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ABSTRACT 

 

The intrusion detection in computer networks is a complex research problem, 

which requires the understanding of computer networks and the mechanism of intrusions, 

the configuration of sensors and the collected data, the selection of the relevant attributes, 

and the monitor algorithms for online detection. It is critical to develop general methods 

for data dimension reduction, effective monitoring algorithms for intrusion detection, and 

means for their performance improvement. This dissertation is motivated by the timely 

need to develop statistics-based machine learning methods for effective detection of 

computer network anomalies. 

Three fundamental research issues related to data dimension reduction, control 

charts design and performance improvement have been addressed accordingly. The major 

research activities and corresponding contributions are summarized as follows: 

(1) Filter and Wrapper models are integrated to extract a small number of the 

informative attributes for computer network intrusion detection. A two-phase analyses 

method is proposed for the integration of Filter and Wrapper models. The proposed 

method has successfully reduced the original 41 attributes to 12 informative attributes 

while increasing the accuracy of the model.  The comparison of the results in each phase 

shows the effectiveness of the proposed method.  

(2) Supervised kernel based control charts for anomaly intrusion detection. We 

propose to construct control charts in a feature space. The first contribution is the use of 

multi-objective Genetic Algorithm in the parameter pre-selection for SVM based control 
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charts. The second contribution is the performance evaluation of supervised kernel based 

control charts. 

(3) Unsupervised kernel based control charts for anomaly intrusion detection. 

Two types of unsupervised kernel based control charts are investigated: Kernel PCA 

control charts and Support Vector Clustering based control charts. The applications of 

SVC based control charts on computer networks audit data are also discussed to 

demonstrate the effectiveness of the proposed method. 

Although the developed methodologies in this dissertation are demonstrated in the 

computer network intrusion detection applications, the methodologies are also expected 

to be applied to other complex system monitoring, where the database consists of a large 

dimensional data with non-Gaussian distribution. 
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CHAPTER 1  INTRODUCTION 

 

1.1   MOTIVATION 

The security of computer networks plays a strategic role in modern computer 

systems. Computer network vulnerability is a growing problem. It is very important to 

build systems for the purpose of intrusion detection. As long as we can detect suspicious 

connection, we can take actions to prevent its further propagation in the networks. 

Intrusion detection is the process of monitoring the events occurring in a computer 

system or network and analyzing them for signs of intrusions, defined as attempts to 

bypass the security mechanisms of a computer or network (“compromise the 

confidentiality, integrity, availability of information resources”). Intrusion Detection 

System (IDS) is a combination of software and hardware that attempts to perform 

intrusion detection and raise alarm when possible intrusions are detected. 

Computer network intrusion usually includes a series of activities. Existing work 

on intrusion detection has primarily used system activities data to detect intrusions. Other 

kinds of data (e.g., system state and performance data) in computer and network systems 

may also be useful for intrusion detection.  

The goal of intrusion detection is to detect intrusive activities while they are 

taking place on computer and network systems. System activities usually are monitored 

by collecting data of system activities and analyzing the data to detect intrusive activities. 

Once an intrusion is detected, intrusion reaction is then triggered to assess the damage of 

the intrusion and to take actions for system recovery and further intrusion prevention. 
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1.2   RESEARCH FRAMEWORK IN THIS DISSERTATION 

This dissertation is focused on applying attribute selection, nonlinear feature 

extraction methods and control chart techniques for computer network intrusion detection. 

Anomaly detection methods through statistics-based machine learning will be proposed 

for computer networks. Two problems are studied in this dissertation. The first one is to 

reduce the number of attributes for data dimension reduction, i.e., selecting only 

informative attributes to reduce monitoring attribute dimension for effective intrusion 

detection.  The other is to design control charts for the computer networks anomaly 

detection. In the case of having both in-control training samples and out-of-control 

training samples present, we will develop supervised control charts; otherwise, when only 

in-control training samples are available, we will develop unsupervised control charts.  

1.3   CONTRIBUTION OF THIS DISSERTATION  

In order to deal with the first problem, we propose a two-phase attribute selection 

algorithm to reduce data dimension for effective intrusion detection. In phase I, a filter 

model is used to reduce dimensionality and to keep the correlated attributes only. This is 

followed by Phase II where a wrapper model is employed to exploit the most important 

attributes. The proposed algorithm is applied to the intrusion detection problem that has 

five classes of network connection states. We use correlation based filter model in Phase 

I and GA based attribute selection model in Phase II. Multiclass support vector machine 

(SVM) is used as the learning algorithm embedded in GA based attribute selection model; 

minimal output coding (MOC) is applied to improve computing efficiency. 
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The second problem requires more detailed research on the improvement of 

currently used multivariate control charts. Most of the prevailing multivariate control 

charts are constructed on pre-known distribution data. However, in the application of 

network intrusion detection, many attributes are in non-Gaussian distributions. A new 

type of control chart designed in feature space is proposed in this dissertation for those 

problems that are not suitable for designing control charts in the original data space. We 

develop two types of non-parametric control charts based on kernel methods to solve the 

problem of non-Gaussian distributed data based on different initial situations.  

In the case of having both in-control samples and out-of-control samples, we 

extend support vector machine to construct supervised control charts that are able to deal 

with both Gaussian data and non-Gaussian distribution data. We also propose a multi-

objective genetic algorithm to evaluate the pre-selected parameters in radial basis 

function (RBF) based SVM to obtain the optimal tradeoff between type I and type II 

errors in the design of control charts.   

In case only in-control samples exist, we develop two types of unsupervised 

multivariate control charts. The first one is kernel principal components analysis (KPCA) 

based control chart that is able to conduct nonlinear transform of the original data to a 

feature space and then construct control chart on the first several orthogonal principal 

components in the feature space that contribute most of the variance of the data. The 

second one is support vector clustering (SVC) based control chart, which is used to find 

the minimal hypersphere to enclose most of the data in a feature space.  
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We also propose methods for probabilistic output of SVM based control charts to 

facilitate implementation. The method is to use logistic curves to directly transform the 

evaluation function values of kernel methods to probabilistic values for decision-making 

of anomaly detection.  

By combining the advantages of the kernel-based method and the simplicity of 

control charts, a generic kernel based multivariate control chart is proposed. This 

framework is tested by computer network intrusion detection application in Chapter 4 and 

Chapter 5 of this dissertation. 

1.4   OUTLINE OF THE DISSERTATION 

Three fundamental research issues related to attribute selection and supervised or 

unsupervised nonlinear kernel based control chart construction will be addressed in this 

dissertation. The outline of the dissertation is provided in Figure 1.1. 

  

Figure 1.1 Flow chart of dissertation 
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Chapter 1 introduces the problems and outlines the proposed research approaches. 

The corresponding state of the art and the need of the proposed research approaches are 

reviewed in Chapter 2. 

The development of the proposed methodologies is discussed in Chapters 3, 4 and 

5. Chapter 3 proposes a method to make effective attribute selection in the data-rich 

environment and applies this method to computer network intrusion detection problem. 

Chapter 4 discusses the design of non-linear supervised kernel based multivariate control 

charts and compares its performance with other control charts and methods in the context 

of intrusion detection applications. Chapter 5 is focused on two unsupervised kernel 

based multivariate control charts: kernel based PCA chart and unsupervised support 

vector clustering based control chart. The performance of the support vector clustering 

based control chart on intrusion data is also studied. Finally, conclusions and discussions 

of possible future research are presented in Chapter 6. 
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CHAPTER 2     REVIEW ON FEATURE EXTRACTION METHODS AND 

COMPUTER NETWORK INTRUSION DETECTION TECHNIQUES 

 

In this chapter, the state of art of feature extraction methods is reviewed. The 

topics relate to feature extraction methods are introduced, i.e., linear and nonlinear 

feature extraction methods, attribute selection methods and novelty detection based on 

feature extraction. This chapter also reviews the background of computer network 

intrusion detection and the currently used techniques for intrusion detection in details. In 

conclusion of this chapter, we give the critical research issues for anomaly detection in 

this dissertation.  

This chapter is organized as follows: First in Section 2.1, the feature extraction 

methods are reviewed by its categories. In Section 2.2, intrusion detection techniques are 

reviewed. Then in Section 2.3, the problems to be solved in this dissertation are 

summarized. 

2.1   REVIEW ON FEATURE EXTRACTION METHODS 

Feature extraction methods have been widely used for human facial recognition, 

hand-written recognition, image processing and other fields that need to extract most 

important information from original data for identification, detection, etc. The extracted 

feature can be part of the original data, or transform of the original data. Feature 

extraction is accomplished by constructing a mapping from the measurement space to 

another space, either through a linear or nonlinear mapping.  
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In this section a brief review of feature extraction methods will be given. This 

review includes linear feature extraction methods, nonlinear feature extraction methods, 

feature selection and anomaly detection based on feature extraction.  

2.1.1   Linear Feature Extraction Methods 

Linear feature extraction is mainly based on multivariate statistical methods. Most 

of the multivariate statistical analysis methods such as PCA, Fisher discriminate analysis 

(FDA), factor analysis are examples of linear feature extraction methods. Because of its 

simplicity, linear feature extraction methods are widely used in many applications. 

Jain et al [1] reviewed on pattern recognition, and pointed out that feature 

extraction and selection are most important issues in pattern recognition. In this review, 

most of the linear feature extraction methods are summarized and compared in detail.  

2.1.2   Nonlinear Feature Extraction Methods 

Linear feature extraction only transforms data linearly (rotation, linear projection), 

but does not change the shape of the data. In some cases, when linear transforms could 

not discover the key feature of data, nonlinear feature extraction methods are used instead. 

Methods falling in nonlinear feature extraction methods include principle curves, 

artificial neural networks, radial basis functions, etc. 

Koontz et al. [2] proposed a scalar distance function using one-dimensional 

function approximation for pattern recognition. The multivariate mapping is obtained by 

the distance function. Fukunaga et al. [3] converted the problem of optimal feature 

extraction to an intuitive function of the posterior probabilities. Park et al. [4] presented a 
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nonlinear feature extraction method to reduce dimension through an implicitly mapping, 

and then extract orthonormal basis of centroids which can maximally separate classes.  

Mao et al. [5] proposed nonlinear networks include a network for nonlinear 

projection, a nonlinear discriminant analysis (NDA) network, and a network for nonlinear 

projection (NP-SOM) based on Kohonen's self-organizing map for feature extraction and 

data projection. They are all adaptive learning algorithms and powerful for high 

dimensional data. Kocsor et al. [6] discovered the application of nonlinear feature 

extraction methods such as kernel principal component analysis (KPCA), kernel 

independent component analysis (KICA), kernel linear discriminant analysis (KLDA), 

and kernel springy discriminant analysis (KSDA) to the classification of phonemes in a 

phonological awareness drilling software package. 

2.1.3   Attribute Selection Methods 

Attribute selection (also called feature selection or feature subset selection in 

some papers) is one category of feature extraction methods. Attribute selection is to select 

the most significant attributes directly from the existing attributes without any transform.  

In multivariate regression, the number of independent variables is reduced by 

attribute selection and the most significant variables are obtained through statistical 

hypothesis testing. The selection methods include forward selection, backward selection 

and stepwise selection. Recent years attribute selection is widely applied to information 

technology. When huge dataset is available and an optimal subset is desirable, attribute 

selection method can obtain most important attributes representing the information of 

original dataset.  
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Jain et al. [1] reviewed the existing attribute selection methods such as exclusive 

search, brand-and-bound search, sequential forward search, sequential backward search 

and sequential forward / backward floating search. Kudo et al. [7] compared several 

attribute selection methods for large-scale attribute selection. 1-NN classifier is used by 

leave-one-out correct-classification rate for the evaluation of the methods. The authors 

found that sequential floating search methods are suitable for small and medium-scale 

problems and genetic algorithms are suitable for large-scale problems.  

Sebban et al. [8] exploited the geometrical information contained in the minimum 

spanning tree (MST) built on the learning set and use statistical test of relative certainty 

gain as the criteria for goodness of selection. By forward selection algorithm, the authors 

developed a hybrid model for attribute selection.  

2.1.4   Novelty Detection Based on Feature Extraction 

Novelty detection is the identification of new or unknown data / signal / pattern 

that a learning system is not aware of during training, or the detection of novel or 

abnormal events or patterns.  Novelty detection has been a popular research topic and 

addressed a wide range of applications in signal processing, statistical process control, 

fault detection, sensor networks, hand written digit recognition, health care, epidemiology, 

information security, computer intrusion detection, homeland security and bioinformatics 

etc.     

Traditional statistical approaches are applied to novelty detection [9].  Statistical 

approaches process data by estimating the distribution of data, i.e., constructing the 

probability density function. Two main approaches are parametric and non-parametric 
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methods.  Parametric approaches assume that data is independent and in identical 

statistical distribution, thus the problem of novelty detection is converted to parameter 

estimation. When normal distribution is used, mean and variance are the main parameters 

to be estimated. If there is more than one Gaussian model, Gaussian mixture model 

(GMM) is used and expectation-maximization (EM) algorithm is used to estimate model 

parameters. Typical non-parametric approaches are KNN (K-nearest neighborhood), rule-

based methods, and string matching approaches. Neural network based approaches can be 

applied to novelty detection [10]. If the data is not suitable to be fitted with a statistical 

distribution, neural network based approaches are good alternatives. Many modern 

methods fall into neural network based approaches, such as multi-layer perceptions, RBF 

networks, Hopfield networks and self-organizing maps (SOM).  

If the novelty is difficult to be detected on original data or original data has a large 

number of attributes, neither statistical nor neural networks could perform very well for 

the detection. In that case, feature extraction methods can reduce the data dimension or 

detect the novelty more easily. The approaches to be reviewed in this section include 

wavelet-based approaches [11, 12], Multivariate statistics based approaches, nonlinear 

feature extraction approaches and spatio-temporal hotspot analysis approaches. 

2.1.4.1   Multivariate statistics based feature extraction for novelty detection 

PCA is a traditional way to extract principal components that contribute for most 

data variance, therefore it can be used to reduce the dimension of data. After the small 

numbers of features (principal components) are extracted, the traditional multivariate 

statistical methods can be constructed on the reduced features to detect novelty.  
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T2 control chart [13] is a typical multivariate statistical way to detect out-of-

control samples. The key point of T2 control chart is to construct a feature – distance for 

multi-normal distribution.  

Lowry et al. [14] gives a review on multivariate control chart. Actually most of 

the multivariate control charts use the idea of feature extraction to reduce dimension and 

construct features that are easy to distinguish in-control samples from out-of-control 

samples, and then construct statistics to check if a new coming sample is in-control or 

out-of-control. 

2.1.4.2   Nonlinear feature extraction for novelty detection 

Multivariate statistics based feature extraction methods apply linear transforms 

directly on original data to construct features for novelty detection. Sometimes the data is 

not in known distribution, traditional multivariate statistical methods fail to extract 

informative features. Recently kernel methods obtain wide attention and many 

applications are developed [15-17]. The key idea of kernel methods is to transform the 

original data from input space to feature space through nonlinear kernel transform. In 

feature space the transformed data can be linearly separated, while in original space 

(input space) it can not. This approach is often useful for non-Gaussian distribution data. 

In this dissertation several kernel based feature extraction methods will be extended for 

control charts, which are used for anomaly detection. 
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2.1.4.3   Spatio-temporal hotspot analysis for novelty detection 

The application of spatio-temporal clustering mainly uses the model of spatial-

correlated and /or time-correlated data to detect pattern changes in space and /or time.  

There are two typical ways for spatio-temporal hotspot analysis: retrospective 

model and prospective model. The example of retrospective model is in [18] which 

provides a framework for spatial clustering. Lawson [19] and Clark et al. [20] discussed 

statistical spatial analysis of small area health data. The typical example of prospective 

model is prospective Space-Time Scan Statistic [21] that is designed to detect the 

geographical disease outbreaks irrespective of its location and size. 

The spatio-temporal modeling is a dynamic problem, and the key is how to model 

the spatial and temporal correlations. The model relates to the type of output (either 

continuous or categorical/discrete). Models for continuous longitudinal data form have 

been well-developed [22, 23]. Nowadays, categorical (nominal, ordinal and binary) and 

discrete outcomes are also very prominent in statistical practice.  

Two fairly different views can be adopted. The first one, supported by large-

sample results, states that normal distribution theory should be applied as much as 

possible, even to non-normal data such as ordinal scores and counts. A different view is 

that each type of outcome should be analyzed to exploit the nature of the data, giving 

categorical data, counts, etc., by using the proper methods for analysis.  
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2.2   REVIEW ON COMPUTER NETWORK INTRUSION DETECTION 

2.2.1 Types of Computer Attacks 

Kendall [24] describes taxonomy of attacks, grouping them into four major 

categories: DoS, R2L, U2R and Probe. Lazarevic et al. [25] added one more category: 

Trojan horses/worms. So the major types of computer attacks are listed as following: 

 DoS (Denial of Service) attacks 

o DoS attacks attempt to shut down a network, computer, or process, or 

otherwise deny the use of resources or services to the authorized users 

o Distributed DoS attacks 

 Probe (probing, scanning) attacks 

o Attacker uses network services to collect information about a host (e.g. list 

of valid IP addresses, what services it offers, what is the operating system) 

 Compromises - attackers use known vulnerabilities such as buffer overflows and 

weak security to gain privileged access to hosts 

o R2L (Remote to Login) attacks - attacker who has the ability to send 

packets to a machine over a network (but does not have an account on that 

machine), gains access (either as a user or as a root) to the machine and 

does harmful operations 

o U2R (User to Root) attacks - attacker who has access to a local account on 

a computer system is able to elevate his or her privileges by exploiting a 

bug in the operating system or a program that is installed on the system  
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 Trojan horses / worms – attacks that are aggressively replicating on other hosts 

(worms – self-replicating; Trojan horses are downloaded by users) 

2.2.2   Test Data Available For the Network Intrusion Detection 

Ideally an IDS (Intrusion Detection System) should be evaluated on a real 

network and tested with real attacks. Unfortunately it is difficult to replicate those tests 

on which other researchers can evaluate their methods. In order to repeat those tests, the 

network traffic would have to be captured and reused. This raises privacy concerns, 

because real traffic can contain sensitive information such as email messages and 

passwords. The DARPA/Lincoln Laboratory IDS evaluation (IDEVAL) data sets 

Lippmann et al. [26] [27]  overcome this difficulty. This project had two goals. The first 

goal was to test a wide variety of systems (host or network, signature or anomaly, four 

different operating systems) on a wide range of attacks. The second goal was to provide 

off-line data to encourage development of new systems and algorithms by publishing a 

standard benchmark so that researchers could compare systems and replicate results. 

Evaluations were conducted in 1998 and 1999. The 1999 evaluation improved on the 

1998 evaluation by simplifying the scoring procedure, providing attack-free data to train 

anomaly detection systems, adding many new attacks and one new target (Windows NT) 

to the three 1998 UNIX based targets. Figure 2.1 is the topology of 1999 simulation 

network. 
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Figure 2.1 Simulation network 99 topology 

 
Three groups of measurements called features are constructed [26, 27]: 

• Content-based features within a connection. This group includes number of 

packets, acknowledgments, data bytes from source to destination) and intrinsic 

characteristics of data packets 

• Time-based traffic features included number of connections or different services 

from the same source or to the same destination considering recent time interval 

(e.g.a few seconds) is useful for detecting scanning activities. 

• Connection based features included number of connections from same source or 

to same destination or with the same service considering in last N connections. It 

is useful for detecting SLOW scanning activities 
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2.2.3    Evaluation of IDS Systems 

In an intrusion detection system, there are only two outputs of the detection for a 

specific connection (record), true or false. And there are only two true connection outputs, 

also true or false. In Table 2.1 there are definitions of the combination of actual 

connection label and predicted connection label. 

Table 2.1 Evaluation metrics of IDS systems 
Predicted connection label 

Standard metrics 
Normal Abnormal (Intrusions/Attacks) 

Normal 
True Negative (TN) 

 

False Alarm (FP) 

α error 

 

Actual  

connection  

label 

Abnormal 

(Intrusions/Attacks) 

False Negative (FN) 

β error 

Correctly detected intrusions 

i.e., Detection rate (TP) = 1- β  

The standard measurements for evaluating IDSs are: 

 Detection rate - ratio between the number of correctly detected attacks and the 

total number of attacks. Detection rate (TP) = 1- β . 

 False alarm (false positive) rate - ratio between the number of normal connections 

that are incorrectly misclassified as attacks (False Alarms in Table) and the total 

number of normal connections. Also called α  error. 

 Trade-off between detection rate and false alarm rate. 

 Performance (Processing speed + propagation + reaction). 

 Fault tolerance (resistant to attacks, recovery, resist subversion). 
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2.2.4    Intrusion Detection Techniques Review 

In this section most often used intrusion detection techniques will be reviewed. As 

shown in Figure 2.2, in this part the IDS taxonomy includes three main entries, 

information source, analysis strategy, and time aspects. Actually there are other 

taxonomies such as architecture (single centralized and distributed & heterogeneous), 

activeness (active reaction and passive reaction) and continuality (continuous analysis 

and periodic analysis) [25]. Because those taxonomies are not closely related to this 

dissertation, we have excluded them in this review. 

IDS system

Information 
Source

Analysis strategy

Time Aspects
Real-time Detection

Off-line Detection

Wireless network

Application Log

Host Based (Audit 
Data)

Network Based

Anomaly Detection

Misuse Detection

Data Mining of Audit 
Data

Statistical Quality 
Control Methods

Sensor Networks / 
Data fusion

Agent/ Multi-agent
Based methods

Unsupervised

Supervised

Data Mining

State-transition

Expert systems

…...

Network Traffic 
Analysis

Email Virus 
Detection  

Figure 2.2 Main IDS Taxonomy 

2.2.4.1    IDS according to information source 

2.2.4.1.1 Host-based (Audit data) intrusion detection 

(1) Data mining of audit data 
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A variety of data can be collected from a host machine to capture activities. 

Typical examples are computer audit data, system log data, and application log data [28]. 

Auditable events are those actions that may have security implications. The following are 

examples of auditable events: actions involved in authentication/ identification/ 

authorization; addition and deletion of objects in a user’s address space; actions of adding 

or deleting user accounts by system administrators; use of printer, network interface card, 

and other I/O (input/output) devices. In short, the following information can be obtained 

from computer audit data: access to files, users, and processes. 

Computer audit/log data can be useful in detecting intrusive activities in the 

gaining-access, maintaining-access, launching-further-attack, and covering-track phases, 

for example, gaining root user privileges, creating a user account, installing a DoS attack 

program, and modifying audit/log files.  

(2) Network traffic analysis 

Network activities can be captured by network traffic data. Because network 

activities involve mainly the transmission of data, network activity data are a collection 

of data packets being transmitted over network links. Data packets are the traffic on a 

network, therefore network activity data are also called network traffic data. A data 

packet consists of the following two parts [29, 30]: data payload and header. A data 

packet travels over network links in binary form. Special software programs (called 

sniffers) can be used to capture and interpret the binary information in a data packet. 

Tcpdump is a commonly used sniffer.  
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Network traffic data can be used in detecting intrusive. For example, access to 

online sources (including whois databases, DNS servers, and Web sites) for 

reconnaissance (attacker investigates a target computer and network system using 

publicly available information), and access to network services (including HTTP, FTP, 

and SMTP applications) for scanning active hosts and open ports for network services 

such as HTTP. Those intrusive activities are captured in network traffic data and can be 

identified using information in the header and data payload of a data packet.  

(3) Statistical quality control methods 

Nong Ye et al. [28] proposed to use time series modeling and single variable 

quality control technique to monitor network traffic data. In their study, they applied, 

tested, and compared two EWMA techniques to detect anomalous changes in event 

intensity for intrusion detection: EWMA for autocorrelated data and EWMA for 

uncorrelated data. Different parameter settings and their effects on performance of these 

EWMA techniques are also investigated to provide guidelines for practical use of these 

techniques. The problem of using this method is how to fit a suitable λ  value for 

different time period. Obviously, it is better to use an adaptive EWMA model. 

Nong Ye et al. [31] also investigated a multivariate quality control technique to 

detect intrusions by building a long-term profile of normal activities in information 

systems (norm profile) and using the norm profile to detect anomalies. The multivariate 

quality control technique is based on Hotelling's T2 test that detects both counter-

relationship anomalies and mean-shift anomalies. The performance of the Hotelling's T2 

test is examined on two sets of computer audit data: a small data set and a large multiday 
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data set. Both data sets contain sessions of normal and intrusive activities. For the small 

data set, the Hotelling's T2 test signals all the intrusion sessions and produces no false 

alarms for the normal sessions. For the large data set, the Hotelling's T2 test signals 92 

percent of the intrusion sessions while producing no false alarms for the normal sessions.  

Markov chain was also used by several researchers [32, 33]. The application of a 

Markov model helps answer the question about whether the ordering property of activity 

data provides additional advantage to intrusion detection, or whether we can detect 

intrusions from only the frequency property of activity data without the ordering property. 

First-order and high-order Markov models can produce comparable intrusion detection 

performance. An intrusive event sequence is expected to receive a low probability of 

support from the Markov chain model of the norm profile. So, if a transition with low 

probability happens, it has a high probability that the event is caused by an intrusion.  

Nong Ye, et al. [34] studied and compared several probabilistic techniques that 

were used in intrusion detection. Those include Hotelling’s T2 test, chi-square 

multivariate test, and Markov chain modeling. These methods are applied to the same 

training set and the same testing set of computer audit data for investigating the 

frequency property and the ordering property of computer audit data.  Their study shows 

that the frequency property of multiple audit event types in a sequence of events is 

necessary for intrusion detection. A single audit event at a given time is not sufficient for 

intrusion detection. They also found that the ordering property of multiple audit events 

provides additional advantage to the frequency property for intrusion detection.  
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2.2.4.1.2    Network based intrusion detection 

(1) Sensor networks / data fusion 

Base [35] stated the importance of data fusion for sensor networks on intrusion 

detection. He also mentioned that the next-generation cyberspace intrusion detection  

systems would require the fusion of data from myriad heterogeneous distributed network 

sensors to effectively create cyberspace situational awareness. He summarized the 

framework to use multi-sensor data fusion to combine data and information from 

numerous heterogeneous distributed agents (and managers) into a coherent process, 

which can be used to evaluate the security of cyberspace: from data to information and 

finally to knowledge.  

Technical details on the development of multisensor data fusion and its 

applications can be found in [36].  

(2) Agent /Multi-agent based methods 

In recent years, agent /multi-agent is widely investigated and used in software 

engineering. Because agent has the advantage of autonomous, collaborate, flexibility, 

self-learning, etc., agent /multi-agent catches attention in computer network intrusion 

detection area.  

Spafford and Zamboni [37] proposed an early prototype of multi-agent intrusion 

detection system and issued future research questions. Followed by him, there are many 

investigations on this topic. Hegazy et al. [38] proposed a multi-agent system framework 

for intrusion detection that has four main modules: the sniffing module, the analysis 

module, the decision module and the reporting module. In this framework, sniffing agents 
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collect network traffic information first and send it to analysis module. At this stage, 

different analysis agent is used for different attacks, like ping sweep, DoS, security code, 

etc. Afterwards decision agents wok on the information and alerting agents in reporting 

module generate alert for the suspecting results.  

Harmer et al. [39] proposed a self-adaptive distributed agent-based defense 

immune system based on biological strategies is developed within a hierarchical layered 

architecture. This intrusion detection function is based on string matching against a 

library of signatures. In nature this method is still in misuse detection.  The 

communication of the agents makes this system effective. Gorodetski and Kotenko [40, 

41] designed a similar system with more features such as an offline detection, learning, 

testing and modification.  

(3) Wireless network intrusion detection 

Akyidiz et al. [42] gave a review on wireless sensor networks. Samfat and mlova 

[43] proposed a multilevel intrusion detection architecture for GSM network. It includes: 

Level 1- Velocity and Clone Verification; Level 2- Componentwise Verification; Level 

3- Intrusion Detection per User. The basic idea of detecting an intruder relies on the 

system’s ability to learn the normal behavior of the subscriber by creating a user profile. 

In the case of GSM, the signature of the user is defined by three profiles: a mobility 

profile, an activity profile, and a speech profile. Each profile will help in raising different 

intrusion alarms that a rule-based system will analyze in order to give the final decision. 

Mishra et al. [44] presented the reason of big vulnerability because of the 

characteristics of wireless ad hoc networks.  The wireless links between nodes are highly 



 

38

susceptible to link attacks, which include passive eavesdropping, active interfering, 

leakage of secret information, data tampering, impersonation, message replay, message 

distortion, and denial of service. The authors also compared different proposed 

architectures against ideal characteristics for IDSs in mobile ad hoc network (MANETs).  

2.2.4.2    IDS according to analysis strategy 

In this category, there are mainly two widely investigated methods, named 

anomaly detection [45, 46] and misuse detection (also called signature detection, 

signature recognition in some literatures).  

(1) Anomaly detection 

Anomaly detection is based on profiles that represent normal behavior of users, 

hosts, or networks, and detecting attacks as significant deviations from this profile. The 

major benefit is that anomaly detection is potentially able to recognize unforeseen attacks. 

The major limitation is possible high false alarm rate, since detected deviations do not 

necessarily represent actual attacks. The major approaches for anomaly detection are 

statistical methods, expert systems, clustering, neural networks and outlier detection 

schemes.  

Anomaly detection techniques capture both known intrusions and unknown 

intrusions if the intrusions demonstrate a significant deviation from a norm profile. 

Existing anomaly detection techniques differ mainly in the representation of a norm 

profile and the inference of intrusions using the norm profile. 

Many studies, such as Ye, Denning [28, 34, 47], use statistical distributions to 

model the frequency feature and the intensity feature of normal activities for a norm 
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profile and employ statistical tests to determine whether observed activities deviate 

significantly from the norm profile. An advantage of statistical-based anomaly detection 

techniques is their capability of explicitly representing and handling variations and noises 

in normal activities.  

Strings-based anomaly detection techniques must rely on a large, costly repository 

of short sequences of normal events to capture variations of normal activities. 

Both artificial neural networks and stochastic models (e.g., Markov chain model 

and hidden Markov model) have been used to model the order feature of normal activities 

(e.g., event transitions or event sequences) for a norm profile and to detect intrusions 

based on the deviation of the observed events from the expected event or based on the 

probabilistic support of the norm profile [34, 46, 48]. In the category of anomaly 

detection, there are two techniques, named supervised anomaly detection and 

unsupervised anomaly detection. Supervised anomaly detection is based on the available 

data containing both normal and abnormal connection records.  

If we do not know which connection is normal and which is abnormal, we need to 

use unsupervised anomaly detection, also called outlier detection. Most widely used 

technique is clustering. Model based clustering and distance based clustering are typical 

ways for unsupervised anomaly detection.  

(2) Misuse detection 

Misuse detection compares activities in a computer and network system with 

signatures of known intrusions, and signal intrusions when there is a match. For a subject 

(user, file, privileged program, host, network, etc.) of interest, anomaly detection 
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techniques establish a profile of the subject's long-term normal behavior (norm profile), 

compare the observed behavior of the subject with its norm profile, and signal intrusions 

when the subject's observed behavior deviates significantly from its norm profile.  

Misuse detection techniques utilize intrusion signatures, profiles of intrusion 

characteristics, and consider the presence of an intrusion signature as evidence of an 

intrusion. Anomaly detection techniques use only data of normal activities in a computer 

system for training and building a norm profile. Signature recognition techniques rely on 

data of both normal and intrusive activities for learning intrusion signatures, either 

manually or automatically, through data mining. 

Most commercial intrusion detection systems are based on misuse detection 

techniques [49]. Intrusion signatures have been characterized as strings (e.g., command 

names), event frequency distributions, event sequences, activity graphs, and intrusion 

scenarios with event sequences, event preconditions, and target compromised states. 

Intrusion signatures have been represented using finite state machines, association rules 

[50] and decision trees [34] to store and recognize intrusion signatures. Intrusion 

signatures are either manually encoded or automatically learned through data mining. 

However, signature recognition techniques have a limitation in that they cannot detect 

novel intrusions which have unknown signatures. 

Misuse detection is based on extensive knowledge of patterns associated with 

known attacks provided by human experts. Existing approaches include pattern (signature) 

matching, expert systems, state transition analysis, and data mining. Major limitations of 

misuse detection are:  



 

41

• Unable to detect novel & unanticipated attacks 

• Signature database has to be revised for each new type of discovered attack 

(3) Data mining methods 

Denning [47] proposed a real-time intrusion detection expert system for intrusion 

detection. It includes profiles for representing the behavior of subjects with respect to 

objects in terms of metrics and statistical models, and rules for acquiring knowledge 

about this behavior from audit records and for detecting anomalous behavior. 

Lee et al. [50, 52, 53] proposed a framework of data mining on intrusion detection. 

The key ideas are to use data mining techniques to discover consistent and useful patterns 

of system features that describe program and user behavior, and use the set of relevant 

system features to compute (inductively learned) classifiers that can recognize anomalies 

and known intrusions. 

(4) State-transition methods 

Ilgun et al. [54] presented state-transition method for the first time. State 

transition analysis models penetrations as a series of state changes that lead from an 

initial secure state to a target compromised state. In this paper state transition diagrams 

the graphical representation of penetrations identify precisely the requirements for and 

the compromise of a penetration and present only the critical events that must occur for 

the successful completion of the penetration. State transition diagrams are written to 

correspond to the states of an actual computer system and these diagrams form the basis 

of a rule-based expert system for detecting penetrations called the State Transition 

Analysis Tool (STAT). 
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(5) Expert system methods 

The rule-based methods, such as fuzzy logic [55] and rough set [56, 57] are 

subsets of expert system methods. Expect system methods can be incorporated into data 

mining methods. 

2.2.4.3    IDS according to time aspects 

(1) Real-time detection methods 

Luo and Bridges [58] gave a real-time implementation of intrusion detection. 

Because of the large amount of data stream in computer networks, the real-time detection 

methods are still in investigation. Mainly used real-time detection methods are misused 

detection methods because the string match is relatively simple. Real-time anomaly 

detection is still a research issue. 

(2) Off-line detection methods 

Up to now, most intrusion detection methods reviewed in this dissertation are off-

line detection methods. Off-line detection is used to understanding the attackers' behavior.  

2.2.4.4    Some other techniques 

Data mining applies machine learning and statistical techniques to automatically 

discover and detect misuse patterns, as well as anomalous activities in general. When 

applied to network-based activities and user account observations for detection of errant 

or misuse behavior, these methods are referred to as behavior-based misuse detection 

[59]. 
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Email virus is another computer intrusion. In [60] behavior profiles of user email 

accounts are built to detect viral propagations. Totally 3 modeling techniques of behavior 

profiles are used: user cliques, Hellinger distance and daily cumulative distribution of 

emails. To achieve high detection rates with remarkably good FP rates, the combinations 

of these three models are investigated. 

2.3    PROBLEMS NEED TO BE SOLVED 

There are many challenges in the research field of computer network intrusion 

detection, such as: 

• Large data size and high dimensionality. Millions of network connections are 

common for commercial network sites. Hundreds of dimensions are possible 

because of the availability of hardware/software to collect large amount of 

properties of transaction data. 

• Skewed distribution. Interesting events are very rare; unkown or complex 

distributions for many attributes in computer networks data 

• Difficulty for online detection. Currently misuse detection is mainly used for 

online detection, but it lacks the ability to detection new intrusion types. 

This dissertation is focused on integrating statistical and machine learning on 

transformation and extraction methods for computer network intrusion detection. Two 

problems are raised in this dissertation, one is how to reduce the dimension (number of 

attributes) for effective data processing, i.e., selecting only informative attributes to 

reduce data dimension for effective intrusion detection.  The other is to design control 
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charts for the anomaly intrusion detection, in which the data can only be separable with a 

nonlinear boundary.       
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CHAPTER 3  INFORMATIVE ATTRIBUTE SELECTION FOR DATA DIMENSION 

REDUCTION FOR EFFECTIVE INTRUSION DETECTION 

 

This chapter presents a two-phase attribute selection method for data-rich 

environment and applies this method to computer intrusion detection data. Filter and 

Wrapper models are integrated to improve the accuracy and extract a small number of 

informative attributes for computer network intrusion data. In the proposed hybrid 

attribute selection method, Filter model based on dependency is firstly applied In Phase I 

to reduce the dimension of large dataset while keeping the most significant attributes. 

This is followed by Phase II, where a wrapper model is employed to exploit the most 

important attributes without redundancy. The performance of each step in Phase I and II 

is examined to illustrate the effectiveness of the joint model. 

This chapter is organized as follows. In Section 3.1, the detailed methods of 

feature selection methods are discussed. In Section 3.2, a new hybrid attribute selection 

method combining filter and wrapper models is proposed and discussed in details. 

Section 3.3 demonstrates how the proposed method is applied to the intrusion detection. 

Discussion is given in Section 3.4.  

3.1   INTRODUCTION 

In recent years, computer networks security has been a growing problem. More 

and more computers have undergone vulnerability problems by cyber attacks, such as 

network intrusion, resulting in huge loss. Therefore, computer network intrusion 
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detection is becoming an increasing important research topic since the last decade. To 

implement intrusion detection in a computer network environment, tools such as 

TCPdump have been used to trace the connections to the server.  The collected records 

can be used to detect whether these connections are normal or abnormal.  In the popularly 

used database developed by MIT Lincoln Labs, the network connections are mainly 

classified into five states, which are corresponding to  the normal state representing legal 

connections and other four attack states named DoS, U2R, R2L and Probe [24].   Table 

3.1 lists the detailed definitions of these states with some typical examples of attack 

actions.  In this database, 41 attributes are used in the network operational tracing 

database, which are classified as content-based attributes, time-based traffic attributes, 

and connection based attributes. Based on the network operation structure, intrusion 

detection methods are further divided into host based, network based, wireless network, 

application log and sensor alerts [25]. In this dissertation, we mainly deal with the host 

based monitoring for misuse detection, in which the intrusion detection methodology will 

be developed based on the public KDD CUP 1999 data, the description of the attributes 

can be found from Appendix A. 

Table 3.1 Types of network states (including normal and attacks) 
Label Name Definition Examples 
1 Normal Legitimate connection  

2 DoS Denial of service ping-of-death, teardrop, 
smurf, syn flood, etc 

3 R2L Remote-to-local. Unauthorized access from 
a remote machine 

guessing password 

4 U2R 
User-to-root. Unauthorized access to local 
superuser privileges by a local unprivileged 
user 

various of buffer overflow 
attacks 

5 Probe Surveillance and probing port-scan, ping-sweep, etc 
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There are two main different approaches for intrusion detection according to 

analysis strategy: misuse detection and anomaly detection [61].  Misuse detection is 

based on users’ signatures, which are characterized by the operation rules and procedures, 

to detect illegal connections.  Anomaly detection relies on statistical monitoring of 

network operational data. In this approach, the normal behavior baselines are first built 

based on historical legal operation data.  The anomalies are suspected when monitored 

operational data has a significant deviation from the normal baseline.  In this dissertation, 

we will focus on the investigation of statistical anomaly detection methods.   

It is known that the performance of statistical detection methods is usually 

severely degraded for a large dimension of data.  Therefore, the data dimension reduction 

is always considered as a critical step for the detection method development.  In this 

chapter, we will first study how to select effective monitoring attribute subset for the 

intrusion detection purpose.  The resultant attribute subset will be used for the detection 

method development, which will be discussed in Chapter 4 and Chapter 5. 

3.1.1 Discussion on Attribute Selection 

The purpose of the attribute subset selection is to reduce the number of attributes 

used to characterize a dataset under a given data analysis objective. Attribute selection in 

machine learning has shown its impressive performance gains by reducing a large 

dimensionality through removing many irrelevant attributes [62], thus leading to 

enhanced analysis results. In such research, the problems are usually exposed as search 

problems, in which many heuristic search algorithms have been developed in order to 
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solve those problems more efficiently. In general, a search algorithm needs to address 

following four basic issues:  

 Starting point in the search space; 

 Organization of the search; 

 Evaluation strategy of the selected subset; 

 Stopping criterion for halting the search. 

The selection of starting point determines the initial search space and provides 

distinction between forward selection (starting with no attribute and then adding new 

attributes sequentially) and backward selection (starting with the whole attribute set and 

then shrinking it until the desired subset is reached). 

The organization of the search determines the search strategy in the space of size 

2d where d is the number of attributes. One popularly used non-exhaustive optimal search 

strategy is the branch and bound algorithm [63], and its optimality is guaranteed if the 

evaluation function is monotonic. When the monotonic condition is not satisfied, 

heuristic search methods are often used, such as simple deterministic heuristic algorithms 

of sequential forward search (SFS) and sequential backward search (SBS), and more 

sophisticated strategy of floating search and best-first search [64].  Results from [65] 

suggested that those simple greedy hill-climbing approaches may get trapped on local 

peaks caused by interdependencies among attributes. 

On the other hand, non-deterministic approaches using a random search have been 

recently investigated for the purpose of avoiding local optimum, such as Genetic 

Algorithms (GA) [66], evolutionary computation [67], and Las Vegas Algorithms [68], 



 

49

etc.  By applying these non-deterministic search algorithms, different analysis results 

may be generated from different runs.  

An evaluation function is used to measure the effectiveness of a selected attribute 

subset under the given objective of its maximization or minimization. Depending on 

whether such a measure can directly carry out this objective, two different types of 

evaluation approaches are used [64, 69]: wrapper approaches and filter approaches.   

In the wrapper approach, a good attribute subset is determined by using 

classification performance itself as the evaluation function, which directly relates to the 

objective of minimizing the classification errors. Therefore, the wrapper approach can 

guarantee the final learning accuracy.  However, a wrapper approach needs to design a 

classifier in every step of searching, thus requiring extremely high computation.    

The filter approach assesses the attribute only based on its intrinsic data properties, 

i.e., whether it is potentially relevant to the classification learning algorithm.  The name is 

due to the fact that the attribute selection is done by filtering out the irrelevant attributes 

before applying the learning algorithm. Almuallim, et al [70] designed filters by checking 

data consistency, i.e. the association between the combination of every value for a 

attribute subset and the class label. Koller [71] eliminates the redundant attributes that are 

already included in the selected attributes. The other popularly used filter method is based 

on predefined relevancy score [72], such as distance measure (Euclidean distance 

measure), information (entropy, information gain), dependency (correlation coefficient) 

and consistency (minimal-attributes bias), etc.  Because a filter approach is independent 

of the learning algorithm and has the simplicity of the measures, it shows significant 
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advantage on the computation time by comparing with the wrapper method.  However, it 

cannot guarantee the final learning performance by using the selected attributes. 

In conclusion, the filtering approach is flexible that can be integrated with any 

learning algorithms, while the wrapper approach is strictly dependent on the specific 

learning algorithms.  The filter approach requires less computation complexity and is 

suitable to efficiently handle a large dataset, but it cannot guarantee the final accuracy of 

the learning algorithm followed. The wrapper approach integrates learning algorithms 

into evaluation functions, thus requiring extensive computation before it can determine 

the optimal subset of attributes.  It is usually suitable to handling a small dataset in terms 

of both data dimension and sample size with the guaranteed learning performance.   

3.1.2   Contribution of This Chapter 

In order to fully utilize the advantages of both filter and wrapper approaches, a 

hybrid approach is proposed in this dissertation for a large dataset analysis through two-

phases attribute selection analysis.   In Phase I, a filter model is used to filter out those 

attributes irrelevant to network states, in which the correlation between attributes and 

labeled classes is used as an evaluation function.  This pre-filtering can be efficiently 

used for the whole dataset analysis.  The elimination of those irrelevant attributes in this 

step can efficiently reduce the attribute dimension, which is essential to perform a 

wrapper approach in Phase II.  In Phase II, a further attribute selection is exploited from 

the remaining attribute subset after Phase I filtering. The classification learning 

performance is used for final decision of the optimal attribute subset. Multiclass SVM is 

used as the learning algorithm embedded in the GA (Genetic Algorithm) searching 
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algorithm.  Different from traditional two-class SVM, a minimal output coding (MOC) is 

used to achieve a higher computing efficiency for a multiclass SVM. The comparison of 

the results in each phase shows the goodness of the method presented.  

3.2   PROPOSED HYBRID ATTRIBUTE SELECTION METHOD FOR MULTI-

CLASS CLASSIFICATION 

3.2.1 General Analysis Framework 

The proposed hybrid approach for attribute selection is a  generic approach which 

provides a feasible way to handle a large dataset analysis (In the exemplary database, the 

dataset consists of 41 attributes and 311029 records).   The two-phase analysis framework 

is illustrated in Figure 3.1.   

In this framework, Step 1 is considered as Phase I analysis, in which the 

correlation analysis is used as a data filtering approach to remove the irrelevant attributes. 

Steps 2~6 are considered as Phase II analysis, in which the supervised SVM classification 

combined with GA is used for attribute selection through the wrapper approach.  The 

whole dataset is divided into training dataset and test dataset, in which the former one is 

used for Step 1~6 analysis to determine an optimal attribute subset, and the later one is 

used for evaluation of the selected attribute subset.  The details of these analyses in each 

step are described as follows:  

Step 1: Attribute dimension reduction through the filter approach. The correlation 

analysis between the selected attribute and the labeled classes corresponding to the 

network operational states is used as an evaluation function, in which insignificant 

correlated attributes are removed. 
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Figure 3.1 Framework of combining Filter and Wrapper models for attribute selection 

Step 2: The remaining significant attributes after Step 1 are considered as an 

initial pool of candidates for the wrapper analysis.  

Step 3: The reduced dimensional training candidates is sent to GA based wrapper 

attribute selection model, where GA starts through the configuration like population size, 

maximum generations, probability of crossover and probability of mutation, etc. In this 

step the main task is to generate initial selection of the attribute subset. In GA based 

attribute selection, all the bits in the initial chromosomes are set to 0, which means at the 

beginning of attribute subset selection, there is no attribute to be selected in the subset. In 

this sense, it is similar to a forwarding selection approach.  The classification accuracy is 
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used as the performance evaluation of the selected attribute subset.  Therefore, the fitness 

function in GA is set as the accuracy of the classifier, which is evaluated by the 5-fold 

cross-validation estimate of the classification errors in multi-class SVM. The optimal 

attribute subset is determined, which has the highest classification accuracy and the 

minimal number of attributes. This is an iterate search approach, in which each subset is 

compared with the best subset in the historical runs. The historical best subset will be 

replaced by the current subset either having a higher accuracy or the same accuracy but 

with less number of attributes included in the subset.  

Step 4:  After each generation of a subset is finished in fitness function evaluation, 

the stop criterion will be checked. In this step, two stopping criteria are used. One criteria 

is the generation limit set by the largest generation of GA.  The other criteria is that if 

there is no change on the optimal attribute subset for more than 10 generations, it will 

stop and break the iterate loop. 

Step 5: Generate a new candidate subset based on the winners of the ranked 

attributes. The chromosome with the higher classification accuracy will have higher 

probability to be selected, so the winners of the ranking will be reproduced more pieces 

than others. Two operators are used and a new subset of attributes is created, in which 

each selected chromosome will be operated according to the probability of the operators.    

Step 6:  The loop from Step 3 to Step 5 will be iterated until either of two stop 

criterions is satisfied. 

Step 7:  The best attribute subset is obtained based on the training dataset through 

Steps 1~6 analyses.  This step is used to further evaluate the performance of the selected 
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optimal attribute subset and the multi-class SVM classifier based on the testing dataset. 

It is worthwhile to suggest that in the implementation of the proposed GA based 

wrapper, the program should keep track of the history of all existed chromosomes. The 

reason is that the new chromosome may sometime be created same as one historic pool of 

chromosomes.  In this case, its performance can be directly recalled from the historical 

record instead of training and evaluating it again.  This trick is especially helpful to save 

computing time when a large dataset is analyzed.  

3.2.2   Proposed Filter Approach for Numeric and Discrete Data Analysis 

3.2.2.1   Data types 

The data types used in the network operational tracing database are very diverse, 

which are generally classified as two major categories as shown in Figure 3.2: 

quantitative measurements (also called numerical variables) and qualitative 

measurements (also called categorical variables).   

 

Random 
Variables

Quantitative 
measurement /
Numerical 

Qualitative 
measurement /
Categorical 

Interval 
 
Ratio 
 
Discrete (including Binary) 

Nominal 
(without order)
 
Ordinal  
(with order) 

 

Figure 3.2 Data type taxonomy 

In the first category of these quantitative measurements, three types of data, i.e., 

interval, ratio, and discrete variables are further classified. In the second category of 

qualitative measurements, the data are further classified as nominal and ordinal variables.  
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In the following subsection, different correlation analysis will be used as the filtering 

model for different types of data. 

3.2.2.2   Filter analysis 

Hall, et al [73] pointed out that a good attribute subset should contain attributes 

highly correlated with the class labels, yet uncorrelated with attributes themselves. Based 

on this principal, two steps of correlation analysis are used in filtering analysis. The first 

step of the correlation analysis is to remove those irrelevant attributes, which are not 

correlated with the class labels.  The second step of the correlation analysis is to remove 

those redundant attributes, which are highly correlated with other selected attributes.  

In the first step of removing irrelevant attributes, the correlation coefficient 

between each attribute and the class labels is calculated.  If the resultant correlation 

coefficient is smaller than a predefined threshold value under a given α level (α=0.05 is 

most often used), this attribute will be considered as the irrelevant attribute to be removed. 

In this step, the computation time is O(p).  p equals to the number of attributes.  

If only filter model is used, all correlation coefficients between each pair of 

attributes need to be calculated and represented by a correlation matrix in the second step 

of removing redundant attributes. If a correlation coefficient is larger than the predefined 

threshold, it means one of these two corresponding attributes is redundant that needs to 

be removed. The computation time in this step is O(p2). Also the correlation computed by 

this matrix may contain multicollinearity. In this chapter, because we propose two-phase 

approach, we will leave the second step of removing redundant attributes to Phase II. 

For the numerical data type, Pearson’s correlation is calculated as follows:    
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where x and y are the samples of attributes and n is the number of samples.  The 

following hypothesis test is used to check whether the correlation between x and y is 

significant. 

H0: 0ρ =   

H1: 0ρ ≠  

 The corresponding test statistic is defined as:  
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=
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 (3.2) 

which follows a t-distribution with n-2 degrees of freedom. The significant correlated 

coefficients are identified if the resultant p-value of this test is smaller than the given α 

value, i.e., the null hypothesis of ρ=0 is rejected.  

In the case that one attribute y is numerical and the other one x is categorical, a 

weighted Pearson's correlation is used: 
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Here, variable x is assumed to have k different categorical values and each xi is a 

binary data, in which xi=1 if the ith category of x occurs, and xi=0 for all other cases. 

( )ip x x=  is the prior probability that x takes value xi, which is used as the weight for the 

weighted Pearson's correlation analysis. 

Similarly, when both attributes involved are categorical, the weighted correlations 
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are calculated for all possible combinations as follows: 
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3.2.3   Proposed Wrapper Approach Based on Supervised Classification  

3.2.3.1   Wrapper search strategy  

After the filtering analysis in Phase I, only a small number of attributes are 

remained for the wrapper model in Phase II. In the wrapper model, a genetic algorithm 

(GA) is used as the search strategy because GA is a stochastic searching technique which 

can avoid local optima.  In this approach, binary representation of chromosome is used to 

indicate the selection state of attributes, in which each bit of the chromosome has only 

two values with 0 standing for “not selected” and 1 standing for “selected”.  

Normalized geometric ranking Pi is defined for individual attribute as: 

 1
1 (1 )

(Selecting the th individual) = (1 )N
q r

q
P i q −

− −
−  (3.5) 

where 

 = the probability of selecting the best individualq  

 = the rank of the individual, where 1 is the bestr  

 = the population sizeN  

Simple crossover that is based on a random number r generated by a uniform 

distribution from 1 to m, is used to create two new individuals according to the following 

equations 
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Binary mutation flips each bit in every individual with probability pm as 
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Based on these two operators of crossover and mutation, the chromosome can be changed 

stochastically into another combination of attributes. In fact, this approach is mainly 

relied on some heuristics that ensure the better attributes are generated through such 

stochastic combinations.  

The classifier is embedded into the wrapper for the task of classification for the 

attribute performance evaluation, in which support vector machines (SVM) is used as the 

classifier  [25, 74].  SVM is mainly used as a binary classifier that deals with 2-classes 

classification problem.   In this chapter, we extend SVM for the multi-class classification 

problem by using the coding-decoding scheme.  The coding-decoding scheme is 

integrated with SVM to encode and decode a multi-class classification task into multiple 

binary classifiers.  

For solving multi-class classification problems, we reformulate the multi-class 

problem (nc classes) into a set of ny binary classification problems.  For each class, Ci is a 

unique codeword ( )(1) (2)[ ; ;..., ] { 1, 1}y yn n
i i iy y y ∈ − +  for i = 1, 2, …, nC.  There are several 

coding techniques available: 
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(1) Minimum Output Coding (MOC)  

The minimal number of bits nb is used to encode the nc classes as: 

 2logb cn n= ⎡ ⎤⎢ ⎥  (3.9) 

(2) Error Correcting Output Code (ECOC).  

This coding scheme is derived from information theory and data communication 

applications. It uses redundant bits. Normally, the bounds of the number of binary 

classifiers nb for nc classes are 

 215 logb cn n≤ ⎡ ⎤⎢ ⎥  (3.10) 

However, it is not guaranteed to have a valid nb-representation of nc classes for all 

combinations. This method is computationally extensive because it bases on backtracking. 

(3) One versus All Coding (OneVsAll) 

Each binary classifier k = 1, 2, …, nc is trained to discriminate between class k 

and the union of the others. 

(4) One Versus One Coding (OneVsOne) 

Each of the nb binary classifiers is used to discriminate between a specific pair of 

nc classes 

 ( 1)
2

c c
b

n nn −
=  (3.11) 

The proposed attribute selection method mainly deals with a large dataset. 

Therefore, computation time is an important factor in the coding method selection. As 

shown in Table 3.1, different coding schemes have different codeword and different 

length of coding. Among them, Minimal output coding (MOC) has the minimal code 
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length, which will be used in this chapter to save computing cost.  It should be clarified 

that the coding schemes are not dependent on what the original classes are as long as 

different numbers codes them. 

Table 3.1 Different Encoding Schemes with Illustration 
Classes MOC ECOC OneVsAll OneVsOne 

1 -1    -1    -1 -1     1    -1     1  1    -1    -1    -1    -1  1   1    1   1  0   0   0   0   0   0 
2 -1    -1     1 -1     1     1    -1 -1     1    -1    -1    -1 -1   0    0   0  1   1   1   0   0   0 
3 -1     1    -1  1     1     1     1 -1    -1     1    -1    -1  0 –1    0   0 –1  0   0   1   1   0 
4 -1     1     1 -1    -1     1     1 -1    -1    -1     1    -1  0   0  –1   0  0 –1   0 –1   0   1 
5  1    -1    -1  1     1    -1    -1 -1    -1    -1    -1     1  0   0   0  –1  0   0 –1   0 –1  -1 

 

In decoding schemes, there are two different approaches either using Hamming 

distance or Bayesian distance measure. Hamming distance equals to the number of the 

corresponding different bits between the binary result of output and the codeword. The 

Bayesian distance uses a matrix of probability for the binary classifiers to estimate the 

posterior probability in order to set a class for an input.  We suppose not knowing the 

relationship between each class, and because Hamming distance has a good performance 

on error correction, Hamming decoding will be used in our analysis. 

3.2.3.2 Model assessment for wrapper 

It is important to have a good assessment on the classifier performance in the 

wrapper model.  It is known that cross-validation is an effective way for estimation of 

classification errors. The basic ideas of cross-validation is to split the data into K roughly 

equal-sized parts, this is called K-fold cross validation. Every time, the other K-1 parts of 

the data are used to build the classifier.  Afterwards, the kth part of the data is served as 

the test dataset to calculate the prediction error of the fitted classifier in the classification 

of the kth part of data. Suppose N is the total sample size, and K is the number of folders 
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for cross-validation, the final prediction error is the mean of those prediction errors 

obtained from all k-fold analyses (k = 1, 2, …, K). 

 ( )
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1 ( , ( ))
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CV L y f x
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=
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)

 (3.12) 

where :{1,2,..., } {1,..., }k N Ka  is an indexing function that indicates the partition to 

which observation i is allocated by the randomization.  ( ) ( )k i
if x−

)
 is the fitted function of 

the data without the kth part, no matter whether this function is explicit or implicit.  The 

typical choices of K are 5 or 10.  The higher the K value is, the higher the variance is.  

The lower the K value is, the higher the bias is. So, the choice of K should be a good 

compromise of bias and variance. In this dissertation, K=5 is used to have faster 

computation.  

3.3 APPLICATION IN INTRUSION DETECTION 

3.3.1 Review of Datasets  

The labeled KDD CUP 1999 dataset is used to illustrate the implementation and 

effectiveness of the proposed method. This dataset is modified from DARPA 1998 data 

from MIT Lincoln Laboratory [75].  The attribute selection method is developed for the 

purpose of classifying 5-classes network operation states, which are named as Normal 

and four different attacks of DOS, U2R, R2L and Probing.  

There are three groups of attributes in the dataset collected from TCPdump 

tracing data. 

• Content-based attributes: Attributes within a connection, such as the number of 

packets, acknowledgments, data bytes from src (source) to dest (destination), and 
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intrinsic characteristics of data packets, etc. 

• Time-based traffic attributes: This category of attributes includes the number of 

connections or services from the same source or to the same destination during a 

given time interval. This kind of attributes is sensitive to detect scanning activities. 

• Connection based attributes: This category of attributes includes the number of 

connections from the same source or to the same destination or with the same 

service considering in last N connections. They are useful for detecting slow 

scanning activities. 

3.3.2 Parameters Used in the Analysis 

The dataset used in this chapter contains 311,029 records of connections. Each 

connection has 41 attributes. We randomly select the certain percentage of records of 

each class as the training dataset, and the rest of records are used as the testing data.  The 

detail descriptions of the sample size used in the training and testing are given in Table 

3.2.  Note this dataset is specially designed to simulate computer network intrusion data, 

so most of the connections are attacks. 

Table 3.2  Sample size of  the training and testing dataset 
Individual 

  
Overall 
entry Normal DoS U2R R2L Probe 

Total data size 311029 60593 4166 231455 70 14745
Training data size 1302 243 167 695 49 148
Percentage of training 0.42% 0.40% 4.01% 0.30% 70.00% 1.00%
Testing data size 309727 60350 3999 230760 21 14597

 
In the implementation of GA, the major parameters are used as follows: 

• Population size: 20 



 

63

• Number of generation limit: 50 

• Probability of selection of the highest ranked individual: 0.6 

• Probability of crossover q: 0.6 

• Probability of mutation pm: 0.05 

• Generation limit used in the stop criteria if there is no change for the best 

individual: 10 

• Fitness function: overall accuracy of the classifier with the selected attributes,  

5

Training
1

1 Number of connections correctly identified without th folderAccuracy
5 Total number of connectionsi

i
=

= ∑  

• Selection algorithm: normal geometric selection 

• Crossover algorithm: simple crossover 

• Mutation algorithm: binary mutation 

• Classification accuracy at the test stage 

Test
Number of connections correctly identifiedAccuracy

Total number of connections
=  

After 50 generations running of wrapper model, there is neither new population 

generated with the higher classification accuracy nor the decreased number of attributes 

with the same accuracy.  Figure 3.3 shows the accuracy evolution for the attribute 

selection based on GA and multiclass SVM classifier.  
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Figure 3.3 Accuracy evolution in the attribute selection  

3.3.3 Analysis Results and Conclusions 

There are total 41 attributes in the original dataset, where 13 are content-based 

attributes, 19 are time-based traffic attributes and 9 are connection-based attributes as 

show in Table 3.3.  After Phase I attribute selection by a correlation-based filter model, 

there are 28 attributes are selected. After Phase II attribute selection by the wrapper 

model, there are only 12 attributes selected, in which 3 of them are connection-based 

attributes, 2 are content-based attribute, and 7 are time-based traffic attributes, which are 

summarized in Table 3.4.   The specific features that are selected in each phase analysis 

are also marked as “x” in Table 3.3.  

Table 3.3 Details of selected attributes in each phase 
Category Attribute Type Phase I Phase II 

 duration                       Numeric     

 src_bytes                      Numeric   

 dst_bytes                     Numeric X X 
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Connection land {1,0}                            Numeric   
based wrong_fragment                Numeric   

attributes urgent                         Numeric X X 

 protocol_type {tcp,udp,icmp}          discrete X  

 service {private,smtp,auth,ftp,domain discrete X  X 

 flag {SF,SO,REJ,RSTR,S1}              discrete X   

 hot                           Numeric X  

 num_failed_logins             Numeric X  

 logged_in {0,1}                       Binary X  

 num_compromised               Numeric X  

 root_shell                   Numeric X X 
Content su_attempted                   Numeric   

based num_root                      Numeric X  

attributes num_file_creations           Numeric X  

 num_shells                   Numeric X X 

 num_access_files            Numeric X  
 num_outbound_cmds             Numeric    
 is_host_login {1,0}                   Binary X   

 is_guest_login {1,0}                  Binary   

 count                       Numeric X  

 srv_count                      Numeric X X 
 serror_rate                   Numeric   
 srv_serror_rate        Numeric   

 rerror_rate                   Numeric X  
 srv_rerror_rate                Numeric X X 
 same_srv_rate                  Numeric X X 

 diff_srv_rate                  Numeric X X 

Traffic srv_diff_host_rate            Numeric X  

based dst_host_count                Numeric X X 

attributes dst_host_srv_count             Numeric   
 dst_host_same_srv_rate         Numeric   

 dst_host_diff_srv_rate        Numeric X X 

 dst_host_same_src_port_rate    Numeric X X 

 dst_host_srv_diff_host_rate  Numeric X  
 dst_host_serror_rate           Numeric    
 dst_host_srv_serror_rate       Numeric     
 dst_host_rerror_rate          Numeric X    
 dst_host_srv_rerror_rate     Numeric X    
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Table 3.4 Number of attributes in each stage 
 Original dataset After Phase I 

(Filter) 
After Phase II 
(Wrapper) 

Overall 41 28 12 
Content-based attributes 13 10 2 
Time-based traffic attributes 19 13 7 

 
Individual 

Connection-based attributes 9 5 3 
 

Table 3.5 Comparison of classification and prediction accuracy  

Training dataset 
 

Testing dataset 
 

 

Use all 41  
attributes  

Use 28 
attributes 
(Phase I) 

Use 12 
attributes 
(Phase II) 

12 attributes 41 attributes 

Overall accuracy 92.70% 92.74% 93.39% 92.08% 87.00% 
Normal 87.65% 86.83% 84.77% 76.57% 68.01% 
DoS 85.03% 85.63% 96.41% 98.37% 99.52% 
U2R 95.11% 95.11% 95.54% 95.84% 94.25% 
R2L  87.76% 83.67% 77.55% 38.10% 14.29% 

 
 
Individual 

Probe 100% 100% 99.32% 95.05% 47.66% 
 

Table 3.5 shows the comparison of classification accuracy in each phase of 

attribute selection based on the training dataset and the prediction accuracy based on the 

testing dataset. It can be seen that when the training dataset is used, the classification 

accuracy using the final selected 12 attributes has a slight better overall performance 

(93.39% in column 4 and row 2) than using all 41 features (92.70% in column 2 and row 

2).  However, when the testing dataset is used, the prediction accuracy using the final 

selected attributes has a significant better overall performance (92.08% in column 5 and 

row 2) than using all 41 features (87.00% in column 6 and row 2).  

3.4   DISCUSSION 

It is worthwhile to point out that the dataset used in our analysis has a significant 
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unbalance samples in each class of the dataset as shown in Figure 3.4 and Table 3.2. This 

is one of the major reasons that cause the poor performance in the identification of R2L 

class (only 70 samples available).  In fact, the different percentages of the total samples 

are purposely used for each class in the selection of the training dataset, which is tried to 

reduce the unbalance of the training samples in our analysis.  

 

Figure 3.4 Frequencies of training data and testing data 

Another major reason causes some poor classification performance is due to the 

data heterogeneity between the testing dataset and the training dataset. Figure 3.5 shows 

the histogram of 12 selected attributes in the training and testing dataset (the left plot 

represents the training dataset, the right plot shows testing dataset) under each of 5 

classes of network operation states.   

From Figure 3.5 we can find some examples of different histograms between 

training and testing data, for example, R2L in (a), (b), (e) and (i), Normal connection in 
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(a) and (f). Those differences account for the difference in detection performance for 

normal connection and R2L. Also we can find that the data in most attributes is difficult 

to find distribution, so it is difficult to investigate the computer network intrusion 

detection data using statistical ways. 

 
(a) Attribute 1:  dst_bytes 

 
(b) Attribute 2: urgent 
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(c) Attribute 3: root_shell 

 
(d) Attribute 4:  num_shells 

 
(e) Attribute 5:  srv_count 
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(f) Attribute 6: srv_rerror_rate 

 
(g) Attribute 7: same_srv_rate 

 
(h) Attribute 8: diff_srv_rate 
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(i) Attribute 9: dst_host_count 

 
(j) Attribute 10: dst_host_diff_srv_rate 

 
 

(k) Attribute 11: dst_host_same_src_port_rate 
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(l) Attribute 12: service 

Figure 3.5 Histogram of selected attributes in training data vs. testing data 
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CHAPTER 4  SVM BASED CONTROL CHART AND CASE STUDY FOR 

ANOMALY DETECTION 

 

Traditional multivariate control charts, e.g. T2 charts, have a limitation that the 

data has to be multivariate normal distribution. In this chapter, a systematic procedure is 

proposed for monitoring control chart design, which is an extension of existing 

multivariate control charts without the normal distribution assumption. For this purpose, 

the support vector machine (SVM) is used to extract monitoring features for non-

Gaussian distribution data. In the framework on supervised kernel-based multivariate 

control chart, there are three important contributions in this chapter. The first contribution 

is the extension of SVM methods to construct multivariate control charts. The second 

contribution is the use of multi-objective Genetic Algorithm in parameter pre-selection 

for SVM based control chart. With the fine-tuning of pre-selected soft margin constant C 

and RBF kernel parameter σ  we can obtain the best combination of Pareto optimalα and 

β  errors. The third contribution is the performance evaluation of supervised kernel-based 

control chart by different scenarios. 

This chapter is organized as follows: In Section 4.1, multivariate control charts 

are reviewed. Section 4.2 gives the framework of the proposed supervised multivariate 

control chart based on kernel methods. The performance improvement for the optimal 

selection of pre-selected parameters using multi-objective genetic algorithm is discussed 

in Section 4.3. The proposed control chart is applied to intrusion detection data in Section 

4.4. Section 4.5 compares the performance of proposed control chart with other methods. 
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4.1   INTRODUCTION 

It is very important to develop effective monitoring methods for online detection 

of network intrusions. Traditional multivariate control charts [13], such as Chi-square 

chart and Hotelling T2 chart, have been well studied for monitoring of normally 

distributed data. Recently, some other multivariate control charts like multivariate 

EWMA chart [13] are not very sensitive to the normal distribution assumption. However, 

they are not very efficient to deal with high dimensional multivariate data, especially 

non-Gaussian distribution data.  

4.1.1   Review of Multivariate Control Charts  

Figure 4.1 shows a typical multivariate data scatter plot with 2 variables of x1 and 

x2 and dimension p=2.  If we monitor each variable individually, there should be 2 

univariate control limits as shown in the control rectangle range of Fig. 4.1. However, if 

these two variables are highly correlated, univariate charts will not be very effective for 

process monitoring because the correlation relationships between the variables are not 

well considered in the control limits.  For example, if a process is in-control, the 

probability of p means in control is (1 - α )p for the independent univariate case. But the 

joint probability of type I error may be much larger then (1 - α )p if there is positive 

correlation between variables [76]. Therefore, a multivariate control chart is needed when 

the correlation among individual variables is significant. 
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Figure 4.1 Multivariate quality control 

For multivariate normally distributed data, one often uses Chi square control chart 

and Hotelling T2 control chart for large mean shift., and uses MEWMA and MCUSUM 

charts for small mean shift.  The main drawbacks for these control charts are: (1) they 

may not be very effective for extreme large dimensional data because the variance-

covariance matrix may be poorly estimated for the large the dimensional data; (2) they 

are designed based on the normal distribution assumption. If the assumption is not 

satisfied, the misuse of those control charts will lead to misleading results. 

4.1.2   Contribution of This Chapter 

In recent years, non-parametric (distribution free) control charts have caught 

increasing attentions [77-79].  But most of such research is still limited in the univariate 

cases or the rank-based methods.  This chapter is to propose a new method for developing 

non-parametric multivariate statistical control charts based on kernel methods, which can 
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deal with non-Gaussian or unknown distribution data frequently encountered in real 

world problems.  

There are two scenarios of designing a multivariate control chart for non-

Gaussian distribution data.  The first scenario is that we have the sample data under both 

in-control state and out-of-control states of all possible anomaly states.  In this case, we 

normally suppose that we only care about these known anomaly states.  Therefore, we 

can use supervised kernel methods to build the hyperplane to separate the in-control 

samples from faulty or anomaly samples, which is considered as the control limits with 

the maximum separation margin.  For this purpose, Support Vector Machine (SVM) is 

used as the supervised classifier that is discussed in Chapter 4.  The other scenario is that 

there are only in-control training samples but without the out-of-control training samples. 

In this case, the unsupervised kernel methods are used to build the control limits, which 

will be discussed in Chapter 5. 

4.2   SUPERVISED MULTIVARIATE CONTROL CHART BASED ON KERNEL 

METHODS 

When there are enough in-control samples and out-of-control samples, the design 

of control charts can be taken as the problem to obtain the boundary to separate the two 

categories of samples.  In this chapter, a new SVM-based multivariate control chart will 

be developed, in which a multi-objective genetic algorithm will be integrated for 

selecting the adjustable parameters in the SVM.  
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4.2.1   Classification Based on SVM 

Assume input-output training data pairs follow an independently identical 

distribution (i.i.d.) with an unknown probability function of P(x, y) 

 1 2

1 2

( , ,..., )
( , ,..., , ) { 1, 1}

p
n

n

x x x
y y y

∈

∈ − +

R
    (4.1) 

where p is the dimension of input data, n is number of samples. We need to estimate a 

function : { 1, 1}pf → − +R . In the output set, Y=+1 represents in-control data, and –1 

represents out-of-control ones.  

Since two classes {-1,+1} are used to represent in-control and out-of-control 

states, the problem of multivariate control chart design becomes a 2-class classification 

problem. For constructing a linear separation boundary in the feature space, a feature 

transform mapping the input data space into a higher dimensional feature space using 

( )ϕ ⋅  needs to be defined first.  

Given a training set of n data points as in (4.1), the support vector method 

approach is used to construct a classifier as: 

 ( ) ( )Ty x sign w x bϕ⎡ ⎤= +⎣ ⎦  (4.2) 

where w  are positive real constant vector and b is a real constant.  

When the data of the two classes are separable, it yields 

 
( ) 1,      if   1

( ) 1,    if   1

T
j j

T
j j

w x b y

w x b y

ϕ

ϕ

+ ≥ = +

+ ≤ − = −
 (4.3) 

These two sets of inequalities can be combined as 

 [ ( ) ] 1,      1,...,T
j jy w x b j nϕ + ≥ =  (4.4) 
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This is called a hard margin formulation, which assumes these two classes can be 

perfectly separated by the optimal hyperplane without overlap.  

 ( ) ( ) 0Ty x w x bϕ= + =  (4.5) 

In this case, the optimal hyperplane is constructed by solving the following 

quadratic programming: 

 
1min
2

. . [ ( ) ] 1,      1,...,

T

w

T
j j

w w

s t y w x b j nϕ
∈

+ ≥ =

H  (4.6) 

In practice, the perfect separating hyperplane may not exist when there are some 

overlaps between two classes due to noise. In this case, the slack variables 0jξ ≥  are 

introduced (j=1,…, n) in order to relax the perfect separation constraints. This is called a 

soft margin optimization problem, which is defined in the primal weight space as 

 

, 1
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2

. . [ ( ) ] 1 ,      1,...,
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T
j j j

j

w w C
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∑
 (4.7) 

C is the scalar to balance two objectives: one is to maximize margin, the other is to 

minimize the violation caused by overlap of data points. This constrained quadratic 

programming problem is solved by introducing Lagrange multipliers 0jα ≥ , 0jν ≥  

(j=1,…, n)  

 1 1 1 1
( , , , , ) ( , ) { [ ( ) ]-1+ }n nT

j j j j j j j j j jj j
L w b l w y w x bξ α ν ξ α ϕ ξ ν ξ

= =
= − + −∑ ∑  (4.8) 

where 1
1

1( , )
2

n
T

j j
j

l w w w Cξ ξ
=

= + ∑  
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The saddle point of the Lagrangian gives the solution by computing 

 1, , ,
min max ( , , , , )

j j j
j j jw b

L w b
α ν ξ

ξ α ν  (4.9) 

By partial derivation it yields 
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which leads to the Dual problem by replacing (4.8) by using (4.10) 
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 (4.11) 

Compared with the hard margin formulation in the linear separable case, (4.11) 

has additional box constraints 0 j Cα≤ ≤ .  

Based on (4.11), the kernel is defined as ( , ) ( ) ( )T
j jk x x x xϕ ϕ=     (4.12) 

The kernel ( , )jk x x  is any symmetric continuous function satisfying Mercer's 

condition [80], which states that any positive definite kernel can be expressed as a dot 

product in a high-dimensional space, and more specifically, if a kernel is positive 

semidefinite, there exists a function ( )xϕ  whose range is an inner product space of all 

possible high dimensions, such that ( , ) ( ) ( )T
j jk x x x xϕ ϕ= . By considering (4.10), (4.2) 

can be rewritten as 

 
1

( ) ( , )
n

j j j
j

y x sign y k x x bα
=

⎡ ⎤
= +⎢ ⎥

⎣ ⎦
∑  (4.13) 
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Normally we have the following kernels to pick up 

Linear kernel: ( , ) T
j jk x x x x=  

RBF kernel: 
2 2( , ) exp{ /(2 )}j jk x x x x σ= − −  

By using kernel trick [15]: any positive semi-definite kernel can be expressed as a 

dot product in a high-dimensional space, the classifier (4.13) can be obtained by solving 

 , 1 1

1

1max ( , ( , )) ( , )
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. .    0,    0 , 1,...,
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D j j l j l j l j l j
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α α α α

α α

= =

=
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∑
 (4.14) 

The solution to this problem is unique and global for linear SVM case as well as positive 

definite kernel [80]. For a positive semidefinite kernel the solution is global but not 

necessarily unique.  In the solution of (4.14), only some jα  are not equal to zero, those 

data are on the boundary of the whole data called support vectors, the corresponding non-

zero jα  are called support vectors.  The solution for b is 

 
1 1

1 { ( , )}
NBSV SVn n

i j j i j
i jNBSV

b y y k x x
n

α
= =

= −∑ ∑  (4.15) 

where lx  is an example which is non-bound support vector (i.e. 0 j Cα< < ), nSV 

is the number of support vectors, nNBSV  is the number of non-bound support vector. It can 

be found that only non-bound support vector (i.e. 0 j Cα< < ) plays the role of 

( ) 1 or -1T
jw x bϕ + =  (margin with 0jξ = ), other support vectors with j Cα =  are 

overlap samples with 0jξ >  to be compensated by soft margin..  
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4.2.2   Multivariate Control Chart Using SVM 

In this section we design a control chart based on the classifier hyperplane 

constructed in binary SVM.  After finding a unique globally optimal hyperplane by using 

a positive definite kernel function, the hyper-parameters in the model (4.14) are all fixed. 

When there is a new observation coming, we use the following equation to obtain the 

decision state for new observations.  

 
1

( ) ( , )
n

j j j
j

y x y k x x bα
=

= +∑  (4.16) 

The control limit of this control chart is zero, a data falls above zero is in-control, 

and below zero is out-of-control. Because decision function value ( )y x  represents the 

distance of the sample from hyperplane in feature space, we can use this distance to 

evaluate how close this new observation is toward the control limit. The parameters in the 

decision function are obtained as following: 

Lagrange multiplier jα , i.e. the variable in the dual problem (4.14) is obtained by 

solving this dual problem from the training labeled samples. Kernel ( , )jk x x  is pre-

selected from linear, Polynomial, or RBF kernels.  Bias b  is obtained by (4.15).  

4.3   OPTIMAL SELECTION OF KERNEL PARAMETERS USING GENETIC 

ALGORITHMS FOR SVM-BASED CONTROL CHART DESIGN 

Optimal selection of kernel function is a critical issue in SVM classification  

problems, which has been extensively studied [81].  This section aims to study how to 
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adjust kernel parameters for the best performance of the control chart under a given 

kernel function. 

From previous section, it can be found that the decision boundary of kernel 

methods are determined by solving a quadratic programming (QP), but inside the 

formulation of QP, we need to select optional parameters such as soft margin constant C 

and RBF kernel parameter σ . In this section we first summarize the existing methods for 

this purpose and give some comments on them, and then propose a new method which 

uses multi-objective Pareto genetic algorithm to obtain a set of optimal combination for 

the two objectives we want to minimize: α and β  errors. 

4.3.1   Review of Existing Methods 

(1)  Trial and error with cross-validation  

Despite its simplicity, the trial and error method is the most widely used method. 

Normally one can pick up several values of a parameter by trial and error and compare 

the effect of them then fix one as the final choice.  

Cross-validation is a typically re-sampling method that is widely used in machine 

learning algorithms. Cross validation is more preferred than residuals method as a model 

evaluation method because it can predict the performance of the model on new data and 

can overcome the problem of outliers. The basic idea of cross-validation is to remove part 

of the data before the training of model, and use the removed data as validation data to 

evaluate the performance of the model. There are mainly three methods included in cross-

validation method, named holdout method, K-fold cross validation and Leave-one-out 

cross validation. Among them K-fold cross validation is the most widely used one. 
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Normally K equals to 5 or 10. Details for this method can be found in [82]. Because of 

the advantage of obtaining stable solution, cross-validation is often connected with search 

methods. 

(2) Grid search with cross-validation 

The basic idea of grid search is to divide the search space (e.g. two parameters to 

be decided) into uniformly distributed grids, and evaluate the performance on each point, 

finally pick up the combination with best performance. This method is quite 

computationally extensive. Definitely, if the grid resolution is large enough, we can find 

the optimal value of the parameters after all the grids result are obtained. But the cost of 

the computational is usually unaffordable to reach this end. 

4.3.2   Multi-objective Optimization For Parameters Fine-tuning 

All the methods above have the common limitation: there is no heuristic inside 

the algorithm and so they are both blind search methods. The number of possible values 

for the parameters must be small enough otherwise the searching time would be very long. 

Even though, the optimal parameters by those searches may not be the true optimal 

values because it depends on how close the best results based on the selected grids to the 

true optimal results. Another problem of the existing methods is that those methods are 

not suitable for the control chart design application, because we have 2 objectives to 

consider: we want to minimize: α and β  errors at the same time.  

As we all know, α and β  errors are calculated according to the corresponding 

class the sample belonging to: 
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Pr(  is measured as out of control|  is actually in control)
number of sample(measurement is out|true value is in)    =

In control sample size

x xα =
 (4.17) 

 
Pr(  is measured as in control|  is actually out of control)
number of sample(measurement is in|true value is out)   =

Out of control sample size

x xβ =
 (4.18) 

While the total error for classification is 

 
Total error rate Pr(  is measured as different value as  actually is)

number of sample(measurement is different from true value)                         =
Total sample size

x x=
(4.19) 

Take a close look at the three formula (4.17) to (4.19), we can find that 

+ >Total error rateα β . The reason is that α and β  errors are constructed on their 

corresponding classes either in control or out of control, but total error rate is constructed 

on total sample size. 

We also provide with the explanation of the fact that + >Total error rateα β . Let 

U1 = {all in-control sample}, U2 = {all out of control sample}, it is easy to know that 

1 2U U∪ = Ω  and 1 2U U∩ = Φ . So the probability of detection error is 

 
1 2

1 1 2 2

1 2

Pr( ) Pr( | | )
                 Pr( | ) Pr( ) Pr( | ) Pr( )
                  = Pr( ) Pr( )

Error Error U Error U
Error U U Error U U

U Uα β

= ∪
= +

+
 (4.20) 

where 1
Number of In Control samplesPr( )

Total sample size
U =   

and 2
Number of Out of Control samplesPr( )

Total sample size
U =  

Because 10 Pr( ) 1U≤ ≤  and 20 Pr( ) 1U≤ ≤ , it is easy to see + >Total error rateα β . 
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In this section a multi-objective optimization method for fine-tuning parameters is 

presented. The basic idea is to take use of multi-objective genetic algorithm by its 

stochastic searching and guided searching power ability and dealing with multi-objectives 

at the same time to deal with fine-tuning problem of SVM parameter optimization.  

The typical problem for multi-objective optimization is as following 

 

Minimize/Maximize       ( ),                 1, 2,..., ;
                 subject to       ( ) 0,           1, 2,..., ;

                                       ( ) 0,             1, 2,..., ;

     

m

j

k

f x m M
g x j J

h x k K

=
≥ =

= =
( ) ( )                                  ,     1, 2,..., ;L U
i i ix x x i n≤ ≤ =

 (4.21) 

where ( )mf x : objective functions. Assume there are M objective functions to be 

mimimized or maximized at the same time. 

( )jg x : The constraints with values larger than or equal to zero. 

( )kh x : The constraints with value equal to zero. 

ix : decision variables.. 

There are two goals in a multi-objective optimization (MOO): to find a set as 

close as possible to the Pareto-optimal front, and to find a set of solutions as diverse as 

possible. In the field of multi-objective optimization it is usually assumed that 

optimization takes places before decision making. So the goal is to find or approximate 

the Pareto-optimal set. 
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Figure 4.2  Framework of multi-objective Pareto Genetic Algorithm 

Figure 4.2 is the flowchart of the algorithm presented in this chapter. In original 

method two individuals are chose for crossover and mutation. PN/2 times (PN is the size 

of population) operations for crossover, mutation and ranking are needed in every 

evolution, which makes traditional multi-objective genetic algorithm very time-

consuming. We implement a multiple chromosomes crossover to speed up while remain 

the convergence of the algorithm, the process needs only PN/r times operations, where r 

is the number of individuals which take part in crossover every time. In theory 

calculating time will be decreased to r/2 of original time when using this way. Generally, 
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the more the number of individuals which take part in crossover, the faster the multi-

objective genetic algorithm calculates. Details can be found in [83]. Also Appendix B has 

details of each step in the flowchart as in Figure 4.2. 

In this section we use the two pre-defined parameters in SVM: C value and σ  as 

design variables, and use α  and β  errors as the two objectives in the multi-objective 

optimization. The settings used in this section are: 

Kernel: RBF 

C value: 0.1 to 100 

σ : 0.01 to 1 

Population size: 20 

Pareto optimal set size: 30 

Maximum number of iteration: 50 

Crossover probability q: 0.2 

Mutation probability pm: 0.2 

After 50 iterations of the revolution, we obtain the optimal Pareto objective values 

of α  vs. 1 β−  errors as shown in Figure 4.3 and corresponding optimal Pareto set of 

design variables shown in Figure 4.4.  
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Figure 4.3 Optimal Pareto objective values 

 

Figure 4.4 Optimal Pareto set 

According to Figure 4.5, first we can find the two objectives: α  and β  errors are 

exclusive to decrease, i.e., if we want to decrease α  error, we have to pay the price of 

increasing β  error. Also we can find that neither the C value nor kernel widthσ can 
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cause α  or β  error to change monotonously. The reason of this fact is that SVM control 

chart is data dependent. Different combinations of C value and kernel width σ may 

produce different seperating hyperplanes and different support vectors, but they may have 

same α  and β  errors. Another finding from Figure 4.5 is that the optimal Pareto frontier 

is not a smoothly changed curve. This fact tells that it is not easy to find theoretic Pareto 

frontier for this type of multi-objective optimization problem. It is necessary to use 

simulation to estimate the optimal Pareto frontier so that we can pick up the most 

satisfied combination for our needs. So when we use SVM control chart, we need to use 

multi-objective Genetic Algorithm to fine tune the pre-defined parameters: C value and 

kernel widthσ to reach the highest performance of SVM control chart. 

 

Figure 4.5 Relationship between α , β  errors and C, σ  values 

We can also find the relationship between α , β errors and C, σ  values in Table 

4.1. It is clear from the table that Pareto α , β errors are conflict objectives, also C andσ  
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values have no intrinsic relations. It means we could not obtain the optimal Pareto by 

simply increase either C or σ  value, but need to use multi-objective genetic algorithm 

(MOGA) to find the Pareto optimal set. 

Table 4.1 The table for relationship between α , β errors and C, σ  values 
Index Kernel width σ  C value α  error β  error 

1 1 69.986 0 0.41201 
2 0.017434 8.6273 0.001934 0.3499 
3 0.20846 28.625 0.003869 0.28778 
4 0.75315 50.032 0.003869 0.24431 
5 0.64129 42.707 0.005803 0.23395 
6 0.4495 34.523 0.005803 0.20704 
7 0.39529 31.238 0.007737 0.20083 
8 0.6146 37.089 0.009671 0.18841 
9 0.33462 26.186 0.011605 0.18219 

10 1 41.853 0.015474 0.16977 
11 0.82081 37.089 0.015474 0.16563 
12 0.56298 28.361 0.019342 0.15735 
13 0.058476 8.8233 0.023211 0.15114 
14 0.90072 27.794 0.025145 0.14493 
15 1 33.75 0.025145 0.14493 
16 0.25509 14.071 0.027079 0.14079 
17 0.62495 20.307 0.029014 0.13872 
18 0.9081 22.204 0.032882 0.13251 
19 1 23.61 0.032882 0.13251 
20 0.21677 0.1 0.034816 0.05176 
21 0.25913 0.1 0.038685 0.047619 
22 0.92783 0.1 0.040619 0.045549 
23 0.92688 0.1 0.040619 0.045549 

 
 

4.4   APPLICATION ON ANOMALY DETECTION  

In this section the SVM based control chart is used for computer network 

anomaly detection. Similar to Chapter 3, we use KDD1999 labeled data for SVM based 
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control chart. We simply put normal connection as normal data and all the others attacks 

as abnormal data.  

One result coming from the tables and figures is that the 12 attributes has better 

performance than the original 41 attributes not only on the accuracy, α  error and β  error, 

but also on the fact that 12-attribute data has much less computing time on both training 

and testing. In the real-world intrusion detection application, short computing time is 

highly desired.   

Table 4.2 Normal vs. all intrusion 
Normal vs. All Intrusion performance 41 attributes 12 attributes 

Training accuracy 98.31% 98.08% 
α  error 9.0535% 10.288% 
β  error 0 0 
Model SV number 884 641 
Margin 0.0584 0.051 

Training 

CPU time (Sec.) 42.0460  84.1400 
Testing accuracy 81.997% 94.982% 
α  error 92.328% 12.717% 
β  error 0.01% 3.1543% Testing 

CPU time (Sec.) 279.3910 102.4530 
 

 
(a) Control chart on 41 attributes            (b) Control chart on 12 attributes 

Figure 4.6 Normal vs. all intrusions 
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Table 4.2 shows the performance of SVM based control chart on normal 

connection versus all the abnormal connections (intrusions). With selected 12 attributes, 

the testing accuracy increases a lot (from about 82% to 95% and significant decrease in 

α  error) while the testing time is reduced from 279 seconds to 102 seconds. 

 We also use part of the intrusion data to illustrate the use of SVM control chart. 

1000 samples are selected from original dataset, among them 700 is from normal 

connection, 100 each for DoS, U2R and Probe. 

A 

C 

B 

D 

 

Figure 4.7 Control chart for selected samples on intrusion detection data 

If we have a detailed look at the training and testing data on the kernel distance, 

we can find that the distribution of each part in Figure 4.7: A, C represent normal samples 

in training and testing data, B, D represent abnormal samples in training and testing data 

individually.  

Figure 4.8 shows the kernel distance and probabilistic fitting for data in area A 

and B. Based on the fact that the kernel distance is not an exact way to explain the result 
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that one new sample is in-control or out-of-control, we propose a probabilistic way to 

explain the result: a logistic curve fitting is used to estimate the probability of the sample 

to be in the state (in-control or out-of-control), then we can compare with the two 

probabilities to see which one is more suitable to describe the state of that sample.  

 
Figure 4.8 kernel distance and probabilistic fitting for data in area A and B 

 
In detail, a hypothesis 

H0:  x0 is in control 

H1: x0 is out of control 

is used for the new sample x0. Given a new sample x0, according to the 

probabilistic curve in Figure 4.9, we can have the probabilities: 

0 0 0 0( | )P x H x∈ = logistic function value of probability to be in-control  

1 0 1 0( | )P x H x∈ = logistic function value of probability to be out-of-control 

Then we compare 0 0 0 0( | )P x H x∈  and 1 0 1 0( | )P x H x∈ . If 1 0 1 0( | )P x H x∈ ≥  

1 0 1 0( | )P x H x∈ , then we make decision that x0 is in control, otherwise x0 is out of control. 
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Figure 4.9 Probabilistic curve for the final state of a new sample 

 

4.5   COMPARISON OF SVM CONTROL CHART WITH OTHER METHODS  

4.5.1   Comparison on Known Distribution Data 

We still use the two-dimensional data sets shown in Figure 4.10 with 4 scenarios. 

One of the two clusters is in-control data, the other is out-of-control data. Both the two 

clusters are in normal distribution. Details can be found in Table 4.3. 

Table 4.3 The 4 scenarios of data (sample size: 1000, 500 for in-control and 500 for out-
of-control data) 

 In-control data Out-of-control data 
 mean Covariance matrix mean Covariance matrix 

Scenario 1 (-2, -2) 
1 0.5

0.5 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (2, 2) 
1 0.5
0.5 1

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

Scenario 2 (-1.5, -1.5) 
1 0.5

0.5 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (1.5, 1.5) 
1 0.5
0.5 1

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

Scenario 3 (-1, -1) 
1 0.5

0.5 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (1, 1) 
1 0.5
0.5 1

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 

Scenario 4 (-0.5, -0.5) 
1 0.5

0.5 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (0.5, 0.5) 
1 0.5
0.5 1

−⎡ ⎤
⎢ ⎥−⎣ ⎦
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   (a) Scenario 1    (b) Scenario 2 

 

   (c) Scenario 3    (d) Scenario 4 
Figure 4.10 The 4 scenarios for performance comparison 

4.5.1.1   SVM based control chart on normal distribution data 

SVM based control chart does not require data to be in normal distribution, it does 

not mean that that performance of SVM based control chart is not as good as traditional 

control chart based on the known distribution of data. In this section we will demonstrate 

SVM based control chart used for normal distribution data and compare with T2 chart. 
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   (a) Scenario 1    (b) Scenario 2 

 

   (c) Scenario 3    (d) Scenario 4 
Figure 4.11 SVM based separating lines for in-control and out-of-control data 

 
Figure 4.11 shows the separating lines as the solid lines for the 4 scenarios. The 

dotted lines represent +1 or -1 of the decision function value. They are used to show the 

margin. SVM based control chart use both in-control data and out-of-control data to 

construct the optimal separating line (hyperplane) to obtain largest margin as well as 

minimal penalty of the overlap. The performance of SVM based control chart on the four 

scenarios is shown in Table 4.4. Note that in this section RBF kernel is used (parameters: 

C=1, 1σ = ).  
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Table 4.4 Performance of SVM based control chart on the four scenarios 
 α error  β  error Total accuracy 

Scenario 1 0 0.0021 0.999 
Scenario 2 0.0082 0.0136 0.989 
Scenario 3 0.0542 0.0725 0.937 
Scenario 4 0.1134 0.2792 0.81 
 

In Table 4.4, α error is corresponding to Phase 1 in T2 chart using in-control data, 

and β  error is corresponding to Phase 2 in T2 chart using out-of-control data.   

4.5.1.2 T2 chart on normal distribution data 

Given data following a multivariate normal distribution, the sample mean vector 

is  

 
1

1 n

i
i

x
n =

= ∑x  (4.22) 

Also, the sample covariance matrix is 
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Then T2 statistic is [13]  

 2 1( ) ' ( )T n −= − −x x S x x  (4.24) 

The design of T2 chart is divided into 2 phases. Phase 1 obtains an in-control set 

of observations so that control limits can be established for phase 2, and phase 2 is used 

for monitoring future process data. 

Phase 1 control limits are [13]: 
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where m is the number of preliminary samples, p is the number of quality characteristis, 

, / 2,( 1) / 2p m pαβ − −  is the upper α percentage point of a beta distribution with parameters 2p  

and ( 1) 2m p− − . Here we set α =0.05. 

Phase 2 control limits are: 

 , ,2

( 1)( 1)

0

p m p
p m mUCL F

m mp
LCL

α −

+ −
=

−
=

 (4.26) 

The T2 chart can deal with only one cluster of data. It uses in-control samples to 

construct the control chart elements: the sample mean, sample variance-covariance, and 

then obtain the control limits for in-control data, then using the result to construct Phase 2 

control limits.  

Using T2 chart only on in-control samples, and then using the constructed control 

limits for out-of-control data, we can obtain the performance of T2 chart on these 

scenarios.  

 

                       (a) Scenario 1 Phase 1        (b) Scenario 1 Phase 2 
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                       (c) Scenario 2 Phase 1        (d) Scenario 2 Phase 2 
 

 

                       (e) Scenario 3 Phase 1        (f) Scenario 3 Phase 2 
 

 

                       (g) Scenario 4 Phase 1        (h) Scenario 4 Phase 2 
Figure 4.12 T2 chart on the four scenarios 

The performance of T2 chart on the 4 scenarios is shown in Table 4.5. 
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Table 4.5 Performance of T2 chart on the 4 scenarios 
 Phase 1 

Upper Limit 
Phase 2 

Upper Limit α error  β  error  Total accuracy 

Scenario 1 11.9323 6.0553 0.00423 0 0.998 
Scenario 2 11.9362 6.0535 0 0.01643 0.992 
Scenario 3 11.9333 6.0498 0.00207 0.28820 0.850 
Scenario 4 11.9311 6.0475 0.00649 0.72862 0.605 
 

Note that α  error of all the scenarios are different from 0.05α =  because all the 

scenarios are numerical simulations, which have the α  errors specific obtained from 

those scenarios. According to the results for scenario 1 shown in Table 4.5, T2 chart can 

obtain good performance when the in-control samples are in normal distribution. 

However, T2 chart does not use the information of out-of-control data, when there is big 

overlap between in-control and out-of-control samples, the β  error will be significant. 

For example, in scenario 4, Phase 1 has α  error only 6.49%, but the β  error in Phase 2 

is 72.86%. So T2 chart is only good to apply to the data that there is clear difference 

between in-control and out-of-control clusters.  

Compare Table 4.4 with Table 4.5, it can be found that although SVM based 

control chart has higher α  error when the overlap is increasing between in-control and 

out-of-control data, β  error is much more decreased than T2 chart. So is the total error. 

When the training data available includes both in-control and out-of-control samples and 

there may be overlap between in-control and out-of-control samples, SVM based control 

chart is a good choice for multivariate control chart.   

If the in-control data is in several clusters instead of a single normal distribution, 

T2 chart will be no use because it can consider only one multivariate normal cluster to be 

the normal condition. To get some further discussion on this problem, in section 4 we 
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will consider using Gaussian mixture model (GMM) method to estimate the parameters 

of known Gaussian models, and then use general way to construct control chart. We will 

also discuss the performance comparison of this method and SVM based control chart. 

4.5.2   Comparison on Mixture Model Data            

Among real-world problems, many of them have the following characteristics: 

there are several discrete clusters that the performance of the products is marked satisfied, 

and also the fault pattern is combined with several other discrete clusters. Those clusters 

are either multivariate normal distributed or with non-Gaussian distributions. 

Traditionally when encountered with this kind of problem, people first try to figure out 

the distributions of the data, mainly multivariate normal distribution is used to test the 

significance of fitness, and then if the test is significant, T2 chart is used. If the data is not 

in normal distribution, approximation or transform will be used first. If the samples are in 

multiple clustering, Gaussian mixture model needs to be used to estimate the mean and 

variance (covariance) of each cluster, then for each cluster T2 chart is used. This is a 

technically sound solution, but not easy to use. In this section, we will demonstrate that 

SVM based control chart is also capable to solve the multiple cluster problems, and can 

have better performance than traditional Gaussian mixture model method. 

In this section, a two-dimensional data performance comparison is given as shown 

in Figure 4.13.  
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(a) 

 

 (b) 
Figure 4.13 EM estimation of 2-d data 

The data is generated according to the following parameters in Table 4.6: 

Table 4.6 Data used for comparison of EM and SVM methods (Sample size: 400) 
Cluster Mean Var-Covariance Prior Status 
1 [0.3136; 0.4052] [0.0372,0.0009; 0.0009,0.0260] 0.25 In Control 
2 [-0.7382; 0.2603] [ 0.0255,-0.0028; -0.0028,0.0346] 0.25 In Control 
3 [0.4664; 0.7815]   [0.0255,0.00085;0.0008,0.0104] 0.25 Out of Control 
4 [-0.3251; 0.7241] [0.0295,0.0040;0.0040, 0.0241] 0.25 Out of Control 
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In the comparison, we use 2-d data to test EM (expectation maximization) and 

SVM for 50 times each. EM algorithm for GMM (Gaussian Mixture Model) use the 

information that the data is composed of 4 Gaussian distribution, so the task is to estimate 

the mean, variance-covariance matrix of each Gaussian and the weight of each Gaussian. 

The EM algorithm is an iterative procedure that monotonically increases log-likelihood 

of the current estimate until it reaches a local optimum. We use K-means clustering to 

separate the original dataset into 4 clusters and K-NN (K-nearest neighborhood) method 

to provide labels of each point. After 50 times calculation for each method, we obtain 

results that are in Table 4.7. 

Table 4.7 Comparison of average performance of EM and SVM on 2-d simulation data 
 EM average EM best performance SVM chart SVM chart best 

performance* 
Total_accuracy 0.514 0.8680 0.856 0.884 

α  error 0.505 0.1200 0.152 0.128 
β  error 0.464 0.1440 0.136 0.104 

Note(*): SVM chart best performance is obtained by multi-objective Genetic Algorithm 

mentioned in section 4.3. At the best performance the parameters are: C=1.5685, 

σ =0.40019. SVM normal performance is obtained by C=1 and σ =1. Both use RBF 

basis. 

The results show that the average performance of EM method is far below SVM 

control chart, although the best performance of EM is a little higher than normal SVM 

obtained by C=1 and σ =1. Also with multi-objective Genetic Algorithm to optimize 

performance, we can obtain the best performance with α  error 12.8% and β  error 10.4%. 

Because SVM control chart does not require detailed information of data, and the 
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optimization method is a convex optimization, so SVM control chart will generate a 

global optimal solution which is the reason why all 50 times simulation can generate the 

unique solution. The EM method depends on the cluster accuracy related to the true 

models, and it will fall to a local optimum. That is the reason why each of the 50 runs of 

EM method will generate different result. Figure 4.14 gives an example of wrong initial 

clustering cause bad performance of EM method with total accuracy only 44%. 

 

Figure 4.14 Wrong initial clustering will cause bad performance of EM method 

From the viewpoint of average performance, SVM is much better than EM 

algorithm, and the best performance is almost same for both methods. 

4.5.3   Comparison on Non-Gaussian Distribution Data  

In this section we illustrate SVM based control chart for non-Gaussian distributed 

data and compare with T2 chart and EM based method. Also we want to illustrate that T2 

chart will give misleading results for non-Gaussian data. 
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Figure 4.15 is an non-Gaussian distributed dataset. As shown in the figure, the 

data does not satisfy with any existing distribution. Using the method derived in section 

4.2, we can find the optimal separating hyperplane as the solid line shown in Figure 4.16, 

and the two dashed lines are two margins with evaluation function values +1/-1. We use 

C = 1 and σ =1 in this example.  

 

Figure 4.15 Non-Gaussian distribution dataset 

 

Figure 4.16 SVM separating plane for in-control and out-of-control samples 
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Figure 4.17 is the control chart constructed by SVM based method. The samples 

above the control limit are detected as in-control samples, and below control limit is 

detected as out-of-control samples. Because SVM based control chart build a nonlinear 

separating hyperplane so a nonlinear control limit is set in the feature space instead of 

input space. By this setting we obtain overall 98.6% total accuracy. 

 

Figure 4.17 SVM based control chart for non-Gaussian distributed data 

If we assume the data is in normal distribution by mistake and use T2 chart, the 

derived control limits are UCL=11.89 and LCL=0. Phase 1 plot is shown in Figure 4.18. 

 

Figure 4.18 T2 chart (Phase 1) for non-Gaussian distribution in-control training samples 
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After the control limits are set by Phase 1, T2 chart is applied to forthcoming 

samples. Here we use out-of-control samples as new samples to test T2 chart. Because we 

suppose the samples are satisfied with normal distribution in T2 chart, the testing samples 

have big detecting errors as shown in Figure 4.19. The total accuracy for T2 chart in this 

case is only 90% and the β  error reaches 8% for this specific case.  

From the truth that the data is not in normal distribution, we can tell that the 

results are very misleading. The distribution of data needs to be tested before we apply T2 

chart, otherwise the results could not be explained. 

 

Figure 4.19 T2 chart (Phase 2) for non-Gaussian distribution out-of-control testing 

samples 

Then we use EM method to estimate the distribution of in-control and out-of-

control samples. Expectation Maximization (EM) algorithm is used to estimate the 

probability density of a set of given data by obtaining maximum likelihood estimates of 

parameters in probabilistic models. EM executes with a loop with an expectation (E) step, 



 

108

which computes the expected value of the hidden variable, and a maximization (M) step, 

which computes the maximum likelihood estimates of the parameters given the data and 

setting the latent variables to their expectation. Normally finite Gaussian mixture model 

is used in order to model the probability density of the data. 

By using EM method, we still suppose the data are in normal distribution. EM 

method considers all of the existing samples, both in-control and out-of-control ones. 

Figure 4.20 shows the contours of the estimation for distributions of in-control and out-

of-control samples. From Figure 4.20 we find that EM method catches part of the 

characteristics of the samples such as mean and variance-covariance, but because the 

samples themselves are not in normal distribution, there are still somewhat large 

detecting errors. The total accuracy of EM method for this case is 91.6%, a little higher 

than T2 chart.  

 

Figure 4.20 EM estimation for non-Gaussian distribution samples 
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To sum up, the comparison of the performance for SVM chart, T2 chart and EM 

method is shown in Table 4.8. It is easy to be found that for non-Gaussian distributed 

data, SVM chart shows higher total accuracy than traditional T2 chart and EM method. So 

SVM chart is much more suitable for the samples with non-Gaussian distribution. 

Table 4.8 Comparison between SVM chart and T2 chart on non-Gaussian distribution 
data 

 α error (Phase 1) β  error (Phase 2) Total accuracy 

SVM chart 0.016 0.012 0.986 
T2 chart (mis-using) 0 0.2 0.90 
EM method  0.092 0.016 0.916 

4.6   CONCLUSION 

With the wide use of computer networks and monitoring techniques such as 

sensor networks, huge amount of data is available for online monitoring. Although 

multivariate process monitoring methods have been investigated for a long time, the 

current multivariate control charts still have a lot of limitations. In this chapter we present 

SVM based control chart and compare the performance with the current multivariate 

control chart. SVM based control chart does not require the distribution of the samples, 

so it has highly applicable in real world problems.  

We have the following conclusions for the chapter: 

(1) T2 chart has similar performance with SVM based control chart when the 

data is Gaussian distribution. However, when the data is in non-Gaussian 

distribution, T2 chart gives misleading results. Because T2 chart does not consider 

out-of-control data during the construction of control chart (phase 1), it has large 

β  error when the in-control data and out-of-control data have large overlap. 

SVM based control chart can resolve this problem by constructing an 



 

110

optimization problem to maximize the margin between in-control data clusters 

and out-of-control clusters, at the same time minimize the penalty caused by the 

overlap. So if the in-control data and out-of-control data has large overlap, SVM 

based control chart is preferred. 

(2) When the in-control and out-of-control has more than one clusters, 

traditional multivariate control chart does not work. SVM based control chart can 

still resolve this problem by construct the hyperplane between in-control and out-

of-control data no matter how many clusters the data has.  

(3) We can optimize the performance of SVM based control chart by finding 

the optimal pair of pre-defined parameters C and σ by multi-objective GA. Multi-

objective GA can find the optimal Pareto set of the combinations of C and σ to 

obtain the Pareto frontier of α  and β  error. This method provides us intuitive 

way to understand the mechanism of SVM based control chart for the specific 

data.  

(4) SVM based control chart is good for real-time application. Except for the 

relatively long training for the model parameters, the calculation of kernel 

distance of new samples is very fast. In the application of intrusion detection, 

training algorithm can run off-line whenever enough samples is obtained from 

online data. We can improve the training time by using higher performance 

computer, but the monitoring and detection only need computers with normal 

performance. We have also shown in this chapter that SVM based control chart 
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can be applied to computer networks anomaly detection with very good 

performance. 
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CHAPTER 5  UNSUPERVISED KERNEL BASED MONITORING CHARTS  

 

This chapter addresses the development of control charts when only in-control 

samples are available and the data is not linearly separable in the input space. Two 

unsupervised kernel-based multivariate monitoring control charts are proposed. The first 

method is kernel principal component analysis based control charts. This control chart is 

constructed in the feature space based on the first several orthogonal principal 

components that contribute most of the variance in the data. The second method is 

support vector clustering based control charts, which are constructed by formulizing an 

optimization problem to obtain the center and radius of a minimal hypersphere to enclose 

most of the in-control data in the feature space.  

This chapter is organized as follows: Section 5.1 gives a brief introduction on the 

motivation of the research in this chapter. Section 5.2 proposes the kernel principal 

component analysis (KPCA) based monitoring charts. Section 5.3 develops the 

unsupervised support vector clustering (SVC) based monitoring charts. The application 

of SVC based monitoring chart to the computer network intrusion data is discussed in 

Section 5.4. Conclusion is drawn in Section 5.5. 

5.1   INTRODUCTION 

Unsupervised learning methods are critically important when there are no 

sufficient labeled training samples of attacks especially for new or unknown attacks.  

However, it is generally much easier to get the sufficient samples under the normal 
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operational condition, which are often used to train the normal operational boundary. For 

this purpose, linear models have been widely investigated, such as PCA, discriminate 

analysis and linear clustering.  These methods assume that in-control data and out-of-

control data are linearly separable, which in reality may not be satisfied in many cases, 

like the computer network audit data used in this dissertation.  In this chapter we propose 

two types of unsupervised kernel based control charts: kernel principal component 

analysis (KPCA) based control charts and support vector clustering (SVC) based control 

charts with their applications to anomaly detection in computer networks. 

5.2   KERNEL PCA BASED CONTROL CHARTS 

5.2.1   Introduction of Kernel PCA 

PCA as a linear transform is popularly used for feature extraction and data 

dimension reduction.  In this approach, the first several principal components reflecting 

the majority of the data variance are selected to construct control charts. Those principal 

components are corresponding to those larger eigenvalues and the associated 

eigenvectors as the projection directions.  PCA intends to use a smaller dimension of 

linearly transformed features to reconstruct the original large dimension of data while 

keeping the most structural variance of original data.  Analogically, when in the need of 

nonlinear transform for the data with the complex non-Gaussian distributions, kernel-

PCA (KPCA) uses the nonlinear kernel transform to map the original data having the 

nonlinear relationship in the original data space into a feature space that can be separated 

by a linear classifier.  
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Again, let ( )xϕ  be a nonlinear mapping to some feature space F. In feature space 

F, ( )jxϕ  is centered as 
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Then the principal components are obtained by finding eigenvalue 0λ > , and 

eigenvector 0≠V  that 
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Suppose 
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= ∑V  is the linear combination of elements ( )jxϕ  with 

coefficients jβ , it can be rewritten as ( ( ) ) ( ( ) )j jx x Cλ ϕ ϕ⋅ = ⋅V V . So the eigenvalue 

problem is now  

 1( ( ,..., ) )T
nnλ β β=β Kβ β=  (5.3) 

where K is kernel matrix defined as K ( ) ( )T
ij i jx xϕ ϕ= . Formula (5.3) is to solve 

eigenvalue in feature space F. The solutions are ( , )j jλ β . Eigenvector are normalized in 

feature space, i.e. 1T =V V . This can derive to 
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When we have a new observation x, we can extract features of x by projecting the 

mapped pattern ( )xϕ onto V (in feature space) 
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Here we can find that the only difference between KPCA and PCA is that PCA 

solve eigenvalue problem in input space while KPCA solve it in feature space. So the 

choice of PCA or KPCA only depends on the linearity of the input space. If the input 

space is nonlinear, we need to use kernel matrix to transform into a linear feature space, 

then use PCA in the feature space. 

5.2.2   KPCA Based Control Chart 

Normally, if the in-control samples and out-of-control samples can be linearly 

separated, PCA is enough to handle this situation. But if those two types of samples can 

not be linearly separated, we need to get the help of kernel transform to transfer the input 

space into a higher dimensional feature space where the two types of samples can be 

separated by a linear hyperplane, then apply PCA in the feature space. This is the basic 

idea behind KPCA control charts. 

In KPCA based control charts, we take the advantage of the kernel transform to 

first map the nonlinear input space data into a linear feature space, and then use linear 

PCA to get the directions (eigenvectors) that accounts for most variance. We can use the 

first several principal components to compose the control charts which account for the 

majority of the variance (e.g. over 90% of the variance). 
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5.2.3   Simulation 

Figure 5.1 illustrates the difference between linear PCA and kernel PCA. Linear 

PCA can only rotate the current coordinates to make the largest variance happens on the 

new x1 axis, i.e. the direction of the first principal component, but can not change the 

shape of data. So if the data is not linear separable, as shown in Figure 5.1, Linear PCA 

cannot detect outliers in the new samples. The data is generated by samples along a 

nonlinear trend line with specific variance. Out-of-control samples are generated by 

adding more than 3σ variances along the trend line. 

Kernel PCA is superior to linear PCA in the fact that it provides the possibility to 

change the shape of the data in feature space so that the new data is easy to be used for 

outlier detection. In Figure 5.1 the grids (contour lines) represents the directions of first 

and second principal components. Here the polynomial kernel is used with the parameter 

of d = 0.03596 by trail and error.  

 

Figure 5.1 Comparison between linear PCA and kernel PCA 
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Because principal components in feature space are orthogonal to each other, there 

is no correlation between any pair of principal components, i.e. they are independent to 

each other. In this case, the first and second eigenvalues have accounted for over 95% of 

the total variance, so the control chart is constructed in the feature space based on those 

two principal components.  

The testing data set is shown in the input space and feature space in Figure 5.2. 

Figure 5.3 shows control charts constructed in the feature space on the first and second 

kernel principal components. Combining those two X-bar control charts together we can 

tell which sample is out of control. 

 

Figure 5.2 Testing data set in input space and feature space 
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Figure 5.3 X-bar control charts on first and second kernel principal components in feature 
space 

5.3   UNSUPERVISED SUPPORT VECTOR CLUSTERING (SVC) BASED 

CONTROL CHART 

5.3.1   Introduction to SVC 

Support vector clustering is also called one-class classification [84, 85]. There are 

two types of algorithms for one-class classification [81]: one is to construct a hyperplane 

in the feature space which makes a specified fraction of the training samples above the 

hyperplane, and the distance of this hyperplane to the origin is maximized [86]; the other 

method simply uses a hypersphere with soft margin in the feature space to enclose data. 

The hypersphere is characterized by a center a  and a radius R (R>0). This method is to 

design a hypersphere with the minimal volume that can contain all the data in the case of 

no outliers or contain most of the data in the case of having some outliers. In this chapter 

we use the idea of the second method (hypersphere). 
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Actually the idea of hypersphere is used in [80] to obtain a minimum separating 

dimension. The difference is that in [80] the smallest ball contains all the training data no 

matter whether they are in the same class or not, but in the support vector clustering, 

there is only one class enclosed by this hypersphere and the radius R is decided to 

separate the normal data from outliers. 

The clustering boundary is defined in feature space by 

 
2 2( ) ( )jx R jϕ − ≤ ∀a  (5.6) 

for data without outliers. In case of outliers exist, slack variables 0jξ ≥  is added. 

 
2 2( ) ( )j jx R jϕ ξ− ≤ + ∀a  (5.7) 

Without loss of generality, we construct an optimization problem 

 2min ( , ) j
j

f R R C ξ= + ∑a  (5.8) 

Using Lagrange multipliers 0jα ≥  and 0jγ ≥ we get 
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Set partial derivative to zero for extreme point yields: 
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and Karush-Kuhn-Tucker (KKT) condition yields  

 0j jξ γ =  (5.11) 
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22( ( ) ) 0j j jR xα ξ ϕ+ − − =a  (5.12) 

We can define 0 j Cα≤ ≤  for the (5.12) above and put (5.10) back to (5.9) 
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By solving (5.13) we can obtain minimum radius R for the enclosing sphere. In 

feature space only the data associated with 0 j Cα< <  are needed to define the boundary. 

Those data are called support vectors (SVs) and lie on the surface of the feature space 

sphere. The two controlling variables are C (soft margin constant, used to balance radius 

of the minimal sphere and number of outliers) and σ  (RBF kernel parameter, used to 

determine the scale of data probing), detailed discussion can be found in [84]. C is the 

weight to balance the two objective functions: min jj
ξΣ  and min 2R . If let C to be 

infinity, a sphere is obtained to just enclose all data, then there will be no sample to be 

excluded. So C can be used to determine the number of samples to be excluded, 

decreasing C can lead the increase of the number of samples to be excluded from the 

control limit. That is the why we can use C value to control the boundary for excluding 

some outliers in the training data. 

5.3.2   Extend SVC Method to Construct Multivariate Control Charts 

The SVC based multivariate control chart is based on the distance R' from the 

center a  in the feature space to the mapping of new observation ( )xϕ  in the feature 

space.  
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 ' ( ( ) ) ( ( ) )TR x xϕ ϕ= − −a a  (5.14) 

By substituting a  using (5.10) 

 '
,

( ) ( ) 2 ( ( ), ( )) ( , )T
i i i l i li i l

R x x k x x k x xϕ ϕ α ϕ ϕ α α= − +∑ ∑  (5.15) 

The control limit is R obtained from the optimization problem (5.13). If R' >R, we 

conclude that this new observation is out-of-control sample. The choice on the value of C 

and σ  can adapt the method to different problems.  

Overall, similar to T2 chart with subgroup size 1, the SVC multivariate control 

chart for individual observation also needs two phases to implement. In Phase 1, the in-

control samples in the original space are transformed to the feature space using a selected 

kernel, then a minimal ball (m dimensional, m is the dimension of feature space instead of 

original variable dimension p) with unknown center and radius is designed to envelop all 

the in-control samples in the feature space. The optimized radius from the center in the 

feature space is defined to be the control limit. The advantage of the kernel transform in 

Phase 1 is that no matter the in-control samples in the original space is in Gaussian 

distribution or not, they will have an envelop to be enclosed by a m dimensional ball. In 

Phase 2 we construct the control chart in the feature space using the already fixed kernel 

transform and then use the optimal radius as the control limit. If the new sample has 

radius less than or equal to the control limit, we consider this new sample in control; 

otherwise we consider the new sample out of control.  

Since the way of constructing SVC multivariate control chart is similar to T2 chart 

with subgroup size 1, we will compare the performance of SVC control chart to T2 chart 
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with both Gaussian distribution data and non-Gaussian distribution data in the next 

sections. 

5.3.3   Simulation 

We first use a data set with the same shape of Figure 5.1 to test SVC based 

control chart. In this section we use the RBF kernel to transform the data from the input 

space data into the feature space, and then search a hypersphere to enclose the data if the 

data are all in-control samples. The parameters used in this case is: 0.25σ = . If there is 

an outlier in training samples, we either delete it first or adjust controlling parameters to 

isolate the outliers from in-control samples.  

In Figure 5.4 the line connecting support vectors shows the hypersphere mapped 

back to the input space, and the circles are support vectors. Other lines are contour lines. 

It may be a high dimension of data in the feature space and the hypersphere is a hyberball. 

The contours in Figure 5.4 show the hyperspheres with the equal distance from the center 

in the feature space.  
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Figure 5.4 Training data for SVC based control chart and decision boundary 
 

Figure 5.5 shows the testing data used for this case. As mentioned earlier, the out-

of-control samples are generated by applying more than 3σ variance to the trend-line. 

The in control and out of control samples are marked with different symbols by the 

discrimination of SVC control limit. In the plot, the samples marked with labels are with 

true status as out of control. 

 

Figure 5.5 Testing data set for SVC based control chart 
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Figure 5.6 is the control chart based on SVC method. The upper plot is for 

training data. Note that the support vectors lie on the decision boundary, and the kernel 

distance of the support vectors are all equal. The in-control samples having different 

distances from the kernel center are all below the control limit. The lower part of Figure 

5.6 is testing data plots in the control chart. Based on the kernel distance, the status of  

new sample can be determined. Compared with the true status of all the samples, we find 

that all the out-of-control samples are detected in this example. At the same time, there is 

no false alarm for those samples with true status as in-control.  

 

Figure 5.6 SVC based control chart 0.25σ =  

Now consider the case that there is an outlier in (0,0), as shown in Figure 5.7. If 

the SVC was trained with original parameters, i.e. 0.25σ =  with no data excluded, we 

would obtain a model taking this outlier as a good sample thus resulting a misleading 

result. To exclude this outlier, we adjust parameter C to obtain a soft margin in the 
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training stage. In Figure 5.8, we can find the outlier has been excluded from the 

clustering, but the decision boundary is not a single continuous enclosure area as in 

Figure 5.5. Figure 5.9 is the testing data plot using the trained model. Figure 5.10 is the 

control chart based on SVC with C=0.8 and 0.25σ = . It can be found that for the 

purpose of excluding outliers, some in-control training sample points are also excluded 

from the clustering (detected as false alarm) for the compromise.  

So if there are outliers in the training data, the better way is to clean the data 

before we use SVC to get control limit. Otherwise we need to adjust the parameter C very 

carefully to exclude the outliers from the model.   

 

 

Figure 5.7 Control limits boundary including all samples with outlier at (0,0)  
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Figure 5.8 Control limits boundary to exclude extreme points including outlier at (0,0) 

(C=0.8 and 0.25σ = ) 

 

Figure 5.9 Detection performance for testing data (C=15 and 0.25σ = ) 
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Figure 5.10 Control chart plots using SVC with C=15 and 0.25σ =  

 

5.3.4  Comparison Between SVC Based Control Chart and Other Control Charts 

5.3.4.1 Gaussian distribution data 

Similar to Section 4.3.2, we will compare SVC based control charts with T2 charts 

using the data shown in Figure 4.9. The following Figures (Figure 5.11 to Figure 5.13) 

show the results of each scenario of SVC control chart. In each Figure, (a) shows the data 

(both in control and out of control samples), (b) shows the SVC control limit mapped 

back to original space, also shows the contours of the same radius. (c) shows the control 

limit and the out-of-control samples to demonstrate how many of them are detected and 

miss-detected. (d) shows the control chart for Phase 1 and Phase 2. In this section, we use 

all the in-control samples as training samples, and all the out-of-control samples as 

testing samples.  
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(a)                                                           (b) 

 
(c)  (d) 

Figure 5.11 SVC control chart for scenario 1 ( 5, Cσ = = ∞ ) 

 
(a)                                                           (b) 
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(c)                                                           (d) 

Figure 5.12 SVC control chart for scenario 2 ( 5, 5Cσ = = ) 
 

 
(a)                                                           (b) 

 
(c)                                                           (d) 

Figure 5.13 SVC control chart for scenario 3 ( 5, 1Cσ = = ) 



 

130

The comparison of performance between SVC control chart and T2 chart is shown 

in Table 5.1. We can find that in Scenario 1 to 3 T2 chart has slightly better performance 

in total accuracy. 

Table 5.1 Performance of SVC control chart and T2 chart on the 3 scenarios 
 SVC control chart T2 chart 

 α error  β  error Total 
accuracy 

α  error 
(Phase 1) 

β  error (Phase 
2) 

Total 
accuracy 

Scenario 1 0.0042283 0.0018975 0.997 0.00423 0 0.998 
Scenario 2 0.005848 0.053388 0.971 0 0.01643 0.992 
Scenario 3 0.022774 0.31721 0.825 0.00207 0.28820 0.850 

 

5.3.4.2   Comparison on non-Gaussian distribution data: 

σ =1, C=2.5 are used to construct a SVC control chart for non-Gaussian 

distribution data shown in Figure 4.9. In Phase 1, the control limit is built based only on 

in-control training data as shown in Figure 5.14. Figure 5.15 shows the control limit after 

optimization, and Figure 5.16 shows the control charts for both Phase 1 and Phase 2 in 

this case. 

 

Figure 5.14 Phase 1 control limit (σ =1, C=2.5) 
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Figure 5.15 Detection performance for out-of-control data (σ =1, C=2.5) 

 

Figure 5.16 SVC Control chart for non-Gaussian distribution data 

The performance comparison between SVC control chart and other charts can be 

found in Table 5.2. It is easy to find that T2 charts performed much worse than all other 

charts, because it is miss-used without satisfying the Gaussian distribution assumption. 

EM method is used better in this case, however it needs to specify the correct number of 

Gaussians classes. SVC chart and SVM chart do not need the knowledge of data 
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distribution. The reason SVM chart performs a little better than SVC chart is that SVM 

tries to minimize the overlap of in-control data and out-of-control data when there is, but 

SVC only takes in-control data as reference. So if there is both in-control and out-of-

control samples to construct control chart, we will prefer SVM based control charts.  

Table 5.2 Comparison of SVC chart with other charts (refer to: Table 4.4) 
 α error (Phase 1) β  error (Phase 2) Total accuracy 

SVC chart 0.064 0.012 0.962 
SVM chart 0.016 0.012 0.986 
T2 chart 0 0.2 0.90 
EM method  0.092 0.016 0.916 

 

5.4   APPLICATION TO COMPUTER NETWORK ANOMALY DETECTION 

In this section, we apply the SVC based control chart for anomaly detection in 

computer networks. In Phase 1 we use the normal connection data to construct a SVC 

model on which the SVC based control chart is built, and in Phase 2 we will test the 

performance of this control chart under 4 classes of intrusions.  

Same as Chapter 3 and Chapter 4, we use KDD1999 labeled data for constructing 

the SVC based control chart, and the training and test data size can be found in Table 3.3. 

We use the normal connection as normal data used in Phase 1 and all other data as 

abnormal data in Phase 2. Because the sample size in training dataset for normal 

connection is too small (just 243 samples), we put some test samples into training data, so 

the actual training sample size is 1752. We use only the 12 selected attributes in both 

training and testing data.  

In Phase 1, we use the 1752 samples (each sample contains 12 attributes) to 

construct minimal hypersphere to enclose all data in the feature space, the parameter of 
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the model is set as σ =1. After that, we use the rest of the training sample to test if all the 

training data is inside of the hypershere, i.e. the kernel distance within the radius of the 

hypersphere. 58841 samples are used to verify this model, and we find the false alarm 

rate as 3.798%. 

After the Phase 1 control limit is decided, we use the control chart to test on 

different connection data (DoS, U2R, R2L and Probe). Figure 5.17 to Figure 5.20 show 

the performance on each intrusion type individually. It can be found that for DoS and 

U2R connection, the SVC control chart can have 100% detection rate. It has about 45% 

missing detection ( β  error) for Probe connection. It means the Probe has very similar 

signatures with normal connection, so it is hard to detect by SVC chart. It is better for the 

detection of Probe to collect enough samples and use supervised SVM control chart. Also 

it is worthwhile to investigate the pattern for the miss-detection. It looks like those miss-

detected samples are in several clusters, so we can study the conditions that the data are 

collected for further conclusion of those miss-detections. All the results are put inside 

Table 5.3. 
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Figure 5.17 SVC control chart for DoS detection 

0 200 400 600 800 1000 1200 1400 1600 1800
0.99945

0.99950

0.99955

0.99960

0.99965
 CL

Training sample number

K
er

ne
l d

is
ta

nc
e 

fro
m

 c
en

te
r

0 0.5 1 1.5 2 2.5

x 105

0.9996

0.9998

1

1.0002

1.0004

 CL

Testing sample number

K
er

ne
l d

is
ta

nc
e 

fro
m

 c
en

te
r

Miss Detection
Detected Out
Control limit

 

Figure 5.18 SVC control chart for U2R detection 
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Figure 5.19 SVC control chart for R2L detection 

 

Figure 5.20 SVC control chart for Probe detection 

 
Table 5.3 Performance of Phase 2 control chart 

 Phase 2 
 DoS U2R R2L Probe 
β  error (Phase 2) 0 0.002% 0 55.65% 

Training sample size 1752 1752 1752 1752 
Testing sample size 3999 230760 70 14597 
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5.5   CONCLUSION 

In this chapter we formulate two types of unsupervised kernel based control chart, 

one is KPCA control chart, which is a technique to find PCA in feature space instead of 

original space in order to deal with the situation that data itself can not be linearly 

separated by the eigenvector. The other is SVC control chart, which is to transform the 

originally non-Gaussian distributed data into a feature space, then find a closed 

hypersphere around the data by an optimization problem. After Phase 1 training, the 

center and radius can be used for Phase 2 testing data. The unsupervised kernel based 

control charts are used when the out-of-control samples are absent. For the purpose of 

performance evaluation, we use several cases to compare the performance of SVC 

control chart with T2 chart, SVM chart and EM methods.  

The following conclusions can be drawn from this chapter: 

• SVC control chart is suitable for the situation that there is only in-control 

data available. SVC control chart construct a closed sphere in the feature 

space in Phase 1, then use the minimal radius from the center as the 

control limit for the testing data in Phase 2. 

• By fine-tuning of parameters σ  and C we can control the boundary of the 

enclosing hypersphere, and also SVC control chart has the capability to 

exclude outliers from the training data.  

• The comparison of SVC control chart with SVM control chart, T2 chart 

and EM method shows that SVC control chart has good performance on 

both Gaussian data and non-Gaussian distribution data. 
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• The application on computer networks anomaly detection shows that SVC 

control chart has good performance. SVC control chart does not work well 

on Probe data, but it can still be found that the miss-detection samples and 

the patterns can be further analyzed. 
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CHAPTER 6  CONCLUSION AND FUTURE WORK 

 

6.1   CONCLUSION 

The intrusion detection in computer networks is a complex research problem, 

which requires the understanding of computer networks and the mechanism of intrusions, 

the configuration of sensors and the collected data, the selection of the relevant attributes, 

and the monitor algorithms for online detection. 

This dissertation mainly focuses on developing statistics-based machine learning 

methods for anomaly detection of computer network intrusions. The critical problems of 

how to reduce data dimension and improve monitoring performance are addressed in 

detail. More specifically, several research issues have been investigated and the 

respective contributions are summarized as follows: 

(1) Filter and Wrapper models are integrated to extract a small number of the 

informative attributes for computer network intrusion detection. A two-phase analyses 

method is proposed for the integration of Filter and Wrapper models. In Phase I, Filter 

model based on data correlation is firstly applied to reduce the dimension of attributes by 

removing the irrelevant attributes. This is followed by Phase II, where a wrapper model is 

employed to further extract most important attributes relevant to the intrusion classes 

without redundancy. The performance of each step in Phase I and II is examined to 

illustrate the effectiveness of the joint model. We apply correlation based filter model in 

Phase I and GA based attribute selection model in Phase II. Multiclass SVM is employed 
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as the learning algorithm embedded in GA based attribute selection model and minimal 

output coding (MOC) is applied for high computing efficiency.  

One significant aspect of this dissertation describes how to monitor a large 

amount of computer network audit data. The attribute selection algorithm we proposed 

addresses one of the key problems on data dimension reduction. The proposed method 

has successfully reduced the original 41 attributes to 12 informative attributes while 

increasing the accuracy of the model.  The comparison of the results in each phase shows 

the effectiveness of the proposed method.  

 (2) Supervised kernel based control charts for anomaly intrusion detection. 

Different from conventional methods that construct monitoring control charts in the 

original multivariate data space, we propose to construct control charts in a feature space. 

For instance, multivariate control charts based on the normal distribution (e.g. T2 chart) 

would result in misleading solutions if data distributions are not following normal 

distribution. Kernel-based control charts, which are constructed based on non-parametric 

methods, map the data from an original space to a feature space, then use a hyperplane to 

separate in-control and out-of-control samples with a maximal margin. When there is an 

overlap between the in-control and out-of-control samples, a more complex objective 

function is formed to make the trade-off between maximizing the margin and minimizing 

the violation caused by the overlap of those two categories. Kernel-based control charts 

have the advantage of not requiring the specific distribution of data, thus have the great 

potential to be applied widely. 
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There are two important contributions in this part. The first contribution is the use 

of multi-objective Genetic Algorithm in the parameter pre-selection for SVM based 

control charts. With the fine-tuning of pre-selected soft margin constant C and RBF 

kernel parameter σ , we can obtain an optimal combination of Pareto optimalα and β  

errors. The second contribution is the performance evaluation of supervised kernel based 

control charts. We design several scenarios using different types of data (i.e. Gaussian 

data, mixutre data and non-Gaussian distribution data) to evaluate kernel-based control 

chart and to compare its performance against the T2 chart and the EM method.  

(3) Unsupervised kernel based control charts for anomaly intrusion detection.  

When only in-control data (e.g. normal connection data in intrusion detection) is 

available, unsupervised kernel based control charts are proposed. Two types of 

unsupervised kernel based control charts are investigated: Kernel PCA control charts and 

Support Vector Clustering based control charts. The applications of SVC based control 

charts on computer networks audit data are also discussed to demonstrate the 

effectiveness of the proposed method.  

Although the developed methodologies in this dissertation are demonstrated in the 

computer network intrusion detection applications, the methodologies are also expected 

to be applied to other complex system monitoring, where the database consists of a large 

dimensional data with non-Gaussian distribution. 

6.2    FUTURE WORK 

Developing effective monitoring algorithms for computer network intrusion 

detection is a new and challenging research area. There are many remaining research 
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issues, both in theory and in practice, that need to be further investigated in the future. 

For example: 

(1) Algorithms incorporating the detection of network traffic pattern change and 

adaptive model parameter estimation (e.g. using EWMA method or time 

series method). 

(2) Agent based intrusion detection and control. Newly developed multi-agent 

systems could be applied to collect real-time operation information of 

networks and take proactive actions cooperatively to reduce the impact of 

attacks. 

(3) Network based intrusion detection. Consideration of the correlation between 

different nodes in the detection model. Because of the propagation of 

computer network attacks, it is important to monitor the whole network 

instead of single host machine to obtain propagation patterns of attacks. 

Spatio-temporal analysis is potential method to incorporate both spatial and 

temporary data change into one model patterns.  

(4) Research on combining statistics-based anomaly detection and knowledge-

based misuse detection rules to create highly efficient and accurate algorithms 

for real world problems. 
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APPENDIX A COMPLETE LISTING OF THE SET OF FEATURES DEFINED FOR 

THE CONNECTION RECORDS [50] 

 
Table 1: Basic features of individual TCP connections 

feature name description  type 

duration  length (number of seconds) of the 
connection  continuous 

protocol_type  type of the protocol, e.g. tcp, udp, etc.  discrete 

service  network service on the destination, e.g., 
http, telnet, etc.  discrete 

src_bytes  number of data bytes from source to 
destination  continuous 

dst_bytes  number of data bytes from destination to 
source  continuous 

flag  normal or error status of the connection  discrete  

land  1 if connection is from/to the same 
host/port; 0 otherwise  discrete 

wrong_fragment  number of ``wrong'' fragments  continuous 
urgent  number of urgent packets  continuous 

 
Table 2: Content features within a connection suggested by domain knowledge 

feature name description type 
hot  number of ``hot'' indicators continuous 
num_failed_logins  number of failed login attempts  continuous 

logged_in  1 if successfully logged in; 0 
otherwise  discrete 

num_compromised  number of ``compromised'' 
conditions  continuous 

root_shell  1 if root shell is obtained; 0 
otherwise  discrete 

su_attempted  1 if ``su root'' command attempted; 0 
otherwise  discrete 

num_root  number of ``root'' accesses  continuous 
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num_file_creations  number of file creation operations  continuous 
num_shells  number of shell prompts  continuous 

num_access_files  number of operations on access 
control files  continuous 

num_outbound_cmds number of outbound commands in an 
ftp session  continuous 

is_hot_login  1 if the login belongs to the ``hot'' 
list; 0 otherwise  discrete 

is_guest_login  1 if the login is a ``guest''login; 0 
otherwise  discrete 

 
Table 3: Traffic features computed using a two-second time window 

feature name description  type 

count  
number of connections to the same host as 
the current connection in the past two 
seconds  

continuous 

 Note: The following features refer to these 
same-host connections.  

serror_rate  % of connections that have ``SYN'' errors  continuous 
rerror_rate  % of connections that have ``REJ'' errors  continuous 
same_srv_rate  % of connections to the same service  continuous 
diff_srv_rate  % of connections to different services  continuous 

srv_count  
number of connections to the same service 
as the current connection in the past two 
seconds  

continuous 

 Note: The following features refer to these 
same-service connections.  

srv_serror_rate  % of connections that have ``SYN'' errors  continuous 
srv_rerror_rate  % of connections that have ``REJ'' errors  continuous 
srv_diff_host_rate  % of connections to different hosts  continuous 
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APPENDIX B MULTI-OBJECTIVE GENETIC ALGORITHM FORMULA AND 

FLOWCHART 

(1)  Selection  

Ranking method is used for selection. This probabilistic selection method is 

performed based upon the individual’s fitness ranking such that the better individuals 

have an increased chance of being selected. 

Define Pi is the probability of ith individual to be selected 

1)1( −−′= r
i qqP  

where q  - probability of selection on best individual； 

r - ranking of individual, the best individual has ranking 1, then 2, 3, etc; 

q′  - Pq
qq

)1(1 −−
=′          

P  - sample size of the chromosome. 

Crossover for real number (floating point number) can be as following: 

• Simple Crossover 
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where r is a uniform distributed random number within (0, 1) 

• Arithmetic Crossover 

YrXrX )1( −+′＝  
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YrXrY ＋＝ )1( −′  

(2)  Mutation 

• uniform mutation 
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1r , 2r  - uniform random number in (0,1); 

G  - current generation； 

Gmax - maximum generation； 

b - predefined parameter.  

• boundary mutation 
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(3)  Ranking 
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Figure 1 Nondominated Points for Minimize Problem 
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Figure 2. Population Rank (Two Objectives) 

Where the ranking is finished, the fitness value of each individual is obtained by 
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where M – population size 

Nr – total ranking number of the population 

PSi - number in population with rank i 

Fi - fitness value of members with rank i 

(4)  Filter 
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Figure 3. Pareto Set Filter Operation 

Where NNP is the number of non-dominated points after the nondominated check, 

PFS is the sample size of Perato set filter. 

(5)  Niche 
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Figure 4. Illustration of Niche Technology 

Parent 1 + Parent 2 →  Child 1 and Child 2 
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Parent.Rank = min(Parent1.Rank, Parent2.Rank) 

Child.Rank = min(Child1.Rank, Child2.Rank) 

Test = Child.Rank ≤   Parent.Rank ？ 

New.Child 1 = if (test) Child 1 else Parent 1 

New.Child 2 = if (test) Child 2 else Parent 2 

 
(6)  Multiple individuals crossover 

The core operator in genetic algorithm is crossover. Because genetic algorithm 

using float representation is found to be superior to binary genetic algorithm in terms of 

efficiency and quality of solution, this dissertation uses float representation in multiple 

individual crossover. The way presented in this dissertation to crossover is that b parental 

individual take part in crossover every crossover and get b new individuals. Three 

crossover operators are developed in reference [1], namely simple crossover, arithmetic 

crossover and heuristic crossover. In this dissertation only arithmetic crossover is 

developed to deal with multiple crossover because the effect of arithmetic crossover is 

the best among the three ones. It is named multiple individual arithmetic crossover. 

The principle of arithmetic crossover is that the two new individuals are linear 

combination of two parental ones, i.e., it produces a uniform distribution from 0 to 1 from 

which a random number r is selected, and then two parental individuals xi and yi are 

operated as follows: 

YrXrX )1( −+′＝    

YrXrY ＋＝ )1( −′     
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Multiple individual arithmetic crossover can be derived from above. 

Corresponding to the b parental individuals iX (1 i b≤ ≤ ), b random numbers are selected 

from a uniform distribution ranged from 0 to 1, and then we get b new individuals iX ′ as 

follows: 

b

Xr
X

b

j
ij

i

∑
==′ 1    

The possible number of random sequence of number r1, r2, …, rb can be infinitive, 

so new individuals can traverse the whole design space. From it we can see that the 

algorithm presented in this dissertation can increase the diversity of solutions, and then 

increase the calculating efficiency. 

 
(7)  Floatchart for the whole Pareto Multi-objective genetic algorithm 

Please refer to Figure 4.2. 
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APPENDIX C SVM PARAMETERS OBTAINED BY SIMULATION (1-D AND 2-D) 

(1) 1-D problem 

Linear kernel: ( , ) T
j jk x x x x=  

1
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where lx  is an example which is non-bound support vector (i.e. 0 j Cα< < ), 

SVn is the number of support vectors.  

Margin = 1
Tw w

 

 
(2) 2-D problem 

Kernel function for two dimensions: 

RBF kernel: 
2 2( , ) exp{ /(2 )}j jk x x x x σ= − −  

x = [x1, x2, … , xn]T   & xi = [xi1 xi2] 

kernel matrix K [n x n]  

K(i,j) = k(x(:,i),x(:,j))  for all i=1..n, j=1..n  
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where lx  is an example which is non-bound support vector (i.e. 0 j Cα< < ),  

nsv is the number of support vectors.  
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APPENDIX D THEORETICAL SOLUTION FOR α  AND β  ERROR FOR 1-D 

CONTROL CHART WITH BOTH IN-CONTROL AND OUT-OF-CONTROL DATA 
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Figure 1. Two classes of Gaussian distribution 
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where 2~ ( , / )i i i ix N nµ σ , /i iUCL L nµ σ= + , /i iLCL L nµ σ= − , i = 1, 2. n is 

sample size. If we only consider the mean shift or variance change, it will go to 

traditional framework of type I or type II errors. We keep the 2
1 1,µ σ , 2

2 2,µ σ  individually 

to remain the potential that both mean and variance will change together. 
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