 solves the overall problem to optimality.

Proposition 3 can be proved using a similar method as for Proposition 2. 

2.3. Simulation Study

Besides simulating the basic dynamics of the holding control and the vehicle 

trajectory evolution, and revealing the discrepancy between the real problem and the 

problem formulated in this chapter, the primary task of the simulation study is to evaluate 

how the holding strategies applied at a single holding station and multiple holding 

stations perform.

2.3.1. Scenario Design
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Prior to presenting the details of the simulation design, a flowchart (Fig. 2.4) is 

given to depict how the holding control simulation study is conducted.  

As shown in Fig. 2.4, this simulation study for holding control starts by identifying 

the key factors which may affect the holding control performance significantly. The key 

factors (both random and deterministic) are further employed to construct simulation 

scenarios (R×D). For each of these scenarios, a number (N) of common random factor 

sets are randomly generated. These scenarios are then used together with the holding 

problem formulation and solution to determine the optimal holding decisions for both the 

single-station and multiple-station cases. The simulation results, in terms of passenger 

waiting time, are collected to compare the performance of the two holding control 

strategies on an aggregate level.  More detail of the simulation is given below.
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� Identify the factors that affect the performance of 
holding control significantly.

� Set the number of simulation runs (N) for each 
simulation scenario

Random Factors Deterministic Factors

� Identify the distributions followed by the 
random factors;

� Assume a set of reasonable values (R) for 
each parameter (e.g. mean and variance) 
defining the distributions.

� Assume a set of reasonable 
values (D) for each 
deterministic factor (e.g. 3, 5, 8, 
10 min for vehicle headway).

Simulation Scenarios = R × D
LOOP = 1

� Generate random number R’ for R;
� Use R’+D as the input to the optimization process.

Optimization Process —Problem 
formulation for holding control at a 
single holding station 

Optimization Process — Problem 
formulation for holding control at 
multiple holding stations 

Optimal Vehicle 
Holding Times

Minimal 
Passenger Cost

Minimal 
Passenger Cost

Optimal Vehicle 
Holding Times

� Statistics: Sum (Passenger Cost)
� loop = loop +1

loop = 1

LOOP = LOOP+1

Simulate the scenario LOOP in R × D

LOOP > | R × D |

loop > N

No

Stop
Yes

No

Yes

Fig 2.4.  Simulation Flowchart – Holding Problem
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The vehicle headway variability along a transit route can be attributed to two factors, 

namely the variability of the vehicle travel times between adjacent stops and vehicle 

dwell times at stops. The travel times between adjacent stops are generally assumed 

independent of each other, and are also independent of the vehicle dwell times at stops. 

Accordingly, the vehicle headway variability contributed solely by the vehicle between-

stop travel time variation is additive. However, the portion of the vehicle headway 

variability resulting from the vehicle dwell time, or more accurately, the passenger 

boarding and alighting random process, is essentially affected by the variation of travel 

times. Besides, there is fairly strong correlation between the vehicle dwell time variability 

at different stops, in that the variability of the vehicle dwell times at upstream stops can 

result in larger variability at the downstream stops. Furthermore, such a relationship is 

defined by the service frequency. A service with higher frequency is more likely to have 

more intense passenger boarding/alighting at the stops, which in turn can result in more 

vehicle dwell time variability at those stops, and, more importantly, increase the 

cumulative dwell time variability and travel time variability downstream. For instance, at 

a certain stop, an arrival lateness of 2 minutes may result in a significantly larger amount 

of passenger boarding time for a service with a 5 min headway than for a 10 min 

headway, given that the passenger arrival rate for the former service is approximately 

twice as much as that for the latter service. Therefore, a service with higher frequency is 

more likely subject to overall system operation variability than a service with lower 
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frequency. Accordingly, one may expect that holding control plays a more important role 

for the service with higher frequency.

Based on these arguments, it is of particular interest in the simulation study of the 

holding control problem to compare the performance of the multiple-station holding 

strategy and the single-station holding strategy based on a wide range of scenarios, 

spanning different service frequencies and other significant factors, including the 

passenger boarding profiles as well as vehicle travel time variability.

Test Transit Route

The test transit route within this simulation study is designed to have a total of 41 

stops (including terminals) approximately evenly distributed, with one-way vehicle trips 

time of approximately 58 minutes, including the vehicle acceleration, deceleration and 

door open/close times and other vehicle dwell time components.

Service Frequency

As introduced in the first chapter, this dissertation focuses on the relatively frequent 

transit service. Therefore, only services with a headway less than or equal to 10 minutes 

are of the interest in this simulation study. Specifically, the services with four different 

vehicle headways are chosen: 5, 6, 8 and 10 minutes respectively.

Passenger Boarding Profile Design

As indicated in many previous studies, the desirable location of the control point 

and the performance of holding control could be affected significantly by the passenger 

boarding profiles, especially by the location where the peak passenger boarding occurs. 

Accordingly, to investigate the effects of the passenger boarding profiles on the 
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performance of holding strategy, three discrete passenger boarding profiles are also 

designed as follows, with the peak passenger boarding occurring at different locations 

along the route.

� Pattern 1: Passenger boarding peaks at stops 13 through 15, together accounting 

for 15 percent of the overall passenger boarding;

� Pattern 2: Similar to passenger boarding profile 1, but exchanging the passenger 

boarding rates at stops 13 through 15 with those at stops 20 through 22; and, 

� Pattern 3: Similar to passenger boarding profile 1, with exchanging the 

passenger boarding rates at the stops 13 through 15 with those at the stops 29 

through 31.

The passenger boarding and loading profiles for the service with a headway of 10 

minutes are illustrated in Fig. 2.5.  Herein, the on-board passenger loading profiles are 

depicted assuming the vehicle headways are perfectly even (i.e. exactly 10 minutes) at 

any point along the route, given an approximately normally distributed passenger O/D 

pattern between stops.

For the sake of evaluating the effects of the service frequency on the performance 

of the holding strategy on a common basis, the passenger boarding rate at each stop for 

the services with the headway other than 10 minutes is inversely proportional to the 

headway. For instance, for the service with the headway of 5 minutes under passenger 

boarding profile 1, the passengers boarding rate at each stop will double the 

corresponding rate in the first diagram of Fig. 2.5. This makes sense in that it basically 

underlies how the operation headway is determined in practice for a relatively frequent 
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transit service. Relatively low/high passenger demand is served with relatively long/short 

headways. Accordingly, based on such a passenger boarding profile design, for all 

services of different frequencies, the total passenger waiting time will be the same, 

provided the vehicle dispatching headways can be maintained perfectly along the route. 

Furthermore, this study design also ensures identical passenger loading profiles for all 

services of different headways, as shown in Fig. 2.5.

Furthermore, the values shown in Fig. 2.5 are the expected values of probabilistic 

distributions. In the simulation, passenger arrivals are depicted as a Poisson process with 

these values as the mean.

Travel Time Variation

In this study, the holding problem is formulated within a context of deterministic 

service model, which can only approximate the transit operation in the real world. From 

this perspective, it becomes particularly valuable to also incorporate the inherent 

stochasticity within the transit operation into the simulation study, to evaluate the impacts 

on the performance of holding strategy from a variety of stochastic operating factors, 

among which the travel time variation is of primary interest.

Vehicle travel time has been reported to follow a normal distribution by Lesley 

(1975), and a lognormal distribution by Andersson and Scalia-Tomba (1981). The 

lognormal distribution proposed by Andersson and Scalia-Tomba (1981) can also be 

approximated by the normal and the gamma distributions for appropriate parameters. For 

the sake of convenience, the vehicle travel time is assumed to be normally distributed in 

this study.  Furthermore, the coefficient of variation (COV) of vehicle travel time on each 
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segment connecting adjacent stops is assumed to vary between 0.1 and 0.3. Fu and Liu 

(2003) have employed a typical travel time variation (COV of 0.2), observed in the field, 

in their study. 
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Fig. 2.5 Test Passenger Boarding and Loading Profiles (Holding Control)

Other Operating and Simulation Parameters

Other operating and simulation parameters are given in Table 2.1.
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Table 2.1. Other Operating & Simulation Parameters (Holding Control)

Parameters Values
AVL Data Polling Time Interval (sec) 40

ββα 21,,  (sec) 15, 3 and 1.5, respectively

Threshold Cost Value for PMS (Pass.-Min)1 20

Threshold Cost Value for PMM with M Holding Stations (Pass.-Min)1 20 * M

Time Period (Min)2 120
Note: 1.Threshold cost values are set for the purpose of checking the convergence of algorithms H1 and H2

2. It is assumed that the first vehicle is dispatched at time instant 0.

In table 2.1, the simulated AVL data frequency is set the same as in some real 

systems, e.g. AVL system employed by Sun Tran, Tucson, AZ. Also, in the following 

chapters in this dissertation, when a simulation study is conducted, the AVL data polling 

time interval is set as 40 sec. The constant part of vehicle dwell time at each stop, the 

average passenger boarding time and the average passenger alighting time are set as 15 

sec, 3 sec and 1.5 sec respectively. The threshold cost value (for algorithm convergence 

purposes) for the PMS problem is set as 20 passenger-minutes, and 20*M passenger-

minutes for the PMM problem with M holding stations. Furthermore, all vehicle trips and 

the holding control applied on these trips within a two-hour time window are simulated.

2.3.2. Simulation Design

As introduced in the last sub-section, with 2 holding strategies (holding vehicles at 

multiple holding stations and at single holding station), 3 passenger boarding profiles, 4 

types of services of different headways (5, 6, 8 and 10 minutes respectively), as well as 5 

categories of travel time variation level (COV) varying from 0.1 through 0.3 at the 

increment of 0.05), a total of 120 cases are generated to represent all possible 

combinations of these four factors. For each specific case (or combination), 2500 
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simulation runs are conducted, and the average passenger cost reduction for each case is 

computed accordingly.

For each specific case (or combination), the overall computational burden is 

basically determined by the service headway, because each simulation run actually 

simulates all vehicle trips accomplished within the time period of interest, which is two 

hours. For instance, for the service with a 5 min headway, a total of 24 vehicle trips are 

simulated. On the contrary, for the service with the headway of 10 minutes, only 12 

vehicle trips are simulated. Therefore, the computational effort of the simulation for the 

former service at least doubles that for the latter service. 

As introduced at the beginning of this chapter, for the sake of comparing the 

performance of the two different holding strategies, namely holding control at multiple 

holding stations and at a single holding station, CRN-based simulation is conducted in the 

sense that, 2500 sets of passenger arrivals at each particular stop within the simulation 

time period and their destinations are generated randomly, and serve as the common input 

to the 2500 simulation runs for each specific case defined above. Aside from this, for all 

cases with the common travel time COV, the scenarios share an identical collection of 

randomly generated travel times between all pairs of adjacent stops. For instance, the 

scenario of holding at multiple holding stations under passenger boarding profile 2, with 

a 5 minute headway and a travel time COV of 0.2, shares a common set of travel times 

with the case of holding at single holding station under passenger boarding profile 3, with 

a 10 minute headway and a travel time COV of 0.2. With such a CRN-based simulation 

study, one may easily conclude that, given that the other factors are the same, the 
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difference in system performance results solely from the system configuration defined by 

two different holding strategies and other factors, namely the travel time variation, the 

passenger boarding profile and the service frequency.

Moreover, of particular note is that the passenger alighting is also explicitly 

incorporated into the simulation of the dynamics of the vehicle trajectory evolution, 

although it is not actually considered in calculating the vehicle dwell time when the 

holding control decision is made. In the simulation of the vehicle trajectory evolution 

dynamics, each passenger alighting incurs a time increment of β 2  to the vehicle dwell 

time at the stop.

2.3.3. Simulation Results

2.3.3.1. Optimal Holding Station(s) 

For either the multiple-station holding strategy or the single-station holding strategy, 

the performance of holding control can be improved by judiciously choosing the holding 

station(s). 

Optimal Single Holding Station

In this particular study, the optimal single holding station is determined by an 

exhaustive search, using the simulation to examine how the holding strategy performs at 

each stop, then choosing the one with the largest passenger cost reduction as the optimal 

holding station. Herein, 100 CRN-based simulation runs are conducted for each case for 

each stop, and the simulation results show that:
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� For passenger boarding profile 1, the optimal holding station is consistently 

located at either stop 12 or stop 13 for all combinations of headway and travel 

time COV. 

� For passenger boarding profile 2, the optimal holding station varies between 

stop 14 and stop 18 with different headways and travel time COVs, with the 

largest difference in the passenger cost reduction of no more than 5 percent. 

� For passenger boarding profile 3, the optimal holding station varies between 

stop 15 and stop 19 with different headways and travel time COVs, with the 

difference in the total passenger waiting time saving of at most 4 percent. 

In the simulation results introduced later, stops 13, 16 and 17 are employed as the 

optimal holding stations for passenger boarding profiles 1, 2 and 3, respectively.

According to the simulation results, the optimal holding position tends to move 

more downstream as the passenger demand peaks further downstream. This is primarily 

because the passenger waiting at the stops nearer to the holding station can benefit more 

from the holding control, and hence it is advantageous to place the holding point closer to 

the peak passenger boarding stops. However, this does not necessarily imply that the best 

location for deploying a control point is always immediately upstream of the peak 

passenger boarding stops. As indicated by the simulation results, the optimal holding 

station could be located significantly upstream of the peak passenger boarding stops for 

some cases. For instance, under boarding profile 3, the peak passenger boarding occurs at 

stops 29 through 31. However, the optimal holding station is at stop 17, which is 12 stops 

upstream of the nearest peak passenger boarding stop. 
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The observation above can be primarily concluded as the effect from an underlying 

tradeoff between the desirability of placing a holding station near a group of peak 

passenger boarding stops and the potential for the holding control to regularize the 

headway downstream. Headway variability tends to increase at downstream stops, and 

the larger headway variability tends to reduce the effects of the holding control. 

Therefore, although the passengers boarding at the peak stops desire that the holding 

station is placed immediately upstream of the peak stops, the increased system operation 

variability as vehicle proceeds to the peak stops may greatly discount the capability that 

the holding control reduces the headway variance. Furthermore, as the peak passenger 

boarding occurs more downstream, this tradeoff more likely influences the selection of 

the optimal holding station. 

Moreover, the simulation results suggest that the location of the optimal holding 

point is not very sensitive to the service headway (varying from 5 through 10 minutes) 

and travel time variability (COV varies from 0.1 through 0.3). However, it can still be 

observed that the optimal holding point tends to be located more upstream for the longer 

headway case. This is simply because the vehicle headways are less variable (i.e. COV of 

headway is smaller) for a service of longer headway. The effects from a holding control 

can hence be maintained further downstream of the holding point without incurring any 

significant escalation of the headway variability. Accordingly, the objective, as in 

equation (2-12), generally drives the location of optimal holding station to be more 

upstream to regularize the downstream headways earlier so as to benefit more passengers 

at more downstream stops. 
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Fig. 2.6 gives a good illustration how the headways evolve along the route with and 

without holding control at different control points for the services with the headway of 10 

minutes and 6 minutes respectively.

Basically, Fig. 2.6.1 and Fig. 2.6.4 show that, for the service with the headway of 6 

minutes, it is generally more difficult to maintain even headways as vehicles proceed 

further downstream than for the service with a headway of 10 minutes. Furthermore, for 

the service with the headway of 6 minutes, holding control at a certain stop can only 

regularize the vehicle headways for a limited number of downstream stops. For instance, 

one may see from Fig. 2.6.3 that, even after the holding control has been implemented at 

stop 13, the vehicle headways can become fairly uneven when vehicles proceed to stop 

20, where passenger boarding starts peaking. This underlies why the optimal holding 

position for this particular case is located at stop 17, as shown in Fig. 2.6.2, which can 

essentially lead to more regularized headways at the peak passenger boarding stops. On 

the contrary, for the service with the headway of 10 minutes, the effects of the holding 

control at stop 13 can be maintained at most of the downstream stops. One may see from 

Fig. 2.6.5 that the vehicle headways are still acceptable even at the route terminal, and 

this may further imply that, with relatively long headways, placing the holding point 

more upstream may result in more passenger cost reduction due to the increased number 

of downstream stops where the vehicle headway distribution can be improved by the 

holding control.
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Note: “Profile” in the figure means the “Test 

Passenger Boarding and Loading Profiles” in Fig. 2.3.

Fig. 2.6. Illustration of Vehicle Trajectories under a Variety of Conditions (Holding Control)
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Multiple Holding Stations

For the case of multiple holding stations, no existing analytical method is available 

to determine the optimal location of the multiple holding stations. Hence, one can resort 

to an exhaustive search based on simulation. However, for a transit route of regular size, 

to determine the optimal location of multiple holding stations could be computationally 

prohibitive. For instance, for a transit route with 50 stops, to determine the optimal 

location of three holding stations implies a search among 117600 (50 * 49 * 48) different 

stop combinations. Therefore, in this study, three holding stations at stops 11, 21 and 31 

respectively are arbitrarily chosen for the holding control across all cases in the 

simulation study. This forms a strong case when comparing the performance of holding 

control at multiple holding stations and holding control at one single optimal holding 

station, in the sense that, the holding control at an optimally chosen set of holding 

stations may lead to better strategy performance than suggested by the results presented 

here.

2.3.3.2 Strategy Performance Comparison 

Implementing the holding control based on either multiple holding stations or a 

single holding station can result in a certain amount of passenger cost reduction. The 

strategy performance comparison between holding control at multiple holding stations 

and holding control at a single holding station, under different combinations of the 

passenger boarding profiles, the service frequency and the vehicle travel time variation, 

are shown in Tables 2.2 through 2.13.
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Table 2.2. Holding Strategy Performance Comparison (Profile 1 & Headway 5 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 15323 3228 21.10% 2703 17.60% 525 20%
0.15 16387 3959 24.20% 3211 19.60% 748 24%
0.2 17510 4688 26.80% 3699 21.10% 989 27%

0.25 18519 5304 28.60% 4101 22.10% 1203 29%
0.3 19348 5776 29.90% 4407 22.80% 1369 31%

Note: 1. The single holding station in the table refers to the optimal holding station specifically to each 
different passenger boarding profile. Also, this applies to Tables 2.3 through 2.13.

Table 2.3. Holding Strategy Performance Comparison (Profile 1 & Headway 6 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 13580 1686 12.40% 1453 10.70% 233 16%
0.15 14327 2190 15.30% 1826 12.70% 364 20%
0.2 15150 2726 18.00% 2194 14.50% 532 24%

0.25 15885 3163 19.90% 2485 15.70% 678 27%
0.3 16479 3499 21.20% 2724 16.50% 775 28%

Table 2.4. Holding Strategy Performance Comparison (Profile 1 & Headway 8 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 12285 522 4.30% 459 3.70% 63 14%
0.15 12686 779 6.10% 668 5.30% 111 17%
0.2 13141 1063 8.10% 884 6.70% 179 20%

0.25 13576 1325 9.80% 1074 7.90% 251 23%
0.3 13952 1546 11.10% 1225 8.80% 321 26%
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Table 2.5. Holding Strategy Performance Comparison (Profile 1 & Headway 10 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 11949 158 1.30% 140 1.20% 18 13%
0.15 12164 274 2.20% 237 1.90% 37 16%
0.2 12434 423 3.40% 358 2.90% 65 18%

0.25 12709 576 4.50% 481 3.80% 95 20%
0.3 12949 705 5.40% 576 4.50% 129 22%

Table 2.6. Holding Strategy Performance Comparison (Profile 2 & Headway 5 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost 
Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 15416 3313 21.50% 2721 17.70% 592 22%
0.15 16512 4052 24.50% 3245 19.70% 807 25%
0.2 17675 4800 27.20% 3761 21.30% 1039 28%

0.25 18715 5427 29.00% 4180 22.30% 1247 30%
0.3 19567 5918 30.20% 4500 23.00% 1418 32%

Table 2.7. Holding Strategy Performance Comparison (Profile 2 & Headway 6 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost 
Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 13678 1769 12.90% 1491 10.90% 278 19%
0.15 14431 2268 15.70% 1870 13.00% 398 21%
0.2 15246 2781 18.20% 2240 14.70% 541 24%

0.25 15993 3231 20.20% 2551 15.90% 680 27%
0.3 16614 3586 21.60% 2790 16.80% 796 29%
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Table 2.8. Holding Strategy Performance Comparison (Profile 2 & Headway 8 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 12321 543 4.40% 455 3.70% 88 19%
0.15 12748 820 6.40% 678 5.30% 142 21%
0.2 13225 1116 8.40% 912 6.90% 204 22%

0.25 13685 1399 10.20% 1121 8.20% 278 25%
0.3 14081 1632 11.60% 1290 9.20% 342 27%

Table 2.9. Holding Strategy Performance Comparison (Profile 2 & Headway 10 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 11961 174 1.50% 139 1.20% 35 15%
0.15 12186 296 2.40% 239 2.00% 57 24%
0.2 12472 455 3.70% 373 3.00% 82 22%

0.25 12760 617 4.80% 504 4.00% 113 22%
0.3 13012 757 5.80% 608 4.70% 149 25%

Table 2.10. Holding Strategy Performance Comparison (Profile 3 & Headway 5 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 15494 3407 22.00% 2800 18.10% 607 22%
0.15 16625 4193 25.20% 3335 20.10% 858 26%
0.2 17796 4954 27.80% 3836 21.60% 1118 29%

0.25 18861 5599 29.70% 4256 22.60% 1343 32%
0.3 19722 6097 30.90% 4576 23.20% 1521 33%
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Table 2.11. Holding Strategy Performance Comparison (Profile 3 & Headway 6 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 13728 1843 13.40% 1552 11.30% 291 19%
0.15 14525 2384 16.40% 1947 13.40% 437 22%
0.2 15384 2940 19.10% 2334 15.20% 606 26%

0.25 16160 3419 21.20% 2653 16.40% 766 29%
0.3 16807 3804 22.60% 2900 17.30% 904 31%

Table 2.12. Holding Strategy Performance Comparison (Profile 3 & Headway 8 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 12354 598 4.80% 503 4.10% 95 19%
0.15 12804 896 7.00% 743 5.80% 153 21%
0.2 13307 1221 9.20% 990 7.40% 231 23%

0.25 13778 1510 11.00% 1200 8.70% 310 26%
0.3 14186 1757 12.40% 1375 9.70% 382 28%

Table 2.13. Holding Strategy Performance Comparison (Profile 3 & Headway 10 Min)

Holding at Multiple 
Holding Stations

Holding at a Single 
Holding Station 1

Passenger Cost 
Reduction Difference 
Between Strategies
(Multiple – Single)Travel 

Time 
COV

Total 
Passenger 

Cost Without 
Holding

(Pass.Min)

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Passenger 
Cost 

Reduction
(Pass.Min)

Percentage 
Passenger 

Cost 
Reduction

Absolute 
Difference
(Pass.Min)

Percentage 
Difference

0.1 11986 206 1.70% 164 1.40% 10 6%
0.15 12228 343 2.80% 277 2.30% 19 7%
0.2 12522 514 4.10% 416 3.30% 39 9%

0.25 12822 683 5.30% 551 4.30% 66 12%
0.3 13088 836 6.40% 666 5.10% 91 14%
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According to Tables 2.2 through 2.13, a holding strategy based on either multiple 

holding stations or a single holding station can consistently reduce the total passenger 

cost, and the performance of the holding strategy is relatively independent of where the 

peak passenger boarding occurs.

Significantly, more passenger waiting time reduction from the multiple-station 

holding control over single-station holding control can be seen across all cases, especially 

as the service frequency is relatively high and vehicle travel time variation is large. For 

instance, under passenger boarding profile 3, for the case of a 5 minute headway and a 

travel time COV of 0.3 (Table 2.10), the holding control at multiple holding stations can 

result in 33 percent more passenger waiting time saving over the holding control at a 

single holding station.

Holding control can result in more passenger cost reduction under the condition 

where service frequency is high and travel time variability is large. Under passenger 

boarding profile 3, for the service with a 5 minute headway (Table 2.10), a total 

passenger cost reduction of more than 100 passenger hours can be achieved by holding 

vehicles at multiple holding stations, and more than 75 passenger hours by holding 

vehicles at a single holding station, with a travel time COV of 0.3. On the contrary, for 

the case of the passenger boarding profile 3, the service with a 10 minute headway and 

the travel time COV of 0.1 (Table 2.13), no more than 2.5 passenger hours can be saved 

by implementing the holding control at either multiple holding stations or a single 

holding station.
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As service becomes more frequent, the average passenger waiting time increases 

substantially. This is simply because a more frequent service is more likely subject to 

larger system operation variability. For instance, by comparing Tables 2.2 and 2.5, one 

may see that, as the travel time COV is 0.1, the total passenger waiting time increases by 

33 percent when the service headway is reduced from 10 minutes to 5 minutes, and by 40 

percent, 46 percent, 52 percent and 55 percent as the travel time COVs are 0.15, 0.20, 

0.25 and 0.30 respectively. This further demonstrates that a more frequent service is 

subject to the system variability. Here, it is useful to point out again that the passenger 

boarding profiles for different service frequencies are deliberately designed to ensure that 

the total passenger waiting time are the same for all service frequencies, given that the 

system operation is entirely free of stochasticity. In other words, if the vehicle 

dispatching headway can be maintained at all points along the route, the same total 

passenger waiting time can be observed for all cases with different service frequencies. 

As the peak passenger boarding occurs further downstream, the total passenger 

waiting time tends to increase. This is simply because the headway variability also 

becomes larger at the downstream stops of the transit route. This, together with a 

relatively large proportion of the passengers waiting at these stops, will certainly escalate 

the total passenger waiting time. For example, as the peak passenger boarding stops move 

from stops 13, 14 and 15 (profile 1) downstream to stop 29, 30 and 31 (profile 3), for the 

case of a 5 minute headway (Tables 2.2 and 2.10), the total passenger waiting time is 

increased by 171, 238, 286, 342 and 374 passenger minutes for the travel time COVs of 

0.1, 0.15, 0.2, 0.25 and 0.3, respectively. Even for the service with a 10 minute headway 
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(Tables 2.5 and 2.13), this passenger waiting time increase could be as high as 137 

passenger minutes when the travel time COV is equal to 0.3. However, within a more 

variable transit operation environment, holding control can play an even bigger role to 

reduce the passenger waiting time. The escalation of the total passenger cost due to the 

passenger boarding peaking at downstream stops can be diminished by implementing 

holding control, especially by holding vehicles at multiple holding stations. For the case 

of a 5 minute headway and a travel time COV of 0.3, the total passenger cost after 

holding vehicles at multiple holding stations under passenger boarding profile 3 (Table 

2.10) is only 53 passenger minutes larger than that under passenger boarding profile 1 

(Table 2.2). This is basically negligible. 

Furthermore, the problem formulated in this study is only an approximation of the 

real-world problem in the sense that, the problem formulated in this study uses a 

deterministic service model, and the passenger alighting process is also removed from the 

problem formulation with an assumption that it may have only negligible effects on the 

vehicle trajectory dynamics. Such an approximation could discount the effects of the 

holding control determined from the problem formulation. Herein, one may imagine a 

case that the transit operation is entirely free of stochasticity, so that each passenger 

would have experienced the waiting time of exactly one half of the vehicle headway on 

average. For such case, under passenger boarding profile 1, the minimum total passenger 

waiting cost is shown in Table 2.14.
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Table 2.14. Minimum Passenger Waiting Time with Varying Headways

Vehicle Dispatching Headway (Min.) Minimum Total Passenger Cost (Pass.Min)
5 11041
6 11129
8 11305

10 11482

As discussed earlier, scaling the passenger boarding rate to be inversely 

proportional to the operation headway ensures identical total passenger cost with 

different headways, provided the service is entirely deterministic. However, one may see 

that there is slight difference between the numbers in the second column of Table 2.14. 

This is because the total passenger cost also includes the passenger waiting time to the 

dummy vehicle O+1, which functions as the boundary vehicle operating immediately 

after the last vehicle within the peak time period. For the service with a 5 minute

headway, this dummy vehicle incurs 1/24 of the total passenger cost increase, since there 

are, in total, 24 actual vehicles operating during the peak time period (two hours). 

Similarly, the dummy vehicle incurs 1/12 increase on the total passenger cost for the 

service with 10 minute headway. This is why a slightly larger passenger cost comes with 

larger vehicle headways.

The comparison of the actual total passenger cost with holding control at multiple 

holding stations with the minimum total passenger cost is shown in Table 2.15.

Moreover, one may compare the actual total passenger cost without holding control 

with the minimum total passenger waiting cost, as shown in Table 2.16.
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Table 2.15. Comparison of Total Passenger Cost after Holding with Minimum Total Passenger Cost

Passenger Cost Difference (Actual Cost after Holding – Minimum Cost)

5 Min. Headway 6 Min. Headway 8 Min. Headway 10 Min. HeadwayTravel 
Time 
COV

Absolute 
Difference
(Pass.Min)

Percentage 
Difference
(%)

Absolute 
Difference
(Pass.Min)

Percentage 
Difference
(%)

Absolute 
Difference
(Pass.Min)

Percentage 
Difference
(%)

Absolute 
Difference
(Pass.Min)

Percentage 
Difference
(%)

0.10 1054 9.6 765 6.9 457 4.0 308 2.7
0.15 1387 12.6 1008 9.1 602 5.3 408 3.6
0.20 1781 16.1 1294 11.6 772 6.8 528 4.6
0.25 2174 19.7 1593 14.3 944 8.4 650 5.7
0.30 2531 22.9 1852 16.6 1100 9.7 761 6.6

Table 2.16. Comparison of Total Passenger Cost without Holding with Minimum Total Passenger Cost

Passenger Cost Difference (Actual Cost without Holding – Minimum Cost)

5 Min. Headway 6 Min. Headway 8 Min. Headway 10 Min. HeadwayTravel 
Time 
COV

Absolute 
Difference

(Pass.Min)

Percentage 
Difference

(%)

Absolute 
Difference

(Pass.Min)

Percentage 
Difference

(%)

Absolute 
Difference

(Pass.Min)

Percentage 
Difference

(%)

Absolute 
Difference

(Pass.Min)

Percentage 
Difference

(%)
0.10 4282 38.8 2451 22.0 979 8.7 467 4.1
0.15 5346 48.4 3198 28.7 1380 12.2 682 5.9
0.20 6469 58.6 4021 36.1 1835 16.2 952 8.3
0.25 7478 67.7 4756 42.7 2270 20.1 1227 10.7
0.30 8307 75.2 5350 48.1 2646 23.4 1467 12.8

From Tables 2.15 and 2.16, one may see that the passenger cost increase solely due 

to the system operation stochasticity can be significantly diminished by implementing 

holding control. For instance, for the case of the 5 minute headway in the above two 

tables, applying holding control at multiple holding stations can reduce the passenger cost 

increment over the ideal case (as shown in Table 2.14) by more than 70 percent  (or up to 

5776 passenger minutes). This passenger cost reduction is considerable, and can 

demonstrate the effectiveness of the problem formulation and solution method in this 

study. The remaining passenger cost increment (up to 30 percent) over the ideal case can 

be attributed to the fact that the holding control is only applied at a set of discrete points, 

between which the vehicle headway variability still exits. Similar conclusions can be 
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drawn for the strategy of holding vehicles at single holding station. However, holding 

vehicles at a single holding station is less effective than holding vehicles at multiple 

holding stations in terms of the total passenger cost reduction.

2.4. Conclusions and Discussion

To take the advantage of the AVL data, this chapter takes a significant leap from 

the previous studies on the holding control through applying holding control at multiple 

holding stations rather than a single holding station and comparing the performance of 

holding control at multiple holding stations and holding control at a single holding station 

through a simulation study. 

The problem of holding multiple vehicles at multiple/single holding station(s) in 

this chapter is formulated as a convex problem with strictly convex objective function 

subject to linear constraints. Some classical techniques can solve this problem to 

optimality. However, this does not necessarily mean that the problem is small in scale. 

Therefore, heuristics are also developed in this study to solve this particular problem by 

decomposing the overall problem into sub-problems that can be tackled more easily.

With the algorithms developed for PSS, PMS and PMM problems respectively, the PSS

problem can be solved analytically; the proposed H1 algorithm can solve the PMS

problem to optimality; and, the H2 heuristic can also find the optimal solution to PMM

problem, if the assumption of no vehicle overtaking is strictly satisfied.

Though the model formulated in this study is only an approximation of the problem 

in the real world, the simulation results suggest that, based on this problem formulation, 

holding vehicles both at multiple stations and at a single station can effectively reduce the 
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total passenger waiting time, when transit operation is subject to a certain level of 

variability, typically when the service frequency is high and vehicle travel time 

variability is large. On the other hand, when the service frequency is low and the vehicle 

travel time variability is small, the operation system improvement in terms of the total 

passenger waiting time reduction resulting from the holding control becomes negligible. 

In addition, the performance of the holding strategy is relatively independent of where the 

peak passenger boarding occurs.

Strong evidence drawn from the simulation results suggest that, across all cases, 

multiple holding stations may offer more opportunities to regularize the vehicle 

headways, so that the overall passenger cost can be reduced further as compared to 

holding vehicles only at a single holding station. Furthermore, the extra total passenger 

waiting time savings resulting from holding vehicles at multiple stations over holding 

vehicles at single station can be augmented as the system operation is subject to larger 

variability, or equivalently as the frequency of service is higher and travel time variation 

is larger.  

Moreover, for the strategy of holding vehicles at a single holding station, the 

position of the optimal holding station becomes less sensitive to where the passenger 

boarding peaks, as the peak passenger boarding occurs further downstream.  This may 

suggest that the position of the optimal holding station is mostly determined by the route 

structure itself, rather than solely by where peak passenger boarding occurs.  However, it 

may be desirable to conduct further study on this problem.
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CHAPTER 3     STOP-SKIPPING CONTROL

As a continuation of the study on the single route based operations control problems, 

this chapter describes a study of the stop-skipping control problem in a similar manner to 

the holding control problem. In practice, stop-skipping control is also called vehicle 

expressing, in which a vehicle is requested to skip a number of stops/stations to avoid the 

associated dwell times, so that the vehicle operations can recover from a service 

disruption.

3.1. Introduction

As introduced in the previous chapter, those factors and effects contributing to the 

vehicle operation variability may also disrupt the planned service schedule. Specifically, 

major transit service disruptions often occur due to a variety of reasons, e.g. vehicle 

malfunction or a traffic incident, to name a few. As these disruptions may last more than 

a few minutes, this may strain the ability of the transit service to recover from these 

disruptions. For example, for a relatively frequent transit service, Abkowitz et al. (1986) 

have concluded that the vehicle headway variation does not increase linearly along a 

route. This may imply that, as traffic congestion prevails on the route, even a minor 

transit perturbation could eventually result in serious operational problems, if no 

operations control actions are implemented. Under such a circumstance, the previously 

discussed vehicle holding control may help to regulate vehicle headways and restore the 

transit service if the disruption is not serious. However, when a major disruption occurs, 

simply holding the following vehicles may finally lead to increasingly greater headway 

variation and schedule deviations.
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In this context, vehicle stop-skipping control, as another commonly used control 

strategy, can be particularly helpful to this situation. In this strategy, a driver is instructed 

to skip a set of stops along a route. By skipping these stops, the dwell times at these stops 

are avoided, and the vehicle may recover after some schedule delay or disruption.

Vehicle stop-skipping can be applied both in the planning stage of timetabling as a 

strategy to equalize the vehicle load and to minimize the vehicle fleet size requirement, 

and also in the operational stage for the purposes of improving schedule adherence or of 

regularizing the vehicle headways so as to reduce the overall passenger cost. Obviously, 

stop-skipping results in the loss of service to a certain portion of passengers, and also 

results in inconvenience to some other passengers. Due to this, stop-skipping (or 

expressing) is usually considered more formally in the planning process during 

timetabling, rather than in operations control.

At the planning stage, so-called “zonal” route design has some similarities to the 

stop-skipping operation. In this planning activity, only those stops within consecutive 

zones specifically assigned to a particular route will be served regularly by the buses on 

that route. Other stops will be either skipped or partially served with boarding or 

alighting only. Jordan and Turnquist (1979) developed a model of an urban bus route 

incorporating measures of both reliability and average trip time, based on which zone 

structure can be optimized by using a dynamic programming model. Also, a case study 

has shown that zone scheduling can simultaneously improve route reliability and average 

passenger travel time, while the required bus fleet can be reduced too. Furth (1986) 

extended the past study on the zonal express service design for linear corridor to zonal 
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design for bi-directional local service, including light direction deadheading, and to 

branching as well as linear corridors. The results of the application of this study to a 

Boston area corridor showed considerable potential for reducing operator cost.

As examples of limited-stop and express services, Ercolano (1984) evaluated the 

limited-stop bus service in New York City’s borough of Manhattan by comparing its 

performance characteristics and passenger use to those of local service on the same routes. 

This study found that the limited-stop bus service can offer considerable travel time 

savings, faster average operating speed, rider preference, and moderate operating cost 

savings. Also, two sets of bi-variate regression models and five warrants are presented in 

the study to serve as general sketch-planning guides for applying limited-stop bus service.

More recently, Suh et al. (2002) introduced an express subway system planned for the 

Seoul, Korea, metropolitan area, in which the stop-skipping system is considered as an 

alternative to the express subway service. The total time saving of the stop-skipping 

schedule is predicted with a given O/D matrix, distance between stations, headway, and 

maximum link speeds. The results from a field study have shown that the total system 

time can be decreased by 7.1 to 7.8 percent, and in the maximum case, up to 9.8 percent.

Vuchic (1973) is among the first who have comprehensively described and 

evaluated stop-skipping in an operational context. This study concluded that the 

operational differences of stop-skipping operation are: scheduled speed is increased; the 

frequency of stopping is reduced; headways at stations which are not served by all 

vehicles are increased; there is no direct connection between those stations served by 

different vehicles; and, perhaps most obviously, service becomes more complicated. In 
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the 1990’s, Wilson et al. (1992) systematically described the operation controls applied 

on the Massachusetts Bay Transportation Authority (MBTA) Green Line in Boston, 

among which the vehicle expressing is a very important component.

Though very few, some efforts have been devoted by researchers to investigate the 

real-time application of a stop-skipping strategy for operations control purposes. Li et al.

(1991) formulated a 0-1 stochastic programming model to solve the real-time scheduling 

problem for stop-skipping control, with the objective function accounting for both 

schedule deviation and unsatisfied passenger demand. In their model, the stop-skipping 

problem is formulated as determining which stops to serve on a given route, prior to the 

vehicle dispatch from the terminal. The decision variables are 0-1, based on the decision 

to serve a particular stop. The numerical results from an application in Shanghai 

demonstrated the potential of the method for improving transit operation in practice. Lin

et al. (1995) investigated the combined control strategy of holding and stop-skipping, and 

concluded that the combination of such tight controls may actually increase overall 

passenger waiting times and thus should be avoided. In Eberlein (1995), the stop-

skipping problem is formulated as an integer nonlinear programming model (INLP) to 

decide which vehicle to skip which stops/stations. In this model, the decision problem is 

to determine the start and end stops of the segment to be skipped (the “express segment”).

Some results for a light-rail line in Boston are also given. More recently, Fu and Liu 

(2003) described a new dynamic scheduling strategy that aims to optimally balance the 

benefits to operator and passengers. In this study, the problem is again formulated as a 

nonlinear 0-1 integer programming problem, similar to that defined by Li et al. (1991),
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which can be optimally solved using an exhaustive search method, by taking the 

advantage of the relatively small scale of the problem for a single transit route. A 

sensitivity analysis is also conducted in this study with a real-life bus route, and the 

passenger demand, the bus travel time variation, and the headway at the dispatching 

terminal are chosen as the sensitivity factors. The simulation-based sensitivity analysis 

indicates that stop-skipping can be most effective in the context of high passenger 

demand and short headways. Also, it should only be used when appropriate route travel 

time variation exists. 

The formulations of Li et al. (1991), Lin et al. (1995), Eberlein (1995), and Fu and 

Liu (2003) all formulated the real-time stop-skipping problem as a decision problem 

solved during vehicle dispatch from the terminal. In those studies, the underlying 

assumption is that, as soon as the vehicle is dispatched from the terminal, the prescribed 

skipping stops (or skipped segment) cannot be changed. In this sense, the application of 

stop-skipping control is not ‘thoroughly’ real-time, since the control decision is not 

essentially adaptive to the changes in operating conditions once the vehicle is on route. 

This greatly limits the advantages that can be offered by any of the advanced information 

technologies, e.g. automatic vehicle location (AVL) and monitoring systems, especially 

when the route operating conditions are subject to significant variations. Moreover, the 

methods in these studies cannot be easily implemented to respond to a vehicle disruption 

in a timely manner, since stop-skipping control can only be decided while the vehicles 

are being dispatched at the terminal.
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With these arguments above as the motivation, this study differs from the previous 

studies by implementing the stop-skipping control strategy in a genuinely real-time and 

adaptive way, so that the control can be applied in more general situations and can adapt 

to the operation conditions by adjusting the number and locations of the skipped stops in 

a real-time manner. 

Consistent with Eberlein (1995) and some stop-skipping practice, the stop-skipping 

control generally follows the following policy (hereafter the “basic” policy, or policy 1):

Basic Policy: The route skipping segment is defined by a start stop and an end stop, 

and all stops on this segment will be completely skipped by the control vehicle.

With this policy, the stop-skipping control strategy definitely adds the 

inconvenience to some onboard passengers: those destined for stops on the skipping 

segment will have to alight from the vehicle before reaching their destinations.  

Again, as already discussed in Chapter 2, for an “on-call” service, it is not necessary 

for a vehicle to stop at all stops on the route due to the inherent stochasticity of the 

passenger arrival and distribution process. Therefore, if the vehicle only responds to 

passenger calls for alighting, the amount of stopping on the route can also be reduced, so 

that the vehicle operating speed can be increased. This somewhat resembles that 

underlies the so-called “zonal local service” in Furth (1986), in which the zonal local 

service requires that the inbound vehicle stops between its service zone and the CBD only 

to allow passengers to alight. This idea suggests another policy (hereafter the “policy 

alternative”, or policy 2), as a comparison to the basic policy introduced earlier.
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Policy Alternative: The skipping segment is defined by a start stop and an end stop. 

However, it is not necessary for the control vehicle to skip all stops on this segment.

Instead, it can drop off the passengers at stops in the skipping segment if their 

destinations happen to be in this segment. At those stops where alighting does occur, 

passenger boarding is also allowed.

With this policy alternative, one may see that some of the inconveniences incurred 

by the basic policy to the passengers can be avoided. More importantly, the stop-skipping 

control thus becomes appropriate for real-time application in the sense that the change of 

control decision does not incur any contradicted activity that the basic policy may bring, 

e.g. the destination stops of the passengers who are forced to get off before their 

destinations are actually served eventually.

Based on these two stop-skipping control policies, the objectives and the tasks of 

this study of the real-time stop-skipping control problem is to:

� Formulate the dynamics of each stop-skipping control policy; and,

� Evaluate and compare the performance of the two stop-skipping control policies 

in the context of real-time application through a simulation study.

In the remaining part of this chapter, the problem of stop-skipping control is 

formulated as a mathematical programming problem within the context of a deterministic 

service model to optimize the number and the locations of the stops to be skipped by the 

control vehicle, so as to minimize the total passenger cost in terms of both in-vehicle 

passenger onboard time and at-stop passenger waiting time. Binomial passenger alighting 

and Poisson passenger boarding are incorporated into the vehicle trajectory prediction to 
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estimate the probability that a stop is either served or bypassed by the vehicles under both 

basic policy and policy alternative. Much more detail of this will be given in later 

sections. To take advantage of the small scale of the problem for a single transit route, an 

exhaustive search method is employed to compare all feasible combinations of the stops 

to be skipped by the control vehicle and eventually to present the combination of stops 

resulting in minimal passenger cost as the optimal solution. Again, similar to the holding 

problem in Chapter 2, a CRN simulation study is conducted to compare how the two 

policies relatively affect the performance of the stop-skipping control in terms of the 

capability of reducing total passenger cost.  The main flow of this chapter is also depicted 

in Fig. 3.1.

The comparison simulation study is conducted in this chapter is the same as 

presented in Fig. 2.2 in Chapter 2, except the impacting factors identified at the beginning 

of the flow chart (Fig. 2.2) and the systems to be compared in the simulation study. 

Therefore, a diagram similar to Fig 2.2 will not be given in this chapter. In this chapter, 

the systems to be compared in the simulation study are just the two policies, namely the 

basic policy and the policy alternative. 
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Fig. 3.1 Chapter Flowchart (Stop-Skipping Control)

Specifically, the remainder of this chapter is organized into three sections. Section 

3.2 formulates the stop-skipping control dynamics based on both policies. Section 3.3 

presents the simulation study results. Finally, Section 3.4 gives some conclusions.

3.2. Problem Formulation & Solution

Problem Formulation – Mathematical 
Programming Problem

1. Objective: minimize total passenger cost
� In-vehicle passenger onboard time
� At- stop passenger waiting time

2. Constraints
� Recursive vehicle trajectory functions
� Binomial passenger alighting and 

Poisson passenger boarding
� No vehicle overtaking

Problem Solution
1. Enumerate all feasible combinations of stops 

to be skipped;
2. Compare the total passenger cost reduction 

from all skipping stop combinations;
3. The skipping stop combination resulting in 

minimal passenger cost is optimal. 

Identify the factors that affect 
the performance of stop-
skipping policies:
1. Random factors: 

passenger boarding rates, 
passenger distribution 
ratio and vehicle travel 
time variability;

2. Deterministic factors: 
passenger boarding 
profiles, vehicle 
disruption location, 
duration of vehicle 
disruption.

Comparison Simulation Study
1. Use identified impacting factors to develop simulation 

scenarios;
2. Use CRN (Common Random Number) simulation to 

simulate the  dynamics of vehicle trajectory evolution 
and stop-skipping policies.

Simulation Results for basic policy 
and policy alternative
1. Optimal combination of stops to 

be skipped
2. Minimal total passenger cost

Compare the performance of the basic 
policy and the policy alternative in 
terms of the total passenger cost , as a 
function of the various impacting 
factors 
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3.2.1. Problem Nature 

As indicated in the previous studies, the stop-skipping problem can be formulated 

as a nonlinear 0-1 integer programming problem, with the binary integer variables 

representing which stops to be skipped by the control vehicle. In this study, for the 

purpose of investigating the exact problem, the stop-skipping problem will be formulated 

again as a nonlinear 0-1 integer programming problem.

The formulation below is deterministic, in that the objective function uses expected 

values to determine the passenger cost. However, in order to consider policy 2, the 

problem formulation also uses the probability that a vehicle serves or bypasses a stop on 

the skipping segment. In this case, when the problem is formulated and solved in the 

decision-making process, only the expected values of passenger boardings and alightings 

are used to predict the vehicle trajectories and estimate the objective function value.

In this stop-skipping study, under both the basic and alternative stop-skipping 

policies, the decision problem is to determine the starting stop and the ending stop of the 

skipping segment. The stop-skipping problem with a relatively large number of stops 

(100 stops) and a substantial number of vehicles (6 vehicles) has been solved in an 

experimental study; even in this case, one stop-skipping control decision took only a few 

seconds to solve using full enumeration. This is entirely acceptable for a real-time 

application, given that most AVL systems provide vehicle location information at a lower 

polling cycle (e.g., from 20-30 seconds to 2-3 minutes). Therefore, an exhaustive search 

method is adopted as the solution method in this study. 
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3.2.2. Assumptions and Variable Definitions

For this study, it is assumed that a vehicle experiences a service disruption of a 

given length of time. When this disruption occurs, this vehicle experiences a delay equal 

to the length of the service disruption. At that end of this disruption, and based on the 

current location of the vehicle on the route and the operation status of other impacted 

vehicles, a decision is made on whether the vehicle should skip stops on the route, and, if 

so, one must determine the starting and ending stops of this skipping segment.

In terms of the stop-skipping control, the following assumptions are made:

� While considering a vehicle for stop-skipping, the following (subsequent) 

vehicles will not be eligible for any control actions; and,

� For the sake of simplifying the problem formulation and solution, vehicle 

capacity is not considered explicitly. However, practically, when a vehicle is 

involved in a disruption, vehicle capacity could easily become an issue due to 

the length of the following vehicle headway and the need to pick up passengers 

who are “forced off” the control vehicle. To examine this assumption, an 

additional set of scenarios is included in the simulation study, in Section 3.4, to 

explore the effects of a real-life capacity constraint.

For the basic policy, it is further assumed that:

� In order to make the basic policy more appropriate to adaptive decision-making, 

the control vehicle will pick up all passengers up until the stop just upstream of 

the first stop to be skipped, even those who are destined for stops on the 
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skipping segment, in case that the stops previously decided to be skipped are 

eventually served; and,

� Also in the basic policy, once the skipping segment has been decided, the 

control vehicle always drops off the passengers destined for stops in the 

skipping segment at the last stop before the skipping segment. In this sense, the 

control vehicle can never skip the stop immediately downstream of the 

decision-making location, since it may need to drop off some passengers 

destined along the skipping segment.

In terms of modeling features in the operations dynamics on the route, the following 

assumptions are made. For the sake of completeness, some other assumptions made in 

Chapter 2 are also duplicated below:

� For passengers boarding at each stop, the fraction alighting at each downstream 

stop can be derived from historical data and is assumed to be independent of the 

number of passengers boarding at the stop;

� The average passenger arrival rate at each stop is given;

� The average vehicle travel time between stops is given, and is the same for all 

vehicles during the time period of concern; and,

� For all stops already served by the vehicles, the number of passengers boarding 

and alighting is known, and the passenger distribution pattern derived from 

historical data can be adjusted based on the algorithm already introduced in the 

holding control problem study.
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The variables are defined as follows. Again, some variables which have been 

described in the holding control problem study are defined below for completeness.

Inputs and Parameters:

X jni ,, : The ratio of the number of passengers boarding at stop n and alighting at 

stop j to the total number of passengers boarding at stop n for vehicle i;

λ j : The passenger arrival rate at stop j;

d ji , : The departure time of vehicle i at stop j;

a ji, : The arrival time of vehicle i at stop j;

B ji , : The expected number of passengers boarding vehicle i at stop j;

A ji , : The expected number of passengers alighting from vehicle i at stop j;

B ji , : In contrast to B ji , , B ji , represents the real number of passengers boarding

vehicle i at stop j;

A ji, : In contrast to A ji, , A ji, represents the real number of passengers alighting 

from vehicle i at stop j;

h ji , : The leading headway of vehicle i at stop j. 

L j : The number of passengers left over by the control vehicle at stop j;

F : The passengers being forced to alight off the control vehicle at the stop 

immediately upstream of the first stop on the skipping segment (applies to policy 1 only);

P ji ,  The probability that stop j is skipped by vehicle i;

Q ji, : The probability that stop j is served by vehicle i;



102

r ji , : The vehicle running time between stop j and stop j+1 for vehicle i;

D jni ,, : The expected number of passengers boarding vehicle i at stop n and alighting 

at stop j; 

si : The stop immediately upstream of the current location of vehicle i when the 

control decision is made. For an adaptive decision-making process, when the first 

decision is made, s1  is just the stop immediately upstream of the vehicle disruption 

location;

ββα 21,, : The parameters representing the vehicle acceleration, deceleration, door 

open and close, and clearance time (α ), average passenger boarding time ( β1 ) and 

average passenger alighting time ( β 2 ) respectively at a bus stop;

www 321 ,, : The weights for different passenger cost components in the objective 

function; and,

ON , : The total number of stops on route ( N ) and the total number of vehicles 

under consideration ( O ), respectively. Only for the purpose of convenience, the 

boundary vehicle (the vehicle preceding the control vehicle) is denoted as vehicle 0; the 

control vehicle is vehicle 1, and others from 2 through O  are referred to as the impacted 

vehicles. Herein, the boundary vehicle 0 does not belong to the O vehicles under 

consideration. The definition of the boundary vehicle, the control vehicle and the 

impacted vehicles will be introduced later.

Decision Variables:

ss : The first stop on the skipping segment that is skipped; and 
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se : The last stop on the skipping segment that is skipped;

Though the problem will be essentially formulated as a non-linear binary integer 

programming problem, the mathematics for the problem dynamics can have a wide 

variety of forms. As driven by the solution algorithm argued previously, and also for the 

sake of making the dynamics more readable, the problem formulation will be described in 

the manner that the solution algorithm works. For the solution algorithm, the skipping 

segment is defined by enumerating each feasible pair of start stop ( ss ) and end stop ( se ) 

among all stops downstream of the decision location ( s1 ). Therefore, the critical issue in 

solving the problem is determining, for a given pair of start and end stops, the 

evolutionary dynamics of vehicle trajectories, while calculating the given costs in the 

objective function.

3.2.3. Objective Function

Since the two different stop-skipping policies result in different passenger boarding 

and alighting processes, the objective functions based on these policies are also different.

Basic Policy – Policy 1
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In the objective function above, the first term shows that the passengers originating 

during any particular vehicle’s leading headway will experience the waiting time of one 

half of the leading headway on average. However, for those passengers left over by the 

control vehicle 1, they will experience another full headway waiting for vehicle 2. The 
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second term indicates that each particular passenger will experience the in-vehicle travel 

time determined by the vehicle departure time at the stop at which they board on the 

vehicle and the vehicle arrival time at the stop at which they get off the vehicle. Finally, 

the third term counts the extra cost to those passengers that are forced to get off at 

stop 1−ss , since their destination stops will be skipped by the control vehicle. Since in 

the first term of the objective function, L j  already includes F  (as introduced later) at 

stop 1−= sj s , the cost to the passengers being forced to get off before their 

destinations is counted by both the first and the third terms in the objective function. This 

formulation allows us to consider the additional inconvenience to those that are “forced 

off.” However, the weights w1  and w3  can be judiciously set to avoid any double 

counting problem.

Policy Alternative – Policy 2 

For policy 2, since there is no passenger being forced to get off the vehicle before 

their destination stop, the third term in the objective function for policy 1 does not apply. 

Therefore, the objective function simplifies to:
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Obviously, for both policies, the stop-skipping control decision is just to determine 

which contiguous stops will be skipped by the control vehicle. Therefore, the decision 

variables are just the start stop ss and the end stop se  which together define the skipping 

segment. Though the decision variables are not shown explicitly in the objective 
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functions, they will define the stop-skipping control dynamics in the way as described 

below.

3.2.4. Stop-Skipping Control and Vehicle Trajectory Evolution Dynamics

As a concept, the impacted, control and boundary vehicles have been introduced in 

the holding control problem study in Chapter 2. Similarly, since the stop-skipping control 

is mostly applied when a major vehicle operating disruption occurs on the route, the 

impact of the operation disruption could propagate to many of the following vehicles, 

which are also defined as the impacted vehicles in this study. In contrast, the vehicle 

experiencing the disruption is defined as the control vehicle. Furthermore, the 

immediately preceding vehicle is defined as the boundary vehicle, whose trajectory is 

assumed to be known and will determine how the trajectories of the following vehicles

evolve with or without the stop-skipping control. In this particular study, the number of 

impacted vehicles may vary with the route operating condition and the degree of the 

vehicle disruption. The rule of thumb in deciding the appropriate number of impacted 

vehicles is to ensure that the last impacted vehicle’s trajectory can stay approximately the 

same when the vehicle disruption length varies from zero up to the average dispatch 

headway, provided that no operation control is applied.

When the stop-skipping control decision is made, the control vehicle is currently at 

the location immediately downstream of stop s1  and upstream of stop 11 +s . The stops 

downstream of the vehicle disruption location may lie on any one of the three segments 

as defined below and shown in Fig. 3.2.

� Segment 1:  between stop 11 +s  and 1−ss , including both end stops;
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� Segment 2: the skipping segment, between stop ss  and stop se , including both 

end stops; and,

� Segment 3: between stop 1+se  and stop N (end terminal), including these two 

stops.

Vehicle Operation 
Disruption Location

S1 S1 +1

Dispatching 
Terminal

Segment 2

Ss Se

Segment 1

Segment 3

End 
Terminal

Ss -1

Fig. 3.2. Typical Route Segmentation for Stop-Skipping Control

The segment between the dispatching terminal and stop s1  is not of concern in this 

study, since all vehicle trajectories on this segment either have materialized or cannot be 

changed by the operation control applied to the control vehicle.

At the stops on each of the route segments defined above, the vehicle trajectory 

evolves in different ways, which also depends on which stop-skipping control policy will 

be used.

For an on-call service, as introduced in Chapter 2 for holding control problem, 

besides the policies, whether or not the control vehicle serves a particular stop also 

depends on if there are passengers calling for boarding or/and alighting at the stop. 

Again, in the model, this will be represented as the probability of serving or bypassing 
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the stop, using Poisson and binomial distributions to represent passenger boarding and 

alighting processes respectively.

Though the two different stop-skipping policies affect the vehicle trajectory 

evolution in different ways, the basic vehicle dynamics for all vehicles at all stops are as 

the follows. First, the probability Pi,j of a vehicle i serving a stop j and Qi,j, the probability 

of a vehicle skipping a stop, sum to 1.0. However, calculating these probabilities is 

specific to the stop-skipping policy and to the specific route segment, and these will be 

introduced later.

The vehicle arrival time at each stop would be r ji 1, − later than the departure time at 

the upstream adjacent stop.

rda jijiji 1,1,, −− += 2, ≥∈∀ jOi (3-3)

The vehicle departure time at each stop should include the vehicle dwell time, 

which consists of the passenger boarding time, alighting time, as well as the constant part 

of vehicle dwell time at stop, whose expected value is also determined by the probability 

of a vehicle serving that particular stop. Previous studies of vehicle dwell times have used 

either simultaneous or sequential passenger boarding and alighting processes. However, 

the sequential passenger boarding and alighting process (alighting first, then boarding) is 

adopted by a majority of the previous studies to formulate the operations control problem 

due to its relatively simple mathematical form. For the sake of being consistent with the 

previous studies, this research formulates the vehicle dwell time based on the sequential 

passenger boarding and alighting process, which is given in (3-4) as follows:

ABQad jijijijiji ,2,1,,, ⋅+⋅+⋅+= ββα NjOi ∈∈∀ , (3-4)
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Vehicles are not allowed to overtake each other.

ad jiji ,,1 ≤− Nji ∈≥∀ ,1   (3-5)

The detail of the equations (3-4) and (3-5) has been given in Chapter 2.

The number of passengers alighting at a particular stop is simply the total of all 

passengers boarding from upstream stops and, at the same time, having the destination at 

this stop.

∑=
−

=

1

1
,,,

j

l
jliji DA 2, ≥∈∀ jOi (3-6)

The number of passengers boarding at a particular stop and the passenger origin-

destination (O/D) distribution between stops are much more complicated based on the 

specific policy and route segment.

For all of the stops which have been passed by the vehicles, all the variables defined 

by (3-2) through (3-6) are known. This adds the following equations:

BB jiji ,, = sjOi i≤∈∀ ,  (3-7)

AA jiji ,, = sjOi i≤∈∀ ,  (3-8)

Again, equations (3-7) and (3-8) also implies that the expected number ( B ji , ) of 

passengers boardings and expected number ( A ji , ) of passenger alightings on vehicle i at 

any one of the stops being passed by vehicle i is just the observed numbers B ji ,  and A ji ,

respectively.

Other elements of the vehicle dynamics are specific to the stop-skipping policy and 

the route segment. In the following, these are broken down by segment (1, 2 and 3, as 

defined previously in Fig. 3.2) and by policy (1 and 2, also defined previously). The 
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intent is to show the specific dynamics on these segments and under these policies, in 

order to calculate the objective functions in (3-1) and (3-2).

Furthermore, to cater to adaptive decision-making, the following equations are all 

based on the concept that the current location of each vehicle i ( Oi∈∀ ) is just 

downstream of stop si , which is known from the AVL data. Therefore, for vehicle i at all 

stops upstream of si  (i.e. sj i≤ ), the expected number of passenger boardings B ji , and 

alightings A ji ,  have been updated with the observed values B ji ,  and A ji , respectively, as 

presented by (3-7) and (3-8). Also, X jni ,,  and D jni ,,  will be adjusted accordingly.  The 

method to adjust X jni ,,  and D jni ,,  has been introduced in Chapter 2.

Segment 1 ( 111 −≤≤+ sjs s ):  

Basic Policy -- Policy 1

Similar to that in holding control problem study, with the assumed Poisson process 

for passenger arrivals, the probability of the vehicle i serving stop j can be determined as 

below. Since the probability of skipping or serving a stop is the key in the stop-skipping 

control problem study, especially for the policy alternative, the probability estimation 

will be given much more detail below than in the holding control problem study in 

Chapter 2.

When 2>i or [( 1=i or 2=i ) and 1−≠ sj s ],
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In equation (3-9), the term 
B

D

li

jli

,

,,  is another expression of the term X jni ,,  in 

equation (2-1). Furthermore, although this is not done in the holding problem, to further 

clarify how the observed number B li ,  substitutes for the expected number B li, , the 

equation (3-9) can be rewritten as below:
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Equation (3-10) splits up the first term in equation (3-9) into two terms accounting 

for the stops that have been passed by the vehicle and the downstream stops respectively. 

Equations (3-9) and (3-10) are entirely equivalent since B li ,  and B li,  for all stops 

sl i≤ are exactly the same, as suggested by (3-7) and (3-8).

When 1=i and 1−= sj s , the passengers alighting at stop j also include those with 

their destination stops on the skipping segment (from stop ss  through stop se ). 

Therefore, the probability that no onboard passenger calls for alighting at stop j is 

actually the probability that no onboard passenger calls for alighting at stops j through se .
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When 2=i and 1−= sj s ,
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In the three equations above, the first multiplicative term is the probability of no 

passenger calling for alighting at stop, and second term is the probability that no calls for 
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boarding from the passengers originating during the headway and/or the passengers left 

over by the control vehicle.  One may note that 
B

D

li

jli

,

,,  is used instead of X jli ,, . This is 

because 
B

D

li

jli

,

,,  is not equivalent to X jli ,,  for many situations in which passengers are left 

over due to the stop-skipping control. For example, without stop-skipping control to 

vehicle i, X jli ,,  = 
B

D

li

jli

,

,,  = 0.1. However, vehicle disruption occurs to vehicle i, and the 

dispatch center needs vehicle i to skip stop j. For such case, 
B

D

li

jli

,

,,  = 0 because stop j is 

skipped and thus has no passenger alighting from vehicle i, but X jli ,,  is still equal to 0.1. 

Therefore, for the purpose of consistency, when computing the probability of serving a 

stop, the term X jli ,, is used directly. However, X jli ,,  is exactly equivalent to 
B

D

li

jli

,

,,  if no 

passengers are left over.

At stop 1−ss , the control vehicle 1 will drop off a portion of the onboard 

passengers ( F ) who boarded at stop 1 through stop 2−ss  and have the destinations on 

the skipping segment between stop ss and stop se  .
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Also, the control vehicle 1 will not pick up some passengers waiting at stop 1−ss

because they also have the destinations on the skipping segment. Together with the 
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passengers ( F ) being forced to get off the control vehicle at stop 1−ss , the total number 

of passengers ( Lss 1− ) left over by the control vehicle at stop 1−ss  would be:
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The control vehicle will pick up all passengers originating during its headway at all 

stops except 1−ss ; at stop 1−ss , those passengers having the destination on the skipping 

segment will be left at the stop.

( )ddB jijijji ,1,, −−⋅= λ                                      for 1=i , 1−≠ sj s (3-15)
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The vehicle immediately following the control vehicle will pick up both its own 

originating passengers and those left over by the control vehicle, if any.

( )ddB jijijji ,1,, −−⋅= λ                                    for 2=i , 1−≠ sj s (3-17)

( ) LddB jjijijji +−⋅= − ,1,, λ                            for 2=i , 1−= sj s  (3-18)

Other impacted vehicles only pick up passengers originating during the preceding 

headway.

( )ddB jijijji ,1,, −−⋅= λ                                    for 2>i  (3-19)

Because some passengers’ destinations lie on the skipping segment, they will 

change their destinations to stop 1−ss  for the control vehicle. For other vehicles, the 

passenger distribution can be easily determined by the number of originating passengers 

and the distribution ratio X jli ,, .
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


 ∑+⋅=
=

s

sl
lnijninijni

e

s

XXBD ,,,,,,,                      for 1=i , jn < , 1−= sj s  (3-20)

XBD jninijni ,,,,, ⋅=                                         for 1=i , 1−<< sjn s  (3-21)

XBD jninijni ,,,,, ⋅=                                          for 2≥i , jn < (3-22)

Policy Alternative – Policy 2

The vehicle trajectory evolution is relatively straightforward for policy 2, since no 

passenger leftover is involved. 

The probability P ji ,  that stop j is bypassed by vehicle i is simply the joint 

probability that no passengers call for alighting vehicle i at stop j 



∏ −−

=

1

1 ,

,, )1(
,j

l li

jli
B

B

D li

and 

that no passengers call for boarding vehicle i at stop j ( )B ji− ,exp .

( )B
B

D
P ji

j

l li

jli
B

ji

li

−⋅



∏ −=

−

=
,

1

1 ,

,,
, exp)1(

,

Oi∈∀ (3-23)

The average number of passengers boarding vehicle i at stop j is the product of the 

passenger boarding rate at stop j and vehicle i’s headway.

( )ddB jijijji ,1,, −−⋅= λ Oi∈∀  (3-24)

A fraction ( X jni ,, ) of the passengers boarding on vehicle i at stop j will alight at 

stop j.

XBD jninijni ,,,,, ⋅= Oi∈∀ , jn < (3-25)

Segment 2 ( sjs es ≤≤ ):  

Basic Policy – Policy 1
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The basic policy requires that the control vehicle skips all stops on the skipping 

segment.

1, =P ji           for 1=i (3-26)

Therefore, the immediately following vehicle has to respond the boarding calls 

from those passengers left over by the control vehicle. So, for i = 2,

( )[ ]Lda
B

D
P jjijij

j

l li

jli
B

ji

li

−−⋅−⋅



∏ −= −

−

=
,1,

1

1 ,

,,
, exp)1(

,

λ (3-27)

Other vehicles (i > 2) keep regular probability estimation as of no control applied.

( )[ ]da
B

D
P jijij

j

l li

jli
B

ji

li

,1,

1

1 ,

,,
, exp)1(

,

−
−

=
−⋅−⋅



∏ −= λ  (3-28)

All passengers originating during the control vehicle’s leading headway will be left 

over for the immediately following vehicle to pick up, which implies no passenger 

boarding on the control vehicle.

( )ddL jjjj ,0,1 −⋅= λ (3-29)

0, =B ji               for 1=i (3-30)

( ) LddB jjijijji +−⋅= − ,1,, λ                             for 2=i  (3-31)

( )ddB jijijji ,1,, −−⋅= λ                                    for 2>i (3-32)

Certainly, no passenger having a destination on the skipping segment can board the 

control vehicle. 

0,, =D jni                                                                 for 1=i ,  jn ≤ (3-33)
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Those passengers having the destinations on the skipping segment will actually ride 

vehicle 2. 

( )∑ ⋅−⋅=
=

−
i

m
jnmnmnmnjni XddD

1
,,,1,,, λ                        for 2=i , jnss <≤  (3-34)

Stop 1−ss  merits more attention since some passengers ( XB jl

n

l
l ,,1

1

1
,1 ⋅∑−

=
) are forced to 

alight there by the control vehicle. These passengers will also ride vehicle 2.

( ) XBXddD jl

n

l
l

i

m
jnmnmnmnjni ,,1

1

1
,1

1
,,,1,,, ⋅∑+∑ ⋅−⋅=

−

==
−λ  for 2=i , 1−= sn s (3-35)

XBD jninijni ,,,,, ⋅=           for 2=i ,  1−< sn s (3-36)

XBD jninijni ,,,,, ⋅=                                                   for 2>i , jn ≤ (3-37)

Policy Alternative – Policy 2

For policy 2, the probability that the control vehicle stops on the skipping segment 

is entirely determined by the calls to alight from the onboard passengers.





∏ −=
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=
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,,
, )1(
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l li
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D
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                                              for 1=i  (3-38)

Similarly, the passengers left over by the control vehicle, if any, will board the 

immediately following vehicle.
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

∏ −= λ           for 2≥i  (3-40)
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The expected number of passengers ( L j ) left over by the control vehicle will also 

be determined by the probability ( P ji , ) that the control vehicle does not serves the stop, 

and the opposite for the expected number of passengers boarding on the control vehicle.

( ) PddL jijjjj ,,0,1 ⋅−⋅= λ                                                 for 1=i  (3-41)

( ) QddB jijijijji ,,1,, ⋅−⋅= −λ                                              for 1=i  (3-42)

Again, the passengers ( L j ) left over by the control vehicle are all taken by vehicle 2.

( ) LddB jjijijji +−⋅= − ,1,, λ                                              for 2=i  (3-43)

( )ddB jijijji ,1,, −−⋅= λ          for 2>i (3-44)

If 2=i  and jkss ≤≤ , D jni ,,  includes not only the passengers 

[ ( ) Xdd jnijijij ,,,1, ⋅−⋅ −λ ] originally waiting for vehicle 2 and having the destination at 

stop j, but also the leftover passengers ( XL jnj ,,1⋅ ) originally waiting for the control 

vehicle and having the destination at stop j.

( ) XLXddD jnjjnijijijjni ,,1,,,1,,, ⋅+⋅−⋅= −λ (3-45)

Otherwise, i.e. ( 2=i  and ssn < ) or ( 2≠i ):

XBD jninijni ,,,,, ⋅= (3-46)

Segment 3 ( Njse ≤≤+1 ):  

Basic Policy – Policy 1

( )[ ]da
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D
P jijij
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l li

jli
B
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,1,
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1 ,

,,
, exp)1(

,

−
−

=
−⋅−⋅



∏ −= λ Oi∈∀  (3-47)

( )ddB jijijji ,1,, −−⋅= λ Oi∈∀ (3-48)
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For the control vehicle, stop-skipping control does not affect the passenger 

distribution with the origin stop upstream of stop 1−ss or on segment 3.

XBD jninijni ,,,,, ⋅=  for 1=i ,  1−< sn s  or  jnse << (3-49)

However, for the passenger distribution with the origin stop 1−ss , it is necessary 

to use the number of passengers originating during the control vehicle’s leading headway, 

instead of the expected number of passengers, to proportionately estimate the number of 

O-D trips, because not all originating passengers have the chance to board the control 

vehicle due to the stop-skipping control.

( ) XddD jninininjni ,,,1,,, ⋅−⋅= −λ        for 1=i , 1−= sn s (3-50)

Certainly, there are no passengers boarding the control vehicle on the skipping 

segment and then alighting on segment 3. 

0,, =D jni                 for 1=i ,    sns es ≤≤  (3-51)

Actually, these passengers are picked up by the immediately following vehicle (i = 

2).

( )∑ ⋅−⋅=
=

−
i

m
jnmnmnmnjni XddD

1
,,,1,,, λ        for 2=i ,  sns es ≤≤ (3-52)

The passengers boarding on vehicle 2 on segment 1 and having the destination on 

segment 3 can be estimated with the equation below. 

( ) XddD jninininjni ,,,1,,, ⋅−⋅= −λ                for 2=i ,  sn s<  or jnse << )  (3-53)

Because no stops on the skipping segment are involved, no leftover passengers are 

included in equation (3-53).
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For other vehicles, D jni ,,  is simply the product of the number of passengers ( B ni , ) 

boarding at the origin stop n and the ratio X jni ,, .

XBD jninijni ,,,,, ⋅=                                   for 2>i , jn < (3-54)

Policy Alternative – Policy 2

For policy 2, same expressions can be applied to all vehicles, including the control 

vehicle and vehicle 2.  However, to be noted that, for vehicle 2, B ni ,  in equation (3-57) 

may include the passenger left over by the control vehicle, if stop n was skipped by the 

control vehicle, as indicated by equation (3-43). 
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P jijij
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l li
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B
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,1,

1

1 ,

,,
, exp)1(

,

−
−

=
−⋅−⋅



∏ −= λ Oi∈∀ (3-55)

( )ddB jijijji ,1,, −−⋅= λ Oi∈∀  (3-56)

XBD jninijni ,,,,, ⋅= Oi∈∀ , jn <   (3-57)

With these equations from (3-3) through (3-57), all vehicles’ trajectories can be 

predicted, and the number of passenger boardings and alightings at each stop for each 

vehicle can be estimated. 

3.3. Simulation Study

3.3.1. Simulation Logic

In order to evaluate and compare the performance of stop-skipping control with the 

two different policies, a simulation study is conducted. In both policy 1 and policy 2, an 

initial decision about the start and end stops of the skipped segment ( ss  and se ) is 



119

decided at the decision location s1  but this decision could be revised at any time until the 

control vehicle arrives at the stop just before the skipping segment 1−ss .

Basic Policy -- Policy 1

For policy 1, the first step for the vehicle operator to fulfill the control decision is to 

drop off the passengers who have their destinations on the skipping segment. This will 

occur at the stop just upstream of the skipping segment. As soon as the control vehicle 

has completed this step, the control vehicle will skip all stops on the skipped segment. 

There is only one skipped segment on the route for the control vehicle.

Policy Alternative -- Policy 2

In contrast, the simulation of policy 2 is significantly more complicated. Initially, 

the model is used to determine a start and end stop for the skipping segment. Moreover, 

the definition of the skipping segment can change at any point after the disruption. More 

specifically, the simulation model is continuously updated with information about the 

location of the control vehicle and the location of the upstream impacted vehicles, and the 

number of passengers boarding and alighting these vehicles. By updating this information 

as the control vehicle moves through the skipping segment, the decision of when to end 

the control (i.e., the choice of the end stop eS ) can change dynamically. In this way, in 

contrast to policy 1, policy 2 is an entirely adaptive decision-making process in the sense 

that, whenever new operating condition information is acquired, the previous stop-

skipping control decision can be adjusted accordingly.

Furthermore, for the policy alternative, this simulation study deliberately allows the 

control vehicle to skip more skipping segments after it has completed one segment. In 
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this case, additional skipping can be employed to take the advantage of the policy 

alternative. That is to say, the adaptive decision using the policy alternative will not add 

any further inconvenience to passengers onboard the control vehicle.

3.3.2. Simulation Study Design

Besides simulating the basic dynamics of the decision-making process and the 

vehicle trajectory evolution, another significant task of the simulation study is to identify 

the conditions where the different policies may be preferred.

Similar to the study on the holding control problem, the original stop-skipping 

control problem is formulated within the context of a deterministic model, but including 

probabilities associated with the boarding and alighting processes. However, transit 

operations are exposed to many stochastic factors, particularly for the vehicle travel times 

between stops. Also of concern is the directional distribution of passengers along the 

route, which certainly impacts the number and distribution of passengers affected by the 

stop-skipping control. Therefore, it is also of particular interest to observe how the stop-

skipping policies perform within the circumstances defined by different passenger 

distribution patterns, as well as the differences in vehicle travel time variation. 

Furthermore, the duration and the location of the vehicle disruption may also 

considerably affect the performance of stop-skipping control.

Passenger Distribution Pattern Design

Three passengers boarding profiles, with different locations where passenger 

boarding peaks, have been designed in the holding control problem study in Chapter 2.

However, these passenger boarding profiles may not fit in the purpose of this simulation 
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study for the stop-skipping control problem, because they are designed without paying 

much attention on the passenger O/D distribution along the route. On the other hand, the 

passenger O/D distribution pattern along the route may have significant implication on 

the performance of the two stop-skipping policies. Therefore, another set of discrete 

passenger distribution patterns were designed particularly for this simulation study, from 

which other intermediate cases can be interpolated. In specific, three passenger 

distribution patterns are used:

� Pattern 1: Normal Pattern (symmetric pattern), with the highest passenger load 

in the middle of the route;

� Pattern 2: Downtown-oriented pattern, with the highest passenger load skewed 

to the downstream portion of the route; and, 

� Pattern 3: The reverse of the downtown-oriented pattern, with the highest 

passenger load skewed to the upstream portion of the route.

These patterns are also shown in Fig. 3.3, in the special case that vehicle headways 

are perfectly even across the route. Note that pattern 3 is just the mirror case of pattern 2. 

Though the three patterns are arbitrarily designed, the loading profiles can be considered 

the representative of similar patterns in the real world.

Passenger boarding rate profiles for different passenger distribution patterns are 

shown in Fig. 3.4. Pattern 1 and pattern 2 share the identical passenger boarding rates at 

all stops. Within the simulation, given the average passenger arrival rate at each stop and 

the O/D distribution ratio for each pair of stops, Poisson arrivals can be randomly 

generated and assigned to a destination stop.
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Obviously, passenger loading pattern 2 and pattern 3 present two extreme 

conditions for the stop-skipping policy 2, since its effectiveness relies on the possibility 

of no passenger calling for alighting at the stops on the skipped segment. Certainly, 

passenger distribution pattern 3 is expected to highlight difficulties with policy 2 for two 

reasons: the vehicle boarding peaks on the upstream segments of the route and passenger 

alighting dominates the remaining part of the route; and, very few passengers can benefit 

from the control at the downstream route segment once the vehicle passes the peak 

passenger boarding stops, since the boarding demand is very low. Patterns 2 and 3 are of 

particular interest also because they indeed exist in the real world on some peak-period 

routes, and were also analyzed in Jordan and Turnquist (1979) as well as in Furth (1986). 

Finally, in contrast, the conditions presented by patterns 1 and 2 are likely to be favorable 

for policy 2. 

Travel Time Variation

Similar to the holding control problem in Chapter 2, the coefficient of variation

(COV) of vehicle travel time between two adjacent stops is also important for the stop-

skipping control problem, because one would expect an adaptive stop-skipping policy, in 

the case of policy 2, to be sensitive to the amount of travel time variation. Though the 

range of COV from 0.1 to 0.3 is employed in the holding control problem, to cover a 

wider variety of situations, the COV is designed to vary from 0.1 up to the maximum 0.4 

in this simulation study for stop-skipping control problem. Again, the vehicle travel time 

is assumed to be normally distributed.
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Fig. 3.3. Passenger Loading Profiles (Stop-Skipping Control)

Fig. 3.4. Passenger Boarding Profiles (Stop-Skipping Control)

Other Operating and Simulation Parameters

Other operating and simulation parameters are given in Table 3.1.
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Table 3.1. Other Operating & Simulation Parameters

Parameters Values
One Way Trip Time (min) Approx. 60 (depending on passenger boarding)

Average Dispatching Headway (min) 7.5
Total Number of Stops/Terminals 41

Disruption Length (min) 1 to 7 minutes, in 1 min increments
Disruption Location Downstream of stop 1 to 18, in 1-stop increments

AVL Polling Rate (sec) 40

ββα 21,,  (sec) 15, 2 and 1, respectively

Number of Impacted Vehicles 4, excluding the boundary vehicle and control vehicle

www 321 ,, 1, 0.5, and 5, respectively

Some of the parameters in Table 3.1 have also been introduced in Chapter 2. For the 

test transit route, the one way trip time is set as approximately 60 minutes, including 

vehicle dwell times; the service headway is set as 7.5 minutes; and the total number of 

stops is set as 41. Furthermore, the vehicle disruption of different durations (varying from 

1 to 7 minutes) at different locations (varying from the location just downstream of stops 

1 through the location just downstream of stop 18) is simulated and tested in the 

simulation study. Also, the objective value is calculated from the control vehicle and 4 

impacted vehicles.

3.3.3. Simulation Results

As introduced in last sub-section, with 2 policies, 3 passenger distribution patterns, 

18 vehicle disruption locations, 7 disruption lengths, as well as 4 categories of travel time 

variation level (COV), a total of 3024 cases (or 1512 cases for each policy) are generated 

to represent all possible combinations of these four factors. For each specific case (or 

combination), 100 simulation runs are conducted, and the average passenger cost 

reduction for each case is computed accordingly. 
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The system under examination can be evaluated at different levels. At the highest 

level, the system is evaluated by comparing the impacts of the two different stop-skipping 

policies. Within this context, the simulation is based entirely on CRN (Common Random 

Number) simulation in the sense that, for each simulation run of each specific case, both 

policies share commonly generated random factors. The random factors include the travel 

time between adjacent stops, passenger arrivals at each stop, and the associated passenger 

destination stops. In other words, for a given passenger distribution pattern, disruption 

location, disruption length, and travel time COV, 100 identical simulation runs are used 

for both policies. Similar to that in the holding control problem study, with such a CRN-

based simulation study, one may easily conclude that, given that the other factors are the 

same, the difference in system performance results solely from the two different stop-

skipping policies. 

At a lower level, within each policy, the simulation also models how the passenger 

distribution pattern, vehicle disruption location and length, as well as vehicle travel time 

variability, together affect the performance of the policies. To examine the impact of the 

system performance resulting from these four factors, a similar CRN-based simulation 

study is also desirable. However, the very nature of a simulation study also needs to 

consider the diversity of the realizations of all random factors that may emerge in the real 

world. As argued earlier, for each case (or combination of the policy, passenger 

distribution patterns, vehicle disruption location, disruption lengths and travel time 

variation level), only 100 simulation runs are conducted, and in each simulation run, the 

random factors, namely the travel time between each pair of adjacent stops, passenger 



126

arrivals at each stop, and the associated passenger destination stops, are randomly 

generated. Obviously, 100 simulation runs can by no means cover exhaustively the 

realizations that may result from these random factors, and hence a CRN-based 

simulation with 100 realizations may be very limited to represent the real world. 

Therefore, the simulation in this particular study is not CRN-based at the lower level, so 

that it can cover more realizations of the random factors. This means that as the passenger 

distribution, the disruption location, the disruption length, and the travel time COV vary, 

a new set of 100 simulation runs is generated. However, this also makes it difficult to 

compare the system performance across these levels to analyze how the vehicle 

disruption location and length, as well as of vehicle travel time variability, affect the 

policy performance. 

The following simulation results are presented by different passenger distribution 

patterns, since the passenger distribution patterns are believed to have the most 

significant impact on the performance of different policies among all the major factors. 

Normal and Downtown-Oriented Passenger Distribution Patterns

Preliminary analysis has indicated that the disruption location, disruption length and 

vehicle travel time variation all affect the performance of each of the two different 

policies. Merely for the convenience of analyzing simulation results, linear regression 

models are proposed to depict how these three factors determine the policy performance 

under different passenger distribution patterns as follows (below each regression function 

are the t-statistics of the coefficients).

Normal Passenger Distribution Pattern and Basic Policy (Policy 1)
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1 2 3

(9.72) ( 33.78) (48.95) ( 2.53)

172 32 122 112y x x x

− −
= − ⋅ + ⋅ − ⋅

2 0.88R = (3-58)

Normal Passenger Distribution Pattern and Policy Alternative (Policy 2)

1 2

(17.38) ( 32.92) (25.91)

354 45 91y x x

−
= − ⋅ + ⋅

2 0.78R = (3-59)

Downtown Oriented Distribution Pattern and Basic Policy (Policy 1)

1 2 3

(8.91) ( 32.08) (43.14) ( 2.33)

177 34 115 114y x x x

− −
= − ⋅ + ⋅ − ⋅

2 0.85R = (3-60)

Downtown Oriented Distribution Pattern and Policy Alternative (Policy 2)

1 2 3

(12.12) ( 34.80) (37.29) (2.10)

275 42 116 116y x x x

−
= − ⋅ + ⋅ + ⋅

2 0.84R = (3-61)

Wherein, 

y : Mean of the overall passenger cost reduction, namely the mean of all 

realizations of the objective value “Z”. Note the eventual realization “y” of the objective 

value may deviate significantly from the expected value “Z” due to the vehicle operation 

stochasticity;

x1 : Vehicle disruption location in terms of stop number, which is essentially seen as 

a continuous variable; 

x2 : Vehicle disruption length in minutes; and,

x3 : Vehicle travel time COV, ranging between 0.1 and 0.4.

These results indicate first that policy 2 seems to outperform policy 1, all other 

things being equal. This is seen in the value of the constant term in each equation in (3-58) 

through (3-61): the average cost reduction is over twice as large for the normal passenger 

distribution, and about 55% higher for the downtown-oriented passenger distribution.



128

Also, except for the case of the normal passenger distribution pattern and policy 2 

in (3-59), the vehicle disruption location, the disruption length and the vehicle travel time 

variation all show statistical evidence that they do affect the policy performance 

significantly in a linear manner. For both policies, the average passenger cost reduction 

consistently decreases as the disruption occurs further downstream, and increases as the 

vehicle experiences a longer disruption. These results are fairly intuitive: one might 

expect the benefits of stop-skipping to decrease as the vehicle moves further downstream; 

however, a longer disruption results in higher benefits from stop-skipping.

However, the travel time variation shows different effects in the two policies. For 

the basic policy in (3-58) and (3-60), the total passenger cost reduction decreases as the 

vehicle travel time is subject to higher variability: this is obvious from the negative 

coefficient on x3. In contrast, the opposite holds for the policy alternative when the 

passenger distribution pattern is downtown-oriented in (3-61), or the vehicle travel time 

variability shows negligible effects on the policy alternative with the case of normal 

passenger distribution pattern in (3-59). With a higher COV, the eventual vehicle 

operations can evolve in a quite different way than what was expected when the stop-

skipping control decision was made. This underlying fact may greatly discount the 

benefits of the stop-skipping control under policy 1. On the contrary, the policy 

alternative can adapt the control decision to the continuously-varying operating 

conditions. This, in turn, can augment the advantages of the stop-skipping control, 

especially when the vehicle travel time variation is considerable. Yet, based on equation 
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(3-59), for the normal passenger distribution pattern, the travel time variation is not 

included because it is not found to be statistically significant.

Also, the absolute values of the coefficients on x3 are somewhat modest when 

compared to the intercept terms and the contributions from the other two factors 

(disruption location and duration) in the regression equations, for both policies.  

Accordingly, it is not unreasonable to conclude that the performance of both policies 

individually is nonetheless stable relative to the vehicle travel time variation, from the 

perspective of the average overall passenger cost reduction. However, the vehicle travel 

time variation contributes in opposite directions for the different policies, so that the 

relative performance of the basic policy and the policy alternative is fairly sensitive to the 

vehicle travel time variability, especially for the downtown-oriented passenger 

distribution pattern.

A further illustration of how the overall passenger cost reductions based on both 

policies vary with the vehicle disruption location and disruption length is shown in Fig. 

3.5, given that the vehicle travel time COV is 0.2. In these three-dimensional graphs, the 

vertical axis is the passenger cost reduction y, and the horizontal axes are the disruption 

location x1  and disruption length x2  (in minutes).

Given a certain vehicle travel time variation, policy 2 can always outperform policy 

1 when the vehicle disruption occurs further upstream and does not last too long. 

However, also for policy 2, the passenger cost reduction varies more rapidly with the 

disruption location than for policy 1. For instance, at a travel time variability level with 

COV of 0.2, with the normal passenger distribution pattern, for policy 2, as the vehicle 
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disruption lasts as long as 5 minutes, the total passenger cost reduction falls below 100 

passenger minutes when the vehicle disruption occurs downstream of stop 12. On the 

contrary, even when the vehicle disruption occurs downstream of stop 17, policy 1 can 

still achieve a passenger cost reduction as much as 108 passenger minutes. On the other 

hand, the passenger cost reduction for policy 1 increases more rapidly with the disruption 

length, when compared with policy 2. This makes sense because for policy 2, as the 

vehicle disruption grows longer, as it becomes very difficult for the control vehicle to 

skip enough stops to gain the lost time, and to find enough downstream stops to justify 

the extra cost resulting from skipping stops. Fig. 3.6 illustrates a comparison of how 

many stops are required to be skipped to restore the service from a disruption of moderate 

length (4 minutes) at different disruption locations, based on different policies.

Fig. 3.5 basically shows that, as the vehicle disruption location moves downstream, 

the required number of stops to be skipped based on policy 2 increases sharply. This 

implies that policy 2 struggles to skip more stops to restore the system, when there are 

still a sufficient number of downstream stops to justify the stop-skipping control. Also for 

policy 2, as the vehicle disruption location moves further downstream beyond stop 13, 

the tradeoff of passenger cost and benefit ‘forces’ the control vehicle to skip fewer stops, 

since there are not sufficient stops to skip, and there are not enough downstream stops to 

outweigh the cost incurred by the stop-skipping. It also makes sense that the required 

number of skipped stops from policy 2 keeps decreasing, since the number of 

downstream stops that can benefit from the stop-skipping control as the disruption 

location moves further downstream will also decrease.



131

Fig. 3.5.  Overall Passenger Waiting Time Reductions (Stop-Skipping Control)



132

Policy Impacts Comparison (Normal Pass. Dist. Pattern & Disrup. Length
4 Min)

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Disruption Location (Stop # that Vehicle Disruption Occurs

just Downstream of)

th
e 

N
um

be
r 

of
 S

to
ps

 to
 B

e 
Sk

ip
pe

d

Policy
Alternative

Basic Policy

Fig. 3.6.  Comparison of Skipping Segment Length and Location

Furthermore, equations (3-60) and (3-61) also show that, for the downtown-oriented 

passenger distribution pattern, the relative performance of the basic policy and the policy 

alternative is almost insensitive to the vehicle disruption length. Also, under almost all 

circumstances, the policy alternative can approximate or outperform the basic policy in 

terms of overall passenger waiting time reduction. In view of this, it may be concluded 

that the policy alternative is more desirable for the downtown-oriented passenger 

distribution pattern than the normal passenger distribution pattern. This is consistent with 

the underlying mechanics behind the policy alternative, which drives the vehicle to skip 

the prescribed stops relying on the probability that no onboard passenger calls for 

alighting at these stops. For a downtown-oriented passenger distribution pattern, 

passenger alightings occur primarily on the downstream route segment, which creates 

greater probability for the control vehicle to skip the stops, and the policy alternative 

performs more efficiently than within a normal passenger distribution pattern. 
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Reverse of Downtown-Oriented Passenger Distribution Pattern

With the reverse of downtown-oriented passenger distribution pattern, the total 

passenger cost reduction for the basic policy is still considerable (above 5 passenger 

hours) when compared with that for policy 2. This occurs when the vehicle disruption 

does not occur too far downstream to be beyond the peak passenger boarding stops (stops 

1 through 5), provided that the disruption is sufficiently long (e.g. 4-7 minutes). For 

instance, for a vehicle travel time COV 0.2, as the vehicle disruption lasts 7 minutes and 

the disruption location is just downstream of stop 5, the overall passenger cost reduction 

is 327 passenger minutes for policy 1.  However, for policy 2, in almost all situations, the 

passenger cost reduction is much smaller (below 150 passenger minutes). This is 

primarily because the control vehicle has very little chance to skip any stops when the 

vehicle is heavily loaded and when passenger alighting dominates passenger boarding at 

the downstream stops. Furthermore, when compared to the normal and downtown-

oriented passenger distribution pattern, with a reverse downtown-oriented passenger 

distribution pattern, the performance of stop-skipping is even less sensitive to the vehicle 

travel time variability, since the passenger demand on the downstream route segment 

which is supposed to be affected most by the travel time variability is low.  

Overall

Though not shown in Fig. 3.5, by taking advantage of the adaptive decision-making,

it seldom occurs in policy 2 that there is a net increase in the total passenger waiting time. 

On the contrary, the basic policy is not adaptive; hence it may, though unintentionally, 
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result in an increase in passenger waiting time, especially when the vehicle disruption is 

not fairly long (1 or 2 minutes) and travel time is subject to large variation (COV 0.4).

The difference in the total passenger time reduction between the two policies can be 

easily seen with the empirical regression equations (3-58) through (3-61). Fig. 3.7 also 

gives a comparison of the policy performance for a vehicle travel time COV 0.2 for 

further illustration. The values in these figures are the difference of passenger cost 

reduction for the two policies (policy 2 minus policy 1). A positive value on the vertical 

axis indicates higher passenger costs for policy 1, when compared with policy 2 (i.e., 

policy 2 is performing better, on average).

Fig. 3.7.  Comparison of Passenger Cost Reduction between Policy 1 and Policy 2 (Stop-Skipping Control)
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From Fig. 3.7, for both the normal and downtown-oriented passenger distribution 

patterns, one may see that, under a majority of circumstances, the performance of the two 

policies is comparable with an absolute difference in passenger cost reduction of no more 

than 100 passenger minutes. When considering all levels of travel time variability (COV 

varies from 0.1 to 0.4, not shown in Fig. 3.7), for the normal passenger distribution 

pattern, policy 1 seldom shows significantly better performance than policy 2, and this 

happens only when there are long vehicle disruptions (larger than or equal to 6 minutes), 

the disruption occurs further downstream (downstream of stop 8), and the vehicle travel 

time variability is low (COV is below 0.2). Also, the relatively large passenger cost 

savings from policy 2, compared to policy 1, happens only when the vehicle disruption 

occurs further upstream (upstream of stop 5) and the vehicle travel time variability is high 

(COV is above 0.3).

For the downtown-oriented passenger distribution pattern, the performance of the 

two policies is even closer. In this case, the difference in the two stop-skipping policies is 

very modest. Policy 2 outperforms policy 1 in an overwhelming majority of situations, 

because the downtown oriented passenger distribution pattern provides more desirable 

conditions for policy 2. Nonetheless, the relative passenger cost difference is small. 

Similar conditions (long disruption lengths, downstream disruption locations, low COV) 

are needed for policy 1 to outperform policy 2 significantly. Also, an upstream disruption 

location and large vehicle travel time variability is necessary for policy 2 to achieve 

greater passenger cost savings over policy 1.
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In addition, the required higher travel time COV for policy 2 to outperform policy 1 

under both passenger distribution patterns further demonstrates the previous argument 

that the relative performance of the policies is fairly sensitive to the vehicle travel time 

variability.

One may also compare the difference in total cost reductions between policy 1 and 

policy 2, across all cases. Table 3.2 shows the relative difference in the two policies, and 

the percentage of cases with that relative difference.

Table 3.2. Relative Performance Comparison of Policy 1 and Policy 2

Percentage of Cases (Combinations)Relative Performance 
(Policy 2 – Policy 1)
(Passenger Minutes)

Normal Pass. 
Dist. Pattern

Downtown-Oriented 
Pass. Dist. Pattern

Reverse Downtown-Oriented 
Pass. Dist. Pattern

-300 and less 2.8 0.0 10.1
(-300, -200] 9.1 0.0 3.8
(-200, -100] 10.5 1.0 12.7

(-100, 0) 20.9 8.5 24.4
[0,100] 49.2 52.4 48.6

(100, 200] 6.5 32.3 0.4
200 and larger 1.0 5.8 0.0

Total 100.0 100.0 100.0

Table 3.2 shows that, under both normal and downtown-oriented passenger 

distribution patterns, the basic policy and the policy alternative perform similarly in terms 

of total passenger cost reduction for a majority of cases. For normal and downtown-

oriented passenger distribution patterns, there are 70.1 percent and 60.9 percent of cases, 

respectively, for which the relative performance difference is within ±100 passenger 

minutes. However, there are still a significant percentage of cases for which the two 

policies perform quite differently. For instance, for the normal passenger distribution 

pattern, for as high as 22.4 percent of the cases, the basic policy can outperform the 

policy alternative by more than 100 passenger minutes. Also, for the downstream 
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passenger distribution pattern, for more than 38 percent of the cases, the policy 

alternative may achieve at least 100 passenger minutes more passenger cost reduction 

than the basic policy.

For the reverse downtown-oriented passenger distribution pattern, policy 1 

consistently approximates or outperforms policy 2. There are 73.0 percent of cases for 

which the relative performance difference is within 100 passenger minutes, and for 

almost all remaining cases the policy 1 can achieve at least 200 passenger minutes more 

extra passenger cost reduction than policy 2. Furthermore, the total passenger cost 

difference between the two policies can be appreciably large when the vehicle disruption 

occurs at the beginning of the route and lasts a relatively long time. As an example, when 

vehicle travel time COV equals 0.2 and the vehicle disruption occurs just upstream of the 

second stop and lasts for 7 minutes, the passenger waiting time reduction achieved with 

policy 1 is 1146 passenger minutes and only 157 passenger minutes with policy 2. The 

difference is 989 passenger minutes, which is quite considerable.

In summary, with the normal passenger distribution pattern, the two policies show 

selective superiority in terms of the passenger cost reduction they can achieve, depending 

on the operation conditions and the characteristics of the vehicle operation disruption. 

With the downtown-oriented passenger distribution pattern, the policy alternative shows 

some superiority to the basic policy in that the policy alternative can result in larger 

passenger cost reduction than the basic policy for an overwhelming majority of cases. 

However, the basic policy dominates the policy alternative for more than fifty percent of 

cases, and can approximate the policy alternative for another fifty percent of cases.
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3.3.4. Capacity Constraint Analysis

Although it is assumed in the problem formulation section that vehicle passenger 

capacity is not a serious issue, in some cities, the vehicle passenger capacity could 

become a significant issue during peak hours. Therefore, it is important to assess the 

sensitivity of this model, which does not include a capacity constraint, to operating 

conditions where capacity is an important issue. To do this, the simulation is applied in a 

context where the decision-making methodology remains the same, but the capacity 

constraint is explicitly considered in the simulation to mimic more realistic vehicle 

operations. The simulation scenarios are applied to the downtown-oriented passenger 

distribution pattern case, and the simulation results are compared with those presented 

previously.

This comparison is summarized in Table 3.3. In this table, the difference in 

passenger cost is compared for policy 1 and policy 2.  In this case, the cost is broken out 

into two parts. The out-of-vehicle passenger cost is computed as the realized values of the 

first and third terms in equation (3-1) for policy 1, or the first term in equation (3-2) for 

policy 2, respectively. The in-vehicle passenger cost is calculated using the realized 

values in the second term of equations (3-1) and (3-2), for policy 1 and 2, respectively. 

The average passenger cost and the standard deviation for the capacity-constrained 

scenarios and the unconstrained scenarios were calculated separately, and the difference 

is directly presented in Table 3.3. 
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Table 3.3. Comparison of Simulation Results with/without a Capacity Constraint
Total Passenger Cost Difference (Passenger-Minutes)

(Capacity Constrained1− Capacity Unconstrained1)
Out-of-Vehicle Passenger Cost In-Vehicle Passenger Cost

Average
−3.27 

(2156.04 −2159.31)2
−1.8

(5281.8 −5283.6) 2
Control Under Policy 1

SD
513.6 Constrained

513.1 Unconstrained
 359.0 Constrained

358.7 Unconstrained

Average
33.1 

(2146.1 – 2113.0) 2
−14.9

(5231.8 - 5246.7) 2

Control Under Policy 2
SD

 495.5 Constrained
515.9 Unconstrained

 355.6 Constrained
364.4 Unconstrained

1Capacity is assumed to be 75 passengers/vehicle, including standees.
2Included in the parenthesis is how the number (e.g. –3.27) is calculated.

In Table 3.3, one notes that the difference in overall out-of-vehicle cost is basically 

negligible for policy 1. In contrast, for policy 2, the overall out-of-vehicle cost increases. 

This might be expected, since the capacity constraint results in more passengers waiting 

for an available space on a bus, and the policy 2 is subject to more influence from the 

capacity constraint because it basically relies on the probability that a stop does not have 

a passenger alighting. Capacity constraints surely affect these probabilities. The negative 

value of the overall out-of-vehicle passenger cost for policy 1 may simply result from the 

fact that increased waiting cost for the passengers left over by the vehicle might also 

reduce the waiting cost for the passengers at the downstream stops at the same time. 

Nevertheless, the results for both policies are not statistically different from zero, based 

on the value of the standard deviation. In terms of the in-vehicle cost, the capacity 

constraint results in slight reductions in cost relative to the unconstrained case, as the 

reduction in on-board passengers results in lower dwell times at stops for the on-board 

passengers.
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Overall, the statistics in Table 3.3 suggest that explicit consideration of a vehicle 

capacity constraint may not alter the overall conclusions substantially. As a result, the 

performance of a stop-skipping control decision made based on the methodology 

proposed in this paper could be fairly stable, if vehicle passenger capacity is sufficiently 

large to accommodate passenger demand in normal situations. Of course more analysis of 

this capacity-constrained case is warranted, and is left for future study.

3.4. Conclusions

The study of the real-time stop-skipping control problem in this chapter moves a 

step further to investigate the possibility of implementing stop-skipping control in a real-

time manner through proposing a policy alternative for better guiding the control vehicle 

to skip stops. Theoretically, the model formulated in this study can respond to transit 

service disruptions more rapidly than those developed in the past studies, where the stop-

skipping control is formulated as a vehicle dispatching problem at the terminal. 

Based on a simple analysis of the basic policy that is extensively used in practice 

and a majority of previous studies for stop-skipping control, the policy alternative is 

developed and assumed to be more appropriate for a real-time application. Also, the 

policy alternative can avoid the inconvenience that the basic policy may bring to some 

onboard passengers who have the destinations on the skipping segment. Specifically, this 

policy alternative allows the control vehicle to drop off the onboard passengers at the 

same stops as they planned to alight, even when their destination stops are already 

prescribed to be skipped by the control vehicle. In contrast, the basic policy dictates that 
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the control vehicle must skip all prescribed stops, and it must drop off the on-board 

passengers that have the destinations among the prescribed skipped stops.

This chapter has provided a deterministic modeling framework for deriving the start 

and end stops for a skipping segment, under both policies. In addition, the study in this 

chapter has shown that such a model can be solved to optimality in real time, using an 

explicit enumeration method. With this problem formulation, a simulation study is 

conducted to examine how the performance of the two stop-skipping policies varies with 

the passenger distribution pattern, the vehicle disruption location, the vehicle disruption 

length, and the vehicle travel time variability. These simulation results suggest:

� For both normal and downtown-oriented passenger distribution patterns, the 

policy alternative can approximate the basic policy in a majority of cases, in the 

sense that they both perform similarly in terms of the total passenger cost 

reduction. However, considerable performance difference of the two policies 

can still be seen in a significant percentage of cases. For the normal passenger 

distribution pattern, as the vehicle disruption occurs near the start of the route 

and does not last very long, the policy alternative can outperform the basic 

policy. Otherwise, the basic policy can achieve more passenger cost reduction 

than the policy alternative. For the downtown-oriented passenger distribution 

pattern, a similar conclusion still holds; furthermore, the policy alternative can 

outperform the basic policy in an overwhelming majority of situations. In this 

sense, the downtown-oriented passenger distribution pattern forms the most 

desirable condition for the policy alternative.
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� For the reverse downtown-oriented passenger distribution pattern, the policy 

alternative seldom has a chance to outperform the basic policy, since the 

strongly-skewed passenger boarding profile provides little possibility and no 

incentive for the control vehicle to skip any stops.

� From the perspective of the overall passenger waiting time reduction, the 

performance of the two policies varies with the vehicle travel time variation in 

opposite ways. Vehicle travel time variation discounts the benefits that can be 

made under the basic policy, but can augment the total passenger cost reduction 

resulting from the policy alternative. In terms of their contributions to the total 

passenger cost reduction from stop-skipping control, both policies are not as 

sensitive to the vehicle travel time variability as to the vehicle disruption 

location and the disruption length. However, the relative performance of the two 

policies is fairly sensitive to the vehicle travel time variability. The vehicle 

travel time variability could contribute significantly to the performance 

difference of the two policies.

� The policy alternative, which is a truly adaptive real-time control strategy, can 

avoid increases in passenger cost, since it has the advantage to adapt the stop-

skipping control to the continuously varying operation condition. The statistical 

evidence shows that higher vehicle travel time variability can create more 

desirable conditions for the policy alternative. However, the basic policy could 

result in an increase in passenger cost, especially when the vehicle disruption is 

not very long and travel time is subject to large variation.
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Finally, the policy alternative may be more preferable from the perspective of the 

transit agencies in the sense that it does not need to force any passengers to alight off the 

vehicle. This may have significant implication to the transit agencies, especially if they 

consider implementing stop-skipping control regularly and in a real-time manner.
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CHAPTER 4     VEHICLE DISPATCHING WITH SWAPPING 
  AT A TRANSFER TERMINAL

This chapter takes a significant departure from the study on the single route based 

operations control problems in the previous two chapters to deal with the problem of 

vehicle dispatching with swapping at a transfer terminal, where multiple transit routes 

intersect. Furthermore, differentiating this with the other two operation control problems 

in this dissertation, the vehicle dispatching problem in this chapter addresses infrequent 

transit service. Many previous studies have suggested that operations control may help to 

improve the transfer synchronization and reduce overall passenger cost in terms of their 

waiting time at either the transfer terminal or the downstream stops, primarily for 

infrequent service.

4.1. Introduction

Passenger transfers have traditionally been a major concern of public transit 

agencies. A public transit transfer terminal synchronizes the arrival of incoming vehicles 

with the departure of outgoing vehicles so as to reduce the possibility of missing 

connections and the transfer delay for passengers. Transfer synchronization at the 

terminal is primarily achieved by optimally designing the timetable for each route so that 

the vehicle arrival and departure for each route can be properly matched. US UMTA 

(1983) presented evaluations for some transfer systems under operation, and Vuchic et al. 

(1981) provided fairly comprehensive procedures for design of a timed transfer system. 

Hall (1985) developed and evaluated a model for scheduling vehicle arrivals at 

transportation terminals where vehicles are randomly delayed en route. He developed
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optimal "slack" time between the scheduled arrival for a feeder line and the scheduled 

departure for a transfer line, and concludes that coordinating arrivals with departures is 

the most important when the headway is large relative to the average vehicle delay. Lee 

and Schonfeld (1991) also investigated the slack time optimization at a transit terminal so 

as to reduce the transfer passenger cost for simple systems with transfers between one bus 

route and one rail line. Bookbinder and Desilets (1992) combined a simulation procedure 

with an optimization model to determine timetables that minimize the overall 

inconvenience to passengers, represented by a disutility function, on the basis of a given 

transit network and stochastic bus arrival times. Knoppers and Muller (1995) investigated

the possibilities and limitations of coordinated transfers between feeder lines and the 

connecting lines in public transit. Their results show that the coordination of timetables 

intends to achieve a tradeoff, between the transfer cost and the possible cost incurred to 

the downstream segments on the connecting line, by optimizing the synchronization 

control margins. Also, they showed that the coordination of timetables is only worthwhile 

when the schedule deviation on the feeder lines at the transfer station is less than 40 

percent of the headway on the connecting line.

As traffic congestion has become increasingly common in central urban areas, 

transit agencies may find it more difficult to maintain the vehicle arrival/departure time 

synchronization at a transfer terminal. Accordingly, much research has also been 

conducted to apply operations control at a terminal to enhance the synchronization of bus 

departure. Among this research, holding control strategies, being thoroughly discussed in 

Chapter 2, again are extensively investigated and used for transfer synchronization 
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purposes. Abkowitz et al. (1987) developed a computer program to simulate four 

different transfer strategies, including unscheduled transfers, scheduled transfers without 

vehicle waiting, scheduled transfers where the lower frequency bus is held until the 

higher frequency vehicle arrives, and scheduled transfers when both buses are held until a 

transfer event occurs. This study found that the double holding strategy is advantageous 

whenever the headways on intersecting routes are compatible; otherwise, the no holding 

strategy is preferred. Dessouky et al. (1999) developed bus delay and lateness forecasting 

models and applied them for evaluating a variety of holding-based operation control 

strategies at transfer stations through simulation. Their results, based on empirical data 

collected in Los Angeles, show that segment delay of the infrequent bus lines is

negatively correlated with the lateness at the segment start point, which indicates that 

buses can catch up when they fall behind schedule. Also, the simulation analysis shows 

that the most significant benefit of bus tracking technology is achieved when the buses 

experience major delay, especially when only a small number of connecting buses exist.

Hall et al. (2001) examined three vehicle dispatch policies: (1) the vehicle is dispatched 

immediately; (2) the vehicle is held until a predetermined time in anticipation of the 

connecting buses; and, (3) the vehicle is held until a predetermined time, but allowing 

buses to depart as soon as all connecting buses have arrived. The results show that the 

objective function, the passenger waiting time, can show four different behaviors with 

regard to the minima for identically and normally distributed vehicle arrival lateness. 

Further, the results also show that more flexible policies, e.g. the third policy, offer some 

potential for improvement in the passenger waiting time, but the practical difference 
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between the policies is small. More recently, Dessouky et al. (2003) compared the 

terminal holding control strategies that depend on technologies for communication, 

tracking and passenger counting, to those that depend solely on local information. Results 

demonstrate that technology can help in determining optimal holding times that minimize

the average passenger trip time, by balancing the time saved for late-arriving transfer 

passengers against the delay for passengers who are either already on-board or will board 

at subsequent stops. The benefits of the technology are improved especially for the case 

of a large number of connecting buses, little schedule slack time, and relatively large 

headway. 

In addition to holding strategies at the terminal, the operations control study for 

transfer synchronization in this dissertation also considers the real-time strategy of 

dispatching a vehicle from one route onto another at the route terminal. In the context of 

service planning, this is called interlining. Interlining allows the use of the same revenue 

vehicle and/or operator on more than one route without going back to the garage

(Sacramento Regional Transit, 2003). Interlining is often considered as a means to 

minimize vehicle requirements as well as to provide transfer enhancement for passengers. 

For interlining to be feasible, two (or more) routes must share a common terminus or be 

reasonably proximate to each other to minimize deadheading (Sacramento Regional 

Transit, 2003). From this general definition of interlining, there are two points deserving 

attention. First, interlining is able to minimize the number of vehicles required. For this 

purpose, interlining has to be built in the timetable as a routine behavior for the involved 

routes. However, the use of interlining can make the vehicle schedule fairly complex. On 
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the other side, interlining also has the ability of enhancing the passenger trip connection 

at terminal, when many transfers are made from one route to the other. 

As an extension of this concept, there may be some potential of applying interlining 

as an operation control tool on a real-time basis. However, there is little research that 

reveals any explicit consideration of this strategy. Furth and Nash (1985) have conducted 

a study of “pooling” vehicles at a common dispatching terminal to dispatch vehicles 

among several routes on a real-time basis. The intent of vehicle pooling is to improve the 

reliability of service. The real-time dispatching, with the vehicle pools is essentially 

supported by swapping vehicles from different routes. The study result shows that vehicle 

“pooling” can improve the transit schedule adherence and can facilitate interlining to 

reduce the need for slack time at the terminal. In addition, some swapping research work 

can be found in the air transportation area. Jarrah et al. (1993) created a decision support 

framework for airline flight cancellations and delays. Swapping aircraft among scheduled 

flights, as a basic tool in the framework, is considered in their study to respond to the 

aircraft shortage that occasionally occurs during day-to-day airline operation. Talluri 

(1996) investigates the swapping application in daily airline fleet management. In this 

study, a simple algorithm for making the swapping (changing the assignment of a 

specified flight leg to different equipment) is developed while the composition of 

equipment overnighting at the various stations is not affected.

For the purposes of both being consistent with Furth and Nash’s (1985) study and 

not conflicting with the typical terminology used in timetable design, the term “vehicle 

swapping” is used throughout this study to describe real-time “interlining”. 
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From the literature review above, some general conclusion can be drawn.

� The passenger transfer problem can be addressed in part by the timetable design; 

but,

� As transit operation becomes more variable, holding, as a real-time operation 

control strategy, can help stabilize and enhance the timed transfer at a transfer 

terminal; 

� A holding strategy can be advantageous for the transferring between infrequent 

transit services, although there is no significant benefit which can be achieved

by applying holding for the transferring between high-frequency transit service; 

and,

� Swapping vehicles among different routes may be advantageous to reduce 

transfer inconvenience through more flexible vehicle dispatching.

These conclusions naturally raise two underlying questions: can the typical holding-

based control strategy at the transfer terminal be augmented by a “swapping” control 

strategy; and, is there any other beneficial by-product from such a strategy combination? 

Accordingly, this portion of the dissertation examines the potential of applying vehicle 

swapping, along with holding, on a real-time basis, and investigates the potential 

improvements from the strategy combination in terms of passenger waiting time at both 

the transfer terminal and the downstream stops/stations. This is different than Furth and 

Nash’s (1985) study, in that schedule adherence is the major measure of performance in 

their study. Instead, in this study, the transit user perspective is represented by the 

passenger waiting cost, which may make the real-time vehicle swapping more applicable. 
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Moreover, Furth and Nash’s (1985) study evaluates the benefit of vehicle pooling in an 

analytical way, while this study primarily uses simulation to investigate the potential of 

vehicle swapping on a real-time basis. Finally, this research examines the performance of 

real-time vehicle swapping combined with a holding strategy, rather than as a unique 

control strategy. 

The remaining part of this chapter will investigate the potential benefits of 

incorporating vehicle swapping into the strategy of vehicle dispatching at the transfer 

terminal, and formulate the problem of vehicle dispatching with swapping as a 

deterministic optimization problem to optimize the vehicle holding times and vehicle 

swapping strategy at the transfer terminal, so that the total cost of the passengers 

originating at the transfer terminal and the downstream stops and the passengers 

transferring at the terminal can be minimized. For a limited number of transit routes 

intersecting at the transfer terminal, vehicle swapping scenarios are enumerable. 

Furthermore, given a vehicle swapping scenario, the problem of vehicle dispatching with 

swapping at the terminal degrades to a holding problem for transfer purpose, as 

investigated in many previous studies, e.g. Dessouky et al. (1999). For such holding 

problem, the early arriving vehicles can only be held to a limited number of time points 

when the late vehicles arrive. Therefore, the vehicle holding times are also enumerable. 

Enumerable vehicle swapping scenarios and enumerable vehicle holding times make the 

exhaustive search method again appropriate to solve the problem of vehicle dispatching 

with swapping to optimality. As in the last two chapters, a simulation study is again 

conducted to compare the performance of two vehicle dispatching strategies, namely the 
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holding-only strategy and the strategy of both holding and swapping. These two 

strategies will be introduced in detail in the following sections of this chapter. The main 

flow in this chapter can also be depicted as in Fig. 4.1.

Again, the simulation study conducted in this chapter is very similar to the 

simulation studies conducted in previous two chapters, starting with impacting factor 

identification, followed by scenario design, then simulating each scenario for a specified 

number of times for both vehicle dispatching strategies, namely holding only strategy and 

the strategy of holding and vehicle swapping, finally comparing the total system cost 

reduction from both strategies in terms of the waiting time of both originating passengers 

and transfer passengers as well as the operator cost. Furthermore, the simulation study is 

the most important part in this chapter, and much more detail of the simulation study will 

be given in the simulation section. Therefore, a diagram similar to Fig. 2.2 for depicting 

the flow of simulation is not presented here to avoid redundancy.

Specifically, the remainder of the chapter is organized into four sections. Section 

4.2 describes vehicle dispatching strategies at a transit transfer terminal and their 

potential effects on transit service. Section 4.3 provides the mathematical formulation for 

the problem of optimizing the vehicle dispatching strategy by integrating real-time 

swapping with vehicle holding. Section 4.4 discusses the simulation experiments and the 

sensitivity analysis. Finally, the findings and conclusions are summarized in the final 

section, and additional research to follow this study is suggested.
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Fig. 4.1. Chapter Flowchart (Vehicle Dispatching with Swapping)

4.2. Vehicle Dispatching Control Strategies

Problem Formulation – Mathematical Programming 
Problem

1. Objective: minimize total system cost
� Originating passenger cost
� Transfer passenger cost
� Operator cost

2. Constraints
� Equivalent originating passengers
� Unique vehicle-route correspondence 

Problem Solution
1. Enumerate feasible vehicle swapping scenarios;
2. Given vehicle swapping scenario, enumerate 

feasible vehicle holding times;
3. Compare all enumerated combinations of 

vehicle swapping scenarios and vehicle holding 
times, present the one with the minimal system 
cost as the optimal solution  

Identify the factors that affect 
the performance of vehicle 
swapping strategy and 
holding strategy.
1. Random factors: 

originating passengers, 
transfer passengers, 
vehicle arrival time at 
terminal;

2. Deterministic factors: 
schedule slack time, 
service frequency, 
vehicle swapping cost, 
swapping group size, 
number of routes 
intersecting at terminal.

Comparison Simulation Study
1. Use identified impacting factors to develop simulation scenarios;
2. Use CRN (Common Random Number) simulation to simulate 

the dynamics vehicle holding and vehicle swapping.

Simulation Results for holding-
only strategy and the strategy of 
holding and vehicle swapping
1. Optimal combination of 

vehicle swapping and vehicle 
holding times

2. Minimal total system cost

Compare the performance 
of holding only strategy and 
the strategy of holding and 
vehicle swapping in terms 
of the total system cost

1. Analyze the underlying mechanics of vehicle 
holding strategy and vehicle swapping 
strategy;

2. Assess the potential of vehicle swapping for 
enhancing transfer coordination.

1. Identify the conditions 
favorable for vehicle 
swapping in terms of the 
impacting factors;

2. Test the sensitivity of 
vehicle swapping to the 
impacting factors.
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For the case of multiple synchronized transit routes terminating at a common 

transfer terminal, a late vehicle arrival would incur two types of extra cost to passengers. 

The passengers originally waiting at the terminal (or downstream) for this vehicle would 

experience extra waiting time; and, passengers onboard the late vehicle making a transfer 

may miss their connection, which implies that they would have to wait for the next 

arriving vehicle on a transfer route. The following two sub-sections briefly describe the 

dynamics of the holding and swapping strategies as operation control tools to reduce 

these passenger costs.

4.2.1. Holding

The overall passenger boarding can be divided into two categories: originating

passengers, which represent the passengers originating at the terminal or at downstream 

stops on one particular route; and, transfer passengers from other routes at the terminal. It 

is universally recognized that a holding strategy at the transfer terminal can be applied to 

balance the extra waiting time cost experienced by the originating passengers and the 

transfer passengers. This is done by holding the on-time or earlier-arriving vehicle so as 

to avoid the transfer passengers missing the connection, at a moderate cost for the 

originating passengers who experience extra waiting time (the holding time). 

Accordingly, three points merit some attention:

� Once holding is applied, the originating passengers experience extra waiting 

time.
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� Originating passengers are not an active factor triggering holding control at a 

transfer terminal, but a passive factor considered for tradeoff with the benefits 

to transferring passengers.

� Empirically, the number of transfer passengers is often less than the originating 

passengers at the terminal and the downstream stops. Therefore, infrequent 

transit service may justify the holding strategy more than frequent service.

4.2.2. Vehicle Swapping 

In contrast to the holding strategy, the vehicle swapping strategy follows a different 

logic in which both the originating passengers and the transfer passengers may actively 

trigger the control, to achieve an overall minimum passenger cost. This logic works in a 

more complicated way to reduce the extra waiting time cost for both originating and 

transfer passengers. A simple example below may help clarify the swapping mechanism 

and the differences with the holding strategy.

Assume that two transit routes A and B terminate at a common transfer terminal, 

and are scheduled to arrive at the terminal at the same time. The actual vehicle arrival 

times are T A and T B  with Scheduled Arrival Time < T A  < T B . The next vehicle arrival 

times are τ A and τ B ; the originating passengers boarding at the terminal and downstream 

stops are NPA and NPB ; the transfers passengers attracted by route A and route B are 

TPBA and TPAB  respectively; and, no slack time is assumed to be applied at the terminal, 

meaning that the vehicles will depart immediately after passenger alighting and boarding 

are completed if they did not arrive before the scheduled time. For this case, holding of a 

vehicle on route A until the vehicle B arrives can be justified only when 
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( ) ( ) NPTTTPT AABBAAA ⋅−>⋅−τ  (4-1)

Inequality (4-1) states that the additional wait incurred by transfer passengers who 

miss the connection exceeds the additional wait to the originating passengers by holding 

until T B . However, if swapping is applied, a vehicle from route A is dispatched onto 

route B before T B , routes A and B will benefit in three ways:

� The originating passengers NPB  experience less wait time; 

� There is no extra delay incurred to TPBA ; and, 

� The waiting time to TPAB is reduced.

The only additional cost is for the originating passengers on route A, NPA , who 

must wait until T B  to board. Therefore, swapping is justified when 

( ) ( ) ( ) ( )NPTPTTNPTTTPT BABABAABBAAA +⋅−−⋅−>⋅−τ  (4-2)

When compared with inequality (4-1), inequality (4-2) includes a second term on 

the right-hand side representing a reduction in waiting time for passengers on route B

when swapping occurs. Essentially, in the case of only two routes, all of the 

improvements achieved by holding can be achieved by applying swapping instead; i.e. 

the swapping strategy always outperforms the holding strategy for this case.

4.2.3. Holding and Swapping

However, as the number of synchronized routes exceeds two, more passenger 

groups will be involved, and the conclusion above that swapping performs better than 

holding is not as clear. With the same example by adding another route C in the 

synchronized route group, and assuming that the arrival time for route C is T C
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(Scheduled Arrival Time < T A  < T C  < T B ), and the passenger transferring from route C

to route A and B are TPCA  and TPCB  respectively, the implementation of strategies would 

get much more complicated. Route A can be held until either T C  or T B , and swapping 

can be organized into four ways, AB, AC, BC and ABC. Moreover, a new strategy, which 

is essentially the combination of holding and swapping, could come out as follows:

A vehicle from route A is swapped onto Route B, but this vehicle can also be held to 

depart until T C , so as to benefit TPCB , which would miss the connection without any 

holding applied to this vehicle. 

With even this simple example, it is clear that swapping can be extended to the case 

of more than two routes, and, moreover, swapping may not completely achieve the same 

passenger cost reduction as holding, simply by replacing holding with swapping without 

any support from holding. In the example, swapping and holding can work together, but 

this is not easily seen in the case of only two routes. Furthermore, for a situation with a 

relatively large number of synchronized transit routes, the vehicle dispatching decision 

could become extremely complicated due to the potential combination of both swapping 

and holding. However, one can also see that the role played by either holding or 

swapping is consistent: holding tends to reduce waiting cost only for transfer passengers, 

and swapping does so for both originating and transfer passengers. 

4.3. Vehicle Dispatching Process & Model Formulation

This section provides more clarification for the application of these control 

strategies, through a more formal model formulation.

4.3.1. Assumptions and Vehicle Dispatching Process
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This vehicle dispatching study investigates real-time vehicle dispatching strategies 

based on the real-time transit vehicle locations and relevant travel time forecasting 

models with AVL technology available. Furthermore, three more assumptions are made:

� The route that each vehicle is designated to serve and the vehicle holding time 

on each route represent the vehicle dispatching decisions made at a transit 

terminal. These decisions are assumed to be made iteratively on a frequent basis

to be adaptive to the traffic condition change and other major operations factors, 

e.g. every time interval consistent with the AVL data polling process. 

� Due to the frequency of this decision-making process, travel time variability 

does not need to be considered explicitly when the vehicle arrival time at the 

terminal is predicted. This assumption is somewhat argued in previous chapters.

� At the terminal, each route has an individual terminal area (a bus bay, for 

example), and the travel times for a vehicle to travel between areas within the 

terminal are negligible, so that vehicles moving from one route to another can 

do so within the decision cycle. 

With the assumptions above, the vehicle dispatching process at the transfer terminal 

is described as follows:

Step 1: Put all vehicles serving the routes that are synchronized at the terminal into 

a decision set O.

Step 2: Check the number (m) of vehicles in the decision set O, if m = 0, go to Step 

7.

Step 3: Set the earliest scheduled arrival time t of the vehicles within O to zero.
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Step 4: Set all arrival times of the vehicles within O which arrived earlier than t to

zero also. Predict the arrival times for other vehicles which have not arrived 

at the terminal by t (TA, TB, etc). Predict the next arrival times for all 

vehicles following those within O (τA, τB, etc).

Step 5: Make a vehicle dispatching decision for each vehicle within O based on the 

arrival times which are set or predicted in Step 4.

Step 6: Check each vehicle within O. If the larger of its actual arrival time and the 

scheduled departure time on the route it is to serve has passed, and the 

designated holding time on that route from the last decision-making is less 

than the cycle time for decision-making, hold the vehicle for the designated 

holding time at the area of the route it originally serves, then dispatch it 

from the area of the route it is to serve, and eliminate it from O. Go back to 

Step 2.

Step 7: Wait until the time of making next control strategy decision, then return to 

Step 3.

4.3.2. Model Formulation

In the vehicle dispatching process, making the vehicle dispatching decision for each 

vehicle in Step 5 is the key. Implementing control strategies at a transfer terminal aims to 

reduce overall passenger cost, which consists of the costs to both originating passengers 

at the terminal and at impacted downstream stops, and passengers transferring between 

routes. These two types of costs constitute the primary elements to be minimized. 

However, swapping may also incur additional implementation cost, because swapping 
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requires each vehicle operator to be familiar with the service on more than one route, 

which adds more burden to the operator training program and/or more advanced 

technologies to assist the vehicle operators to drive on other routes. Moreover, swapping 

may incur a violation of operators’ work schedule, vehicle maintenance activities and the 

like. Therefore, a threshold cost for each swap must also be taken into account in the 

problem formulation.

In light of the analysis in previous sections, the overall passenger cost is primarily 

determined by the vehicle arrival times and the number of transfer and originating 

passengers. For the purpose of model formulation, a complete list of variables 

representing the significant passenger costs and also the swapping cost for vehicle 

dispatching strategies are defined as follows. Since the study in this chapter focuses on 

the synchronization and passenger transfer among multiple routes, rather than the vehicle 

operations on only one single route, a separate variable index is preferred here that may 

differ slightly than that employed in the previous two chapters. 

N : Total number of synchronized transit routes intersecting at the transit transfer 

terminal.

NPi : The equivalent originating passenger boardings at the terminal and 

downstream stops/stations on route i. Herein, the ‘equivalent’ is used to account for the 

different waiting times experienced by the originating passengers on different 

stops/stations due to slack time built in the timetable.

NTPi : The originating passenger boardings at the terminal on route i.

NSP ki, : The originating passenger boardings at downstream stop k on route i.
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TP ji , : Passengers transferring from route i to route j;

Si : The number of downstream stops for route i.

Slack ki, : The average slack time built in the timetable for stop k on route i.

ψ ki , : The equivalent “weight” for the originating passengers at the downstream stop 

k on route i, with the assumption that the weight for originating passengers at the terminal 

is 1.

SAi : The scheduled vehicle arrival time for route i.

Ai : The actual vehicle arrival time for route i.

TSlacki : The time difference between the scheduled arrival time and scheduled 

departure time at terminal for route i (i.e. terminal slack time).

Di : The scheduled vehicle departure time for route i, which is the summation of 

SAi and TSlacki .

WT ji , : Waiting time for TP ji , .

WT i ,: Waiting time for NPi .

H i : Holding time on route i. To be consistent with the previous studies on transfer 

synchronization, the holding time in this chapter is defined as the time that the vehicle is 

held at the terminal after the scheduled departure time if the vehicle arrives earlier than 

the scheduled departure time, or the time after the vehicle arrival time otherwise;

δ ji , : Binary variable describing a vehicle swap. If the vehicle originally serving 

route i is assigned to serve route j, then it equals 1, otherwise 0.
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τ i : The predicted departure time for the next coming vehicle on route i with or 

without swapping and holding.

WNDY iki |, : The average vehicle departure lateness at stop k on route i conditional 

on the departure lateness at the dispatching terminal. This value can be concluded from 

the historical AVL data. For the sake of simplicity, in this particular study, the 

relationship between this lateness value and the actual departure lateness occurring at the 

dispatching terminal is assumed to vary following a piecewise function, which is reduced 

only by the slack time built in the timetable at each stop/station. 

IC : The threshold cost incurred by each swap. Herein, a swap occurs when a 

transit route is served by a vehicle originally scheduled for another route. It is called a 

threshold cost in that, if the decision finds that the passenger cost savings from swapping 

is less than this swapping cost, the swapping will not occur.

With these variable definitions, the vehicle dispatching problem at a transfer 

terminal can be formulated into the model as follows. The vehicle holding time on the ith

route H i  and the binary variable δ ji ,  representing any swap are the two sets of decision 

variables. 

The objective function is:
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In this objective function, the first component represents the originating passenger 

cost; the second term defines the transfer passenger cost; and the last term determines any 

cost for swapping.
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The scheduled vehicle departure time for each route is simply the sum of the 

scheduled vehicle arrival time and the built-in slack time at the terminal.

TSlackSAD iii += , ∀  route i (4-4)

The expected extra waiting time for the equivalent originating passengers at the 

terminal and downstream is the difference between the actual vehicle departure time and 

the scheduled vehicle departure time (i.e., the departure time lateness). The actual vehicle 

departure time would be the summation of the holding time and the larger of scheduled 

vehicle departure time and the vehicle arrival time. 
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,δ , ∀  route i  (4-5)

However, because the originating passengers at each downstream stop/station may 

experience different waiting time due to the slack time built in the timetable, it is not 

reasonable to add identical extra waiting time as in equation (4-4) for each originating 

passenger. With the stepwise linear relationship assumed in previous sections, the 

departure time lateness for downstream stops would be conditional on the lateness at the 

transfer terminal.
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Accordingly, the equivalent weight for the originating passengers at downstream 

stops/stations would be the ratio of the actually experienced vehicle departure lateness at 

downstream stops/stations to the lateness at the dispatching terminal.

( ) WNWNDY iikiki ,, =ψ   if 0≠WN i   otherwise 1, =ψ ki ∀  route i, stop k  (4-7)
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This weight is used to calculate the equivalent “passengers” experiencing delay in 

the following way. The overall equivalent originating passengers would be the total of the 

originating passengers at the terminal and the equivalent passengers at downstream 

stops/stations in proportion to the corresponding equivalent weight for each individual 

downstream stop/station.
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Each arriving vehicle has to be matched with a route on which to depart, meaning:
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If the transfer passengers arrive at the terminal earlier than the vehicle departure 

time on the route to which they are supposed to transfer, the extra waiting time to make 

the transfer would simply be the difference between the vehicle departure time and the 

passenger arrival time, otherwise, the passenger must wait until the next departing vehicle 

on the transfer route.
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AWT ijji −= τ, ∀  route i,j    otherwise  (4-12)

The algorithm of predicting τ j will be introduced in the following section.

{ }1,0, =δ ji ∀  route i,j   and      0≥H i ∀ route i (4-13)
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4.3.3. Solution Method

With the objective function and constraints in the previous section, this problem is 

formulated as a mixed integer optimization problem, which makes it fairly difficult to 

address the problem in an analytical way. However, other approaches are possible.

For the vehicle dispatching problem with holding, Dessouky et al. (1999) proves 

that the earlier-arriving vehicle should only be held until the specific time instants at 

which a later vehicle arrives. As described in the model formulation section, the holding 

time on the ith route H i and binary variables δ ji , representing swapping are the only 

decision variables in the objective function. Once all δ ji , are set, the problem reduces to a 

pure holding problem as in Dessouky et al. (1999). In this case, the objective function can 

be optimized by enumerating each predicted vehicle arrival time, so that the optimal 

holding time for each route can be easily obtained without much computational effort. On 

the other hand, for a transfer terminal with no more than ten routes synchronized for the 

timed transfer, the full enumeration of the possible swapping scenarios would not be 

computationally burdensome for a personal computer for the purpose of real-time vehicle 

dispatching decisions. Therefore, the problem can be solved through explicit enumeration 

with reasonable computational effort.

Deeper insights can be gained from a closer look at the objective function. One can 

see that the swapping and holding strategies can only function to change the actual 

vehicle departure time on each route; there is nothing they can do with the actual arrival 

time Ai . In addition, a general conclusion can also be drawn that the vehicle dispatching 
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strategy is determined by the estimated vehicle arrival times, the scheduled departure 

times, and the passenger loads. 

Finally, it is more operationally practical for swapping to be applied as a real-time 

control strategy if the routes intersecting at the terminal can be divided into several sub-

groups (i.e. a swapping group). That is, there may be only a subset of routes included in a 

swapping decision, instead of the full set of routes: the full set may create unreasonable 

requirements on the vehicle operators to be familiar with all the routes in the group. 

Accordingly, if the total number of routes at the terminal can be divided into several 

swapping groups, the vehicle dispatching decision within a swapping group would be 

independent of such decisions within other groups (including routes not in a swapping 

group). Also, for routes not in a swapping group at all, the only decision for vehicle 

dispatching is the holding time, and this holding time decision is completely independent 

of the holding time or swapping decision on other routes. Therefore, the decision for 

these independent routes will be called single route-based. In contrast, for those routes 

within a swapping group, the vehicle dispatching strategy decision would be group-based, 

which means the holding and swapping strategies will be interacting within the group.

Based on this analysis, the study design in the following sections focuses on the 

case with one single swapping group whose size may vary. The vehicle dispatching 

strategy for the case with more than one swapping group can be made for each swapping 

group separately, and the overall passenger cost reduction is the simple sum of that 

resulting from the control strategies applied over each swapping group.
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Moreover, according to the model constraints, the optimal strategy will be 

determined by not only the operation status of the vehicles from the coordinated routes in 

the current decision-making cycle, but also the operation status of the next set of arriving 

vehicles. Basically, the prediction of the departure times for the next set of vehicles is 

another optimization problem, but with several assumption made for the sake of problem 

simplicity:

� The third set of dispatched vehicles at the upstream terminals will arrive and 

depart the terminal on time. This may be justified in part because it is unlikely 

that there is any new location information for these vehicles during the current 

cycle of decision-making. In other words, no holding or swapping would be 

expected to be applied to the third set of vehicles.

� Those transfer passengers who will miss the current connection would not add 

significant passenger burden to the next set of arriving vehicles. This 

assumption allows one to say that the two optimization processes (i.e. for the 

current set of vehicles and the next set of vehicles respectively) are basically 

independent. 

4.4. Simulation and Sensitivity Analysis

4.4.1. Simulation Logic

As introduced at the beginning of this chapter, to examine the potential of applying 

real-time swapping into vehicle dispatching strategies at a transfer terminal, simulation is 

used again to compare the vehicle dispatching strategy with holding only and the strategy 
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with both holding and vehicle swapping. The basic tasks in this particular simulation 

study employ the simulation to:

� Design a wide variety of reasonable transit operating scenarios capturing the 

relevant transit operating factors and their distributions; 

� Conclude what operating environment may be favored by the real-time 

swapping strategy; and,

� Conduct a sensitivity analysis to observe how swapping performs under a 

variety of transit operating factors.

As argued in the last two chapters, a CRN-based simulation study is preferential for 

comparison purposes. Therefore, Common Random Number simulations are conducted 

separately for the situations with and without real-time swapping for vehicle dispatching 

strategies at the transfer terminal. For clarity, the advantages of the CRN based 

simulation study are repeated here. For both sets of simulations, common random number 

series are applied as inputs to generate a very large amount of scenarios, which may be 

considered to be sufficient to cover many reasonable situations in the real world. With 

this assumption, the simulation process can ensure several points:

� Rare cases have quite a few of instances in the simulation, so the conclusion 

drawn from the simulations can be quite general; and, 

� Due to identical inputs to both simulation processes, the differences observed 

from the simulation output can be attributed to the system control variables, 

which are the vehicle dispatching strategies in this particular study.
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Based on this, a flow diagram (Fig. 4.2) can help explain the basic logic in the 

simulation process.

Fig. 4.2. Logic Diagram of Simulation Study for Terminal Swapping

In this diagram, there are two simulation processes, with and without swapping 

available. A common set of parameters is input to two simulation processes to generate 

two sets of identical transit operation scenarios on which different vehicle dispatching 

strategies are applied. In the second simulation process (i.e. with the swapping strategy 

available), only a portion of the input scenarios (the gray area in the scenario set) favors 

vehicle swapping. This portion of the scenarios is called “swapping-prone scenarios”. 

The swapping-prone input scenarios will lead to portion I (the gray area in the second 

simulation process) in the second result set (i.e. Result 2). As a contrast, another portion 

of the scenario set (the white area in the scenario set), the non-swapping-prone scenarios, 

will lead to the portion II (the white area in the second simulation process) in the second 

result set. Similarly, the scenario set and the result set in the first simulation process can 

With holding applied With holding + swapping applied

Scenario Set 
Ι Π

Parameter Set

Ι Π
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Result 1Ι Π Result 2Ι Π
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be also divided into two portions corresponding to those in the second simulation process. 

It is clear that the portion II in the first result set would be identical with the portion II in 

the second result set. Therefore, the comparisons between the overall results from the two 

simulation processes are essentially the comparisons between portion I in the holding 

only results and potion I in the holding and swapping results. This is the primary 

comparison of terminal dispatching strategies described in this chapter.

Also, the statistical difference between the two portions (portion I and portion II) in 

the input scenario set will help in identifying the transit operation environments in which 

the vehicle swapping strategy is generally favored. Moreover, the input parameter set 

defines the transit operation scenarios generated, and certainly the performance outcomes 

from the two simulation processes. A sensitivity analysis of the strategy performance to 

the variations of the input parameters can be helpful to further identify the favorable 

transit operation environments for the application of a vehicle swapping strategy.

Accordingly, the basic tasks for the simulation are to:

� Analyze the sensitivity of the strategy performance to the key transit operation 

factors; and,

� Identify the swapping-prone scenario set and conclude its statistical 

characteristics in comparison with the non-swapping-prone scenario set.

In more detail, the simulation study for comparing the vehicle dispatching strategies 

with and without vehicle swapping is depicted in Fig. 4.3.
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� Identify the factors that affect the performance of 
holding control and vehicle swapping significantly.

� Set the number of simulation runs (N) for each 
simulation scenario

Random Factors Deterministic Factors

� Identify the distributions followed by the 
random factors;

� Assume a set of reasonable values (R) for 
each parameter (e.g. mean and variance) 
defining the distributions.

� Assume a set of reasonable 
values (D) for each 
deterministic factor (e.g. 
5,6,7,8,10 routes intersecting at 
common transfer terminal.

Simulation Scenarios = R × D
LOOP = 1

� Generate random number R’ for R;
� Use R’+D as the input to the optimization process.

Optimization Process —Problem 
formulation for vehicle dispatching 
with only holding Control 

Optimization Process —Problem formulation 
for vehicle dispatching with both holding 
control and vehicle swapping

Optimal Vehicle 
Holding Times

Minimal 
System Cost

Minimal 
System Cost

� Optimal Vehicle Holding Times
� Optimal Vehicle Swapping

� Statistics: Sum (System Cost)
� loop = loop +1

loop = 1

LOOP = LOOP+1

Simulate the scenario LOOP in R × D

LOOP > | R × D |

loop > N

No

Stop
Yes

No

Yes

Fig 4.3.  Simulation Flowchart – Vehicle Dispatching with Swapping Problem
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Prone Scenarios

No

Yes No
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As shown in Fig. 4.3, this simulation study for the problem of vehicle dispatching 

with swapping starts by identifying the key factors which may affect significantly the 

performance of both the holding control and the vehicle swapping strategy for the 

purpose of enhancing passenger transferring. The key factors (both random and 

deterministic) identified are further employed to construct simulation scenarios (R×D). 

For each of these scenarios, a certain number (N) of common random factor sets are 

randomly generated to simulate the dynamics of both the holding control and the vehicle 

swapping at a transfer terminal. The problem formulations and solution method are used 

to solve for the optimal vehicle holding times and, under consideration of swapping, the 

optimal vehicle swapping combination. The simulation results (in terms of minimum 

system cost) are collected to compare the performance of the holding only strategy and 

the strategy of holding and swapping, and for further identifying the favorable conditions 

for the vehicle swapping strategy by comparing the statistics of the swapping-prone 

scenarios and the non-swapping-prone scenarios. 

4.4.2. Assumptions

Several assumptions on which the simulations are based are listed below. 

1) Passenger boarding is moderate and would not exceed the transit vehicle 

capacity.

2) A schedule-based holding strategy and any built-in slack time are applied only 

at downstream time points on each route. Also, the vehicle departure lateness 

(if any) at the dispatching terminal can be diminished at the downstream time 
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points only by the slack time built in the timetable; in other words, there is 

very little freedom for the vehicle operator to adjust vehicle speed;

3) Passenger boarding and alighting occur only at the terminal and downstream 

time points;

4) No transit vehicle overtaking is allowed. Actually, vehicle overtaking rarely 

occurs for infrequent transit service;

5) No significant transit service disruption occurs in the process of simulation;

6) In each simulation run, the number of transfer passengers between routes is 

accurately available for all incoming vehicles in the current decision-making 

cycle, but the distribution for those vehicles coming later are derived from 

historical data; 

7) The overall magnitude of transfer passengers for all routes intersecting at the 

terminal is certain, but the distribution among routes varies from run to run in 

the simulation process. The process of generating transfer passengers will be 

introduced later in the chapter;

8) The terminal and downstream boarding distribution for originating passengers 

are derived from historical data for each route;

9) The number of originating passenger boardings on each particular route

follows a normal distribution, which is derived from historical data. However, 

only the mean of the normal distribution is used in each simulation run for 

selecting a dispatching strategy and for strategy performance evaluation (i.e. 

no standard deviation is considered in the simulation). This mean value is 
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randomly generated following a discrete uniform distribution between 40 and 

80 passengers, identical for each route. Therefore, the mean for each route can 

be different from other routes in each particular simulation run. Also, 

passenger boarding is assumed to occur with identical values at each time 

point on a particular route;

10) The set of routes in each swapping group is pre-defined;

11) Each vehicle is dispatched from upstream terminal right on schedule;

12) At any point of decision, the transit vehicle is assumed to be able to traverse 

the remaining distance to the terminal according to the scheduled running time; 

and,

13) The actual time spent traveling the distance which is supposed to be traveled

in one AVL polling cycle follows a normal distribution, and no correlation 

exists between the successive travel time distributions on the same route.

In the assumptions above, (2) and (3) imply that only time points are considered in 

the simulation. Assumption (13) basically implies that the transit vehicle cannot catch up 

once it is late, and travel time stochasticity is neglected, which seems unreasonable.

However, as stated in (5), no significant transit service disruption occurs in the process of 

simulation, meaning that no vehicle is too late at the decision-making point. In practice, 

the vehicle operator’s ability to catch up is very limited in a short time period. Moreover, 

in this particular study, a vehicle’s location and the predicted arrival time at the terminal 

is updated at a frequency of every polling cycle (40 seconds, for example). This may help 

capture a large portion of the stochasticity in the travel time prediction.
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4.4.3 Test Scenarios and Basic Parameters

Several key concepts and parameters in the simulation and sensitivity analysis are 

defined below.

Number of Swappings: the number of swappings is counted as the number of routes 

that are served by transit vehicles from another route in the swapping group. For example, 

there are three vehicles, vehicle 1, vehicle 2 and vehicle 3, supposed to serve route 1, 

route 2 and route 3 respectively. However, the control strategy may dictate that the 

vehicle 1 serves route 2, vehicle 2 serves route 3, and vehicle 3 serves route 1. In this 

case, three swappings occur. 

Group Size: the number of routes that are deliberately assigned to a swapping group.

Originating Passengers: the equivalent passengers ( NPi ) originally boarding at the 

dispatching terminal and the downstream stops along each route.

Transfer Passengers: other passengers (TP ji , ) excluding the originating passengers 

above.

Swapping Threshold Cost: the incremental cost incurred by each swap ( IC ). 

Basically, ten transit routes with common structures are assumed to be

synchronized at a hypothetical transit transfer terminal. The “common structure” refers to 

the assumption that each route has the same number of time points, identical distance 

between time points, common operating schedule and all other static characteristics. Also, 

the common structure means that each route has same originating passenger distribution, 

transfer passenger distribution, and travel time distribution. Although the route structure 

is identical for each route, the simulated values for the originating passengers, transfer 
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passengers, travel times and so on in each simulation run may be different from route to 

route. This may lead to quite different passenger boarding profiles and vehicle lateness 

evolutions among routes for each simulation run.

Within this particular study design, the basic parameters applied in the simulation 

are given in Table 4.1. These basic parameters together construct a baseline case in the 

simulation study, and simulation is conducted to test the sensitivity of the swapping 

performance to the following parameters: number of routes, slack time at the transfer 

terminal, the standard deviation of the travel time distribution, the headway, the average 

originating and transfer passengers, and the incremental swapping cost.

Table 4.1. Transit Operation Parameters in Simulation (Terminal Swapping)

Parameters Values
Total Number of Routes 10
Total Number of Intermediate Time Points on Each Route 6
Slack Time at Time Point (min) 0.4
Slack Time at Transfer Terminal (min) 1.0
AVL Data Polling Time Interval (sec) 40
Standard Deviation of Travel Time Distribution (average = 40 sec) 20
Average Route Headway (min) 30
Average Originating Passengers Boarding at Terminal and Downstream Stops 60
Average Transfer Passengers to/from Each Route 17
Swapping Cost (Passenger.Sec) 3600
Average One-way Trip Time per Route (Hr) 1

According to Table 4.1, for the baseline case, 10 routes in total terminate at the 

transfer terminal, operating at a headway of 30 minutes; each route has 6 time points, 1 

hour one-way trip time, 0.4 minute built-in slack time at each time point, and 1.0 minute 

built-in slack time at the transfer terminal; the real vehicle travel time for traversing the 

distance that is supposed to be traveled in 40 sec with the given average running speed is 

assumed normally distributed with a standard deviation of 20 seconds; each route 

produces 17 transfer passengers, and attracts 60 originating passengers and 17 transfer 
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passengers; and, each vehicle swapping may incur an operator cost equivalent to 3600 

passenger sec. 

Furthermore, with the built-in slack time (0.4 minutes each in Table 4.1) at each

time point for each route, along with the schedule-based holding strategy assumed in the 

previous section, the vehicle arrival time lateness at the transfer terminal will 

approximately follow a shifted lognormal distribution with an intercept of 166 sec and a 

lognormal distribution with mean of 246 sec and standard deviation of 116 sec, which is 

consistent with some previous studies, e.g. Abkowitz et al. (1987). 

The average number of transfer passengers is assumed to be known as shown in 

Table 4.1. However, in each simulation run, the number of transfer passengers between 

each pair of transit routes is randomly generated by the following algorithm. 

Step 1: Randomly generate the total number of transfer passengers (capacity) that 

one transit route may attract or produce, using an uniform distribution 

ranging from 0 to 40 passengers;

Step 2: Randomly generate a route number which would be used as the producing 

route;

Step 3: Randomly generate another route number which would be used as the 

attracting route;

Step 4: Randomly generate the transfer passengers between the producing route and 

the attracting route, using uniform distribution ranging from 0 to 20 

passengers; compare this generated number with the minimum of: (1) the 

remaining capacity for the attracting route; (2) the remaining capacity of the 
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producing route; and, (3) a predefined maximum of 20 transfer passengers 

between any two routes; if the generated number is smaller than the 

minimum of the three, use the generated number as the final transfer 

passengers between the producing route and the attracting route. Otherwise, 

use the minimum instead. 

Step 5: Update the remaining capacities for both the producing route and the 

attracting route. 

Step 6: Check if all routes have been paired with the producing route generated at 

Step 2. If not, go to Step 3 to randomly generate another attracting route.

Step 7: Check if all routes have been used once as the producing route. If not, go to 

Step 2 again. If so, stop.

4.5. Simulation Results and Sensitivity Analysis

4.5.1. Sensitivity to Operating Factors

With the basic parameter set in Table 4.1, a sensitivity analysis is conducted 

through observing how the overall passenger cost reductions vary with each factor, while 

keeping others the same. The results are shown in Tables 4.2 through 4.8 below. The 

cells in italic font represent the values for the baseline case in each table. Herein, the 

performance (represented by the values in the tables) for either control strategy is 

essentially the average over the outputs of all synchronized routes based on 20,000 

simulation runs with randomly generated inputs according to the basic parameter settings 

and assumptions outlined previously.
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Table 4.2. Sensitivity to Swapping Group Size

Average Cost Reduction by Adding Swapping

Overall
Group 
Size
(1)

(Pass-Sec)
(2)

(%)
(3)

Originating
Passengers
(Pass-Sec)

(4)

Transfer 
Passengers
(Pass-Sec)

(5)

Average
Holding Time 

Reduction 
(sec)
(6)

Percentage of 
Runs with a 
Swap (%)

(7)

Average # of 
Swaps Made 
When a Swap 

Occurs
(8)

Average # of 
Swaps per 
Simulation 

Run
(9)

2 327 3.2 128 201 2 2.3 2.0 0.05

3 959 9.4 361 599 6 5.9 2.0 0.12

4 1766 17.3 686 1081 12 10.6 2.0 0.22

5 2741 26.9 1048 1694 19 15.6 2.1 0.33

6 3800 37.3 1441 2360 27 20.7 2.2 0.44

Table 4.3. Sensitivity to Swapping Threshold Cost

Average Cost Reduction by Adding Swapping

Overall

Threshold 
Cost

(Pass.Sec)
(1) (Pass-Sec)

(2)
(%)
(3)

Originating
Passengers
(Pass-Sec)

(4)

Transfer 
Passengers
(Pass-Sec)

(5)

Average
Holding Time 

Reduction 
(sec)
(6)

Percentage of 
Runs with a 
Swap (%)

(7)

Average # of 
Swaps Made 
When a Swap 

Occurs
(8)

Average # of 
Swaps per 

Simulation Run
(9)

0 7216 70.9 2005 5211 49 73.9 2.8 2.10

1800 3469 34.1 1294 2176 26 27.1 2.1 0.58

3600 1766 17.3 686 1081 12 10.6 2.0 0.22

5400 871 8.6 353 519 6 4.3 2.0 0.09

7200 376 3.7 148 229 2 1.5 2.0 0.03

Table 4.4. Sensitivity to Total Number of Routes

Average Cost Reduction by Adding Swapping

Overall
# of

Routes
(1)

(Pass-Sec)
(2)

(%)
(3)

Originating
Passengers
(Pass-Sec)

(4)

Transfer 
Passengers
(Pass-Sec)

(5)

Average
Holding Time 

Reduction 
(sec)
(6)

Percentage of 
Runs with a 
Swap (%)

(7)

Average # of 
Swaps Made 
When a Swap 

Occurs
(8)

Average # of 
Swaps per 

Simulation Run
(9)

5 3030 103.2 1035 1995 20 15 2.1 0.31

6 2652 60.3 910 1743 18 13.8 2.1 0.28

7 2342 38.7 830 1512 16 12.7 2.1 0.26

8 2082 29.3 768 1314 14 11.9 2.1 0.25

9 1833 20.9 694 1138 13 10.9 2.0 0.22

10 1766 17.3 686 1081 12 10.6 2.0 0.22
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Table 4.5. Sensitivity to Travel Time Variation

Average Cost Reduction by Adding Swapping

Overall

Originating
Passengers
(Pass-Sec)

(4)

Transfer 
Passengers
(Pass-Sec)

(5)

Average
Holding Time 

Reduction 
(sec)
(6)

Percentage of 
Runs with a 
Swap (%)

(7)

Average # of 
Swaps Made 
When a Swap 

Occurs
(8)

Average # of 
Swaps per 
Simulation 

Run
(9)

Travel 
Time SD

(Sec)
(1)

(Pass-Sec)
(2)

(%)
(3)

5 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0

15 263 13.4 80 182 1 1.4 2.0 0.03

20 1766 17.3 686 1081 12 10.6 2.0 0.22

25 4390 30.5 1891 2498 32 25.3 2.1 0.54

30 7084 47.3 3225 3858 51 39.1 2.2 0.87

Table 4.6. Sensitivity to Originating Passenger Boardings

Average Cost Reduction by Adding Swapping

Overall

# of 
Originating 
Passengers

(1) (Pass-Sec)
(2)

(%)
(3)

Originating
Passengers
(Pass-Sec)

(4)

Transfer 
Passengers
(Pass-Sec)

(5)

Average
Holding Time 

Reduction 
(sec)
(6)

Percentage of 
Runs with a 
Swap (%)

(7)

Average # of 
Swaps Made 
When a Swap 

Occurs
(8)

Average # of 
Swaps per 
Simulation 

Run
(9)

60 1766 17.3 686 1081 12 10.6 2.0 0.22

54 1543 13.7 582 959 12 9.5 2.0 0.19

48 1305 10.5 475 830 11 8.2 2.0 0.17

42 1102 8.0 381 721 10 7 2.0 0.14

36 890 5.9 293 596 9 5.8 2.0 0.12

30 658 4.0 207 451 8 4.5 2.0 0.09

Table 4.7. Sensitivity to Average Route Headway

Average Cost Reduction by Adding Swapping

Overall
Headway

(Min)
(1)

(Pass-Sec)
(2)

(%)
(3)

Originating
Passengers
(Pass-Sec)

(4)

Transfer 
Passengers
(Pass-Sec)

(5)

Average
Holding Time 

Reduction 
(sec)
(6)

Percentage of 
Runs with a 
Swap (%)

(7)

Average # of 
Swaps Made 
When a Swap 

Occurs
(8)

Average # of 
Swaps per 

Simulation Run
(9)

10 488 -- 202 285 1 4.7 2.0 0.10

20 1240 53.8 476 764 8 8.9 2.0 0.18

30 1766 17.3 686 1081 12 10.6 2.0 0.22

40 2149 10.8 806 1342 15 11.6 2.1 0.24

50 2545 8.1 901 1643 17 12.0 2.1 0.25

60 2853 6.8 975 1879 19 12.8 2.0 0.26
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Table 4.8. Sensitivity to Slack Time at Terminal

Average Cost Reduction by Adding Swapping

Overall

Slack 
Time at 

Terminal
(Sec)
(1)

(Pass-
Sec)
(2)

(%)
(3)

Originating
Passengers
(Pass-Sec)

(4)

Transfer 
Passengers
(Pass-Sec)

(5)

Average
Holding Time 

Reduction 
(sec)
(6)

Percentage of 
Runs with a 
Swap (%)

(7)

Average # of 
Swaps Made 
When a Swap 

Occurs
(8)

Average # of 
Swaps per 

Simulation Run
(9)

0 2629 11.5 1246 1383 21 17.4 2.1 0.37

30 2189 12.0 948 1241 16 13.9 2.1 0.29

60 1766 17.3 686 1081 12 10.6 2.0 0.22

90 1340 38.0 465 876 8 7.6 2.0 0.16

120 1016 16.9 337 679 7 5.9 2.0 0.12

In Tables 4.2 through 4.8, the overall percentage cost reduction by adding swapping 

(i.e. column 3 in the tables) is the percentage cost reduction of swapping and holding, 

using a baseline of only holding. That is, it is the percentage improvement from swapping 

over the holding-only strategy. Column 7 is the percentage of simulation runs where a 

swap occurs, out of the total number of simulation runs (i.e. 20,000). Column 8 is the 

average number of swaps, over all simulation runs when swapping occurs. Column 9 is 

the average number of swaps, over overall simulation runs, no matter whether swapping 

occurs. Column 9 is thus the product of columns 7 and 8.

The sensitivity of the average cost reduction achieved by applying real-time 

swapping into the vehicle dispatching strategy to each of these factors is also shown 

graphically in Fig. 4.4.

From Tables 4.2 through 4.8 and Fig. 4.4 above, there are several important 

tendencies that can be observed. First, when a favorable transit operation environment 

exists, significant passenger cost reduction can be achieved by applying real-time 
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swapping into the public transit control strategy at the terminal. Herein, the significance 

of the real-time swapping can be represented by the overall reduction of the passenger 

cost and the percentage of simulation runs with swapping applied. For example, for the 

baseline case across all tables, the average overall passenger cost reduction can be 

increased by more than 17 percent (0.5 passenger-hours) by using vehicle swapping; and, 

when operating conditions turn more favorable (e.g. lower swapping threshold cost in 

Table 4.3, smaller number of routes in Table 4.4, more variable arrival time at the 

terminal in Table 4.5, and so on), this percentage and/or absolute value will increase 

considerably. For example, when the total number of routes drop to five while keeping 

the swapping group the same, the absolute improvement from swapping increases to an 

average of about 50 passenger-minutes per simulation run, which essentially doubles the 

overall passenger cost reduction achieved by holding only. Also, when the swapping 

threshold cost drops to zero, a majority of simulation runs use swapping (73.9%).
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Fig. 4.4. Sensitivity Analysis for Terminal Swapping



183

Both the overall passenger cost reduction and the percentage of runs swapped 

increase as the swapping group size (Table 4.2), the variation of travel time (Table 4.5), 

the number of originating passengers (Table 4.6) and the average route headway (Table 

4.7) increase, but decrease as the swapping threshold cost (Table 4.3), the total number of 

routes (Table 4.4) and the slack time at the transfer terminal (Table 4.8) increase. 

However, the relative improvement of the combined strategy over the holding-only 

strategy does not necessary have this tendency, or varies at a different rate. When the 

average route headway decreases, the overall passenger cost reduction and the benefits 

achieved by swapping drop quickly, but the percentage improvement with respect to the 

passenger cost reduction from the holding-only strategy increases. This implies that the 

holding strategy may be most effective for longer headways, but that swapping may have 

considerably greater advantage with shorter headways.

The swapping threshold cost may be the most sensitive factor influencing the 

performance of real-time swapping. As shown in Table 4.3, in each case where the 

equivalent swapping threshold cost was increased by 1800 passenger-seconds, the 

average passenger cost reduction was cut in half. As the swapping threshold cost drops to 

zero, the average passenger cost reduction could be as high as about two passenger-hours, 

which is about 71 percent higher than of the overall passenger cost reduction incurred by 

the holding strategy alone. Conversely, at one passenger-hour, the cost reduction drops to 

under 0.5 hours (17.3%), and to almost nothing at two passenger-hours.

When the travel time variation is relatively low, as for the first two cases in Table 

4.5 with 5 sec and 10 sec standard deviations respectively, there is no significant benefit 
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achieved by applying real-time swapping. As a matter of fact, for these particular 

situations, even holding has no benefit. For the case of a 5 sec standard deviation, the 

average overall passenger cost reduction from holding strategy drops to zero and is only 

270 passenger-seconds (less than 1.5% of the base overall passenger cost) for the case of 

a 10 sec standard deviation.

In Table 4.8, the absolute value of the overall passenger cost reduction decreases as 

the slack time at the terminal decreases. However, the tendency of the improvement of 

the combined strategy over the holding-only strategy is not as clear, in part because the 

precision of the factors in the simulation process may raise a large variation on the 

outcomes when only very few cases are observed with holding and/or swapping applied. 

This is the case when the slack time at the terminal increases up to more than one and a 

half minutes. In addition, the AVL data polling rate, every 40 seconds in this particular 

study, also adds to the difficulty of estimating the vehicle departure times accurately. 

In comparing columns 4 and 5 in all tables, swapping tends to reduce both the 

originating passenger cost and the transfer passenger cost consistently in all cases. Also, 

the cost reductions on both originating passengers and transfer passengers 

increase/decrease with those sensitivity factors. This further demonstrates what was 

argued previously about how originating passengers and transfer passengers function in 

the control strategy: originating passengers also play an active role to achieve a final 

tradeoff with the transfer passengers. Also, moderate transit vehicle holding time 

reductions, ranging from 0 to 51 seconds (Table 4.5), are achieved as swapping is applied, 
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and this reduction of holding time is certainly contributing a portion of the overall 

passenger cost reduction.

It appears that integrating real-time swapping into the transit terminal control 

strategy will achieve greater cost reduction for transfer passengers than for originating 

passengers, even in the case of relatively frequent service, e.g. for the 10 minute average 

headway in Table 4.7. This is primarily because only the cases of infrequent service 

(average headway larger than 10 minutes) are simulated and tested in the sensitivity 

analysis. For the cases of infrequent service, missing the connection means a large 

waiting cost will be incurred by the transfer passengers. In this study, the ratio of transfer 

passengers to originating passengers for the baseline case is about 0.3, so one can expect 

that the transfer passenger cost reduction may dominate the originating passenger cost in 

a majority of cases when applying real-time swapping. As a matter of fact, as the number 

of originating passengers on each route decreases to 30 (transfer/originating ratio is about 

0.6) in Table 4.6, the transfer passenger cost reduction more than doubles that for 

originating passengers. 

The average number of swaps for those simulation runs with at least one swap in 

the control strategy mostly ranges between 2.0 and 2.1, except for a special case in which 

no cost is incurred by the swapping itself (this value is 2.8 for the case of zero swapping 

threshold cost in Table 4.3). According to the definition of swapping, two swaps are 

essentially the minimum if swapping has been applied. Therefore, this narrow range of 

the number of swaps may demonstrate that the potential for multiple swaps (as in the 

example for defining swapping in Sec. 4.4.3) are limited. It is unlikely that cases of more 
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than two swaps contribute significantly to the overall passenger cost reduction, even for 

the case of relatively large swapping group size: this value is only 2.2 for the case of 6 

routes in a swapping group in Table 4.2.

Aside from the observations above, control strategies applied over one swapping 

group are completely independent of those on other swapping groups. As a result, the 

passenger cost reduction from the control strategies applied for one swapping group is 

also entirely independent of others. From Table 4.2, it can be easily observed that the 

overall passenger cost reduction for a larger swapping group grows faster than linearly. 

This is because a relatively larger swapping group can always offer more opportunities to 

make swapping pairs or chains than with several smaller groups. This conclusion is also 

valid with regard to the components of originating passenger cost and transfer passenger 

cost reductions. However, a larger swapping group brings much more rigorous

requirements for knowledge of routes among the vehicle operators, which is certainly a 

challenge to the swapping strategy for a public transit agency. 

4.5.2 Sensitivity to Uncertainty of Passenger Boardings

As an assumption, the total number of originating passengers over each route in the 

simulation follows a normal distribution established from historical data. However, only

the mean of this distribution is applied for selecting the optimum strategy and generating 

the results in Tables 4.2 through 4.8. As a result, the real value of the number of 

originating passengers may deviate from the mean of the distribution applied for selecting 

the optimum strategy, depending on the variance of the distribution. Consequently, one 

may wonder whether the conclusions based on the results from Tables 4.2 through 4.8 
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still hold, if the real number of originating passengers over routes are used to re-estimate 

the real passenger cost reductions based on the optimum strategies derived from only the 

mean values of those distributions. Therefore, it is particularly helpful to conduct another 

simulation study for observing how the uncertainty of the originating passengers, in terms 

of the standard deviation of the passenger distribution, affects the passenger cost 

reduction in Tables 4.2 through 4.8. This essentially gives the value of information on 

originating passengers to the swapping strategy.

In this simulation process, the values of the originating passenger boardings are 

randomly generated from the normal distribution with the standard deviation shown in 

Table 4.9, and the mean as used in generating results in Tables 4.2 through 4.8. These 

randomly generated values are called “real originating passenger boardings”. Then these 

real passenger boardings are applied to re-compute the passenger cost reductions based 

on the optimum strategy decided using the mean values only. The simulation results are 

shown in Table 4.9. 

Table 4.9. Originating Passenger Cost Reduction vs. Originating Passenger Variation

SD of Originating Passenger Distribution
‘Real’ Originating Passenger Cost 
Reduction (Pass.Sec)

0 686

5 675

10 674

15 674

20 671

25 671

30 670

From Table 4.9, it can be easily observed that the ‘real’ originating passenger cost 

reduction does not vary significantly, in comparison with the baseline case of no 
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uncertainty with the estimation of the number of originating passengers. Therefore, one 

can conclude that the uncertainties in the estimate of the originating passenger boardings 

on each route are not very important for comparing the relative performance of the 

swapping-integrated control strategy with the holding-only control strategy. In other 

words, the uncertainty in estimating the number of originating passengers would not 

affect the conclusions drawn previously.

4.5.3. Characteristics of Swapping-Prone Scenarios

It was argued earlier that it would be helpful to understand why vehicle swapping 

occurs by comparing the statistics of the two input scenario groups (the gray and white 

areas in the scenario set in Fig. 4.2). As the basic sensitivity factors in Tables 4.2 through 

4.8 are fixed, each input scenario differs from others with regard to three factors: the 

vehicle arrival times, the originating passenger boardings, and the number of transfer 

passengers. These three factors and their combination in each specific scenario will affect 

the use and performance of the control strategies with or without swapping. More 

specifically, these three factors can be represented by three measures that are defined 

below.

� Originating passenger boardings on swapping routes (routes in the swapping 

group): In the objective function, we can see that the originating passenger 

boarding on the transit routes only within the swapping group will determine the 

optimal control strategy.

� Transfer passengers attracted by swapping routes: It is difficult to find one

individual measure which can represent completely the overall effects of the 
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passenger transfer over the swapping decision. However, the transfer passengers 

attracted by swapping routes may have the largest influence on the swapping 

decision.

� Arrival time lateness distribution over the swapping routes: Essentially, any 

swapping decision would be determined by the arrival time distribution over all 

routes. However, only the arrival times on the swapped routes would contribute 

to the originating passenger cost reduction (the first term in the objective 

function). 

The comparisons of the statistics of the two scenario groups, the swapping-prone 

group and the non-swapping-prone group, in terms of the three measures, are shown in 

Table 4.10, which is drawn from the simulation results for the baseline case.

Table 4.10. Statistical Comparison of Swapping-Prone/Non-Swapping-Prone Scenario Groups in the 
Baseline Case

Mean When a 
Swap Occurs

Mean When No 
Swap Occurs

SD When a 
Swap Occurs

SD When No 
Swap Occurs

# of Originating Passengers on Each 
Route Within Swapping Group

60 59 10 10

# of Transfer Passenger Attracted by 
Each Route Within Swapping Group

18 17 9 9

Arrival Time Lateness for each Route 
within Swapping Group (Sec)

127 79 111 60

As seen in Table 4.10, the average number of originating passengers on each route 

within the swapping group when swapping occurs is only 1 passenger larger than when 

no swapping occurs, and this is the same for the transfer passengers attracted by each 

route. Moreover, the standard deviations of both originating and transfer passenger 

distributions among the routes within the swapping group do not show any difference 

between the two cases. However, for the arrival time lateness distribution among those 

routes, substantial differences exist. When swapping occurs, the average vehicle arrival 
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lateness on each route is about 48 seconds (about 60%) more than when no swapping 

occurs, and the standard deviation of arrival lateness is 51 seconds (about 85%). 

Although not shown explicitly here, similar tendencies can be observed across all other 

cases (beyond this baseline case) from the simulation results. Accordingly, a simple 

conclusion may be derived:

It may not be necessary that the originating passengers and transfer passenger 

distribution over the transit routes within the swapping group have a higher average and 

variance to justify the implementation of real-time swapping. However, a swapping 

application is preferred when there are more delayed vehicle arrivals and higher 

variation in the vehicle arrival time distribution. Furthermore, the combination of the 

three factors, which are represented by the three measures, justifies the real-time 

swapping strategy. 

4.6. Conclusions and Future Study

This chapter describes the study of the problem of vehicle dispatching with 

swapping, which is the first to investigate the potential of real-time swapping as a vehicle 

dispatching strategy at a major transfer terminal at which multiple transit routes intersect.

The problem of vehicle dispatching with swapping is formulated as a mixed integer

programming problem. An exhaustive search method is employed as the problem 

solution method to take the advantage of the small problem scale for a limited number of 

transit routes terminating at a common transfer terminal and the special feature of the 

vehicle holding times. Again, a simulation study is conducted to compare the holding and 

swapping strategy and the holding only strategy. 
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The simulation outcomes show that substantial benefits, in terms of both originating 

passenger and transfer passenger cost reductions, can be achieved by applying real-time 

swapping among a properly designed swapping group of moderate size. Further, the 

sensitivity analysis suggests that the combined strategy with real-time swapping and 

holding consistently outperforms the holding-only strategy in terms of reducing both 

originating and transfer passenger cost and the vehicle holding time.

Decreasing the swapping threshold cost is the most effective way to improve the 

performance of this combined control strategy. As the swapping threshold cost is reduced 

to zero, a majority of situations (73 percent in Table 4.3) include real-time swapping into 

the vehicle control strategy, and a substantial passenger cost reduction can be achieved on 

average. Reduction of this threshold cost reduction may be achieved through careful 

design of transit routes, advanced technologies which can assist the operator navigating 

on an unfamiliar route, and well-trained vehicle operators under a rigorous training 

program.

The passenger cost reduction from real-time swapping appears to be sensitive to all 

factors examined in this particular study, but to different extents. Generally, real-time 

swapping favors larger swapping group size, a smaller total number of routes, more 

variable travel time, more originating passengers, larger average route headway, less 

slack time at the terminal, and a lower swapping threshold cost. Based on this, the 

swapping may be considered at a terminal under the following conditions: 

� A relatively small number of appropriately utilized routes (the number of 

originating passengers is expected to be more than 50) terminate at the terminal; 
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� The average route headway is less than 40 minutes; 

� Vehicles often arrive late at the terminal; and, 

� It is hard to embed slack time into the service timetables.

In addition, any efforts for reducing the swapping threshold cost and enlarging the 

swapping group size would be helpful for applying real-time swapping, and a swapping 

cost of no more than one passenger-hour is strongly suggested to ensure that the overall 

passenger cost reduction would not be less than 10 percent. 

Chained swapping among more than two routes does not show a noticeable

advantage over the paired swapping, except for the case of zero swapping threshold cost 

(Table 4.3). Also, a large swapping group can help achieve substantially more benefits 

over several small groups, but this also brings greater challenge to the swapping group 

design.

No evidence suggests that any significant difference with regard to both the 

originating passenger and transfer passenger distributions exists among the routes within 

the swapping group for those cases with or without swapping. Higher delay and greater 

variance in the arrival time distribution over the routes within the swapping group seem 

to show the greatest advantage for swapping. Ultimately, the combination of the 

originating passenger, the transfer passenger and the vehicle arrival time would really 

justify the implementation of real-time swapping.

Finally, the hypothetical study design applied here can offer some evidence of the 

potential of integrating real-time swapping into the vehicle dispatching strategies. Also, 

some guidelines about how, where, and when to apply real-time swapping can also be 
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drawn from this study. However, there are several ways the study of this particular 

vehicle dispatching problem can be enhanced in the future. The assumption of normally 

distributed travel times over a short time period may have to be validated and calibrated 

by real-world evidence, though this is also assumed in the holding control and stop-

skipping control problem studies in previous chapters. Proper travel time forecasting 

models may also be employed at each time of updating the control strategy. A real 

example can definitely be added to help make the analysis more convincing. 

Moreover, the future study can focus on the swapping group design under certain 

route operating environments, under resource and policy constraints. Specifically, the 

studies on transit route design, driver training program, and vehicle technology 

deployment would be particularly helpful for eventually implementing real-time vehicle 

swapping into real practice, without violating the crew working schedule, the vehicle 

maintenance schedule as well as many other factors that may have significant meaning to 

the transit agencies.
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CHAPTER 5   AVL DATA ANALYSIS

As introduced in the previous chapters, the transit vehicle travel time forecasting is 

the key for operations control strategy optimization. The studies on the holding problem 

in Chapter 2 and stop-skipping problem in Chapter 3 again assume that the vehicle 

downstream trajectories can be precisely predicted. This chapter develops the 

methodology to predict the vehicle downstream trajectories using AVL data specifically 

collected from Level A or Level B AVL system. Level A and Level B AVL systems will be 

introduced in Section 5.1.

5.1. Introduction

Transit vehicle travel time can be determined by a large number of factors, e.g. 

length of the segment traversed, number of stops and number of intersections on the 

segment, passenger demand, traffic condition, vehicle maximum speed, vehicle 

acceleration/deceleration ability, seasonality, time of day, direction of travel, to name but 

a few. Many previous studies have investigated the behavioral mechanisms and dynamics 

underlying the transit travel time forecasting. Abkowitz and Engelstein (1983) developed 

empirical regression models of transit mean travel time and travel time deviation based 

on data collected in Cincinnati, Ohio. The study results showed that the mean travel time 

is strongly influenced by trip distance, passenger boarding and alighting, and also the 

number of signalized intersections. Also, the travel time deviation at an early stop can 

propagate as the vehicle proceeds further downstream. Alfa, Menzies, Purcha and 

McPherson (1988) developed both linear and nonlinear regression models for estimating 

bus travel times, and found that the bus travel time is mostly determined by the number 
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of stops, number of stop signs, number of traffic lights and length of the segment. Later, 

Abdelfattah and Khan (1998) also developed both linear and nonlinear vehicle delay 

regression models for the existing street network, as well as for the cases with one lane 

blocked. They concluded that the link length, number of bus stops, and the M/T ratio 

(moving time/ travel time) are the most significant independent variables influencing bus 

delays; and, the vehicle traffic density variables have also strong effects on bus delays. 

More recently, Strathman et al. (2001) are among the first who investigated the 

composite effects of the bus operator behavior and other common factors on transit 

vehicle running time by using AVL data. Their study suggested that the operator effects 

on running time appear to be normally distributed and account for 17 percent of running 

time variation.

However, collecting data for revealing the underlying mechanism of vehicle 

trajectory evolution can be very laborious, and in a majority of occasions seems 

monetarily prohibitive for transit agencies. As a result, many previous studies focused on 

only the relatively simple and straightforward relationships between the impacting factors 

and phenomena that can be easily observed. Abkowitz and Engelstein (1982) focused on 

the temporal and spatial dimensions of travel time in transit system, and found that 

average transit travel time during the afternoon peak is roughly 10 percent higher than 

during the morning peak, and 25 percent higher than during the evening off-peak. Higher 

travel time variation is correlated with higher mean travel time on links, and the standard 

deviation of travel time is greater in the afternoon peak than in the morning peak. The

coefficient of variation is lowest during the morning peak and highest during the off-peak.



196

Finally, the predictability of vehicle arrival time and passenger waiting time definitely 

deteriorate as the vehicle moves farther away from the route origin. Later, Levinson 

(1983) reported a detailed analysis of transit speeds, delays, and dwell time based on 

surveys conducted in a cross section of U.S. cities. The investigated relationships and 

parameters can provide inputs for planning service changes and assessing their impacts. 

Seneviratne and Loo (1986) analyzed the vehicle travel time data from two transit routes 

in Halifax, Nova Scotia, Canada, and found that fundamental to a realistic analysis of an 

bus route is proper segmentation (to divide the overall route into several separate 

segments), which can improve both Poisson and negative binomial model estimates of 

the number of stops for passenger boarding and alighting for an on-call transit service. 

Also, this study showed that the passenger demand is a very suitable and logical 

surrogate for many factors that would otherwise be required to explain the increase in bus 

travel time.  This observation is consistent with what is implied by the recursive vehicle 

trajectory evolution employed in previous chapters.

In parallel with the advent of AVL systems in European countries and in the U.S., 

new methods to predict the vehicle travel time become more attractive for researchers, 

with an assumption that the overwhelming amount of historical and real-time AVL data 

may have captured the composite effects of many underlying factors on the transit 

vehicle operation. Accordingly, historical vehicle location data can be used to interpret 

the vehicle’s future location, with or without the assistance from other auxiliary data. 

Kalaputapu and Demetsky (1995) investigated schedule behavior modeling concepts to 

bus transit systems using Artificial Neural Networks (ANNs) with AVL data, and the 
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preliminary results showed that the schedule deviation of a bus at a timepoint k is 

influenced by the schedule deviations at timepoints k-1 and k-2. Also the schedule 

behavior methodology using ANNs appeared to be suitable to predict future vehicle 

trajectories. Lin and Zeng (1999) developed a set of algorithms for estimating the transit 

vehicle’s arrival time at stops using AVL data considering the scheduled arrival time, 

delay correlation, and waiting time at timepoints. Also, the performance of the algorithms 

with different levels of information is compared in terms of overall precision, robustness 

and stability. This study suggested that a reasonable algorithm can only be developed

based on the identified delay pattern that reflects the bus operation characteristics of a 

specific site. Wall and Dailey (1999) presented an algorithm for predicting the arrival 

time of transit vehicles by using a combination of both real-time and historical AVL data. 

In the proposed algorithm, a Kalman filter framework is employed to track the vehicle’s 

real-time position, and the statistical estimation is used for predicting the vehicle arrival 

time at the downstream terminal. Also, the study results showed that the proposed 

algorithm is sufficiently flexible to many adverse conditions, typically where data are 

sparse. More recently, Chien and Ding (1999) developed both link-based and stop-based 

ANNs for predicting bus arrival time in real time. Also, the accuracy of the methodology 

is assessed through simulating a real-life transit route and conducting an analysis of the 

predicted bus arrival time. The study results finally showed that the link-based ANN 

performs well at the stops with few intersections in between, and the stop-based ANN is 

suitable to work for the converse case. 
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However, the previous studies on vehicle travel time prediction obviously lack the 

consideration of the interactions between the previous and the following vehicles, which 

is the most significant aspect that the operation control strategy intends to control.  

Therefore, this chapter also presents a vehicle travel time prediction study, assuming 

AVL data are available. This study differs from the previous studies in that it focuses on 

using AVL data to estimate the vehicle operating parameters used in the recursive vehicle 

trajectory evolution functions introduced in previous chapters, e.g. equations (2-13) and 

(2-14). In equations (2-13) and (2-14), the interactions between the previous and the 

current vehicle are explicitly modeled. Furthermore, the link travel time r ji 1, −  and the 

passenger boarding rate λ j  are the two parameters which cannot be directly obtained 

from some AVL systems (e.g. Level A and B). Another major contribution of this study is 

that it proposes the methodologies to derive the vehicle operating parameters using the 

AVL data collected specifically from Level A and Level B AVL systems.  In the report, 

Uses of Archived AVL-APC Data to Improve Transit Performance and Management: 

Review and Potential (TCRP, 2003), Level A and Level B AVL systems are described as:

Detail level A represents the least detail: infrequent event-
independent location records. This level is representative of many older 
AVL systems, in which information is captured only about the location of 
the bus when it is polled. The polling interval, depending on system design, 
is typically 40 to 120 s, though intervals as low as 16 s and as great as 240 
s have been implemented. For special purposes, the polling rate can be 
increased on some buses at the expense of others. Determining the 
moment at which the bus passed a particular location (e.g., a timepoint) 
requires interpolation, causing approximation errors that can be as large as 
half the polling cycle. This level of detail is the simplest to implement in 
an AVL system because it requires no onboard vehicle tracking 
intelligence.
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Detail level B includes timepoint records. An onboard computer 
knows when it reaches the timepoint location, and either records it in an 
onboard computer, or transmits it over the air as a timepoint message. 
Knowing the onboard location is best done by the onboard computer 
tracking vehicle location, either using GPS or dead reckoning. With this 
tracking capability, users can select and change locations of interest. Most 
new AVL systems with GPS have this capability. King County Metro has 
implemented this capability in a signpost system by having the central 
computer tell the bus, about two polls before arriving at a timepoint, what 
odometer reading will indicate arrival at the coming timepoint. A less 
flexible way to obtain level B data is to install wayside transmitters at 
locations of interest which will trigger a record being made on a passing 
bus. However, this arrangement makes it hard to change specified 
locations, and the failure of a transmitter means loss of information at that 
point. (TCRP, 2003, p. 16)

As described above, Level A and Level B AVL system does not directly collect the 

vehicle running speeds (τ jj ,1− ) and passenger boarding rates ( r ji 1, − ). Furthermore, due to 

the relatively low frequency for data collecting, Level A and Level B AVL system does 

not provide sufficiently fine data resolution for directly estimating the vehicle operating 

parameters. As a result, specific algorithm needs to be developed for deriving the vehicle 

operating parameters from AVL data, specifically the vehicle running speeds (τ jj ,1− ) and 

passenger boarding rates ( r ji 1, − ). This is also the focus of the AVL data analysis in this 

dissertation.

Furthermore, r ji 1, −  can be equivalently translated into the vehicle running speed 

τ jj ,1− , since the distance between the current vehicle location and the downstream stop or 

between two stops can be easily estimated with the AVL data and the transit system 

inventory data. 

As argued in Chapter 1, for an infrequent transit service, the transit passengers 

consult with the schedule and the vehicle dwell time is thus relatively fixed during certain 



200

time periods, e.g. off-peak hours, since a vehicle headway change may not result in the 

change of the number of passengers boarding the vehicle. However, for a frequent service, 

this is not true. The passengers missing a vehicle may not have to wait for long time to 

board the next vehicle. Therefore, for frequent transit service, the passengers arriving to 

stops are generally assumed random. Accordingly, a vehicle with a larger headway is 

usually subject to a larger number of passenger boardings, and thus larger dwell time at 

the stop. Mathematically, if vehicle’s current location is at A, for the case depicted in Fig. 

5.1, the vehicle arrival time tB  at B would be approximated as:
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Fig. 5.1. Example of vehicle locations 
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wherein,

t A : Vehicle arrival time at point A;

tB : Vehicle arrival time at point B;

dwl : Vehicle dwell time at stop l;

τ 1, +ll :Vehicle running speed on the link between stops l and l+1; 

D jA, : Distance between location A and stop j; and,
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D Bn, : Distance between stop n and location B.

Equation (5-1) indicates that the vehicle travel time consists of the vehicle running 

time (terms 2, 3 and 5 at the right hand side) and the vehicle dwell time (term 4 at the 

right hand side). Vehicle dwell time consists of both passenger alighting time and 

boarding time. If passenger boarding and alighting occur simultaneously, the dwell time 

would be the larger of passenger alighting time and boarding time; otherwise, it would be 

the total of both. However, for either sequential or simultaneous passenger 

boarding/alighting process, it is extremely difficult to derive the passenger alighting 

effect merely from AVL data. For the sake of practicability and simplicity, as assumed in 

Chapter 2 for the holding control problem, it is assumed again that the vehicle includes 

the passenger boarding time only. The constant part (α ) of the dwell time is also 

neglected, and its effect is included in τ ll ,1− . Furthermore, as argued previously, for 

frequent service, the number of passengers boarding a particular vehicle is determined by 

the vehicle headway, provided the passenger boarding rate λ l  is given. Mathematically, 

for a random passenger boarding process (e.g. the Poisson process assumed in previous 

chapters), the average vehicle dwell time at stop l is:

λβ lll hdw ⋅⋅= 1 (5-2)

By adding i as the index for the vehicle, equation (5-1) becomes:
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In equation (5-3), D jA, , D Bn, , t Bi ,  and t Ai ,  either are directly offered by AVL or 

can be precisely calculated with AVL data and the transit system inventory data. Though 
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h li,  cannot be directly observed or calculated, it may be estimated from an average 

vehicle running speed V , e.g. 20 mph, as by equations (5-6) and (5-7).   As a matter of 

fact, the inaccuracy in the headway h li,  estimation due to the assumed vehicle running 

speed may not matter seriously. For example, if the location A is the one closest to stop j

among all observed vehicle i’s locations downstream of stop j and upstream of stop j+1, 

by using t Ai ,  and the assumed vehicle running speed, the estimated departure time of 

vehicle i at stop j seldom deviates from the actual departure time much, especially when 

the data polling is relatively frequent. The difference between the estimated headway and 

the actual headway seldom exceeds 30 sec by doing so, and this may not affect the 

passenger boarding time estimation seriously if the passenger boarding rate is not 

extremely large. 

Other than the five variables ( D jA, , D Bn, , t Bi , , t Ai ,  and h li, ), the only unknown 

factors left in equation (5-3) are λ l  and τ jji ,1, −  (τ 1,, +lli ), namely the passenger boarding 

rate at each stop and vehicle running speed on each segment between two adjacent stops 

along the transit route. This chapter will be spent to investigate the methods for 

estimating these two unknown factors using AVL data collected by a Level A or B AVL 

system such as that operated in Tucson, Arizona. 

In the following part of this chapter, the AVL data used for analysis and the 

procedure to process the raw AVL data will be briefly introduced. Furthermore, three 

assumptions are made on the vehicle running speed for facilitating deriving vehicle 

operating parameters from AVL data as follows: 
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Assumption 1: A vehicle’s running speed is trip-specific. The vehicle running speed 

on each separate route segment for any particular trip is similar from day to day, but the 

speed may differ from trip to trip within the same day; 

Assumption 2: A vehicle’s running speed is day-specific. In this case, the 

assumption is made that the current vehicle’s running speed resembles the previous 

vehicle’s on the same route segment; and, 

Assumption 3: The combination of assumption 1 and assumption 2, considering 

both trip-specific and day-specific effects.

With these three assumptions, linear regression models based on the recursive 

vehicle trajectory function are employed to derive vehicle running speeds and the 

passenger boarding rates. Also, statistics are presented to evaluate the regression results 

and to suggest the rationality of the assumptions made on the vehicle running speed. 

Furthermore, a comparison study is conducted to compare the performance of the 

reasonable vehicle running speed assumptions in terms of their prediction error, using an 

independent AVL data set.

5.2. AVL Data

AVL Data Source

The AVL data under investigation in this chapter is collected from eastbound route 

8, which is currently operated by Sun Tran (Tucson, Arizona) primarily on Broadway and 

6th Avenue as in Fig. 5.2. The Sun Tran AVL system basically polls vehicle location data 

to the dispatch every 40 sec for all operating vehicles in fleet. For either Level A or Level 

B AVL systems, they do not directly collect the passenger boarding data and vehicle 
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running speeds. These parameters generally need to be estimated using interpolation,

regression, or some other approaches.

The AVL data collected for analysis spans from May 4, 2004 through August 5, 

2004. The AVL data of three trips, starting from Laos transit center at 6:55 AM, 7:05 AM 

and 7:15 AM respectively, are collected, but only the trip starting at 7:15 AM will be 

analyzed. However, the AVL data of the other two trips are indispensable in the sense 

that they will be used to derive the vehicle headways ( h li, , one of the decisive variables 

of the vehicle travel time) for the 7:15 AM trip and to account for the impacts of the 

previous trips (6:55 AM and 7:05 AM) on the following trip (7:15 AM).

Fig. 5.2. Route 8 of Sun Tran in Tucson, AZ
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Data Processing

The original AVL data in Sun Tran’s AVL database are processed in the following 

steps before they are analyzed.

Step 1:

Retrieve the vehicle location data of three consecutive eastbound trips starting from 

Laos transit center at 6:55 AM, 7:05 AM and 7:15 AM respectively.

Step 2:

For each vehicle location, identify the stop that the vehicle just passed before it 

recorded its location, and estimate the distance between this location and the identified 

stop.  

Algorithm: Find the perpendicular point of each vehicle location on the straight line 

defined by each pair of adjacent stops. If the perpendicular point falls between two 

adjacent stops, pick the upstream one as the stop just passed by the vehicle.

Step 3: 

Screen out the outliers. In this study, outlier is defined as the vehicle location more 

than 50 meters away from its perpendicular point on the route segment. 50 meters is 

assumed as the upper limit of the system error of Sun Tran AVL, which might be a bit 

conservative in the sense that maximum error of the Sun Tran AVL may be far less than 

assumed here.

Step 4:
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Truncate the data set. There are 78 stops along route 8 in total, with downtown 

Ronstadt Center as an intermediate stop. Downtown Ronstadt Center is special in the 

sense that a large amount of slack time and frequent operations controls may be applied 

at this particular stop. To avoid the impacts of the operations control on the AVL data 

analysis, only the vehicle locations and stops downstream of Ronstadt Center are used to 

form the data set for analysis. Furthermore, over-congested traffic condition and curved 

street segments in the downtown area could make the data analysis appreciably more 

complicated. Therefore, the data set is further truncated to comprise only the location 

data downstream of the intersection of Euclid and Broadway.  In addition, for eastbound 

route 8, half of the trips terminate at the Wilmot and Broadway terminal, and another half 

operates beyond Wilmot along Broadway and terminates at Speedway/Harrison Park ‘N’ 

Ride terminal. On the route segment between Euclid and Wilmot, within the peak hours, 

the vehicle headway is 10 minutes on average according to the schedule, and 20 minutes 

on the segment between the Wilmot terminal and the Speedway/Harrison Park ‘N’ Ride 

terminal. This data analysis focuses on only frequent transit service (average operation 

headway is equal to or less than 10 minutes). Therefore, the vehicle location data from 

the Wilmot terminal to the Speedway/Harrison Park ‘N’ Ride terminal is removed from 

the data set.  Moreover, the number of observed vehicle locations (samples) between 

Craycroft and Wilmot along Broadway is surprisingly small. Therefore, only the vehicle 

locations falling on the segment between Euclid and Craycroft along Broadway is kept in 

the data set.

Step 5: 
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Estimate the vehicle headway at each stop. The vehicle headway can be estimated 

with the following algorithm, assuming average vehicle running speed as 20 mph.

With Fig. 5.1, given that point B is the one closest to stop n among all observed 

locations of vehicle i falling between stops n and n+1, the departure time d ni,  of vehicle i

at stop n will be:

V
D

td
Bn

Bini
,

,, −=  (5-4)

‘V’  in (5-4) is the assumed average vehicle running speed, it is assumed as 20 mph 

in this study.

If there is no observed location between stops n and n+1, simply give d ni,  a 

negative value. For example,

1, −=d ni (5-5)

Do exactly the same thing for vehicle i-1, and the headway of vehicle i at stop n can 

be calculated with equation (5-6) below, given both d ni,  and d ni ,1−  are positive.

ddh niniki ,1,, −−= (5-6)

If either d ni,  or d ni ,1−  is negative, the vehicle headway at stop n-1 is used to 

represent the vehicle headway at stop n.

hh nini 1,, −= (5-7)

By going through these five steps, the AVL data related to 7:05AM trip and 

7:15AM trip may have the form as in Table 5.1.
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Table 5.1.  AVL Data Format after Preliminary Processing

Time Stop Distance (m) Headway (sec)
20040504075147 1 182 567
20040504075149 1 227 567
20040504075222 2 262 662
20040504075540 6 143 708
20040504075752 8 808 694
20040504080012 12 311 771

… … … …

In Table 5.1, each row represents an observed vehicle location with the first column 

standing for the time that the location is recorded by AVL, the second column 

representing the index of the stop just passed, the third column being the distance 

between the location and the stop in the second column headed by ‘Stop’, and the fourth 

column representing the vehicle headway at the stop just being passed. Furthermore, in 

Table 5.1, records are sorted in the order in which the vehicle locations have been 

observed.

The data form in Table 5.1 can also be converted into any specific form for 

estimating the passenger boarding rates and vehicle running speeds, and developing the 

travel time forecasting models, under different circumstances. 

5.3.  Regression Methodology and Parameter Estimation

Similar to the assumptions made on the vehicle running speed in Section 5.1, the 

passenger boarding rate can also be assumed either trip specific or not within certain time 

period, say peak hours. Both assumptions on the passenger boarding rate have been 

adopted in this particular study. Specifically, for vehicle running speed assumptions 1 and 

2, passenger boarding rates are assumed the same for all trips of interest, and the trip-

specific boarding rates are assumed for the vehicle running speed assumption 3.  The 
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remaining part of this chapter presents the models for deriving the vehicle operating 

parameters under three vehicle running speed assumptions separately. Before proceeding 

to investigate vehicle running speed assumption 3, the study on the first two vehicle 

running speed assumptions is necessary.

5.3.1.  Assumption 1: Trip-Specific Vehicle Operating Behavior

Trip-specific vehicle operation assumes the vehicles of the different trips (e.g. 7:05 

AM trip and 7:15 trip) behave differently. It also assumes that the vehicles on the same 

trip (e.g. 7:15 AM trip) on different days behave the same operationally, so that they have 

common operational parameters, e.g. vehicle running speeds and passenger boarding 

rates. Accordingly, the operational parameters derived from the trip (e.g. 7:15 trip) on 

previous days may best represent the parameters of the same trip (e.g. 7:15 trip) of the 

current day, and they can be used directly to predict the vehicle travel time for the same 

trip in the future. The derivation of the vehicle running speeds and the passenger 

boarding rates for a particular trip (e.g. 7:15 AM trip) can rely on the method of linear 

regression. 

To estimate a regression, equation (5-3) is further generalized into the following 

form:
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wherein,

T BAi ,, : The travel time from location A to location B for vehicle i;
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δ ji , : Binary variable representing whether or not stop j is located between locations 

A and B. If yes, δ ji ,  = 1; otherwise δ ji ,  = 0;

p jji ,1, − : The proportion of the link (between stops j-1 and j) falling between 

locations A and B; and,

N: total number of stops of concern.

In equation (5-8), the dependent variable is the vehicle travel time (T BAi ,, ), and the 

independent variables are Dp jjjji ,1,1, −− ⋅  and h jiji ,, ⋅δ . The coefficients, namely the 

reciprocal of the vehicle running speeds (τ jji ,1, − ) and passenger boarding rates (λ j ), will 

be calibrated through regression. Accordingly, the data form in Table 5.1 will be 

converted into the form as in Table 5.2.

Table 5.2. AVL Data Form for Regression (Assumption 1)

Link 1-2 
Link 2-

3 …
Link (N-
1)-(N)

Link (N)-
(N+1)

Stop 1 Stop 2 ... Stop N
Time 
(Sec)

45 0 0 0 0 0 0 0 2
183 262 0 0 567 0 0 0 33
… … … … … … … … …

 The ‘link’ columns accommodate the Dp jjjji ,1,1, −− ⋅ , and the “stop” columns 

include the h jiji ,, ⋅δ  respectively. Each record in Table 5.2 is made up of the information 

from two successively observed vehicle locations. The two records in Table 5.2 are 

essentially derived directly from the first three records (three vehicle locations) in Table 

5.1. For example, the first record in Table 5.1 represents a location on the link between 

stops 1 and 2, and so does the second record. Therefore, the distance between the first 

location and second location is 227-182 = 45 meters in Table 5.2. Since only the link 

between stops 1 and 2 is involved, the other cells are all zeros in the first row in Table 5.2. 
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The third record in Table 5.1 represents the third observed vehicle location, and it is on 

the link between stops 2 and 3. Therefore, ‘262’ (distance from stop 2) appears in this cell 

in Table 5.2. The bus location 2 is 227 meters away from stop 1, and equivalently 183 

meters away from stop 2 (the length of the link between stops 1 and 2 is 410 meters), so 

183 is the distance from bus location 2 to stop 2 as recorded in Table 5.2. Stop 2 is 

between the second and the third locations. Therefore, the vehicle headway (567) at stop 

2 appears in the column ‘stop 2’ in Table 5.2.

Furthermore, since the Sun Tran AVL data is polled by the dispatch every 40 sec, 

the vehicle travel time (including running time and dwell time) between any two 

successively observed vehicle locations is almost exactly a multiple of 40 sec (40, 80, 

120, … seconds). This may be a problem for the regression method. Therefore, a data 

transformation is made by dividing each cell in Table 5.2 with the summation of all ‘link’ 

cells of the same row, which is essentially the distance between the two locations. This 

transformation can help to make the dependent variable continuous. For example, each 

cell within record 2 in Table 5.2 will divide 183+262 = 445, and then the record 2 in 

Table 5.2 becomes the only record in Table 5.3:

Table 5.3. Transformed AVL Data Form for Regression

Link 1-2 Link 2-3 …
Link (N-
1)-(N)

Link (N)-
(N+1)

Stop 1 Stop 2 … Stop N
Time/Dist

(Sec)
… … … … … … … … …

0.411236 0.588764 0 0 1.274157 0 0 0 0.074157
… … … … … … … … …

With the data in the form of Table 5.3 and the variable definitions mentioned 

previously, 1669 records in total for the trip starting from Laos transit center at 7:15 AM 
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are generated to calibrate 41 unknown parameters (21 vehicle running speeds and 20 

passenger boarding rates). The linear regression was run in Minitab 14.0 (Minitab, 2004) 

and the regression results are presented in Tables 5.4 and 5.5. In these two tables, the 

regression results with and without speed constraints (35 mph is assumed as the 

maximum speed) are listed separately.

Table 5.4.  Regression Results – Vehicle Running Speed (Assumption 1, 7:15 AM Trip)

Without Speed Constraints With Speed Constraints
Segment

Speed (mph) t-statistic P value Speed (mph) t-statistic P value
Euclid - Fremont 17 5.3 0.00 17 5.4 0.00

Fremont - Highland 30 2.8 0.01 30 2.7 0.01
Highland - Cherry 48 1.5 0.14 351 - -
Cherry - Campbell 23 4.5 0.00 23 4.5 0.00
Campbell - Plumer 28 4.8 0.00 28 4.8 0.00
Plumer - Tucson 23 4.6 0.00 23 4.5 0.00
Tucson - Treat 45 2.0 0.04 351 - -

Treat-Country Club 27 4.7 0.00 28 4.7 0.00
C Club-Randolph 33 7.3 0.00 33 7.3 0.00
Randolph-Dodge 34 2.8 0.01 34 2.8 0.01
Dodge-Alvernon 14 14.4 0.00 14 14.4 0.00
Alvernon-Irving 17 8.1 0.00 17 8.1 0.00
Irving-Columbus 27 5.7 0.00 27 5.7 0.00

Columbus-Belvedere 43 3.0 0.00 351 - -
Belvedere-Swan 42 2.6 0.01 35 2.5 0.01

Swan-Swan(Inter) 3 7.7 0.00 3 7.7 0.00
Swan  - Niven 64 1.8 0.08 351 - -

Niven – Rosemont 14 5.5 0.00 14 5.4 0.00
Rosemont-Williams 55 2.3 0.02 351 - -
Williams-Craycroft 14 9.4 0.00 14 9.3 0.00
Craycroft-Leonora 27 2.9 0.00 27 2.9 0.00
Note1: Since the speed derived directly from the original data is larger than 35 mph, it is forced to be 35 
mph to make the regression to be the one with speed constraints.
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Table 5.5.  Regression Results – Passenger Boarding Rate (Assumption 1, 7:15 AM Trip)

Without Speed Constraints With Speed Constraints
Stop λ j  (Pass/Min)1

t-statistic P value λ j  (Pass/Min) 1
t-statistic P value

Fremont -2 -2 -2 -2 -2 -2

Highland 0.9 5.4 0.00 0.8 5.6 0.00
Cherry 0.5 2.0 0.04 0.4 2.0 0.04

Campbell 0.9 7.8 0.00 0.9 7.8 0.00
Plumer 0.6 3.9 0.00 0.6 4.0 0.00
Tucson 0.8 5.2 0.00 0.7 5.5 0.00
Treat 0.4 3.3 0.00 0.3 3.7 0.00

Country Club 0.8 6.9 0.00 0.9 6.9 0.00
Randolph 0.5 3.2 0.00 0.5 3.2 0.00

Dodge -2 -2 -2 -2 -2 -2

Alvernon 1.2 22.7 0.00 1.2 22.7 0.00
Irving -2 -2 -2 -2 -2 -2

Columbus 1.2 13.4 0.00 1.2 15.8 0.00
Belvedere 0.6 4.2 0.00 0.6 4.4 0.00
Swan West 1.0 5.4 0.00 1.0 5.4 0.00
Swan East 0.4 2.2 0.03 0.3 1.8 0.07

Niven 0.5 2.0 0.04 0.3 1.5 0.14
Rosemont 1.0 7.5 0.00 1.0 7.5 0.00
Williams 0.5 2.9 0.00 0.4 2.5 0.01
Craycroft 0.9 12.0 0.00 0.9 12.1 0.00

Note1: The passenger boarding rate is estimated assuming the average passenger boarding time is 3 sec.
Note2: “-” means the value is not statistically significant.

Though, statistically, both Table 5.4 and Table 5.5 show that a majority of the 

independent variables do affect the vehicle travel time significantly, a validation exercise 

is useful. Assuming the operation schedule of route 8 is appropriate to ensure that most 

trips of route 8 can operate on schedule at all time points, the vehicle travel time from the 

timepoint Broadway at Randolph to another timepoint Wilmot at Broadway (NE) should 

be 14 minutes. According to the regression results, i.e. vehicle running speeds and 

passenger boarding rates, the travel time between the timepoint Broadway at Randolph 

and the stop Broadway at Craycroft would be forecasted as 11.2 minutes (7.7 minutes for 

running time and 3.5 minutes for dwell time), with the assumption that the vehicle 

headway is 10 minutes at all stops along the route as scheduled. The average travel time 
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for the remaining distance up to the next timepoint Wilmot at Broadway (NE) is 

approximately 2.75 minutes according to the AVL data. In total, the travel time between 

the two timepoints is 13.95 minutes. This number is very close to the scheduled 14 

minutes. Furthermore, the regression results above also imply an average operating speed 

of 13.6 mph on the segment under investigation, which also appears reasonable.

Though the regression results may give relatively accurate vehicle travel time 

estimation, a few link speeds from the regression without speed constraints are 

surprisingly high (e.g. 64 mph between Swan and Niven along Broadway). It is also 

suspicious that there are three (Fremont, Dodge and Irving) stops having no passenger 

demand at all. A further investigation of the methodology and appropriateness of the 

relevant sampling context may be necessary and helpful.

5.3.2. Simulation Analysis of Sampling

Although it has been statistically shown that the vehicle running speeds and the 

passenger boarding rates do together provide reasonable estimates of the vehicle travel 

time, there is no guarantee that the derived vehicle running speeds and the passenger 

boarding rates from regression would be the same as the actual ones. On the contrary, a 

simulation example can specify the ‘real’ parameters beforehand, simulate the vehicle 

operations, and then compare the ‘real’ parameters with the derived parameters to see any 

discrepancy. In this sub-section, a simulation example is deliberately designed to mimic 

the simplified vehicle operations of route 8 and the Sun Tran AVL data collection process 

to examine the appropriateness of assumption 1.
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The AVL data polling is actually a data sampling process.  The data sampling 

process is often subject to both/either sample rate and/or sampling method problem(s). 

Both sample rate and sampling method are determined by many factors. The purpose of 

the AVL data analysis in this study is to derive the vehicle operating parameters, 

specifically vehicle running speeds and passenger boarding rates, from which to develop 

vehicle travel time forecasting models. This is also the purpose of the data collection 

process simulated in the example. Furthermore, the simulation example also intends to 

examine how the appropriateness of the data sample rate and sampling method can be 

affected by the characteristics of the data. 

In the simulation example, a hypothetical route segment is designed. This 

hypothetical route segment has seven stops in total, and the relevant average vehicle 

running speeds as well as the passenger boarding rates are given in Table 5.6. 
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Table 5.6. Average Vehicle Running Speeds and Passenger Boardings (10 min vehicle headway)

Stop Vehicle Running Speed (mph) Average # of Pass Boardings

1 ---
30

2 5
25

3 8
22

4 4
28

5 6
30

6 4

7
34

---

It is further assumed that the actual vehicle running speed is normally distributed 

with a COV of 0.15; passenger arrivals are a Poisson process; passenger alighting is 

negligible; average passenger boarding time is 3 sec; and, the distance between any two 

adjacent stops is constant (400, 500 and 800 meters). The combinations of different 

between-stop distances and sample sizes (the number of simulated trips) constitute 

different scenarios. The vehicle locations are sampled for different scenarios, with the 

same sampling time interval (40 sec) as employed by Sun Tran AVL. Furthermore, the 

data polling time interval of 20 sec is also employed for comparison purpose.

The hypothetically sampled vehicle location data goes through the same procedure 

as the actual AVL data, and similar regression results are given in Tables 5.7 and 5.8. 

From these two tables, one may see how the difference between the given parameter 

values and the derived values varies with the sample rate (data polling time interval), 

average between-stop distance and the sample size.
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Table 5.7. Regression Results – Passenger Boardings (Simulation Example)

Derived Average Number of Passenger Boardings
Data Polling Time Interval (DPTI) = 40 sec DPTI=20sec

Between-stop 
distance  = 800m

500 400 400Stop 
50 

simulated 
trips

100 50 100 50 100 1000 100

2 6 6 6 5 3 3 4 5
3 9 8 8 8 12 10 9 8
4 4 4 4 3 13 10 8 4
5 6 6 7 7 14 13 12 6
6 2 3 3 3 13 13 12 4

Table 5.8. Regression Results – Vehicle Running Speed (Simulation Example)

Derived Vehicle Running Speed (mph)
Data Polling Time Interval (DPTI) = 40 sec DPTI=20sec

Between-stop 
distance  = 800m

500 400 400Link
50 

simulated 
trips

100 50 100 50 100 1000 100

1-2 32 31 29 29 -151 21 31 29
2-3 26 25 25 25 21 23 23 24
3-4 23 22 22 22 45 30 25 23
4-5 29 28 27 27 62 47 40 28
5-6 29 30 34 33 72 62 56 30
6-7 33 32 29 29 56 68 75 34

According to Tables 5.6 through 5.8, one may see that, in comparison with the 

number of simulated trips, the average between-stop distance has a significant impact on 

the regression results. For the case with the average between-stop distance of 800 meters, 

both the vehicle running speed and the number of passenger boardings derived from 

regression are very close to the ‘real’ parameter values in Table 5.6. For the case with the 

between-stop distance of 500 meters, the discrepancy between the derived and the ‘real’ 

parameter values is still acceptable; however, when the average between-stop distance 

drops to 400 meters, which is similar to the Sun Tran case (370 meters on average), the 
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estimated parameter values are much different than the ‘real’ parameter values, even 

when a sufficient number of samples (1000 trips) have been collected. Yet with the 

average between-stop distance of 400 meters, when the data is sampled more frequently 

(20 sec), the estimated and the ‘real’ parameter values are much closer. 

The reasons underlying these observations may be very simple. With an interval of 

40 sec and the average between-stop distance being 800 meters, the data polling is 

sufficiently frequent to use the sampled data to directly estimate the vehicle running 

speeds. For such case, more than 50 percent of the sampled vehicle locations have one or 

more vehicle locations falling on the common route link for any particular trip. This 

implies that, in Table 5.3, more than 50 percent of the records have only one non-zero 

cell and it resides in the ‘link’ column. This forces the regression to directly estimate the 

average vehicle running speeds without much interference from another parameter 

(passenger boarding rate), and this results in a relatively accurate vehicle running speed 

estimation. Accurate vehicle running speed estimation further helps the regression to 

derive the passenger boarding rates precisely. 

For the case with the average between-stop distance of 500 meters, the 40 sec data 

polling time interval is still acceptable.  There are still more than 30 percent of the 

sampled vehicle locations having one or more other vehicle locations falling on the same 

route link for each particular trip. However, this percentage sharply decreases to less than 

20 percent when the between-stop distance drops to 400 meters. For this case, the 

derivation of vehicle running speeds depends on the estimation of the passenger boarding 

rates, and vice versa. 
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The AVL data polling process is basically a time sampling process, and the 

dependent variable in the regression depends on the time sampling cycle. Due to this fact, 

the general linear regression method may not be perfectly appropriate, even though the 

estimated parameter values fits the data well. For instance, for the case of average 

between-stop distance of 400 meters and data polling time interval of 40 sec, the derived 

parameter values are appreciably different from the ‘real’ ones in Tables 5.6. Nonetheless, 

the estimated average travel time from stop 1 to stop 6 using the derived parameter values 

is not much different from the travel time estimated by using the ‘real’ parameter values. 

This is shown in Table 5.9.

Table 5.9. Difference between the Estimated Travel Time Using Derived Parameters and Using Actual 
Parameters

Total Travel Time from Stop 1 to 6 (Sec)
Data Polling Time Interval (DPTI) = 40 sec DPTI=20sec

Between-stop 
distance  = 800m

500 400 400

50 
simulated 

trips
100 50 100 50 100 1000 100

Using 
Derived 

Parameters 1
472 472 325 325 277 277 277 277

Using Actual 
Parameters 2

463 473 332 327 265 306 290 277

Percentage 
Difference 

(2-1/1)
-1.8 0.3 2.2 0.6 -4.2 10.6 4.8 0.3

In Table 5.9, for the worst case (column 7, data polling time interval 40 sec and 

average between stop distance 400 meters), the percentage prediction error of the total 

travel time from stop 1 to stop 7 is no more than 11 percent; for all others, the prediction 

error is negligible. However, as indicted in Tables 5.7 and 5.8, the derived vehicle 

running speeds and the number of passenger boarding are appreciably different from the 
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‘real’ parameters for the cases represented by columns 5 through 7 in Tables 5.7 through 

5.9.

Furthermore, with the average between-stop distance of 400 meters, as the vehicle 

location data is sampled more frequently, e.g. every 20 sec (DPTI = 20 sec in Tables 5.7 

and 5.8), the percentage of the sampled vehicle locations having other sampled vehicle 

location(s) on the common route link goes back to as high as 58 percent, and this explains 

why the derived parameter values from this scenario are fairly close to the ‘real’ 

parameter values in Table 5.6 again. 

With this simple simulation example, one may conclude that, given the particular 

data sampling method employed by Sun Tran AVL, the data polling rate may need to be 

compatible with many factors, among which the average between-stop distance is the 

most significant one. Sun Tran AVL data are polled every 40 sec, and the average 

between-stop distance of the route segment under investigation is close to 400 meters. 

These together make up the situation that might not give precise parameter estimation, as 

suggested by the simulation example. Furthermore, the real vehicle operation can be 

considerably more complicated than simulated in the example. Accordingly, the 

regression results presented in Tables 5.4 and 5.5 may need further examination before 

being used in practice. 

5.3.3. Assumption 2: Day-Specific Vehicle Operating Behavior

The day-specific assumption assumes that the current vehicle’s operating behavior 

is similar to the previous vehicle’s, so that the previous vehicle’s operating behavior can 

be incorporated to forecast the current vehicle’s operating behavior. In specific, the 
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previous vehicle’s running speed may reflect the traffic condition that the following 

vehicle will also experience, and thus can be a good surrogate to the following vehicle’s 

running speed. Based on this assumption, a simple hypothesis can be made that the 

current vehicle and the previous vehicle share the common running speed τ jji ,1, − .  

There are two methods to examine this hypothesis. One is to let:

τψτ jjijjjji ,1,1,1,1, −−−− ⋅=  (5-9)

and plug equation (5-9) into equation (5-3). The regression will be employed to give 

statistical evidence to either accept or reject the hypothesis that ψ jj ,1−  is 1.0. However, 

the derivation of τ jji ,1, −  (this will be introduced a bit later in this sub-section) will 

eventually make equation (5-3) polynomial in nature, and the regression becomes 

particularly difficult. Other methods need to be sought. 

Another approach is to let ττ jjijji ,1,,1,1 −−− = , then to examine statistically whether the 

derived passenger boarding rates are reasonable to be used to determine the vehicle travel 

time. If passenger boarding rates are reasonable, the hypothesis ττ jjijji ,1,,1,1 −−− =  may not 

be rejected; otherwise, the hypothesis ττ jjijji ,1,,1,1 −−− =  would be rejected. The logic of 

this method is as follows. A majority of the previous studies on operations control and the 

observations from many others on vehicle travel time forecasting have all shown that the 

vehicle travel times are determined in part by the passenger boarding rates and the 

vehicle headways. Therefore, if it is found that assumption 2 leads to unreasonable 

passenger boarding rates, ττ jjijji ,1,,1,1 −−− =  must not be true, and assumption 2 should be 

rejected. 
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With this approach, equation (5-3) becomes:

( ) τλβττ 1,,1

,
1,

1

1,,1

1,

,1,1

,
,,,,

+−=

−

= +−

+

−−
+∑ ⋅⋅+∑+=−=

nni

Bnn

jl
lli

n

jl lli

ll

jji

jA
AiBiBAi

D
h

DD
ttT  (5-10)

In equation (5-10), τ jji ,1,1 −− (τ 1,,1 +− lli ) is assumed known (it can be derived from the 

observation over vehicle i-1). Therefore, λ l  is the only unknown coefficient to be 

calibrated from the regression. 

Though τ 1,,1 +− lli  is assumed known, since the AVL data collection is a time 

sampling process, the vehicle running speed can seldom be estimated directly from the 

AVL data. Approximation has to be employed, and some derivation work needs to be 

done under the assumption that vehicles i-1 and i share the same running speed on the 

common route segment.

In all the three situations indicated in Fig. 5.3, it is assumed that the vehicle i (i-1) 

runs at speed τ jji ,1,1 −−  (the running speed of vehicle i-1) between locations C (A) and D

(B).

3 .

2 .

1 .

j - 1

j - 1

j - 1

j

j

j

A ( C ) B ( D )

A ( C ) B ( D )

A ( C ) B ( D )

Fig. 5.3. Three Typical Situations for Running Speed Derivation

There are nine cases (9 combinations of situations) in which both the current 

vehicle i and the previous vehicle i-1 have two successively observed locations falling 

within the three situations depicted in Fig. 5.3. These cases lead to different specification 
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of the regression function, i.e. different relationship of the dependent variable (travel time 

between C and D) and independent variables (relevant vehicle headways), as follows:

Case 1: Vehicle i-1 is in situation 1 with two locations A and B, and vehicle i is also 

in situation 1 with two locations C and D.

For this case, τ 1,,1 +− lli  can be directly calculated from the distance and the travel 

time between locations A and B for vehicle i-1. However, the only unknown factor λ l  is 

not involved in either vehicle i-1’s travel time between locations A and B or vehicle i’s 

travel time between locations C and D. Therefore, this case will not be transformed into a 

data record for the regression.

Case 2: Vehicle i-1 is in situation 1 and vehicle i is in situation 2.

The vehicle i-1’s speed on link between stop j-1 and stop j can be directly observed.
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Equations (5-11) and (5-12) together yield equation (5-13).
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Case 3: Vehicle i-1 is in situation 1 and vehicle i is in situation 3.

Similarly, equation (5-14) can be specified.
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Case 4: Vehicle i-1 is in situation 2 and vehicle i is in situation 1.
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The speed of vehicle i-1 on link (j-1)-j can be specified using equation (5-15).
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and, the equation (5-16) can be specified for regression.
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Similarly, for other cases, equations (5-17) through (5-21) hold.

Case 5: Vehicle i-1 is in situation 2 and vehicle i is in situation 2.
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Case 6: Vehicle i-1 is in situation 2 and vehicle i is in situation 3.
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Case 7: Vehicle i-1 is in situation 3 and vehicle i is in situation 1.
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Case 8: Vehicle i-1 is in situation 3 and vehicle i is in situation 2.
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Case 9: Vehicle i-1 is in situation 3 and vehicle i is in situation 3.
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Equations (5-13) through (5-21) indicate that vehicles i-1 and i experience exactly 

the same running speed on the link between stops j-1 and j, and the reason why the travel 

time is not directly proportional to the travel distance is only attributed to the headway 

difference and thus the dwell time difference of the two vehicles. There are also many 

other methods to estimate the running speed experienced by vehicle i-1, such as a 

composite speed considering more than two successively observed locations, but they are 

more complicated than the approach given here. Furthermore, it is worthwhile to point 

out that, in equations (5-13) through (5-21), the dependent variable is just the expression 

on the left-hand side of the equations, and the independent variables are the linear 

expressions multiplied by boarding rates λ j  on the right-hand side of the equations. For 

instance, in equation (5-18), the independent variables are β1,,1
,

, ⋅



 −⋅ − hh

D

D
jiji

BA

DC  and 

β11, ⋅−h ji , which multiply with λ j  and λ 1−j  respectively.

By searching through all vehicle locations and matching them with the three 

situations in Fig. 5.3, the AVL data can be organized into a form as in Table 5.10.

Table 5.10. Regression Data Form (Assumption 2)

Stop 1 Stop 2 … Stop N Time
… … … … …

0.775 0 0 0 0.074157
… … … … …

The cells in each ‘stop’ column accommodate the observed values of the 

independent variable (linear function of headways) with λ j ’s as the coefficient as in 

equations (5-13) through (5-21). The regression results are presented in Table 5.11.
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Table 5.11.  Regression Results – Passenger Boarding Rate (Assumption 2, 7:15 AM trip)

λ j  (Passenger/Min) t-statistic P value

Fremont -0.2 -0.06 0.952
Highland 0.8 0.42 0.671
Cherry 0.8 0.88 0.381

Campbell 0.1 0.12 0.903
Plumer -0.3 -0.13 0.897
Tucson 0.2 0.08 0.934
Treat -0.1 -0.06 0.955

Country Club 0.9 1.16 0.246
Randolph 0.4 0.6 0.546

Dodge 0.0 0.01 0.99
Alvernon -4.3 -2.87 0.004

Irving -21.2 -6.06 0
Columbus -0.6 -0.43 0.67
Belvedere -0.1 -0.05 0.96
Swan West 0.8 0.84 0.402
Swan East -0.3 -0.27 0.784

Niven -0.3 -0.09 0.931
Rosemont 0.4 0.33 0.741
Williams 0.1 0.04 0.966
Craycroft 0.1 0.09 0.925

In Table 5.11, the calibrated values of passenger boarding rates ( λ j ) are either 

unreasonable (e.g. λ j  is –21.2 passengers/min at Irving stop) or not statistically 

significant (e.g. P value is 0.952 at Fremont stop). Therefore, one may conclude that 

Table 5.11 presents no statistical evidence to support the hypothesis that the current 

vehicle and the previous vehicle share the common running speeds. There might be two 

ways to interpret this. One possibility is that the vehicle running speed is more likely to 

be trip specific, rather than day specific; or equivalently, the vehicle running speed of 

different trips of the same day may be quite different. This possibility may be reasonable 

for this study, in the sense that there is very small likelihood that serious traffic 

congestion occurs on Broadway that it propagates to 10 minutes later when the next 

vehicle comes. Vehicle running speed over any short segment on Broadway is primarily 
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subject to randomness, rather than following any particular pattern. Another possibility 

could be that the vehicle dwell time might not be sensitive to the vehicle headway, i.e. 

vehicle dwell time is fixed, though also stop-specific. This possibility is examined by 

simply using 10 minutes as the headways for both vehicle i and i-1 at all stops of concern. 

The same regression models were estimated. Though not presented, the regression results 

do not suggest any improvement over what is shown in Table 5.11.

5.3.4.  Assumption 3: Combined Vehicle Operating Behavior

Though the day-specific assumption may not be appropriate to predict vehicle travel 

time properly, the combined assumption considering both day-specific and trip-specific 

effects can be more relevant for estimating vehicle operating parameters, and is worth 

further examination. 

In the view of equations (5-11) through (5-21), any attempt to consider both the 

trip-specific and the day-specific assumptions simultaneously may drive the regression 

functions to be polynomial in nature. However, another approach is available. Two-stage 

regression method can be employed to integrate the trip-specific and the day-specific 

effects, while all mathematical functions remain linear. 

A simple comparison of the regression results from both trip-specific and day-

specific assumptions may suggest that the former is relatively superior to the latter for the 

particular case of route 8 in Tucson. Accordingly, the two-stage method is constructed as 

follows:

Stage 1: Based on the trip-specific assumption, derive the average vehicle running 

speeds τ jji ,1, −  and passenger boarding rates λ ji,  (to note that subscript “i” is added here 
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as the index to denote vehicle or trip, and to differentiate the passenger boarding rates for 

different vehicles or trips) for each particular trip. At this stage, the regression function is 

the same as equation (5-8) except the trip-specific notation for the passenger boarding 

rates, and its mathematical form is:

( )∑ ⋅⋅⋅+∑ ⋅
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== −
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j jji
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Stage 2: Use the vehicle running speeds τ jji ,1, −  and passenger boarding rates λ ji,

derived in Stage 1 to predict the travel time for both the previous and the current vehicles. 

Then, derive the relationship of the prediction errors for both previous and current 

vehicles.

To complete Stage 1, the trip-specific assumption is also applied to the trip starting 

at 7:05 AM (the regression results for the trip starting at 7:15 AM have been presented 

earlier in Tables 5.4 and 5.5), and the regression results are given in Tables 5.12 and 5.13.

As argued previously, simply treating the running speeds of both the previous 

vehicle and the current vehicle the same may not be appropriate. However, a more 

reasonable assumption can be drafted: the vehicle travel time prediction error is entirely 

due to the vehicle running time variation; and, the current vehicle’s running time 

variation is proportional to the previous vehicle’s running time variation. 
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Table 5.12.  Regression Results – Vehicle Running Speed (Assumption 1, 7:05 AM Trip)

Speed (mph) t-statistic P value
Euclid - Fremont 15 9.4 0.00

Fremont - Highland 32 4.3 0.00
Highland - Cherry 34 3.2 0.00
Cherry - Campbell 17 10.4 0.00
Campbell - Plumer 20 9.4 0.00
Plumer - Tucson 28 5.2 0.00
Tucson - Treat 351 - -

Treat-Country Club 33 3.4 0.00
C Club-Randolph 28 12.5 0.00
Randolph-Dodge 351 - -
Dodge-Alvernon 18 11.9 0.00
Alvernon-Irving 23 6.2 0.00
Irving-Columbus 21 7.4 0.00

Columbus-Belvedere 351 - -
Belvedere-Swan 25 4.7 0.00

Swan-Swan(Inter) 5 2.6 0.01
Swan  - Niven 29 6.3 0.00

Niven – Rosemont 13 10.3 0.00
Rosemont-Williams 351 - -
Williams-Craycroft 21 7.1 0.00
Craycroft-Leonora 32 3.2 0.00

Note1: See Table 5.4.

Table 5.13. Regression Results – Passenger Boarding Rate (Assumption 1, 7:05 AM Trip)

λ j  (Passenger/Min) 1
t-statistic P value

Fremont -2 -2 -2

Highland 0.9 9.1 0.00
Cherry 0.4 2.3 0.02

Campbell 0.8 12.2 0.00
Plumer 0.4 4.0 0.00
Tucson 0.9 9.4 0.00
Treat 0.5 2.5 0.01

Country Club 0.9 11.1 0.00
Randolph 0.7 12.0 0.00

Dodge 0.4 3.4 0.00
Alvernon 1.1 23.6 0.00

Irving -2 -2 -2

Columbus 1.0 15.5 0.00
Belvedere 0.5 4.0 0.00
Swan West 0.6 4.1 0.00
Swan East 0.4 1.7 0.10

Niven -2 -2 -2

Rosemont 1.1 16.5 0.00
Williams 0.5 5.4 0.00
Craycroft 1.0 15.5 0.00

Note1: See Table 5.5.
Note2: “-” means the value is not statistically significant.
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Specifically, let the percentage difference of the predicted and the observed running 

times on the link between stops j-1 and j for the previous vehicle i-1 be ϖ jj ,1− , the 

percentage difference for the current vehicle i on the common link will be ϖη jjjj ,1,1 −− ⋅ . 

η jj ,1−  can be seen an augment/discount parameter, and it is both trip- and link-specific. 

Mathematically, equation (5-23) is assumed. Equation (5-23) is also the regression 

function at Stage 2 with η jj ,1−  as the only unknown factor to be calibrated.
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wherein, 

T BAi ,, : Predicted vehicle i’s travel time from locations A to B with the parameters 

estimated from stage 1.

τ jji ,1, − : Estimated vehicle running speed on the link between stops j-1 and j for 

vehicle i from Stage 1;

λ j : Estimated passenger boarding rate at stop j for vehicle i from Stage 1; 

ϖ jj ,1− : The relative difference between the estimated running time and the observed 

running time on link between stops j-1 and j for vehicle i-1; and,

η jj ,1− : Parameters to be derived from AVL data.

If the AVL data is polled frequently, for one trip, there may be multiple 

observations related to the link between stops j-1 and j. For such case, a composite 
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estimation of ϖ jj ,1− is preferred. For example, four vehicle locations a, b, c and d are 

observed successively as in Fig 5.4.

j - 1 ja b c d

Fig. 5.4 Example for Estimating the Composite Difference of Running Time

The vehicle running speed τ jji ,1, −  on the link between stops j-1 and j is involved in 

the vehicle travel times between a and b, b and c as well as c and d, and three vehicle 

running time relative differences ϖ jj ,1−  can be estimated for the link between stop j-1 and 

j. For instance, the percentage change ϖ jj ,1,1 −  based on locations a and b can be 

expressed mathematically as:
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The numerator in equation (5-24) is the vehicle travel time prediction error, and the 

denominator is the net vehicle running time from location a to location b. Furthermore, 

one may have noted that, in equation (5-24), the segment between location a and stop j-1, 

and the segment between stop j-1 and location b are treated the same in terms of the 

percentage change in vehicle running time. Similarly, ϖ jj ,1,2 −  and ϖ jj ,1,3 −  can be 

estimated from location pairs (b and c) and (c and d), and the composite percentage 

change ϖ jj ,1−  for the link between stops j-1 and j may be estimated by weighing ϖ jj ,1,1 − , 

ϖ jj ,1,2 −  and ϖ jj ,1,3 −  with D bj ,1− , D cb,  and D jc,  respectively:
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In equation (5-25), more terms may be added or removed in a similar way.

With the estimated ϖ jj ,1− , equation (5-23) can be used to derive η jj ,1−  through 

regression, and the regression results for the trip starting at 7:15 AM (the vehicle 

operating on this trip is considered as current vehicle i) are presented in Table 5.14.

Table 5.14.  Regression Results – η jj ,1−  (Assumption 3, 7:15 AM Trip)

η jj ,1− t-statistics P value

Euclid - Fremont -1 - -
Fremont - Highland -0.4207 -1.78 0.075
Highland - Cherry -1 - -
Cherry - Campbell -0.3663 -1.99 0.047
Campbell - Plumer -1 - -
Plumer - Tucson -1 - -
Tucson - Treat 0.4523   2.06  0.040

Treat-Country Club -1 - -
C Club-Randolph -0.1822 -1.76 0.078
Randolph-Dodge -0.7037 -2.17 0.031
Dodge-Alvernon -1 - -
Alvernon-Irving -1 - -
Irving-Columbus -1 - -

Columbus-Belvedere -1 - -
Belvedere-Swan -1 - -

Swan-Swan(Inter) 0.5353   5.03  0.000
Swan  - Niven -0.8109 -4.02 0.00

Niven – Rosemont -0.7469 5.67  0.00
Rosemont-Williams -1.0258 -4.95 0.00
Williams-Craycroft -0.3189 -2.90 0.004
Craycroft-Leonora -1 - -

Note1: “-” means the value is not statistically significant.

According to Table 5.14, for about 50 percent of the links under analysis, the 

previous vehicle’s running time prediction error shows statistically significant impacts on 

the current vehicle’s running time prediction error on the same link. Relative to the travel 

time forecasting model developed solely under the understanding of trip-specific vehicle 
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operating behavior, the models incorporating η jj ,1−  are expected to improve the travel 

time prediction.

Furthermore, one may note that, for assumption 3, it is implicitly assumed that the 

derived passenger boarding rates based on the trip-specific assumption are perfectly 

accurate. However, this may not be true, and the actual number of the passengers 

boarding either vehicle i-1 or vehicle i is essentially a random factor. Less or more 

passengers boarding vehicle i-1 than the average may result in more or less passengers 

boarding the vehicle i than the average. This may partly explain why some of the η jj ,1−

values are negative, which implies the travel time prediction errors of the previous 

vehicle and current vehicle are negatively correlated. On the other hand, the positive 

η jj ,1−  values, or the positively correlated prediction errors for the previous and the 

current vehicles, can be interpreted by the fact that the current vehicle and previous 

vehicle may have experienced similar traffic situations, which increase/decrease the 

running time for both the previous and the current vehicles.  Also in many situations, the 

passenger boarding effect and the traffic condition effect exist at the same time. 

5.3.5.  Comparison of the Methodologies

AVL data for the same three trips (6:55 AM, 7:05 AM and 7:15 AM) operating 

from August 5, 2004 through September 30, 2004, excluding the weekend days, is 

collected to illustrate the relative performance of the methodologies introduced 

previously.

The newly collected data went through the same data processing procedure as 

introduced previously, and was eventually organized into the form as Table 5.1. For the 
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trip starting at 7:15 AM from Laos Transit Center, with the vehicle location between the 

Euclid stop and the Fremont stop (location A in Fig 5.1), the vehicle travel times to all 

other downstream locations (location B in Fig 5.2) falling on the segment between 

Fremont and Leonora (excluding this stop) are predicted based on both assumption 1 and 

assumption 3. The prediction error is calculated as the difference between the observed 

vehicle travel time and the predicted travel time between locations A and B. The 

performance of assumptions 1 and 3 in terms of prediction error is presented in Table 

5.15.

In Table 5.15, the first column represents the vehicle locations whose arrival times 

have been predicted; the second column and the fourth column are the root mean square 

error of the vehicle travel time prediction based on assumptions 1 and 3 respectively. The 

third and the fifth columns are the percentage prediction errors (RMSE / Average Vehicle 

Travel Time from location A to location B indicated in the first column) based on 

assumptions 1 and 3 respectively; and, the last column is the percentage difference of the 

RMSE presented in Columns 2 and 4.
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Table 5.15. Model Performance Comparison

Prediction Error

Understanding 1 Understanding 3

Percentage Difference of 
RMSE

(Understanding 1-
Understanding 3) / 
Understanding 1

Vehicle Location

RMSE 
(Sec)

Percentage
RMSE 
(Sec)

Percentage

Fremont -
Highland

20 37.0 20 37.0 0

Highland -
Cherry

30 26.3 30 26.3 0

Cherry -
Campbell

47 31.8 47 31.8 0

Campbell -
Plumer

65 29.8 65 29.8 0

Plumer - Tucson 84 31.3 84 31.3 0
Tucson - Treat 83 25.1 84 25.4 -1 
Treat-Country 

Club
95 25.7 89 24.1 6

C Club-Randolph 79 18.5 79 18.5 0
Randolph-Dodge 94 18.5 84 16.5 11
Dodge-Alvernon 84 15.8 87 16.4 -4 
Alvernon-Irving 59 9.1 63 9.8 -7 
Irving-Columbus 79 11.5 74 10.8 6

Columbus-
Belvedere

73 9.6 77 10.1 -5 

Belvedere-Swan 58 7.2 66 8.2 -14
Swan-

Swan(Inter)
69 8.1 58 6.8 16

Swan  - Niven 80 8.7 71 7.8 11
Niven –

Rosemont
70 7.3 60 6.2 14

Rosemont-
Williams

54 5.1 46 4.4 15

Williams-
Craycroft

74 6.8 63 5.8 15

Craycroft-
Leonora

84 7.1 78 6.6 7

According to Table 5.15, assumption 3 performs slightly better than assumption 1 

overall. Relative to assumption 1, assumption 3 gives more than a 10 percent reduction in 

error for many locations, especially for the locations relatively far downstream. However, 

for both models, the RMSE is fairly large. This may imply that the parameters calibrated 

from the data collected in May, June and July may not be appropriate to used to predict 
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the vehicle travel time in August and September. This can be true due to several other 

facts. In Tucson, the transit passengers generally do not make as many trips in summer as 

in autumn due to the severe weather condition in summer. Also, May, June and July are 

the summer break time of the largest employer in Tucson, the University of Arizona. This 

may imply significantly fewer transit passengers in May, June and July than in August 

and September. 

5.4. Conclusion

Although many models have been developed in previous studies for using AVL 

data to predict the transit vehicle travel time, how to use the AVL data collected 

specifically from Level A and Level B AVL systems to predict the vehicle downstream 

trajectories has not received much attention.  Under three different assumptions of 

vehicle operating behavior, three methodologies are proposed in this chapter to use AVL 

data collected from a Level A or B AVL system to derive the vehicle running speeds and 

the passenger boarding rates. Relatively, the trip-specific assumption of vehicle travel 

speeds and boarding rates is superior to the day-specific assumption, according to the 

regression results. However, a simple simulation example points out that, under the trip-

specific assumption, even when the parameters from the AVL data can predict the vehicle 

travel time with an acceptable precision, the derived parameters may not be similar to the 

actual ones. For the particular purpose to derive the vehicle running speeds and the 

passenger boarding rates using AVL data, extra requirements may be imposed for the 

AVL data polling frequency and the data’s spatial resolution. 
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The day-specific assumption simply assumes the running speeds of the previous 

vehicle and the current vehicle are the same, but this assumption appears unreasonable in 

view of the regression results. 

A two-stage regression method can integrate both the trip-specific and the day-

specific vehicle operating behavior effects to yield a combined assumption on the vehicle 

operating behavior. Regression results based on this combined assumption suggest that, 

with the parameters calibrated from the trip-specific model, the vehicle travel time 

prediction error for the previous vehicle shows significant impacts on the travel time 

prediction for the current vehicle. Such a model is expected to improve the precision of 

the vehicle travel time prediction.

A performance comparison of the trip-specific model and the combined model 

using the AVL data collected in August and September 2004 shows slight superiority of 

the combined model over the trip-specific model. However, the vehicle travel time 

prediction errors are all fairly large for both models. This may imply that the significant 

temporal variation of the vehicle operating parameters exists. 
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