
FINITE-STATE MACHINE CONSTRUCTION METHODS AND

ALGORITHMS FOR PHONOLOGY AND MORPHOLOGY

by

Mans Hulden

Copyright c©Mans Hulden 2009

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF LINGUISTICS

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2 0 0 9

2

THE UNIVERSITY OF ARIZONA

GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dissertation
prepared by Mans Hulden
entitled Finite-State Machine Construction Methods and Algorithms for Phonology and
Morphology
and recommend that it be accepted as fulfilling the dissertation requirement for the
Degree of Doctor of Philosophy.

Date: Nov 12 2009
Michael Hammond

Date: Nov 12 2009
Lauri Karttunen

Date: Nov 12 2009
Adam Ussishkin

Date: Nov 12 2009
Andrew Wedel

Date: Nov 12 2009
Erwin Chan

Final approval and acceptance of this dissertation is contingent upon the candidate’s sub-
mission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and recom-
mend that it be accepted as fulfilling the dissertation requirement.

Date: Nov 12 2009
Dissertation Director: Michael Hammond

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an ad-
vanced degree at The University of Arizona and is deposited in the University Library to
be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, pro-
vided that accurate acknowledgment of source is made. Requests for permission for ex-
tended quotation from or reproduction of this manuscript in whole or in part may be granted
by the copyright holder.

Signed: Mans Hulden

4

ACKNOWLEDGEMENTS

There are many people I am indebted to for their direct and indirect contributions to this
dissertation. I have been exceptionally lucky to have Mike Hammond as my advisor. His
broad range of interests in linguistics and computation combined with warm, unwavering
support for all the deviant research projects I have proposed during my graduate student
career is largely what has made me finish this work.

Lauri Karttunen has—both before and after he became the outside committee member—
gone far beyond any reasonable expectations of helpfulness, support, and advice. Andy
Wedel and Adam Ussishkin have, since I joined the graduate program, tried to make me
understand phonology and linguistic theory and responded to my objections with more pa-
tience than I ever would have. Another lucky episode was that Erwin Chan, who happened
to be both very well informed on my topic and willing to help me, joined us at Arizona and
my committee toward the end my stay.

Kimmo Koskenniemi was the person who first introduced me to and got me hooked on
finite state machines at the University of Helsinki. His subsequent support and guidance
throughout my graduate studies has made the transition from being completely green on the
topic to my current state of off-green highly enjoyable. Anssi Yli-Jyrä, also at the Univer-
sity of Helsinki, has never missed an opportunity to tap into his encyclopedic knowledge
and provide a deluge of feedback and advice which has certainly left its mark on my work.

Iñaki Alegria and the IXA research group in the Basque Country were willing to adopt
and test my code in their own projects very early, despite knowing all the perils involved.
Through their hospitality and willingness to provide me with excellent grammars garnered
with pintxos and txakoli, they have surely helped me more than I could help them.

Dale Gerdemann at Tübingen, who has an uncanny eye for finding errors in logic,
reasoning, and code, voluntarily decided to put large parts of foma in his crosshairs, which
I am indebted for. He also prompted me to develop some of the algorithms in chapter 5.

Ron Kaplan generously took the time to peruse an earlier version of this manuscript,
give me detailed feedback and provide me with valuable information I never could have
figured out on my own.

I’m also grateful to Ken Beesley for his brave attempts to debug both the ideas and
explanations of them in chapter 8. The chapter would have been far better had Ken written
it. But that’s not allowed.

I have been spoiled in my graduate career by the number of brilliant, helpful faculty
members in linguistics at the University of Arizona. A special mention of thanks is due
to Terry Langendoen for opening up new avenues for me in formal language theory and
linguistics. Mary Willie deserves a medal of bravery for trying to do what was doomed to
fail: to teach me Navajo and make me understand its morphology. I wasn’t cut out for it. I
also owe thanks to Amy Fountain for watching over my shoulder and sending me psychic
waves of solidarity throughout this project. What is true of the faculty is also true of the

5

staff in the department. Without Jennifer Columbus this project would have finished several
years behind schedule: she knows I’m not exaggerating. Thanks.

My fellow students are all leaving or have already left Arizona, and that has made it
easier to wrap up. If any of my buddies Yosuke Sato, Shannon Bischoff, Jerid Francom,
or Mercedes Tubino Blanco were still around, I would simply never graduate because I
could hang out with them. I’ve traveled around the world with them, and I would do it
again, including being robbed of money in Mexico, robbed of sleep on the night train from
Tangiers, robbed of a rental car in Barcelona, and getting lost somewhere in the Alps.
Academia, boring?

Finally, insight into my all-encompassing debt to Vilja can be gained by consulting in
detail her forthcoming book tentatively titled: “Enduring your SO’s Dissertation: A guide
to editing, proofreading, providing moral support, exercising financial restraint, providing
psychological counseling, performing scientific peer review, and serving as academic crisis
manager.”

6

TABLE OF CONTENTS

LIST OF TABLES . 12

LIST OF FIGURES . 13

LIST OF ALGORITHMS . 15

ABSTRACT . 16

Part I FOUNDATIONAL FINITE-STATE TECHNIQUES AND
ALGORITHMS . 17

1. INTRODUCTION . 18
1.1. Background . 21

1.1.1. An illustration . 22
1.1.2. Abstract notation . 24
1.1.3. A brief history . 25
1.1.4. Models of phonology and morphology 27

1.2. Problems addressed . 29
1.2.1. Linguistically useful idioms 29
1.2.2. Efficiency . 30
1.2.3. Correctness . 31
1.2.4. Problems specific to morphology 31

1.3. Structure . 32
1.4. A note on implementation . 33

2. NOTATION . 35
2.1. Finite-state machines . 35

2.1.1. Finite-state machines as graphs 37
2.2. Regular expressions . 39
2.3. Summary . 40

3. FUNDAMENTAL ALGORITHMS FOR FINITE-STATE AUTOMATA AND
TRANSDUCERS IN NLP . 42

3.1. Introduction . 42
3.2. From regular expressions to automata and transducers 44
3.3. Basic operations . 44

3.3.1. Alphabet treatment . 45
3.4. Boolean operations . 46

3.4.1. Complement . 49

TABLE OF CONTENTS—Continued

7

3.4.2. Efficiency of product construction 49
3.4.3. Validity of product construction on transducers 50

3.5. Transducers from automata . 51
3.5.1. Cross-product of languages 52

3.6. Composition . 55
3.6.1. Multiple equivalent paths in composition 56
3.6.2. Efficiency and size of single paths 59

3.7. Extended operations . 61
3.7.1. Inverse . 61
3.7.2. Domain and range . 61
3.7.3. Asynchronous (shuffle) product 61
3.7.4. Ignore . 63

3.8. Nonprimitive operations without transducers 64
3.8.1. Context restriction . 64
3.8.2. Nonprimitive operations with composition and domain/range

extraction . 65
3.9. Determinization . 72

3.9.1. Hashing of sets . 74
3.9.2. General efficiency concerns 74

3.10. Minimization . 75
3.10.1. Choice of algorithm . 76
3.10.2. Hopcroft’s algorithm . 79
3.10.3. Minimizing incomplete automata 82
3.10.4. Avoiding the alphabet constant 86
3.10.5. Comparison of algorithms 88
3.10.6. Comparison with other implementations 90
3.10.7. Minimization of acyclic automata 91

3.11. Lexicon compilation . 93
3.11.1. Format of continuation class lexicons 93
3.11.2. Compilation . 95
3.11.3. Efficiency concerns . 98

3.12. General efficiency concerns . 100
3.12.1. Coaccessibility . 100
3.12.2. Factoring expressions . 100
3.12.3. Bypassing determinization in product constructions 104

3.13. Discussion . 105

Part II EXTENSIONS AND LIMITATIONS OF TRANSDUCER
MODELS . 106

TABLE OF CONTENTS—Continued

8

4. REDUPLICATION AND FINITE-STATE SYSTEMS 107
4.1. Introduction . 107
4.2. Reduplication cross-linguistically 108
4.3. Previous work . 110
4.4. Reduplication in finite-state systems 112
4.5. Equality of substrings: the EQ operator 114
4.6. Examples of EQ . 115

4.6.1. Notation . 116
4.6.2. Total reduplication . 116
4.6.3. Partial reduplication . 118

4.7. Additional applications . 123
4.7.1. Segment copying . 123
4.7.2. Backreferencing in regular expressions 124

4.8. The EQ algorithm . 126
4.8.1. Overview . 126
4.8.2. Analysis . 129

4.9. Discussion . 134

5. PROPERTIES AND DECISION ALGORITHMS FOR REGULAR LAN-
GUAGES AND RELATIONS . 136

5.1. Introduction . 136
5.2. Fundamental decidability questions of FSTs 140

5.2.1. Reductions to the Post Correspondence Problem 140
5.3. Functionality and ambiguity . 143

5.3.1. Deciding functionality . 144
5.3.2. An algorithm for deciding the identity property 144

5.4. Equivalence of functional transducers 148
5.5. Extracting the non-functional domain 150
5.6. Unambiguous vs. functional . 150

5.6.1. Testing transducer ambiguity 151
5.6.2. An algorithm for extracting ambiguous words 153
5.6.3. Splicing a transducer based on ambiguity 156

5.7. A hierarchy of transducers . 156
5.7.1. Sequential transducers and deterministic transducers 159
5.7.2. Subsequential transducers 159
5.7.3. Rabin-Scott transducers . 160
5.7.4. Even-length transducers . 160
5.7.5. k-length-difference-bounded transducers 161
5.7.6. Properties of restricted transducer models 161

5.8. Discussion . 166

TABLE OF CONTENTS—Continued

9

Part III ALTERNATIVE FINITE-STATE MODELS 169

6. EXTENDING REGULAR EXPRESSIONS WITH PREDICATE LOGIC 170
6.1. Introduction . 170
6.2. Previous work . 172
6.3. Notation . 175
6.4. Compiling logical formulas . 177

6.4.1. Notational preliminaries . 177
6.4.2. Introductory notions . 177
6.4.3. Propositions . 179
6.4.4. Variables . 180
6.4.5. Propositions . 181
6.4.6. Interim summary . 182
6.4.7. An example construction 182

6.5. Applications . 183
6.5.1. Context restriction . 184
6.5.2. Two-level rules . 185

6.6. Relationship to auxiliary symbol manipulation 186
6.6.1. Context restriction compilation with auxiliary symbols . . . 187

6.7. Discussion . 188

7. MULTITAPE AUTOMATA . 191
7.1. Introduction . 191
7.2. Previous work and perspectives . 192
7.3. Encoding . 194
7.4. Basic operations . 195
7.5. Boolean operations . 196
7.6. Operations on tapes . 196

7.6.1. Tape insertion and removal 196
7.7. Alignment of tapes . 198
7.8. Constraint operations . 199

7.8.1. Predicate logic . 200
7.9. Conversion to and from transducers 202
7.10. Parsing . 203
7.11. Discussion . 204

8. STRING REWRITING AND MULTITAPE AUTOMATA 206
8.1. Introduction . 206
8.2. Previous work . 207
8.3. General method . 208

TABLE OF CONTENTS—Continued

10

8.3.1. The candidate automaton MT1 211
8.3.2. Filtering out incorrect configurations from MT1 213
8.3.3. Converting MT2 to a transducer 215

8.4. Details of basic construction . 216
8.4.1. Constructing MT1 . 218
8.4.2. Filtering out unrewritten sequences 219
8.4.3. Filtering out improper rewrites 220
8.4.4. Defining MT2 . 221
8.4.5. Optional rules . 221

8.5. More on conditioning environments 221
8.6. Multi-level conditioning environments 224
8.7. Additional conditioning environments 225

8.7.1. Epenthesis rules . 226
8.7.2. Word boundaries . 227

8.8. Multiple conditioning environments 227
8.9. Multiple rule application . 228
8.10. Modes of rule application . 230

8.10.1. Leftmost . 230
8.10.2. Longest-match . 232
8.10.3. Shortest-match . 234

8.11. Markup rules . 235
8.12. Summary of rewrite rule compilation 237
8.13. Comparison to previous work . 238

8.13.1. Efficiency . 240
8.14. Discussion . 244

9. MORPHOLOGICAL GRAMMARS AND MULTITAPE AUTOMATA . . 247
9.1. Introduction . 247
9.2. Previous work . 250
9.3. Root-and-pattern morphology and finite-state systems 251
9.4. Semitic verb formation and a multitape analysis 252

9.4.1. Goals . 253
9.5. Grammar construction . 254

9.5.1. Populating the tapes . 255
9.5.2. Constructing the rules . 257
9.5.3. The final automaton . 259

9.6. Parsing and generation . 259
9.7. Efficiency considerations in grammar design 260

9.7.1. Information alignment across tapes 261
9.8. Discussion . 263

TABLE OF CONTENTS—Continued

11

10. CONCLUDING REMARKS . 267

A. FOMA . 272
A.1. Brief examples . 272
A.2. Labeling networks . 273
A.3. Declaring functions . 274
A.4. Symbols . 275
A.5. Automata and transducers . 275
A.6. Complex operators . 276
A.7. Scripts . 276
A.8. Unicode . 276
A.9. Other formalisms: lexc . 277
A.10. The alphabet . 278
A.11. Regular expression operators . 279
A.12. Operator precedence . 284
A.13. Compiler variables . 284
A.14. Additional interface commands . 286

B. SELECTED EXAMPLE SCRIPTS . 289
B.1. Fundamental operations . 289

B.1.1. Filtered cross products . 289
B.1.2. Composition strategies . 290
B.1.3. The shortest string problem 290
B.1.4. Edit distance . 291
B.1.5. Longest common substring and subsequence 291
B.1.6. Lexicon compilation . 292

B.2. Predicate Logic . 293
B.2.1. Basic examples . 293
B.2.2. Context restriction . 294

B.3. Reduplication . 294
B.3.1. Simple duplication of a lexicon 294
B.3.2. Total reduplication . 295
B.3.3. Warlpiri reduplication . 296

B.4. Multitape automata . 297
B.4.1. Declaring tape contents individually 297

B.5. Transducer properties . 298
B.5.1. Tests for functionality and ambiguity 298

REFERENCES . 300

12

LIST OF TABLES

TABLE 2.1. Basic regular expressions. 41

TABLE 3.1. Comparison of two composition strategies. 60
TABLE 3.2. Differences in compiling natural language grammars with and without

intermediate minimization of FSMs. 76
TABLE 3.3. Comparative timing results of different minimization algorithms. . . . 89
TABLE 3.4. Comparison of two minimization algorithms. 89
TABLE 3.5. Comparative timing results of minimization in different FSM applica-

tions. 91
TABLE 3.6. Comparison of two sublexicon compilation strategies. 98
TABLE 3.7. Effectiveness of sublexicon minimization. 99
TABLE 3.8. Comparison of composition with pre-extraction of non-coaccessible

states and regular composition. 103

TABLE 5.1. Closure and decision properties for some classes of transducers. . . . 166

TABLE 6.1. Table summarizing the logical notation and their the regular expression
equivalents. 182

TABLE 8.1. Comparison of notation and features for different types of rewrite com-
pilation formulas. 239

TABLE 9.1. Derived Arabic verb stems using the root /ktb/. 252

13

LIST OF FIGURES

FIGURE 1.1. The paradigm task of morphological analysis. 21
FIGURE 1.2. Different FST models for morphological/phonological analysis and

generation. 29

FIGURE 2.1. A finite-state transducer that changes at least one symbol in the input
to some other symbol. 39

FIGURE 3.1. A Thompson construction for transducers. 45
FIGURE 3.2. Multiple paths produced by the naive cross product algorithm. . . . 52
FIGURE 3.3. The filter F× for achieving aligned cross products. 54
FIGURE 3.4. Two strategies for performing the cross product of two languages

(a× (bc)∗). 55
FIGURE 3.5. Various composition strategies. 56
FIGURE 3.6. Implementing the ignore operation with ε-transitions to copies of

FSM2. 64
FIGURE 3.7. A non-minimized FSM. 82
FIGURE 3.8. The effect of splitting on sink states in Hopcroft’s algorithm. 85
FIGURE 3.9. An illustration of a data structure for correct implementation of Hopcroft

minimization. 88
FIGURE 3.10. Minimizing acyclic automata with Hopcroft’s algorithm. 92
FIGURE 3.11. A continuation-class lexicon and the corresponding non-determinized,

non-minimized FSM. 96
FIGURE 3.12. The effect of pre-extracting the range of the first argument of compo-

sition. 103

FIGURE 4.1. Illustration of applying EQ in the middle of a chain of compositions. 116
FIGURE 4.2. Example transducer τmove created by Algorithm EQ at lines 10–12

over the alphabet {a, b}. 126
FIGURE 4.3. The automaton Lbrf used in Algorithm EQ. 131

FIGURE 5.1. Transducer τchange that changes a word to anything except itself. . . 142
FIGURE 5.2. Illustration of the ISIDENTITY algorithm on an identity transducer. 146
FIGURE 5.3. Ambiguous transducer spliced into two disjoint ambiguous and un-

ambiguous ones. 157
FIGURE 5.4. Unsequentiable even-length transducer (Mohri, 1997b). 162
FIGURE 5.5. A Rabin-Scott transducer which is not representable as a (sub)sequential

transducer or k-length-difference-bounded transducer. 163
FIGURE 5.6. A hierarchy of finite-state transducers. 164
FIGURE 5.7. Two Rabin-Scott transducers the composite of which cannot be rep-

resented by an R-S transducer. 165

LIST OF FIGURES—Continued

14

FIGURE 7.1. Encoding a k-tape multitape automaton configuration in (a) using
traversal pattern (b) with the single tape in (c). 195

FIGURE 7.2. Inserting a single tape as the ith tape in a k-tape automaton. 197
FIGURE 7.3. Three example alignment strategies for words on multitape automata. 199
FIGURE 7.4. Existential quantification with a single tape (a) and multiple tapes (b). 201
FIGURE 7.5. Converting a 2-tape automaton in (a) to a finite-state transducer. . . 203

FIGURE 8.1. General procedure for converting string rewriting rules to finite-state
transducers. 210

FIGURE 8.2. Example configuration of 3-tape rewrite representation MT1. 212
FIGURE 8.3. Timing results for rules of the form a -> b || ck _. . . . 242
FIGURE 8.4. Timing results for rules of the form a -> b || _ ck. . . 243

FIGURE 9.1. Alignment of information in a word and its parse. 247
FIGURE 9.2. Non-aligned information in a string-to-string Arabic verb parse. . . 248
FIGURE 9.3. The standard analysis of the makeup of Arabic verb stems. 251
FIGURE 9.4. An 8-tape representation of Arabic verbal morphology. 253
FIGURE 9.5. Example parse of the third person female singular active form based

on pattern X and the root /ktb/. 264
FIGURE 9.6. Suprasegmental features represented as multitape encodings. 265

15

LIST OF ALGORITHMS

3.1. MERGEALPHABETS . 47

3.2. PRODUCTCONSTRUCTION . 48

3.3. CROSSPRODUCT . 53

3.4. COMPOSITION . 57

3.5. ASYNCHRONOUSPRODUCT . 62

3.6. IGNORE . 63

3.7. SUBSETCONSTRUCTION . 73

3.8. GENERICMOOREMINIMIZATION . 77

3.9. HOPCROFTCANONICAL . 80

3.10. HOPCROFTOPTIMIZED . 84

3.11. ADDLEXENTRY . 97

4.1. EQ(τ ,L,R) . 127

5.1. ISIDENTITY(τ) . 147

5.2. TRANSDUCERTOPATH(τ) . 153

5.3. NOTID(τ) . 155

16

ABSTRACT

This dissertation is concerned with finite state machine-based technology for modeling nat-

ural language. Finite-state machines have proven to be efficient computational devices in

modeling natural language phenomena in morphology and phonology. Because of their

mathematical closure properties, finite-state machines can be manipulated and combined

in many flexible ways that closely resemble formalisms used in different areas of linguis-

tics to describe natural language. The use of finite-state transducers in constructing natural

language parsers and generators has proven to be a versatile approach to describing phono-

logical alternation, morphological constraints and morphotactics, and syntactic phenomena

on the phrase level.

The main contributions of this dissertation are the development of a new model of mul-

titape automata, the development of a new logic formalism that can substitute for regular

expressions in constructing complex automata, and adaptations of these techniques to solv-

ing classical construction problems relating to finite-state transducers, such as modeling

reduplication and complex phonological replacement rules.

The multitape model presented here goes hand-in-hand with the logic formalism, the

latter being a necessary step to constructing the former. These multitape automata can then

be used to create entire morphological and phonological grammars, and can also serve as a

neutral intermediate tool to ease the construction of automata for other purposes.

The construction of large-scale finite-state models for natural language grammars is

a very delicate process. Making any solution practicable requires great care in the ef-

ficient implementation of low-level tasks such as converting regular expressions, logical

statements, sets of constraints, and replacement rules to automata or finite transducers.

To support the overall endeavor of showing the practicability of the logical and multitape

extensions proposed in this thesis, a detailed treatment of efficient implementation of finite-

state construction algorithms for natural language purposes is also presented.

17

Part I FOUNDATIONAL FINITE-STATE TECHNIQUES AND
ALGORITHMS

18

1. INTRODUCTION

Listen:
Slaughterhouse-Five

KURT VONNEGUT

Finite-state machines are objects that are found in nearly every serious application in

computational linguistics and natural language processing. Today, whether a system is de-

signed for syntactic parsing, semantic annotation, morphological parsing, constraint gram-

mar parsing, dependency parsing, speech recognition or synthesis, it is almost certain that it

contains significant components that rely on finite-state technology. Don Knuth, in the Art

of Computer Programming (Knuth, 1998) reported an estimate that 25 percent or more of

the time spent by computer programs in general is spent on sorting lists. One could argue

that a similar relationship holds for natural language processing systems and finite-state

technology: that is, a significant portion of computational systems that deal with natural

language have subcomponents built on finite-state technology in one form or another.

The reason for the ubiquity of the technology is quite clear: finite state automata and

transducers are extremely flexible and efficient at performing a variety of pattern match-

ing and string translation tasks that often serve as the backbone for more sophisticated

systems. These supporting tasks range from the mundane to the extremely complex and in-

clude tokenization, shallow parsing, disambiguation, morphological parsing, phrase struc-

ture analysis, spelling correction, and the like. Sometimes, as is the case with morpholog-

ical and phonological parsing and analysis, the best-performing large-scale systems rely

almost purely on finite-state models.

As research in finite-state technology continues, allowing for simple construction of

finite-state subsystems of ever-increasing complexity, we are also likely to see many sys-

tems that were previously based on other technology move into the finite-state domain.

This dissertation is devoted entirely to exploring fundamental questions regarding the

use of finite-state devices for modeling and processing natural language. Toward this end,

19

we consider a variety of questions: efficiency of construction, correctness of algorithms,

fundamental decidability properties of the technology, extensions of formalisms with which

to construct finite-state machines, and the adaptation of linguistic formalisms to finite-state

technology. Throughout, we aim at solidifying and extending the applicability of finite-

state technology to natural language problems.

In particular, the work presented here contributes significant improvements to the fol-

lowing areas of linguistically oriented finite-state problems:

• How to design efficient fundamental algorithms that concern finite-state machines

that serve linguistic purposes

• How to construct complex finite-state machines through abstract descriptions that are

suitable for linguistics

• How to model nonlinear phenomena and nonconcatenative morphologies with finite-

state devices

The first question, designing efficient fundamental algorithms, is addressed in Part I

of the dissertation. The types of finite-state machines that one is likely to find in use for

linguistic processing are very different from the machines one finds in, for example, pro-

gramming language compilers and elsewhere. In finite-state natural language processing

one generally encounters machines of considerable size, both in terms of alphabet size and

the number of states: alphabets with thousands of symbols and machines with millions of

states are not uncommon. On the other hand, these machines also tend to be very sparse

when represented as graphs, that is, there are on the average very few transitions per state

in relation to the alphabet size. As a result, standard algorithms for automaton construction

(as found in, for instance, computer science textbooks) are not sufficient for the needs of

finite-state language processing. With this in mind, a complete set of fundamental automa-

ton construction algorithms designed to be efficient and to specifically address the needs of

linguistic processing is presented.

20

In the second part, we address some problematic issues in existing techniques in finite-

state transducer based morphology and phonology. Finite-state devices have been criti-

cized for the difficulty of capturing reduplication processes in word formation, a fairly

often-occurring phenomenon cross-linguistically. To address this issue, we develop a no-

tation and algorithm for incorporating reduplication phenomena into finite-state transducer

morphologies. The second part is concluded by an extensive investigation into the formal

properties and decision algorithms regarding finite-state transducers. Here, new algorithms

for the investigation of properties of finite-state transducers are developed, including tests

for functionality, tests for equivalence of functional transducers, tests for ambiguity, and

extraction of unambiguous and ambiguous parts of finite-state transducers. We conclude

the second part with an investigation of different types of finite-state transducer models and

their suitability for modeling natural language.

In the third part, we turn to the question of abstract notations of regular languages and

relations. We develop two new formalisms to accommodate the needs of finite-state lan-

guage processing: a logical formalism that uses standard first-order quantifiers to express

constraints and relationships over strings and substrings of the type that regular expressions

and previous notations in general are ill-equipped to do. We also develop a notation and

compilation procedure for multitape automata. Multitape automata are attractive devices

because of their potential to express nonlinear phenomena and relationships of the type that

are called for in morphology and phonology. Unfortunately, no simple method has been

presented to construct, use and manipulate such devices, and so they have found little actual

use. We present a new formalism to describe multitape automata as well as a method by

which such descriptions can be compiled and incorporated in standard finite-state linguis-

tic models and used for parsing and generation. We also show how the results concerning

logical and multitape formalisms can be used to develop actual large-scale grammars of

phonology and morphology.

21

FIGURE 1.1. The paradigm task of morphological analysis.

1.1. Background

The paradigm task that finite-state models most elegantly solve is that of morphological

analysis. This is the task of, given some orthographic or phonetic representation of a word

as a string, producing an analysis of that word of the type illustrated for a Finnish inflected

noun compound in figure 1.1. What makes finite-state technology so successful with this

task is the combination of several factors.

First, there is a strong preference among linguists to describe word-formation processes

in the direction of generation. That is, in characterizing morphology and phonology it is

almost always perceived to be easier to begin with some abstract form, postulated by the

linguist, and describe how legitimate words are constructed by applying a series of changes

to this underlying form. The changes in question usually pertain to morphologically and

phonologically conditioned processes familiar to linguists: elision, epenthesis, assimila-

tion, lengthening, shortening, etc. of sounds in certain environments. For perhaps cognitive

reasons, it is much more difficult to describe such processes in the reverse direction, to pro-

vide a set of rules by which an orthographic or phonetic word can be converted into some

abstract analysis by a series of steps. Thus, grammars defined in the direction of generation

of the type linguists feel comfortable with are not always straightforward to parse with a

general model of computation.

22

1.1.1. An illustration

To illustrate the difficulty of morphological and phonological analysis by other methods

and the elegance of finite-state-based solutions, let us look at a concrete example of a tiny

fragment of Finnish noun formation, and see how we would run into difficulties in trying

to capture its analysis with a general computational model.

Finnish nouns can be formed by concatenating the stem of a noun in the nominative

case with a number of affixes reflecting number (singular or plural) and various case forms.

A simplified model of the noun is

Stem + [Sg/Pl] + Case (1.1)

where Sg corresponds to nothing, and Pl is marked by the vowel i. There are fifteen

case forms to choose from in Finnish, but let us narrow the discussion down to two:

Nominative which corresponds to nothing, and Adessive which is marked by the

morpheme lla.

Hence, to form the nominative singular form of the noun ranta (‘beach’) we form:

(1) ranta Sg Nominative
(2) ranta ∅ ∅ (1.2)

Let us consider the above two correspondences in (1.2) as string pairs. And let us

consider our task of word generation to be the set of correct mappings from (1) to (2),

and the task of word parsing to be the set of correctly mapping (2) to (1), according to the

generalizations given.

It is fairly obvious that we can by standard procedural mechanisms using any pro-

gramming language produce an algorithm that maps (1) to (2). To generate a legitimate

word-form—going from (1) to (2)—we select a noun (such as ranta) from a lexicon of

nouns, adjoin legal affixes in the proper order, and then map the affixes to their phonologi-

cal representations. This produces exactly a mapping from (1) to (2). We could also do this

in the inverse direction and reconstruct (2) given (1) by similar methods.

23

But let’s look at a more complex word-pair:

(1) ranta Pl Adessive
(2) ranno i lla

(1.3)

Here, things are not quite as simple. To form the adessive plural form, there are two

morphophonological changes that we need to know about in addition to simply concate-

nating the morphemes described earlier. First, whenever a noun stem that has two syllables

in Finnish ends in a, that a changes into o in the plural form. Second, a t preceded by n

changes into n when it forms part of a closed syllable (as in ran.noil.la). Because of

these several phenomena going on at the same time, in order to handle the mapping from

(1) to (2), it seems it would be wise to introduce some intermediate steps where we change

the word from the analysis to the surface form in little steps, such as:

(1) ranta Pl Adessive
(2) ranto Pl Adessive (Change a to o before Pl)
(3) ranto i lla (Change Pl to i and Adessive to lla)
(4) ran.to i l.la (Mark syllable boundaries)
(5) ran.no i l.la (Change t to n if followed by consonant before .)
(6) ranno i lla (Remove syllable boundaries)

(1.4)

Now we have broken down the word-formation process into six steps instead of two,

taking into account the alternation rules we need to get the correct forms.

But as soon as we get this far, problems arise with general models of computation. How

do we now go from (6) to (1)? Going from (1) to (6) still poses no problem if we wanted

to model this in any generic programming language—a simple set of six procedures that

changes strings into other strings as described above will do the job. The problem lies in

‘undoing’ the phonological changes the word was subjected to: when receiving as input

rannoilla, producing ranta Pl Adessive. Considering that a more complete

grammar of Finnish—or indeed almost any natural language—would contain at least 50

24

such rules, the complexity of thinking about the task in terms of ‘undoing’ phonological

changes is daunting.1

This is where the finite-state transducer model shows its strength. Finite-state transdu-

cers, relatively simple devices that map strings to other strings, enjoy the crucial mathemat-

ical properties of being closed under composition and inversion. That means that if we can

describe the changes that occur in steps (1)–(6) as individual finite-state transducers, we

can compose these transducers and form another transducer that models the entire deriva-

tion in one step. This transducer can then, because of its invertibility, be used directly to

perform the mapping from (1) to (6) and (6) to (1) without any extra machinery.

1.1.2. Abstract notation

The above example illustrates another circumstance about finite-state methods that is im-

portant: we seldom need to consider the actual low-level object of a finite-state transducer

and what it is made of if we can construct the required transducers from abstract, linguis-

tic descriptions. In fact, being able to construct automata and finite-state transducers from

an abstract linguistic notation is a prerequisite for success—it is practically impossible to

design real grammars from the atomic properties of automata—states and transitions.

So, in the above argument about the suitability of finite-state transducers for the task of

modeling phonological alternation, all we really need to know is that if such a device can

encode the string changes operating in (1)–(6), and if it can be composed and inverted, it can

model the process. And it can do so bidirectionally; that is, it can both parse and generate

word forms even if the process description itself is unidirectional. This also reflects the state

of maturity of the technology—people who work with it very rarely think of the devices in

terms of their constituents: states and transitions.

Kaplan and Kay, in their 1994 paper, state:

1Even though, as Richard Sproat notes in Sproat (1992, p.152): “Finnish morphology is really very sim-
ple.”

25

The common data structures that our programs manipulate are clearly states,

transitions, labels, and label pairs—the building blocks of finite automata and

transducers. But many of our initial mistakes and failures arose from attempt-

ing also to think in terms of these objects. The automata required to implement

even the simplest examples are large and involve considerable subtlety for their

construction. To view them from the perspective of states and transitions is

much like predicting weather patterns by studying the movements of atoms

and molecules or inverting a matrix with a Turing machine. The only hope of

success in this domain lies in developing an appropriate set of high-level alge-

braic operators for reasoning about languages and relations and for justifying

a corresponding set of operators and automata for computation.

(Kaplan and Kay, 1994, p.376)

In a way, this statement encapsulates the problem the present work hopes to alleviate.

On the one hand, abstract, intuitive notation is essential if one is to express the ideas one

wishes to address with finite-state tools. On the other hand, these abstract formulations

must then be convertible to finite-state automata accurately and efficiently; otherwise, we

will not obtain a functional system. To address the first point, we provide a logical for-

malism that is easy to grasp and check for correctness, and that can be directly converted

to regular expressions (and, therefore, finite-state automata). Similarly, we offer multitape

representations of regular relations, which facilitate the task of describing non-linear lin-

guistic phenomena. On the latter point, we develop various methods for improving the

efficiency of constructing finite-state machines.

1.1.3. A brief history

From the very early days of computational linguistics, finite state models of language have

been used for many practical tasks in natural language processing. The first instance of an

26

actual system developed is possibly the one described later by Joshi and Hopely (1997),

which was a finite-state transducer based syntactic parser called Uniparse, implemented at

the University of Pennsylvania in 1958 under the direction of Zellig Harris. Later, in the

early 1960s, as much research effort was being poured into formally characterizing the na-

ture of natural language phenomena, interest quickly shifted away from finite-state-based

models as they were deemed less powerful than was required. In fact, finite-state mod-

els were quickly rejected as a candidate for modeling natural language syntax in Chomsky

(1957), a circumstance that may have diminished interest in such models. Although investi-

gations of finite-state models and implementations continued, the interest was more marked

outside linguistics, such as in the field of computer science where finite-state based solu-

tions were in heavy use as components for compilers for programming languages, among

other things.

The impetus for a renewed interest in finite-state models arrived in the early 1980s as

the problem of parsing or decomposing the morphological structure of a complex word—in

a language with more intricate morphology than English—was understood to be an impor-

tant first step in any natural language processing system. It had been noted already in John-

son (1972) that the apparently context-sensitive grammar presented in the Sound Pattern

of English (SPE) (Chomsky and Halle, 1968) could actually be modeled with finite-state

transducers. These were string-to-string rewriting rules of the general form

a→ b / c d (1.5)

which would apply to a string cad, changing it into cbd, but leave the as in caad untouched

as they do not appear in the correct environment (between a c and a d).

Also, Langendoen (1981) pointed out, using linguistic arguments, that word-formation

processes were essentially finite state.2 Despite these and other similar observations, the

first comprehensive work in this area was developed in Kaplan and Kay (1994) (published

2“I know of no attested natural language the word-formation component of whose grammar must be more
powerful [than finite-state]” (Langendoen, 1981).

27

in 1994, but developed much earlier) and Koskenniemi (1983), who, at the same time as

he developed the ‘two-level’ formalism, presented a wide-coverage implementation for

Finnish morphology with the system, in effect showing the viability of finite-state based

models as a basis for complex descriptions of phonology and morphology.

Soon after the publication of Koskenniemi’s ‘two-level model’ a number of applications

to different languages appeared and a large body of research is to be found from the 1980s

and early 1990s focusing on morphological and phonological parsing tasks and descrip-

tions through finite-state devices. Also, the original two-level formalism was developed in

different directions thorough various augmentations. Later, the SPE-influenced approach

of cascaded replacement rules joined together by composition as outlined in Kaplan and

Kay (1994) was reinvigorated through a body of work done at Xerox/PARC and elsewhere

(Karttunen, 1996; Kempe and Karttunen, 1996; Mohri and Sproat, 1996; Karttunen, 1997;

Beesley and Karttunen, 2003).3 As a number of technical solutions had been developed

and implemented to address some of the early problems with finite-state transducer-based

models such as treatment of nonconcatenative morphologies, reduplication, long-distance

constraints, and the size of automata and transducers, it was becoming clear through empir-

ical observation that, indeed, finite-state based models were probably sufficient to handle

most phenomena in morphology and phonology.4

1.1.4. Models of phonology and morphology

As mentioned, there are two different and intertwined major strands in the research and ap-

plication of finite-state computational morphology and phonology. The first is exemplified

by the above example, where we assumed that to perform morphological analysis we begin

with a lexicon of stems which we subject to a sequence of rewrite rules, which finally give

3While much of the published work related to Kaplan & Kay’s approach stems from the 1990s, the
techniques were employed in a number of commercial applications in the 1980s prior to the publication
of the paper (Ron Kaplan, p.c.)

4In fact, Lauri Karttunen in 2003 was more direct and called (computational) morphology a “solved
problem.” (IGERT Workshop on the Cognitive Science of Language, Department of Cognitive Science,
Johns Hopkins University.)

28

us as its output, the correct word form. This is indeed a very common model of describing

word formation. It is often associated with the formalism presented in The Sound Pattern

Of English, or SPE (Chomsky and Halle, 1968), but the descriptive method seems to go

back at least to the 4th century BCE Sanskrit grammarian Pānini (Kiparsky, 2009). The

other ‘parallel’ approach is the two-level morphology developed in Koskenniemi (1983).

Both these models have as a prerequisite the ability to construct descriptions of phonolog-

ical changes through finite-state transducers. In the rewrite-rule tradition, these rules are

composed together to form a chain of successive changes, and in the two-level tradition,

one builds transducers that encode constraints across two levels—the analysis and the word

form.

Although the rewrite model and two-level model in figure 1.2 (a) and (c) are the most

common ways of developing morphological and phonological analyzers, finite-state meth-

ods do not force a commitment to either way of thinking about the problem. As linguistic

theories about phonology and morphology have been developed that apparently deviate

greatly from these systems, they have usually been found to be exactly equivalent or easily

expressible through the same mechanisms (Karttunen, 1998; Gerdmann and van Noord,

2000; Karttunen, 2003; Roark and Sproat, 2007). The model in figure 1.2 (b)—a compos-

ite finite-state transducer that maps surface words to analyses and vice versa—can thus be

produced from a variety of different grammatical formalisms provided one has access to

the appropriate tools and algorithms for such a conversion.

For example, Optimality Theory, a linguistic theory that is nonderivational—where the

theory explicitly dictates that words be formed without any ‘intermediate’ steps—has been

modeled in Karttunen (1998) and Gerdmann and van Noord (2000) as the composition of

rules that are very much like the SPE-rules presented above. In other words, through a

series of intermediate steps.

29

Lexicon

Rule1

Rule2

Rulen

Analysis

Surface string

Analysis

Surface string

C
om

p
osite F

S
T

Rule1 Rule2 Rulen
...

...

Lexicon

Surface string

Analysis

(a) (b) (c)

FIGURE 1.2. Different FST models for morphological/phonological analysis and genera-
tion.

1.2. Problems addressed

Despite the successes of the finite-state approach to modeling morphology and phonology,

there are a number of issues, both computational and linguistic, that remain problematic

with this approach.

1.2.1. Linguistically useful idioms

Although a ready-made finite-state transducer or automaton is simple to use as a black-box

device for performing various parsing and analysis tasks in linguistics, the question of how

to construct such a complex device out of simple linguistic generalizations is of foremost

importance. It is of little comfort that in principle any known phenomenon in phonology

and morphology can be modeled by a finite-state device unless one has a congenial nota-

tion with which to do the modeling. Apart from the already well-established two-level rules

and string-to-string rewrite rules, we introduce a variety of new operations and show how

such operations are to be compiled into automata and transducers. These new techniques

30

include a logical formalism (chapter 6), multitape automata operations (chapter 7), opera-

tors for modeling string copying and reduplication phenomena (chapter 4), and a number

of extensions to the string-rewriting formalisms (chapter 8).

1.2.2. Efficiency

Although the end product of compiling a linguistic grammar may be a relatively simple

finite-state transducer, there are a myriad of intermediate stages involved in compiling such

transducers from high-level descriptions. Compiling a single rewrite rule into a transducer

may invoke hundreds, if not thousands, of calls to underlying low-level automata con-

struction algorithms such as the classic determinization and minimization procedures. It

is therefore of paramount importance to the feasibility of constructing complex finite-state

models that the underlying algorithms are efficiently designed.

As we shall see, it is also often the case that the algorithms relating to automata outlined

for purposes such as compiler construction found in classical computer science sources

require serious revision when dealing with natural language problems. The fundamental

algorithms and the modifications called for when dealing with the large (but often sparse)

automata common in natural language processing are discussed in chapter 3.

As the available technology has become more flexible, finite-state technology is mak-

ing inroads into areas outside morphology and phonology and often include components

designed for shallow syntactic and semantic analysis as well; this is a trend one can expect

to continue as the technology develops and the ability to handle larger and more complex

systems improves. Such a trend directly leads to an increase in the demands for efficient

implementation of the fundamentals in finite-state technology. Modeling syntactic phe-

nomena requires much larger and more complex automata than is the case with morphology

and phonology.

A related efficiency issue is that of containing nondeterminism: a large number of the

expressions we wish to compile into automata and transducers rely on nondeterministic

31

descriptions during their construction. Eventually, of course, the automata built during

such intermediate stages need to be determinized, which can produce exponentially large

intermediate results and render even the compilation of a relatively simple expression im-

possible in practice. This is often the case even though the final product would be small.

While there is no general method to avoid such combinatorial explosion, there are a number

of ways of refactoring nondeterministic expressions which work well in practice and can

often avoid the astronomical growth of pathological intermediate results. This question is

a pervasive theme, but is given special attention in chapters 3 and 6.

1.2.3. Correctness

Some automata-construction tasks, in particular those that deal with complex string rewrit-

ing modalities, have proven to require quite a number of elaborate intermediate stages in

their construction. This often leads to a situation where the correct behavior of a long algo-

rithm for producing a certain type of finite-state machine is difficult to prove—the situation

is analogous to that of algorithms intended for implementation with ordinary programming

languages. A step toward the direction of verifiability is taken in chapter 6 which develops

an alternative formalism useful for expressing complex constraints and simplifying expres-

sions that would otherwise be tedious to prove correct.

1.2.4. Problems specific to morphology

Some of the problems relating to the construction of morphological analyzers have lin-

gered for a while—Sproat (1992) in quite a thorough monograph on the then-current state

of the technology of computational morphology outlined some shortcomings in the area of

morphology that clearly needed further work. Some of the issues he raised are still rele-

vant. Perhaps the major points in that work which remain valid (and which is addressed in

subsequent chapters) are the following:

• The assumption that morphology is mostly concatenative

32

• The assumption of item-and-arrangement-style morphology

• The lack of mechanisms for handling string copying and reduplication phenomena

These three points will all be discussed upon in different parts of the dissertation. The

treatment of nonconcatenative morphology is addressed in two chapters: chapter 4 which

presents a new model for treatment of reduplication, and chapter 9 which shows how to

deal with nonlinear phenomena in general with multitape automata.

1.3. Structure

Much of the material in this dissertation has appeared in print (often in much abbreviated

form) in various places. Some of these publications reflect earlier stages of the research

and include Hulden (2006); Hulden and Bischoff (2007, 2008); Hulden (2009a,b,c,d,e).

In the first part we shall examine basic algorithms concerning the construction of finite-

state automata and transducers. Most of this work (in chapter 3) is concerned with adapting

and modifying existing or classical algorithms to the needs and peculiarities of natural

language processing. In this chapter we also present algorithms for constructing complete

finite-state-based morphological and phonological tools, including lexicon compilation.

In part two, we are concerned with substantial extensions to the classical finite-state

construction methods. Chapter 4 is concerned in its entirety with a method for treating

reduplication in finite-state morphologies. This has traditionally been the weak point of

finite-state-based treatment of word formation, and the lack of effective ways to deal with

reduplicated words has been frequently criticized. In chapter 5 we examine the properties

of finite-state transducers in detail, focusing on algorithms and questions that are important

from a natural language processing point of view. We also develop a taxonomy of trans-

ducers and analyze various types of restricted transducer models from the perspective of

decidability questions and closure properties.

33

In part three, we depart from the classical models of finite-state transducer based mor-

phology and develop a new formalism based on predicate logic and multitape automata, as

well as applications based on these. Chapter 6 develops a novel logical formalism for speci-

fying and compiling into automata such languages that are difficult to describe with existing

methods. In chapter 7 we lay the foundations for an extension to the now-traditional two-

level and rewrite formalisms, that of multitape automata, and show how such objects can be

constructed and manipulated entirely through the basic single-tape automaton construction

methods. In chapters 8 and 9 we apply the theory we develop for multitape automata in two

ways. In the former, we provide an extensive and detailed construction method for building

finite-state transducers that encode various types of rewrite rules that may be needed in lin-

guistics applications. In the latter chapter, we show how the multitape automata can be used

to directly build complex grammars, in effect, offering a third alternative to the prevailing

models of two-level and rewrite grammars. In that chapter we give particular emphasis to

such phenomena that are difficult to capture through the traditional methods. To illustrate

the method, we provide examples from a nonconcatenative grammar that handles Arabic

verbal morphology.

1.4. A note on implementation

When working with the body of research presented here, one of my goals has been to make

the leap from theory to practice short. To this end, I have developed a freely available

finite-state toolkit, foma, with which all of the algorithms and methods presented here have

been implemented. The appendix contains some implementation examples with cross-

references to the algorithms and formulas as well as an overview of the functionality of

the toolkit. The development of an actual implementation of the material covered here has

served a number of purposes. First, it has aimed to make sure that the contributions pre-

sented here go beyond the proof-of-concept level—actually testing the algorithms against

a number of grammars, large and small, provides an additional level of comfort as regards

34

their correctness. Also, as any practicing programmer knows, claims made on paper re-

garding ‘efficient algorithms’ should often be taken with a grain of salt unless practical

implementations based on the fundamental ideas are made available for testing and cri-

tique. There are too many factors that invoke cases where standard asymptotic analysis of

a given algorithm says very little about its practical usefulness—huge constants, ‘average

cases’ which are never seen, biases toward dense graphs or sparse graphs when one as-

sumes the opposite, to name a few. Second, having at my disposal a large number of more

or less complete grammars developed over the years by a number of industrious people has

made it much easier to test and develop the work further. This would not have been the case

without a complete toolkit: a patchwork of a few toy implementations of algorithms here

and there does not make it possible to compile entire grammars and hence gain the valuable

information that is to be observed through the complex interaction between a large number

of components. Third, there is a sizable community that has been willing to use the soft-

ware for their own research purposes and grammar implementations. I have received much

feedback from people who have discovered errors and inconsistencies in the toolkit—often

regarding important cases that would never have occurred to me to test—and my hope is

that this information has translated directly into improving the results presented here.

35

2. NOTATION

We give a brief overview of the notation and concepts used in subsequent chapters. We

largely adhere to a fairly standard notation as found in e.g. Hopcroft and Ullman (1979)

and Roche and Schabes (1997). On occasion, we will—for the sake of simplicity and clarity

and for reasons relating to the special subject matter we are dealing with—introduce some

conventions not widely used. These cases will be emphasized in order to avoid confusion.

2.1. Finite-state machines

Definition 2.1. A deterministic finite-state automaton (DFA) is a 5-tuple (Q,Σ, δ, s0, F)

where

(1) Q is a finite set of states

(2) Σ is a finite alphabet

(3) δ is a partial mapping from Q× Σ to Q

(4) s0 ∈ Q is the designated initial state

(5) F ⊆ Q is a set of final states

Definition 2.2. A non-deterministic automaton (NDFA) is exactly as above, with the excep-

tion that δ is a partial mapping from Q× Σ ∪ {ε} to P(Q), the power set of Q.

Definition 2.3. An ε-free automaton is a (possibly) nondeterministic automaton where no

ε-transitions are present

We say a word w = w0w1 . . . wn is accepted by a finite automaton iff there exists a

sequence of states s0s1 . . . sn such that sn ∈ F and transitions

36

δ(s0, w0) = s1, . . . , δ(sn−1, wn) = sn

In the event that the transition function is specified for all Q×Σ we call the automaton

complete, otherwise it is incomplete.

The languages that can be defined by a finite automaton are the regular languages.

Definition 2.4. A finite-state transducer is a 5-tuple (Q,Σ, δ, s0, F) where

(1) Q is a finite set of states

(2) Σ is a finite alphabet

(3) δ is a partial mapping from Q× (Σ ∪ {ε}) to Q× (Σ ∪ {ε})

(4) s0 ∈ Q is the designated initial state

(5) F ⊆ Q is a set of final states

A finite-transducer accepts an input string under the same conditions that a finite au-

tomaton does, and possibly additionally outputs strings in Σ∗ as per the transition function.

Determinism in a finite-state transducer may be interpreted in several different ways.

We shall reserve the term for implying that a transducer is deterministic in the DFA-sense.

This is the case if the underlying graph is deterministic when transitions are interpreted as

single symbols over (Σ∪{ε})×(Σ∪{ε}). In other words, a finite transducer is deterministic

in the DFA sense if there are no two transitions from a state with the same label pair x:y.

Naturally, the precence of the symbol pair ε:ε implies nondeterminism. We say a transducer

is epsilon-free if there are no ε:ε-transitions.

Completeness in a finite-state transducer in our terminology implies that set of transi-

tion pairs x:y that occur in any state is present in every state.

We deviate slightly from the standard definitions in the literature by declaring that the

input and output alphabets in a finite-state transducer are always the same, i.e. Σ. Also, we

37

will mostly consider so-called letter transducers, which is the case where every transition

in the finite-state transducer is a single-symbol input output pair. In some specific circum-

stances we will consider a more extended model where (3) in the above is a mapping from

Q× (Σ ∪ ε) to Q× Σ∗, but in general we will restrict ourselves to letter transductions.

The relation that an arbitrary finite-state transducer can encode is called a regular rela-

tion.

In many contexts we make no or little distinction between a finite-state transducer and

an automaton. We assume that if the context is unclear, an automaton can always be inter-

preted as a transducer that, in addition to accepting strings in its domain, maps these strings

to themselves. If we want to be explicit about this, we denote an automaton A which is to

be interpreted as an identity transducer as Id(A).

We alse use the term ‘acceptor’ or ‘recognizer’ to indicate a finite-state machine (FSM)

where every transition performs an identity transduction.

2.1.1. Finite-state machines as graphs

For many purposes, it is convenient to assume a more graph-oriented view of the finite

automaton and transducer. In this case, we say a finite automaton is a directed graph with a

set of vertices and edges (V,E), where an edge e ∈ E may carry labels drawn from Σ∪{ε}

or label pairs u:l representing symbols in the alphabet, or ε. In a graph representation of a

finite-state machine there is a designated initial vertex and a set of final vertices, as per the

above definitions. Under this view a finite-state automaton, or acceptor, is a graph where

every edge is a pair a:a for a ∈ (Σ ∪ ε); a finite-state transducer may contain edges a:b

where a and b are drawn from the same set but may be unequal.

Definition 2.5. A state s in a finite-state machine is accessible if there exists a sequence of

edges from s0 to s. A finite state machine is accessible if every state is accessible.

Definition 2.6. A state s in a finite-state machine is coaccessible if there exists from vertex

38

s to a sequence of edges to some vertex sf ∈ F . A finite-state machine is coaccessible if

every state is coaccessible.

If a finite-state machine is both accessible and coaccesible, we say it is trim.

Similar to graph definitions, we say a finite-state machine is cyclic if it contains a loop.

If not, it is acyclic, and hence represents a finite number of strings. Cyclicity and acyclicity

is always determined with respect to the reduced graph representing a finite-state machine.

A machine that accepts a finite number of strings is not cyclic despite the fact that its

transition function may be completed by adding a dead state and that contains self-cycles.

2.1.1.1. Meta-symbols

A notational convention which has proven useful, especially in natural language applica-

tions, is to reserve special symbols in the alphabet as placeholders for symbols that are

not explicitly declared (Beesley and Karttunen, 2003). We shall make frequent use of this

device as it contributes to making expressions and finite-state machines more concise. The

two symbols are @ and ?. A @-transition in a finite automaton refers to any symbol outside

the current alphabet; for automata ?-transitions are not relevant. For a transducer, an edge

labeled @:@ represents the identity mapping a:a for any symbol not explicitly declared in

the alphabet, i.e. a /∈ Σ, while ?-labels, which can appear either as the input label, the

output label, or both, represents any symbol not in the declared alphabet. A transition a:?

then denotes the translation of a symbol a to any symbol not in the alphabet Σ. Also, the

combination ?:? represents the nonidentity mapping of any symbol not in Σ to some other

symbol also not in Σ. In this latter case, the input and output must be different.

In drawing diagrams of finite-state machines we follow the usual convention that final

states are denoted by a double circle and that the initial state is always s0 in the state

numbering. Figure 2.1 shows a transducer that changes at least one symbol in the input

word to some other symbol, illustrating both the special alphabet symbols @ and ? and

39

?:?

@ @ ?:?

s1s0

FIGURE 2.1. A finite-state transducer that changes at least one symbol in the input to some
other symbol.

finite-state machine diagrams. We also simplify redundant pairs a:a to a in the illustrations

and it is understood that a single symbol represents an identity pair.

2.1.1.2. Minimality

For each regular language, there exists a unique minimal (in the number of states) canonical

deterministic machine representing that language, based on the Myhill-Nerode equivalence

classes of its states (Myhill, 1957; Nerode, 1958). If a finite-state machine is the minimal

machine representing the language, we say it is minimized. For regular relations, no such

canonical form of finite transducers exists. However, when interpreting a transducer as

an automaton over an alphabet of label pairs, the canonical minimization again becomes

available. In the case of a transducer, when we say it is minimal, minimality in this DFA-

sense is implied, similar to determinism in the DFA-sense.

2.2. Regular expressions

As finite-state automata define the same languages as regular expressions do, we will make

little distinction between the two and use one or the other mode of expressing languages de-

pending on the context. Likewise, finite-state transducers correspond to regular relations—

the set of relations definable by the operations of concatenation, Kleene star, union, and

cross product—and we will follow a similar practice as regards them.

40

Apart from the standard regular expressions of concatenation (T T ′), Kleene star (T ∗),

and union (T ∪T ′) and the other boolean operations we will take advantage of a number of

extensions. Some of them can be directly derived from more primitive expressions, while

some require dedicated algorithms (presented in chapter 3) for constructing automata and

transducers that involve such expressions. An overview of the expressions used are given in

table 2.1. The nonstandard ones that deserve comment are as follows. The shuffle product

of two languages, also called asynchronous product, denoted T ‖ T ′, is the set of words

that it is possible to construct using two words w1 ∈ T and w2 ∈ T ′ where each letter in

w1 and w2 is used and their internal order is preserved. There are two primitives that can

be used to construct a relation from regular languages: through the symbol pair notation

a:b and the cross product T × T ′ operation. The cross product of two languages T and T ′

is the regular relation where each string in T maps to each string in T ′. Similarly, given a

regular relation, we denote the regular languages in the domain and range of the relation

with dom(T) and range(T). The ignore operation T/T ′ denotes the set of strings from T

where some string from the language T ′∗ is inserted between every position.

As with automata vs. transducers, we make little distinction between a language and a

relation. A regular language L can be interpreted as the identity relation over every string

in L.

2.3. Summary

This chapter has presented an overview of the notation that will be followed in the remain-

ing chapters. There are two noteworthy exceptions to standard notation of finite automata

and transducers in the literature. First, we tend to mostly assume a graph-oriented view of

finite-automata and transducers since this simplifies many of the algorithmic descriptions

and makes the notation more compact. Especially for the low-level algorithms discussed in

chapter 3 it is often convenient to employ a vocabulary of vertices, edges, and edge labels as

opposed to transition functions. Also, we have chosen to include two meta-symbols in the

41

ε The empty string
∅ The empty set (language)
Σ The alphabet/any symbol
a:b A symbol pair
T T ′ Concatenation
T ∗ Kleene Closure
T+ Kleene Plus
T ∪ T ′ Union
T ∩ T ′ Intersection
T/T ′ Ignore
T ‖ T ′ Shuffle (asynchronous product)
T − T ′ Set subtraction
¬T Complement
T k k-ary concatenation
dom(T) Domain extraction
range(T) Range extraction
T ◦ T ′ Composition
L× L′ Cross product of languages

TABLE 2.1. Basic regular expressions.

core notation. These denote unknown symbols on automaton transitions and transductions

and allow us to avoid lengthy alphabet declarations that would otherwise be necessary in

conjunction with operations on automata and transducers.

42

3. FUNDAMENTAL ALGORITHMS FOR FINITE-STATE AUTOMATA AND

TRANSDUCERS IN NLP

3.1. Introduction

This chapter will focus on fundamental finite-state transducer construction methods. The

majority of the basic techniques discussed in this chapter are well known, and on occa-

sion, only a brief summary of some the actual techniques will be given. Instead, we will

focus on such aspects as may not be common knowledge, or algorithms that require sig-

nificant adaptation of existing methods to withstand the computational strain that natural

language processing systems put of FSM construction methods. The purpose of the chap-

ter is twofold: to comprehensively summarize the necessary tools needed for understanding

the details in subsequent chapters, and to provide insight into the efficient implementation

of the fundamental finite-state machine algorithms.

The underlying problem with developing large-scale finite-state solutions to natural lan-

guages is that in many cases, choosing the obvious-looking algorithmic solution to com-

piling FSMs results in excessive time and space requirements. Natural language problems

usually contain many innocent-looking subproblems that must be compiled into finite-state

machines; some of these subproblems will quickly cause the entire process to be uncompi-

lable because of an unnecessary exponential explosion in the size of intermediate results.

Often the solution required to make an otherwise uncompilable grammar to compile in frac-

tions of a second is simply refactoring a complex expression in some way, reordering a set

of operations, or using a different algorithm for some underlying construction. However,

it is not obvious which tack to choose to design the most efficient compilation process. In

many cases, the underlying question is not to make the process efficient, but to make it

feasible: even the shortest regular expression can cause exponential growth when compiled

43

into a deterministic finite-state machine. The fundamental question is to avoid this in the

intermediate compilation results of a system if at all possible.

Avoiding all the pitfalls is not always necessarily aided by the vast literature on the gen-

eral topic of finite-state automata and transducers. The literature abounds with conflicting

results on efficiency matters and difficult-to-interpret best practices. Experiments regard-

ing efficiency of algorithms are often made with regard to some average case which is not

at all the average case in natural language applications. A case in point is that of finite-

state machine determinization and minimization. A survey of the literature quickly reveals

that most experiments with practical algorithms are made with very small alphabets (< 30

symbols), whereas natural language processing applications call for efficient handling of

alphabets with thousands of symbols. Also, in the computer science literature, finite-state

machines are often assumed to be very dense as graphs, whereas in natural language ap-

plications exactly the opposite is often the case: NLP automata are large, but sparse, and

make use of large alphabets.1

We will first outline the primitive operations for constructing finite-state machine trans-

ducers in sections 3.2, 3.3, 3.4, 3.5 and 3.6. These sections primarily develop modifications

to well-known algorithms that are motivated by efficiency concerns. Following this, we will

briefly outline the construction of a number of nonprimitive operators in sections 3.7 and

3.8. Next, we will discuss efficiency considerations of the core algorithms of finite-state

machine determinization and minimization in sections 3.9 and 3.10. We will also briefly

outline algorithms for compiling continuation-class lexicons in section 3.11. We will con-

clude with some general remarks on efficiency of construction of natural language systems

in section 3.12.
1In morphological applications this sparsity is often a result of constraining a grammar against a lexicon.

Transducers that encode string-to-string replacement rules may be fairly dense, but are generally composed
against a lexicon which tends to keep composite transducers sparse.

44

3.2. From regular expressions to automata and transducers

Fundamental to the endeavor of constructing automata and transducers for models of nat-

ural language is the ability to do so from regular expressions. A variety of methods are

available to this end, the perhaps the most popular ones being the Thompson construction

(Thompson, 1968), construction of automata via Glushkov automata (Glushkov, 1961), via

follow automata (Ilie and Yu, 2003), and via Antimirov automata (Antimirov, 1996). We

shall here focus on the Thompson construction as a starting point for compiling natural

language systems. Because of its simplicity, it is amenable to adaptations and additions of

regular expression operators of various kinds. Also, many of the special regular operators

that are necessary for NLP purposes are most easily described through nondeterministic

automata, something which the Thompson construction also produces.

3.3. Basic operations

We shall assume as a starting point the basic ‘Thompson’ construction of nondeterministic

automata from regular expressions (Thompson, 1968). To construct transducers with that

method, instead of automata, we simply modify the atomic symbol construction (see figure

3.1). Here, (a) the empty string is represented as the FSM with a single, final state with

no transitions; (b) an atomic symbol pair ai:ao is representable as the automaton with the

single path ai:ao; (c) concatenation of L1 and L2 is created by constructing a composite

automaton L3 by adding transitions from all final states in L1 to the initial state in L2, and

making all states in L1 nonfinal and where the initial state of L1 is the initial state of L3; (d)

Kleene closure, L∗1, is constructable by adding a new initial state which is also final with

ε-transition(s) to the formerly initial states and adding ε-transitions from all final states in

L1 to the new initial state; and (e) union L1 ∪L2 is represented by adding an initial state to

L3 with ε-transitions to the initial states of L1 and L2.

Additionally, the reversal of a transducer may be accomplished by designating the set

of final states initial and vice versa, and replacing each transition δ(p, x, q) with δ(q, x, p).

45

s0 s0

FIGURE 3.1. A Thompson construction for transducers.

As mentioned, we will make no distinction between a symbol a and the identity pair

a:a. In regular expressions, symbols such as a will be taken to mean a:a, unless occurring

as part of a symbol pair (a:b). Whether a finite-state machine is an automaton or trans-

ducer should be evident from the context. An automaton (or recognizer) is then a special

type of transducer that consists of identity pairs only on its transitions. The pair ε:ε is a

valid identity pair and is the only one corresponding to an empty transition in the standard

interpretation of automata.

The Thompson construction yields non-deterministic ε-containing automata, which in

many cases we will want, or need to make deterministic and minimal. The operations

will be considered in later sections, after the construction operations regarding regular lan-

guages and relations have been introduced.

3.3.1. Alphabet treatment

The notational device alluded to in chapter 2, where we maintain placeholder meta-symbols

? and @, significantly eases the compilation of complex expressions to automata as alpha-

bets need never be declared beforehand.2 A @:@ transition signifies any identity pair not

in the currently declared alphabet, and the ?-symbol on one side of a symbol pair signifies

2These meta-symbols are due to Ron Kaplan at Xerox/PARC.

46

any symbol also not in the alphabet. The combination ?:? is reserved for the non-identity

relation of any symbol pair where each symbol is outside the alphabet.

What makes the use of these meta-symbols particularly transparent is that the funda-

mental algorithms for transducer construction—with minor exceptions—need no modifi-

cation to accommodate the use of the symbols. During construction, these can be treated

as ordinary symbols in the alphabet. Instead, we only need to make sure that, before each

operation where two transducers are input arguments, their respective alphabets are merged

or ‘harmonized’, converting some of the unknown symbols to known symbols if they are

present in one of the two machines being combined. The procedure for merging two alpha-

bets and modifying the respective finite-state machines is given in algorithm 3.1.

Assuming this precaution is taken, any FSM involving these special symbols can be

treated with the ordinary algorithms. We adopt the convention that the atomic regular ex-

pression Σ is equivalent to the FSM with the single path consisting of @. Thus, regular

expressions involving the symbol Σ have a dynamic counterpart in the automaton represen-

tation. The special symbol @ on a transition in a FSM will expand its semantics whenever

operations are made with the finite-state machine. The label pair Σ:Σ is represented as a

FSM with two paths, one denoting @ and the other ?:?. This is necessary to capture the

dual semantics of the regular expression (Σ:Σ): such an expression denotes the union of

the set of all identity translations and nonidentity translations. Note that (Σ:Σ) is the only

place in the notation where a single symbol a is not identical in meaning to the symbol pair

a:a.

3.4. Boolean operations

Of the Boolean operations, Thompson’s construction customarily only includes the union

of two automata. It shall therefore be necessary to also include the other Boolean oper-

ations, intersection and set subtraction, to our construction. All of these—including the

union—are traditionally described through a product construction method. This is given in

47

Algorithm 3.1: MERGEALPHABETS

Input: FSM1 = (Q1,Σ1, δ1, s0, F1), FSM2 = (Q2,Σ2, δ2, t0, F2)
begin1

Calculate the set N1 = {s|s ∈ Σ2 ∧ s /∈ Σ1}2

Calculate the set N2 = {s|s ∈ Σ1 ∧ s /∈ Σ2}3

foreach i ∈ {1, 2} do4

foreach transition δi(p,@, q) in FSMi do5

add transitions δi(p, n, q) foreach n ∈ Ni6

end7

foreach transition δi(p, a:?, q) in FSMi do8

add transitions δi(p, a:n, q) foreach n ∈ Ni9

end10

foreach transition δi(p, ?:a, q) in FSMi do11

add transitions δi(p, n:a, q) foreach n ∈ Ni12

end13

foreach transition δi(p, ?:?, q) in FSMi do14

add transitions δi(p, n1:n2, q) foreach (n1, n2) ∈ Ni15

add transitions δi(p, ?:n, q) foreach n ∈ Ni16

add transitions δi(p, n:?, q) foreach n ∈ Ni17

end18

end19

end20

48

algorithm 3.2. The algorithm is the on-demand implementation of the product of the set of

states where each machine FSM1 and FSM2 are traversed in parallel, generating pairs of

states. The operation at hand (union, intersection, or subtraction) determines which states

are designated as final states in the composite machine.

Algorithm 3.2: PRODUCTCONSTRUCTION

Input: FSM1 = (Q1,Σ, δ1, s0, F1), FSM2 = (Q2,Σ, δ2, t0, F2), OP ∈ {∪,∩,−}
Output: FSM3 = (Q3,Σ, δ3, u0, F3)
begin1

Agenda← (s0, t0)2

Q3← (s0, t0)3

u0← (s0, t0)4

index (s0, t0)5

while Agenda 6= ∅ do6

Choose a state pair (p, q) from Agenda7

foreach pair of transitions δ1(p, x, p′) δ2(q, x, q′) do8

Add δ3((p, q), x, (p′, q′))9

if (p’,q’) is not indexed then10

Index (p′, q′) and add to Agenda and Q311

end12

end13

end14

foreach State s in Q3 = (p, q) do15

Add s to F3 iff p ∈ F1 OP q ∈ F216

end17

end18

In the algorithm, it is assumed that in a transition specified as δ1(p, x, p′), x refers to

any symbol pair occurring on a transition in a transducer. The input arguments must be

ε-free: i.e. ε:ε-transitions must not be present.

The way algorithm 3.2 specifies the product construction assumes implicitly that each

automaton is complete for the set of possible symbol pairs. In practice we will want to

deal with trim automata, and so do not have access to complete transition functions. For

the intersection operation this is irrelevant since if there does not exist a common transition

for FSM1 and FSM2 and some state pair (p, q), such a transition should not exist in the

49

composite machine either. For the union and subtraction case we need to capture the pos-

sibility that one of the machines does not have a transition (which in a completed machine

would lead to a sink state), and thus simulate the behavior of the sink state. Of course,

if both machines lack transitions at some state pair (p, q) (where one may be a simulated

sink state) we need not simulate sink states of both machines and simply do not create a

transition in the composite machine.

3.4.1. Complement

With the boolean operations we can construct the complement ¬L for a regular language

(recognizer) L by Σ∗−L. This operation is not well defined for regular relations (transdu-

cers); however, we can define the path complement of a transducer to be ((Σ:Σ) ∪ (Σ:ε) ∪

(ε:Σ))∗ − T . This denotes the set of all transduction paths, except the ones represented by

T .

3.4.2. Efficiency of product construction

For practical purposes, line 7 in the product construction needs to be implemented effi-

ciently: that is, retrieving the next pair of transitions compatible with states p and q should

preferably be accomplished in O(1)-time. This requires efficient access to the transition

labels of at least one machine—the labels in the other machine may be traversed iteratively.

Usually this presupposes an indexing of the transitions.

Asymptotically, the most favorable indexing would be to entirely index the transitions

on either FSM1 or FSM2, so that labels in one of the machines could be found in O(1)-

time. However, given the potential size of natural language transducers and the typical

alphabet size, these indices can be quite large, i.e. taking up |Σ||V |-space (for the set of

vertices in the smaller machine). Consider indexing a transducer with 1,000,000 states

and 1,000 symbols—quite a normal circumstance for natural language applications. This

requires 1G units of space using standard methods. Also, it is not foreseeable that the

50

indexing has any effect: when performing an operation on two transducers, it cannot in the

general case be known that the result would not be empty (no state pairs would be built

beyond the initial state), in which case allocating and creating the index would be a waste.

Some natural alternatives to the full indexing are:

• Maintaining the set of transitions in sorted order for either the input or output symbols

(or pre-sorting them before each operation), and traversing the transitions for each

machine synchronously when looking for a transitions in the pair (p, q)

• Forgetfully indexing and re-indexing one of the FSMs for each time a pair (p, q) is

retrieved from the Agenda in the product construction

• Using a hash instead of indexing, by which the space requirements are cut down to

min(|E1|, |E2|), where E1 and E2 represent the set of edges in the two machines.

• By default not indexing, but using a threshold of average transition outdegree beyond

which some indexing/sorting is performed

For most natural language applications, one can by and large choose any of these in-

dexing techniques without undue overhead. Hashing is likely to beneficial for very dense

graphs. Experiments with all of these techniques indicate that for the majority of cases,

very little is gained by indexing at all since usually one of the machines used as input for a

product construction tends to be sparse. However, to guard against degenerate behavior in

extreme cases, one of the above techniques becomes necessary.

3.4.3. Validity of product construction on transducers

A word may be in order about Boolean operations on transducers. As is well known (see

chapter 5 for more detail), finite-state transducers are not closed under the operation of

intersection or subtraction in general. However, when allowing these operations on trans-

ducers, the interpretation of subtraction and intersection should be in regard to the path

51

languages described by the transducers in question. In effect, the path language is the

transduction performed by a transducer that takes into account the precise order in which

atomic transduction occur. For example, the two transductions a:ε ε:b and a:b define the

same relation, but do not have the same path language because of the different order of the

translations of symbols.

Algorithmic operations on the path language, i.e. the set of concatenated individual

atomic relations a:b described by a finite-state transducer, do not always coincide with the

corresponding logical operations. Only in the case of union is this true. Evidently, the

path union of two transducers always coincides with the logical union of their respective

relations. Nevertheless, Boolean operations on the path that a transducer describes may be

very useful in a variety of circumstances. We will return to this in the context of creating

the cross product of two regular languages L1 and L2.

3.5. Transducers from automata

We shall only define two primitive constructions by which transducers can be built from

automata. The symbol pair a:b, already defined as part of the Thompson construction, and

the cross product construction L1 × L2, which yields a transducer encoding all the map-

pings (w1, w2) where w1 ∈ L1 and w2 ∈ L2. Other, more complex transducer construction

methods can always be derived from these operations. In fact, the operation of cross prod-

uct subsumes the symbol pair operation, and we could maintain simplicity by only defining

one primitive for transducer construction. However, as there are in principle many different

ways to encode as a transducer the single-symbol relation a × b, we reserve the notation

a : b to single-symbol pairs that implicitly state that the encoding of a:b as a transducer

contains a single transition a:b, and not any other sequence, such as a:ε ε:b.

52

a:ε

a:b

ε:b

s2

s1

s0

FIGURE 3.2. Multiple paths produced by the naive cross product algorithm.

3.5.1. Cross-product of languages

The fundamental idea of creating a transducer T that encodes the cross product of lan-

guages L1 and L2 is again the product construction. This algorithm is listed separately in

algorithm 3.3. The only actual modification to the basic product of the two automata is

the additional feature of handling non-even-length words. This requires that as we traverse

the two automata in parallel and construct the composite transducer encoding the cross

product, we need to account for the fact that words in L1 may be of different length than

words in L2. This entails allowing one of the automata to halt at final states, while the other

automaton continues its path to reach another final state. When the other automaton con-

tinues its path, the halted one naturally contributes with the empty string ε. This is encoded

in lines 14–19 of the algorithm.

The basic cross product algorithm is suboptimal in the sense that it will produce multi-

ple paths and alignments for identical relations. For example, the simple cross product of

(a× (b∪ ε)) will produce the transducer in figure 3.2 with two alternate ways of producing

the mapping from a to b.

To solve this problem, what we can do is first perform the naive cross product of L1 and

L2 and then intersect its output with a filtering transducer F× that removes the offending

paths, illustrated in figure 3.3. The paths that are removed are such where a) ε symbols are

aligned non-leftmost and b) ε:x pairs are followed by y:ε pairs or vice versa.

53

Algorithm 3.3: CROSSPRODUCT

Input: FSM1 = (Q1,Σ, δ1, s0, F1), FSM2 = (Q2,Σ, δ2, t0, F2)
Output: FSM3 = (Q3,Σ, δ3, u0, F3)
begin1

Agenda← (s0, t0)2

Q3← (s0, t0)3

u0← (s0, t0)4

index (s0, t0)5

while Agenda 6= ∅ do6

Choose a state pair (p, q) from Agenda7

foreach pair of transitions δ1(p, x, p′) δ2(q, y, q′) do8

Add δ3((p, q), x:y, (p′, q′))9

if (p’,q’) is not indexed then10

Index (p′, q′) and add to Agenda and Q311

end12

end13

if p ∈ F1 then14

foreach δ2(q, y, q′) add transitions δ3((p, q), ε:y, (p, q′))15

end16

if q ∈ F2 then17

foreach y in δ1(p, x, p′) add transitions δ3((p, q), x:ε, (p′, q))18

end19

end20

foreach State s in Q3 = (p, q) do21

Add s to F3 iff p ∈ F1 ∧ q ∈ F222

end23

end24

54

?:ε

ε:?

?:ε

@ ?:?

ε:?

s2

s1

s0

FIGURE 3.3. The filter F× for achieving aligned cross products.

(L1 × L2)f = (L1 × L2) ∩ F× (3.1)

Naturally, finite-state transducers are not closed under intersection in the general case,

but here we are not interested in the intersection of the relations that the transducers en-

code, but rather, the intersection of their paths, something which the product construction

intersects correctly.

All the paths in the filter transducer are such that any actual symbol-to-symbol pairs

are aligned leftmost in a string of symbol pairs, after which either a sequence of ε:a or

a:ε follow, but not both. In effect, intersecting the result of a naive cross product with the

filter transducer removes the paths where epsilon inputs or outputs are nonfinal. The filter

transducer F× can also be described with the regular expression

(Σ:Σ)∗((Σ:ε)∗ ∪ (ε:Σ)∗) (3.2)

Applying the filtering mechanism may cause the resulting transducer to grow by max-

imally a factor of 3 since we are further intersecting the result of the naive cross product

with a 3-state transducer.

To illustrate the effect of the filter transducer, consider the two transducers in figure

55

(a) non-filtered

ε:ba:b

a:ε

ε:c

s2

s1

s0

(b) filtered

ε:b

a:ε

a:b
ε:c s3s2

s1

s0

FIGURE 3.4. Two strategies for performing the cross product of two languages (a× (bc)∗).

3.4: both represent the relation (a× (bc)∗), but one allows arbitrary alignment of ε-symbols

while the other has been intersected with F×.

In what follows we will always assume the aligned cross product construction to be

used whenever (L1 × L2) is encountered, and that the alignment is precisely the one pro-

duced by the filtering mechanism presented. Other alignments are possible—for instance,

all ε transitions could be aligned to the left instead of the right, etc. etc. However, as we

have chosen a particular alignment to represent the cross product relation, it is obvious that

the separate operation a:b—the symbol pair—could be dispensed with, and so only one

primitive for building transducers from automata would be necessary.

3.6. Composition

The basic composition algorithm is also an on-demand product construction where we

create new transitions from the composite states of two transducers. In effect, we traverse

both transducers in parallel and output new transitions in the composite machine whenever

56

0 1 2 0 1 2

(0,0)

(1,1)

(2,2)

(1,0) (2,0)

(2,1)

(1,2)

(0,1)

(0,2)

(0,0,0) (1,1,0) (2,2,0)

(0,0,0) (1,0,0) (2,0,0) (2,1,1) (2,2,1)

(a) (b)

(d)

(c)

(e)

FIGURE 3.5. Various composition strategies.

the intermediate tapes (the output symbol of FSM1 and the input symbol of FSM2) match.

However, an additional detail must be attended to—the possibility that FSM1 in state p

either emits an ε in which case FSM2 must stay in state q while FSM1 is allowed a move,

or that FSM2 consumes an ε, in which case FSM1 must wait. These additions are captured

in lines 13–24.

Note that the result of a composition operation may be nondeterministic in the FSA

sense since we may create composite transitions x:z in several ways: by combining (x:y, y:z),

or (x:w,w:z), etc. Also, the operation may introduce ε-transitions by creating a composite

transition from (ε:x, x:ε), yielding ε:ε.

3.6.1. Multiple equivalent paths in composition

The composition algorithm 3.4 by default will yield multiple equivalent paths for certain

types of transducers. In figure 3.5 (c) a composite transducer created from (a) and (b)

is illustrated where the same translation can be performed through multiple paths in the

composite machine. Although not strictly incorrect, this is a source of great inefficiency in

any larger system that tends to compound over a long chain of compositions.

The potential creation of multiple paths is exactly the same problem that occurs with

57

Algorithm 3.4: COMPOSITION

Input: FSM1 = (Q1,Σ, δ1, s0, F1), FSM2 = (Q2,Σ, δ2, t0, F2)
Output: FSM3 = (Q3,Σ, δ3, u0, F3)
begin1

Agenda← (s0, t0)2

Q3← (s0, t0)3

u0← (s0, t0)4

index (s0, t0)5

while Agenda 6= ∅ do6

Choose a state pair (p, q) from Agenda7

foreach pair of transitions δ1(p, x:y, p′) δ2(q, y:z, q′) do8

Add δ3((p, q), x:z, (p′, q′))9

if (p’,q’) is not indexed then10

Index (p′, q′) and add to Agenda and Q311

end12

end13

foreach transition δ1(p, x:ε, p′) do14

Add δ3((p, q), x:ε, (p′, q))15

if (p’,q) is not indexed then16

Index (p′, q) and add to Agenda and Q317

end18

end19

foreach transition δ2(p, ε:z, p′) do20

Add δ3((p, q), ε:z, (p, q′))21

if (p,q’) is not indexed then22

Index (p, q′) and add to Agenda and Q323

end24

end25

end26

foreach State s in Q3 = (p, q) do27

Add s to F3 iff p ∈ F1 ∧ q ∈ F228

end29

end30

58

the cross product construction. Unfortunately, it cannot be solved post-composition as

in the cross product case. It must be addressed at the time of composition, since after

the operation, we are unable to distinguish how the different combinations of ε-symbols

contributed to the final product.

The way to address this during composition is to keep track of the operation by guiding

the algorithm toward a preference of ε consumption and controlling the order in which

either machine is allowed to stay put in the product construction. We shall here outline two

strategies of doing so.

3.6.1.1. Solution 1: tri-mode composition

The first variant is to guide the composition process toward a preference of synchronized ε

alignment. That is, given a state p in T1 and a state q in T2, we shall avoid creating paths

from (p, q) to (p′, q′) in the composite machine that alternate between halting the input

and output machine in consecutive moves. What this means is that we disallow alternation

between not consuming a symbol pair on the input side and output side, unless there exists

an intervening move where symbols on both sides are consumed. To this end, instead of

constructing state pairs in the product construction, we construct state triplets (p, q,m),

where m is an integer in {0, 1, 2} indicating that the composition is in a synchronized state

(0), that the input side has consumed a symbol pair while the output has not contributed

to the emission (1), and that the output has consumed a symbol, while the input has not

emitted anything (2). The initial state is (0, 0, 0) in the composite machine.

The mode indicator in a composite state triplet governs the order in which either of the

argument transducers to composition must behave with respect to waiting as follows:

• In modes {0, 1} transitions (p
x:ε→ p′) create the composite transition to (p′, q, 1) with

x:ε (FSM2 waits)

• In modes {0, 2} transitions (q
ε:z→ q′) create the composite transition to (p, q′, 2) with

ε:z (FSM1 waits)

59

• In mode 1, FSM1 is not allowed to wait

• In mode 2, FSM2 is not allowed to wait

The machine in figure 3.5 (d) is the result of composing (a) and (b) with this strategy.3

Note that some of the states in figure 3.5 (c) will still be created even with this approach.

They will be non-coaccessible, however, and need to be pruned away. The illustration in

figure 3.5 (d) represents the result after it has been made trim.

3.6.1.2. Solution 2: bi-mode composition

The other strategy of avoiding multiple paths in the composite machine is to, instead of

stating a preference toward synchronization, disallow composite move sequences where T1

waits followed by T2 waiting. To this end, the composition algorithm must also disallow

creating composite transitions x:z from (p
x:ε→ p′), (q

ε:z→ q′). Otherwise we could create

multiple paths through both synchronization and having T2 wait followed by T1 waiting.

In this case, we only need to distinguish between two internal states in the composition

algorithm with m being {0, 1}. The m-value 1 would indicate that T1 has been forced to

wait. In this case we create the constraints that

• In modes {0, 1} transitions (q
ε:z→ q′) create the composite transition to (p, q′, 1) with

ε:z (FSM1 waits)

• In mode 1 FSM2 is not allowed to wait

3.6.2. Efficiency and size of single paths

Given that we have at least two strategies to avoid multiple equivalent paths during compo-

sition, it is natural to ask which one is more efficient in the average case, either with respect

3This is very similar to a method introduced by Mohri et al. (1996) for weighted automata where the
ε-symbols in the two machines T1 and T2 to be composed are first made distinct, yielding T ′1 and T ′2, after
which a filter transducer F is introduced between the composition, and composition proceeds as T ′1 ◦F ◦ T ′2.

60

File #states #states time(s) time(s)
2-state 3-state 2-state 3-state

Lingala 34,294 34,294 0.860 0.830
Sanskrit 108 108 0.160 0.130
Porter 334 330 0.360 0.370
Engsyll 285 309 0.090 0.090
ArabicStems 871 871 0.050 0.050
FinnOTCounting 389 389 0.310 0.300
FinnOTMatching 245 245 7.100 6.270
BasqueErregelak 4,313 3,970 1.490 0.980
SpanishVerbs 14,933 14,931 3.920 4.050
EngPhon 52,234 52,234 4.130 4.210

TABLE 3.1. Comparison of two composition strategies.

to the sizes of resulting machines or the time taken by the algorithm. Table 3.1 shows this

information with respect to 10 natural language grammars that involve numerous composi-

tions of transducers. Although the illustration in figure 3.5 can lead one to believe that the

tri-mode composition strategy would be more efficient with respect to the size of the results

because of the more esthetic alignment of machine (d) versus machine (e), this advantage

seems to be negligible for practical purposes. In the majority of cases, the final result is

identical: however, table 3.1 reveals cases in which either strategy can result in smaller

transducers.4 The timing results are also inconclusive as regards the comparative efficiency

of the two strategies.

4Lingala is an implementation of realizational morphology by Lauri Karttunen; Sanskrit is Richard
Sproat’s grammar given in Roark and Sproat (2007) as implemented by Dale Gerdemann; Porter is a porter
stemmer by Jason Eisner; Engsyll is an English syllabifier described in Hulden (2006); ArabicStems is the
stem compilation script described in chapter 9; FinnOTCounting is an Optimality Theory implementation of
Finnish stress by Lauri Karttunen; FinnOTMatching is the same grammar but implemented with a different
approach by Dale Gerdemann with the method described in Gerdmann and van Noord (2000); BasqueErrege-
lak is the set of phonological alternations in a large Basque grammar by Izaskun Etxeberria and Iñaki Alegria
(Alegria et al., 2009).

61

3.7. Extended operations

Apart from the more complex operators already introduced, there are a few remaining

useful primitive operations that require state or transition manipulation.

3.7.1. Inverse

The inverse of a relation can be accomplished by simply swapping the input and output

labels in a transducer. This is an operation that maintains FSA determinism and minimality.

3.7.2. Domain and range

The domain and the range can be extracted from a transducer, yielding an identity transdu-

cer (or recognizer) over the input or output language, respectively. This requires substitut-

ing transitions in the transition function δ(p, x:y, q) with δ(p, x:x, q) (for the domain) and

δ(p, y:y, q) for the range. The special symbol ?, if found, needs in each case to be replaced

with @. The result may be nondeterministic and may contain ε-moves.

3.7.3. Asynchronous (shuffle) product

The shuffle of two regular languages L1 and L2 (L1 ‖ L2) consists of all the words it is

possible to construct by picking a word from L1 and one from L2 and interleaving the two

resulting strings in an arbitrary way. This is also called asynchronous product because of

the way it is calculated, given two finite-state machines FSM1 and FSM2. The algorithm

(3.5) is related to the product algorithm, with the difference that composite moves occur

asynchronously: either a move is made by FSM1 or FSM2 in the composite machine, but

not both.

Note that the result of the algorithm may be nondeterministic in the FSA sense. Obvi-

ously, we may construct a state pair (p, q) in the composite machine where there are several

62

Algorithm 3.5: ASYNCHRONOUSPRODUCT

Input: FSM1 = (Q1,Σ, δ1, s0, F1), FSM2 = (Q2,Σ, δ2, t0, F2)
Output: FSM3 = (Q3,Σ, δ3, u0, F3)
begin1

Agenda← (s0, t0)2

Q3← (s0, t0)3

u0← (s0, t0)4

while Agenda 6= ∅ do5

Choose a state pair (p, q) from Agenda6

foreach transition δ1(p, x, p′) do7

Add δ3((p, q), x, (p′, q))8

if (p’,q) is not indexed then9

Index (p′, q) and add to Agenda and Q310

end11

end12

foreach transition δ2(q, x, q′) do13

Add δ3((p, q), x, (p, q′))14

if (p,q’) is not indexed then15

Index (p, q′) and add to Agenda and Q316

end17

end18

end19

foreach State s in Q3 = (p, q) do20

Add s to F3 iff p ∈ F1 ∧ q ∈ F221

end22

end23

63

outgoing transitions on the same symbol a created from the original transitions δ(p, a, p′)

and δ(q, a, q′).

The shuffle product can easily describe insertions of material in languages. For exam-

ple, the single-symbol insertion of a into an arbitrary position in the language L is simply

(L ‖ a).

As the shuffle is constructed through the product construction, shuffle can also operate

on transducers. For instance, the transducer that maps strings in a languageL to themselves,

with possibly arbitrary sequences of a inserted can be defined by (L ‖ (ε:a)∗).

3.7.4. Ignore

The ‘ignore’ operation (L1/L2) is closely related to the shuffle operation and is useful for

many constructions. It constructs the composite language L3 where all words are of the

form L∗2w1L
∗
2w2L

∗
2 . . . L

∗
2wnL

∗
2, for w1w2 . . . wn ∈ L1.5

Algorithm 3.6: IGNORE

Input: FSM1 = (Q1,Σ, δ1, s0, F1), FSM2 = (Q2,Σ, δ2, t0, F2)
Output: FSM3 = (Q3,Σ, δ3, u0, F3)
begin1

FSM3 = Copy(FSM1)2

Create |Q1| copies of FSM23

foreach state si ∈ Q3 do4

Add a transition δ3(si, ε, ti)5

foreach final state sf in the ith copy of FSM2 do6

Add a transition δ3(sf , ε, si)7

end8

end9

end10

The algorithm for the ignore operation is given in algorithm 3.6 and illustrated in figure

3.6. The method is straightforward: for each state in FSM1, we create an ε path to a copy

5The notation for the ignore operation is borrowed from Xerox’s xfst.

64

FIGURE 3.6. Implementing the ignore operation with ε-transitions to copies of FSM2.

of FSM2, from the final states of which we create an ε-transition back to that state. The

result is always nondeterministic and contains ε-symbols.

Note that single-symbol ignores L1/a = L1 ‖ a∗.

As with the shuffle product, ignore may be applied to transducers as well as automata.

That is, the construction method per se does not prohibit that the input arguments be non-

identity mappings.

3.8. Nonprimitive operations without transducers

A large number of additional operations may be defined in terms of the primitives. We shall

here focus on a few that are useful and particularly difficult to define.

3.8.1. Context restriction

It is often useful to be able to state an existential constraint on where substrings from a

certain language can occur. We denote this by

X ⇒ L R (3.3)

The above statement refers to the subset of Σ∗ where each instance of any substring

65

that belongs to the language X is preceded by L and succeeded by R. This can be defined

in terms of the basic and Boolean operations:

¬
(
(¬(Σ∗ L) X Σ∗) ∪ (Σ∗ X ¬(R Σ∗))

)
(3.4)

This operation is not well-defined for non-identity transducers.

It is assumed that if either or both arguments L and R are empty, they denote ε. This

allows us to express if-then type statements, where if(P ,Q) is taken to denote the language

where each substring belonging to P is followed by an instance of a string from Q. That is

P ⇒ Q (3.5)

This notation and its possibilities will be explored further in chapter 6.

3.8.2. Nonprimitive operations with composition and domain/range extraction

Now we have reached a point where enough primitive operations on regular languages and

transducers have been defined so that in the future we can construct new ones in terms of

the primitives already defined.

In particular, the combination of composition, cross product, and domain/range extrac-

tion is an extremely efficient tool for constructing complex language operations of the type

that would be very difficult to do by only resorting to low-level manipulations of states and

transitions.

Let us first look at some regular language constructs made simple by the combination

of these three operations.

3.8.2.1. Quotients

The left or right quotient of a language is a familiar operation from formal language theory.

The left quotient of a languages L1 and L2 is defined as

66

L1\LL2 = {w|∃x((x ∈ L1) ∧ (xw ∈ L2))} (3.6)

Informally, this is the set of suffixes one can add to L1 and get strings in L2. Thus, for

example (ab)\L(abc+) = c+.

Defining L1\LL2 in terms of cross product, composition and range extraction is simple:

L1\LL2 = range
(
L2 ◦ ((L1 × ε) Σ∗)

)
(3.7)

Similarly, the right quotient of two languages L1 and L2 is defined as

L1/
RL2 = {w|∃x((x ∈ L2) ∧ (wx ∈ L1))} (3.8)

Informally, this is the set of prefixes one can add to L2 to get a string in L1. For example

(a∗ba∗)/R(a∗b) = a∗.

This can be defined as:

L1/
RL2 = range

(
L1 ◦ (Σ∗ (L2 × ε))

)
(3.9)

3.8.2.2. Ignores

The low-level ignore operation L1/L2 which was defined earlier through transition/state

manipulation techniques can also be defined in terms of the primitive operators.

L1/L2 = range
(
L1 ◦ (Σ ∪ (ε× L2))∗

)
(3.10)

The logic in the above definition is that we compose L1 with a transducer that accepts

single symbol identity relations, or cross products of ε and L2 in arbitrary numbers and in

any order. Then we extract the range of this relation.

Now, earlier we had defined ignore with a low-level algorithm. Why not defer the

definition of ignore until the other primitives were defined and ignore could be defined in

67

terms of these, as above? The only real advantage we get from defining the ignore operation

as a low-level one is the ability for it to operate on transducers, i.e. T1/T2 becomes possible

to compile into a transducer which it would not be with the composition/range extraction

method.6 Also, having the two definitions of ignore serves an illustrative purpose of the

relative simplicity of defining operators with transducer-based techniques as opposed to

low-level techniques.

Another variant of the ignore operation, also present in Beesley and Karttunen (2003),

is the ignore-internally operation, where L1 ./. L2 denotes the language L1 with arbitrary

strings from L2 intervening, except that the first and last symbols must belong to L1. For

example, the language (abc)./.x contains strings such as abc,axbc,abxc,axbxc, but not e.g.

xabc.

This operation is much more inconvenient to define through low-level manipulation

of states and transitions, and we offer only the alternative definition similar to the one of

ignore above.

L1 ./. L2 = range
(
L1 ◦

(
(Σ (Σ ∪ (ε× L2))∗Σ) ∪ Σ ∪ ε

))
(3.11)

3.8.2.3. Substitutions and homomorphisms

Another group of (regular) language operations that are easily defined with composition

and range extraction are substitutions, homomorphisms, and inverse homomorphisms.

A substitution is the act of replacing words in a language L of the form w1w2 . . . wn

with words of the form w′1w
′
2 . . . w

′
n. A substitution h maps each symbol in L to a set

of words in Σ∗—i.e. every symbol in L is mapped to a language. A homomorphism is

6Whether the ignore operator is well-defined for transducers is questionable. Consider the relations T1 =
(a:b) and T2 = (a:ε) (ε:b). Now clearly T1 = T2 despite their possibly different transducer representations.
However, T1/x 6= T2/x. (Dale Gerdemann, p.c.)

68

a special case of substitution where h(x) is always a single string in Σ∗ for each symbol

x ∈ Σ.7

For example, define the homomorphism h(a) = 10 and h(b) = 22. Then h(aab) =

101022.

Both substitutions and homomorphisms of regular languages can be defined in the same

way for some set of mappings h:

h(L) = range
(
L ◦ ((a1 × h(a1)) ∪ . . . ∪ (an × h(an)))∗

)
(3.12)

where ai and the corresponding h(ai) is the mapping of the symbol to the language in

question.

For the above example h(a) = 10 and h(b) = 22 over the alphabet {a, b}, this becomes

h(L) = range(L ◦ ((a× 10) ∪ (b× 22))∗) (3.13)

For the inverse homomorphism, we use the same definition and only invert the auxiliary

transducer that L is composed with:

h−1(L) = range
(
L ◦

(
((a1 × h(a1)) ∪ . . . ∪ (an × h(an)))∗

)−1
)

(3.14)

3.8.2.4. String manipulation problems

The general approach of using composition, range extraction and cross product can be

extended beyond the definition of new operators. The technique is versatile enough that we

can perform tasks that ordinarily require dedicated algorithms to accomplish. Some string

manipulation problems that normally call for a depth-first/breadth-first search on the finite-

state machine or even dynamic programming algorithms to solve can be expressed through

a judicious combination of the transducer operators. Let us examine a few examples.

7Sometimes two different alphabets are assumed: one for the domain Σ and one for the image Γ of the
substitution/homomorphism. Here we assume that they operate on a single alphabet Σ.

69

3.8.2.5. The shortest string problem

Consider a language L that contains an arbitrary number of strings. Suppose we wanted

to extract the set of shortest strings, or one of these strings encoded in the language. If

the language is represented as an automaton, the low-level approach would be to perform

a breadth-first-search on the graph, starting at the initial state and stopping at the first final

state encountered, or the set of first equidistant final states. However, the problem can also

be expressed by the introduction of an intermediate regular relation. We can define the set

of shortest strings in L as a regular language Ls by the expression

Ls = L− Σ+ range(L ◦ (Σ:Σ)∗) (3.15)

The logic is straightforward: the subexpression L ◦ (Σ:Σ)∗ maps words in L to any

word of the same length over the alphabet Σ. Concatenating with Σ+ yields the set of

strings over Σ such that each word is at least as long as some word in L. Subtracting this

from L obviously leaves only the set of shortest strings in L.

Although the above expression performs the job correctly, it can be further optimized

(for actual compilation) to avoid generating as an intermediate language the set of all strings

that are longer than strings in L.

Ls = L− Σ+ range
(
(range(L ◦ (Σ:a)∗) ◦ (a:Σ)∗)

)
(3.16)

Here, the subexpression range(L◦ (Σ:a)∗) is the language that contains the same words

as L, except every symbol is an a. Composing this language with (a:Σ)∗ we map it to

the language that contains any string over Σ that is of the same length as some word in L.

Concatenating this with Σ+ we can be sure to obtain all words in L longer than some other

word in L. Note that the choice to use a as an intermediary symbol to map every word in

L to is arbitrary: it is simply an auxiliary and can be any symbol in the alphabet, including

a symbol that occurs in L. Although slightly more complex, this expression is vastly more

efficient for actual use.

70

3.8.2.6. Edit distance

In a similar fashion, we can solve edit distance string problems. Consider the problem of,

given some word w which is not in L, finding all the words in L that are of edit distance

n from w.8 This also appears to imply a necessary resort to algorithmic methods, but is

equally solvable with the same techniques as have been developed so far. The set of words

in L that are exactly one edit distance from w are definable as

L(w1
ed) = range

(
w ◦ (Σ∗ (Σ:Σ− Σ ∪ Σ:ε ∪ ε:Σ) Σ∗) ◦ L

)
(3.17)

This can be generalized to any edit distance n by

L(wned) = range
(
w ◦ (Σ∗ (Σ:Σ− Σ ∪ Σ:ε ∪ ε:Σ) Σ∗)n ◦ L

)
(3.18)

which constructs the set of words in L exactly n edit operations away from w.

3.8.2.7. Subsequence and substring problems

Before we move on to other topics, let us close the illustration of the capabilities and ex-

pressive power of constructing transducer-based solutions by illustrating two string-related

problems whose solution can be calculated by simple transducer operations. This illustra-

tion will serve as a basis for the more advanced techniques which we will encounter in

chapters 7 and 9.

The two problems in question are the longest common subsequence problem, and the

longest common substring problem. Although not directly related to morphological and

phonological applications, they concisely illustrate the flexibility of the combination of

composition and domain/range extraction operations.

The longest common substring problem is that of finding the longest common substring

shared by two words s and t. The related longest common subsequence problem (LCS) asks

8The measure of edit distance implies a cost: changing a symbol in w, inserting a symbol to w, and
substituting one symbol in w to some other symbol all cost one unit.

71

the same question relating to subsequences. A substring of a string w is obtained from w

by deleting a prefix and suffix of any length. A subsequence of w is obtained by deleting

any number of symbols anywhere in w.

For example, assume s = abcaa and t = dbcadaa. The longest common substring is

bca obtained from s by abcaa and t by dbcadaa. The longest common subsequence is bcaa,

obtained from s by abcaa and t by dbcadaa or dbcadaa or dbcadaa.

Both of these problems are commonly attacked by dynamic programming techniques

(Bergroth et al., 2000). Here, we will treat both by simple transducer operations.9

As a first step, we give the regular language definition of the set of substrings of some

language L, which can be obtained by

Substring(L) = range(L ◦ (Σ:ε)∗Σ∗(Σ:ε)∗) (3.19)

This is done exactly following the definition of substring above: by deleting an arbitrary

amount of material from the beginning and end of a string. In a similar way, we can define

the set of subsequences of some language L as

Subsequence(L) = range(L ◦ (Σ ∪ (Σ:ε))∗) (3.20)

Here, we delete an arbitrary amount of material from anywhere in L, as per the defini-

tion.

We can now, in a similar manner as in section 3.8.2.5 define the set of longest words in

L.

Longest(L) = L− range
(
(range(L ◦ (Σ:a)∗(Σ:ε)+) ◦ (a:Σ)∗)

)
(3.21)

9As our purpose here is not to suggest a practical method for solving these problems but to illuminate
the capability of finite-state transducers we shall leave it unproved that these problems are also solved in
polynomial time by the transducer approach, exactly as by dynamic programming algorithms.

72

The idea is the analogue of extracting the set of shortest strings in L: we subtract from L

all those strings that are longer than some other string in L.10

Now, given these definitions, the set of longest common substrings of s and t as the

expression

LCSubstr(s, t) = Longest(Substring(s) ∩ Substring(t)) (3.22)

and likewise the set of longest common subsequences of s and t:

LCSubseq(s, t) = Longest(Subsequence(s) ∩ Subsequence(t)) (3.23)

This can of course be generalized to an arbitrary number of sequences s1 . . . sn by

LCSubstr(s, t) = Longest(Substring(s1) ∩ . . . ∩ Substring(sn)) (3.24)

and likewise the set of longest common subsequences of s and t:

LCSubseq(s, t) = Longest(Subsequence(s1) ∩ . . . ∩ Subsequence(sn)) (3.25)

3.9. Determinization

The backbone of inductive finite state machine construction is the ability to determinize

non-deterministic automata and create ε-free machines from ε-containing machines. When

relying on a Thompson-style construction where non-deterministic, ε-containing machines

are the result of many operations, the importance of efficient determinization increases.

This is a necessary intermediate operation for many subsequent operations, and will need

to be performed very frequently during FSM construction. For this reason, it is important

that the algorithm that performs determinization be as efficient as possible. Although one

10Although, if L contains infinitely long words, the expression will return the empty language. This is not
a problem for solving the LCS problems since we know that the input words are finitely long and hence their
substrings and subsequences must be so as well.

73

cannot in the general case avoid an exponential increase in size when going from a non-

deterministic to a deterministic machine, it is important that the construction algorithm be

such that its running time is as close as possible to linear in the size of the output automaton.

The classical subset construction algorithm (Rabin and Scott, 1959) is given here in an

abstract form in algorithm 3.7.

Algorithm 3.7: SUBSETCONSTRUCTION

Input: FSM1 = (Q1,Σ, δ1, S0, F1)
Output: FSM2 = (Q2,Σ, δ2, t0, F2)
begin1

t0 ← INDEX(ε− CLOSURE(S0))2

Agenda← ε− CLOSURE(S0)3

while Agenda 6= ∅ do4

S ← AGENDAPOP()5

foreach symbol pair X with a transition in S do6

T← ε-CLOSURE(move(S,X))7

end8

if INDEX(T) = ∅ then9

Index T10

Add T to Agenda11

Add INDEX(T) to Q212

if any (s ∈ T) ∈ F1 then13

Add T to F214

end15

end16

Add transition δ3(INDEX(S), X, INDEX(T))17

end18

end19

In the algorithm S and T denote state sets. The function ε − CLOSURE(S) returns

the set of states reachable by ε-moves from the set of states S. The function INDEX(S)

associates an integer with a set of states. This integer is used when assigning state numbers

to the output FSM . The initial state in the deterministic machine is the ε − CLOSURE of

the set of initial states in the nondeterministic machine.

74

3.9.1. Hashing of sets

As we traverse the non-deterministic FSM with all possible symbol moves ‘in parallel’

and create, potentially, the power set of the set of states, some efficiency concerns arise as

regards the storage and manipulation of these state sets.

In normal circumstances a bit vector approach is recommended for storing the sets

of states (Leslie, 1995). As the transducers that can be encountered may be very large,

however, we quickly reach a point where such a storing state sets with vectors is no longer

feasible. Much space can be saved by storing the sets of states as integer sets. But if this

is done, their treatment needs to be efficient. When sets are a collection of integers, it is

important that the task of ascertaining whether a set is previously encountered is performed

efficiently. A hashing method is suitable here. In particular, a hash where a set of integers

hash to the same value regardless of the order the hash functions accesses the members of

the set allows one to disregard sorting the set. This saves time when hashing needs to be

performed frequently.

3.9.2. General efficiency concerns

Line 6 in the algorithm, where we retrieve the next symbol that has a transition in the set of

states S deserves special attention. In general when we are dealing with sparse automata,

there may be many symbols in Σ that do not have transitions, even for a collection of states

S. Therefore, line 6 (and 7) which fetches the next outgoing transition from any state in the

set S should operate in O(|S|)-time. If the entire set does not have an outgoing transition

on a symbol pair Xi, no time should be spent in checking this and moving to symbol pair

Xi+1. Achieving this is aided by pre-sorting the outgoing transitions from each state before

determinization, in which case a pointer may be maintained, one for each set in the state,

and the next available transition may be calculated quickly from these pointers.

If the ε transitions are frequent, memoization of ε−CLOSURE may be necessary. There

are various methods of doing so, and differences may depend on idiosyncrasies of the

75

machines at hand. Results in Van Noord (2000) seem to indicate that it is advisable to store

such functions where ε − CLOSURE(S) returns not the entire set of states reachable from

any state in S, but only those states that have outgoing transitions on actual symbols, as

output automata may be smaller by such an approach.

3.10. Minimization

Along with determinization, the ability to efficiently minimize automata and transducers is

of foremost importance in systems that construct finite-state machines of any complexity.

Minimization is not only necessary for the final result in a chain of operations that result

in a FSM, but a crucial operation that needs to be performed at frequent intervals during

construction.

Table 3.2 illustrates this by a sample of some natural language script files that compile

a finite-state transducer and that all use complex construction techniques such as compo-

sition of a variety of replacement rules. The relative timing results show that although

compiling a finite-state transducer from the scripts requires a large number of calls to the

minimization algorithm, not calling the minimization algorithm at all results in very inef-

ficient compilation. In fact, some scripts failed to terminate in the 7,200 seconds allotted

to it. Notably, the ‘Porter’ script took 0.360s to compile with minimization calls, while the

nonminmizing approach did not terminate in the allotted two hours. The general pattern has

a straightforward explanation: failing to minimize FSMs after each call to a determiniza-

tion or a product construction algorithm will have exponential effects that compound very

quickly in any complex system.

In what follows, we shall refer to minimization of finite-state transducers and automata

alike. Naturally, for finite-state transducers there does not exist a canonical minimal form

as there does for finite-state automata (see chapter 5). For finite-state automata, one can

always compute the Myhill-Nerode equivalence (Myhill, 1957; Nerode, 1958) for an au-

tomaton FSM to yield the minimal automaton FSMmin representing that language, but

76

File time w/ min(s) no min(s) #calls to minimize()

Lingala 0.860 3.010 2,372
Sanskrit 0.160 0.270 2,891
Porter 0.360 ∞ 3,346
Engsyll 0.090 43.340 317
ArabicStems 0.050 1.280 1,604
FinnOTCounting 0.310 8.900 1,922
FinnOTMatching 6.270 ∞ 3,679
BasqueErregelak 0.980 21.190 4,038
SpanishVerbs 3.920 16.220 27,452
EngPhon 4.130 ∞ 3,346

TABLE 3.2. Differences in compiling natural language grammars with and without inter-
mediate minimization of FSMs.

for finite-state transducers, no such canonical form exists. However, if we interpret a finite-

state transducer as an automaton where the alphabet consists of label pairs Γ ⊆ Σ × Σ,

applying a Myhill-Nerode equivalence does not change the relation encoded by the trans-

ducer, and often results in great space gains.

3.10.1. Choice of algorithm

There exists a large body of research concerning minimization algorithms for finite au-

tomata. An overview and taxonomy of finite-state minimization techniques is found in

Watson (1995). The vast majority of the different minimization algorithms are based on

the general idea of Moore minimization, given in Moore (1956). This in illustrated in

algorithm 3.8. This approach involves calculating the set of equivalent states by first par-

titioning the set of states into the final and nonfinal states, and then iteratively refining the

partitioning based on evidence that two states are not equivalent. Finally, the minimal au-

tomaton is generated by picking a representative state from each partition. Variants of this

approach include: Hopcroft’s algorithm (Hopcroft, 1971), the Hopcroft-Ullman algorithm

(Hopcroft and Ullman, 1979, p.70) and the Aho-Sethi-Ullman algorithm (Aho et al., 1986,

p.142).

77

Algorithm 3.8: GENERICMOOREMINIMIZATION

Input: FSM = (Q,Σ, δ, s0, F)
Partition Q into Π = {F,Q− F}1

repeat2

foreach Group G in Π do3

split G such that states s and t4

are in the same group if and only if5

for all a ∈ Σ6

transitions δ(s, a) go to the same group as δ(t, a)7

end8

until no splitting occurs9

Apart from this, there are a few algorithms which some research has found to be effi-

cient that are not based on the general technique of Moore minimization: Brzozowski’s

algorithm (Brzozowski, 1963), and the Watson-Daciuk algorithm (Watson and Daciuk,

2003). Brzozowski’s algorithm is extremely simple to implement given that one has access

to a determinization algorithm, and simply consists of twice determinizing and reversing

the automaton in question:11

Determinize(Reverse(Determinize(Reverse(FSM)))) (3.26)

Another simplifying facet of this algorithm is that its output is always a trim automaton

and does not need to be made accessible or coaccessible before or after minimization.

The Watson-Daciuk algorithm is based on the opposite initial assumption of Moore-

based algorithms—assuming that every state is distinct and then merging equivalent states.

This leads to partial results being usable, in contrast to Moore algorithms where the run

must terminate before a partitioning is valid.

All of these algorithms, except Hopcroft’s algorithm or the Aho-Sethi-Ullman algo-

rithm have O(n2) or higher complexities, n being the number of states in the FSM.

11Note that the determinization algorithm must be able to handle multiple initial states (as final states are
turned into initial states in the reversal). Otherwise, an extra state must be added with epsilon transitions, and
the resulting Brzozowski maneuver requires one more determinization.

78

The worst-case time complexities of these algorithms suggest that either the Aho-Sethi-

Ullman algorithm (O(n log n)) or Hopcroft’s algorithm (O(n log n)) stand out as viable

candidates for efficient minimization. However, the research appears to be inconclusive

in this respect: there any many sources that report remarkable savings over Hopcroft’s

algorithm in the average case using algorithms such as Moore’s generic algorithm (Bassino

et al., 2009), which is quadratic in the worst case, the Watson-Daciuk algorithm (Watson

and Daciuk, 2003; Almeida et al., 2007), which is superquadratic but still polynomial is

the worst case, and Brzozowski’s algorithm (Watson, 1995; Almeida et al., 2007), which is

exponential in the worst case. In particular, the claim that Brzozowski’s algorithm would

be superior to Hopcroft’s for many practical purposes is frequently encountered (see e.g.

Watson (1995); Champarnaud et al. (2002); Watson and Daciuk (2003); Almeida et al.

(2007); Castiglione et al. (2008) among others).

These previous results have not been reproduced in this study: as regards the algo-

rithms developed in this chapter, Hopcroft’s algorithm, assuming some care is taken in the

implementation, has outperformed all of the alternatives in every test case found.12 For this

reason we shall focus on Hopcroft’s minimization algorithm in the following.13

However, there are some caveats to the efficiency of Hopcroft’s algorithm. First, the

algorithm is extremely delicate and requires great care in the implementation to avoid it

degenerating into an O(n2)-algorithm. This is witnessed by the large number of publi-

cations that focus on reinterpreting the original description of the algorithm and describ-

ing it in a way where the asymptotic time analysis would be simpler, as in Gries (1972);

12There is one exception to this: when compiling a small class of pathological regular expressions that are
exponentially smaller in the reverse direction such as (a ∪ b)∗a(a ∪ b)n, assuming the automaton represent-
ing the regular expression is kept nondeterministic, the Brzozowski maneuver outperforms the sequence of
determinization and Hopcroft minimization by a constant factor of 2.

13This potentially widespread underestimation of Hopcroft’s algorithm has not gone completely unnoticed.
Kiraz and Grimley-Evans write the following note after comparing two minimization implementations: “Al-
though Brzozowski’s algorithm is exponential in the worst case there are some indications that it is in practice
more efficient than Hopcroft’s algorithm when applied to the kind of automata used in practice. However, the
observed quadratic behaviour of FIRE Lite’s and Grail’s implementations of Hopcroft’s algorithm raises the
worry that Hopcroft’s algorithm may not previously have been given a fair trial: the figures seem to confirm
that Hopcroft’s algorithm is difficult to implement correctly” (Kiraz and Grimley-Evans, 1998).

79

Knuutila (2001); Berstel and Carton (2005). Second, Hopcroft’s original description of

the algorithm is quite unintuitive, which has also prompted a number of more descriptive

publications on the topic. Third, Hopcroft’s algorithm is designed to work with complete

deterministic automata—which natural language automata in general are not. The asymp-

totic O(|Σ|n log n) = O(|Σ||V | log |V |) complexity can be quite large if the alphabet

is large. Especially when working with natural language automata which are incomplete,

and have large alphabets but few transitions in proportion to the number of states, this in-

volves a great penalty. Nontrivial modifications of the algorithm are required to cope with

this scenario. We shall focus on all of these questions in turn: describing the algorithm,

presenting some data structures that are required for the proper asymptotic behavior, and

presenting modifications that are required to make the algorithmO(|E| log |V |), where |E|

is the number of actually occurring transitions in an incomplete automaton, as opposed to

O(|Σ||V | log |V |), as the original description gives.

3.10.2. Hopcroft’s algorithm

As mentioned, Hopcroft’s algorithm is a variant of the more generic Moore state equiva-

lence calculation given above. Let us first examine the canonical version of the algorithm,

given in algorithm 3.9. This is necessary to develop the arguments of correctness surround-

ing the modifications to the algorithm to handle sparse automata.

In contrast to most adaptations of the Moore partition splitting procedure, Hopcroft’s al-

gorithm examines transitions in the reverse direction when splitting groups into subgroups.

Initially, only the final and nonfinal states are in distinct groups, and for each symbol in

the alphabet, a pairing consisting of a group and a symbol is put on an agenda. Then, the

following procedure is iterated until the agenda is empty: select a symbol and group pair,

and examine all the incoming transitions to that group with the symbol; for each set of

incoming transitions where the source of the transition is not equally present in every state

of the source group, split the source group. If a group B that is split into two new groups

80

Algorithm 3.9: HOPCROFTCANONICAL

Input: FSM = (Q,Σ, δ, s0, F)
Output: The set of equivalence classes Π
begin1

Π = {F,Q− F}2

foreach a ∈ Σ do3

Agenda←min((F,Q− F), a)4

end5

while Agenda 6= ∅ do6

Choose a pair (C, a) from Agenda7

Refine Π8

foreach B ∈ Π split by (C, a) into B′ and B′′ do9

foreach a ∈ Σ do10

if (B, a) is on Agenda then11

Replace (B, a) with (B′, a) and (B′′, a)12

else13

Add min((B′, a), (B′′, a)) to Agenda14

end15

end16

end17

end18

end19

81

B′ and B′′ was not on the agenda from before, for each symbol a and possible group pair

of the two new groups, select the smaller one and place it on the agenda. If a group B that

is split is already on the agenda, place all the possible pairs (B′, a) and (B′′, a) for each

symbol a on the agenda.14

For the sake of clarity, let us illustrate a run through the canonical Hopcroft algorithm

(algorithm 3.9).

Consider the automaton in figure 3.7. The initial partitioning on line 2 of the algorithm

will be {0, 1, 2, 3} and {4}, the final and nonfinal states. Now, on lines 3–5, we choose

the smaller of each block and inverse symbol combination to add to the agenda. We hence

add to the agenda ({4}, a) and ({4}, b) as the block {4} has fewer incoming transitions

for a (0) than the other block (5), and the block {0, 1, 2, 3} has 4 incoming transitions

on b and the block {4} only has one. We now choose a block to split on line 7 (note

that the algorithm says nothing about the order in which elements are chosen from the

Agenda). Let us choose ({4}, a). That block has no incoming transitions on a and there

is nothing to split. We now choose ({4}, b). The block has one incoming transition on b,

from state 3. The new partition Π on line 8 then becomes {0, 1, 2}, {3}, {4}. Since the

block that was split was not on the agenda, we need to, for each symbol, add the smaller of

{0, 1, 2} and {3} to the agenda on lines 10–15. For both symbols we add the same block:

({3}, a) (with 0 incoming transitions) and ({3}, b) (with one incoming transition). Again

we choose a block and a symbol from the agenda, this time, say, ({3}, a) which has no

incoming transitions, so there is nothing to split. We now choose ({3}, b), which has an

incoming transition from state 1, and hence we split {0, 1, 2} into {0, 2} and {1} on line

8. The split block was not on the agenda, so we only add the smaller for each symbol

again on lines 10–15: ({0, 2}, a) and ({1}, b). Neither of these blocks has any incoming

transitions on the respective symbols, and the algorithm will terminate as they are removed

14Selecting the ‘smaller’ group means: select the one with fewer incoming transitions to that group on
symbol a.

82

b

a

a

b

b

a

a
a

b
bs3

s2

s1

s0

s4

FIGURE 3.7. A non-minimized FSM.

next from the agenda. Hence, the final partitioning is {0, 2}, {1}, {3}, {4} and states 0 and

2 are equivalent.

3.10.3. Minimizing incomplete automata

There is a fundamental efficiency problem when Hopcroft’s algorithm in its canonical form

is applied to natural language processing applications. In the above form, Hopcroft’s algo-

rithm requires that the automata that it operates on be complete; for every symbol in the

alphabet and for every state there must be a transition. Hopcroft’s algorithm will in general

not give correct results if run on incomplete automata.

In NLP applications we are typically dealing with incomplete automata that are very

sparse graphs, as seen in table 3.3 that shows the sizes of some large natural language lex-

icons compiled both as automata (L) and transducers (T). For those lexicons the average

number of outgoing transitions per state is very low, only 8.6 for the transducers. In that

table, for example, the Basque (T) transducer lexicon has an average 1.06 outgoing tran-

sitions per state, whereas, if it were complete, it would have 937 outgoing transitions per

state. Obviously, if we had to make this type of a transducer’s transition function complete

before minimizing it (complete in the DFA sense), it would entail a great computational

cost: for the Basque transducer, we would have to add a sink state and 2,324,156,862 tran-

sitions on top of the already existing 2,635,270 to make it complete.

83

Now, evidently it is not necessary to actually store this large number of transitions to a

sink state if we want to minimize a sparse automaton. Since the set of missing transitions

(to a sink state) in an incomplete automaton is the complement of the set of actually existing

transitions (for each state individually), it is possible to avoid constructing these transitions

and to calculate them on the fly. Although this is a possibility, the complexity of the data

structures required to achieve this efficiently is such that we shall consider an alternative

option.

This alternative option is as follows. We make two modifications to the Hopcroft al-

gorithm. First, instead of choosing a symbol and a block to place on the agenda, we place

entire blocks on the agenda, and iterate over the whole block and every symbol in Σ in one

compound step. Second, we initialize Hopcroft by not only placing the smaller of F and

Q− F , but by placing both blocks on the agenda. The algorithm with the modifications is

given in algorithm 3.10.15

Let us now examine two aspects of the modifications: that they indeed produce the

correct result, and that we are dealing with an O(|E|log|V |) algorithm.

To reason that the changes in question indeed give the desired result, we need not rean-

alyze the algorithm, but rather, lean on the prior knowledge that Hopcroft’s algorithm in its

canonical form yields the correct minimal partitioning, and does so in O(|Σ||V | log |V |)-

time.

Let us examine the minimization of an automaton FSMc that is complete, where we

add three blocks to the agenda and Π initially: the final states, the nonfinal states, except

a possible sink state, and the sink state. Minimizing with an initial agenda that is a finer

15The discovery of being able to minimize incomplete automata through these relatively simple modifica-
tions to Hopcroft’s algorithm was quite accidental and serendipitous. It was in fact the first implementation
of Hopcroft’s algorithm I did based my interpretation of the description of it given in Aho et al. (1974). That
description leaves open many crucial details, such as the actual block handling, splitting strategy, and initial-
ization, and also mentions nothing about the requirement that the automata must have a complete transition
function. Only my subsequent reading of two articles (Béal and Crochemore, 2008; Valmari and Lehti-
nen, 2008) that make substantial modifications to Hopcroft’s algorithm (and different from the modifications
presented here) in order to deal with incomplete transition functions made me aware of the fact that I had
implemented Hopcroft’s algorithm in a non-standard way, and that this non-canonical method was indeed
already able to correctly minimize incompletely specified deterministic automata.

84

Algorithm 3.10: HOPCROFTOPTIMIZED

Input: FSM = (Q,Σ, δ, s0, F)
Output: The set of equivalence classes Π
begin1

Π = {F,Q− F}2

Agenda← {F,Q− F, index = 0}3

while Agenda 6= ∅ do4

Choose a block C from Agenda5

i←index(C)6

foreach symbol aj where i ≤ j ≤ |Σ| and exists a transition on aj to C do7

Refine Π with (C, aj)8

foreach B ∈ Π split by (C, aj) into B′ and B′′ do9

if B 6= C then10

if B is on Agenda then11

Replace B with B′ and B′′ in Agenda12

else13

Add min(B,B′′) to Agenda with index 014

end15

else16

selfsplit← TRUE17

Add min(B′, B′′) to Agenda with index 018

Add max(B′, B′′) to Agenda with index j19

end20

end21

if selfsplit then22

selfsplit← FALSE23

break24

end25

end26

end27

end28

85

d

FIGURE 3.8. The effect of splitting on sink states in Hopcroft’s algorithm.

refinement than normally naturally yields the correct result so long as the initial partitioning

is correct.

If we can show that minimizing the same automaton from where the sink state has

been removed, along with all its transitions (call this machine FSM) and where the initial

agenda consists of the final states and the nonfinal states, then minimization of this machine

without the dead state operates correctly in algorithm 3.10.

First, consider the case where FSMc has no sink state. Here the cases FSM and

FSMc are obviously the same, and there is nothing to show. Now, consider the case where

FSMc has a sink state. As mentioned, for FSMc we initialize Hopcroft’s agenda and

partitioning to the three groups {Q − F − d}, {F}, {d}. Let us examine the refinement

on (Σ, d). Consider the discrimination that the splitter on the complete automaton FSMc

will perform on its initial run on (Σ, d): the contribution of splitting on d and a symbol a

is to distinguish between two states si and sj iff si or sj (but not both) have a transition to

d with a (see figure 3.8). Suppose sj has a transition on a symbol a to d and si does not.

If this were not the case, the two states would be indistinguishable by d and the symbol

a, and will remain so when minimizing the incomplete automaton FSM . Now, if d in

FSMc distinguishes between si and sj , we can show that the same algorithm will always

distinguish between si and sj also without the dead state in the machine FSM . Consider

the state si in FSM . By assumption, si must have a transition to some other state sk since

it did not have a transition to d in the complete automaton. However, sj cannot also have a

86

transition to sk on a since otherwise the automaton would not have been deterministic, and

we assume the input is deterministic. Now, in minimizing the incomplete automaton FSM

note that since all the states in the automaton (except d which has been removed) are put

on the agenda as part of some block, we must eventually encounter and split on the block

that contains sk and the symbol a. Hence, we will always split on a block that contains sk

which in turn will place the two states si and sj in different partitions. Hence, we can refine

all the partitions correctly without ever splitting on a sink state d if both Q− F and F are

put on the agenda initially.

Let us move to the second point about the time complexity of Hopcroft’s algorithm

being invariant even though we add both the final and nonfinal states to the agenda initially.

Consider an automaton FSM with some final states F and nonfinal states Q − F . Now,

consider the isomorphic automaton FSMi where all states are final. To the automaton

FSMi, add a new symbol αwith transitions from all the corresponding final states in FSM

to some nonfinal state in FSMi. Now, if we initialize Hopcroft in FSMi to only the final

states Fi, and split on (Qi, α) first, after the first iteration, we will find that the partitioning

Π is exactly the original Q and Q − F , and further iterations of Hopcroft will proceed

exactly as they would with FSM and adding both F and Q − F to the agenda. Hence,

given that the original asymptotic time complexity of Hopcroft must apply to the automaton

FSMi, it must be the same for FSM even though both F and Q − F are initially on the

agenda. Therefore, the same time complexity must hold in general whenever the algorithm

is initialized with both blocks F and Q− F .

3.10.4. Avoiding the alphabet constant

A further optimization that is desirable is to avoid the constant time for each symbol in the

alphabet in the main loop of algorithm 3.10 on line 7. It is quite important to not spend

any time on iterating over groups that have no incoming transitions on a symbol a. In other

words, the selection of the next symbol to split on should take O(1)-time in all cases, and

87

the algorithm should waste no time looping over symbols that have no incoming transitions

to C, even though every checking of such a circumstance could be done in O(1)-time.

In the experimental results that follow, we have named Hop1 the canonical algorithm

where automata must be completed before they are minimized. Hop2 is the optimized

version of the algorithm where the innocuous-looking check on line 7 takes O(|B|)-time

for each symbol in Σ (|B| being the size of the block) regardless of whether the block

has any incoming transitions on that symbol. Hop3 is the further optimized algorithm

where this constant is avoided and where fetching the next symbol with actual incoming

transitions for the block C takes O(1)-time.

3.10.4.1. Data structures

Since the actual data structures that are required in the proper implementation of Hopcroft’s

algorithm differ from what the algorithmic exposition would lead one to believe, some

comments regarding this may be appropriate here. As pointed out in Gries (1972), many

of the loops, if implemented literally as stated, will actually yield an O(|V |2) algorithm

and there are a number of traps to avoid in the implementation. First, when refining Π on

line 8 it is crucial to not be forced to inspect any of the other groups except the ones that

truly have transitions to C. Doing otherwise will immediately cause quadratic behavior.

Strategies to avoid this can be illustrated through the data structure given in figure 3.9.

Here, we maintain lists that represent the Agenda, the current partitioning P , and the set

of states E. Each state in the set of states can access the partition it belongs to as well as

the other states in the same partition. As we go through a block C in Refine on line 8 and

find a transition from some state s in a block B to the block C we can simply access s’s

partition where we maintain a counter of how many states in the group have a transition to

the block C. After we are done looking at the inverse transitions, we know which groups

to split based on whether the counter is equal to the number of states in the block B or not.

Of course, none of the blocks that did not have transitions to C should have their counters

88

FIGURE 3.9. An illustration of a data structure for correct implementation of Hopcroft
minimization.

inspected to avoid quadratic behavior. This can be avoided by creating a temporary list

when the inverse transitions are inspected that stores the partitions which had incoming

transitions to C which is iterated over afterwards to check the counters.

3.10.5. Comparison of algorithms

In order to illustrate the necessity of the optimizations over the canonical version of the

Hopcroft minimization algorithm, some experiments were run on minimizing large finite

automata and transducers for NLP use. The experiment consisted in compiling four lexi-

cons, which are finite-state transducers and timing the subsequent minimization. Also, an

alternative was tested where from each nonminimized lexicon only the range was extracted

(the actual surface words) and the resulting automaton was determinized, after which the

minimization was timed. These are given in table 3.3. The names of the languages in ques-

tion in the two sets in the table are suffixed with L if it is an automaton that is minimized,

and suffixed with T if it is a transducer. For the automata, the alphabet size is given in |Σ|.

For the transducers, |Σ| represents the number of actually occurring different label pairs a:b

in transitions. The different algorithms are Hop1: the canonical Hopcroft algorithm where

automata/transducers must be completed before minimizing; Hop2: the optimized version

89

Hop1 Hop2 Hop3 Brz |Σ| #States #Trans #Statesmin

English L 5.180 0.756 0.752 6.308 43 199,238 332,428 187,965
Basque L 18.333 2.198 1.684 25.738 48 320,214 483,702 75,590
Greenlandic L 11.461 2.636 1.568 ∞ 151 142,959 1,400,330 96,406
North Sami L 17.885 1.864 0.456 16.913 243 158,070 366,177 84,812

English T 31.810 2.360 0.612 2.012 268 199,009 331,639 188,181
Basque T ∞ 37.198 1.820 8.041 937 2,483,236 2,635,270 2,482,805
Greenlandic T 297.353 25.974 6.165 140.43 2287 228,956 6,700,241 154,826
North Sami T 166.302 10.173 0.404 3.988 1923 161,437 352,117 88,024

TABLE 3.3. Comparative timing results of different minimization algorithms.

File Hop3(s) Brz(s) #calls to minimize()

Lingala 0.860 1.900 2,372
Sanskrit 0.160 0.450 2,891
Porter 0.360 3.180 3,346
Engsyll 0.090 0.850 317
ArabicStems 0.050 0.340 1,604
FinnOTCounting 0.310 94.320 1,922
FinnOTMatching 6.270 ∞ 3,679
BasqueErregelak 0.980 101.820 4,038
SpanishVerbs 3.920 9.060 27,452
EngPhon 4.130 1497.7 3,346

TABLE 3.4. Comparison of two minimization algorithms.

of Hopcroft without the alphabet optimization given in 3.10.4; Hop3: the optimized version

of Hopcroft where the alphabet optimization is included; and Brz, Brzozowski’s algorithm.

Additionally, because of the reports that Brzozowski’s algorithm would perform very

efficiently in practice, and often better that Hopcroft’s algorithm, we tested running the

scripts used in table 3.2 using both Hop3 and Brz as the minimizer in the compilation pro-

cess. These results are given in table 3.4. Again,∞ implies more than 2 hours of running

time. To make the comparison fair, the intermediate automata were never determinized

before minimizing when running Brz, as this is unnecessary.

As can be seen from the timing results, each of the successive optimization efforts is

quite valuable. In particular, running the canonical version of Hopcroft’s algorithm (Hop1)

90

will lead to very inefficient minimization because of the O(|Σ||V | log |V |) behavior, as

opposed to the O(|E| log |V |) behavior of Hop3. The intermediate variant Hop2 begins to

suffer as large alphabets are encountered.

3.10.6. Comparison with other implementations

As a number of other tools are available for processing finite-state automata, we include

here the results of some experiments run with our implementation of Hopcroft’s algorithm

together with the same results with other finite-state tools.

Table 3.5 shows minimization time in seconds with other available finite-state software

with the same automata and transducers as were given in table 3.3. The different tools are as

follows: fst is the finite-state toolkit developed at PARC/Xerox, OpenFST16 is a finite-state

toolkit developed by researchers at Google research and New York University’s Courant

Institute, SFST is the Stuttgart Finite State Transducer Tools17, AT&T is the toolkit de-

veloped at AT&T18. DHOP , DASU , DW−D are implementations of the Hopcroft algorithm,

the Aho-Sethi-Ullman algorithm, and the Watson-Daciuk algorithm (Watson and Daciuk,

2003) by Jan Daciuk19. All the tools are written in C/C++. For the timing results, the UNIX

command timewas used. Each automaton/transducer was first converted to the native for-

mat of the different tools. Loading time of the files containing the finite-state machines are

not included in the timing results.

Since the source code for OpenFST and SFST are available, it is known that OpenFST

uses a variant of Hopcroft’s algorithm. SFST, which fails to finish on the Greenlandic

automaton, uses Brzozowski’s algorithm. The same effect is seen in our implementation of

Brz in table 3.3. Although xfst is a closed-source tool and the details of the implementation

are not known, its API is available where comments allude to that Hopcroft’s algorithm is

16http://www.openfst.org
17http://www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html
18http://www.research.att.com/˜fsmtools/fsm/
19http://www.eti.pg.gda.pl/˜jandac/

91

Tool Hop3 fst OpenFST SFST AT&T DHOP DASU DW−D

Version 2.12.10 1.1 1.3 4.0

English L 0.752 1.220 1.688 14.021 1.992 47.219 3.880 655.90
Basque L 1.684 3.116 2.552 56.276 3.536 41.852 23.646 103.63
Greenlandic L 1.568 1.840 2.952 ∞ 29.942 66.661 12.553 1311.4
North Sami L 0.456 0.640 1.156 44.527 1.336 62.750 14.853 143.65

English T 0.612 1.052 1.652 4.208 3.324 122.137 20.305 651.15
Basque T 1.820 4.600 13.181 28.410 32.918 ∞ ∞ ∞
Greenlandic T 6.165 7.041 13.649 119.008 44.671 1154.640 576.236 ∞
North Sami T 0.404 0.552 1.112 56.276 2.732 507.617 127.480 143.24

TABLE 3.5. Comparative timing results of minimization in different FSM applications.

being used for minimization. It is then noteworthy that the three fastest implementations in

table 3.3 all use a variant of Hopcroft’s algorithm.

3.10.7. Minimization of acyclic automata

Acyclic automata come up frequently in natural language applications, when compiling

finite-state machines representing lexicons, in particular. This class of machines is well

known to be minimizable in linear time (Revuz, 1992). The question is, then, whether

one should analyze automata before minimizing them and apply a different algorithm for

acyclic ones than for cyclic ones. Obviously, looking at the worst case time complexity,

this effort appears to be worthwhile.

However, it has been our observation that no acyclic automata appear to minimize in

more than linear time using Hopcroft’s algorithm. Figure 3.10 shows the result of mini-

mizing a number of automata with 100,000 to 10 million states with our implementation of

Hopcroft’s algorithm. All the automata were fairly dense over a 6-symbol alphabet, each

with an average of 4.56 outgoing transitions per state (nearly complete). As can be seen,

the behavior does not depart markedly from the linear curve plotted next to it. Similar

results were consistently obtained with other acyclic data sets.

The data sets we have seen may be too limited to conjecture about linear behavior of

92

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

time(s)

states(millions)

Acyclic minimization

minimization

♦ ♦
♦

♦
♦

♦

♦

♦

♦
♦

0.6x

FIGURE 3.10. Minimizing acyclic automata with Hopcroft’s algorithm.

Hopcroft’s algorithm when dealing with acyclic automata. However, it has been shown that

even for cyclic automata, to induce nonlinear behavior of the algorithm requires either very

special types of automata, or ‘unlucky’ selections of the block to partition on next (Berstel

and Carton, 2005; Castiglione et al., 2008). This certainly makes plausible the prospect

that the algorithm works in linear time for at least the majority of acyclic machines. From

our experience, the algorithm indeed gives linear time performance for acyclic automata in

practice, but whether this is true in the general case seems to be an open question. Nev-

ertheless, the immediate conclusion is that, unless other pressing concerns prompt it, the

inclusion of special minimization algorithms to handle acyclic machines may be unneces-

sary.

93

3.11. Lexicon compilation

For the sake of completeness, we shall here describe a compilation method for so-called

continuation-class lexicons, a useful formalism that serves as an intermediary in many

practical finite-state morphological applications. The notation largely follows Karttunen

(1993); Beesley and Karttunen (2003), which in turn is loosely based on the formalism

developed by in Koskenniemi (1983) and also Antworth (1991). Although the formalism

lacks some of the features that might be desired in developing morphological grammars for

languages with nonconcatenative morphologies, it is a convenient notation for most con-

catenative morphologies, still widely used for describing morphotactic alternations suitable

for linking with a two-level or rewrite-style grammar system. The formalism provides for

a simple way to model concepts such as morpheme classes, derivation, agglutination, and

compounding. It is also called lexc, based on a utility of the same name by Xerox/PARC.

3.11.1. Format of continuation class lexicons

The formalism itself is rather simple. We define a set of sublexicons, their contents, and

their concatenative order with respect to other sublexicons. In practice, these sublexicons

generally correspond to morphemes classes. Generally, each sublexicon has a unique name,

and each entry in a sublexicon is followed by a specification of which sublexicons may

concatenatively follow that entry. The general format is a collection of statements

LEXICON Name

Entry1 NextLexicon;

...

EntryN NextLexicon;

which declares a sublexicon, its name, entries, and for each entry, which sublexicon entries

may follow that entry.

For example, the sublexicon called Noun with two entries is specified as

94

LEXICON Noun

cat N;

dog N;

indicates that each entry in this sublexicon may be followed (concatenatively) by entries in

the lexicon called N.

We assign two special lexicons for denoting the first lexicon in concatenative order

Root, and the final lexicon, which has no entries #. Thus, a lexc specification like

LEXICON Root

cat #;

corresponds to a finite-state machine that only accepts the word cat. We may also allow

arbitrary regular expression entries in lexicons surrounded with special marker symbols <

and >.

LEXICON Verb

<s w i:a m> #;

Also, we can allow direct transduction specifications

LEXICON Verb

swim:swam #;

which is equivalent to specifying a regular-expression entry as the cross product of swim

and swam. Also, empty entries are allowed, such as

LEXICON Suffix

s #;

#;

95

which defines two suffixes in the Suffix sublexicon, one being the empty string, and both

of which may only be followed by the end-of-word.

In general, we assume that the entries are arbitrary objects that are somehow individu-

ally representable as a finite-state transducers.

3.11.2. Compilation

The compilation procedure for such continuation-class lexicons is modeled exactly on the

formalism it is specified—that is to say, we can construct an almost isomorphic nondeter-

ministic machine that represents the set of sublexicons and their possible connections. We

begin by constructing states that correspond to the sublexicons. That is, for each sublexicon

Root, Lex1, . . . , Lexn, #, we construct a state. Now, for each entry W that is a string (or

symbol-pair string) in the source lexicon Lexi, going to the target lexicon Lexj , we build

a trie extending from the source lexicon state with the final transition in the trie going to

the target lexicon state. When adding a word to the set of already existing words outgoing

from some lexical state, we need to depart from the trie for the last symbol, or whenever a

previous prefix has a transition to another lexical state.

Figure 3.11 shows a small lexicon and the nondeterministic transducer that is con-

structed from it using algorithm 3.11.

Notice that the result of the lexicon construction may be nondeterministic even if no

regular expression entries are allowed (which are automatically created with ε-transitions).

Since we have the ability to declare lexicon entries that consist of the empty string, the

construction method will directly add an ε-transition from the lexicon source state to the

lexicon target state. Also, two entries with the same prefix but that are of different length in

the same sublexicon will generally produce nondeterminism as the longer string will need

to depart from the trie at some point using the same symbol as the shorter string, or vice

versa, depending on which entry was added first.

There are special methods that allow for direct construction of minimal acyclic au-

96

Root

Noun

Verb

N

V

#

w
a l

k

e:a a:t t:e

d

r

c

a t

a t

o
g

k

c

u

+Pl:s

Lexicon Root Lexicon Noun Lexicon Verb
Noun; cat N; walk V;
Verb; dog N; eat+Past:ate #;

duck N;
rat N;

Lexicon N Lexicon V
+Pl:s #; +Inf:0 #;
+Sg:0 #; +Past:ed #;

+Ger:ing #;

FIGURE 3.11. A continuation-class lexicon and the corresponding non-determinized, non-
minimized FSM.

97

Algorithm 3.11: ADDLEXENTRY

Input: Entry, Lexs, Lext
begin1

if entry = regex then2

Add transition Lexs
ε→ FSM(Entry)s0 (the initial state)3

Add transitions FSM(Entry)sF
ε→ Lext4

end5

if entry = string-pair then6

CurrState← Lexs7

i← 18

while i < |Entry| do9

if i < |Entry| − 1 then10

if exists transition δ(Currstate, wi, st) and st is not lexicon state then11

CurrentState← st12

else13

TargetState← NEWSTATE()14

add transition δ(CurrentState, wi,TargetState)15

end16

else17

add transition δ(CurrentState, wi,Lext)18

end19

i← i+ 120

end21

end22

end23

98

File lexical states lexical arcs #lex entries
(foma) (hfst-2.1) in total

English 1.780s 11.360s 146,539
Basque 13.790s 52.560s 93,932
Greenlandic 9.810s 174.66s 122,806
North Sami 1.720s 13.700s 105,503

TABLE 3.6. Comparison of two sublexicon compilation strategies.

tomata from lexicons (Daciuk et al., 1998), but such methods cannot accommodate specifi-

cations that include cyclic lexicons (such as in unlimited compounding), and other features

that are desirable from a natural language modeling point of view, and which are made

possible with the formalism at hand.

Also, the intermediate nondeterminism is not a general concern in practice: as table

3.6 shows, very large lexicons may be compiled quite comfortably with the method, even

though they need to be determinized and minimized after the initial construction steps.

Apart from our implementation, the table also contains a comparison with an alternative

construction method implemented in the hfst toolkit20 for such lexicons which is not based

on creating lexical states, but lexical transitions.

3.11.3. Efficiency concerns

A technique that may be useful to speed up compilation of lexicon compilation is to pre-

minimize parts of the resulting machine before determinizing and minimizing the entire

machine. This method consists of locating identical suffixes in the initially constructed

machine that target the same lexical states but where the transitions arrive from different

states, such as
20http://hfst.sourceforge.net

99

File w/ sublexicon no sublexicon #sublexicons
minimization minimization

English 1.780s 1.470s 29
Basque 13.790s 7.880s 421
Greenlandic 9.810s 18.880s 304
North Sami 1.720s 1.410s 870

TABLE 3.7. Effectiveness of sublexicon minimization.

Lex

...

...

a

a

Obviously, such state pairs can be collapsed into a single state. This collapsing of

states may proceed recursively from a lexicon state backwards until no collapsible states

are encountered.

The same case is seen in figure 3.11 with the two at-suffix paths arriving in lexical state

N: the four states in question are collapsible into two.

In general, the construction method may produce a large number of such collapsible

states. In order to perform such a pre-minimization quickly, the lexical states need to store

their string suffixes in a hash, or some such data structure, which can then be efficiently

consulted in such a minimization operation.

The effect of this pre-minimization is not always beneficial, however. Only with very

large lexicons where words in sublexicons share similar suffixes does the method seem to

pay off with respect to only determinizing and minimizing the resulting machine with stan-

dard techniques. Table 3.7 gives an indication of the type of gains that are to be expected:

negative gains with small lexicons that otherwise compile quickly, but quite substantial

gains with large cumbersome ones.

100

3.12. General efficiency concerns

Let us briefly return to more general concerns of efficiency that are not directly related

to the underlying algorithms, but to the way in which a complex transducer is built from

component machines. In many cases we have several different ways in which a equivalent

transducer can be built by ordering operations or replacing a set of operations with another

equivalent set. Subtle differences in one approach may often lead to significant efficiency

gains over some other seemingly equivalent method.

3.12.1. Coaccessibility

As product constructions (including composition) may create machines with a large num-

ber of non-coaccessible states, and as none of the other algorithms (determinization and

mininization) automatically remove these states, it is assumed that such an operation of

trimming is performed whenever results may be non-coaccessible.21 Trimming is a simple

algorithm that can be performed inO(|E|)-time by standard depth-first-search methods: we

employ a reverse depth-first search (DFS) on the graph that the machine represents, starting

from the set of final states, and remove any states not encountered along with transitions to

them.

3.12.2. Factoring expressions

Many times in the course of compilation of large batch of operations, achieving the desired

result hinges on the proper factorization of commutative and associative operations.

The classical case where factorization of subexpressions is important is the one where

we have three transducers/automata of different size R, S, T and want to perform a product

construction on them, say intersection, such as:

21Composition, in particular, tends to produce the maximum of |V1||V2| states as a result, but where only a
fraction of these states are coaccessible.

101

Rlarge ∩ Slarge ∩ Tsmall (3.27)

Here, the implied factorization to first intersect R and S could be extremely inefficient,

since the intermediate result which grows as the product |R||S| could be very large. Instead,

performing

(Rlarge ∩ Tsmall) ∩ Slarge (3.28)

is much more efficient in the general case, following the dictum that when constructing

complex machines, intermediate results should be kept as small as possible.

There are more subtle incarnations of this general observation. For instance, in mor-

phological applications, when dealing with a lexicon transducer (Lex) and a rule transducer

that itself consists of individual composed transducers (Rule1 . . . Rulen), such as

(Lex) ◦ (Rule1 ◦ Rule2 ◦ . . . ◦ Rulen) (3.29)

the above factorization is often very inefficient. Although it may seem more natural to first

construct the lexicon transducer and the composite rule transducer separately and subse-

quently composing the two, it is generally advisable to compose the lexicon against the

first rule, and then the second, etc.:

((((Lex) ◦ Rule1) ◦ Rule2) ◦ . . . ◦ Rulen) (3.30)

This phenomenon was first noted by Karttunen (1994) and the generalization of the

effect led to the operation called ‘intersecting composition’ by which two-level grammars

could be compiled more efficiently than previously.

An even more subtle illustration of the general issue is offered by time-saving refactor-

ings in composition of two large transducers. Suppose that we indeed have a large lexicon

transducer (Lex) and a composite rule transducer (Rules), and perform the composition of

the two as

102

Lex ◦ Rules (3.31)

Now, in many cases it is much more efficient to actually perform

Lex ◦ (range(Lex) ◦ Rules) (3.32)

which will evaluate to the same. We assume that the intermediate results, in particular

(range(Lex) ◦ Rules), are determinized and minimized and made trim. The difference be-

tween the two methods is that we first extract the range of the lexicon, yielding a transducer

of identity relations only, which we compose against the rules, which again is composed

with the Lexicon. The reason for this seemingly backward construction is that directly

composing the lexicon with the rule set creates many non-coaccessible states that need to

be pruned away. To avoid this and the waste of time and memory use it leads to, we ex-

tract the range of the lexicon first and compose it against the rules which produces far less

non-coaccessible states in the intermediate result.

Figure 3.12 illustrates this general effect of non-coaccessible state creation in regular

composition. In that figure, only one non-coaccessible state is created during regular com-

position. This number may of course be vastly greater for lexicons and rule sets that are

large, and in particular if the rule set transducer is dense.

Table 3.8 shows some timing results regarding compilation of actual lexica and rule sets

as transducers. As can be seen from the fact that one lexicon-rule compilation is produced

faster without the intermediate range extraction, the efficiency gains of the maneuver is

not always true, so a general recommendation of the procedure is unwarranted. However,

as can be seen from the other results, time savings with large transducers may be quite

dramatic in composition.

103

0

1 2

3

(3,1)

(1,1)

(0,0)

10

(0,0) (3,1)

FIGURE 3.12. The effect of pre-extracting the range of the first argument of composition.

Language Tl ◦ Tr Tl ◦ (range(Tl) ◦ Tr) |Tl| |Tr|

English 1.640s 2.680s 188,181 52,234
Basque 32.18s 10.880s 2,482,805 898
Greenlandic 126.05s 40.410s 154,826 12,474

TABLE 3.8. Comparison of composition with pre-extraction of non-coaccessible states and
regular composition.

104

3.12.3. Bypassing determinization in product constructions

In general, there is no particular reason why the input argument machines to the product

construction algorithm should be deterministic, other than that they may be minimized if

they are made deterministic. Obviously, they have to be at least ε-free since there is no way

in the product construction algorithm to represent the effect of being in multiple states in

one machine with the same input string (as there is in the subset construction algorithm).

This leaves open the possibility that one need only convert the arguments of any product

construction input to ε-free machines that are not fully determinized.22 The reason this

may be beneficial is that if only a fraction of the paths in either T1 or T2 surface as output

of the product construction, paying the cost of determinizing (and possibly minimizing)

each argument beforehand may be unnecessary. Of course the resulting output may be

nondeterministic, but this is the case also with the composition algorithm, even the input

arguments are deterministic.

Consider two transducers T1 and T2, and suppose T1 is nondeterministic in the DFA-

sense for some state and input symbol x:y, and that whenever x:y occurs in T1, there is no

corresponding y:z transition in T2 for any z ∈ Σ. Now, if we perform

T1 ◦ T2 (3.33)

obviously the x:y-transitions in T1 will be unused. Hence, it would have been unnecessary

to perform the subset construction on T1 before performing the composition. In fact, doing

so may have taken an exponential amount of time in relation to the size of T1, the result of

which would have been useless.

In this scenario, assessing or foreseeing the usefulness of bypassing determinization

is much more difficult. The benefits of determinizing and minimizing the arguments of

the product construction are sporadic, and it is not easy to predict for a particular pair of

machine if either way of proceeding is beneficial. However, there exist pathological cases

22This can be performed by the subset construction algorithm by only calculating the set ε-closure.

105

where avoiding determinization of the arguments is crucial to successful compilation of a

grammar, precisely because of the possibility of an intervening useless exponential-time

operation of subset construction.

3.13. Discussion

This chapter has presented an overview of the fundamental algorithms and finite-state oper-

ations necessary for the extensions that will be dealt with in subsequent chapters. With the

exception of methods for compiling phonological alternation rules into transducers (which

is postponed until chapter 8), the methods here are also sufficient in themselves for con-

structing morphological and phonological parsers in the classical mode of creating a lexi-

con which is composed against a set of phonological alternation rules.

A great deal of emphasis has been placed on efficient implementation of the low-level

operators used for constructing complex automata. In subsequent chapters we will maintain

some of this emphasis, but it is clear that the key to solving large scale problems lies in the

efficient construction of the primitive operations. Any neglect in this respect will propagate

to the higher-level abstractions immediately. As we discuss more abstract operations later,

the fundamental efficiency concern will shift from focus on data structures and details of

algorithms to the avoidance of unnecessary non-determinism in the intermediate machines

which could result in potentially exponential construction times.

106

Part II EXTENSIONS AND LIMITATIONS OF TRANSDUCER
MODELS

107

4. REDUPLICATION AND FINITE-STATE SYSTEMS

4.1. Introduction

In this chapter we will consider an approach to including reduplication-like phenomena into

the standard composition model in finite-state morphological and phonological grammar

development. The primary problem of modeling reduplication in a finite-state system is that

doing so indirectly requires a finite-state model of producing, recognizing, or generating

identical copies of strings. In its most general and simple form this would require that one

could, given a wordw drawn from some set S, also recognize words of the formww as well

(and exclude words of the form vw where |v| = |w| but v 6= w). Now, if S is not a finite set,

this circumstance is inexpressible as part of a regular language or regular relation. More

formally, it can be easily shown that the copy language {ww | w ∈ A∗} over an alphabet

A with two or more symbols is not a regular language.

The best we can hope for, then, is a finite-state model that can handle cases where

copying, or partial copying, occurs in relation to a finite set. Even so, it is a non-trivial task

to choose and implement a formalism by which one can construct automata and transducers

that encode copying and partial copying and which at the same time fits in naturally with

the surrounding framework that models phonology and morphology.

This chapter will address this question in the following manner. First, in section 4.2 we

shall briefly survey the different types of reduplication found across languages to give an

overview of the phenomena that need to be handled by any formalism that proposes to pro-

vide the tools for reduplication. In section 4.3 we will discuss various approaches found in

the literature to finite-state treatment of the problem. In sections 4.4 and 4.5 we develop a

method for incorporating and defining a new operator, EQ(), into the finite-state calculus.

This operator allows us to assert that certain types of substrings be equal in content and will

be our primary tool for handling reduplication. Section 4.6 then provides some examples

108

and grammar snippets of how to employ the EQ() operator to capture the variety of redu-

plication types attested cross-linguistically. Additional applications not directly related to

reduplication, such as backreferencing and segment copying where the EQ()-operator can

be profitably put to use, are discussed in section 4.7. Section 4.8 will present the actual

algorithm by which EQ is implemented. In that section we also pursue a more formal

analysis of its behavior and some decision properties related to its implementation.

4.2. Reduplication cross-linguistically

The classical case of reduplication in morphology and phonology is the phenomenon of

complete reduplication—a perennial example is that of Bahasa Indonesia (4.1) or Axin-

inca Campa (4.2), where (typically) pluralization is expressed through reduplication of a

complete word:

Base Form Reduplication Gloss
buku buku-buku ‘book’ Pl.
orang orang-orang ‘man’ Pl. (people)

(MacDonald and Darjowidjojo, 2001)

(4.1)

Base Form Reduplication Gloss
kawosi kawosi-kawosi ‘bathe’

(Payne, 1981)
(4.2)

This is a very important type of reduplication, since it appears more or less in every

language (Moravcsik, 1978), although not always with an explicit grammatical function as

pluralization.1

Another often-occurring pattern is the phenomenon where a limited amount of material

is copied from a stem that may be longer than the reduplicant (Uw Oykangand):

1English, for instance, apart from the well known shm-reduplication (as in linguistics-shminguistics),
seems to employ the device of total reduplication as a “contrastive focus” method: “I had a JOB-job once.
[as opposed to an academic job].” Corpus studies have revealed that this occurs more often than one would
expect: see Ghomeshi et al. (2004) for examples like this.

109

Base Form Reduplication Gloss
elbmben elbmbelbmben ‘red’
algal algalgal ‘straight’

(Sommer, 1981)

(4.3)

A special type of this is the case where only a part is reduplicated, with intervening

material (Madurese):

Base Form Reduplication Gloss
garadus dusgaradus ‘fast and sloppy’
abit bitabit ‘finally’

(Stevens, 1968)
(4.4)

A similar example comes from Warlpiri where a limited amount of material, a ‘prosodic

skeleton’ from the stem, is prefixed before the stem:

Base Form Reduplication Gloss
pangurnu pangu-pangurnu dig/PAST
tiirlparnkaja tii-tiirlparnkaja split-run/PAST
wantimi wanti-wantimi fall/NonPast

(Nash, 1980; Sproat, 1992)

(4.5)

Also, reduplication may not always result in identical material—phonological changes

may occur that result in that two (or more) sequences are similar, yet not identical, as in

this example from Javanese:

Base Form Reduplication Gloss
bali bola-bali ‘return’
iba iba-ibu ‘mother’
udan udan-udEn ‘rain’

(Kiparsky, 1986; Sproat, 1992)

(4.6)

The more challenging patterns occur when we find dependencies that cross and produce

multiple different partial copies of the base and of affixes. We can find examples of this in

the Salishan language Coeur d’Alene:

110

Base Form Reduplication Gloss
En’is E’En’En’is ‘little ones went off one by one’
caq caqcaqaqElip@p ‘he fell on his back’

(Reichard, 1938)

(4.7)

4.3. Previous work

Approaches to incorporating reduplication-like phenomena in finite-state systems com-

monly fall into two categories: those that are purely finite-state, i.e. encode all reduplication

effects in a standard automaton, and those that augment the standard finite-state model in

some way.

Proposals of the latter type are more common. Walther (2000) proposes a system where

the transition function of a finite-state automaton is augmented with certain specific types of

arcs that signal repetitions of previous subsequences in a string. This is a model that can be

used as a ‘run-time’ solution for identifying duplicate sequences. Cohen-Sygal and Wintner

(2006) develop an augmented model they call finite-state registered automata, also a ‘run-

time’ approach, where arcs in an automaton can cause register read-write operations as

well as checking the contents of stored registers. The idea is that, as a word is applied to an

automaton, the run-time code stores a representation of prefixes seen in the finite registers,

and at some subsequent arc traversal—presumably when a second copy of a subword is

encountered—checks that the registers match the second copy.2

Naturally, any augmented finite-state models run the risk of not enjoying the attrac-

tive closure properties that finite-state automata and transducers do. In particular, the

availability of the composition operation, the one feature that makes it possible to build

a bidirectional model of morphophonology by a unidirectional description, is easily lost.

It is fairly straightforward to augment a finite automaton with some type of memory that

records subsequences encountered and checks the equality between other subsequences,

2The fundamental idea in these approaches bear strong similarities to the work of Woods (1970) on recur-
sive transition networks.

111

but such augmented models do not share the operational properties of finite-state automata

and transducers in general. Cohen-Sygal and Wintner (2006) assure that the formal power

of their augmented automata is equal to the formal power of finite automata by limiting

the number of registers and the size of their contents.3 Hence, such augmented automata

can be converted into regular finite automata, although it is unclear how this is actually

done. However, this means that in such a model one must apparently declare beforehand a

maximum word length that one can recognize as reduplicated.

Also, while the simple full reduplication phenomena may be modeled by such means,

more complex cases such as partial reduplication and interaction with the rest of the phonol-

ogy can be difficult. The reason for this is fairly straightforward: even though a formalism

allows one to check the equality of substrings, or to copy substrings, in many reduplication

phenomena we find that one of the reduplicants is subtly different from the other one due

to interaction with the rest of the grammar.

Of the other type of an approach, where one attempts to include reduplication in the

usual automaton model without modification, Beesley and Karttunen (2000, 2003) develop

a system based on recursive compilation of regular expressions which they call ‘compile-

replace.’ The core idea is to build finite-state automata that contain both strings (as normal)

and regular expressions. These regular expressions are then extracted from the automata

and compiled in place, and their result is inserted back into the position the regular ex-

pression held in the automaton. Thus, one can compile an automaton that describes a

finite set of words W , where each word is followed by the string ˆ2, the latter string being

a regular expression operator that denotes n-ary, or, in this case 2-ary, concatenation. If

‘compile-replace’ is run on this automaton, one can produce all words ww in the original

automaton. That is, if one has a languageW , represented as an automaton, consisting of the

strings {catˆ2, dogˆ2}, compile-replace will produce another automaton W ′ that consists

3This is very similar to the approach of approximating context-free grammars by simulating a pushdown
automaton with a fixed-size stack, where the finite size of the stack guarantees regularity.

112

of {catcat,dogdog}. The set of words in W must of course be finite for compile-replace to

be able to construct a finite-state machine out of the expression.

There are many subtleties involved in compile-replace and the formalism has surpris-

ing expressive power for some applications, to all of which we cannot be do justice here.

However, compile-replace is also quite a demanding and complex tool to handle for the

designer of a finite-state grammar. Further, as we shall discuss below, it is not immediately

obvious how to handle either partial reduplication or cases where copies of reduplicants are

not directly adjacent or undergo phonological changes subsequently.

Finally, it is not universally agreed either from a computational or linguistic view that

reduplication should be included at all in (computational) morphology. Roark and Sproat

(2007), citing arguments from theoretical linguistics due to Inkelas and Zoll (2005), con-

clude that perhaps reduplication is not part of phonology and morphology at all, and so does

not pose a problem to implementations of finite-state systems that handle word formation.

4.4. Reduplication in finite-state systems

Unfortunately, the computational problem of parsing and generating words that feature

duplicated elements does not vanish by decreeing reduplication not a part of morphology

or phonology proper. It remains the case that one would like to parse and generate all word-

forms and continue to have an efficient general model that maps morphological descriptions

to their word realizations and vice versa.

Bambara-like reduplication where entire surface forms of words appear as doubled is

less problematic and there is no compelling reason to include its treatment within a finite-

state system of morphology. It is simple to bypass the entire problem by modifying an

otherwise complete finite-state morphological system both in the direction of generation

and parsing to handle this kind of phenomenon. For example, one could simply add to

the grammar a marker symbol that is understood to match some previous subword in a

complex construction. So, the example given in Culy (1985), ‘wulunyinina o wulunyinina’

113

would be generated as ‘[xwulu]x[ynyinina]y o XY’. When generating such forms, one could

then, as a last step not performed by transducer, replace the relevant variables with a copy

of the marked regions. Likewise, one could do something similar for parsing, the problem

of identifying repeated sequences contained in a string such as ‘wulunyinina o wulunyin-

ina’ being computationally straightforward. As a preprocessing step before any finite-state

processing in the direction of parsing, one could simply identify doubled sequences and

map them to variables as in the above, after which one could leave the rest of the task to

the finite-state system. In effect, we could map arbitrary-length words such as ‘wulunyin-

ina o wulunyinina’ into ‘[xwulu]x[ynyinina]y o XY’ before handing over the parsing to the

finite-state transducer system. Such an approach would completely separate the finite-state

parts of the system and the reduplication-handling parts and, from a practical point of view,

may be a reasonable candidate as an approach to handling full reduplication in a finite-state

system.

A much more interesting and problematic case of reduplication, and one that perhaps

presents an argument for retaining at least some reduplication processing within the finite-

state grammar, occurs when reduplicated sequences are not exactly identical in content.

The habitual-repetitive reduplication in Javanese seen in (4.6) is of this kind. The suggested

strategy of externalizing the reduplication in cases where the base form bali is reduplicated

to produce bola-bali, for example, would not be as straightforward. In such examples, the

copies are of course not identical, and have undergone phonological changes which may be

quite complex in nature. If we were to externalize the reduplication handling in any way,

the phonological processes that operate on reduplicated word forms would also have to be

externalized since the task of identifying reduplicants is no longer merely about identify-

ing identical sequences of sounds or symbols. Many of these phonological processes that

contribute to producing non-identical reduplicants are of course active also in the language

in general and not only in non-reduplicated forms, and so one would be forced to duplicate

at least some of the phonology in this hypothetical reduplication-identifying system. Now

114

the simple task of identifying two subwords whose underlying forms may be the same is

just as complex a task as parsing any other phonological word.

If we choose to include bounded reduplication in a finite-state grammar, there are po-

tentially two problems involved. The first is largely an empirical one. Given that we accept

some redundancy in the finite-state devices that model a reduplicating morphology and

phonology, there will naturally be some growth in the state complexity of the system. How

large will this growth be?

The second question concerns the descriptive device we want to use to model the redu-

plication: how do we express the idea that some bounded subwords in a regular language

be equal in content and compile this into an automaton or transducer? This is obviously

something that the standard battery of regular expressions and automata algorithms is not

equipped to handle since the output of such a constraint may be non-regular. Also, this

descriptive device should be flexible enough to capture most types of bounded redupli-

cation found in natural language without undue complexity in the grammar. To illustrate

this point, let us assume, for example, that we had access to a regular expression operator

Copy(L), which, given a finite language L would yield L′ such that all words in L′ = ww if

and only if w is a word in L. Clearly, such an operator would allow for modeling of simple

cases such as full reduplication when bounded against a lexicon. But it would not elegantly

handle some of the more complex cases already discussed such as partial prosodically gov-

erned reduplication in Warlpiri, or the case where phonological material intervenes between

the reduplicants, found in Madurese.

4.5. Equality of substrings: the EQ operator

Instead of modeling reduplication by way of string copying, we shall here develop an alter-

ative tool: as the central device to model the types of phenomena already illustrated, a new

regular expression operator EQ() is introduced. First, we shall define its operation and

illustrate how it can be used in conjunction with composition to yield finite-state grammars

115

that include reduplication. Later, in section 4.8, we shall show how such an operator is

implemented in detail.

The operator EQ takes as its input three arguments, τ , L, and R; τ being an arbi-

trary regular relation (a finite-state transducer), and L andR regular languages (finite-state

automata). The operation

EQ(τ,L,R) (4.8)

extracts from τ only those relations where any strings in the range (output) of τ which

are surrounded by words from L and R are identical. That is, for all strings in range(τ),

lw1r . . . lwnr, if l ∈ L and r ∈ R, w1 = . . . = wn.

We have defined the operator in such a way that L and R can be arbitrary regular

languages. For our purposes, it will suffice to limit ourselves to the case where they are

single symbols: a left and right delimiter. The idea is then to express the constraint that

whenever there are several substrings delimited by the left and right delimiters, all of them

have to be identical in content.

For example, let τ be the infinite regular language la∗b∗rl(a ∪ b)r (or identity transdu-

cer). Then EQ(τ, l, r) consists of the two strings larlar and lbrlbr since all other strings

in τ contain unequal content between instances of l and r.

We also consider an expression EQ(τ,L,R) to be well-defined if and only if there is

no nesting or overlap of L andR. For example, EQ(lalarr, l, r) is not well-defined.

4.6. Examples of EQ

Let us now turn to actual examples of how to fit the EQ-operator into finite-state mor-

phological grammars that employ the standard composition-model of word-formation. The

key to the process is that since EQ operates on transducers, we can enforce equality of

delimited substrings at an arbitrary point of our choosing in the derivation of the surface

form of a word.

116

FIGURE 4.1. Illustration of applying EQ in the middle of a chain of compositions.

4.6.1. Notation

In what follows, we shall assume more or less the usual finite-state grammar model based

composition as seen in figure 4.1, augmented with the EQ operation, which, since it is a

function that takes as its primary input a transducer, and returns a transducer, can be thought

of as part of a chain of compositions. In a sequence of compositions such as:

α ◦ β ◦ γ (4.9)

if we intend an EQ() operation apply ‘after’ β (to the output of β and serve as the input to

γ), it must be denoted:

EQ(α ◦ β,L,R) ◦ γ (4.10)

for some delimiters L and R. Figure 4.1 illustrates this for the formula (4.10) where the

left and right delimiters are assumed to be < and >, respectively.

4.6.2. Total reduplication

Let us now illustrate how to use the EQ-operator in actual grammars.

We begin with the simple case of total reduplication using Bahasa Indonesia as an ex-

ample, although the below description will apply to any instance of repetition compound-

117

ing. An otherwise complete grammar would likely include (perhaps with more elaborated

morphological tags than here) a lexicon of nouns. Presumably there would also be a tag on

the lexical side expressing this fact. In effect, the job of the grammar would be to perform

mappings such as:

orang +Noun +Sg ↔ orang (4.11)

But we would also like to include the mapping:

orang +Noun +Pl ↔ orang-orang (4.12)

without separately listing the reduplicated variant as a lexical entry. One way to produce

such a grammar in a serial, composition-oriented way, would be to start with a lexicon

which would include single nouns. From this lexicon, we can produce an augmented lexi-

con that includes noun + noun combinations, where each noun would be surrounded with

delimiting brackets. This noun + noun combination would be produced from the original

single-entry lexicon by the composition of the lexical transducer with a simple transducer

that inserts a member of the lexicon following the original member. Naturally, at this stage,

the two nouns in the noun + noun combination could be unequal. At this point, one would

apply EQ to the lexicon and remove the auxiliary brackets. In effect, we would have:

Ln = orang . . .
τlexicon = (Ln+Noun +Sg) ∪ ([ε:<]Ln[ε:>][ε:<][ε:Ln][ε:>]+Noun +Pl)
τremovediacritics = (< ∪ > ∪+Noun ∪ +Sg ∪ +Pl)→ ε

(4.13)

and the entire process could be represented as:

EQ(τlexicon, <,>) ◦ τremovediacritics (4.14)

Illustrated serially, in (4.14) we would have intermediate representations such as:

118

1. orang +Noun +Pl input side of τlexicon
2. orang<X> +Noun +Pl output side of τlexicon, X = any noun
3. orang<orang> +Noun +Pl after EQ
4. orangorang after τremovediacritics

(4.15)

In step 2, which represents the output side of τlexicon, we have any (possibly unequal)

noun-noun combination, the non-matching ones being later filtered out by EQ. In practice

it is more efficient for compilation not to restrict the second copy to just the nouns, but to

any sequence of symbols not containing the markers < or >, i.e. (Σ− < − >)∗. The

subsequent equality operator will of course filter out non-identical sequences.

4.6.3. Partial reduplication

4.6.3.1. Copying prosodically specified templates

Turning to a more complex example, let us see how patterns in the partial reduplication in

Warlpiri can be modeled by applying EQ in an appropriate way.

In the Warlpiri examples above in (4.5), the copied material consists of a skeleton

CV (C)(C)V pattern, the Cs in parentheses being optional. For a given base, we should

therefore also allow a prefixed copy of the skeleton part of the base. Since reduplication in

Warlpiri signals a number of different grammatical distinctions, we shall not be concerned

with the specific tags that might be used in conjunction with reduplication, but restrict our-

selves to the mechanism by which, given a base word w in a lexicon we can automatically

produce pw where p matches w in the initial CV (C)(C)V pattern.

This can be done in two steps: first we create a transducer τmarkp that surrounds the

relevant part—CV (C)(C)V—of the base word with auxiliary brackets, <, and >, which

we the compose with another transducer τinsertp which optionally prefixes a < X > se-

quence, where X is any word over the alphabet except those that contain < or >. Clearly,

these transducers can be created through standard techniques to construct transducers that

119

encode rewrite rules. After composing the lexicon with the transducers specified above, we

apply EQ. In other words:

EQ(τlexicon ◦ τmarkp ◦ τinsertp, <,>) (4.16)

producing sequences such as:

1. tiirlparnkaja output side of τlexicon
2. <tii>rlparnkaja after τmarkp
3. <X><tii>rlparnkaja after τinsertp, X = any sequence
4. <tii><tii>rlparnkaja after EQ

(4.17)

4.6.3.2. Copying in conjunction with phonological change

A similar strategy can be used to capture the examples concerning habitual-repetitive redu-

plication in Javanese in (4.6), encoding the crucial fact that both copies may undergo

phonological change after the reduplication has occurred.

A generalization that captures the fragment of the data on page 109 is that the last vowel

in the left copy of the final syllable must be a, and so is changed into an a. Further, if the

first vowel of the stem was already a, that vowel is raised, i.e. a→ o, and E→ e. Here,

using EQ together with composition, the approach is to first copy the stem and surround

the copy with the brackets < and >, then apply EQ, and compose this with a transducer

representing the vowel changing rule. In actuality, we of course do not copy the stem, but

rather optionally prefix the lexical items with the sequence < X > where X is any word

over the alphabet, except those containing the symbols < or >. Call the transducer that

performs this τhabrep. The subsequent vowel changes can be modeled by some transducer

τvowelmelody.

That is, the entire habitual-repetitive operation can be described as follows, using the

stem adus as an example:

EQ(τlexicon ◦ τhabrep, <,>) ◦ τvowelmelody (4.18)

120

1. adus +HabRep output side of τlexicon
2. <X><adus> +HabRep after τhabrep
3. <adus><adus> +HabRep after EQ
4. <odas><adus> +HabRep after τvowelmelody

(4.19)

4.6.3.3. Copying and overapplication of phonological generalizations

Another, perhaps linguistically more interesting example is that modeling the reduplication

in Malay in combination with a certain type of nasal harmony. There is a general phonolog-

ical regularity at work in Malay whereby oral and nasal semivowels or vowels harmonize

rightward in words. That is, vowels that follow a nasal consonant are all nasalized, as can

be seen in the words ham@̃, waÑI, aNãn, and aNẽn. However, when reduplicated, all vow-

els become nasal, i.e. the above stems become hãm@̃-hãm@̃, wãÑI-w̃ãÑI, ãNãn-ãNãn,

and ãNẽn-ãNẽn respectively. This is sometimes called ‘overapplication’ in the phono-

logical literature (Wilbur, 1973; Marantz, 1982). The reason is fairly obvious: the nasal

spreading—an independent phenomenon that usually only works in left-to-right fashion—

seems to apply in an environment where it is not warranted, i.e. the left copy of reduplicated

words.

There are two obvious strategies available to handle this in a finite-state grammar using

EQ. The first is to simply model one rewrite rule that changes vowels that follow nasal

consonants into their nasal counterparts, and to have a separate rule that applies to redupli-

cated forms only, that changes all vowels into nasal vowels in the presence of a single nasal

consonant in the entire word. Clearly, this would capture the data and the generalization

at work. However, a more intriguing possibility, and one that relies on a single generaliza-

tion of the left-to-right harmony is to have EQ apply, not directly after the reduplication

segments have been marked, but only after the rightward harmony has been applied. Such

an approach requires no special phonology that only applies to reduplicated forms and

captures the ‘overapplication’ of the harmony rule easily.

Assume we have a transducer τnasalharmony that changes vowels into nasal vowel when-

121

ever a nasal consonant occurs earlier in the word. And similarly to the previous exam-

ples, assume also we have another transducer τred which handles the optional prefixing

of a < X > sequence and surrounding the base with < and > markers that handles the

reduplication in conjunction with EQ. Now, the following sequence of applying EQ and

composition of the nasal harmony transducers will yield the desired result:

EQ(τlexicon ◦ τred ◦ τnasalharmony, <,>) (4.20)

The logic of having EQ apply after nasal harmony is seen in the following sketch of

one of the possible intermediate stages of the reduplication of ham@̃:

1. ham@ output side of τlexicon
2. <hãm@̃><ham@> after τred
3. <hãm@̃><hãm@̃> after τnasalharmony
4. <hãm@̃><hãm@̃> after EQ

(4.21)

Note that if we break the chain of composition down like this into imaginary intermedi-

ate forms, that after τred (step 2), the lower-side language will contain an infinite number of

possible words as the left reduplicant. In the above, we have illustrated one of the two pos-

sibilities that will yield a valid form in combination with ham@ as the base. The other one is

hãm@: both of these will produce the same form in step 4 which is not filtered out by EQ.

An output such as <ham@><ham@> from τred will not produce any forms at all after EQ

applies, because after τnasalharmony has applied the form changes into <ham@̃><hãm@̃>,

which will not ‘survive’ EQ.4

4The fact that we can through string rewriting and the EQ operation model this phenomenon may be of
more theoretical interest as well. The example from Malay is often used as a linchpin in arguments for or
against some theory of phonology. For instance, Kager (1999) and others have concluded that modeling the
Malay phenomenon with linearly ordered rewrite rules empowered with an additional ‘copying’ mechanism
would require the copy mechanism to apply twice (which is deemed inelegant): once to produce the copy, and
once again after the nasal harmony rule has applied. As seen in the above, if we forgo a ‘copying’ rule and
instead rely on a combination of an equivalence constraint such as EQ and some epenthetic segments (the
markers), no copying needs to occur twice. Similar arguments are presented for Paamese in Russell (1997):
“The classical approach to phonology and morphology does not have any elegant and convincing way of
doing this. The difficulty here is caused by the theory’s requirement that the copying operation be performed
at a particular point in the derivation, either before or after the phonological rules.” (p. 110). The examples
alluded to in the above are also solvable with a single application of EQ at one point in the ‘derivation.’

122

Of course, from the point of view of merely having to construct a transducer which

models the phenomenon, it does not really matter which method one chooses. The latter

may be more elegant from a phonological perspective as we retain nasal harmony as an

independent process and the quirks of nasalization in reduplicated forms fall out of the

interaction between EQ and the nasal rightward spreading—without having to postulate

that nasal harmony ‘overapplies’ in a certain environment.

4.6.3.4. Disjoint copies and dependencies

There is naturally no restriction that the parts of a string to be asserted equal in content

with EQ be contiguous. In the Madurese reduplication examples (4.4) the final CV (C)

of a stem is prefixed to itself (Stevens, 1985). Using similar rules as in the above, we can

model this by composing a set of rules that insert any CV (C) combination to the stem,

surrounded by delimiters, and mark the final CV (C) of the stem with delimiters also (call

this transducer τred) after which EQ applies, yielding sequences such as:

1. garadus output side of τlexicon
2. <X>gara<dus> after τred, X = any CV(C)
3. <dus>gara<dus> after EQ

(4.22)

It should be noted that Madurese exhibits a very similar interaction between nasal and

oral vowels as the Malay (Stevens, 1985). The above example does not illustrate this, but

cases where this ‘phonological overapplication’ comes into play can be handled exactly as

in the Malay example.

4.6.3.5. Multiple copies and cross-linked dependencies

Even more complicated patterns can be captured with the EQ operation. The crossing

partial reduplications of Coeur d’Alene as reported by Reichard (1938) may require that

we employ several different delimiters, resorting to EQ on multiple occasions. Consider

the form where the base caq and the morpheme ip are reduplicated multiple times to yield

123

caqcaqaqElip@p. Such exotic examples are clearly far more complex than the previous

ones presented. Here, the morphemes caq and ip occur both as reduplicated, with the

entire syllable of the first one copied once, and the second time lacking an onset. Without

going into a detailed analysis (as the exact grammatical functions remain unclear in the

Coeur d’Alene documentation), it can be gleaned that the separated dependencies can be

divided into:

<c[aq]><c[aq]>[aq]El(ip)(@p) (4.23)

That is, if the Coeur d’Alene examples present productive processes, in modeling them

we may need to employ several instances of EQ to yield the correct form: once for the

bases, such as caq and once for its onsetless copy, and once for the morpheme of the type

ip. Note the actual realization of ip is @p, i.e. a separate phonological rule will apply

subsequent to the instance where EQ pertains to the (and) delimiters.

4.7. Additional applications

The potential applications of the EQ() operation are not restricted to modeling reduplica-

tion. There exist a number of uses for such an addition to the existing regular operations,

of which we shall briefly discuss two cases: string rewriting rules that copy individual seg-

ments and a straightforward generalization of this that allows us to include backreferencing

in string rewriting rules.

4.7.1. Segment copying

With the formalisms for string rewriting through finite-state transducers (see chapter 8), it

is difficult to express the notion of single segment copying—a circumstance often found in

models of phonology and morphology. Suppose, for instance, that we wanted to double a

consonant in some environment, it would be difficult to express in a simple way through

124

direct application of the rewrite formalisms developed in chapter 8. A simple solution,

through inelegant, is to employ a set of rules, such as:

b→ bb, c→ cc, d→ dd, . . . (4.24)

With the EQ()-operator, such a batch of rules can be expressed much more concisely

by inserting any arbitrary segment in the desired location, and also inserting appropriate

delimiters to mark which segments need to be identical, and subsequently applying EQ.

For example:

EQ(C →< . . . >< C >,<,>) ◦ (< ∪ >)→ ε (4.25)

where C represents the set of consonants, will perform the task in (4.24), although with a

much more compact statement.

4.7.2. Backreferencing in regular expressions

The same approach that is used in the above to perform segment copying can be generalized

to produce a form of backreferencing in regular expressions. The regular expressions used

in many practical applications and programming languages (Perl, Python, Emacs, Ruby,

flex, etc.) are often augmented with a backreference operator, where in a regular expression,

one can refer to something that has occurred earlier in a string, not entirely unlike the logic

of EQ(). By including such subexpressions, one can easily a describe a class of languages

that are no longer regular, and thus not compilable into automata. For example, the simple

non-regular (and non-context-free) ‘copy’ language L = {ww | w ∈ {a, b}∗} is captured

by the backreferencing Perl regular expression (a | b) ∗ \1.5 Our intent here is of course

not to venture beyond the domain of the regular languages since by doing so we would

5For an interesting analysis of the formal power of these extended regular expressions found in various
programming languages, the reader is directed to Câmpeanu et al. (2003).

125

sacrifice the closure properties we enjoy when staying within the class of regular languages

and relations.

But backreferencing, like string equality, is of course regular when applied to a finite

set of strings, or strings of finite length. The strategy we used in (4.25) to achieve single-

symbol copying can be generalized in a number of ways to yield limited backreferencing,

or backreferencing-empowered string rewriting rules.

A simple example is the above copy language in L = {ww | w ∈ {a, b}∗}, which of

course can only be approximated for strings of some length ≤ k, as follows:

EQ(< (a ∪ b)≤k >< (a ∪ b)∗ >,<,>) (4.26)

Naturally, in the above EQ()-statement we have needed to use the usual set of delimit-

ing brackets to provide the EQ algorithm with an anchor for the substrings whose equality

we want to enforce. This means that the resulting language will also contain the delimiters.

But these can be removed through a simple string homomorphism (or string rewriting) to

provide the desired result:

h{<,>}→ε
(
EQ(< (a ∪ b)≤k >< (a ∪ b)∗ >,<,>)

)
(4.27)

Generalizing this idea, it’s possible to build this extension into a regular expression

formalism itself. By first declaring a set of special symbols {<1, >1, . . . , <n, >n} /∈ Σ we

can obviously compile a standard regular expression R containing such symbols using the

expression:

R′ = h{<1,>1,...,<n,>n}→ε
(
EQ(. . . EQ(R,<1, >n) . . . , <n, >n)

)
(4.28)

with the natural caveat that the results be regular, i.e. that for all subexpressions delimited

by some <i, . . . , >i, if there are more than two of them, their intersection be finite.6

6Conditions on when an EQ()-expressions is possible to represent as a finite-state automaton are dis-
cussed below in section 4.8.2.3.

126

<:b

@ b a

<:a

@ b a

<:b

<:a
a:<

@ b a

b:<

s3

s2

s1

s0

s4

FIGURE 4.2. Example transducer τmove created by Algorithm EQ at lines 10–12 over the
alphabet {a, b}.

Assuming such a set of special symbols were made available, one could then model the

copy language over {a, b}∗ for finite-length strings directly by the expression:

<1 (a ∪ b)≤k >1<1 Σ∗ >1 (4.29)

4.8. The EQ algorithm

Let us now turn to the actual algorithm by which transducers that encode a constraint EQ()

are built. The approach taken here is to build a set of intermediate transducers from the

input arguments τ , L, and R which through a series of compositions yield the desired

transducer τ ′. It should be noted that the input transducer τ may be a regular language T

and not necessarily a relation, in which case it is considered the identity relation Id(T) and

the output τ ′ will also be a language instead of a relation.

4.8.1. Overview

The fundamental idea behind the algorithm is to iteratively refine the original transducer

τ in such a way that words occurring in the output of τ between instances of L and R

127

Algorithm 4.1: EQ(τ ,L,R)
Input: τ , L,R
Output: τ ′
begin1

τbracketed = τ ◦ (¬(Σ∗(L ∪R)Σ∗)(L [ε:<] ∪ [ε:>]R))∗¬(Σ∗(L ∪R)Σ∗)2

Lnobr = ¬(Σ∗(< ∪ >)Σ∗)3

Lbrf = Lnobr < Lnobr > Lnobr (< Lnobr > Lnobr)
+4

τremovebr = (Lnobr ∪ [< :ε] ∪ [> :ε])∗5

τeq = τbracketed ◦ Lbrf6

τbypass = τbracketed ◦ ¬(Lbrf) ◦ τremovebr7

τnonb = τeq ◦ ([(Σ− <):ε]∗[< :ε](Σ− >)∗[> :ε])∗[(Σ− <) : ε]∗8

τmove = ∅9

foreach symbol α occurring in (τnonb)2 do10

τmove = τmove ∪ ((Σ− <)∗[< :α][α:<])∗(Σ− <)∗11

end12

τcheck = (Σ− <)∗([< :ε][> :ε](Σ− <)∗)∗ ∪ ¬(Σ∗ < > Σ∗)13

while TRUE do14

τeq = τeq ◦ τcheck15

if the symbol < does not occur in (τeq)2 then16

break17

end18

τeq = τeq ◦ τmove19

end20

τ ′ = τ ◦ τeq ∪ τbypass21

end22

128

are identical. To accomplish this, we first split the original transducer τ into two disjoint

parts: τeq and τbypass. The transducer τbypass contains all such words we can disregard

in the algorithm; words that have improperly nested instances of L and R, or words that

have less than two instances of L and R. Obviously, if there is only one instance of the

delimiting languages, we need not assure that any content between instances be equal.

Now, having divided the original transducer τ into τeq and τbypass we proceed to refine τeq

until all possible words occurring between L and R are identical in content. The resulting

transducer τ ′ is obtained by composing τ with the union of the ranges of τbypass and τeq.

In the preparatory operations of the algorithm, lines 2–7 capture the method of splitting

τ into τeq and τbypass. This is done by first inserting two auxiliary bracket symbols,< and>

between every occurrence of L and R in τ on line 2. Line 6 separates from τ the properly

bracketed sequences defined on lines 3 and 4. Line 7 creates the τbypass transducer in a

similar way, and also removes the auxiliary symbols from it.

Lines 9–12 construct an auxiliary transducer τmove, which operates as follows: for ev-

ery symbol α occurring between bracketed sections in the output of τeq, the two-symbol

sequence < α is replaced with α <. The transducer τmove also rejects all strings where

there exists a sequence < α1 . . . < α2, if α1 6= α2.

Lines 14–20 iteratively compose τeq with τmove until no brackets remain in the output of

τeq. Between every composition of τeq with τmove, any sequences consisting of a single pair

of brackets < > are removed. Also, any strings containing both a single pair of brackets

< > and any non-empty bracketed sequence < X > are removed. The latter operation is

accomplished by a composition of τeq with the τcheck transducer defined on line 13.

To illustrate a run through the algorithm, consider a transducer τ that consists of two

strings mapped to themselves, laarlabr and labrlabr, and let L = l and R = r. Clearly,

now, EQ(τ,L,R) should yield the single string labrlabr, since the other string contains

non-identical material between occurrences of l and r.

Now, τeq as constructed between lines 2–7 consists of the two bracketed strings

129

l < aa > rl < ab > r

and

l < ab > rl < ab > r

The transducer τmove needed for the iterative refinement of τeq is constructed for the

alphabet {a, b} on lines 9–12 and is seen in figure 4.2. Note that we need not include

symbols l and r in the construction of τmove since these are never found inside properly

bracketed strings.

The first composition of τeq with τmove on line 19 changes the output of τeq to the two

strings la<a>rlar and larlar, i.e. moves our auxiliary bracket one symbol

to the right. Now, the second time the composition is done, only the string lab<>rlab<>r

remains, since the transducer τmove does not accept as input the string la<a>rlar.

After the second application, the composition with τcheck on line 15 removes the brackets

from the string lab<>rlab<>r, and the loop terminates at the check on line 16 since no

brackets remain in the output of τeq, which consists of the single string labrlabr.

4.8.2. Analysis

4.8.2.1. Termination

Obviously, since the algorithm performs one iteration (movement to the right) for every

symbol inside bracketed sequences in lines 14–20, it terminates if τ only contains finitely

long strings between all occurrences of L and R. It does not, however, terminate if τ

contains infinitely long strings that agree in their prefixes between occurrences of L andR.

For example, a simple expression such as:

EQ(la∗rla∗r, l, r) (4.30)

130

will fail to terminate. It should evaluate to the set lrlr, larlar, laarlaar, . . . , i.e. , lanrlanr

which is not a regular language. However, it is not the case that EQ terminates for all

regular languages and relations, either. Indeed, if the algorithm terminates, the language or

relation EQ(τ,L,R) is regular, but the converse need not be true. The expression

EQ(la∗brla∗cr, l, r) (4.31)

should evaluate to ∅, but the algorithm does not terminate because of the potentially infinite-

length prefix a∗ for which both delimited substrings are identical.

However, there are cases where even if we have a potentially infinite number of brack-

eted sequences consisting of infinitely long strings, so long as the length of potentially

identical substrings is finite, the algorithm terminates. For example, EQ terminates for the

expression:

EQ((la∗brlab∗r)∗, l, r) (4.32)

and yields the language (labrlabr)∗.

Naturally, and most importantly, so long as one delimited sequence for all words is

a finite language, the algorithm terminates. For natural language applications this is the

expected case.

Finding a suitable termination condition that avoids an infinite loop is an interesting

problem in itself, altough its practicality can certainly be questioned. It seems unlikely that

a simple pre-analysis of τ which would yield a termination condition would be efficient

enough to warrant its inclusion in practical implementations of the algorithm.

For cases where it can be ascertained that τ consists either of exactly n sequences

between L and R, or none at all, one can simply extract L1 . . .Ln—the languages occur-

ring between the delimiting languages—and check whether their intersection yields a finite

language, in which case EQ is guaranteed to terminate and otherwise not. In (4.30), for

131

<

@ @

<

@ @

<
>

@

> s3s2s1s0 s4

FIGURE 4.3. The automaton Lbrf used in Algorithm EQ.

example, where L1 = L2 = a∗ and L1 ∩L2 = a∗, it can be seen that EQ is nonregular and

will not terminate.

4.8.2.2. Efficiency

For cases where the algorithm does terminate, it is of interest to know its asymptotic be-

havior, particularly with respect to the size of the resulting automaton or transducer.

First, it can be observed that the sizes of |τbypass| and |τeq| are bounded by a small

constant c with respect to the size of τ , as seen from the relatively small automata τ is

composed with to produce the two languages τbypass and τeq. In fact, Lbrf is represented by

the 5-state automaton in figure 4.3.

Now, the size of τmove is easily seen to be 2n+1 states, if n > 1, where n is the number

of different symbols occurring inside bracketed sequences. Naturally, this is |Στ | in the

worst case.

As we perform the iterative composition of τeq and τmove, the size of each new τeq is

bounded by |τmove||τeq|.

Since we perform the composition k times in lines 14–20, we can see this yields an

overall size bound of O(|Στ |k|τ |), where k is the length of the longest instance of identical

substrings.

It is unlikely, however, that the bound is reached in practical applications, where only

132

a fraction of the possible words in |Σn| where 0 < n < k are actually found between

instances of L andR.7

From this perspective, the algorithm is appealing in that the growth of τeq during each

iteration is bounded by the number of actually occurring symbols α as substrings with the

configuration < α.

4.8.2.3. Decidability of the regularity of EQ(τ,L,R)

Let us return briefly to the question of knowing beforehand whether algorithm EQ termi-

nates or not. It is often expected that a language which is a superset of the regular languages

has the property that it is not in general decidable whether a particular instance of it can

be expressed as a regular language. This is the case, for instance, with the context-free

languages (Hopcroft and Ullman, 1979). With this in mind, it may of interest to note that

the question of the regularity of the relation represented by EQ(τ,L,R) is decidable as

follows.

Consider τeq in algorithm 4.1. Obviously its range contains all the words of interest

occurring between L and R. From this, we can extract only the sequences enclosed in

brackets and construct a reduced automatonX ′ containing these words. That is,X ′ consists

exclusively of words of the form < Σ∗ > (< Σ∗ >)+. From the minimal automaton

representingX ′ constructX ′′ in such a way that each bracket symbol also contains an index

that describes the target state for each transition marked< or>. Clearly, this can be done by

a simple inspection of X ′ and adding new symbols <i and >j for each transition δ(<, i, j)

and δ(>, i, j), and replacing the original transitions with δ(<j, i, j) and δ(>j, i, j). Now,

7From a natural language processing perspective, the following figures may give some indication of the
expected growth of an automaton that handles reduplication with EQ. We created from an English lexicon
L1 of 36, 871 words represented as an automaton of 30, 668 states the new language L2 = L1(−L1). This is
the language where each word from L1 could appear on its own, or as an entirely reduplicated word. Hence,
if word was in L1, both word and word − word would be in L2. The resulting lexicon then consisted of
73, 472 words encoded as an automaton of 299, 793 states, a roughly tenfold increase in the number of states.
The size of the alphabet was 39 symbols and the length of the longest string 47 letters.

133

we can easily extract every possible combination of <p and >q for all p and q occurring in

a single word, say by intersecting X ′′ with the language

n⋂
i=0

n⋂
j=0

¬(Σ∗ <i Σ∗ >j Σ∗ <i Σ∗ >j Σ∗)

yielding all possible sequences of <i and >j without repetitions.

We can also extract from X ′′ the possible languages occurring between <p and >q for

all p and q, by changing the initial state in X ′′ to p and making q the only final state. Call

these languages Lpq .

Now, all the possible nonrepeating sequences of Lpq that can occur as words between

brackets in X ′′ are of a finite number. For each such sequence, we can perform the inter-

section:

(Lp1q1 ∩ . . . ∩ L
pn
qn) (4.33)

And, if all intersections yield a finite language, EQ(τ,L,R) is regular, otherwise not.

Clearly, if there exists a sequence Lp1q1 ∩ . . . ∩ L
pn
qn such that the intersection of the indi-

vidual languages is not finite, there exist two equal subwords in EQ(τ,L,R) of arbitrary

length within delimiters. Conversely, if the intersection is finite, no such word exists, and

EQ(τ,L,R) is regular. Whether each intersection in (4.33) yields a finite language can be

checked by a standard depth-first-search on each resulting automaton.

We have thus established that it is decidable whether EQ(τ,L,R) can be represented

as a regular language. However, as was noted above in example (4.31) the operation of

the algorithm is such that it also fails to terminate if any equal prefix is of arbitrary length.

To ascertain whether the algorithm terminates it is therefore not sufficient to examine the

potential regularity of the EQ-expression at hand by observing the set of co-occurring sub-

words Lij , but rather, the set of prefixes of the subwords Lij . Since the set of prefixes of

any regular language L is also regular, we can obviously modify the above method to also

decide whether a particular run of EQ will terminate.

134

4.9. Discussion

This chapter has presented a formalism by which closed-lexicon reduplication can be incor-

porated into the classical workflow of constructing lexical transducers. The EQ-algorithm

is a simple operation that works on finite-state transducers and automata and can be seen

as a filter that removes parts of marked strings that are unequal in content. The sections of

a string which are to be marked, and thus subject to the equality constraint, can be flexibly

defined using other regular relation operations.

Because EQ is defined to operate on transducers, where the equality constraint applies

to the output side, the operation can naturally be incorporated into a chain of compositions.

A number of examples from various languages illustrate the usefulness of being able to do

so: in many cases of reduplication, the relationship between underlying and surface forms

of a word can be conveniently modeled in such a way that the equality constraint applies

at a very particular point in a sequence of phonological alternations. The EQ-operator can

also be used to express other, simpler tasks: given a set of words in a lexicon automaton

L, we can easily produce a new automaton Lr that contains reduplicated words. Even

such a relatively simple operation is very difficult to define using other regular expression

construction techniques.

One of the primary motivations for introducing the EQ operator in handling closed-

lexicon reduplication was that the other simple alternative—to add non-finite-state prepro-

cessing to parsing and generation—would make it difficult to capture phenomena where

one of the reduplicants is different from the other one. The EQ operator handles such

cases elegantly since it builds an equivalence constraint into the overall phonological sys-

tem and this equivalence need not necessarily manifest itself in the surface forms as it may

have applied to an intermediate form. Also, EQ is not strictly limited to closed lexicon

reduplication: what is required for EQ to be incorporable into a finite-state grammar is

that the set of the possible reduplicants be finite. In the Warlpiri examples, for instance, the

reduplicants are always of the form CV (C)(C)V , and hence constitute a finite set. This

135

makes it possible to parse and generate out-of-vocabulary items correctly within the gen-

eral finite-state system without pre-specifying an upper bound on the length of words in

the lexicon. If one on the other hand wants to model truly unbounded reduplication and

incorporate this into a finite-state system, EQ will naturally not suffice, and alternatives

such as preprocessing must be considered.

136

5. PROPERTIES AND DECISION ALGORITHMS FOR REGULAR

LANGUAGES AND RELATIONS

5.1. Introduction

In this chapter we will look at closure properties and decision algorithms pertaining to

finite-state devices. In particular, we will focus on questions that are of interest to natural

language applications.

We shall almost exclusively focus on finite-state transducers (as opposed to automata)

and certain subclasses of them. Since almost every imaginable property of finite-state

automata is decidable—quite efficiently and easily—we shall say very little about automata

here.

For finite-state transducers, however, the situation is different. As mentioned in chapter

3 our general model of regular relations represented by a finite-state transducer is not closed

under the boolean operations of complement and intersection, and hence not subtraction.

In addition to this, there are a number of properties of finite-state transducers that would

be of interest for linguistic modeling that are not solvable by algorithms. But there are

also many properties which do have effective algorithms—distinguishing between the two

cases can be very difficult and often involves subtle analysis of the properties of finite-state

transducers. It is easy, for example, to determine if two finite-state automata describe the

same language: since there exists a unique minimal representation for each automaton, two

automata can be minimized and compared for equality. No such representation exists for

finite-state transducers, and many of the questions that have simple answers in the automata

case turn out to be undecidable, or very difficult to answer in the transducer case.

As before, we shall assume that our finite-state transducers usually represent some lin-

guistic model. Given two grammars G1 and G2, represented as finite-state transducers τ1

and τ2, some of the immediately interesting questions to ask are:

137

(i) is the relation τ1 equivalent to τ2?

(ii) is τ1 ⊆ τ2 or vice versa?

(iii) for which inputs W does τ1 output a word different from τ2?

(iv) for which inputs W does τ1 output the same as τ2 does?

Questions (i)–(iv) are very natural questions to ask both from a language engineering

and from a linguistic point of view.

As we saw in chapter 1, many morphological or phonological theoretical mechanisms

can fairly accurately be represented as finite-state transducers: this includes SPE-style

rewriting grammars as modeled by Kaplan and Kay (1994), the Lexical Phonology and

Morphology of Mohanan (1986), Optimality Theory (as shown in Karttunen (1998) and

Gerdmann and van Noord (2000)), and realizational morphology as presented in Stump

(2001) and modeled by Karttunen (2003), among others. In this context, the previous ques-

tions become of interest for reasons of research in phonology and morphology: it is often

quite difficult to compare predictions of two different theories given in two different for-

malisms. The possibility of representing a theory in a fairly neutral way—a finite-state

transducer—offers a method to answer a number of important questions.

Supposing one has a description of some linguistic phenomenon in formalism A and

another description modeling the same phenomenon in formalismB, it would be of interest

to know if the two proposals make the same predictions and are equivalent. If we could

convert both descriptions to two finite-state transducers, the question would correspond

to question (i). Additionally, given the same scenario, and supposing A is indeed known

to differ from B, one would perhaps like to know exhaustively all the cases in which the

grammars yield different predictions—the cases in question may of course not be a finite

set. This question could then be answered by solving (iii). Question (iv) is of interest

for similar reasons. Question (ii) is perhaps relevant from the point of view that some

138

grammars tend to ‘overgenerate’ but could otherwise be correct in their predictions. This

would be the case if one grammar is a subset of the other.

Apart from these decidability questions regarding the relationship of two finite-state

transducers to each other, there are a number of further questions that are relevant in the

context of a single arbitrary finite-state transducer τ .

Given a grammar G represented as a finite-state transducer τ ,

(v) does τ ever yield two or more distinct outputs for one input w?

(vi) in τ , do we find two distinct paths through the transducer for one input w?

(vii) does τ always yield the same output as the input? That is, is it an identity relation

only?

These questions also naturally prompt the subsequent follow-up questions:

(viii) Given that (v) is true for some τ , for which inputs does τ yield more than one output?

(ix) Given that (vi) is true for some τ , for which inputs does τ have multiple paths (is

ambiguous)?

(x) Given some non-functional τ , can we produce a transducer τ ′ which allows only the

functional inputs?

(xi) Given some ambiguous τ , can we produce a transducer τ ′ which allows only the

unambiguous inputs?

Questions (v) and (viii) would effectively give answers about the type of ambiguity

expressed by a grammar, in the direction of either generation or parsing.1

1For all of the properties, we assume that if one is interested in, say, ambiguity in parsing instead of
generation, it is possible to invert the transducer in question and attempt to solve the problem at hand for τ−1

instead of τ .

139

Question (vii) is non-trivial despite appearances: there are an infinite number of ways in

which an arbitrary identity relation can be encoded by distributing one-sided ε-transitions

in a finite-state transducer.

The chapter will treat the above questions as follows: first we will address questions

(i)—(iv). These are classical decidability results and we will not treat them in detail except

when our proof or construction method is different and elucidates the subject matter in

particular, or simplifies the demonstration of some subsequent, new result. Question (v)

has been shown to be decidable by Schützenberger (1976) and Blattner and Head (1977),

although no explicit algorithm was given. We shall present an efficient O(n2) algorithm

for solving the question, which crucially also hinges on our algorithm for solving question

(vii).

Question (viii) will turn out to be undecidable. Remarkably, the very closely related

questions about ambiguous path—(vi) and (ix)—are decidable, as we will show by provid-

ing an algorithm for solving them. This is very useful for linguistic modeling, since the

undecidable question (viii) often gives the exact same answers as the decidable question

(ix) in linguistics applications. In effect, we can, by substituting question (ix) for question

(viii) provide an analysis of the multiple outputs in a grammar.

We will also show that question (x) is undecidable by algorithm, while (xi) is solvable,

and we will give an algorithm for it.

Given that some of the above questions are undecidable, and hence unsolvable by any

algorithm in the general case, we will conclude the chapter by investigating subclasses

of finite-state transducers where more decision and closure properties are available, with

particular focus, again, on natural language applications. We will also deduce and present

a hierarchy of the most common subtypes of finite-state transducer models proposed in the

literature.

140

5.2. Fundamental decidability questions of FSTs

5.2.1. Reductions to the Post Correspondence Problem

Most cases of undecidability regarding finite-state transducers are shown to be undecidable

through a reduction to the well-known Post Correspondence Problem (Post, 1946), which

is unsolvable by algorithm.

What the PCP asks us is: given a sequence of paired strings u1, l1, . . . , un, ln, is there a

sequence of indices i1, . . . , in, such that the strings ui1 , . . . , uin = li1 , . . . , lin?

This is often informally visualized as the task of pairing up blocks of strings, each block

having a string on the upper side and on the lower side. An instance of the PCP could then

be represented as:

[
b

ca
][
a

ab
][
ca

a
][
abc

c
] (5.1)

One solution to this particular instance of the PCP is

[
a

ab
][
b

ca
][
ca

a
][
a

ab
][
abc

c
]

since the string on the upper side of the blocks we have chosen from the instance is identical

to the string on the lower side: abcaaabc.

Question (i) above, the undecidability of the equivalence of two arbitrary finite-state

transducers, follows almost as a corollary to the PCP.

Theorem 5.1. Transducer equivalence is undecidable

Given an instance of the PCP, we can create the transducers:

τPCPu = ((i1 × u1) ∪ . . . ∪ (in × un))+ (5.2)

and

141

τPCPl = ((i1 × l1) ∪ . . . ∪ (in × ln))+ (5.3)

that is, two transducers that map indices to either the upper or lower words according to

the instance of the PCP in question. For example, the two transducers τPCPu and τPCPl

constructed from the instance (5.1) would both map 21324 to abcaaabc—it being a solution

to the instance of the problem.

Now, we can also modify τPCPu and τPCPl in such a way that the output is guaranteed to

be different than in the original descriptions of the two. This can be achieved by composing

τPCPu and τPCPl with an auxiliary transducer τchange, seen in figure 5.1. That is,

τPCPu ◦ τchange (5.4)

would map a sequence of indices to all words in the PCP alphabet as the word indices

correspond to, except that particular word. Staying with the example instance (5.1), the

transducer constructed by (5.4) will map 21324 to any word over {a, b, c} except abcaaabc.

Note that in this construction (5.4) the output is guaranteed to be different only under the

assumption that τPCPu and τPCPl represent functions, i.e. have at most one output for each

input. It is easy to see that this is the case for both τPCPu and τPCPl, our encodings of the

PCP. If affairs were not such and we could find words u and v such that τ(w) = {u, v},

τ ◦ τchange would not work as intended and would still perform the same mapping since u

could be mapped to v and v to u by τchange, and we could no longer be sure that any change

is actually produced.

We can also construct a transducer τ ′ and have it operate in such a way that it maps the

indices to any string over the PCP word alphabet. It is immediate that the following holds

(τPCPu ◦ τchange) ∪ (τPCPl ◦ τchange) = τ ′ (5.5)

142

ε:?

ε:? @ ?:?

?:?

?:?@

@

@ ?:?

?:ε
@ ?:? ?:ε

s3

s2

s1

s0

s4

FIGURE 5.1. Transducer τchange that changes a word to anything except itself.

143

if and only if the instance of the PCP lacks a solution. That is, if we could answer (5.5) we

could solve the PCP—hence, transducer equality is unsolvable.2

We can also use the same reduction to show that question (iv)—for which inputs two

transducers yield the same output—posed in the beginning of the chapter is undecidable.

Theorem 5.2. Whether there exists a word w s.t. τ1(w) = τ2(w) is undecidable

Obviously, if τPCPu ever gives the same output as τPCPl for the same input, that in-

put/output pair is a solution to the PCP.

In a similar way—question (iii)—for which inputs two transducers produce different

outputs, can be addressed and shown to be undecidable. All the words on the left hand side

that are different from words on the right in (5.5) would be solutions to the PCP.

Question (ii), the inclusion problem, if solvable, could also be used to the solve the PCP

as laid out in (5.5) since inclusion both ways implies equality.

5.3. Functionality and ambiguity

Let us now turn to the question of whether a transducer τ represents a function, i.e. if it

is single-valued for all inputs in its domain. Note that question (vi) about transducer path

ambiguity is not the same. For example, a transducer that contains only the two paths

a:ε ε:b , a:b

both of which map an a to a b, is functional, but not unambiguous. Naturally, unambiguity

implies functionality.

Schützenberger (1976) and Blattner and Head (1977) have shown that functionality is a

decidable property of finite-state transducers. Subsequently, several algorithms have been

proposed to effectively decide whether a given a τ , represents a functional relation (Roche

2This same result was first shown by Griffiths (1968) through a rather more involved reduction to the PCP.

144

and Schabes, 1997; Béal et al., 2000). Unfortunately, the existing algorithms are all very

complex, and do not seem to have subexponential time requirements.

In what follows we shall first present a simple algorithm for deciding functionality.

5.3.1. Deciding functionality

We assume that the transducer in question is trim, i.e. the graph representing it is both

accessible and coaccessible.

To decide the functionality of a transducer, we begin by observing that a transducer τ

is functional if and only if the transducer

τ ′ = τ−1 ◦ τ (5.6)

represents identity relations only, i.e. if for all words w in dom(τ ′), τ ′(w) = w. That this

holds is straightforward. If a relation τ is not a function, it must contain pairs (x, y) and

(x, z) such that y 6= z. Then τ ′ contains (y, z) and (z, y), i.e. is not an identity relation.

Conversely, suppose a) that τ is a function and that b) τ ′ contains a nonidentity relation.

Then by b) we have that there exists a mapping z τ−1

→ x
τ→ y with z 6= y. However, then

τ contains both (x, y) and (x, z) which contradicts the assumption a) that τ is a function.

Hence, τ is a function iff τ ′ only contains identity relations.

Since transducer inversion and composition are straightforward to implement algorith-

mically, we can now focus on the latter question: does τ ′ represent identity relations only?3

5.3.2. An algorithm for deciding the identity property

Deciding the identity property of a transducer is non-trivial since it may contain one-sided

ε-moves as well as symbol pairs x1:x2 where x1 6= x2. Note that the latter circumstance is

3Though simple, I must attribute this crucial observation in (5.6) which the algorithm is based on to
Culik II (1978), who, however, does not provide an effective procedure for the subsequent question about
deciding the identity property.

145

not a sufficient condition for non-identity in a transducer (the transducer in figure 5.2 is in-

deed an identity transducer, yet contains unequal symbol pairs). This requires the algorithm

to ascertain that every path in the transducer indeed represents an identity relation.

The algorithm for deciding the identity property is given in algorithm 5.1. The essence

of the approach is as follows: we perform a depth-first search (DFS) on the graph repre-

senting the transducer in question. For every state v encountered during the DFS, we store

a string d representing the discrepancy between the input and output sides of the path so far.

For example, in figure 5.2, we have marked a discrepancy of the symbol c on the lower side

of state 1, since we followed an ε:c edge to get to that state, and the previous discrepancy

in state 0 was empty. The discrepancy is illustrated in the upper or lower square. In the

example, the maximum length of the discrepancy is 1; naturally it can grow larger with

several consecutive one-sided ε-moves.

In the algorithm, the function MATCH combines the new edge label with the discrep-

ancy string stored in the state (if the leftmost symbol in the discrepancy string is compatible

with the upper/lower symbol on the edge). It returns a new discrepancy string, which is

stored in the target state. For instance, moving from state 1 to state 2 in figure 5.2, we have

a discrepancy of c on the lower side, which matches the following upper-side c-symbol on

the edge. However, the lower side of the edge contains d, so our new discrepancy string

becomes a lower-side d, which is then stored in state 2.

The algorithm fails immediately if any one of three conditions are met during the DFS:

i) When attempting to follow an edge, the edge label is incompatible with the discrep-

ancy stored in the current state.

ii) We discover a final state, and have a non-empty current discrepancy.

iii) We discover an already visited state, and the current discrepancy is not equal to the

discrepancy stored in the visited state.

We assume that the special alphabet placeholder symbols @ and ? may be present, an

146

FIGURE 5.2. Illustration of the ISIDENTITY algorithm on an identity transducer.

@-edge representing any single-symbol identity of non-alphabet symbols, and ? which can

occur on both the input or output side, representing any symbol not in the alphabets, with

?:? representing any non-identity translation of symbols not in the alphabets. To handle

the presence of these two special symbols, we also fail if

iv) we encounter ? on any side of any edge.

v) we encounter @ and have any non-empty discrepancy stored in the state the edge is

in.

5.3.2.1. Analysis

To show the correctness of ISIDENTITY(τ) we note that if τ were to contain a non-identity

path from s0 to a final state sf , it must be the case that there occurs a discrepancy in MATCH

at some edge e. Conversely, if there exists a discrepancy at some edge e, and assuming the

transducer is coaccessible, that discrepancy would propagate to some final state sf , and

there would exist a path for which τ is non-identity.

We can also show that the running time of the algorithm is bounded by a total O(n2),

n being the number of states in τ . This follows from the fact that transducer inversion

147

Algorithm 5.1: ISIDENTITY(τ)
Input: τ
Output: {TRUE,FALSE}
begin1

τ.id← TRUE2

s0.d← ∅3

DFS id(s0)4

end5

Procedure DFS id(s)77

begin8

s.visited← TRUE9

foreach edge e (s→ s′) do10

if newd = MATCH(s.d,e) fails then11

τ.id← FALSE; RETURN12

end13

if s’ is final and newd 6= ∅ then14

τ.id← FALSE; RETURN15

end16

if s’ is visited and newd 6= s′.d then17

τ.id← FALSE; RETURN18

end19

if s’ not visited then20

s′.d = newd21

DFS id(s′)22

end23

end24

end25

148

is an O(n) operation (we simply reverse the input and output labels), and composition is

O(|τ1||τ2|).4 The DFS subsequently performed by ISIDENTITY takes time proportional to

the number of edges in the new graph.

Now, for the string comparison between old and new discrepancies during the DFS,

we note that we do not actually need to store redundant strings for each state—as the

illustration in figure 5.2 perhaps suggests. Rather, the set of discrepancy strings form a tree

(corresponding to two depth-first trees, one representing discrepancies on the lower side,

and the other discrepancies on the upper side). The individual states can share parts of a tree

of strings by maintaining two pointers marking the beginning and ending of its discrepancy

string in the tree. To compare the equality of two discrepancies, we simply compare the

two pointers. Since each edge adds at most one symbol to the discrepancy, we see that

treating each edge takes O(1)-time. Thus, the total running time is O(n2), dominated by

the composition operation.

5.4. Equivalence of functional transducers

Having settled the decidability of functionality, it is worth noting that as a consequence

of the ISIDENTITY algorithm, we can also decide whether two transducers are equivalent,

given that one of them is functional.

Theorem 5.3. if τ1 or τ2 represent a function, whether τ1 = τ2 is decidable

Of course, if one of the two is functional and the other not the question is trivial. If the

two transducers τ1 and τ2 are both functional, we can test their identity by observing first

that τ1 = τ2 iff dom(τ1) = dom (τ2) and
4Note that transducer composition may produce a nondeterministic transducer—however, we need not

determinize the transducer in order to apply ISIDENTITY. If we did that, the algorithm would no longer
be guaranteed to finish in polynomial time. To avoid determinization, the algorithm needs to be aware of
ε:ε-transitions and include their treatments in the propagation of discrepancies. This means that for an ε:ε-
transition, MATCH returns newd = s.d for e = ε on line 11.

149

ISIDENTITY(τ−1
2 ◦ τ1) (5.7)

Now, the testing of the equivalence of the domains of the two transducers simply in-

volves testing the equivalence of their finite-state automata representations after extracting

the input side only. That is, we can answer the question about transducer equivalence in the

case of functional transducers, but not in the general case.

It should perhaps be noted that this is one of the few qualities that sets functional trans-

ducers apart from non-functional ones—the availability of the equivalence test. Most of

the other properties under discussion, such as the emptiness of intersection, remain unde-

cidable even for functional transducers as can be easily seen by the reduction to the PCP by

τPCPu and τPCPl in (5.2) and (5.3), both of which are functional. Naturally, the intersection

of two functional transducers cannot necessarily be represented as a regular relation either.

For this last case, we need not even reduce the problem to the PCP, but may simply observe

that for the two functional transducers

τ1 = (a:b)∗(b:ε)∗, τ2 = (a:ε)∗(b:b)∗ (5.8)

dom(τ1 ∩ τ2) = anbn (5.9)

which is nonregular.5

5Curiously, one finds in the literature many examples where it is assumed that certain problems concern-
ing functional transducers are decidable when they in fact are not. For example: “most of the problems such
as equivalence or intersection [of FSTs] are easily shown to be equivalent to the Post Correspondence Prob-
lem and thus undecidable. The situation is drastically different for transducers that are functional, that is,
transducers that realize functions, and the above problems become then easily decidable.” (Béal et al., 2000).
However, dealing with functional transducers as opposed to non-functional ones provides no further closure
properties or decidable questions.

150

5.5. Extracting the non-functional domain

Now, turning to the follow-up question: supposing we knew that a transducer τ was non-

functional. Perhaps τ was constructed with the intent that it be functional, after which

the test revealed that it was not, and we would now like to know (perhaps for debugging

purposes), which input words w cause τ(w) to produce multiple outputs. Unfortunately,

the following is easily seen to hold:

Theorem 5.4. Whether the set of words {w | τ(w) is not single-valued} ⊂ Σ∗ is undecid-

able

Consider the transducer τPCPu ∪ τPCPl as constructed in (5.2) and (5.3). Obviously,

if we could decide whether the set of words for which the output is not single-valued is a

proper subset of Σ∗, we could solve the PCP.

5.6. Unambiguous vs. functional

A question closely related to the previous one about single-valuedness is the question about

ambiguity. Recall that a transducer is ambiguous if there exists an input word x such that

there is more than one path in the transducer leading to an accepting state with x as the

input. Obviously a non-functional transducer is also ambiguous, but the converse is not

always true. Consider, for instance, a transducer with the two paths

a:ε ε:b, a:b

Obviously τ is single-valued (as it only maps an a to a b), but ambiguous, as the transducer

contains two paths with the same input.

There is a subtle difference between ambiguity and non-functionality which turns out

to be very important. Namely, the set of words that produce an ambiguous path through a

transducer τ is a regular set, and there exists an effective algorithm for extracting this set

as we shall show below.

151

The ability to extract this set is important because most construction methods that pro-

duce complex transducers representing grammars in a natural-language processing setting

will not produce ambiguous paths unless that transducer truly is non-functional.6 What this

means is that in practical cases we can forgo the (futile) attempt to extract the words w that

produce multiple outputs in τ(w) and instead extract the words that produce multiple paths

through τ(w), which is very likely the same set.

5.6.1. Testing transducer ambiguity

Before we proceed to the algorithm that extracts from a transducer τ the regular language

U where each word in U has two accepting paths as input to τ , let us consider how to test

for the presence of ambiguous paths in general.

The natural question is whether one can test for ambiguity in a transducer in a similar

fashion as one tests for single-valuedness. As the algorithm for testing single-valuedness

was developed from the observation that the composition of the inverse of a transducer with

itself will exhibit non-identity relations if and only if the transducer is non-functional, we

will develop a similar approach here.

The key to adapting the earlier algorithm to test ambiguity is to note that we are now

interested in the actual path that an input word w induces in a transducer τ , and in whether

an input word w yields two different paths. In other words, the range of the transducer,

or the image of w, is irrelevant. Now, call the path induced by a word w in τ(w), p(w).

Naturally, p(w) is a regular set and we can indeed represent each member of p(w) as a string

(for instance, as a sequence of state numbers). Hence, to test for transducer ambiguity, we

want to test whether:

ISIDENTITY(τ−1
p ◦ τp) (5.10)

6This assumes we have made sure that neither the cross-product nor the composition algorithms introduce
multiple paths as discussed in chapter 3.

152

where τp is a transducer that maps a word in w to some string uniquely describing the path

p(w) induced by w in τ .

How do we modify the original transducer τ in such a way that it maps input words to

some unique string for every path? Let us begin by observing that if τ were deterministic

on its output side, every word emitted would also be a kind of description of the path taken

in the transducer. Since we can disregard the image of w under τ , we can also directly

disregard the original output labels of τ and modify them in such a way that τ becomes

deterministic on the output side and produce a new transducer that maps input words to a

string representation of the paths they induce.

One way to do this is to replace all the output labels on the transitions in τ with a

symbol that corresponds to the target state of the transducer. This would directly yield a

new transducer τp that would have the same domain as τ and would map input words w to

a sequence of symbols describing the path that the input word induces in the transducer. In

other words, τp maps words to descriptions of the path of states they induce in τ .

However, doing such a transformation is unnecessary and could result in some ineffi-

ciency as the number of new symbols that would need to be introduced into the alphabet

would equal the number of states in τ . To obtain a unique description we need only to

make sure that for each state there are no two outgoing transitions with the same output

labels. The labels for the outputs can be chosen arbitrarily, so long as the requirement for

determinism holds for each state: if the lower side is deterministic, every path p through τ

will produce a unique word in its output labels. Hence, it may be the case, depending on

the transducer at hand, that no new symbols need to be introduced at all, if the maximum

number of transitions in some state does not exceed the size of the symbol alphabet.

Obviously, if we let m be the maximum number of transitions outgoing from a single

state, we need to introduce m − |Σ| new symbols, in case m > |Σ|. Asymptotically this

may not improve the worst case much over having the lower side labels represent the target

states, since if some state s has a transition to every state in the transducer, we will need

|τ | − |Σ| new symbols. In practice, however, we may save much time by following the

153

Algorithm 5.2: TRANSDUCERTOPATH(τ)
Input: τ
Output: τp
begin1

foreach state s do2

i← 13

foreach transition label p:q do4

if i ≥ |Σ| then5

add a new symbol to Σ6

end7

replace q with Σi8

i← i+ 19

end10

end11

end12

latter strategy to only introduce new symbols where they are absolutely needed to maintain

determinism in the lower side of the transducer.

5.6.2. An algorithm for extracting ambiguous words

In the above we showed how to decide transducer ambiguity by algorithm 5.2 and the

observation in (5.10). If, instead of simply deciding if a transducer represents identity

relations only, we could actually extract the set of words in τ where the output differs from

the input, we could also extract the set of input words for which there are multiple paths

through a transducer τ . Call the set of input words w where τ(w) 6= w NOTID(τ), and we

have that

Aambwords = dom(τp ◦ NOTID(τ−1
p ◦ τp)) (5.11)

is precisely the set of words

{w | τ(w) is ambiguous } (5.12)

154

The notation τp is exactly as above, i.e. the result of TRANSDUCERTOPATH(τ).

5.6.2.1. Extracting the set of words not in an identity mapping

The algorithm 5.1 can be modified to yield the set of input words in a transducer which

are not in an identity relationship only. This variant is given in algorithm 5.3 on page

155. The key to the modification is that, instead of terminating the algorithm when a

discrepancy is noticed during the DFS, we simply change the output label in the offending

edge to a new symbol @notid@ that is not in the original alphabet Σ, and in such a way

produce a transducer τ ′. Now, any path in τ ′ containing this auxiliary symbol as output can

participate in a mapping where the output word is different from the input word. Hence, as

a subsequent step, we can perform the composition:

τ ′ ◦ (Σ∗ @notid@ Σ∗) (5.13)

to yield a transducer whose input side or domain consists of all words that can produce a

nonidentity output. The domain in this transducer then represents the regular set of words

for which a nonidentity mapping is possible (line 5).

It is worth noting that what we are doing is extracting the set of input words

{w | there exists a word τ(w) s.t. τ(w) 6= w} (5.14)

which may also include paths that describe an identity relation. The similar task of extract-

ing the set of words (or finding a single word) that may, through some path, produce an

identity mapping, is easily seen to be undecidable.7

Combining algorithms 5.3 and 5.2 with observation (5.11) yields the following:

Theorem 5.5. The set of words {w | τ(w) is ambiguous } is a regular set

7If such an algorithm were available, we could run it on the transducer τPCPu ◦ τPCPl
−1 as defined in

(5.2) and (5.3) and solve the PCP.

155

Algorithm 5.3: NOTID(τ)
Input: τ
Output: Anotid
begin1

add @notid@ to Σ in τ2

s0.d← ∅3

DFS notid(s0)4

RETURN(dom(τ ◦ (Σ∗ @notid@ Σ∗)))5

end6

Procedure DFS notid(s)88

begin9

s.visited← TRUE10

foreach edge e (s→ s′) do11

if newd = MATCH(s.d,e) fails then12

change output side of edge label to @notid@13

end14

if s’ is final and newd 6= ∅ then15

change output side of edge label to @notid@16

end17

if s’ is visited and newd 6= s′.d then18

change output side of edge label to @notid@19

end20

if s’ not visited then21

s′.d = newd22

DFS notid(s′)23

end24

end25

end26

156

5.6.3. Splicing a transducer based on ambiguity

Having at our disposal the mechanism to extract the regular language Aambwords from a

transducer τ , we can subsequently also divide a transducer into two disjoint transducers

such that one represents the unambiguous paths and the other the ambiguous paths. Again,

we take advantage of the composition operation and can easily produce:

τambiguous = Aambwords ◦ τ (5.15)

τunambiguous = ¬Aambwords ◦ τ (5.16)

Here, naturally

(τambiguous ∪ τunambiguous) = τ (5.17)

Figure 5.3 illustrates an ambiguous transducer (a) representing two parallel replacement

rules

a → (b ∪ c) , b→ a

and the resulting decomposition into its ambiguous part (b) and an unambiguous part

(c).

5.7. A hierarchy of transducers

Having now answered a few fundamental decidability questions about general finite-state

transducers, we can conclude that, while they are powerful models for expressing relations

between strings, there are a number of shortcomings from the point of view of being used

as tools for linguistic modeling. The foremost of these shortcomings is most likely the lack

of effective algorithms for solving equivalence and subset problems between two arbitrary

finite-state transducers. Along the same lines, the lack of the ability to enumerate as a set

157

a) τ

@ c a:c a:b b:a

s0

b) τambiguous

a:c a:b

@ b:a c @ b:a c a:c a:b

s1s0

c) τunambiguous

@ b:a c

s0

FIGURE 5.3. Ambiguous transducer spliced into two disjoint ambiguous and unambiguous
ones.

158

(regular or otherwise) the words where the output of one transducer differs from another is

a weakness. The lack of boolean operations—with the exception of the union of a regular

relation—is less of a problem, and is made up for in part by the flexibility of boolean

operations on either the domain or range of a relation together with the availability of

composition and domain and range extractions.

It is therefore of some interest to consider the properties of other, more restricted models

that perform regular translations—i.e. devices that map one regular language to another,

and delineate the different strengths and weaknesses of each, especially with regard to the

deficiencies just outlined that are associated with the general finite-state transducer model.

Of the vast literature regarding regular translations, six models stand out as either direct

candidates for performing such natural tasks as have been discussed, or have actually been

employed in practice for such tasks.

These are:

1. Unrestricted finite-state transducers

2. Rabin-Scott two-tape automata/transducers

3. subsequential transducers

4. sequential transducers

5. even-length transducers

6. k-length-difference bounded transducers

So far we have primarily been dealing with the unrestricted transducer; a transducer

where we pose no constraints on the structure of the underlying automaton or the occur-

rence of ε-moves. We will now consider the various restricted types more closely.

159

5.7.1. Sequential transducers and deterministic transducers

The sequential transducer is a transducer with an additional specific restriction on the output

function—namely, that for each state there exist maximally one transition for each input

symbol in Σ. That is, for all s ∈ Q:

(1) δ(s, a) contains at most one element for each a ∈ Σ.

While the currently established terminology is ‘sequential’ for this type of transducer

(e.g. Mohri (1997b,a)), these are also sometimes called ‘deterministic’ transducers in the

literature (see e.g. Aho and Ullman (1972)). Without transgressing the limits of input

determinism, ‘deterministic’ transducers also allow ε-inputs in the special case where no

other inputs are available in a state, i.e. for all s ∈ Q

(2) δ(s, ε) contains maximally one element, and in such a case δ(s, a) is empty for all

a ∈ Σ.

Including condition (2) allows us the transducer to yield multiple outputs for one input.

We shall consider those transducers that fulfill condition (1) only to be sequential, and those

that allow ε-inputs according to (2) deterministic.

5.7.2. Subsequential transducers

A variant of the sequential transducer are subsequential (Schützenberger, 1977) and p-

subsequential transducers (Mohri, 1997b). These, in contrast to sequential transducers

which allow no ambiguity, allow for restricted ambiguities in the output string, provided

they occur at the end of the translation. This is achieved by declaring optionally the emis-

sion of p additional output strings at final states of the transducer.

The overarching purpose of the previous three classes of transducers is to guarantee that

translations can be computed in linear time in proportion to the length of the input string,

possibly with the addition of some constant of ambiguity in the case of p-subsequential

160

transducers. Given an arbitrary finite-state transducer, it is decidable whether the same

relation can be characterized by a sequential transducer (Choffrut, 1978).

5.7.3. Rabin-Scott transducers

What we shall here denote Rabin-Scott transducers were originally introduced in the land-

mark paper by Rabin and Scott (1959) which investigated many properties of different

kinds of deterministic and nondeterministic finite-state automata. The term used in this

publication for the concept was ‘two-tape one-way automata.’ This is a kind of determin-

istic finite automaton, with the additional feature that the set of states Q is divided into two

disjoint classes Qin and Qout such that transitions from states belonging to Qin operate on

the input, and the ones in Qout on the output. One can, depending on the application, inter-

pret this as either an automaton that reads two input tapes where the state classes control

which tape is to be read, or a transducer that reads a input string and outputs another one

where the type of state controls which operation is currently to be performed. Additionally,

the Rabin-Scott model is by fiat always aware of the end of the string and must input and

output a special marker # not in Σ before halting.

The ability to foresee the end of tape allows the Rabin-Scott model to perform a strictly

larger set of mappings than it would without the capability. For instance, the regular rela-

tion:

(a:b) ∪ (a:ε b:ε) (5.18)

is not expressible with the same model without the # symbol being available.

5.7.4. Even-length transducers

The concept of an even-length transducer is modeled by a deterministic finite automaton

where each transition is marked by a pair of symbols from Σ. That is, ε labeled transitions

are completely disallowed, and as such, input and output strings are always of the same

161

length. Alternatively, we may consider also transducers they may contain ε-symbols, but

where each translation is even-length, i.e. the input is always the same length as the output.

Kaplan and Kay (1994, p. 344) contains a simple algorithm for normalizing ε-containing

equal-length transducers into ε-free ones.

5.7.5. k-length-difference-bounded transducers

The k-length difference-bounded transducer is a simple generalization of the even-length

transducer (Roark and Sproat, 2007). This is the case where for all w in dom(τ),

∣∣|w| − |τ(w)|
∣∣≤ k

for some k. In other words the length of the input and output may be imbalanced, but there

is a strict bound k on this imbalance.

5.7.6. Properties of restricted transducer models

Let us now consider the relationship between the classes of transducers outlined so far, both

in terms of the types of relations that can be expressed by them, and in terms of some of

their closure properties.

First, we observe that the class of even-length transducers τel enjoy all of the closure

and decision properties that apply to finite automata in general since they can be modeled

directly as special kinds of finite automata where the alphabet consists of symbol pairs only.

As regards the internal relationship between these classes, we can easily see that any

even-length transducer can be encoded as a Rabin-Scott transducer with strict alternation of

Qin and Qout, but that the reverse is not necessarily true for the simple reason that a Rabin-

Scott transducer may output strings of different length that the input is. That is, even-length

transducers are strictly included in the class of Rabin-Scott transducers. However, there ex-

ist even-length transducers not encodable as any subsequential transducer as illustrated by

the FST in figure 5.4: this is a kind of transducer where the output depends upon whether

162

x:a
x:a

x:b
x:b

x:a

x:b
s3

s2

s1

s0

s4

FIGURE 5.4. Unsequentiable even-length transducer (Mohri, 1997b).

the input is of even or odd length—something that cannot be ascertained without first con-

suming the entire input. Likewise, since sequential and subsequential transducers allow for

the output of strings of different length than the input, there is a partial overlap between

even-length and (sub)sequential transducers. Also, the class of sequential transducers is

strictly included in the class of (p−)subsequential ones (by definition).

The class of subsequential transducers is also properly contained in the class of trans-

lations definable by Rabin-Scott transducers. This is easily seen as follows. Firstly, we can

convert any p-subsequential transducer to a Rabin-Scott transducer by simply designating

the start state as belonging to Qin and from there interleaving Qin and Qout states accord-

ing to the input/output labels of the p-subsequential transducer. As regards the additional

emission of strings from final states in the p-subsequential transducer, we can model this

by designating final states as belonging to Qin from which we may have a #-transition

to a sequence of states all belonging to Qout, ending in a #-transition. Like this, we can

optionally emit any regular language whenever the end of the input is encountered. Due to

the lack of being able to express infinite ambiguity in the output, we cannot, however, con-

vert an arbitrary Rabin-Scott transducer to a p-subsequential one. Figure 5.5 shows such a

transducer. Also, the unsequentiable transducer in figure 5.4 which is easily representable

as a Rabin-Scott transducer (and a k-length-difference bounded or even-length transducer)

is not representable as any (sub)sequential one. We may also observe that there exists

163

FIGURE 5.5. A Rabin-Scott transducer which is not representable as a (sub)sequential
transducer or k-length-difference-bounded transducer.

a (sub)sequential transducer (a:ε)∗ which is neither representable as k-length-difference-

bounded one, nor as an even-length one.

These observations and the internal relationships between the classes are summarized

in figure 5.6.

5.7.6.1. Boolean operations

The even-length transducers τel and τk−lb are closed under union and intersection—the for-

mer by virtue of it being representable as a finite-automaton consisting of label pairs. The

proof for the latter is a straightforward extension of the conversion of a nonsynchronized

even-length transducer to a synchronized one.8 Neither class, however, is closed under

complementation: to realize the complement of a relation within the two classes, both

would have to include non-length-bounded translations.

That the union of two sequential or p-subsequential transducers is not necessarily se-

quential or p-subsequential is easily seen by a counterexample based on the transducer in

figure 5.4: we may construct two transducers τ1 and τ2, such that τ1 includes only the states

and transitions pertaining to states 0, 1, 4 and τ2 only the ones in 0, 2, 3. Clearly, both are

8The proof is omitted as e.g. Roark and Sproat (2007) contains a detailed exposition of it.

164

FIGURE 5.6. A hierarchy of finite-state transducers.

165

FIGURE 5.7. Two Rabin-Scott transducers the composite of which cannot be represented
by an R-S transducer.

sequential (and hence p-subsequential). However, τ1 ∪ τ2 is exactly the unsequentiable

transducer in figure 5.4.

The (sub)sequential and length-difference bounded transducers are closed under com-

position (Choffrut, 1978; Mohri, 1997b), but the Rabin-Scott transducer is not. The latter

circumstance can be illustrated by the two transducers in figure 5.7. Their composition

yields the relation:

(a:a ∪ a:b)∗ ◦ (a:a ∪ b:ε)∗ = (a:a ∪ a:ε)∗ (5.19)

which cannot be expressed as a Rabin-Scott transducer.

5.7.6.2. Equivalence and inclusion

The equivalence problem for the Rabin-Scott transducer is decidable but the inclusion prob-

lem is not.9 For the inclusion problem, undecidability follows because of closure under

complement: we can construct two transducers τPCPu and ¬τPCPl as in (5.2) and (5.3),

and now, an instance of the PCP has a solution iff τPCPu * ¬τPCPl.
9The former result was first shown in Bird (1973) and subsequently for the general case of deterministic

multitape automata in Harju and Karhumäki (1991).

166

τel τseq τsubseq τk−lb τR−S τ
τ1 = τ2? + + + + + -
τ1 ⊆ τ2? + + + + - -
τ1 ∪ τ2 + - - + - +
τ1 ∩ τ2 + - - + - -
τ1 ◦ τ2 + + + + - +
¬τ1 - - - - + -

TABLE 5.1. Closure and decision properties for some classes of transducers.

5.8. Discussion

In this chapter, an overview of a number of important fundamental decision properties

of finite-state machines has been presented—with particular emphasis on such results that

may be of significance when natural language grammars are encoded as finite-state devices.

Also, we have developed algorithms for deciding functionality and ambiguity of trans-

ducers; algorithms that may be useful both as a theoretical tool in linguistics research and

as a practical grammar debugging tool.

Further, we have seen that equivalence is decidable for both unambiguous and func-

tional transducers, and that we can splice a transducer into its ambiguous and unambiguous

components. This offers a limited way of addressing the fundamental questions outlined in

the beginning of the chapter. If we have two grammars G1 and G2 represented as transdu-

cers τ1 and τ2, we can at least decide their equivalence for those input words which produce

an unambiguous path through the respective transducers. Naturally, from a linguistic and

language engineering perspective we would like to answer the question of equivalence in

its most general form, i.e. even for those parts of the grammars that are ambiguous. Fur-

ther, if we know two grammars to be different, it would be helpful if we would also know

for which input words their behavior differs. Unfortunately, the last two questions are un-

decidable by algorithm for transducers in general. This prompts the hope that one could

deal with a restricted type of finite-state transducer for which the most relevant questions

are solvable. Good candidates for such models are the class of p-subsequential transdu-

167

cers, or some variant of the Rabin-Scott-type transducer. For these two, the equivalence

problem is decidable. Unfortunately, their closure properties are not ideal from the point of

view of natural language processing applications, and it remains a challenge to produce a

computational model of translation that fulfills all the desiderata of NLP: closure under the

standard regular operators, composition, inversion, domain and range extraction, and the

decidability of the most important tests such as equivalence and inclusion.

An additional complication is that none of the classes, with the exception of unrestricted

transducers, are natural in the sense that they would arise through a combination of clearly

specified abstract operations and primitives. The unrestricted class corresponds exactly to

the type of transducers that can be obtained through a finite number of union, concatenation,

Kleene closure, and cross-product operations. The unrestricted class is also closed under

composition and inversion. Unfortunately, for the other classes no such characterization

exists, and closure under composition and inversion is often not the case. Also, there is

no algebraically elegant description of the more restricted classes of translations. Given an

arbitrary transducer, it is often a matter of a posteriori showing that it in fact belongs to a

more restricted class. But no restricted selection of operations seems to exist that would

well capture the needs of natural language modeling and that would characterize a subclass

of transducers with the desirable decidability properties outlined.

In many practical applications the lack of algorithms for equivalence tests will not be a

problem. Due to the interaction of a number of constraints included in actual grammars, the

resulting linguistic model will often be suitably restricted to one of the subclasses discussed

above. When this is the case, equivalence tests and the like become available. This is

the case whenever one is working with linguistic generalizations encoded as transducers

(which are perhaps composed together) but that are also constrained against some finite

lexicon. In short, for many purposes the reliance on a model that carries the burden of a

plethora of undecidable properties may not be as severe a restriction.

On the other hand, if one wants to use the techniques and tools available in finite-

state transducer technology for research in linguistic theory, the state of affairs may be

168

different. In such a setting, one often finds that it would be desirable to ascertain whether

some postulated hypothesis of a linguistic principle or rule is equivalent to, or substantially

different from some other rule. If such hypotheses are encoded as finite-state transducers,

it would be of great benefit to this type of research if the fundamental questions outlined in

this chapter could be easily answered. However, it is precisely for this type of applications

that the mappings one is likely to encode in a set of finite-state transducers are open-ended

enough, not being constrained against lexica or fully complete grammars, to not fall into the

subcategories where interesting properties can easily be solved by established algorithms.

169

Part III ALTERNATIVE FINITE-STATE MODELS

170

6. EXTENDING REGULAR EXPRESSIONS WITH PREDICATE LOGIC

6.1. Introduction

A three-operator regular-expression formalism {·,∪, ∗} allows us (by Kleene’s Theorem) to

express any regular language and construct any finite automaton. In a similar way, adding

a cross-product operator, ×, as the fourth operator to create a relation from two regular

languages, allows us to express any regular relation, or any mapping that a finite-state

transducer can perform. Despite the expressive power of such systems, there remain types

of regular languages that are still very difficult to express through such a limited selection

of operations. These types of languages usually express some form of existential constraint

on the well-formedness of strings in some language L. For example, it is surprisingly

difficult in a three-operator system to express the regular language that contains all strings

over an alphabet, except those that contain some forbidden string w as a substring. It is

easy to show that such a language must be regular, but much harder to actually construct

such a language from arbitrary instances of w. This is especially true if w is a set, and not

a single string. Such problems are alleviated substantially by the introduction of additional

Boolean operators {¬,∩,−}. The language that does not contain a forbidden subword w,

for example, is then easily described as ¬(Σ∗wΣ∗).

However, even the power of Boolean operators is insufficient in many circumstances.

There remains a class of regular languages that is still very cumbersome to capture through

extended regular expressions. This class is characterized by language problems that con-

cern overlapping substrings. This group of language construction problems comes up very

frequently in natural language applications: in converting rewrite rules to finite state trans-

ducers, in compiling two-level rules, in expressing existential constraints over string sets,

and the like.

We need not venture that far into natural language processing to find an example of a

171

difficult-to-define regular language. The simple language L′ where there exists one and

only one instance of a substring drawn from a set L, if constructed through basic regular

expressions and Boolean operators, needs to be expressed by something as unwieldy as:1

(Σ∗LΣ∗)− (Σ∗((Σ+LΣ∗ ∩ LΣ∗) ∪ (LΣ+ ∩ L))Σ∗) (6.1)

Now, even if the construction here appears to be correct, it is quite difficult to show

that it actually works for every instance of the problem. As we move further into the realm

of modeling natural language problems, small subproblems such as the one above become

much more frequent. Even if there is a solution to every subproblem based on extended

regular expression manipulation, this construction method becomes uncomfortable due to

its complexity, the length of the regular expressions, and the sheer difficulty of showing

correctness.

In this chapter we shall try to alleviate the problems relating to the description of such

language problems. We will do so by developing a formalism of first-order logic over

substrings with the purpose of simplifying the construction of complex languages. The

fundamental idea behind the approach is that it allows us to use the basic building blocks

of first-order logic—quantifiers, propositions—and combine these with power of regular

expressions to define very complex languages in a simple way.

First, in section 6.2 we will discuss other solutions to the problem of constructing com-

plex automata and transducers. In section 6.3, the notation and the semantics of the for-

malism will be briefly introduced, after which section 6.4 will present in detail the actual

method for compiling logical sentences into automata. Section 6.5 will discuss a range of

immediate applications drawn mainly from the needs of computational morphology and

phonology where the construction method can be profitably employed. We conclude with

1It might appear that the much simpler (Σ∗LΣ∗)− (Σ∗LΣ∗LΣ∗) does the job. However, the expression
crucially cannot capture the cases where instances of L overlap with each other. Consider L = (ab ∪ ba).
Then L′ should not include the string aba since it contains both a substring ab and a substring ba. But aba is
included in the language defined by the simpler expression just considered.

172

a discussion in section 6.6 on the relationships between the logical formalism and other

construction methods found in the literature.

6.2. Previous work

This chapter will indirectly touch on two different topics of research. The first is the rela-

tionship between regular languages and logic over strings. The second is the question of

defining the kinds of regular languages necessary to model components of natural language,

primarily phonology and morphology.

The strong relationship between logic over strings and regular languages has been es-

tablished in works such as Büchi (1960); Elgot (1961); McNaughton and Papert (1971).

Each of these take a slightly different approach, but the overall methods are very similar. In

particular, the closest resemblance to the current work is found in what is now called first-

order logic of one successor over strings (FO[<]). This is a logic that combines first-order

quantification and two simple predicates which allows one to assert properties of languages:

either that a symbol in position x is a, or that position x is succeeded by position y. Through

this formalism, one can characterize exactly the set of star-free languages, i.e. languages

definable through extended regular expressions without Kleene closure (McNaughton and

Papert, 1971).

An extension of this, called monadic second-order logic over strings (MSOL[S]), that

augments the previous approach with a single monadic predicate, can be shown to equal

the regular languages in its expressive power.2

The main differences between the work here and previous notations for first-order logic

over strings is that in the current notation, quantifiers operate over substrings, and the model

discards completely the connection between ‘integer’-marked positions in a string as is

done in FO[<]. Also, in the current work, predicates are designed to be augmented liber-

ally: it is not the intention here to construct a maximally impoverished system to investigate
2Instead of the original sources on these topics, the reader is primarily directed to Thomas (1997) for a

fairly thorough and accessible description of all of the above.

173

its formal properties—in fact, we strive to do the opposite, to construct a rich system that

includes as many different propositions and notations as possible. To this end, we retain

the ability to use regular expressions whenever they are a more convenient formalism, and

at the same time use the predicate logic formalism for those parts that it is particularly suit-

able for. We shall assume the design philosophy that our system should to be as flexible as

possible so that our logical formulas can express clearly and concisely a large amount of

information in little space.

An earlier effort to combine logical formalisms and finite-state language processing is

found in Vaillette (2003), who develops quite successfully the MSOL[S]-logic from the

ground up. The main line of reasoning behind that work appears to be the verifiability

of correctness of complex regular languages and relations—the idea that replacing ad hoc

regular expressions with a logical formalism allows one to ascertain that a complex se-

ries of operations really does what it is supposed to do. In this respect, the motivation in

this chapter is similar. Using the logical primitives, Vaillette shows that many of the same

problems we tackle here (compiling string rewriting formulas in particular) can be char-

acterized by MSOL[S]-logic. Our approach is different in three respects. Firstly, Vaillette

relies on a separate compiler for converting MSOL[S]-formulas into automata; second, the

logical notation is built by combinations of very primitive predicates, and third, there is no

direct interface between the logical formalism and the well-established regular expression

formalism. In contrast, in this chapter we shall convert logical formulas systematically into

regular expressions, and in such a way make it feasible to directly compile the logic into

automata. Indeed, we will incorporate the logic as alternative notation when dealing with

regular language descriptions. We shall also allow arbitrary predicates (as long as they are

built from regular languages) and so provide predicates that operate directly on an abstract

level, and third, we shall allow arbitrary intermixing of regular expression formalisms and

the logical formalism.

The second thread by which this chapter ties in with previous research is the compi-

lation problems of phonological and morphological transducers. Most of the problematic

174

cases relate to compiling either string rewriting rules (of which there exist several flavors)

or two-level rules.

The standard technique for constructing complex automata and transducers in finite-

state natural language processing (such as those modeling rewrite rules) has generally been

to augment the symbol alphabet Σ with supporting auxiliary symbols and then define, usu-

ally through a multi-step cascade of compositions of more primitive regular relation, a more

complex regular relation that encodes the result, with the exception that some new symbols

are present. These auxiliary symbols are then removed from the language or relation, after

which the desired characterization has been encoded. In fact, this method of compiling

complex transducers is so widespread that it is difficult to find any instance in the literature

where the technique is not used. For instance,

• Karttunen et al. (1987) use “auxiliary brackets” to develop a rule compiler for two-

level rules, where a significant portion of the description of the method is devoted to

complications in compiling “overlapping” restriction rules.

• Kaplan and Kay (1994) make extensive use of “auxiliary brackets” which are in-

serted, whose presence is constrained, and which are then appropriately ignored in

some contexts in defining rewrite rules and two-level rules as regular relations.

• Karttunen (1997), Kempe and Karttunen (1996), and Karttunen (1996) use various

bracketing systems to define replacement, directed replacement, and parallel replace-

ment rules.

• Yli-Jyrä and Koskenniemi (2004) define a context restriction operator (⇒), as well

as a more generalized context restriction operator, through the use of a �-symbol,

whose occurrence is constrained and which is then removed.

This method, though very expressive, contains possible drawbacks such as the difficulty

of post-design analysis of complex constructions, as well as verification of their correctness

(as aptly noted by Vaillette (2003)).

175

Nevertheless, the ‘auxiliary symbol’ construction method is very useful and there is

no reason to abandon it other than that it is often employed ad hoc and in a completely

unsystematized fashion. In this chapter, we shall define a logical notation through a de-

composition of the auxiliary symbol method into its most primitive components. That is,

we define the logical notation through very simple primitives which involve manipulation

of auxiliary symbols. It may even be argued that the formalism presented here is really a

generalization of the technique of auxiliary symbol usage which is so popular in solving

complex language problems. In fact, as will be discussed later, one can, after the logical

notation in this chapter has been presented, go back and reanalyze some of the compilation

formulas given in the literature, which at first appear ad hoc, in terms of this first-order

logic. In a way then, what follows can be interpreted as taking a variety of seemingly

different approaches to compiling complex regular languages and relations and combining

them under a more abstract heading.

6.3. Notation

Before going into the actual method of converting our logical notation into finite automata,

let us look at a brief overview of what we are trying to accomplish with the notation, as

well as the intended semantics of our formalism.

In what follows we shall assume the standard notational devices of first-order quantifi-

cation (∃x), (∀x), the five connectives ¬, ∨, ∧, →, ↔, as well as a number of predicates

which we shall separately define. At this point in the exposition we shall only be concerned

with three types of predicates:

• (x ∈ L)

• x = y

• S(t1, . . . , tn)

176

The predicate (x ∈ L) is true whenever x takes as its value a substring which is a

member of the regular language L, x = y is true if the position of a substring x in a

string coincides with the position of y. Here ‘position’ refers to the span of a substring that

includes both a beginning position and ending position (which may be the same). Therefore

x = y is not necessarily true if the substring denoted x begins where the substring y begins,

but the two must also end in the same position. The k-ary predicate S(t1, . . . , tn) is true for

all strings where substring t1 is immediately (with no intervening symbols) followed by t2,

and t2 immediately by t3, etc.

What we want to achieve is a notation where we can construct sentences using quanti-

fiers and propositions in such a way that the quantification and bound propositions apply to

substrings. The end result is that a sentence in our notation shall characterize some subset

of Σ∗ for which that sentence is true. That is, our domain of discourse is Σ∗ and the range

of a quantification is the set of substrings of strings in Σ∗.

Let us examine some example sentences that characterize regular languages, and look

at the languages they indirectly define:

(i) (∃x)(x ∈ ab)

(ii) (∃x)(x ∈ ab) ∧ (∃y)(y ∈ cd)

(iii) (∀x)(x ∈ ab)

(iv) (∀x)((x ∈ ab)→ S(x, d))

(v) (∀x)((x ∈ ab)→ (S(c, x) ∨ S(x, d)))

(vi) (∀x)((x ∈ ab)→ S(x,Σ∗d))

(vii) (∃x)(x ∈ L ∧ (∀y)(y ∈ L→ x = y))

Sentence (i) is true for the language (Σ∗abΣ∗). That is, the sentence characterizes all

the strings that contain ab as a substring—or more precisely, all the strings that contain

177

a substring which we call x and where the substring x is a member of the language ab.

Sentence (ii) is true for all strings that contain both a substring ab and a substring cd.

Sentence (iii) is not true for any string in Σ∗. That is, there is no language that charac-

terizes sentence (iii). Hence, it is true only for the empty language ∅. It is easy to see that

there can not exist a string in Σ∗ such that every substring in it would be ab.

Sentence (iv) is true for all strings where, whenever ab is found as a substring, it is fol-

lowed by the string d. Sentence (v) is true for all strings where, whenever ab is found as a

substring, it is preceded by c or followed by d. Sentence (vi) is the language where, when-

ever ab occurs as a substring, it is followed some time later (not necessarily contiguously)

by d.

Sentence (vii) is the language already characterized by the regular expression in (6.1).

It is true for all strings that contain one and exactly one substring drawn from the language

L. Note the use of the equality of position predicate: there exists a substring x such that x

is a member of L, and for all y such that y is also in L it must be the case that the position

of x and y are the same.

6.4. Compiling logical formulas

6.4.1. Notational preliminaries

As mentioned above, in compiling logical formulas to automata, we will take advantage of

auxiliary symbol manipulation in the construction process. To this end, we shall refer to

the alphabets Σ (which is the actual alphabet that we’re interested in), an auxiliary alphabet

Γ, and a joint alphabet ∆ = Σ ∪ Γ.

6.4.2. Introductory notions

Consider the effect of defining a language over an alphabet ∆ = Σ∪Γ, where the alphabet

is divided into two parts Σ = {a, b} and Γ = {©} (our auxiliary alphabet), such that it

178

contains exactly one instance of ©, i.e. (Σ∗ © Σ∗), and then intersecting this language

with a language that contains the ©-symbol followed by a, and finally deleting the ©

symbol from the language. Let us call this auxiliary symbol removal operation Π(L), i.e. a

homomorphism Γ→ ε. In other words:

Π((Σ∗© Σ∗) ∩ (∆∗© a∆∗)) (6.2)

The end result in this example is the language over Σ∗ that contains at least one a.

From one perspective it is simply another way of saying (Σ∗aΣ∗). However, laid out in this

fashion, we can see that separating the regular expression into two parts has brought about

two independent statements with different semantics: the first one, (Σ∗© Σ∗), asserts the

existence of exactly one symbol©, while the second, (∆∗© a∆∗) asserts that there is a

©-symbol which is followed by an a. Informally, the first part says “there exists exactly

one position called©,” and the second part: “some position called© is followed by an a.”

In effect what we have achieved in intersecting these two statements and deleting the

©-symbol is a form of variable binding—the first regular expression being equivalent to

existential quantification of a position in a string, or the “existence of a substring,” and

the latter a proposition bound by the variable ©. This specific example illustrates the

fundamental connection between first-order logic and regular languages.

We can now expand the same idea, and replace the first part of the regular expression

with (Σ∗ x©Σ∗ x©Σ∗) (for the sake of clarity in notation, let us replace the© with x© in the

auxiliary alphabet ∆, to make clear that our auxiliary symbol says something about a letter

variable which we shall call x). We are now defining the language over ∆∗ that contains

exactly two symbols x©. The purpose of the two x©-symbols is to delineate two positions

in a string x, the starting and the ending position. Let us call the combined effect of this

regular expression and of removing the auxiliary symbols Π(Σ∗ x©Σ∗ x©Σ∗) the regular

expression equivalent of (∃x). In intersecting this language before removal of the auxiliary

179

symbols with any regular language ϕ (that may or may not contain x©) we can achieve a

propositional sentence

(∃x)(ϕ) (6.3)

6.4.3. Propositions

To continue with this idea: what about the possible propositions in ϕ? In modelling of

the open statements ϕ, the simplest desirable proposition would be one with the seman-

tics that a substring is a member of some language L, i.e. x ∈ L. Over ∆∗ the regular

expression (∆∗ x©L x©∆∗) describes precisely this circumstance: “there exists a substring

x©L x©.” The successor-of-relationship S(t1, . . . tn) alluded to earlier—where t1 is imme-

diately succeeded by t2 etc., and where the terms could either be arbitrary languages or

variables—translates naturally to (∆∗t1t2 . . . tn∆∗), for example, S(x,A) would be ren-

dered as (∆∗ x©∆∗ x©A∆∗).

Since we have seen that (∃x) in our still tentative logic over strings can be modelled

by Π(Σ∗ x©Σ∗ x©Σ∗), and since a universally quantified proposition (∀x)(ϕ) is equivalent

to ¬(∃x)¬(ϕ), the regular expression equivalent of a universally quantified statement is:

(∀x)(ϕ) ≡ ¬Π((Σ∗ x©Σ∗ x©Σ∗) ∩ ¬(ϕ)) (6.4)

We are now in a position to put together a complete logical sentence. For example, the

sentence:

(∀x)(x ∈ A → S(x,B)) (6.5)

would describe the language where every instance of a member of language A is immedi-

ately followed by a string from language B. In translating the open statements to regular

expressions, we make use of the conditional laws of statement logic, where (P → Q) ⇔

(¬P ∨Q), and we find the equivalent regular expression following the above scheme:

180

(∀x) x ∈ A S(x,B)︷ ︸︸ ︷
¬Π
(

(Σ∗ x©Σ∗ x©Σ∗) ∩ ¬
(
¬
︷ ︸︸ ︷
(∆∗ x©A x©∆∗) ∪

︷ ︸︸ ︷
(∆∗ x©∆∗ x©B∆∗)

))
6.4.4. Variables

So far we have only assumed propositions quantified by a single variable x. Naturally, we

will want to extend this to an arbitrary number of variables. This requires some bookkeep-

ing on the part of the alphabets. Suppose we have a sentence

(∀x)(∃y)(ϕ) (6.6)

Now, it will not do to define (∃y) as (Σ∗ y©Σ∗ y©Σ∗) for the simple reason that this

precludes the existence of x© symbols (as x© is not a symbol of Σ). So, with several

symbols, we need the ability to describe “any symbol in ∆ except y©,” to ensure that we

allow other auxiliary symbols in the regular expression equivalent of (∃y). This is of course

easy to describe as a regular language (∆− y©), and as a shorthand and to keep the notation

clean we shall say ∆y signifies precisely this: any symbol in the alphabet ∆ except y©.

Hence, a construction such as

(∀x)(∃y)(ϕ) = ¬(∃x)¬
(
(∃y)(ϕ)

)
(6.7)

becomes

¬Π
(

(∆∗x x©∆∗x x©∆∗x) ∩ ¬Π
(
(∆∗y y©∆∗y y©∆∗y) ∩ (ϕ)

))
(6.8)

Until now, we have said little about the operation Π(L), except that it deletes the sym-

bols in our “variable alphabet” Γ from the language L. From a formal language perspec-

tive, this is simply a substitution Γ→ ε, or, from an automaton perspective, a replacement

of transitions containing symbols from Γ with ε-transitions. Again, in order to keep the

notation uncluttered, we shall define Π(L) as a dynamic operation, that also changes the al-

phabet Γ, shrinking it by one symbol, which is the symbol that is currently being removed.

181

This operation is crucial for the possible language complements that need to be taken in

the process of eliminating several quantifiers. In the above example (6.8), for instance, the

innermost Π-operation deletes the symbol y© from the language and removes the symbol

y© from Γ, leading to that the following complement is taken with respect to an alphabet ∆

(recall that ∆ = Γ∪Σ) that only contains one auxiliary { x©}. Likewise, after the outermost

Π operation, ∆ = Σ, since all auxiliaries have now been purged from the auxiliary alpha-

bet. This operation could be described non-dynamically, but at the cost of much lengthier

expressions and without contributing to the clarity of the operation.

6.4.5. Propositions

We are naturally not restricted to the propositions developed so far—in fact a generous

interpretation in this approach is that any subset of the language ∆∗ is a proposition.

Since a proposition, such as x ∈ L, i.e. (∆∗ x©L x©∆∗) may contain sublanguages

where no variable symbols occur—in this example L may be such a language—care must

be taken to ensure that other variables can freely occur within the regular expression equiv-

alent of the proposition. Hence, propositions should in general be augmented with freely

interspersed symbols from Γ, our marker alphabet. The proposition x ∈ L then becomes

(∆∗ x©L x©∆∗) ‖ Γ∗.3

For example, combining this with the successor-of predicate yields for S(L, x,R) the

regular expression

(∆∗L x©∆∗ x©R∆∗) ‖ Γ∗ (6.9)

3This would of course be equivalent to (∆∗ x©(L ‖ Γ∗)x©∆∗), which may be more efficient to compile
because of less non-determinism in the intermediate results: if L contains no symbols from Γ, which should
be the case, then allowing symbols from Γ to freely occur within strings from L will not introduce non-
determinism in the automaton construction. However, for the sake of generality, we will simply say that a
proposition P shall be implemented as above, with symbols from Γ occurring anywhere, i.e. P ‖ Γ∗.

182

Logic R.E. equivalent Notes

(∃x)(ϕ) ≡ Π
(
(∆∗x x©∆∗x x©∆∗x) ∩ (ϕ)

)
∆x = (∆− x©)

(∀x)(ϕ) ≡ ¬Π
(
(∆∗x x©∆∗x x©∆∗x) ∩ ¬(ϕ)

)
x ∈ L ≡ (∆∗ x©L x©∆∗) ‖ Γ∗

S(t1, . . . , tn) ≡ (∆∗t1 . . . tn∆∗) ‖ Γ∗ ti = xi©∆∗xi© for a variable xi
x = y ≡ (∆∗(x© ‖ y©)∆∗(x© ‖ y©)∆∗)

TABLE 6.1. Table summarizing the logical notation and their the regular expression equiv-
alents.

6.4.6. Interim summary

We now have a construction method by which our proposed logical notation can be system-

atically converted to regular expressions, and hence to finite-state automata. In particular,

new propositions can be introduced in a fairly straightforward way, and we shall do so

whenever needed in the upcoming examples. The basic construction together with basic

propositions is summarized in Table 6.1, where we assume the alphabets Γ and Σ, where

Γ is the marker alphabet that contains the variable symbols under quantification, such as

x©, y©, etc. Collectively, the two alphabets together are denoted ∆, i.e. ∆ = Γ ∪ Σ. The

operation Π(L) deletes the currently quantified variable symbol from L, and removes it

from Γ.

We can now proceed to tackle a selection of difficult regular language problems and

illustrate their solution through the notation developed here.

6.4.7. An example construction

Let us return to the example construction of a language that contains only one factor from

some arbitrary regular language L, for which a regular expression was given in (6.1). As

we saw, this language, in our logical notation translates to:

(∃x)(x ∈ L ∧ (∀y)(y ∈ L → x = y)) (6.10)

183

Here we need a way to model the proposition x = y for some variables x and y. This

circumstance is captured by the language where both x© and y© markers share the same

positions, i.e. occur in either order without intervening symbols from Σ (although other

symbols from Γ may intervene between the two); see table 6.1.

Again, using the fact that (P → Q)⇐⇒(¬P ∨Q), and following the translation method

given, we get the following regular expression:

Π
(
(∆∗x x©∆∗x x©∆∗x) ∩ (α ∩ ¬Π((∆∗y y©∆∗y y©∆∗y) ∩ ¬(¬β ∪ γ)))

)
(6.11)

where:

α = (∆∗ x©L x©∆∗) ‖ x©∗
β = (∆∗ y©L y©∆∗) ‖ (x©∪ y©)∗

γ = (∆∗(x© ‖ y©)∆∗(x© ‖ y©)∆∗) ‖ Γ∗

It should be noted that there is much room for optimization in this particular construction:

for instance, it is obvious that the shuffle product is unnecessary in α and partly so in γ, etc.;

however, we represent them explicitly here to follow the construction method mechanically.

In general, depending on the nature of the propositions and the formula, some steps can

be optimized or omitted to avoid unwanted nondeterminism in the intermediate stages of

automaton construction.

6.5. Applications

Let us now consider some larger example applications of the logical formalism. From now

on, we shall omit the actual translation of a logical sentence into a regular expressions, with

the exception that new propositions will be defined as needed. We assume that the construc-

tion is carried out mechanically following the method given above and the equivalences in

table 6.1.

184

6.5.1. Context restriction

The context restriction operator (Koskenniemi, 1983; Yli-Jyrä, 2003) is a notational device

to build regular languages from existential constraints over how and where certain strings

can occur. The notation is as follows:

A ⇒ B1 C1, . . . ,Bn Cn (6.12)

The intended semantics is that a context restriction statement of the format above de-

fines the language where every instance of a substring from the language A is surrounded

by some pair Bi and Ci. The languages A, Bi and Ci are all assumed to be arbitrary regular

languages. For example, the statement

x⇒ a b , c d (6.13)

characterizes the language where each instance of x must either be preceded by a and

followed by b, or preceded by c and followed by d. This language includes strings such as

axbb and cxd, but not strings like x or axd.

This type of a constraint is quite challenging in the general case to capture through stan-

dard regular expression operators. Yli-Jyrä (2003) presents a conversion method from such

a formula to a regular expression, where this regular expression grows exponentially as the

length of the formula grows—in effect showing that more advanced methods are necessary

to compile such statements into automata with any efficiency. Subsequently, Yli-Jyrä and

Koskenniemi (2004) have provided an efficient formula that—not unsurprisingly—uses

auxiliary symbol manipulation and removal to achieve the goal of compiling the formula.

The language of context restriction translates very naturally into a logical notation: if

x is a substring that is a member of language A, then x is the successor of a string from

B and a string from C is the successor of x. Employing the n-ary successor-of predicate

introduced earlier, this becomes:

185

(∀x)
(
x ∈ A →

(
S(B1, x, C1) ∨ . . . ∨ S(Bn, x, Cn)

))
(6.14)

and can be translated into a regular expression and a finite automaton exactly as described

above.

6.5.2. Two-level rules

We will now turn our attention to the possibility of compiling the two-level formalism of

Koskenniemi (1983) into finite-state automata. This is another nontrivial task which has

been treated fairly extensively in the literature (see e.g. Karttunen et al. (1987) for a com-

prehensive description of a compilation method that uses the auxiliary symbols technique).

A two level grammar defines a subset of the language Σ∗f , where Σf is the set of feasible

pairs, defined in advance. The set Σ∗f is constrained by the use of statements involving four

operators: a:b⇒ l r (saying the symbol a:b is only permitted between l and r), a:b⇐ l r

(which says a symbol a occurring between the languages l and r must be realized as b), and

a:b/ ⇐ l r (saying a:b is never allowed between l and r). The notation a:b ⇔ l r is a

shorthand for the conjunction between the first two types of rules.

The feasible pairs Σf are also assumed to include every symbol pair occurring in some

statement in the collection of grammar rules on the left-hand side.

Compiling a collection of such rules into a finite-state automaton of symbol pairs (or a

transducer) is non-trivial, again precisely for the reason that the problem contains overlap-

ping substrings. This is true in particular for right-arrow rules with multiple contexts.

However, each of the rule types are quite comfortably expressible in the logical notation

proposed:

a:b ⇒ l r ≡ (∀x)(x ∈ a:b→ S(l, x, r))

a:b ⇐ l r ≡ ¬(∃x)(x ∈ a:b ∧ S(l, x, r))
a:b /⇐ l r ≡ ¬(∃x)(x ∈ a:b ∧ S(l, x, r))

Here, the negation in statements such as a:b refers to any symbol in the alphabet, except

186

b. As we consider symbol pairs to be single symbols, a:b is the set of single symbols such

that input side is a and the output side is not b.

There is the additional practice (Karttunen et al., 1987; Beesley and Karttunen, 2003)

that right-arrow rules with multiple contexts are allowed, are separated by commas, and are

interpreted disjunctively; i.e. one of the contexts must hold for the symbol pair a:b to be

legal. For right-arrow rules, this prompts exactly the same solution as for context restriction

above:

(∀x)(x ∈ a:b→ S(l1, x, r1) ∨ . . . ∨ S(ln, x, rn)) (6.15)

For left-arrow rules and disjunctive multiple contexts, the logical specification is:

¬(∃x)
(
x ∈ a:b ∧ (S(l1, x, r1) ∨ . . . ∨ S(ln, x, rn))

)
(6.16)

that is, in every context li ri, a must be realized as b.

In essence, the above is a complete compilation algorithm and logical specification for

two-level rules, if translated to regular expressions through the method presented above.

The collection of individual rules are assumed to be intersected with each other and the set

of feasible pairs. Hence, we get that a two-level grammar G can be compiled as:

G = Σ∗f ∩R

where R is the intersection of the individual rules compiled through the notation presented

here.

6.6. Relationship to auxiliary symbol manipulation

Let us briefly pick up the thread that was left unfinished earlier in the chapter: the notion

that the logical formalism is an abstraction of a collection of techniques widely used in

finite-state language processing: that of auxiliary symbol manipulation. We can go back

187

and analyze some of the results and compilation methods advanced in the literature in terms

of the logical notation and, first of all, verify that previous approaches are correct, and

secondly, see that they essentially perform the same operation as compiling the equivalent

logical formula would do.

6.6.1. Context restriction compilation with auxiliary symbols

A compilation method for context restriction rules of the type in (6.12) is given in Yli-Jyrä

and Koskenniemi (2004) as follows. For a set of context-restriction rules

A ⇒ B1 C1, . . . ,Bn Cn (6.17)

we construct

Σ∗ − h{�}(Σ∗ � A � Σ∗ −
n⋃
i=1

Σ∗Bi � Σ∗ � CiΣ∗) (6.18)

where � is a symbol not included in Σ and h a homomorphism that deletes the symbol

�.4 The authors do not discuss how the compilation formula was discovered, although

their arguments for its correctness are definitely of a procedural nature. The authors also

illustrate the difficulty of compiling such statements by providing an extensive appendix

that analyzes the errors in many previous attempts found in the literature to reach a general-

purpose formula.

To slightly ease the analysis of formula (6.18) and to help with its comparison to the

logical formalism, we can restrict ourselves to the single-context case which becomes, in

Yli-Jyrä and Koskenniemi’s notation:

Σ∗ − h{�}(Σ∗ � A � Σ∗ − Σ∗B � Σ∗ � CΣ∗) (6.19)

4The original formula did not consider the contexts to be automatically extended on the left and right
with Σ∗, something usually done in natural language processing applications. That addition to the formula is
mine.

188

In our logical notation, as seen in (6.14), we would compile such an expression as:

(∀x)(x ∈ A → S(B, x, C)) = (6.20)

¬(∃x)¬(x ∈ A → S(B, x, C)) (6.21)

which by the regular expression conversion becomes

¬Π
(
(Σ∗ x©Σ∗ x©Σ∗) ∧ ¬(¬(∆∗ x©A x©∆∗) ∨ (∆∗B x©∆∗ x©C∆∗))

)
(6.22)

where ∆ = Σ ∪ { x©} and by DeMorgan’s rule

¬Π
(
(Σ∗ x©Σ∗ x©Σ∗) ∧ (∆∗ x©A x©∆∗) ∧ ¬(∆∗B x©∆∗ x©C∆∗)

)
(6.23)

Inspecting the distribution of x©, and noting the fact that none of the languages A, B,

or C contain the symbol x©, we see that the different occurrences of ∆ can be reduced to

Σ, yielding

¬Π
(
(Σ∗ x©Σ∗ x©Σ∗) ∧ (Σ∗ x©A x©Σ∗) ∧ ¬(Σ∗B x©Σ∗ x©CΣ∗)

)
(6.24)

and of course (Σ∗ x©Σ∗ x©Σ∗) ∧ (Σ∗ x©A x©Σ∗) = (Σ x©A x©Σ), so we have that the above

equals

¬Π
(
(Σ∗ x©A x©Σ∗)− (Σ∗B x©Σ∗ x©CΣ∗)

)
(6.25)

that is, exactly the same expression as given in (6.19), except the symbol x© corresponds to

� and the operation Π to the homomorphism that deletes the �-symbols.

6.7. Discussion

We have presented an extension to the formalism of regular expressions, and kind of reg-

ular predicate logic. It systematizes the prevalent use of auxiliary symbols in defining

189

complicated languages in a way that is notationally clear and can be intermixed with stan-

dard regular expressions. In particular, the propositions of our regular predicate logic are

freely extendable and it is assumed that one can take advantage of other finite-state calculus

operators in defining new predicates.

We have also demonstrated how the notation can be used to systematically define other

formalisms used in natural language processing applications using two-level rules as an

example. We believe the new notation brings a level of transparency to the definition of

other complex regular expression operations. We will take advantage of this notation in

subsequent chapters, in particular when dealing with multitape automata where the notation

and compilation method becomes extremely useful.

It is interesting to note that Kaplan and Kay (1994), in defining what they call “if-P-

then-S(L1,L2)”—the language where every string fromL1 is followed by some string from

L2—as ¬(Σ∗L1¬(L2Σ∗)), point out an intuition that the “double complementation in the

definitions . . . and also in several other expressions . . . constitutes an idiom for expressing

universal quantification” [italics mine].

In the logical formalism presented in this chapter it is the combination of a specific type

of use of auxiliary symbols together with a double negation that constitutes an idiom for

universal quantification. The double negation (taken with respect to different alphabets)

then becomes an artifact of the definition of universal quantification in terms of existential

quantification and the construct where variable binding is achieved through intersection in

expressions such as

(∀x)(ϕ) ≡ ¬Π
(
(∆∗x x©∆∗x x©∆∗x) ∩ ¬(ϕ)

)
(6.26)

The ‘if-P-then-S’-type functionality of Kaplan and Kay (1994) in a way marks the

boundary of what is definable easily through standard regular expressions. As we move

beyond such statements in terms of complexity, other methods become necessary. The logic

190

presented in this chapter is one such method, and we find that many previous approaches

that use auxiliary symbol manipulation really reduce to this.

191

7. MULTITAPE AUTOMATA

7.1. Introduction

In this chapter we will introduce a method for encoding multitape automata (or k-ary

transductions) with the standard representation of finite-state automata and present a set

of operations with which the content of such multitape automata can be manipulated and

constructed.

The motivation for introducing and exploring the properties of multitape automata is

twofold. First, as we will explore more in-depth in chapter 8, the ability to manipulate mul-

titape automata provides a useful construction aid for ordinary automata and transducers,

in particular for such automata and transducers that would be difficult to construct using

standard methods.

Second, multitape automata—as has been noted in the literature (Kay, 1987; Kiraz,

1994, 2000)—contain features that make them attractive as such for the treatment of phonol-

ogy, morphology, and other linguistic tasks. The ability to model nonlinear features and

hierarchies by placing different types of material on different tapes in a multitape automaton

corresponds intuitively to many popular theoretical models of phonology and morphology.

Modeling natural language phenomena with multitape automata is a suggestion that has

occasionally surfaced in the literature, usually in the context of how to model nonconcate-

native morphologies. However, a coherent perspective on multitape automata and tools to

handle them has been lacking to the extent that they are now usually perceived as arcane

devices which are theoretically interesting, but difficult to construct and maintain in prac-

tice. We will address this by developing a unified model of multitape automata and the

tools to manipulate them. This model is a combination of the logical formalism developed

in chapter 6 and the multitape model developed in the current chapter. After presenting the

192

model, the separate chapter 9 will outline the development of actual grammar applications

based on it.

In this chapter, we will first, in section 7.2, look at previous work and consider some

different possibilities for working with multitape automata, after which the proposed model

is discussed in detail in section 7.3. In section 7.4 we will consider some basic operations of

manipulating multitape automata that our construction allows. The possibilities of Boolean

operations are discussed in section 7.5. Different tape-manipulation operations such as

extraction and insertion of tapes are presented in section 7.6. We will also want to express

constraints on the content of tapes vs. other tapes and their alignment. The basic tools

for performing this are given in section 7.8. Some additional operations related to parsing

mechanisms and conversion to and from finite-state transducer representations are given in

sections 7.9 and 7.10.

7.2. Previous work and perspectives

Before we settle on an actual method for handling multitape automata, let us now briefly

consider some of the options available for a treatment of multitape automata or k-ary trans-

ductions. One obvious strategy would probably be to extend the definition of a finite-state

transducer directly to perform a k-ary transduction. That is, we would simply modify the

transition function in the transducer model to perform a mapping from Q×Σ1 × . . .×Σk

to Q. From a graph-based point of view, this model would entail no change to the state-

transition model we have been considering up until now, with the exception that transition

labels would be k-ary, i.e. of the form s1:s2:. . .:sk.

There are two obvious drawbacks to such an approach. The first is that in extending the

transducer model in this fashion, we would not be able to take advantage of the operations

on automata and transducers developed so far, and would have to modify each algorithm to

generalize to k-ary transitions. The second shortcoming arises from complexity concerns.

There is a fundamental space complexity problem with k-ary transduction models, which

193

is that when the number of tapes grows, the required joint symbol alphabet—exhibited on

the transitions—grows with exponential rapidity unless special mechanisms are devised

to curtail this. This explosion in the number of transitions in a k-tape automaton can in

many cases be more severe than the growth in the number of states of a complex grammar.

To take a simple, concrete example of an operation that would seem to arise naturally in

a language processing setting: suppose we have a 5-ary transduction model, each ‘tape’

consisting of the same alphabet of, say, 22 symbols {s1, . . . , s22}. Such an alphabet is not

improbable in natural language setting. Now, assume we want to restrict the co-occurrence

of s1 on any combination of tapes, meaning s1 can only occur once on one tape in the same

position, i.e. we would be accepting any strings containing a symbol such as s1:s2:s2:s2:s2

or s2:s2:s2:s2:s3 but not, s1:s2:s3:s4:s1. Without further treatment of the alphabet behavior,

this yields a k-ary transducer which has a single state, but 5,056,506 transitions—each tran-

sition representing a legal combination of symbols on the five tapes. This kind of transition

blow-up is not completely inevitable: of course one can devise many tricks to avoid it, such

as adding certain semantics to the transition notation—in our example by perhaps having a

special type of ‘failure’ transition which leads to non-acceptance. For the above example

this would cut down the number of transitions from 5,056,506 to 97,126. The drawback

with such advanced methods is that any changes will tend to affect the entire finite-state

system one is working with, requiring adaptations in almost every underlying algorithm

to construct automata. One, again, is then unable to leverage the power of existing algo-

rithms designed for finite-state machine construction, but needs to build special-purpose

algorithms for whatever transduction model one has in mind.

Another possibility is to directly consider established models for multitape automata

such as the Rabin-Scott model discussed in section 5.7.3 on page 160. The weak point

in such models is that they are deliberately deterministic in ways that inhibit one from

representing such ambiguities that would be desirable in natural language.

In contrast to the two models above, the one we shall pursue here is based on a simula-

tion of multitape automata by a standard deterministic finite automaton. We do so by defin-

194

ing an isomorphism between single-tape automata and multitape automata. Simulations of

multitape machines by single-tape ones most often come up in proofs and gedankenexper-

iments regarding the equivalence of different models of computation, but are more rarely

employed in practice (Aho and Ullman, 1972; Kozen, 1997; Sipser, 2006). The immediate

advantage is that by doing a simulation, rather than dealing with an entirely new model, we

may fall back on the algorithms already established and use those to develop new ones that

fulfill our needs in the treatment of multitape automata.

7.3. Encoding

As mentioned above, our encoding of multitape automata on a single tape is similar to

simulations often used in proofs of the equivalence of multitape and multihead Turing

machines to single-tape and single-head ones. In particular, we shall abstract slightly away

from the details of transitions and states, and concern ourselves with simulating the set of

accepted tape-combinations of a k-tape automaton with a single-tape one.

The fundamental notion in the simulation is this: we consider a multitape automaton

MT of k tapes, where each tape contains strings over the alphabet Σ, and that only ac-

cepts tape combinations where the content all tapes are of equal length n. If this multitape

automaton MT accepts a given set of strings over Σ∗ in the configuration

{s1
1s

2
1 . . . s

n
k} . . . {s1

ks
2
k . . . s

n
k}

we represent this configuration as a single string {s1
1s

1
2 . . . s

n−1
k snk}. That is, for each ac-

cepted combination of tapes in the k-tape automaton, we can convert this combination into

a string over a 1-tape automaton by ‘collecting’ the symbols by traversing the tapes in a

zig-zag fashion across columns and rows as seen in figure 7.1.

Since we are interested in being able to define configurations where the contents of

the different tapes are of different length, we reserve a special semantics for the symbol

{�} ∈ Σ, which can be thought of as marking a ‘blank’ on a tape.

195

FIGURE 7.1. Encoding a k-tape multitape automaton configuration in (a) using traversal
pattern (b) with the single tape in (c).

To illustrate the representation in the single-tape encoding, the two-tape different-length

configuration:

T1 a
T2 b c

would be represented as the string ab�c.1

Requiring blanks to be marked allows us to keep the tapes synchronized and thus also

permits the encoding we suggest. On the other hand, this also requires special precautions

in treatment of these automata, as we shall see later.

7.4. Basic operations

Let us first consider the possibility of concatenating, taking the union, or the Kleene closure

of two acceptable configurations of a multitape automaton.

It follows fairly straightforwardly from the encoding we have chosen that all the stan-

dard operations of {∗, ·,∪} apply directly to k-tape configurations as well. That is, if we

have two sets of k-tape configurations Ck1 and Ck2 , their concatenation, union, and Kleene

closure can be directly applied to the one-tape representations C1
1 and C1

2 using standard

algorithms as well. This can be shown by a simple induction of the operations.

1This use of tape blanks is very similar to the use in two-level morphology (Koskenniemi, 1983).

196

7.5. Boolean operations

Similarly to the above, the Boolean operations which can be applied to a single-tape au-

tomaton simulating a multi-tape one, yield the correct results from the perspective of tape

configurations. Since we are forcing the length of the content of the different tapes to be

equal (by including ‘blank’ symbols), the complement and intersection operations, how-

ever, are valid with respect to a particular configuration and alignment of the blanks, and

no other.

7.6. Operations on tapes

From a practical perspective, the most important operations we can perform have to do

with the manipulation of individual tape contents in a k-tape machine. This includes the

possibility of extracting from a k-tape automaton the entire contents of a tape, producing a

k − 1 tape automaton, or inserting a stand-alone tape, producing a k + 1-tape automaton,

or swapping the contents of individual tapes.

To perform these operations, we shall take advantage of the methods already introduced

in chapter 3, in particular the combined operation of composition and domain extraction,

which allows us to perform a variety of tasks directly through regular expression calculus

without low-level manipulation of states and transitions.

7.6.1. Tape insertion and removal

Tape insertion, as we shall define it, is the task of, given a set of strings, represented as a

regular language L, and an automatonMk, which is a single-tape representation of a k-tape

automaton, arbitrarily inserting the contents of L as the ith tape, resulting in a k + 1-tape

automaton. Tape removal is the inverse of tape insertion: from a k-tape automaton, extract

tape i, producing a k − 1 tape automaton.

197

FIGURE 7.2. Inserting a single tape as the ith tape in a k-tape automaton.

Before we look at the details of tape insertion and extraction, let us first consider how

to talk about the contents of a single tape, the ith tape, disregarding the possible contents

of the other tapes in a k-tape automaton. Since two symbols in a k-tape automaton are on

the same tape if their positions are congruent modulo k, we can express the content of tape

i as L with respect to a k-tape machine as:

Ti
k(L) ≡ range(L ◦ ((ε:Σ)i−1 Σ (ε:Σ)k−i−1)∗) (7.1)

Note that this allows us directly to construct a k-tape automaton from individual single-

tape automata by declaring the contents of each tape independently and intersecting the

different tapes. For example, supposing we have sets of strings L1 . . . L4 and want to

construct a 4-tape automaton where each of the tapes i contains only strings from Li, this

can be done by:

T1
4(L1) ∩ T2

4(L2) ∩ T3
4(L3) ∩ T4

4(L4) (7.2)

Let us now consider a k-tape machine M and a set of strings L which we want to insert

as the ith tape of M as in figure 7.2. We can achieve this in a fairly intuitive way by first

‘expanding’ M to include an ith tape, the contents of which are arbitrary, displacing the

old tapes, and then intersecting this with Ti
k+1(L), i.e.

insert(L,Mk, i) ≡ range(M ◦ (Σi−1 (ε:Σ) Σk−i+1)∗) ∩ Ti
k+1(L) (7.3)

198

In a similar way, we can perform the tape removal: from a k-tape machine, remove the

ith tape, producing a k − 1 tape machine:

remove(Mk, i) ≡ range(M ◦ (Σi−1 (Σ:ε) Σk−i)∗) (7.4)

Tape extraction—or projection—is the operation where we simply want to, from a k

tape automaton, extract the contents of the ith tape, producing a single-tape automaton

(language). It can be defined as follows:

extract(Mk, i) ≡ range(M ◦ ((Σ:ε)i−1 Σ (Σ:ε)k−i)∗) (7.5)

We can also define an operation of tape swapping. Given a k-tape machine, we swap

the contents of tape i and tape j, not otherwise altering their content. This is defined as:

swap(Mk, i, j) ≡ range
(
M ◦ (

⋃
s∈Σ×Σ

(Σi−1 s Σj−i−1 s−1 Σk−j))∗
)

(7.6)

assuming i < j. The strategy of the swap is to use as an intermediary a transducer that

performs a mapping a:b on each tape i and, later in the same ‘column’, when reaching the

symbol on tape j, maps b:a.

7.7. Alignment of tapes

In the above operations we have implicitly assumed that in constructing and manipulating a

k-tape automaton, the individual tapes are of equal length. Or, alternatively, the languages

Lwhich we combine through tape insertion, extraction, etc., already contain the appropriate

number of blanks, such that combining several different-length tapes by intersection and

the T operation as in (7.2) yields something other than the empty language.

There are several possibilities at hand if we want to allow arbitrary alignments in the

above operations. If we have a language L which we want to insert in a k-tape machine,

and supposing L contains many different-length strings without �-blanks, we can modify

199

FIGURE 7.3. Three example alignment strategies for words on multitape automata.

L so that it either allows blanks to occur at any location or aligns the blanks in a particular

way. Let us first consider the ‘any’-type of alignment. Given a language L, we can produce

L such that blanks occur at any location by simply declaring:

Alignany(L) ≡ range(L ◦ (Σ ∪ (ε:�))∗) (7.7)

Alternatively, we may want all the blanks to align after the ‘real’ symbols in L.

Alignrightblanks(L) ≡ range(L ◦ Σ∗(ε:�)∗) (7.8)

Or, we may want to allow for blanks either in the beginning or in the end of the tape’s

contents, such that the actual symbols occur consecutively, without intervening blanks:

Alignedgeblanks(L) ≡ range(L ◦ (ε:�)∗ Σ∗ (ε:�)∗) (7.9)

Naturally, there are a number of strategies we could pursue in aligning blank symbols

with non-blank symbols. The most useful ones are probably the three discussed above,

illustrated in figure 7.3.

7.8. Constraint operations

All the operations to construct multitape automata from single-tape ones discussed above

are such that the contents of the tapes remain independent of one another regardless of

construction. In effect, we have not yet developed any machinery with which, given our

200

encoding, we can express co-occurrence restrictions across tapes. This is something we

will want to do because the ability to construct multitape automata from different elements

where the tapes interact with each other is fundamental for future applications we have in

mind.

Some natural constraints that we would obviously like to express over different tapes

include concepts such as:

(i) If a string x occurs on tape i, it must/must not be aligned with a string y on tape j

(ii) If a string x occurs on tape i, it must/must not be preceded/followed by a string y on

tape j

(iii) If a string x occurs on tape i, there must/must not exist a string y anywhere on tape j

Also, we would perhaps like to express boolean combinations of all of the above exis-

tential statements.

Developing a separate formalism and ways to express such constraints through combi-

nations of the basic operations is a difficult task. The situation is analogous to the problem

statements in chapter 6, where we were faced with having to define increasingly complex

regular languages—but this time with the additional complication of keeping track of mul-

tiple tapes and the possible alignment of blanks as well.

7.8.1. Predicate logic

Fortunately, the adaptation of the predicate logic formalism in chapter 6 to the current prob-

lem is relatively uncomplicated. Indeed, the only modification required in the conversion

of logical statements in that chapter (cf. page 182) regards the definition of the regular

expression equivalent of the existential quantification over some variable, i.e. (∃x).

Recall that the function of the existential quantifier regular expression equivalent was to

isolate a particular substring in a language L and label it x© so that subsequent propositions,

statements, and boolean combinations thereof could be identified as referring to the same

201

FIGURE 7.4. Existential quantification with a single tape (a) and multiple tapes (b).

substring. The situation we are faced with now requires that, as we will want to quantify

over substrings which may have different content in different tapes, the symbol x© must be

distributed across all tapes (see figure 7.4). This requires that x© mark an entire column,

and so the regular expression equivalent must consist of k consecutive x©-symbols. To this

end, we can generalize the regular expression equivalent of (∃kx), k being the number of

tapes we are dealing with, and where the case k = 1 remains exactly as defined in chapter

6, i.e. (∃x). Hence,

(∃kx) ≡ ((∆k
x)
∗ x©k(∆k

x)
∗ x©k(∆k

x)
∗) (7.10)

And, as we have defined (∀x) in terms of existential quantification, this construction

requires no change for capturing (∀kx).

Leveraging the possibilities offered by the predicate logic formalism we can now con-

struct statements that dictate co-occurrence restrictions of arbitrary complexity, such as

those given in the above examples (i)—(iii). Let us look at some actual examples of how

to express these:

• Every occurrence of L on tape i should coincide with L′ on tape j

(∀kx)(Ti
k(x ∈ L)→ Tj

k(x ∈ L′))

• Every occurrence of L on tape i should be preceded by L′ on tape j

(∀kx)(Ti
k(x ∈ L)→ Tj

k(S(L′, x)))

202

• If L occurs on tape i, L′ does not occur anywhere on tape j

(∃kx)(Ti
k(x ∈ L)→ ¬(∃ky)(Tj

k(y ∈ L′)))

• Every occurrence of L on tape i is either aligned with L′ on tape j, or preceded by

L′′ on tape l

(∀kx)(Ti
k(x ∈ L)→ (Tj

k(x ∈ L′) ∨ (Tl
k(S(L′′, x)))))

The same observations as before apply to the distribution of blanks, which may or may

not be enforced whenever making logical statements over multiple tapes. If we want to

restrict the occurrences of some set of strings L using the predicate logic, we may spec-

ify precisely under which interpretation of the distribution of blanks the propositions shall

hold. Suppose L consists of the single string ab. Now, if in conjunction with propositions

we wish to say something about L, we can use the alignment functions above to specify

whether constraints shall apply only to the string ab on a tape, or also to the various pos-

sibilities �ab, a�b, ab�, ��ab�, etc., etc. Naturally, the same holds for any language

we discuss over the various tapes, such as any of the L′-languages discussed in the above

examples.

7.9. Conversion to and from transducers

In the event that we have a complex k-tape automaton, the ability to extract a transducer

from 2 tapes in that automaton is useful. As we have decided, because of complexity

concerns, to deviate from the transduction model in going from 2-ary transduction to k-ary

ones, converting a 2-tape automaton to and from a finite-state transducer requires some

special treatment. A k-ary transducer where the model is an automaton where transitions

are symbol vectors < s1, . . . , sn > can of course trivially be converted into a transducer.

But our model, where the contents of different tapes are modeled in transitions in different

states, requires a slight manipulation of the machines with methods that lie outside the

regular expression calculus.

203

si

sj

sk si sk

FIGURE 7.5. Converting a 2-tape automaton in (a) to a finite-state transducer.

In going from a 2-tape representation to a transducer, we know that every other symbol

in the language corresponds to one of two tapes, odd-numbered ones being tape 1, and

even-numbered ones tape 2. Hence, we can traverse the 2-tape automaton (breadth-first or

depth-first) and construct from state sequences si, sj, sk (where si is an even position) the

equivalent transducer states si, sk, and replace the labels in the transducer with the labels

going from si → sj : sj → sk (see figure 7.5). In the inverse construction we do the

opposite, namely for any label a:b going from a state si to sk, we introduce a state sj , and

a transition on a from si to sj and one with b from sj to sk.

Naturally, we need to take the blanks into account as well and convert those into ε or

vice versa before the conversion procedures.

7.10. Parsing

The final question we will want to address is that of ‘parsing’ with a k-tape automaton.

This task could be defined as first calling one of the k tapes an input tape and the remaining

k − 1 tapes output tapes, then asking the question, what are the possible configurations of

the output tapes in Mk, given that the input is w? This can naturally be answered by first

calculating

Ti
k(w) ∩M (7.11)

for tape i declared as the input tape, and subsequently extracting all the words from the

resulting automaton. Of course we may want to consider alternate alignments, or perhaps

204

all the possible ones, of the word w in which case we again would modify the automaton

representing w before performing the parse. Again, using one of the above Align-functions

will make this possible.

The other, more low-level, possibility is to consider an algorithm for doing this task.

In this case we may want to declare the input tape to be the first one, or by swapping tape

contents make it so if it is not already. Subsequently, since every kth symbol corresponds

to the input, we can by standard graph search techniques match the input against every kth

symbol and in such fashion extract the output.2

This second possibility may in practice be more efficient, but not necessarily asymp-

totically so, as a simple analysis reveals. It is easy to see that an ‘input’ word with any

alignment of blanks can be represented by an automaton with |w| + 1 states. Also, the

language

Ti
k(Alignany(w))

requires an automaton of k(|w| + 1) states. Hence, the complexity of the entire operation

is of the order |M |k(|w| + 1). Since |M | and k are constant, the entire operation grows

linearly in proportion to |w|. Extracting the set of legal words from the result automaton

can of course be performed in linear time with respect to its size as well using standard

techniques.

7.11. Discussion

In this chapter we have discussed a method for representing k-tape automata with the

single-tape model, the basis of which has been laid out in the previous chapters. The

2Ron Kaplan (p.c.) reports that in unpublished work on a similar interleaving encoding for 2-tape au-
tomata (transducers), it was observed that a low-level search algorithm for parsing was efficient in the forward
direction, but very inefficient in the inverse direction (where the contents of tape 2 is supplied). This suggests
that one may need to store multiple representations of a grammar for efficient parsing and generation. Of
course these different representations can be constructed by the tape-swapping operation after a grammar has
been constructed.

205

foremost advantage with simulating a k-tape automaton is that all of the basic operations

regarding construction transfer painlessly into the k-tape model. An example of this was

seen with implementing the most difficult operations with regard to multitape automata—

that of dictating constraints that should hold across different tapes. These could with very

little modification be accommodated by the single-tape predicate logic introduced in chap-

ter 6.

The purpose with the chapter has not been to consider the construction and manipu-

lation of multitape automata as an end to itself, but rather, lay the formal foundations for

two types of applications we shall see in later chapters: that of defining complex transdu-

cers and automata with multitape automata as an additional intermediate tool, and to define

natural language grammars directly in terms of multitape automata.

206

8. STRING REWRITING AND MULTITAPE AUTOMATA

8.1. Introduction

In this chapter we will present a method for compiling different types of string rewriting

rules to finite-state transducers. The ability to create finite-state transducers from abstract

descriptions of string rewrite rules is the cornerstone of many tasks in finite-state language

processing. It means that we can, for instance, construct morphological and phonological

grammars where finite-state transducers are composed in a cascade that map an abstract un-

derlying form to actual surface strings as well as construct shallow syntactic parsers, part-

of-speech disambiguators, tokenizers, phrase identifiers, and spelling correctors. String

rewriting is also a prerequisite for encoding other linguistic formalisms, such as Optimal-

ity Theory grammars (Karttunen, 1998; Gerdmann and van Noord, 2000), or Realizational

Morphology (Karttunen, 2003), as finite-state transducers. In addition, the ability to en-

code a basic string rewriting formalism into a transducer allows one to build a layer of

increasingly complex new operators, which is useful for a variety of tasks.

The task of encoding string rewriting rules goes back to the work of Johnson (1972),

who showed that the alternation rules in the Sound Pattern of English (Chomsky and Halle,

1968) could in principle be encoded as finite-state transducers. Although this discovery

went unnoticed at the time, the idea was independently rediscovered in the early 1980s by

Kaplan and Kay, whose work was finally published in Kaplan and Kay (1994). Although

many finite-state systems have been built around the two-level morphology of Koskenniemi

(1983), an increasing amount of work since the 1980s has been accomplished with various

string rewriting formalisms.

Not all aspects of string rewriting, as it was defined in early work of generative phonol-

ogy, can be exactly modeled using finite-state transducers. For instance, cyclic rules, where

rules keep repeatedly applying to a string until the string has changed to something where

207

the rule can no longer apply, are outside the realm of finite-state transducers. The actual

effect of most cyclic rules, however, can be achieved by a suitable choice of noncyclic rules

(Sproat, 1992). On the other hand, there are a number of surprisingly powerful variants of

string rewriting that can be encoded as a transducer—variants that have been discovered

by analysis of finite-state transducers themselves and do not stem from an effort to imi-

tate a formalism of theoretical linguistics. Many such modifications to the basic idea of

string rewriting have found a place in the toolkit of the working computational linguist and

contribute to the relative conciseness by which a finite-state notation can express complex

linguistic phenomena.1

For all but the simplest types of string rewriting rules, compilation into transducers is

a very complex task and needs to be broken down into smaller pieces. This chapter is laid

out as follows. In section 8.2 we look at previous work addressing the topic. We then give a

general outline of the method presented in this chapter, without going into too much detail,

in section 8.3. Next we turn to the overall compilation algorithm in detail in sections 8.4

through 8.6, after which we consider various types of different rewriting logics in sections

8.7 through 8.11. We summarize the compilation method in section 8.12 and conclude with

a comparison to previous work in section 8.13 as well as general discussion in section 8.14.

8.2. Previous work

The first work that systematically laid out how to compile transducers that encode SPE-

style rewrite rules using a small number of regular language operations was Kaplan and Kay

(1994). This publication, based on the authors’ work from the early 1980s, also presented

a number of different interpretations of string rewriting rules and reviewed thoroughly the

tacit assumptions that were present in the phonological literature whenever rewrite rules

were discussed. Subsequently, work stemming from Xerox (published in Karttunen (1996);

1For example Beesley and Karttunen (2003) show how various phrase-chunking operations can be per-
formed with longest-match type replacement rules, and Hulden (2006) shows that many syllabification pro-
cesses in phonological descriptions are naturally expressed with shortest-match rules.

208

Kempe and Karttunen (1996); Karttunen (1997) among others) documented a number of

additions and new techniques of string rewriting. Most importantly, the contents of these

papers were also implemented in actual software designed at Xerox for the development

of phonological and morphological grammars. Mohri and Sproat (1996) described another

compilation algorithm for basic rewrite rules, although no implementation was made avail-

able.

Our approach differs from Kaplan and Kay and the work of Kempe and Karttunen in

that the construction method here is not based on manipulation of finite-state transducers.

These earlier approaches have all defined string rewriting through a series of compositions

of regular relations—relations that insert predefined marker symbols, constrain their occur-

rence, replace strings with other strings, and remove marker symbols—in effect changing a

relation in small steps until reaching the desired result. Here, by contrast, we define a mul-

titape automaton of three tapes that models the rewrite rules we want to construct a trans-

ducer from in a more abstract way. At first, the relation defined by the multitape automaton

is underdefined: it defines rewrites where none should occur, and allows for rewrites where

they are not warranted. Subsequently, a set of filters are applied to this overgenerating

rewrite model, which removes the unwanted relations. During this construction, we never

remove individual symbols or insert symbols as previous approaches have done, but simply

filter out illicit relations. In a way this approach is more static: once a preliminary relation

is declared that models rewriting, we simply remove illegal relations without intermedi-

ate steps of inserting and constraining auxiliary symbols to identify which relations are to

be removed. This multitape automaton is constructed in such a way that it is easy, after

compilation, to convert it to a finite-state transducer.

8.3. General method

Let us first look at the general method we shall pursue for converting a replacement rule

into a transducer. At this stage we shall not be concerned with actually constructing the

209

intermediate regular languages that are necessary for the approach, but will merely look

at an outline of the strategy and logic behind the construction method. After the general

approach is clear, we shall delve into the specifics of each step and examine the various

possibilities of expressing a variety of specific types of string-rewriting rules.

We are here concerned with rules of the general format

φ→ ψ / λ ρ (8.1)

where the arguments φ and ψ may be arbitrary regular languages. At this stage, we ignore

details such as the particular ‘mode’ of rule application (left-to-right, right-to-left, choose-

longest-match, optional vs. obligatory rewriting, etc.) or the possibility of having several

rules apply at the same time, and only give an outline the general procedure by which a

transducer can be constructed. We shall assume, though, that what is to be constructed is a

transducer where strings from φ, if they occur in the proper conditioning environment, will

be mapped to strings from ψ.

In order to achieve this, we will use a multitape intermediary during construction. The

overall method will proceed in three general steps:

(1) We convert a set of rewrite rules to a generic multitape representation that encodes

string replacements from φ to ψ, but where these replacements occur in arbitrary

positions.

(2) We constrain the multitape automaton created from (1) in such a way that it represents

only those rewritings that are licensed by a rule.

(3) We convert the constrained multitape automaton into a finite-state transducer.

See figure 8.1 for all illustration of the overall approach.

The multitape encoding we use is the one presented in chapter 7, where we represent

the multitape automaton as a single-tape one with the symbols from each tape interleaved

evenly.

210

FIGURE 8.1. General procedure for converting string rewriting rules to finite-state trans-
ducers.

The representation in the scheme will be a very specific one. In fact, we use three

tapes to encode string replacement. The idea is that in step (1) we construct a multitape

automaton where tapes 2 and 3 represent the input and output respectively, and where tape

1 always carries extra symbols that signify whether the current symbol on tape 2 and 3 are

participating in a rewrite rule or not. In short:

• Tape 1 contains auxiliary semantic symbols to aid us in filtering out illegal rewrites.

• Tape 2 contains the possible input strings together with a smaller set of auxiliary

symbols different from those on tape 1.

• Tape 3 contains the possible output strings, aligned with tape 2, as well as auxiliary

symbols.

The alignment of strings on tape 2 and 3 is exactly the alignment we will use when

converting this multitape automaton to a transducer in the final step.

The auxiliary symbols we use are the following, together with their semantics:

@0@: represents a blank (and may occur on tapes 2 and 3)

@#@: represents end of string/beginning of string and occurs only on tape 2

@ID@: represents an identity symbol (only occurs on tape 3)

@O@: marks sequences outside the action of a rule on tape 1

211

@I@: marks sequences inside the action of a rule on tape 1

@I[@: marks the first symbol in the action of a rule on tape 1

@I]@: marks the last symbol in the action of a rule on tape 1

@I[]@: marks the first and last symbol in the action of a rule on tape 1

8.3.1. The candidate automaton MT1

In constructing the ‘candidate’ 3-tape automaton in step (1), we shall follow a very specific

procedure in aligning the tapes and their contents. In particular, MT1 only allows 3-tape

configurations where:

• Every 3-tape string begins and ends with 〈@O@,@#@,@ID@〉

• The intervening ‘columns’ alternate arbitrarily between single-symbol identity rela-

tions and rewriting sequences

We encode the single symbol identity relations as the triplet 〈@O@, a,@ID@〉 for

some symbol a where the symbol @O@ occurs on tape 1 aligned with a on tape 2 and the

symbol @ID@ on tape 3. There is a special reason for not using the triplet 〈@O@, a, a〉

for this purpose, as will become clear when we move to the details of the construction. In

fact, a three-tape triplet 〈@O@, a, a〉 is never allowed.

Rewriting sequences are encoded by placing the input/output pair of symbols on tapes

2 and 3, where the shorter one of the two strings is padded with the zero symbols @0@ at

the end.

Tape 1 contains the symbol @I[@ for every first symbol in a rewriting sequence, the

symbol @I]@ for every last symbol of a rewriting sequence, the symbol @I[]@ if the

symbols on tape 2 and 3 are both the first and last symbols in a rewriting sequence, and the

symbol @I@ to mark all characters in between.

212

FIGURE 8.2. Example configuration of 3-tape rewrite representation MT1.

In effect, tape 1 annotates, for every symbol, whether that symbol is in the process of

being rewritten or not, and if it is, what stage the rewriting is at. In this way, we know from

looking at just tape 1 symbols if we are in a substring position which is not being rewritten

at all (by the presence of @O@-symbol), or if it is being rewritten, what stage the rewriting

process is at (by the I-symbols).

For example, if we are encoding a rewrite rule:

abc→ de (8.2)

ignoring for the time being the possible conditioning environment, the configuration se-

quence in a rewrite rule will be

@I[@ @I@ @I]@
a b c
d e @0@

(8.3)

Note, in particular, that we have padded the shorter of the two strings with the symbol

@0@.

The 3-tape machine MT1 will then define the set of 3-tape paired strings that begin and

end with a boundary marker on each tape, and that otherwise alternates arbitrarily between

identity sequences and rewriting sequences (see figure 8.2).

213

8.3.2. Filtering out incorrect configurations from MT1

The output of step (1)—MT1—in a somewhat abstracted way represents a set of string

pairings such that φ is paired with ψ in arbitrary locations. Also, interspersed with these

pairings are arbitrary sequences of single-symbol identity relations. Converting this to a

transducer would simply produce the relation where φ is rewritten as ψ in arbitrary places,

and where every instance of φ can also remain unrewritten. Of course, no other translations

would be allowed by such a transducer. This is the point where we need to make further

restrictions on the possible configurations of MT1 as it wildly ‘overgenerates.’

The next task is to filter out (a) all the occurrences of φ on tape 2 that are not rewritten

as ψ when they should be and (b) to assure that rewrite sequences only occur where they

are warranted.

Let us postpone the examination of condition (b) for the moment and focus on (a), that

φ on tape 2 must be rewritten whenever the environment for its rewriting is fulfilled.

In order to advance the description, let us assume for the sake of exposition that in a

rewrite rule:

φ→ ψ / λ ρ (8.4)

the conditioning environment λ and ρ are regular languages, and that the logic of the rule

is such that λ and ρ must be fulfilled on the left and right-hand sides of φ with respect to

the original input string. In our 3-tape encoding, that means that for a string rewrite to be

warranted, tape 2 must contain λ and ρ to the left and right of a string from φ. We shall see

that there are many other modalities of rewriting that can be defined, but for the moment,

let us settle for this one.

In order to hinder the possibility that a string from φ remains unrewritten when it should

not, we need to filter out such strings from MT1 where φ is unrewritten with λ occurring

to the left of it and ρ occurring to the right. In constructing such a filter, the first question

is: how do we know when φ is not rewritten? Since we have declared the strings of MT1 in

214

such a way that unrewritten sequences always align with the special symbol @O@ on tape

1, this part of the task is quite easy. So, what we want to rule out are sequences such as:

Any @O@ @O@ @O@ Any
λ φ1 . . . φn ρ

Any Any Any Any Any
(8.5)

that is, any sequence where

1. An instance of φ occurs on tape 2, aligned with @O@ on tape 1 throughout

2. That instance of φ is preceded by λ on tape 2, disregarding the contents of tape 1 at

λ

3. That instance of φ is followed by ρ on tape 2, disregarding the contents of tape 1 at ρ

Clearly, if φ occurs in such an environment, it could also have been legitimately rewrit-

ten; therefore, φ should not occur in such an environment (unless the rewrite rule is desig-

nated as ‘optional’).

We can now turn to condition (b), that φ should be rewritten only if it occurs in the

proper conditioning environment. Since we have marked the first symbol of a rewrite se-

quence on tape 1 by either @I[@ or @I[]@ we are interested in allowing a tape configura-

tion

@I[@ or @I[]@ . . . @I]@ or @I[]@
φ
ψ

(8.6)

only if that configuration is preceded by λ on tape 2, and followed by ρ on tape 2. Here, the

schematic indicates that @I[@ or @I[]@ shall align with the first symbol of φ and ψ and

@I]@ or @I[]@ with the last with symbols from @I@ possibly intervening on tape 1.

Combining the two requirements (a) and (b), and removing illegal configurations from

MT1, then produces a 3-tape automaton encoding where strings on tape 2 (representing

possible inputs) and strings on tape 3 (representing the outputs) are aligned according to

legitimate rewriting sequences as designated by a rule.

215

8.3.3. Converting MT2 to a transducer

At the end of the construction it is clear that tape 1 is completely unnecessary since it

only contains special symbols which we used to filter out illegal sequences during the

intermediate steps. We can therefore remove tape 1 from our set of 3-tape configurations.

This can easily be done through:2

MT ′2 = range
(
MT2 ◦

(
(Σ:ε)ΣΣ

)∗) (8.7)

leaving us only with the ‘input’ and ‘output’ tapes. This two-tape representation can ob-

viously be converted to a transducer by the method given in chapter 7 where we traverse

the automaton and collapse states, naming odd-numbered transitions input symbols and

even-numbered ones output symbols. Before this can be done, however, there are three

things that need to be addressed. First, the automaton always begins and ends with the pair

〈@#@,@ID@〉. Removing the boundary symbols is of course easy: all we do is

MT ′′2 = range
(
MT ′2 ◦

(
(@#@:ε)(@ID@:ε)Σ∗(@#@:ε)(@ID@:ε)

))
(8.8)

The next concern are the symbols @ID@ which occurred on tape 3, signaling that the

symbol in the same position on tape 2 need to be in an identity relationship. Also, we may

have @0@-symbols on either tape, representing ε. Both of these special symbols can be

taken into account in the conversion to a transducer as described in chapter 7—with the

addition that @0@ are converted into ε-symbols, and any even position @ID@ shall be

converted to the previous symbol.

We have now reached the point where the construction method has been outlined in

its basics while partly disregarding the actual details of how the intermediate multitape

configurations and filters are constructed. The illustration thus far has been concerned

2In general, many of the operations in this chapter can be defined much more elegantly by the abstract
multitape operations in chapter 7. However, so that the contents here should serve as an independent ref-
erence for the compilation method on the level of regular expressions, we omit taking advantage of those
abstractions.

216

with compiling a very simple type of rewrite rule. For such rules, the elaborate semantic

tape we have constructed is really not necessary—there are a number of simpler ways to

construct these transducers. However, the notation on tape 1 turns out to be extremely

useful for subsequent variants that we have in mind: constructing parallel replacement

rules, and rules that operate with different modalities: left-to-right, right-to-left, longest-

match, shortest-match, as well as rules where the triggering context is specified both with

respect to the input and output sides.

8.4. Details of basic construction

Let us begin by considering the placement of string pairs φ× ψ on tapes 2 and 3, together

with the associated semantic symbols on tape 1. The question is how to construct the

three-tape configuration such that

• φ occurs together with ψ on tapes 2 and 3

• In case one of them in shorter than the other, the other one is padded with @0@-

symbols to the right

• tape 1 contains the symbols @I[@, @I[]@, @I]@, or @I@ in the proper sequence

as outlined above

This problem can be taken apart as follows. Let us first consider the problem of pairing

up φ and ψ on two tapes in such a way that the shorter of the two is padded with @0@-

symbols at the right edge. Clearly, following the basic mechanism outline in chapter 7, we

can do so by:

CP (φ, ψ) =

range
(
φ@0@∗ ◦ (Σ(ε:Σ))∗

)
∩ range

(
ψ@0@∗ ◦ ((ε:Σ)Σ)∗

)
∩¬
(
Σ∗@0@@0@

)
(8.9)

217

What we do above is extend φ and ψ with an arbitrary number of @0@-symbols at the

end, interleave the two, and filter out those strings that have two consecutive @0@ symbols

at the end. The latter condition removes any redundant @0@@0@ pairings at the end of

the string.

The second thing that needs to be done is the alignment of the symbols on tape 1. For

reasons that will become clear as we move to different modes of replacement, the exact

distribution of the symbols on tape 1 is as follows:

1. The first symbol on tape 2 must be aligned with @I[]@ or @I[@

2. The last non-@0@ symbol on tape 2 must be aligned with @I[]@ or @I]@

3. @I[]@ can only occur as the very first symbol, and can only be followed by @I]@-

symbols

4. A @0@ on tape 2 must be aligned with @I[]@ or @I]@

5. Other symbols are aligned with @I@

In other words, the idea of the different I-markers is that an opening marker always

appears in the first position of a rewrite and a closing marker appears as soon as the last

non-zero symbol appears on tape 2. This means several closing markers can appear in

succession. However, the symbol @I[]@, which is both an opening and closing marker,

can only appear once in a rewrite sequence and is always the first symbol when it does

appear.

We can encode the above requirements in a three-tape encoding as:

Semtape = @I[]@ @0@ Σ (@I]@ @0@ Σ)∗ ∪

@I[]@ \@0@ Σ ∪

(@I[@ \@0@ Σ ∪ @I]@ @0@ Σ)∗ @I]@ Σ Σ (8.10)

218

Now combining the two languages requires us to insert a tape 1 before the 2-tape

CP (φ, ψ) with arbitrary content, and intersecting the two above languages. Hence,

RS(φ, ψ) = range
(
CP (φ, ψ) ◦

(
(ε:Σ) Σ Σ

)∗)∩Semtape (8.11)

For example, RS(abc, defg) will produce a single string, the contents of which can be

displayed in 3-tape format as:

@I[@ @I@ @I]@ @I]@
a b c @0@
d e f g

(8.12)

The reason for the stringent requirements on the distribution of the symbols on the

semantic tape is that, as we construct additional filters to remove illegal configurations, we

can ascertain very quickly, for any symbol on tape 2 or 3, how that symbol participates in

a rewrite sequence. For most applications, we need not look ahead, or behind, to know

whether a symbol is outside the action of a rewrite rule, is the first symbol in a rewrite rule,

or the last, or anywhere in between.

8.4.1. Constructing MT1

As discussed above, MT1 shall contain arbitrary sequences of identity symbols, inter-

spersed with RS(φ, ψ), and begin and end with the boundary markers.

The Boundary language is quite simply

Boundary = @O@ @#@ @ID@ (8.13)

while a single identity symbol in a 3-tape encoding is

Identity = @O@ Σ @ID@ (8.14)

In order to construct the desired MT1 where the above requirements are fulfilled, we

construct

219

MT1 = Boundary (Identity ∪ RS(φ, ψ))∗ Boundary (8.15)

8.4.2. Filtering out unrewritten sequences

Let us now see how we can filter out from MT1 unwarranted rewrites, and to force rewrites

to happen in the correct conditioning environment.

As mentioned, in the above encoding, any occurrence of φ in the environment λ ρ

must be rewritten, unless the rule is designated as optional.

The identifier for an unrewritten φ-sequence is of course that a word from φ occurs on

tape 2 and is aligned with @O@-symbols on tape 1 throughout the word. That is, we can

define the regular 3-tape language that characterizes all the unrewritten sequences of φ.

Unrewritten(φ) = range
(
φ ◦
(
(ε:@O@) Σ (ε:Σ)

))
(8.16)

That is, φ on tape 2, aligned with @O@-symbols on tape 1, with arbitrary material on

tape 3.

This is not exactly the set of sequences we want to rule out, though. What we want

to rule out are those configurations where φ is preceded by the designated left context and

succeeded by the right context. Let us postpone for a minute the possibilities of defining

the left and right contexts and assume we can define their 3-tape configurations as well,

and call these LeftContext(λ) and RightContext(ρ). Then, what we want to rule out from

MT1 are sequences

LeftContext(λ) Unrewritten(φ) RightContext(ρ) (8.17)

That is, we can define a language

NoUnrewritten = ¬(Σ∗ LeftContext(λ) Unrewritten(φ) RightContext(ρ) Σ∗) (8.18)

220

which we can use as a filter to remove part of the overgeneration in MT1.

8.4.3. Filtering out improper rewrites

The second part is then to remove those sequences where φ has been rewritten, although

the context does not warrant as rewrite. We assume again we can define the languages

LeftContext and RightContext to identify the conditioning environment. We want to rule

out sequences where φ occurs on tape 2 rewritten in its entirety, and either the left context

or right context are improper. In fact, it is advantageous to talk about the sequences where

φ is allowed to occur as rewritten, instead of where it is disallowed. In effect we want to

define the 3-tape filtering language where:

• The grouping where a sequence φ appears on tape 2, aligned with ψ on tape 3, aligned

with the beginning and ending symbols on tape 1, only occurs when preceded by

LeftContext(λ) and followed by RightContext(ρ)

This, the language whose occurrence we want to constrain, is of course precisely the

language we defined earlier, namely

RS(φ, ψ)

In other words, using the logical formalism developed in chapter 6 we want to say that

LicensedRewrite = (∀x)(x ∈ RS(φ, ψ)→ S(LeftContext(λ), x,RightContext(ρ)))

(8.19)

Another way of saying the same thing is by using the context restriction operation

LicensedRewrite = RS ⇒ LeftContext(λ) RightContext(ρ) (8.20)

221

8.4.4. Defining MT2

As we have now defined both the sufficient and necessary conditions for a rewrite rule to

apply, a replacement rule can then be compiled in its entirety as

Replace(φ, ψ, λ, ρ) = MT1 ∩ LicensedRewrite ∩ NoUnrewritten (8.21)

8.4.5. Optional rules

Now, we may also want to define an ‘optional’ rule semantics. That is, in an optional

rewrite rule, which we shall designate by surrounding the arrow with parentheses, the result

we want is that a sequence φ may only be rewritten as ψ in the correct environment, but

rewriting is not required even though φ occurs in such an environment.

For example, a rule such as

a (→) ε / b (8.22)

would produce two distinct outputs for the input ab: ab and b.

To achieve this in compiling a rule, we simply omit constructing the filter NoUnrewrit-

ten and the corresponding intersection in formula (8.21).

8.5. More on conditioning environments

In the preceding discussion we left slightly unspecified exactly what kind of configurations

the 3-tape languages LeftContext(λ) and RightContext(ρ) should represent. In the intro-

ductory discussion, we assumed that both of these shall refer to symbol sequences in the

input which meant that rewrite rules would need to be conditioned with respect to the in-

put string. But this is of course not an absolute requirement: we might as well have them

refer to sequences in the output, or a combination of both. Karttunen (1997) contains an

222

instructive example on the different semantics of where the left and right context apply. In

particular he outlines four possibilities:

(1) LeftContext(λ) and RightContext(ρ) both refer to the input string

(2) LeftContext(λ) and RightContext(ρ) both refer to the output string

(3) LeftContext(λ) refers to the input while RightContext(ρ) refers to the output

(4) LeftContext(λ) refers to the output while RightContext(ρ) refers to the input

The example given to illustrate the different semantics in Karttunen (1997) is as fol-

lows.3

ab → x / ab a (8.23)

The output for this rewrite rule and the input string abababa is then distinct for each of

the four directionalities of the context, namely:

(1) (2) (3) (4)
abxxa ababxa or ababxa abxaba

abxaba

Defining 3-tape configurations of LeftContext(λ) and RightContext(ρ) in all of the

above ways is straightforward. In essence, we want to encode λ and ρ only on tape 2

or tape 3, ignoring the contents of the other tapes. That is, if we place λ on tape 2 when

defining the language LeftContext(λ), the left context will apply to the input side, and if

placed on tape 3, the output side, and similarly for the right context. Then, if we apply this

definition to formulas (8.18) and (8.19), we construct MT2 in such a way that the left and

right contexts apply to the input or the output.

3Karttunen (1997) uses special symbols instead of the context separator (/) to define these different types
of contextual requirements. The corresponding cases and symbols are (1) ||, (2) \/, (3) \\, and (4) //.

223

Now, let us declare two functions, Input() and Output(), which place regular languages

on either tape 2 or tape 3 according to the above. Constructing both of these is fairly

similar to how we have constructed the other 3-tape representations where we declare the

contents of one tape and allow arbitrary material on the other tapes. Two things need special

treatment in this case, however:

• λ or ρ in a context on tape 2 or 3 may contain @0@-symbols arbitrarily interspersed,

which need to be ignored. We need to be able to identify both even with interspersed

@0@-symbols.

• Substrings of λ or ρ may be represented on tape 3 as @ID@, in which case we need

to, for that symbol, look at tape 2 to match a string on tape 3

Taking this into account, we need to treat the placement of string sets on tape 2 slightly

differently than their placement on tape 3, and define

Input(L) = range
(
L ◦

(
(ε:Σ) Σ (ε:Σ) ∪ (ε:Σ) (ε:@0@) (ε:Σ)

)∗) (8.24)

and

Output(L) = range
(

L ◦
(
(ε:Σ) Σ (ε:@ID@) ∪ (ε:Σ) (ε:Σ)Σ ∪ (ε:Σ) (ε:@0@) (ε:Σ)

)∗)
(8.25)

With these functions, we can define LeftContext(λ) and RightContext(ρ) in all of the

above combinations of (1)–(4) in the compilation formulas (8.18) and (8.20) as:

(1) LeftContext(λ) = Input(λ), RightContext(ρ) = Input(ρ)

(2) LeftContext(λ) = Output(λ), RightContext(ρ) = Output(ρ)

224

(3) LeftContext(λ) = Input(λ), RightContext(ρ) = Output(ρ)

(4) LeftContext(λ) = Output(λ), RightContext(ρ) = Input(ρ)

8.6. Multi-level conditioning environments

In defining the conditioning environment for rewrite rules above we a priori decided, fol-

lowing Karttunen (1997), that λ and ρ apply either to the input side or the output side. But

because of the way the 3-tape representation is set up in MT1 there is really no need to set-

tle for one or the other. There is nothing preventing us from defining an environment that

constrains both the input side and output side separately. In effect, we are able to compile

a rewrite rule of the format:

φ→ ψ / λin × λout ρin × ρout (8.26)

where λin, λout, ρin, and ρout are all arbitrary regular languages. In that case we are left

with only one kind of conditioning environment specification. The above ‘directional’ rules

(1)–(4) would all be special cases of this one type of rule—cases where either the input side

or the output side is Σ∗. Namely,

(1) φ→ ψ / λ × Σ∗ ρ × Σ∗

(2) φ→ ψ / Σ∗ × λ Σ∗ × ρ

(3) φ→ ψ / λ × Σ∗ Σ∗ × ρ

(4) φ→ ψ / Σ∗ × λ ρ × Σ∗

The way to actually compile these formulas is fairly obvious. We declare

LeftContext(λin, λout) = Input(λin) ∩ Output(λout) (8.27)

RightContext(ρin, ρout) = Input(ρin) ∩ Output(ρout) (8.28)

225

and use these definitions whenever we refer to the context 3-tape languages in (8.18) and

(8.20).

8.7. Additional conditioning environments

We need not restrict ourselves to talking about left and right contexts that legitimize a

rewrite rule only in terms of strings or languages. We can additionally constrain the condi-

tioning environment depending on semantic issues. We may, among other things, want to

have a rewrite rule apply only in the context where the previous symbol immediately to the

left or the following one to the right is not affected by a rule. For example, consider a rule:

a→ b / a × Σ∗ (8.29)

in effect stating that the symbol a must be rewritten as b if preceded by an a on the left

input side, and anything on the output side.

With such a rule an input aaa would be rewritten as abb. However, if we added the

above semantics, that the rule apply only in environments where symbols to the left and

right are unrewritten, the rule would yield aba. This is easy to see because of the two

possible alignments

a a a
a b b

and

a a a
a b a

the former would not be legitimate because the middle and rightmost as would be rewritten

although they are not completely flanked by nonrewritten symbols.

226

8.7.1. Epenthesis rules

This type of an additional constraint is useful when dealing with epenthesis rules in phonol-

ogy and morphology. A rule such as:

ε→ a / c × Σ∗ d × Σ∗ (8.30)

intended to insert an a between c and d (on the input side) would certainly do so, and given

a input string cd yield cad. It would, however, also yield caad, caaad, etc. etc. Indeed, the

conditioning environment is such that an infinite number of legitimate input/output pairings

exists for the input cd. If we now added the constraint that, for a rule to be legitimate, an

unrewritten symbol must occur immediately to the left and right, we would get only cad as

an output, as intended for the above rule.4

Including such an extension is not complicated as we have intentionally marked all

symbols unrewritten by a rule with an @O@-symbol on tape 1. Hence, this semantics

can be added into the contexts by intersecting the language defining the other contextual

restrictions with the language where the first symbol is @O@ (to the right) and the last

@O@ (to the left) of a rewrite. That is, what we denote

φ
ep→ ψ (8.31)

as an additional constraint on the contents of the left and right contexts, and compile it by

defining

LeftContextep = LeftContext ∩ (Σ Σ Σ)∗(@O@ Σ Σ) (8.32)

RightContextep = RightContext ∩ (@O@ Σ Σ)(Σ Σ Σ)∗ (8.33)

4In Beesley and Karttunen (2003) a similar type of logic is defined—precisely for treatment of epenthesis
rules—called [..]-rules. The idea there is that an input string is first considered to contain exactly one ε
symbol between each input symbol, i.e. cd is interpreted as εcεdε, after which an [..]-rule only rewrites the
ε-symbols.

227

which we then use in lieu of the normal LeftContext and RightContext when compiling a

rule.

This is of course not the only type of additional constraint we may add: because we have

access to fairly detailed semantic information on tape 1, the conditioning environment can

be augmented with many different types of semantic content.

8.7.2. Word boundaries

Naturally, we will want to be able to refer to the edge of a word in a conditioning environ-

ment. For example, we will want to compile rules like:

L → ε /# (8.34)

in effect deleting any members of the regular language L at the left edge of an input string.

This is the reason we added the word boundary symbols @#@ to the beginning and end

of every configuration accepted by MT1. Doing so allows us to simply convert #-symbols

(or whatever special symbol we designate boundaries with) to the symbol @#@ when

compiling replacement rules and proceeding as usual.

Attempting to capture rules that are conditioned by word boundaries by somehow mod-

ifying the compilation depending on the presence of #-symbols results in great difficulties,

and the method presented here allows us to completely disregard this in the compilation

process (this idea is based on the approach used in Kaplan and Kay (1994) for handling

boundaries).

8.8. Multiple conditioning environments

A convenient additional notation would be the ability to specify multiple conditioning en-

vironments for a rule, such as:

φ→ ψ / λ1 ρ1 , . . . , λn ρn (8.35)

228

In such a case, we could like the interpretation to be disjunctive: the rule may apply in

any of the contexts listed, and φ cannot be unrewritten in any of the contexts listed. For

example, a rule:

a → b / λ , ρ (8.36)

would signify that we rewrite a as b whenever it occurs following λ or preceding ρ, and

that a must be rewritten as b in those environments.

In such a case, we must modify formulas (8.18) and (8.20). To handle the first case, we

declare:

NoUnrewritten = ¬(Σ∗ LeftContext(λ1) Unrewritten(φ) RightContext(ρ1) Σ∗) ∩ . . . ∩

¬(Σ∗ LeftContext(λn) Unrewritten(φ) RightContext(ρn) Σ∗) (8.37)

Similarly, (8.20) must be modified as

RS ⇒ LeftContext(λ1) RightContext(ρ1) , . . . ,

LeftContext(λn) RightContext(ρn) (8.38)

8.9. Multiple rule application

Until now we have only examined the compilation of a single rule into a finite-state trans-

ducer. Multiple rules, where the idea is that the output of one rule serves as the input of

the next rule, is of course easily handled by compiling individual rules into transducers and

composing them.

However, there is nothing to prevent us from declaring multiple rules that apply in

parallel. In fact, there is a natural semantics for parallel rule application if we declare, for

a set of rulesR, that for each rule inR, the following shall hold:

229

(a) for each obligatory rule Ri in R, there shall be no unrewritten sequences φi in the

proper conditioning environment

(b) Each φi may only apply in their respective conditioning environments

Note that the way we have specified item (a) means indirectly that two rewrite rules can-

not be in conflict even if they apply to the same string. Suppose we have two rewrite rules

that both need to write the same string s differently, and whose conditioning environments

overlap, say:

x → y / a , x → z / a (8.39)

Now, an x occurring after an a—as in the string ax—obviously applies to both rules:

the leftmost one needing to rewrite that x as y, and the rightmost one as z. However, both

outputs become possible in this scenario, since in defining parallel rules, point (a) only says

that a may not remain unrewritten. It crucially does not say a must be rewritten as one of

the rules dictate, say y, or z, in which case the rules would conflict with each other. But the

way we have defined the interaction is that as long as that a does not remain unrewritten,

from the ‘point of view’ of either rule, the configuration is acceptable. The end result is

that if two rules apply to a substring, several outputs become a possibility.

To handle this kind of interaction in the compilation, we must first modify the construc-

tion of MT1 in formula (8.15) so that the rewrite sequences which occur interspersed with

identities in MT1 reflect all the possible rules.

MT1 = Boundary (Identity ∪ RS(φ1, ψ1) ∪ . . . ∪ RS(φn, ψn))∗ Boundary (8.40)

As for the other parts—the constraints NoUnrewritten and LicensedRewrite—we com-

pile these for each rule in R exactly as in formulas (8.37) and (8.38) and intersect these

languages, i.e.

230

NoUnrewritten = NoUnrewritten1 ∩ . . . ∩ NoUnrewrittenn (8.41)

and

LicensedRewrite = LicensedRewrite1 ∩ . . . ∩ LicensedRewriten (8.42)

8.10. Modes of rule application

As has been motivated elsewhere, we would also like to be able to assert constraints over

the mode of rewriting if a string in φ occurs in such a position that there are several ways

in which one can legitimately rewrite such a sequence. The type of modality we have

motivated from a linguistic point of view is a leftmost-longest and leftmost-shortest type

of matching. Of course the symmetric versions of rightmost-longest and rightmost-shortest

are also definable. In contrast to previous work, we shall split the two types of requirements

into separate constraints of leftmost/rightmost and longest-match/shortest-match.

8.10.1. Leftmost

A leftmost mode rule application becomes a possibility when a string φ contains substrings

that may be a prefix or suffix of φ itself. Consider a very simple type of rule

aa→ x (8.43)

This rule would normally provide two possible outputs for the input string aaa: ax and

xa. Obviously the string aaa has two overlapping occurrences of φ, [aa]a and a[aa], and

so both rewrites are correct. However, a rule with the added leftmost semantics

aa
leftmost→ x (8.44)

231

would only accept only the relation aaa→ xa. Again, relying on the information contained

on tape 1, we can create an additional filtering mechanism on top of the standard one to rule

out rewrites that do not follow this semantics. What we want to do is remove an otherwise

legal configuration such as:

@O@ @I[@ @I]@
a a a

@ID@ x @0@
(8.45)

since in such configurations, we find that there is an instance of φ that begins outside the

action of a rewrite rule to the left. That is, an instance of φ is aligned with @O@, in the

correct conditioning environment.

These configurations are characterized by being flanked to the left by the left context,

to the right by the right context, and contain φ aligned with @O@ as the first character.

That is:

NonLeftmost(φ) = Input(φ) ∩ (@O@Σ∗) (8.46)

and hence, we want to rule out situations where we find

LeftContext(λ) NonLeftmost(φ) RightContext(ρ) (8.47)

This can be achieved by adding to the set of filters that apply to MT1 the language

¬(Σ∗LeftContext(λ) NonLeftmost(φ) RightContext(ρ) Σ∗) (8.48)

This is the same language as in (8.18) with the exception that the language Unrewritten

has been substituted for NonLeftMost(φ). We can thus incorporate this into (8.18) directly,

by adding to a leftmost-oriented rule the statement:

NoUnrewritten =

¬(Σ∗ LeftContext(λ) (Unrewritten(φ) ∪ NonLeftmost(φ)) RightContext(ρ) Σ∗) (8.49)

232

Interestingly, adding a leftmost semantics to rewrite rules has ramifications as regards

the interaction with optionality and other modalities. For example, we have tacitly assumed

that an ‘optional’ rewrite rule φ(→)ψ simply rewrites φ in the correct environment, but does

not have to do so. Now, adding a leftmost constraint raises questions about how the two

rule types should work together. For example, suppose we have a rule

aa (
leftmost→) x (8.50)

How should this rule behave with respect to the input aaa? Clearly, if the rewriting is

‘optional’ aaa is a legitimate output, as is xa. But what about the output ax, where we have

not rewritten the leftmost instance of aa? Whether this is a valid interpretation depends on

how we define ‘optionality’: is optionality something that only applies to rewriting vs.

not rewriting, or does optionality also apply to the ‘leftmost’ criterion? In other words, is

following a leftmost strategy also ‘optional’? We shall in what follows remain slightly ag-

nostic as to the semantics of optionality since cases they affect would arguably not surface

very often in natural language applications. However, it can be easily seen that both types

of optionality—optionality of rewriting, and optionality of leftmostness—could be encoded

in filters on top of MT1, if we wanted to choose a specific semantics for the interaction of

these modalities.

8.10.2. Longest-match

Let us now consider how to add longest-match type semantics to a rewrite rule. For a rule

where a rewriting of φ could apply in various ways depending on how much material we

match in chunks, multiple outputs are possible, and we want to filter out the non-longest

candidates for each possibility. For example, the normal rewrite rule:

a+ → x (8.51)

233

would apply to the string aa in two ways, either outputting xx or x. What we want to

introduce is a semantics such that a rule

a+ longest→ x (8.52)

only rewrites aa as x, since that is the maximal extent to which the rule can apply.

In other words, we want to rule out configurations in MT1 such as

@I[]@ @I[]@
a a
x x

(8.53)

In the above, what we have is two independent rewrites of the symbol a (which is a

member of φ). However, we could have chosen the longer member of φ, aa as our substring

to be rewritten and performed just one rewrite operation.

The way to identify non-longest rewrites is then naturally to look at tape 2 and tape 1:

a non-longest rewrite of φ on tape 2 begins with an opening bracket on tape 1, but extends

at least one symbol across an instance of a closing bracket. In the above case, we find aa,

a instance of φ which begins with @I[]@ (which is simultaneously an opening and closing

bracket), and extends one step to the right beyond a closing bracket.

We then define a non-longest rewrite in almost the same way as a nonleftmost one:

NonLongest(φ) = Input(φ) ∩ ((IOPEN Σ2) (Σ3)∗ (@O@ ∪ IOPEN)Σ∗) (8.54)

where IOPEN = (@I[@ ∪@I[]@).

This can then be incorporated into NoUnrewritten exactly as in the leftmost case: of

course we need to make sure that the filter only applies when the left and right contexts are

correct, analogously to (8.49).

Naturally, we will often want to include both types of semantics in one rule, such that

the directionality of a rule follows both the leftmost and longest-match semantics. For

example, a rule

234

aba ∪ ab ∪ ba X→ x (8.55)

for an input string aba would produce the following outputs, depending on the seman-

tics chosen.

• X = no semantics: ax,xa,x

• X = leftmost only: xa, x

• X = longest-match only: ax, x

• X = both leftmost and longest-match: x

For most applications we assume that both a leftmost and a longest-match semantics

would be needed.

8.10.3. Shortest-match

Shortest match is defined symmetrically to longest match, although its definition is slightly

more complicated. Consider again the rule a+ → x and a possible (non-shortest-match)

configuration:

@I[@ @I]@
a a
x @0@

(8.56)

Here, we see that to identify the offending non-shortest match sequences, we need to

find a complete instance of φ on tape 2, the beginning of which is aligned with an opening

bracket on tape 1, but that never contains a closing bracket subsequently. In the above

example, the first a symbol occurs in such exactly such a configuration.

NonShortest(φ) = Input(φ) ∩ (@I[@(Σ− (@I]@ ∪ @I[]@))∗) (8.57)

Again, we can add such a constraint, possibly in conjunction with the leftmost match,

to the set of filters that apply to MT1.

235

8.11. Markup rules

An interesting and useful rule device introduced in Beesley and Karttunen (2003) is a so-

called markup rule. The idea is that we allow rules of the format

φ→ ψl . . . ψr / λ ρ (8.58)

that denote that a string from φ in the proper conditioning environment shall remain un-

touched, but ψl shall be inserted to the left of φ and ψr to the right of φ. This type of rule

has found use in phrase marking applications where we can imagine a rule such as

P → [P . . .]P (8.59)

where P is an abstract symbol—a regular language—denoting a sequence of some sort, a

syllable or a noun phrase, for instance. With such a rule, possibly augmented with leftmost

or longest-match semantics, one could then ‘mark’ such sequences with [P P]P .

In order to accommodate this type of a rule we need to include the possibility of such a

configuration in the definition of MT1. The core of the modification has to do with the func-

tion RS(φ, ψ) defined in (8.11), to which we need to provide an alternative RS(φ, ψl, ψr)

to insert the proper material in rewrite sequences of MT1. We need, then, to create rewrite

sequences in MT1 that look like:

@I[@ . @I]@
@0@ . . . @0@ φ1 . . . φn @0@ . . . @0@
ψl1 . . . ψln @ID@ . . . @ID@ ψr1 . . . ψrn

(8.60)

In other words, a rewrite sequence RS(φ, ψl, ψr) produces 3-tape configurations where

the segments from φ appear in the middle of tape 2, aligned with @ID@-markers, as φ

itself shall pass through untouched. Also, to the left and right of φ appear sequences with

@0@ throughout on tape 2 aligned with ψl (to the left) and ψr (to the right).

To this end, we define

236

RS(φ, ψl, ψr) =

range((CP (ε, ψl) CP (φ,@ID@∗) CP (ε, ψr)) ◦ ((ε:Σ) Σ Σ)∗) ∩ Semtape (8.61)

This of course needs to be incorporated in place of RS(φ, ψ) whenever a markup rule

is included in MT1. Since the contents of the tapes with such a modified RS is otherwise

indistinguishable from that of any other rewrite rule, the contextual constraints or rule

modalities can be included exactly as in the ordinary replacement rule cases.

A notational variant or generalization of this idea is found in Gerdmann and van Noord

(1999) who calls the notation ‘rewrite rules with backreferences.’ In that work, the idea is

that we describe a set of separate transduction functions for φ which modifies it in the way

we desire. This function, T (φ), may be quite arbitrary and may function as a ‘markup rule’

or an ordinary transduction (a cross product), etc. In such a case we define rewrite rules in

general as

φ→ T (φ) / λ ρ (8.62)

where T (φ) = ψ is a special case of our ordinary rewrite rule. Now, this can be included

in our compilation method by redefining the RS()-function, in the manner

RS(φ, T (φ)) = range(CP (φ, T (φ)) ◦ ((ε:Σ) Σ Σ)∗) ∩ Semtape (8.63)

and leaving it to be defined elsewhere what T (φ) does.

The reason we have defined the markup rule separately instead of relying on the above

abstraction is that doing so allows us to force the alignment of the inserted material with

zeroes. If the markup relied on an external function T (φ), then a markup rule such as

a→ [. . .] (8.64)

could provide alignments such as

237

@I[]@ @I]@ @I]@
a @0@ @0@
[a]

(8.65)

instead of the arguably more natural

@I[@ @I]@ @I]@
@0@ a @0@

[@ID@]
(8.66)

In the latter case, we preserve the identity mapping of the elements of the string φ, and

will more likely produce smaller, more efficient transducers with that alignment.

8.12. Summary of rewrite rule compilation

Let us now briefly summarize the compilation procedures described. In its most general

form, we can compile rules of the type,

φ1 op1→ ψ1 / λ1
1 ρ1

1 , . . . , λ
1
m ρ1

m

...

φn
opn

→ ψn / λn1 ρn1 , . . . , λ
n
m ρnm (8.67)

where each φ and ψ are arbitrary regular languages. Also, each of the contexts containing

λ and ρ can be divided into an input side and output side: λij = Lin × Lout, where Lin and

Lout are arbitrary regular languages.

The different modalities available for op are:

• optional rewriting (→)

• leftmost rewriting
leftmost→

• longest-match rewriting
longest→

• shortest-match rewriting shortest→

238

• epenthesis rewriting
ep→

which can be combined like boolean operators. For instance, one can have a rewrite rule

operating with a combined operation leftmost/longest.

In addition, we presented a compilation method for the markup rule, denoted for the

rule part

φ
op→ ψl . . . ψr (8.68)

which can of course be included in a set of multiple rules as in (8.67). For such a rule, φ

is left untouched, but ψl and ψr are epenthetically inserted to the left and right of instances

of φ.

8.13. Comparison to previous work

Large subsets of the types of rewrite rules that are included in this chapter have been in-

spired either by the work of Kaplan and Kay (1994) or Beesley and Karttunen (2003). In

particular Beesley and Karttunen provide many linguistic arguments why different modal-

ities and operator types are needed. This has been the starting point of the work in the

chapter: to provide a detailed compilation method for linguistically motivated rewrite rules.

Most of the rule compilation semantics here have counterparts in the above publica-

tions. Table 8.1 shows how some of the semantics and terminology developed here coincide

with other work. Some minor details have been omitted—for example, the Xerox rewrite

rules define a left-arrow rule a← b, which can be interpreted as (a→ b)−1, the inverse of a

right arrow transducer, and so is really a notational variant, as well as a double-arrow-rule

a↔ b, which is an intersection of the two rule semantics.

The multitape approach for compiling rules chosen here seems to provide more flexibil-

ity in defining rule types and in adding operations not found elsewhere. The multi-context

compilation, for instance, seems not to be possible at all with the type of compilation ap-

proach in Kaplan and Kay (1994) and Kempe and Karttunen (1996). In such methods,

239

optional epenthesis leftmost/ leftmost/ markup parallel multiple input/ two-level
rules rules longest shortest rules rules contexts output contexts

contexts
K&K ‘optional’ ≈ ≈ N/A N/A ≈ batch ≈ ≈ N/A

rules
Xerox (->) ≈ [..] @-> @> . . . ,, , || \/ \\ // N/A

TABLE 8.1. Comparison of notation and features for different types of rewrite compilation
formulas.

the core idea is to freely insert, by composition, a set of markers < and >, then rewriting

< φ > → < ψ > and at some point in the process constraining the markers to only

occur in positions where the left and right context are correct. Now, one can constrain <

and > (which denote the end of the left context or the beginning of the right context) either

before or after rewriting φ, yielding that whatever constraints one has on the left or right

applies either to the input or the output. Performing both does not seem possible unless one

has access to both string sets: that of pre-rewriting and post-rewriting. That, however, is

not the case in either Kaplan and Kay (1994) and Kempe and Karttunen (1996), as they de-

stroy the input when doing this rewrite step. Consider the following chain of intermediate

representations in this approach for a rewrite rule ab→ x:

(1) abababa

(2) ab<ab><ab>a

(3) ab<x><x>a

(4) abxxa

Here (1) represents the input. After step (2) we have inserted brackets, and after step

(3) contents within the brackets have been replaced, and after (4) the brackets have been

removed. Now, one can constrain the occurrence of the left and right bracket either before

the rewriting step (3), or after it. But if one does so after (3), one loses access to the original

strings that existed prior to rewriting.

240

Similar problems appear to arise in the definition of longest-match and shortest-match

rules with contextual requirements in the model of Kaplan and Kay (1994) and Kempe

and Karttunen (1996). Karttunen (1996) provides a compilation method for longest-match

formulas, but without contextual requirements, whereas the method in this chapter allows

for arbitrary contexts as well.5

In contrast to the large amount of literature on the topic of compiling rewrite rules

into transducers, there is a great paucity of actual implementations—commercial or non-

commercial—that one can test, or use in the development of large scale grammars.6 Given

the extremely complex nature of compiling rewrite rules into transducers, one would as-

sume that implementations exist—if for nothing else, at least for testing purposes, since

without an actual implementation, testing the correctness of formulas of this magnitude of

complexity appears impossible.7

8.13.1. Efficiency

One might be concerned that all the operations being done with conversions to and from

multitape automata would seriously degrade the efficiency of the algorithm. This does not

seem to happen, though. In comparing timing results against other rewrite rule compilation

algorithms, we found that the algorithm here was in many cases by far the fastest in com-

piling various types of rules with variable-length contexts. As a point of comparison, we

may look at the xfst-toolkit algorithm for compiling rules of the format (k ∈ [100, 1000]):

5The Xerox tools include the possibility of constraining longest-match rules with contextual requirements,
but the method remains undocumented.

6Works that specify methods for compiling rules into transducers include Ritchie et al. (1991); Kaplan and
Kay (1994); Grimley-Evans et al. (1996); Kempe and Karttunen (1996); Mohri and Sproat (1996); Laporte
(1997); Kiraz (1997); Gerdmann and van Noord (1999); Skut et al. (2003); Vaillette (2004); Yli-Jyrä (2007,
2008). However, only Kempe and Karttunen (1996) and Gerdmann and van Noord (1999) appear to provide
an implementation.

7Ron Kaplan (p.c.) reports that commercial finite-state transducer systems based on string rewriting were
built and tested extensively, and the resulting transducers subsequently distributed commercially well before
publication of Kaplan and Kay (1994).

241

a→ b / ck (8.69)

a→ b / ck (8.70)

given in figures 8.3 and 8.4. The rules chosen for these timing experiments may seem

artificial, but the choice was made because such results have been reported in other pub-

lications dealing with rewrite rule compilation (Mohri and Sproat, 1996; Vaillette, 2004).

A faithful implementation of Kempe and Karttunen (1996) (which xfst is based on) was

available to compare against, but unfortunately there appears to be a serious discrepancy

between that and the authors’ reference implementation, xfst. The way the paper had de-

scribed the compilation procedure caused rewrite rules with long right contexts to compile

very slowly (not finishing in a reasonable time for right contexts of length greater than 20

symbols). Comparing against this would obviously have been unfair, since the problem has

been remedied in the xfst software available from Xerox, which was therefore chosen as a

primary comparison. Since the workings of xfst remain undocumented, it is not possible to

reimplement the formulas in their fixed versions, and the best one can do is to compare the

implementation here against xfst. Naturally, the rewrite algorithm is only a component in

a large collection of algorithms, and so other parts (such as efficiency of determinization

and minimization) have a bearing on the overall result. Hence, the overall timing result is

a likely a combination of the efficiency of the fundamental algorithms and the rewrite rule

compilation algorithm. Nevertheless, the timing results do indicate (at the least) that the

current algorithm, compiled by a detour through a multitape automaton encoding, is viable

in practice.

Other algorithms and timing results given in the literature such as Mohri and Sproat

(1996); Vaillette (2004)—even taking into account hardware differences—do not come

even remotely close in efficiency to that of xfst and the current implementation, and so

were not taken into consideration in the comparison.8

8To be fair, the intention in Vaillette (2004) is not to provide a fast algorithm, but to provide one that is

242

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 100 200 300 400 500 600 700 800 900 1000

tim
e(

m
s)

k

Current algorithm
xfst-2.10.44

FIGURE 8.3. Timing results for rules of the form a -> b || ck _.

243

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 100 200 300 400 500 600 700 800 900 1000

tim
e(

m
s)

k

Current algorithm
xfst-2.10.44

FIGURE 8.4. Timing results for rules of the form a -> b || _ ck.

244

8.14. Discussion

This chapter has presented a method for compiling such rewrite rules as are motivated

in phonology and morphology into finite-state transducers and described the logic of the

general approach, along with some examples. We found that using a multitape automaton

as an intermediate step in the compilation process seems to provide the power one needs

to compile the major types of rewrite rules needed quite efficiently. Also, the encoding

immediately offers some new perspectives and possibilities in defining additional types of

rules.

As a particularly interesting extension, we have singled out the possibility of compiling

rewrite rules that specify contexts on two levels separately, both the input side and output.

It is very likely that one could, by such a rule formalism, using multiple parallel rules of

the format

φ1 → ψ1 / λ1
in × λ1

out ρ
1
in × ρ1

out

. . .

φn → ψn / λnin × λnout ρnin × ρnout

(8.71)

define an entire phonological or morphological grammar. Naturally, we would assume

that the other modalities would be available, such as an optional rule (→) or any of the

directional variants we have defined. Such an approach would in a way be reminiscent

of a two-level grammar, since we would only have one set of parallel rules, and hence,

only two levels. The difference lies in that the two-level formalism (Koskenniemi, 1983)

is quite strict in that one cannot define multi-segment correspondences—recall that of the

clear and verifiably correct, and so the timing results for the equivalent of figure 8.3 where k = 6 is over
1000 ms, whereas the same timing result for both the current algorithm and xfst is significantly less than one
millisecond.

245

four possible rule types, the left-hand-side of a rule in a two-level grammar is always a

symbol pair: a:b. With the current formalism, we can in fact describe pairings of arbitrary

languages where the legitimate contexts are also pairs of arbitrary languages. Whether such

a grammar formalism is useful is an empirical question; but in any case there is nothing

that prevents us from writing such rules: a batch of them can be compiled into finite-state

transducers exactly as a cascade of single rules or a set of parallel rules where the context

always refers to either the input or the output, but not both, as in the Karttunen (1997)

formalism.

An interesting observation is that this bi-context rewrite rule formalism seems to reach

the boundaries of the types of alternations that are possible to describe with finite-state

transducers. For example, one could easily be led to think that, since it is possible to

compile rules where the left and right contexts are specified separately on the input and

output side, or where the left and right context is specified only on the input and output

side, one could also specify a context such as

φ→ ψ / Id(λ) (8.72)

where Id(λ) dictates that the left context is a string from λ in an identity relation. That

is, the left context has to be the same string on the input side and output side, drawn from

the language λ. But such a rule cannot be compiled to a transducer in the general case. In

fact, if we could compile such a rule into a finite-state transducer, we could also solve the

Post Correspondence Problem as a simple argument shows (see chapter 5).9 The end result

is that we can indeed compile rules that have separate, even quite complex, contextual

requirements for the input and output sides separately, but we cannot compile a rule where

9We create a set of rules that (i) translates strings from the upper side of the PCP tiles to their lower side
correspondents. Now, we add an extra rule (ii) ε → x / Id(Σ+) . That is, we insert an x after identity
relations. Now, we take the language that does not contain x and compose it with the rule transducers (i) and
(ii) and examine the range of this transducer. If the range possibly contains x, the PCP has a solution. Hence,
if such a rule set were compilable, we would have an effective procedure for solving the PCP.

246

we require that the input and output side of some context be the same string, even for very

simple languages.

Linguistically, this ability to define a grammar through only parallel rules that are not

(contra two-level grammars) constrained to consist of single-symbol pairings may be of

interest. There has been a general trend in the more theoretical phonological literature to

consider ‘parallel’ and ‘serial’ grammars fundamentally distinct approaches to describing

phonological processes.10 This has been true in generative models where serial models

of phonology have sometimes been rejected in favor of parallel ones (the ‘unordered rule

hypothesis’) and vice versa. That we can compile parallel multi-level rules into transducers

without restrictions of any sort on the arguments of the rules, and likewise compose rewrite

rules serially into the same kinds of transducers, argues for the likelihood that ‘parallel’

and ‘serial’ models, are at least in models of phonological alternation, of equal descriptive

power. And since it has been found empirically that the finite-state transducer model is (at

least) sufficient for modeling phonological processes, the choice of ‘serial’ vs. ‘parallel’ is

largely one of taste.

10For example, Kenstowicz and Kisseberth (1979) devote much space to arguing that phonology must
be ‘serial’ based on the predictions from the opposite possibility they call ‘the direct mapping hypothesis’.
Similar argumentation can be found throughout the phonological literature. More recent work on Optimality
Theory almost invariably bring up the notion of ‘opacity’—something that stems from interaction in ordered
rules—to argue for or against some model of phonology, either serial or parallel (Kager, 1999).

247

9. MORPHOLOGICAL GRAMMARS AND MULTITAPE AUTOMATA

9.1. Introduction

In this chapter we shall be concerned with practical grammar development using multi-

tape automata. To this end, we use the model developed in chapter 7 and the associated

operations on multitape automata to explore the development of complete morphological

grammars using this formalism.

The primary reason for our suggestion of using k-tape automata directly to construct

language models instead of the more familiar (2-level) finite-state transducer model is the

lack of sufficient information alignment in 2-tape models. As has been noted already, the

paradigm task of morphological analysis is to map a word-form represented as a string to

its analysis, also represented as a string. The string representing the analysis may of course

be of arbitrary complexity—analyses consisting of hundreds of symbols are not unheard of

in actual applications. This linear string-to-string mapping has one shortcoming, however:

grammatical information encoded in a finite-state transducer analysis provides little or no

alignment between components in the word-form (surface form) and the analysis.

In figure 9.1 we see a Finnish word and its analysis; going from one type of string to

the other could easily be encoded in a finite-state grammar and the encoding here is fairly

standard. In the figure we have also marked some information alignment completely absent

from the string-to-string transduction. That is, some of the segments in the string clearly

asunnonvälittäjiltäkö

asunto +N +Sg +Genitive välittäjä +N +Pl +Ablative +kO

FIGURE 9.1. Alignment of information in a word and its parse.

248

FIGURE 9.2. Non-aligned information in a string-to-string Arabic verb parse.

correspond to some components in the analysis, but this knowledge need not be represented

in the finite-state transducer encoding the grammar. The job of the transducer is to translate

analyses into surface words and the other way around, not directly to provide information

about which segments contribute to which parts of the analysis and how. Since Finnish mor-

phology is more or less concatenative one can include such alignment information in the

transduction itself—that is, we may in some way or other force the transducer performing

the transduction to align the letters in the input roughly with the corresponding categories

in the output (as seen in figure 9.1). Even so, there are cases where one single segment

directly contributes to several elements in a parse, as well as cases where the absence of

a segment in a specific location can be interpreted as being morphologically meaningful.

Both phenomena can be difficult to convey in a 2-level model.

When we consider other morphologies, such as verb formation in Semitic languages

where morphemes are discontinuous and may be scattered in a string of segments, the

situation becomes drastically more difficult to treat with finite-state transducers. A similar

surface-word parse pair for Arabic is seen in figure 9.2 where the intricate relationship

between the segments and symbols in the parse is far more conspicuous. The relationships

explicitly drawn in the figure are completely absent from a simple string-to-string mapping:

kataba→ ktb +FormI +Perfect +Act +3P +Masc +Sg.

The problem of treating nonconcatenative morphology and the nonlinear alignment be-

tween words and the desired parses is severe enough to cause difficulty in merely construct-

ing a finite-state grammar for the task, let alone providing correctly aligned word-parse

249

pairs. This is also the problem to which k-tape automata were first suggested as a remedy

(Kay, 1987).

Since the possibilities provided by k-tape automata for morphological analysis are dif-

ficult to describe in the abstract, we shall in this chapter primarily look at a more practical

example–a verb grammar of Arabic—at the same time as we present the basic technique of

grammar construction.

The fact that k-tape automata seem particularly suitable for nonconcatenative mor-

phologies is really no surprise from a linguistic point of view. Over the years, various

linguistic theories to deal with such phenomena have relied on multi-tiered representations

of information in words. Multiple tiers in linguistic theories translate for the most part

quite naturally to multiple tapes in a finite-state world. Although nonconcatenative mor-

phologies provide perhaps the strongest case for moving from two tapes to multiple tapes

in finite-state morphology, we will argue that the approach is not without merit even for

highly concatenative morphologies.

The chapter is laid out as follows: first, we look at previous work done with multitape

automata and natural language processing, in particular morphological analysis, in section

9.2. Section 9.4 discusses how k-tape automata allow one to capture discontinuous/non-

concatenative morphology in such a way that morphemes are aligned with the semantic

information they convey across multiple tapes. Section 9.5 shows the fundamental layout

of an Arabic verb grammar with particular emphasis on the interaction of the root and the

pattern in such morphologies. In section 9.6, the method of parsing and generation with

the model is described and section 9.7 discusses some aspects of grammar design that is

relevant for producing efficient parsers and generations as well as automata of manageable

size.

250

9.2. Previous work

The special problems and challenges embodied by nonconcatenative morphologies have

been recognized from the early days of applying finite-state methods to natural language

morphological analysis. The language model which finite-state methods have been most

successful in describing—a model where morphemes concatenate in mostly strict linear

order—does not translate congenially to all morphologies. The type of root-and-pattern

morphology found in Arabic and Hebrew has often been singled out as difficult to treat

with the same techniques as concatenative morphologies (Lavie et al., 1988; Kataja and

Koskenniemi, 1988; Sproat, 1992).

An early suggestion to use multitape automata in handling verb constructions in Semitic

languages appears in Kay (1987). This model has later been pursued in different variants by

Kiraz (1994, 2000) among others. Interestingly, large-scale multitape solutions containing

the magnitude of information in standard Arabic dictionaries such as Wehr (1979) have not

been reported.

From the literature on the topic, it appears that two wide-coverage morphological ana-

lyzers for Arabic that strive for reasonable completeness have been built: one by Xerox and

one by Tim Buckwalter/LDC (Buckwalter, 2004). The Xerox analyzer relies on complex

extensions to the finite-state calculus of one and two-tape automata (transducers) as docu-

mented in Beesley and Karttunen (2003), while Buckwalter’s system—which many other

Arabic NLP projects rely on—is a procedural approach written in Perl which decomposes

a word and simultaneously consults lexica for constraining the possible decompositions.

Also, in a similar vein to Xerox’s Arabic analyzer, Yona and Wintner (2008) report on a

large-scale system for Hebrew built on transducer technology. Most importantly, none of

these very large systems are built around multi-tape automata even though such a construc-

tion from a linguistic perspective would appear to be a fitting choice when dealing with

root-and-pattern morphology.

The multitape model by Kiraz (2000) is arguably the most detailed and complete one of

251

previous multitape models. Kiraz’s model is essentially the transducer model augmented to

handle k-tuples as transitions. This is also basically the model that was rejected in chapter

7 because of complexity concerns.

9.3. Root-and-pattern morphology and finite-state systems

Before going further with the analysis of templatic morphology, let us briefly review the

type of phenomena that need to be captured if one wants to analyze an Arabic verb. We

shall focus almost exclusively on the root-and-pattern interaction common to most Semitic

languages without going into great detail about the concatenative processes that also occur.

In Arabic, as in most Semitic languages, verbs have for a long time been analyzed as

consisting of three elements: a (most often) triconsonantal root, such as k-t-b (H.
�

H ¼), f-

Q-l (È ¨
	

¬), or b-r-j (h. P H.), a vowel pattern containing grammatical information such

as voice (e.g. the vowel a), and a derivational template, such as CVCVC indicating the class

of the verb, all of which are interdigitated to build a stem, such as katab (I.

��
J
�
») (McCarthy,

1979). This stem is in turn subject to more familiar morphological constructions includ-

ing prefixation and suffixation, yielding information such as number, person, etc, such as

kataba (�
I.

��
J
�
»), the third person singular masculine perfect form.

The process of forming a stem can be described as a three-way-merger of the vocaliza-

tion pattern (for example a), the form (for example CVCCVC which is usually called form

II), and a root (for example ktb). Figure 9.3 shows the analysis for how the stem kattab

(I.

���
J
�
») is formed like this.

FIGURE 9.3. The standard analysis of the makeup of Arabic verb stems.

252

Form Active(a) Passive(u) Pattern
Form I katab kutib CVCVC
Form II kattab kuttib CVCCVC
Form III kaatab kuutib CVVCVC
Form IV ĳaktab ĳuktib ĳVCCVC
Form V takattab tukuttib tVCVCCVC
Form VI takaatab tukuutib tVCVVCVC
Form VII nkatab nkutib nCVCVC
Form VIII ktatab ktutib CtVCVC
Form X staktab stuktib stVCCVC

TABLE 9.1. Derived Arabic verb stems using the root /ktb/.

This is not the only possible analysis of the phenomenon. One can, for instance, make

the simplifying assumption that the template exists as pre-merged with the vocalization

leading to a two-way merge. Doing so would entail that instead of having to model the

merging of CVCVC and a, we have a single lexicon of templates and vocalizations, contain-

ing entries such as CaCaC (Harris, 1941) . The three-way-analysis is the autosegmental

analysis introduced by McCarthy (1979, 1981) and we shall roughly follow that model here

as it provides for a better illustration of the interaction of multiple tapes in a multi-tape mor-

phology. Ultimately, of course, which analysis to choose largely a matter of convenience

and preference.

9.4. Semitic verb formation and a multitape analysis

Multi-tape descriptions of natural language morphology are appealing not only because

such solutions seem to be able to handle Semitic verbal interdigitation, but also because a

multi-tape solution allows for a natural alignment of information regarding segments and

their grammatical features, which it does simply by virtue of its construction.

In what follows, we shall analyze the Arabic verb formation using an 8-tape automaton,

where each tape carries distinct information as presented in figure 9.4. In the figure, we

have marked the functions of these tapes in the leftmost column. The first tape (input) is

253

Tinput k a t a b a
Troot k t b
Tform Form I
Tptrn C V C V C
Tpaff a
Taffp +3P

+Masc
+Sg

Tvoc a a
Tvocp +Act

. . .

FIGURE 9.4. An 8-tape representation of Arabic verbal morphology.

actually what would normally be called the surface tape, representing actual surface forms

of a fully inflected verb. In the illustration, the radicals on the root tape are aligned with the

input, as is the pattern on the pattern tape, the suffix -a on the suffix tape, which again is

aligned with the parse for the suffix on the affix parse tape (affp), and finally the vocalization

a is aligned with the input and the pattern.

9.4.1. Goals

We assume here that what we want to do in designing the grammar is roughly as follows.

For each input word (which is assumed to be a verb), we want to:

• provide the root and align the root with the input word so that it is clear which con-

sonants (which may be discontinuous in the input word) belong to elements in the

root

• provide the form that the verb was constructed from

• provide the pattern of this form, and show how the pattern is present in the input

word

• provide the affixes involved and show by alignment where they occur in the input

254

• provide grammatical information about the affixes

• provide the vocalization pattern of the verb and show which segments in the input

partake in the vocalization

• provide grammatical information about the vocalization (active/passive)

In short, what we want to do is write a grammar so that, given a verb, we can produce

multitape parses exactly in the format of figure 9.4.

9.5. Grammar construction

The underlying encoding of the implementation is exactly as presented in chapter 7, where

we construct a single-tape automaton that interleaves information about each of the k tapes.

Since we have already developed an abstract formalism for combining individual tapes and

expressing constraints across tapes, we need not worry about the actual encoding here, and

will lean on the notation developed in chapter 7.

We construct a finite-state 8-tape simulation grammar in two steps. First, we populate

each ‘tape’ with all grammatically possible strings for that tape. That means that, for our

Arabic representation, the root tape should allow all possible roots we wish to accept, the

template tape all the possible templates, the form tape all possible forms, the pattern tape

all possible patterns, etc. At this point, we pay no attention what contents we allow across

tapes: the root tape may contain a root which is a complete mismatch between the input

tape or any other tape, but that is allowed so long as the individual tapes contain only the

type of information they are intended to contain.

Naturally, we will need to have a prespecified set of lexica for each of the tapes. So,

the regular language lexicon for the pattern tape Lpattern will contain the strings CVCVC,

CVCCVC, CVVCVC, etc. while the lexicon for the ‘form’ tape Lform contains the strings

Form I, Form II, etc., and the root tape Lroot all the possible roots in our lexicon, and

so forth.

255

We call this language where each tape has been declared to contain all the individually

possible strings for that tape, Rbase. The second step is to constrain the co-occurrence of

symbols on the individual tapes. We will perform this by a set of cross-tape constraints we

call Rrules. This set of rules constrains for instance the root tape in such a way that it is

aligned with the same consonant on the input tape as well as the symbol C on the pattern

tape, among other things.

Our grammar then consists of all the permitted combinations of tape symbols allowed

by both a) the Rbase and b) Rrules. The resulting grammar is simply the intersection of the

base and the rules viz.:

Rbase ∩Rrules

9.5.1. Populating the tapes

Recall from chapter 7 (page 199) that we can align strings in many different ways on a

tape depending on how we distribute the blanks. We will here use all three of the example

alignment functions presented:

• Alignany(L)

• Alignrightblanks(L)

• Alignedgeblanks(L)

The reason is fairly obvious: when we declare the possible contents of each tape in-

dividually, we need not align blanks arbitrarily. Figure 9.4 should make it clear that, for

instance, pattern strings, such as CVCVC, that occur on the pattern tape will be continuous

and without intervening blanks. On the other hand, we will want to allow for blanks before

and after the pattern strings since Arabic verbs may contain prefixes and suffixes which

occur before and after the pattern on the other tapes.

The particular alignment we will want to follow for each of the tapes is as follows:

256

• tape 1 (inputs): Alignrightblanks

• tape 2 (roots): Alignany

• tape 3 (forms): Alignrightblanks

• tape 4 (templates): Alignedgeblanks

• tape 5 (affixes): Alignany

• tape 6 (affixparses): Alignedgeblanks

• tape 7 (vocalization): Alignany

• tape 8 (vocparses): Alignrightblanks

As we have settled for an appropriate alignment of the different tapes, we can proceed

to declare the entire contents of Rbase. We assume here that each tape’s possible contents

are declared in the regular languages Linputs, Lroots, Lforms, Ltemplates, Laffixes, Laffparses,

Lvocalization, Lvocparses. With this information, we can now declare theRbase language using

the tape insertion functions:

Rbase =
T1

8(Alignany(Linputs)) ∩
T2

8(Alignany(Lroots)) ∩
T3

8(Alignrightblanks(Lforms)) ∩
T4

8(Alignedgeblanks(Ltemplates)) ∩
T5

8(Alignany(Laffixes)) ∩
T6

8(Alignedgeblanks(Laffparses)) ∩
T7

8(Alignany(Lvocalization)) ∩
T8

8(Alignrightblanks(Lvocparses)) ∩

This will produce the 8-tape language Rbase where individual tape contents are accept-

able, but where strings on each tape may incorrectly co-occur with the wrong strings on

other tapes. For instance, the pattern tape may contain a C aligned with a vowel on the in-

put tape. In effect, the next task is to rule out such combinations by a the set of constraints

collectively referred to as Rrules.

257

9.5.2. Constructing the rules

When constructing the rules that constrain the co-occurrence of symbols on the various

tapes we shall make use of the logical notation developed in chapter 7. Indeed, all of

our rules will consist exclusively of such statements, and the strategy is to intersect all

the individual rules as use this as a filtering language to remove from Rbase illegitimate

co-occurrences across tapes.

Let us begin with a simple rule: in order to constrain the template against the input

and root tapes, we need a rule that effectively says that every C symbol occurring on the

template tape (tape 4) must be matched by a) a consonant on the root tape (tape 2) and b) a

consonant on the input tape (tape 1). That is:

(∀8x)(T4
8(x ∈ C)→ (T2

8(x ∈ Lcons) ∧ T1
8(x ∈ Lcons))) (9.1)

We assume here that the language Lcons contains all the consonant segments in the

language.

Similarly, we want to constrain the Forms parse tape that contains symbols such as

Form I, Form II etc., so that if, for example, Form I occurs on that tape, the pattern

CVCVC must occur on the pattern tape. Hence, we need a rule like:

(∀8x)(T3
8(x ∈ Form I)→ ((T4

8(x ∈ C) ∧ (S(x, V CV C))))) (9.2)

and similarly for the other patterns.

There is one interesting constraint that we have not yet discussed which is necessary

for proper treatment of Arabic orthography. Arabic words are usually written unvocalized

and it is left up to the reader to figure out, if there is ambiguity, which of the possible forms

is intended. In most cases, only ambiguities that are difficult to resolve even knowing

the context are marked with the disambiguating vocalization markings. In a morphological

system, we will want to be able to match and parse fully vocalized words such as wadarasat

(
��

I
�

� �P
�
X

�
ð), fully unvocalized ones, such as wdrst (�

I�PXð), or partly vocalized words. This

258

is the reason we have allowed any alignment for the input word: since the pattern tape will

contain patterns such as CVCVC, any unvocalized words on the input tape must be able to

match the pattern. However, if we required a V on the pattern tape to always align with

a vowel on the input tape, we would lose this flexibility. To address this, what we can do

is declare ‘vowels’ on the input tape to be optionally blank and use two constraints to the

effect that a) a blank on the input tape must be matched by a vowel on the pattern tape, and

b) a V on the pattern tape must be matched by either a blank or a vowel on the input tape.

Constraint a) in effect rules out blanks on the input tape being in any other position except

for unvocalized vowels within the pattern. The constraints are then:

(∀8x)(T1
8(x ∈ �)→ (T4

8(x ∈ V))) (9.3)

(∀8x)(T4
8(x ∈ V)→ (T1

8(x ∈ (� ∪ Lvowel))) (9.4)

(9.5)

To give an overview of some of the subsequent constraints that are still necessary, we

include here a few descriptions and examples (where the starred (***) tape snippets exem-

plify illegal configurations):

• Every root consonant has a matching consonant on the input tape

T1 k a t a b a
T2 k t b

T1 k a t a b a
T2*** d r s

• A vowel or blank in the input which is matched by a V in the pattern, must have a

corresponding vocalization vowel

259

T1 k a t a b a
T4 C V C V C
T7 a a

T1 k a t a b a
T4 C V C V C
T7*** u i

• A position where there is a symbol in the input either has a symbol on the pattern

tape or a symbol on the affix tape (but not both)

T1 k a t a b a
T4 C V C V C
T5 a

T1 k a t a b a
T4 C V C V C
T5***

9.5.3. The final automaton

Assuming we now have a set of rules encoding the cross tape constraints of the type dis-

cussed above, our rule set the becomes

Rrules = R1 ∩ . . . ∩Rn

and we can construct the final grammar as

G = Rbase ∩Rrules (9.6)

9.6. Parsing and generation

With a complete grammar encoded as an 8-tape automaton, the question of parsing a word

proceeds exactly as discussed in chapter 7: we construct an automaton containing arbitrary

sequences of strings on all of the other tapes except the input tape, where we place the word

260

to be parsed. In the grammar under discussion, we have chosen the format of the input tape

to be such that it can contain blanks (in lieu of vowels), and so these blanks must be taken

into account as well. However, we can use the alignment functions to handle this. In effect,

we create a machine that accepts the input word w on the input tape (with any alignment

of blanks), and intersect this machine with the grammar. The resulting automaton contains

all the legal parses:

T1
8(Alignany(w)) ∩G (9.7)

For the case of generation, we proceed in exactly the same way. Generation and pars-

ing are formally indistinguishable operations under the model—in both cases we supply

information on one or more tapes, intersect that against the grammar, and inspect what the

other tapes can legally contain. If we want to know all the possible grammatical forms

given some set of contents on tapes other than the input tape, we create a multitape au-

tomaton where the different tapes carry this information, after which we intersect that with

the grammar and inspect the contents of the result.

For example, if we wanted to know all the possible grammatical combinations of Form

I and the root drs, we can do so by calculating

T2
8(Alignany(drs)) ∩ T3

8(Alignrightblanks(Form I)) ∩G (9.8)

producing a large number of forms of tape 1: drs, drsat, darst, darasat, durst, durisat,

durisa, etc. etc.

9.7. Efficiency considerations in grammar design

When constructing morphological grammars in this fashion, there are a number of things

one can do to avoid unnecessary growth in the size of the grammars in their automaton

representations. As is the case when one constructs finite-state transducer grammars, in

261

multitape grammars too there are certain types of constructions that can quickly cause the

automata involved to explode in size when dealing with multitape grammars as well.

9.7.1. Information alignment across tapes

The most crucial concern is to keep related information across different tapes aligned. This

is self-evident from the point of view that alignment is one of the main reasons we are

pursuing multitape grammars in the first place, but there are more compelling reasons for

this outside of grammar elegance. Non-aligned constraints across multiple tapes immedi-

ately cause the automaton to grow very quickly, just as happens with a single tape. If there

is a string sequence pqr, p being on a different tape than r, with q intervening, the set of

states that accept the string q should be kept as small as possible since each of these need

to remember, for different possibilities of p, which string r should be allowed at the end.

The situation is analogous to the way in which a large number of circumfixes markedly

augment the size of a traditional finite-state transducer grammar.1

Now, for the grammar given above, it should be noted that most constraints are very

strictly local to within a few symbols, depending slightly on the ordering and function of the

tapes. Rule (9.1), for instance, which constrains consonants and C symbols, is strictly local

and any dependencies are resolved within the same ‘column’ of the multitape machine.

Had we placed the pattern strings of the type CVCVC completely nonaligned with the actual

consonants and vowels they refer to in the input, the constraints would of course be much

harder to write and the resulting automaton much larger in size.

Of course, some long-distance constraints will be inevitable. For example, Form II

is generally described as a CVCCVC pattern, where the extra consonant is a geminate, as

in the stem kattab, where the t of the root associates with both C’s in the pattern. To

distinguish this C behavior from that of Form X which is also commonly described with

two adjacent C symbols where, however, there is no such association (as in the stem staktab)

1In general, every circumfix doubles the number of states of the automata that encode the intervening
material.

262

we need to introduce another symbol. This symbol C2 occurs in Form II, which becomes

CVCC2VC. We then introduce a constraint to the effect that any C2-symbol must be matched

on the input by a consonant, which is identical to the previous consonant on the input tape.2

This of course creates a dependency across columns, since we must ensure that the two

consonants are identical in the input if matched by the sequence CC2 in the pattern. These

non-immediate dependencies can be avoided to some extent by grammar engineering, but

not in all cases.

Naturally, the overarching goal of quickly resolving dependencies by aligning strings

that bear on each other is a goal of linguistic interest as well: a grammar which does not

align grammatical information with segments in the input is likely not a good grammar.

However, there are still a couple of ways in which one can go astray. These usually involve

cases where nonalignment is not necessarily a blemish in the grammar, but still causes

unnecessary growth in the automaton encoding it.

For instance, in the running example we have presented, one of the parse tapes has

included the symbol +3P +Masc +Sg, aligned with the affix that represents the gram-

matical information:

. . .
T5 a
T6 +3P

+Masc
+Sg

. . .

If, however, it be the case that what the parse tape reflects is a prefix or a circumfix,

as will be the case with the imperfective, subjunctive and jussive forms, the following

alignment would be somewhat inefficient:

2The idea to preserve the gemination in the grammar is similar to the solutions regarding gemination and
spreading of Forms II, V, and IX documented in e.g. Beesley (1998).

263

. . .
T5 t a
T6 +3P

+Fem
+Sg

. . .

This is because the morpheme that partly indicates third person singular feminine in

the imperfective is the prefixation of ta, whereas the same grammatical function in the

perfective is the suffix at. So if we adhere to a static scheme in the annotation and always

place the related parse in the same slot, we will create a long-distance dependency and

hence duplicates of states in the automaton for all the intervening material. A more efficient

strategy is to place the parse or annotation tape material as close as possible to the segments

which have a bearing on it, i.e., in the imperfective we would prefer:

. . .
T5 t a
T6 +3P

+Fem
+Sg

. . .

This alignment can be achieved by a more general constraint in the grammar to the

effect that the first non-blank symbol on the affix tape is in the same position as the first

non-blank symbol on the affix parse tape.

9.8. Discussion

In this chapter we have implemented the notation and construction strategies developed

in earlier chapters to illustrate the design of actual morphological grammars using multi-

tape automata as the model. We have shown how nonconcatenative phenomena, root-and-

pattern morphology in particular, can be treated with the tools outlined in chapter 7.

264

INPUT s t a k t a b a t
ROOT k t b
FORM X
PATTERN s t V C C V C
AFFIX a t
AFFPARSE TFS
VOC a a
VOCPARSE Act

FIGURE 9.5. Example parse of the third person female singular active form based on
pattern X and the root /ktb/.

The topic and central phenomenon chosen to serve as the case study in the chapter is

that of Arabic verb formation, where we have highlighted the central parts of an actual

multitape implementation. The reason for this choice is that the patterns exhibited in root-

and-pattern morphology are very difficult to capture through standard finite-state transducer

grammar construction methods.

Given the construction method presented for nonlinear morphology, it should be fairly

straightforward to apply the same technique for concatenative morphologies as well. Al-

though the direct need for a multitape construction of concatenative phenomena may not

be as acute, the method at hand offers advantages for such cases as well. As already men-

tioned, the richer annotation one gains by distributing different kinds of information—even

different morphemes—across various tapes, is in itself an advantage that is not present in

the now-standard models of finite-state morphology.

There is perhaps one additional question that deserves comment with respect to lin-

guistic theory. As was mentioned earlier, there is a strong connection between multitape

automata and different hierarchical theories of phonology and morphology—in particular

‘autosegmental’ phonologies. Would it not be more profitable to pursue a notation based on

already established linguistic theories and show how such a notation could be implemented

in practice?

While this may be useful in some respects, particularly with implementations of lin-

265

FIGURE 9.6. Suprasegmental features represented as multitape encodings.

guistic theory, it is not the intention here to show that various theories of linguistics can be

expressed in the language of finite-state machines. There is a vast literature on the topic,

and judging from the empirical coverage of morphological and phonological grammars im-

plemented in the finite-state vein, it would be unlikely that linguistic theories of phonology

and morphology could fail to translate to a finite-state model. Linguistic theory is a moving

target—the basic methods of applying finite-state machinery to phonology and morphology

are nearly three decades old by now, and as such, have outlived numerous linguistic theo-

ries. Further, one may argue that keeping the notation on a more abstract level allows for

flexibility in modeling various linguistic theories and using the finite-state tools available

for linguistic research. That is, by not confining the notation to capture a very restricted

kind of model, it could be hoped that future pursuits in the realm of theoretical development

could take advantage of an abstract notation that can be fitted for various purposes.

It is of course obvious that the multitape encoding and application suggested here is

open-ended enough to accommodate a number of annotations. Suprasegmental features,

such as tone, syllables, feet, metrical units—indeed most of the word-internal structure

assumed in many theories of linguistics—can easily be interpreted as a formalism where

certain types of information appear on different tapes which are strictly regulated in their

internal and cross-tape configurations. One such encoding is suggested in figure 9.6, where

a structure of prosodic categories, roughly following the labeling of Selkirk (1980) is shown

together with a multitape representation of the same structure. Here, there is a separate

266

tape for words, feet, syllables, and segments, and the syllable tape shows the alternation of

strong and weak syllables, as does the foot tape.

The above example, and the different phenomena treated in this chapter together sug-

gest that one may extend the technique to model, as a whole, linguistic structures outside the

domain of the word as well. If we move away from the word as our unit of computational

analysis questions are of course raised regarding the generative power of finite-state mod-

els. That finite-state approaches cannot model unlimited recursion would seem to hamper

the extension of this approach to larger and larger domains. However, it seems very likely

that some strategy of finite-state approximation3 of phrase structure would be successful in

this respect.

3See e.g. Langendoen and Langsam (1984); Mohri and Nederhof (2000); Nederhof (2000); Hulden
(2009c) among others.

267

10. CONCLUDING REMARKS

The investigations presented here fall into three broad categories in the domain of finite-

state machines: fundamental algorithms used in finite automata manipulation, open prob-

lems in finite-state grammar development, and new methods for natural language modeling.

Each of these three categories draws on distinct areas of previous work, but all attempt to

facilitate the practical and theoretical modeling of natural language with finite state ma-

chines.

The first category is that of implementing and modifying fundamental algorithms found

in computer science for manipulating finite automata. The availability of such modifica-

tions is a cornerstone of the successful deployment of natural language grammars and of

systems based on finite-state automata and transducers. The modifications include the de-

velopment of efficient variants of determinization and minimization algorithms for finite

automata, as well as the introduction of a number of practical algorithms necessary for

finite-state transducer construction.

The second important contribution is the solving of a number of open problems in-

herent in the already well-established aspects of finite-state grammar development. The

ability (or non-ability) to model reduplication phenomena, for instance, has been a long-

standing problem in finite-state morphology. In chapter 4, an operator was developed for

asserting the equivalence of substrings in a language. While the definition of the operator

is deliberately made quite simple with the motivation that it should be easy to integrate

into well-designed grammars, its construction requires quite an intricate manipulation of

simpler automaton and transducer operations.

Continuing with this theme, the investigations in chapter 5 focused on decision proper-

ties and algorithms relating primarily to finite-state transducers. The core new algorithms

here—deciding functionality, deciding ambiguity, deciding functional and unambiguous

transducer equivalence, and extracting unambiguous and ambiguous parts of transducers—

268

are likely to find applications both in language engineering as well as linguistic research.

Dealing with ambiguity—knowing when and how it occurs in a grammar—is a prerequisite

for the finite-state grammar designer. Testing the equivalence of two different grammars

constructed in different formalisms (in the circumstances that it is possible to do so) and

extracting non-equivalent parts of complex grammars should be fundamental tools in the

formal investigation of systems and theories of phonology and morphology. As has been

shown, most morphological and phonological formalisms and methods can be quite easily

translated into a finite-state notation of the type presented in chapters 3 and 8.

One of the overarching goals of the implementation of all these algorithms is to create

a tool that would serve as an aid to ‘pencil-and-paper’ investigations into natural language

generalization and phenomena. New linguistic theories and notations are continually being

developed and researched. It remains, however, very difficult for human researchers to an-

swer simple questions about the relationship between two proposals, such as: does the new

theory cover the phenomena that the old theory covers, and does it give the same predic-

tions? The results in chapter 3, combined with previous experience of many researchers in

the field, strengthen the argument that finite-state machines are viable candidates to serve

as a neutral intermediary for linguistic investigation. Finite-state machines can model most

phenomena and theories in morphology and phonology and—because of their mathemat-

ical simplicity—make available a number of testing tools by which their behavior can be

investigated. Very few computational models enjoy such properties. Context-free gram-

mars, for instance, which serve as a backbone for many theories of syntax, are much more

restricted in the types of questions that can be asked about them: even the equivalence

of two context-free grammars is not decidable by any algorithm. The equivalence of two

augmented models of context-free grammars—say, one that allows for transformations (or

movement) of constituents, and another that allows for unification of features—lies well

beyond the type of questions that can be answered by computational methods. Seen from

this perspective, finite-state models stand on solid ground as a neutral device for imple-

menting various notations and formalisms and thus as a basic research tool in formal lin-

269

guistics. However, as was noted in chapter 5, not all questions that would be interesting

from the point of view of finite-state transducer based linguistic investigation can be an-

swered by algorithms: equivalence of two unrestricted finite-state transducers is an example

of such a question. Further investigations in this domain may reveal a satisfactory subset

of finite-state translation devices that retains all the linguistically useful properties of the

unrestricted finite-state transducer model, yet is sufficiently restricted to allow for algo-

rithms to answer all the fundamental questions one may want to ask about one or several

such machines. The current state of finite-state technology is quite close to attaining some

of the ideals one could wish for in as a generic computational model of morphology and

phonology: a model that enjoys flexible closure properties and affords the development

of linguistically motivated operators, and one where questions, such as equivalence and

inclusion, can be answered in regards to different instances of the model.

The third substantial part of the investigation has been concerned with new finite-state

methods and formalisms for natural language modeling. The foremost contribution here is

the development of a predicate logic formalism that can be used instead of, and together

with, more classical regular expression-type operations to construct finite-state machines.

The basic technique that makes the predicate logic construction possible—manipulation

of auxiliary symbols in automata—has been a common way of solving difficult-to-construct

language problems. However, it has not been previously elucidated or formalized, nor has

it been described in terms of first-order predicate logic over substrings. The logical for-

malism, which takes advantage of quantifiers and propositions as well as of regular ex-

pressions themselves, offers a systematic abstraction away from the more low-level regular

expression-type building blocks discussed in the early chapters. As has been seen, con-

structing complex finite-state machinery that models natural language requires that one can

abstract away from the building blocks of automata (states, arcs, and symbol labels) and

introduce a high-level notation of regular expressions in their place. The predicate logic,

however, argues for still another layer of abstraction, away from regular expression-based

notation, and toward a more constraint-based, easily verifiable formalism.

270

Patterns in the predicate logic over substrings arguably possess a certain kind of natu-

ralness which is not present in regular expressions: a simple statement such as “every sub-

string A is followed by some substring B” translates almost as is into predicate logic over

substrings (∀x)(x ∈ A → S(x,B)). The corresponding language, described as a regular

expression using double negation is quite convoluted and has a certain air of unintuitiveness

to it: ¬(Σ∗ A ¬(B Σ∗)). Yet, this kind of an if-then expression is an omnipresent type of

generalization as regards linguistic phenomena. Facts about morphotactics and phonotac-

tics in a particular language are very often precisely of this nature: ‘every closed syllable

has property X’; ‘every morpheme of type X must be followed by a morpheme of type Y’;

‘A stop in the onset of a syllable is never followed by a continuant,’ etc. This observation,

together with the practical problems that are solved with the predicate logic, argues for a

central placement of the formalism in linguistic modeling of morphology and phonology.

Another new model, a method of manipulating multitape automata, was developed in

chapter 7, and applications derived from it in chapters 8 and 9. The use of multitape au-

tomata for encoding phonology and morphology has been previously motivated and at-

tempted in the literature, but the direct extension of the finite-state transducer model in-

volves technical problems not easily overcome. By contrast, the new multitape model

presented relies on simulation of multitape automata by a single tape automaton which

allows for the direct transfer of all the relevant algorithms and construction methods for

single-tape automata to the multitape model.

The multitape model uses the predicate logic over substrings to express constraints

across the different tapes (or tiers). This joint multitape-logic approach can be seen as

an alternative formalism for constructing morphological and phonological grammars and

expressing linguistic generalizations within the domain of the word-formation processes.

The formalism inherently allows for capturing multi-linear grammatical facts by placing

different kinds of morphological and phonological information on different tapes.

The multitape model also offers a solution to other problems in the domain of finite-

state language processing. The task of constructing complex transducers, such as those

271

encoding replacement rules, can be made significantly easier by employing a multi-tape

intermediate stage in such construction. A fairly complete implementation of compiling

various types of string rewriting formalisms to finite-state transducers using the multitape

model was introduced in chapter 8.

The long-term linguistic usefulness of the multitape automaton model is slightly dif-

ficult to assess and compare against established models. Other established models of

finite-state morphology—the two-level model and the cascaded transducer model—have

been developed and refined over a number of years as feedback has been received from

the construction of a large number of wide-coverage grammars. Subsequent investigation

may reveal shortcomings or necessary additions to this logic-multitape description of mor-

phology and phonology. However, to reach the point where feedback from several actual

grammar implementations finds its way into an implementation requires a fairly thorough

practical implementation of the logic-multitape formalism in the first place. To this end, it

would be a desirable endeavor to develop a complete implementation of all the aspects and

conceivably useful operators related to the logic-multitape method. Preferably, this imple-

mentation would be shaped in a form distinct from the regular expression based tool that

has been developed in conjunction with this dissertation. The reason for this suggestion lies

in the desire to maintain a limited, well-circumscribed set of operations by which to model

natural language, and which would be accessible to linguists and computational linguists

alike.

272

A. FOMA

Foma is a finite-state machine compiler and programming language written inC that imple-
ments all the basic operators described in chapter 3, as well as the predicate logic formalism
of chapter 6. The following is a brief introduction to the functionality of the compiler to
help illustrate the subsequent example scripts in appendix B.1

A.1. Brief examples

To enter basic regular expressions and compile them to a finite-state machine, the command
regex is used. For example, entering:

foma[0]: regex [a|b]*;

foma responds by giving some statistics about the network constructed:

1 states, 2 arcs, Cyclic.

More information can be extracted by the command print net (or simply net, an
equivalent abbreviated form):

foma[1]: net
Sigma: a b
Size: 2.
Net: 66334873
Flags: deterministic pruned minimized epsilon_free
Arity: 1
Sfs0: a -> fs0, b -> fs0.

The command view net can be used to view a graphic representation of the finite-
state machine.

Foma, by default minimizes all the finite-state automata it constructs. Finite-state trans-
ducers are minimized in the FSA-sense, where label pairs are considered single symbols.

To describe a simple transducer that, for instance, changes all a symbols to b, and b
symbols to a, leaving everything else unchanged, you can enter:

foma[0]: regex [?-a-b | a:b | b:a]*;
foma[1]:

producing the network:

1The application and more documentation is available at http://foma.sf.net.

273

s0

@ <a:b> <b:a>

which takes advantage of the cross-product operator and the special symbol ? which
matches any symbol at all. foma has extensive support for constructing complex trans-
ducers that rewrite sequences of strings into other strings, and the above example could
have been created more easily by:

foma[0]: regex a -> b , b -> a;
foma[1]:

using the string rewriting operators.
As regular expressions are entered with the regex command, foma stores them on an

internal stack. The number at the prompt refers to the number of networks stored on the
stack. Many automata operations apply by default to the last network defined, i.e. the top
one on the stack. For instance, to run a word through the above automaton, one can give
the command:

foma[1]: down abxa
baxb

if the intention is to test the output of several words and the machine, one can type the
commands up or down to enter a subshell where words can be typed one after the other,
applying them to the top network on the stack in either the downward or upward (inverse)
direction.

foma[1]: up
apply up> baxb
abxa
apply up> bbaa
aabb
apply up>

CTRL-D returns to the main interface.

A.2. Labeling networks

Regular expressions can be compiled into finite-state networks, and then labeled to reuse
them in later expressions. For instance, one can define two networks:

274

foma[0]: define ContainsA ?* A ?*;
defined ContainsA: 2 states, 4 arcs, Cyclic.
foma[0]: define ContainsB ?* B ?*;
defined ContainsB: 2 states, 4 arcs, Cyclic.

and then use them in further definitions or regular expressions, e.g.:

foma[0]: regex ContainsA & ContainsB;

yielding the language that contains at least one A and at least one B.
These previously defined networks can be listed with:

foma[1]: print defined
ContainsA 2 states, 4 arcs, Cyclic.
ContainsB 2 states, 4 arcs, Cyclic.

A.3. Declaring functions

Regular expression functions can also be defined in a similar way. The format for declaring
functions is as follows:

define FunctionName(Prototype) Regular expression;

For example:

foma[1]: define Contains(X) [?* X ?*];
defined Contains(@1)

defines a function of one variable. One can then use this function in more complex regular
expressions:

foma[1]: regex x Contains(a b c) x;
6 states, 26 arcs, Cyclic.

producing the language that starts and ends with x and contains at least one instance of
abc somewhere in between.

The command print defined prints not only the labeled networks, but also all
user-defined functions.

foma[1]: print defined
ContainsA 2 states, 4 arcs, Cyclic.
ContainsB 2 states, 4 arcs, Cyclic.
Contains(@1) [?* @ARGUMENT01@ ?*];

Foma contains a number of built-in functions that follow the same calling conventions
as user-defined ones (see the section on regular expression operators). These all begin with
the underscore () character. For example, the regular expression:

foma[0]: regex _sigma(X);

creates a new language that is a single-symbol string from the alphabet of X.

275

A.4. Symbols

By default, foma matches strings inside a regular expression by longest-match. This means
that a regular expression such as:

foma[0]: regex cat;

will produce the network

s0 s1
cat

which is probably not what was intended, since the string cat is now a single symbol. If
what was desired was to have the concatenation of the three symbols c, a, and t, one way
to enforce this is to say:

foma[0]: regex c a t;

or equivalently

foma[0]: regex {cat};

producing the intended:

s0 s1
c

s2
a

s3
t

A.5. Automata and transducers

Foma makes no serious distinction in its operation between finite-state automata and finite-
state transducers, seen for instance in the application of words against a network.

Supposing we use a few of the complex operators to define the language that models
the old spelling rule: ‘i’ before ‘e’ except after ‘c’:

foma[0]: regex ˜$[\c e i|c i e];
5 states, 18 arcs, Cyclic.

276

We now have an automaton that accepts all words that follows the rule, and rejects all
that do not. If we now apply a word to the automaton, it is simply echoed back if it is
accepted:

foma[1]: down friend
friend

because the automaton acts like a finite-state transducer, where every input label is identical
to the output label.

If we apply a word not in the language, the following happens:

foma[1]: down weird
???

The only distinguishing mark between an automaton and a transducer is the arity num-
ber of the network, displayed with print net: 1 (automaton) or 2 (transducer).

A.6. Complex operators

Foma provides a number of complex operators built in, as seen in the above example, which
took advantage of $X (contains an instance of X) and \X (any single symbol but X). Going
with the above example and other complex operators we can easily create a transducer that
“marks” every violation of the i before e rule with brackets.

foma[0]: regex \c e i | c i e -> "[" ... "]";
11 states, 44 arcs, Cyclic.
foma[1]: down
apply down> friend
friend
apply down> weird
[wei]rd

A.7. Scripts

Sequences of command definitions and regular expressions can be stored in script-files
and consulted by either starting up foma with foma -l <filename>, or the command
source <filename> in the interface.

A.8. Unicode

Foma assumes that all input is UTF-8. This is the only encoding supported. Almost all
non-alphanumeric characters in the ASCII range are reserved, and so need to be escaped.
For example, to create the language that accepts only the string: a+b, one has to enter:

foma[0]: regex a %+ b;

277

Foma also supports multiple variants for most operators, with the variant operators
taken mostly from the Unicode ‘mathematical operators’ block. This means that one can
say things like:

foma[0]: regex [A ∩ B] ∪ [C-1 ◦ D2] ∪ ¬[E × E]*;

or

foma[0]: regex [A & B] | [C.i .o. D.l] | ˜[E .x. 0]*;

and the two statements are equivalent. See the section on regular expression operators for
a listing of some of the operators and the variants.

To use unicode characters beyond the ASCII range in a string, one can either enter them
directly, or through the "\uXXXX" expression. For example, if we wanted to enter the
reserved RING OPERATOR (which is the composition operator) in a regular expression,
we could enter it as:

foma[0]: regex "\u2218";

or

foma[0]: regex "◦";

or

foma[0]: regex %◦;

A.9. Other formalisms: lexc

Foma supports the reading of scripts in some other formalisms, such as the lexc-language
for defining lexicons. Such files are read and compiled by the command read lexc. For
example:

foma[0]: read lexc lexicon.lex
...
Building lexicon...Determinizing...Minimizing...Done!
188181 states, 315786 arcs, Cyclic.
foma[1]: define MyLexicon;
defined MyLexicon: 188181 states, 315786 arcs, Cyclic.
foma[0]:

reads the lexc-format file in lexicon.lex, compiles it into a finite-state machine, after
which it is named MyLexicon.

278

A.10. The alphabet

Foma uses three special symbols on the transitions of its networks: EPSILON (0), IDENTITY
(@), and UNKNOWN (?).

However, only two of these have special meaning in regular expressions: EPSILON
(0) and ANY (?). This discrepancy between special symbols on arc labels and regular
expressions is an artifact of the way foma compiles regular expressions and dynamically
determines the alphabets. From the point of view of writing regular expressions, the se-
mantics are simple: 0 is the empty string and ? means any single symbol.

When compiling a regular expression, the alternate symbols 0, [], or ε may all be used
to denote the empty string. For instance:

regex a -> 0 || c _ ;
regex a -> [] || c _ ;
regex a -> E || c _ ;

all mean the same thing and compile to the same network.
As for the other two special symbols, @ and ?: the symbol @ on a transition is interpreted

as the identity relation of any symbol not in the alphabet of the network, i.e. a:a b:b, etc.,
assuming a and b are not part of the alphabet. The special symbol ? likewise refers to any
symbol not in the alphabet of the network, however, it only occurs on one side of a label,
e.g. a:?. The symbol a:? will translate an a into any symbol not in the alphabet. The
special combination ?:? will translate any symbol to any other (nonidentical) symbol.

Consider a regular expression:

regex a -> [? - a];

i.e. rewrite the symbol a as any single symbol except itself, which compiles into the net-
work:

s0

@ <a:?>

For the replacement rule to be encoded properly into the transducer, we need the two
different transition symbols @ and ?, @ to pass through any symbol except a unchanged,
and ? to refer to any possible single symbol (which is this case does not include a since it
is in the alphabet of the network).

279

A.11. Regular expression operators

Optionality (X)

Defines the language or relation. (X) is equivalent to [X | 0].

Substitution ‘[X,Y,Z]

The language Xwhere symbols Y are substituted for Z. The result may be non-deterministic,
in particular if Z is 0. The result is determinized and minimized and any substituted sym-
bols are purged from the alphabet.

Term negation \X

Any single symbol, except X. Equivalent to [? - X]. Note that .#.—the abstract
boundary marker used in context restriction rules and replacement rules—is not considered
a symbol.

Cross product/Cartesian product X:Y

Produces a transducer that represents the relation that maps any string from X to any
string in Y.

Kleene Star X*

Zero or more iterations of X. Equivalent to [X+ | 0].

Kleene Plus X+

One or more iterations of X. Equivalent to [X X*].

Iteration operators: m,n-ary iterations Xˆn, Xˆ>n, Xˆ<n, Xˆ{m,n}

Denotes the languages or relations where X is concatenated with itself n times (Xˆn),
more than n times (Xˆ>n), less than n times (Xˆ<n), or from m to n times (Xˆ{m,n}).

Domain/range extraction X.u, X.l

Extracts from a transducer/relation the domain (.u) or range (.l), also called the upper
(1st) and lower (2nd) projections, respectively. The Unicode equivalents X1 and X2 may
also be used. The expressions X.1 and X.2 are also equivalent.

Inversion X.i

Inverts a transducer. The Unicode equivalent is X−1.

280

Flag elimination X.f

Eliminates all flag diacritics from the FSM X and returns the equivalent non-flag-
containing FSM.

Complement ˜X

Returns the complement of language X, in which case the expression is equivalent to
?* - X. The operation is not well defined for transducers. The Unicode equivalent ¬X
may also be used.

Containment operators $X, $.X, $?X

The operator $X denotes the language that contains a substring drawn from the lan-
guage X. Equivalent to [?* X ?*]. The operator $.X denotes the language that contains
exactly one substring drawn from the language X, while $?X denotes the language that
contains at most one substring from X.

Ignore X/Y

Denotes the language where instances of Y are arbitrarily interspersed in the language
X. Not well-defined for transducers.

Ignore inside X./.Y

Denotes the language where instances of Y are arbitrarily interspersed in the language X,
except that the first symbol and last symbol belong to X. Not well-defined for transducers.

Quotients X///Y (right), X\\\Y (left)

The operation X///Y is defined as:

{w | ∃x((x ∈ Y) ∧ (wx ∈ X)}
Informally, this is the set of prefixes one can add to Y to get strings from X.
The operation X\\\Y is defined as:

{w | ∃x((x ∈ X) ∧ (xw ∈ Y)}
Informally: the set of suffixes one can add to strings in X to get strings from Y.

Precedes, follows X<Y, X>Y

Denotes the languages where every string from X precedes every string from Y (<), or,
where every string from X follows every string from Y (>). The precedence need not be
immediate.

281

Concatenation X Y

The language or relation X concatenated with Y. The operator is not overtly signaled
by spacing, etc., and two adjacent regular expressions will be concatenated regardless of
whitespace when found at the level of precedence of the concatenation operator by the
regular expression parser.

Union X|Y

The union of languages or relations X and Y. Associative. Unicode equivalents are:
X ∪ Y and X ∨ Y .

Intersection X & Y

The intersection of languages X and Y. Associative. Unicode equivalents are: X ∩ Y
and X ∧ Y . For transducers, this denotes the intersection of the paths of X and Y which
may or may not be equivalent to the intersection of the relations X and Y. Regular relations
are in the general case not closed under intersection operation.

Set subtraction X - Y

For automata, the set of words from X minus the words from Y. Equivalent to [X &
˜Y]. For transducers, this represents the subtraction of paths in Y from X, which may
or may not be equivalent to the subtraction of relations X and Y. Regular relations are
in the general case not closed under subtraction operation.

Priority unions X .P. Y, X .p. Y

The “upper-side priority union” X .P. Y denotes the union of relations X and Y, with
relations in Y discarded if a relation in X have the same input (domain). Equivalent to [X
| [˜[X.u] .o. Y]]. The lower-side is similar, except a relation in X has precedence
over a relation in Y based on the range, not the domain.

Context restriction X => L1 R1, ..., Ln Rn

The language where every instance of a string from X is surrounded by string from
some pair Li and Ri on the left and right, respectively.

Shuffle X <> Y

The shuffle (or asynchronous) product of X and Y, i.e. the set of words formed by any
method of ‘shuffling’ the contents of X with Y. The shuffle is not perfect.

Composition X .o. Y

282

The composition of relation X with Y. The unicode equivalent X ◦ Y may be used.

Lenient composition X .O. Y

The composition of X with Y. For those relations where strings in the domain of Y does
not include some possible string from the range of X, the relation X is not composed with
Y. Equivalent to [X .o. Y] .P. Y.

Replacement operators

All replacement rule operators follow the same template:

X1 OP Y1,..., Xn OP Yn DIRL1 R1,..., Ln Rn

where OP is one of:

-> Unconditional replacement
<- Unconditional inverse replacement
<-> Unconditional replacement and inverse replacement
(->) Optional replacement
(<-) Optional inverse replacement
(<->) Optional replacement and inverse replacement
@-> Left-to-right longest-match replacement
@> Left-to-right shortest-match replacement
<-@ Left-to-right longest-match inverse replacement
<@ Left-to-right shortest-match inverse replacement
(@->) Optional left-to-right longest-match replacement
(@>) Optional left-to-right shortest-match replacement
(<-@) Optional left-to-right longest-match inverse replacement
(<@) Optional left-to-right shortest-match replacement

The directionality constraint DIR can be one of:

|| Left & right contexts must hold on upper side
\\ Left context holds on upper side, right context holds on lower side
// Left context holds on lower side, right context holds on upper side
\/ Left & right contexts must hold on lower side

Additionally, the special modifier [.X.] may be used on the left-hand side of a rule.
This signifies that, in case the language X contains the empty string, replacement is con-
strained to a maximum of one insertion for each legitimate location. For example:

foma[0]: regex [.(a).] -> b

283

Predicate logic quantifiers (∀x), (∃x)

The universal quantifier (∀x) and the existential quantifier (∀x) declares a variable
name x as bound to a quantifier in subsequent statements. Inside a logical sentence the
optionality operator () is suspended and parentheses indicate grouping, e.g.:

foma[0]: regex (∀x)((x ∈ a b) → (S(c,x) ∨ S(x,d)));

Predicate logic connectives ¬,→,∨,∧

The connectives have the traditional meaning and are equivalent to their regular expres-
sion counterparts. The connective X → Y is logically equivalent to ¬X ∨ Y .

Predicate logic predicates S(t1, t2), x ∈ L, x = y, x � y, x ≺ y

The successor-of predicate S(t1, t2) is true for all strings where t1 is immediately fol-
lowed by t2. The predicate x ∈ L is true for all strings where a bound variable x refers to
a substring which is member of the language L. The predicate x = y is true for all strings
where the bound variables x and y share both the same beginning and ending positions.
The predicates x � y and x ≺ y are true for those strings where the quantified variable x
follows resp. precedes (not necessarily immediately) y.

Built-in functions

There are a number of built-in functions that may be used in regular expressions. These
all begin with an underscore and are as follows:

• isunambiguous(T): returns ε if T is unambiguous, else ∅

• isidentity(T): returns ε if T is an identity relation, else ∅

• isfunctional(T): returns ε if T is a function, else ∅

• notid(T): returns all the strings in the domain of T which are not in an identity
relationship

• loweruniq(T): determinized the output side of T using arbitrary symbols

• allfinal(T): makes all states in T final

• unambpart(T): extracts the unambiguous paths from T

• ambpart(T): extracts the ambiguous paths from T

• ambdom(T): extracts from the domain of T all strings which are unambiguously
mapped in T

• eq(T,L1,L2): removes from the output side of T all strings where substrings
occurring between different instances L1 and L2 are unequal in content

284

A.12. Operator precedence

Unicode ASCII

[] () [] ()

∀ ∃

\ ‘ \ ‘

: :

+ ∗ + ∗
ˆ<n ˆ>n ˆ{m,n} ˆ<n ˆ>n ˆ{m,n}
1 2
−1 .1 .2 .u .l .i

.f .f
¬ $ $. $? ˜ $ $. $?

/ ./. /// \\\ /\/ / ./. /// \\\ /\/
(concatenation) (concatenation)
∈ /∈ = 6=
� ≺ > <
∨ ∪ ∧ ∩ - .P. .p. | & − .P. .p.
=> -> (->) @-> => -> (->) @->
‖ <>
× ◦ .O. .x. .o. .O.

A.13. Compiler variables

Global variables control the behavior of the foma compiler. These may be modified by the
command

set [name of variable] [value]

The following is a list of variables availble and their possible values.

flag-is-epsilon (0|1)

Controls whether flag diacritic symbols are treated as epsilon symbols in composition.
Doing so makes it possible to write replacement rules that ignore the presence of flag
symbols. To function correctly it requires that two different flags never occur as a pair on a
transition, e.g. @U.A.ON@:@U.A.OFF@.

Default value: 0

285

minimal (0|1)

Controls whether networks are minimized during and after construction. Turning the
flag off will most likely slow down operations dramatically.

Default value: 1

obey-flags (0|1)

Controls whether the application algorithm (apply down/up) checks for and disallows
paths where flags are in conflict.

Default value: 1

print-pairs (0|1)

Controls if apply down/up prints both sides of the strings.
Default value: 0

print-sigma (0|1)

Controls if the alphabet is printed together with other network information in “print
net”/“net”

Default value: 1

print-space (0|1)

Controls if spaces are printed between symbols when printing or applying words.
Default value: 0

quit-on-fail (0|1)

When quit-on-fail is set, foma quits immediately upon encountering an error in
a script launched with -l.

Default value: 1

show-flags (0|1)

Controls whether flag diacritic symbols are printed when printing or applying words.
Default value: 0

hopcroft-min (0|1)

Controls whether to use Hopcroft’s O(n log n) algorithm for minimization. If the
variable is 0, Brzozowski’s minimization is used instead, i.e. X is minimized by

286

determinize(reverse(determinize(reverse(X))))

Hopcroft’s algorithm is far superior for the majority of cases.
Default value: 1

compose-tristate (0|1)

Controls the strategy by which the composition algorithm avoids creating multiple paths
for the same input/output pairings. Tristate composition is similar to the filter transducer
descibed in Mohri, Pereira and Riley(1997). The default is to use a simpler ‘bistate’ filter-
ing, which is faster, also avoids multiple paths, and often creates smaller transducers than
the tristate approach. However, the tristate algorithm may produce better alignments in
some cases, such as:

a:0 b:0 c:0 .o. 0:d 0:e 0:f

for which the bistate algorithm fails to achieve optimal alignment.
Default value: 0

med-limit (0-MAXINT)

Sets the limit for how many words should be printed by the minimum edit distance
lookup command apply med.

Default value: 3

med-cutoff (0-MAXINT)

Sets the limit for how when to stop searching for minimum edit distance solutions when
doing apply med.

Default value: 15

A.14. Additional interface commands
ambiguous upper returns the set of input words which

produce multiple paths in a transducer
apply up <string> apply <string> up to the top network on

stack
apply down <string> apply <string> down to the top network

on stack
apply med <string> find approximate matches to string in

top network by minimum edit distance
apply up enter apply up mode (Ctrl-D exits)
apply down enter apply down mode (Ctrl-D exits)
apply med enter apply med mode (Ctrl-D exits)
apropos <string> search help for <string>
clear stack clears the stack

287

compact sigma removes redundant symbols from FSM
complete net completes the FSM
define <name> <r.e.> define a network
define <fname>(<v1,..,vn>) <r.e.> define function
determinize net determinizes top FSM on stack
echo <string> echo a string
eliminate flag <name> eliminate flag <name> diacritics from

the top network
eliminate flags eliminate all flag diacritics from the

top network
export cmatrix (filename) export the confusion matrix as an AT&T

transducer
extract ambiguous extracts the ambiguous paths of a

transducer
extract unambiguous extracts the unambiguous paths of a

transducer
help license prints license
help warranty prints warranty information
label net extracts all attested symbol pairs

from FSM
load stack <filename> Loads networks and pushes them on the

stack
load defined <filename> Restores defined networks from file
minimize net minimizes top FSM
name net <string> names top FSM
pop stack remove top FSM from stack
print cmatrix prints the confusion matrix associated

with the top network in tabular format
print defined prints defined symbols and functions
print dot (>filename) prints top FSM in Graphviz dot format
print lower-words prints words on the lower-side of top

FSM
print name prints the name of the top FSM
print net prints all information about top FSM
print random-lower prints random words from lower side
print random-upper prints random words from upper side
print random-words prints random words from top FSM
print sigma prints the alphabet of the top FSM
print size prints size information about top FSM
print shortest-string prints the shortest string of the top

FSM
print shortest-string-size prints length of shortest string
prune net makes top network coaccessible
push (defined) <name> adds a defined FSM to top of stack
quit exit foma
read att <filename> read a file in AT&T FSM format and add

to top of stack
read cmatrix <filename> read a confusion matrix and associate

it with the network on top of the stack

288

read prolog <filename> reads prolog format file
read lexc <filename> read and compile lexc format file
rotate stack rotates stack
save defined <filename> save all defined networks to

binary file
save stack <filename> save stack to binary file
set <variable> <ON|OFF> sets a global variable

(see show variables)
show variables prints all variable/value pairs
sigma net Extracts the alphabet and creates a FSM

that accepts
all single symbols in it

source <file> read and compile script file
sort net sorts arcs lexicographically on top FSM
substitute symbol X for Y substitutes all occurrences of Y in an

arc with X
system <cmd> execute a system command
test unambiguous test if top FST is unambiguous
test equivalent test if the top two FSMs are equivalent
test functional test if the top FST is functional
test identity test if top FST represents

identity relations only
test lower-universal test if lower side is ?*
test upper-universal test if upper side is ?*
test non-null test if top machine is not

the empty language
test null test if top machine is the

empty language (∅)
test star-free test if top FSM is star-free
turn stack turns stack upside down
twosided flag-diacritics changes flags to always be

identity pairs
undefine <name> remove <name> from defined networks
upper-side net upper projection of top FSM
view net display top network (if supported)
write prolog (> filename) writes top network to prolog format

file/stdout
write att (> <filename>) writes top network to AT&T format

file/stdout

289

B. SELECTED EXAMPLE SCRIPTS

B.1. Fundamental operations

B.1.1. Filtered cross products

The following script illustrates the aligned cross product in figure 3.4.

Two ways of performing a cross-product:
naive (Filtered), and aligned (NonFiltered)

define NonFiltered [a .x. [b c]*];
define Filtered [a .x. [b c]*] & [?:?]* [[?:0]* | [0:?]*];

regex NonFiltered;
print net
regex Filtered;
print net

B.1.1.1. Output

defined NonFiltered: 257 bytes. 3 states, 4 arcs, Cyclic.
defined Filtered: 336 bytes. 4 states, 4 arcs, Cyclic.
257 bytes. 3 states, 4 arcs, Cyclic.
Sigma: a b c
Size: 3.
Net: 6B8B4567
Flags: deterministic pruned minimized epsilon_free
Arity: 2
Ss0: <a:b> -> s1, <a:0> -> fs2.
fs2: <0:b> -> s1.
s1: <0:c> -> fs2.
336 bytes. 4 states, 4 arcs, Cyclic.
Sigma: ? @ a b c
Size: 3.
Net: 327B23C6
Flags: deterministic pruned minimized epsilon_free
Arity: 2
Ss0: <a:b> -> s2, <a:0> -> fs1.
fs1: (no arcs).
s2: <0:c> -> fs3.
fs3: <0:b> -> s2.

290

B.1.2. Composition strategies

The following script performs the composition of T1 and T2 with both the bimode and
trimode strategies
define T1 [a:0 b:0];
define T2 [0:c 0:d];
regex T1 .o. T2;
print net
set compose-tristate ON
regex T1 .o. T2;
print net

B.1.2.1. Output

defined T1: 227 bytes. 3 states, 2 arcs, 1 path.
defined T2: 227 bytes. 3 states, 2 arcs, 1 path.
287 bytes. 5 states, 4 arcs, 1 path.
Sigma: a b c d
Size: 4.
Net: 6B8B4567
Flags: deterministic pruned minimized epsilon_free loop_free
Arity: 2
Ss0: <a:0> -> s1.
s1: <b:0> -> s2.
s2: <0:c> -> s3.
s3: <0:d> -> fs4.
fs4: (no arcs).
variable compose-tristate = ON
255 bytes. 3 states, 2 arcs, 1 path.
Sigma: a b c d
Size: 4.
Net: 327B23C6
Flags: deterministic pruned minimized epsilon_free loop_free
Arity: 2
Ss0: <a:c> -> s1.
s1: <b:d> -> fs2.
fs2: (no arcs).

B.1.3. The shortest string problem

The following script illustrates the extraction of the set of shortest strings from a language
L, as described in section 3.8.2.5.
Illustration of the shortest string extraction by definition
of a function that extracts the set of shortest strings

define ShortestString(X) [X - ?+ [X .o. [?:?]*].l];
define L [a b c (d) (e) (f) (g)];

regex ShortestString(L);
print words

291

B.1.3.1. Output

defined ShortestString(@1)
defined L: 473 bytes. 8 states, 13 arcs, 16 paths.
376 bytes. 4 states, 3 arcs, 1 path.
abc

B.1.4. Edit distance

A simple example script to illustrate how to construct a machine L′ from a lexicon L,
where L′ contains all the words exactly one edit distance away from words in L (see section
3.8.2.6).

Calculate all the words exactly one edit distance away
from words in L

define L {cat}|{dog};
define ED1(X) [X .o. ?* [?:?-?|?:0|0:?] ?*].l;
regex ED1(L);
print words

B.1.4.1. Output

defined L: 347 bytes. 6 states, 6 arcs, 2 paths.
defined ED1(@1)
1.6 kB. 24 states, 82 arcs, 92 paths.
ccat
cct
c@at
c@t
ca
...
dcg
dcog
d@g
d@og
dag
...

B.1.5. Longest common substring and subsequence

The following script illustrates the calculation of the longest common substrings and sub-
sequences as descibed in section 3.8.2.7.

The following script illustrates the calculation of
the longest common substrings and subsequences
by declaring functions for that purpose

The example solves both problems for
s = abcaa, t = dbcadaa

292

define Substring(X) [X .o. ?:0* ?* ?:0*].l;
define Subsequence(X) [X .o. [?|?:0]*].l;
define Longest(X) X - [[X .o. ?:a* ?:0+].l .o. a:?*].l;
define LCSubstr(X,Y) [Longest(Substring(X) & Substring(Y))];
define LCSubseq(X,Y) [Longest(Subsequence(X) & Subsequence(Y))];

define S [a b c a a];
define T [d b c a d a a];

regex LCSubstr(S,T);
print words
regex LCSubseq(S,T);
print words

B.1.5.1. Output

defined Substring(@1)
defined Subsequence(@1)
defined Longest(@1)
defined LCSubstr(@2)
defined LCSubseq(@2)
defined S: 289 bytes. 6 states, 5 arcs, 1 path.
defined T: 335 bytes. 8 states, 7 arcs, 1 path.
334 bytes. 4 states, 3 arcs, 1 path.
bca
350 bytes. 5 states, 4 arcs, 1 path.
bcaa

B.1.6. Lexicon compilation

The following lexicon script illustrates the contents of figure 3.11 as well as the subsequent
determinized and minimized transducer.

Multichar_Symbols %+Inf %+Past %+Ger %+Pl %+Sg

Lexicon Root
Noun;
Verb;

Lexicon Noun
cat N;
dog N;
duck N;
rat N;

Lexicon Verb
walk V;
eat%+Past:ate #;

293

Lexicon V
%+Inf:0 #;
%+Past:ed #;
%+Ger:ing #;

Lexicon N
%+Pl:s #;
%+Sg:0 #;

B.1.6.1. Output

s0

s1
d

s5
c r

s8

w

s15

<e:a>

s2
o

s3
u

s7

g

s4
c k

s6
a

t

s18

<+Sg:0> <+Pl:s>

s9
a

s10
l s11k

s12
<+Past:e>

s13<+Ger:i>

<+Inf:0>

<0:d>

s14
<0:n> <0:g>

s16
<a:t>

s17
<t:e>

<+Past:0>

B.2. Predicate Logic

B.2.1. Basic examples

The following script compiles the predicate logic examples given in section 6.3. Also, for
the regular expression given in 6.1, it is compared against example (vii) in section 6.3,
using (ab ∪ ba) as L.

Logic examples

define L [a b | b a];
define i (∃x)(x ∈ a b);
define ii (∃x)(x ∈ a b) ∧ (∃y)(y ∈ c d);
define iii (∀x)(x ∈ a b);
define iv (∀x)((x ∈ a b) → S(x,d));
define v (∀x)((x ∈ a b) → (S(c,x) ∨ S(x,d)));
define vi (∀x)((x ∈ a b) → S(x, ?* d));

define vii (∃x)(x ∈ L ∧ (∀y)((y ∈ L) → (x = y)));
vii should be equivalent to the regex
define viiregex [?* L ?*] - [?* [[?+ L ?* & L ?*] | [L ?+ & L]] ?*];

regex vii;
regex viiregex;
test equivalent

294

B.2.1.1. Output

defined L: 259 bytes. 4 states, 4 arcs, 2 paths.
defined i: 355 bytes. 3 states, 9 arcs, Cyclic.
defined ii: 879 bytes. 8 states, 40 arcs, Cyclic.
defined iii: 136 bytes. 1 states, 0 arcs, 0 paths.
defined iv: 369 bytes. 3 states, 9 arcs, Cyclic.
defined v: 495 bytes. 4 states, 16 arcs, Cyclic.
defined vi: 417 bytes. 3 states, 12 arcs, Cyclic.
defined vii: 467 bytes. 6 states, 16 arcs, Cyclic.
defined viiregex: 467 bytes. 6 states, 16 arcs, Cyclic.
467 bytes. 6 states, 16 arcs, Cyclic.
467 bytes. 6 states, 16 arcs, Cyclic.
1 (1 = TRUE, 0 = FALSE)

B.2.2. Context restriction

The following example illustrates two methods of compiling the example context restric-
tion statement (6.13): through the method given in Yli-Jyrä and Koskenniemi (2004) and
through predicate logic presented in chapter 6.

Compiling x => a _ b , c _ d

The logic method
regex (∀y)((y ∈ x) → (S(a,y) ∧ S(y,b)) ∨ (S(c,y) ∧ S(y,d)));
Yli-jyrä & Koskenniemi method
regex ˜‘[[\�* � x � \�* - [\�* a � \�* � b \�* | \�* c � \�* � d \�*]],�,0];
test equivalent

B.2.2.1. Output

557 bytes. 5 states, 19 arcs, Cyclic.
557 bytes. 5 states, 19 arcs, Cyclic.
1 (1 = TRUE, 0 = FALSE)

B.3. Reduplication

B.3.1. Simple duplication of a lexicon

The following script illustrates the use of the EQ operator to create from a closed lexicon,
a lexicon that contains all reduplicated forms as well.

Reduplicating a lexicon with _eq()

We first define a lexicon
define Lex {cat}|{dog}|{horse}|{mouse};

Then we define the language that contains one or
two words from the lexicon (with a hyphen in the middle)
The two words may be different at this point

295

define BracketedLexicon [%< Lex %> (%- %< Lex %>)];

Then we constrain the two bracketed words to be equal with _eq()
ruling out invalid reduplications
define Duplicates _eq(BracketedLexicon, %<, %>);

And remove the auxiliary brackets
regex [Duplicates .o. %<|%> -> 0].l ;

print words

B.3.1.1. Output

defined Lex: 559 bytes. 12 states, 14 arcs, 4 paths.
defined BracketedLexicon: 905 bytes. 28 states, 33 arcs, 20 paths.
defined Duplicates: 1.1 kB. 42 states, 44 arcs, 8 paths.
984 bytes. 32 states, 34 arcs, 8 paths.
cat
cat-cat
dog
dog-dog
horse
horse-horse
mouse
mouse-mouse

B.3.2. Total reduplication

The following script illustrates how to capture total reduplication against a lexicon using
EQ as described in (4.14).

define N {orang}|{buku};
define Lexicon N %+Noun %+Sg | 0:%< N 0:%> 0:%< 0:N 0:%> %+Noun %+Pl;
define RemoveDiacritics %<|%>|%+Noun|%+Sg|%+Pl -> 0;
define Grammar _eq(Lexicon, %<,%>) .o. RemoveDiacritics;
regex Grammar;
echo "analysis of buku"
apply up buku
echo analysis of bukubuku
apply up bukubuku

B.3.2.1. Output

defined N: 423 bytes. 9 states, 9 arcs, 2 paths.
defined Lexicon: 917 bytes. 32 states, 35 arcs, 6 paths.
defined RemoveDiacritics: 388 bytes. 1 states, 6 arcs, Cyclic.
defined Grammar: 788 bytes. 21 states, 23 arcs, 4 paths.
788 bytes. 21 states, 23 arcs, 4 paths.
"analysis of buku"
buku+Noun+Sg
analysis of bukubuku
buku+Noun+Pl

296

B.3.3. Warlpiri reduplication

The following script captures the Warlpiri mini-grammar outlined in section 4.6.3.1. Here
we have a small lexicon of words which can possibly undergo a reduplication process that
follows a CV (C)(C)V template.

Warlpiri reduplication example implemented with the _eq() operator
Examples come from Nash(1980), pp. 142-144 and Sproat (1992), p. 58

Warlpiri reduplication operates on the base form of a word and copies
a "prosodic foot" or "reduplication skeleton" from the base.
The prosodic foot is of the shape C V (C) (C) V.
This reduplication process yields, for example:

Base form Reduplicated form
-------- -----------------
pakarni pakapakarni
pangurnu pangupangurnu
wantimi wantiwantimi

The script has a base lexicon.
All words in the lexicon may be followed by the tag +Redup.

We first mark the prosodic template with < ... > and,
if the tag +Redup is present, prefix a < [C|V]* > sequence
(i.e., anything surrounded by < and >) after which we apply
_eq() which filters out all substrings ... < X > ... < Y > ...
where X is not equal to Y in content

The idea is to get strings in the composition sequence such as:

1. pangurnu+Redup <- Lexicon
2. <pangu>rnu+Redup <- enclose initial prosodic foot in brackets
3. <...><pangu>rnu+Redup <- insert a prefix of "anything" in brackets
if +Redup is present
4. <pangu><pangu>rnu <- after _eq()
5. pangupangurnu <- after auxiliary symbol removal

define C p|{ng}|{rn}|{rl}|k|j|w|n|t|m;
define V a|e|i|o|u;
define Lexicon {pangurnu}|{tiirlparnkaja}|{wantimi}|{pakarni};
define Morphology Lexicon ("+Redup");
define MarkTemplate C V (C) (C) V -> "<" ... ">" || .#. _ ;
define InsertPrefix [..] -> "<" [C|V]* ">" || .#. _ ?* "<" ?* "+Redup";
define RemoveTags "+Redup" -> 0;
define RemoveBrackets "<"|">" -> 0;
define PreEq Morphology .o. MarkTemplate .o. InsertPrefix .o. RemoveTags;
regex _eq(PreEq, "<" , ">") .o. RemoveBrackets;

echo analysis of "pakarni"

297

apply up pakarni
echo analysis of "pakapakarni"
apply up pakapakarni

B.3.3.1. Output

defined C: 483 bytes. 4 states, 11 arcs, 10 paths.
defined V: 317 bytes. 2 states, 5 arcs, 5 paths.
defined Lexicon: 861 bytes. 30 states, 32 arcs, 4 paths.
defined Morphology: 896 bytes. 31 states, 33 arcs, 8 paths.
defined MarkTemplate: 4.6 kB. 24 states, 269 arcs, Cyclic.
defined InsertPrefix: 2.7 kB. 9 states, 145 arcs, Cyclic.
defined RemoveTags: 265 bytes. 1 states, 2 arcs, Cyclic.
defined RemoveBrackets: 290 bytes. 1 states, 3 arcs, Cyclic.
defined PreEq: 2.4 kB. 73 states, 120 arcs, Cyclic.
1.7 kB. 76 states, 82 arcs, 8 paths.
analysis of "pakarni"
pakarni
analysis of "pakapakarni"
pakarni+Redup

B.4. Multitape automata

B.4.1. Declaring tape contents individually

The script below illustrates and defines some of the operations in section 7.6.1, and ex-
emplifies formulas (7.2) and (7.8) by creating a 4-tape machine from individually declared
tape contents.

We create a 4-tape simulation with
low-level operators and model the configuration

a b c or a b c
d d
e f e f
g h i g h j

by declaring each of the tape contents separately
and aligning blanks to the right.

define AlignRightblanks(L) [L .o. ?* 0:�*].l;

define Tape14(L) [L .o. [? 0:? 0:? 0:?]*].l;
define Tape24(L) [L .o. [0:? ? 0:? 0:?]*].l;
define Tape34(L) [L .o. [0:? 0:? ? 0:?]*].l;
define Tape44(L) [L .o. [0:? 0:? 0:? ?]*].l;

regex Tape14(AlignRightblanks(a b c)) &
Tape24(AlignRightblanks(d)) &

298

Tape34(AlignRightblanks(e f)) &
Tape44(AlignRightblanks(g h i | g h j)) &
˜[?ˆ4* � � � � ?*] ;

print words

B.4.1.1. Output

defined AlignRightblanks(@1)
defined Tape14(@1)
defined Tape24(@1)
defined Tape34(@1)
defined Tape44(@1)
594 bytes. 13 states, 13 arcs, 2 paths.
adegb�fhc��i
adegb�fhc��j

B.5. Transducer properties

B.5.1. Tests for functionality and ambiguity

The following is an illustration of various algorithms in chapter 5 such as tests for identity
(algorithm 5.1), functionality (5.6), ambiguity (5.10), extraction of the ambiguous domain
(5.11), and splicing a transducer into its ambiguous and unambiguous components (5.16).

Illustrations of test of identity, functionality,
ambiguity, and extraction of the ambiguous domain
as well as splicing a transducer into its unambiguous
and ambiguous parts

1. An identity transducer over "a b c" despite non-identity alignments
regex [a:0 b:a c:0 0:b 0:c]*;
test identity

2. A functional, but ambiguous transducer
regex [a:0 0:b | a:b];
test functional
test unambiguous

3. A non-functional, ambiguous transducer
regex a b -> x \/ a b _ a ;
test functional
test unambiguous

4. A functional, non-ambiguous transducer
regex a b -> x || a b _ a;
test functional
test unambiguous

299

5. Extract the ambiguous domain from 3.
regex _ambdom(a b -> x \/ a b _ a);
print the shortest string in the domain that has
an ambiguous path
print shortest-string

6. Splice 3. into an (a) unambiguous and (b) ambiguous part
define UNAMB3 _unambpart(a b -> x \/ a b _ a);
define AMB3 _ambpart(a b -> x \/ a b _ a);

7. the union of 6(a) and 6(b) should equal 3.

regex UNAMB3 | AMB3;
regex a b -> x \/ a b _ a ;
test equivalent

B.5.1.1. Output

273 bytes. 5 states, 5 arcs, Cyclic.
1 (1 = TRUE, 0 = FALSE)
243 bytes. 3 states, 3 arcs, 2 paths.
1 (1 = TRUE, 0 = FALSE)
0 (1 = TRUE, 0 = FALSE)
624 bytes. 7 states, 23 arcs, Cyclic.
0 (1 = TRUE, 0 = FALSE)
0 (1 = TRUE, 0 = FALSE)
624 bytes. 7 states, 23 arcs, Cyclic.
1 (1 = TRUE, 0 = FALSE)
1 (1 = TRUE, 0 = FALSE)
564 bytes. 8 states, 24 arcs, Cyclic.
abababa
defined UNAMB3: 608 bytes. 7 states, 22 arcs, Cyclic.
defined AMB3: 1.1 kB. 16 states, 55 arcs, Cyclic.
624 bytes. 7 states, 23 arcs, Cyclic.
624 bytes. 7 states, 23 arcs, Cyclic.
1 (1 = TRUE, 0 = FALSE)

300

REFERENCES

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. (1974). The Design and Analysis of Computer
Algorithms. Addison-Wesley.

Aho, A. V., Sethi, R., and Ullman, J. D. (1986). Compilers: Principles, Techniques, and
Tools. Addison-Wesley.

Aho, A. V. and Ullman, J. D. (1972). The Theory of Parsing, Translation, and Compiling,
volume 1. Prentice Hall.

Alegria, I., Etxeberria, I., Hulden, M., and Maritxalar, M. (2009). Porting Basque morpho-
logical grammars to foma, an open-source tool. In FSMNLP 2009.

Almeida, M., Moreira, N., and Reis, R. (2007). On the performance of automata minimiza-
tion algorithms. Technical report, Universidade do Porto.

Antimirov, V. M. (1996). Partial derivatives of regular expressions and finite automaton
constructions. Theoretical Computer Science, 155(2):291–219.

Antworth, E. (1991). PC-KIMMO: a two-level processor for morphological analysis. Num-
ber 16 in Occasional Publications in Academic Computing. Summer Institute of Linguis-
tics.

Bassino, F., David, J., and Nicaud, C. (2009). On the average complexity of Moore’s
state minimization algorithm. In 26th International Symposium on Theoretical Aspects
of Computer Science (STACS 2009), volume 3 of Leibniz International Proceedings in
Informatics, pages 123–134.

Béal, M.-P., Carton, O., Prieur, C., and Sakarovitch, J. (2000). Squaring transducers: an
efficient procedure for deciding functionality and sequentiality of transducers. In LNCS
1776. Springer.

Béal, M.-P. and Crochemore, M. (2008). Minimizing incomplete automata. In Finite-State
Methods and Natural Language Processing (FSMNLP’08).

Beesley, K. R. (1998). Consonant spreading in Arabic stems. In ACL 98 Proceedings.

Beesley, K. R. and Karttunen, L. (2000). Finite-state non-concatenative morphotactics. In
Proceedings of the 38th Annual Meeting on Association for Computational Linguistics.

Beesley, K. R. and Karttunen, L. (2003). Finite State Morphology. CSLI Publications,
Stanford, CA.

301

Bergroth, L., Hakonen, H., and Raita, T. (2000). A survey of longest common subsequence
algorithms. In Proceedings of the Seventh International Symposium on String Processing
Information Retrieval SPIRE’00, pages 39–48.

Berstel, J. and Carton, O. (2005). On the complexity of Hopcroft’s state minimization
algorithm. Lecture Notes in Computer Science, 3317:35–44.

Bird, M. (1973). The equivalence problem for deterministic two-tape automata. Journal of
Computer and System Sciences, 7:218–236.

Blattner, M. and Head, T. (1977). Single-valued a-transducers. Journal of Computer and
System Sciences, 15(3):328–353.

Brzozowski, J. A. (1963). Canonical regular expressions and minimal state graphs for
definite events. In Proceedings of the Symposium on Mathematical Theory of Automata,
New York, NY, April 24-26, 1962, volume 12 of MRI Symposia Series, pages 529–561,
Brooklyn, NY. Polytechnic Press of the Polytechnic Institute of Brooklyn.

Büchi, J. R. (1960). Weak second-order arithmetic and finite automata. Zeitschrift für
mathematische Logic und Grundlagen der Mathematik, 6:66–92.

Buckwalter, T. (2004). Arabic Morphological Analyzer 2.0. Linguistics Data Consortium
(LDC).

Câmpeanu, C., Salomaa, K., and Yu, S. (2003). A formal study of practical regular expres-
sions. International Journal of Foundations of Computer Science, 14(6):1007–1017.

Castiglione, G., Restivo, A., and Sciortino, M. (2008). Hopcroft’s algorithm and cyclic
automata. Lecture Notes in Computer Science, 5196:172–183.

Champarnaud, J.-M., Khorsi, A., and T., P. (2002). Split and join for minimizing: Brzo-
zowski’s algorithm. In Proceedings of PSC 2002 (Prague Stringology Conference).

Choffrut, C. (1978). Contributions à l’étude de quelques familles remarquables de fonc-
tions rationnelles. PhD thesis, Université Paris 7, Paris, France.

Chomsky, N. (1957). Syntactic Structures. Mouton, The Hague.

Chomsky, N. and Halle, M. (1968). The Sound Pattern of English. Harper & Row.

Cohen-Sygal, Y. and Wintner, S. (2006). Finite-state registered automata for non-
concatenative morphology. Computational Linguistics, 32(1):49–82.

Culik II, K. (1978). Some decidability results about regular and push down translations.
Research Report CS-78-09, University of Waterloo, Waterloo, Ontario, Canada.

302

Culy, C. (1985). The complexity of the vocabulary of Bambara. Linguistics and Philoso-
phy, 8(3):345–351.

Daciuk, J., Mihov, S., Watson, B. W., and Watson, R. E. (1998). Incremental construction
of minimal acyclic finite-state automata. In FSMNLP’98: International Workshop on
Finite State Methods in Natural Language Processing.

Elgot, C. C. (1961). Decision problems of finite automata and related arithmetics. Trans-
actions of the American Mathematical Society, 98:21–51.

Gerdmann, D. and van Noord, G. (1999). Transducers from rewrite rules with backrefer-
ences. In Proceedings of EACL 1999.

Gerdmann, D. and van Noord, G. (2000). Approximation and exactness in finite state
optimality theory. In Proceedings of the Fifth Workshop of the ACL Special Interest
Group in Computational Phonology.

Ghomeshi, J., Jackendoff, R., Rosen, N., and Russell, K. (2004). Contrastive focus redu-
plication in English (the salad-salad paper). Natural Language & Linguistic Theory,
22(2):307–357.

Glushkov, V. M. (1961). The abstract theory of automata. Russian Mathematical Surveys,
16:1–53.

Gries, D. (1972). Describing an algorithm by Hopcroft. Acta Informatica, 2:97–107.

Griffiths, T. V. (1968). The unsolvability of the equivalence problem for Λ-free nondeter-
ministic generalized machines. Journal of the Association for Computing Machinery,
15(3):409–413.

Grimley-Evans, E., Kiraz, G. A., and Pulman, S. G. (1996). Compiling a partition-based
two-level formalism. In Proceedings of the 16th conference on Computational linguis-
tics, pages 454–459.

Harju, T. and Karhumäki, J. (1991). The equivalence problem of multitape finite automata.
Theoretical Computer Science, 78(2):347–255.

Harris, Z. (1941). Linguistic structure of Hebrew. Journal of the American Oriental Society,
61(3):143–167.

Hopcroft, J. (1971). An n log n algorithm for minimizing states in a finite automaton.
Technical Report STAN-CS-71-190, Stanford University.

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley.

303

Hulden, M. (2006). Finite-state syllabification. Lecture Notes in Artificial Intelligence,
4002:86–96.

Hulden, M. (2009a). Fast approximate string matching with finite automata. Procesamiento
del lenguaje natural, 43:57–64.

Hulden, M. (2009b). Foma: a finite-state compiler and library. In EACL 2009 Proceedings,
pages 29–32.

Hulden, M. (2009c). Parsing CFGs and PCFGs with a Chomsky-Schützenberger represen-
tation. Proceedings of LTC 2009, pages 95–99.

Hulden, M. (2009d). Regular expressions and predicate logic in finite-state language pro-
cessing. In Piskorski, J., Watson, B., and Yli-Jyrä, A., editors, Finite-State Methods
and Natural Language Processing—Post-proceedings of the 7th International Work-
shop FSMNLP 2008, volume 191 of Frontiers in Artificial Intelligence and Applications,
pages 82–97. IOS Press.

Hulden, M. (2009e). Revisiting multi-tape automata for Semitic morphological analysis
and generation. Proceedings of the EACL 2009 Workshop on Computational Approaches
to Semitic Languages, pages 19–26.

Hulden, M. and Bischoff, S. T. (2007). A simple formalism for capturing order and co-
occurrence in computational morphology. Procesamiento del lenguaje natural, 39:21–
26.

Hulden, M. and Bischoff, S. T. (2008). Annotating reduplication in finite-state morphology.
Proceedings of FSMNLP 2008, pages 165–169.

Ilie, L. and Yu, S. (2003). Follow automata. Information and Computation, 186(1):146–
162.

Inkelas, S. and Zoll, C. (2005). Reduplication: Doubling in Morphology. Cambridge
University Press.

Johnson, C. D. (1972). Formal aspects of phonological description. Mouton, The Hague.

Joshi, A. K. and Hopely, P. (1997). A parser from antiquity: An early application of
finite state transducers to natural language parsing. In Extended Finite State Models of
Language. Cambridge University Press.

Kager, R. (1999). Optimality Theory. Cambridge University Press.

Kaplan, R. M. and Kay, M. (1994). Regular models of phonological rule systems. Compu-
tational Linguistics, 20(3):331–378.

304

Karttunen, L. (1993). Finite-state lexicon compiler. Technical Report ISTL-NLTT2993-
04-02, Xerox Palo Alto Research Center.

Karttunen, L. (1994). Constructing lexical transducers. In COLING ’94.

Karttunen, L. (1996). Directed replacement. In Proceedings of the 34th conference on
Association for Computational Linguistics, pages 108–115.

Karttunen, L. (1997). The replace operator. In Roche, E. and Schabes, Y., editors, Finite-
State Language Processing. MIT Press.

Karttunen, L. (1998). The proper treatment of optimality theory in computational phonol-
ogy. In Finite-state Methods in Natural Language Processing.

Karttunen, L. (2003). Computing with realizational morphology. Lecture Notes in Com-
puter Science, 2588:205–216.

Karttunen, L., Koskenniemi, K., and Kaplan, R. M. (1987). A compiler for two-level
phonological rules. In Dalrymple, M., Kaplan, R., Karttunen, L., Koskenniemi, K.,
Shaio, S., and Wescoat, M., editors, Tools for Morphological Analysis. CSLI Publica-
tions.

Kataja, L. and Koskenniemi, K. (1988). Finite-state description of Semitic morphology: A
case study of ancient Akkadian. In COLING ’88.

Kay, M. (1987). Nonconcatenative finite-state morphology. In Proceedings of EACL 1987.

Kempe, A. and Karttunen, L. (1996). Parallel replacement in finite state calculus. In Pro-
ceedings of the 34th annual meeting of the Association for Computational Linguistics.

Kenstowicz, M. and Kisseberth, C. (1979). Generative Phonology. Academic Press.

Kiparsky, P. (1986). The Phonology of Reduplication. (Ms.). Stanford University.

Kiparsky, P. (2009). On the architecture of Pānini’s grammar. Lecture Notes in Artificial
Intelligence, 5402.

Kiraz, G. A. (1994). Multi-tape two-level morphology: A case study in Semitic non-linear
morphology. In COLING ’94.

Kiraz, G. A. (1997). Compiling regular formalisms with rule features into finite-state au-
tomata. In Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics, pages 329–336.

Kiraz, G. A. (2000). Multi-tiered nonlinear morphology using multitape finite automata:
A case study on Syriac and Arabic. Computational Linguistics, 26(1):77–105.

305

Kiraz, G. A. and Grimley-Evans, E. (1998). Multi-tape automata for speech and language
systems: A prolog implementation. Lecture Notes in Computer Science, 1436:87–103.

Knuth, D. E. (1998). The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley.

Knuutila, T. (2001). Re-describing an algorithm by Hopcroft. Theoretical Computer Sci-
ence, 250:333–363.

Koskenniemi, K. (1983). Two-level morphology: A general computational model for word-
form recognition and production. University of Helsinki, Department of General Lin-
guistics, Helsinki.

Kozen, D. C. (1997). Automata and Computability. Springer.

Langendoen, D. T. (1981). The generative capacity of word-formation components. Lin-
guistic Inquiry, 12:320–322.

Langendoen, D. T. and Langsam, Y. (1984). On the design of finite transducers for parsing
phrase-structure languages. Mathematics of Language: Proceedings of a conference
held at the University of Michigan, Ann Arbor, October 1984, pages 191–236.

Laporte, E. (1997). Rational transductions for phonetic conversion and phonology. In
Finite-State Language Processin. MIT Press.

Lavie, A., Itai, A., and Ornan, U. (1988). On the applicability of two level morphology to
the inflection of Hebrew verbs. In Proceedings of ALLC III.

Leslie, T. (1995). Efficient approaches to subset construction. Master’s thesis, University
of Waterloo, Waterloo, Ontario, Canada.

MacDonald, R. R. and Darjowidjojo, S. (2001). A student’s reference grammar of modern
formal Indonesian. Georgetown University Press.

Marantz, A. (1982). Re reduplication. Linguistic Inquiry, 13(3):435–482.

McCarthy, J. J. (1979). Formal Problems in Semitic Phonology and Morphology. PhD
thesis, MIT, Cambridge, MA.

McCarthy, J. J. (1981). A prosodic theory of nonconcatenative morphology. Linguistic
Inquiry, 12(3):373–418.

McNaughton, R. and Papert, S. (1971). Counter-free Automata. MIT Press.

Mohanan, K. P. (1986). The Theory of Lexical Phonology. Reidel, Dordrecht, Holland.

306

Mohri, M. (1997a). Finite-state transducers in speech and language processing. Computa-
tional Linguistics, 23(2):269–311.

Mohri, M. (1997b). On the use of sequential transducers in natural language processing.
Finite-State Language Processing, pages 355–382.

Mohri, M. and Nederhof, M.-J. (2000). Regular approximation of context-free grammars
through transformations. In Junqua, J.-C. and van Noord, G., editors, Robustness in
Language and Speech Technology, pages 251–261. Kluwer Academic Publishers.

Mohri, M., Pereira, F., and Riley, M. (1996). Weighted automata in text and speech pro-
cessing. In ECAI 96, 12th European Conference on Artificial Intelligence.

Mohri, M. and Sproat, R. (1996). An efficient compiler for weighted rewrite rules. In
Proceedings of the 34th conference on Association for Computational Linguistics, pages
231–238.

Moore, E. F. (1956). Gedanken-experiments on sequential machines. In Shannon, C. E.
and McCarthy, J., editors, Automata Studies, volume 2 of Annals of Mathematics Studies,
pages 129–153. Princeton University Press.

Moravcsik, E. A. (1978). Reduplicative constructions. In Greenberg, J., editor, Universals
of Human Language, volume 3, pages 297–334. Stanford University Press, Stanford,
CA.

Myhill, J. (1957). Finite automata and the representation of events. Technical Report
WADD TR-57-624, Wright Patterson AFB, Ohio.

Nash, D. G. (1980). Topics in Warlpiri Grammar. PhD thesis, MIT.

Nederhof, M.-J. (2000). Practical experiments with regular approximation of context-free
languages. Computational Linguistics, 26(1):17–44.

Nerode, A. (1958). Linear automaton transformations. Proceedings of the AMS, 9:541–
544.

Payne, D. L. (1981). The phonology and morphology of Axininca Campa. University of
Texas at Arlington.

Post, E. L. (1946). A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52(4):264–268.

Rabin, M. and Scott, D. (1959). Finite automata and their decision problems. IBM Journal,
3(2):114–125.

307

Reichard, G. A. (1938). Coeur d’Alene. In Boaz, F., editor, Handbook of American Indian
Languages, volume 3, pages 515–707. J. J. Augustin, New York.

Revuz, D. (1992). Minimization of acyclic deterministic automata in linear time. Theoret-
ical Computer Science, 92(2):181–189.

Ritchie, G. D., Russell, G. J., Black, A. W., and Pulman, S. G. (1991). Computational
morphology: practical mechanisms for the English lexicon. MIT Press.

Roark, B. and Sproat, R. (2007). Computational Approaches to Morphology and Syntax.
Oxford University Press.

Roche, E. and Schabes, Y. (1997). Introduction. Finite-State Language Processing.

Russell, K. (1997). Optimality theory and morphology. In Archangeli, D. and Langendoen,
T. D., editors, Optimality Theory: an Overview, Explaining Linguistics, pages 102–133.
Blackwell, Oxford.

Schützenberger, M. P. (1976). Sur les relations rationnelles entre monoı̈des libres. Theo-
retical Computer Science, 3:243–259.

Schützenberger, M. P. (1977). Sur une variante des fonctions séquentielles. Theoretical
Computer Science, 4:47–57.

Selkirk, E. (1980). The role of prosodic categories in English word stress. Linguistic
Inquiry, 11(3):563–605.

Sipser, M. (2006). Introduction to The Theory of Computation. Thomson, 2nd edition.

Skut, W., Ulrich, S., and Hammervold, K. (2003). A generic finite state compiler for
tagging rules. Machine Translation, 18(3):239–250.

Sommer, B. (1981). The shape of Kunjen syllables. In Goyvaerts, Didier, L., editor,
Phonology in the 1980’s. Story-Scientia, Ghent.

Sproat, R. (1992). Computational Morphology. MIT Press.

Stevens, A. M. (1968). Madurese Phonology and Morphology. American Oriental Society,
New Haven, CT.

Stevens, A. M. (1985). Reduplication in Madurese. In Choi, S., Devitt, D., Janis, W.,
McCoy, T., and Sheng-Sheng, Z., editors, Proceedings of the Annual Eastern States
Conference on Linguistics, pages 232–242.

Stump, G. T. (2001). Inflectional Morphology: A Theory of Paradigm Structure. Cam-
bridge University Press.

308

Thomas, W. (1997). Languages, automata, and logic. In Rozenberg, G. and Salomaa, A.,
editors, Handbook of Formal Languages, volume 3, pages 389–455. Springer.

Thompson, K. (1968). Programming techniques: Regular expression search algorithm.
Communications of the ACM, 11(6):419–422.

Vaillette, N. (2003). Logical specification of regular relations for NLP. Natural Language
Engineering, 9(1):65–85.

Vaillette, N. (2004). Logical Specification of Finite-State Transductions for Natural Lan-
guage Processing. PhD thesis, The Ohio State University.

Valmari, A. and Lehtinen, P. (2008). Efficient minimization of DFAs with partial transition
functions. In Proceedings of the 25th International Symposium on Theoretical Aspects
of Computer Science (STACS 2008).

Van Noord, G. (2000). Treatment of epsilon moves in subset construction. Computational
Linguistics, 26(1):61–76.

Walther, M. (2000). Finite-state reduplication in one-level prosodic morphology. In Pro-
ceedings of the first conference of the North American chapter of the Association for
Computational Linguistics.

Watson, B. W. (1995). Taxonomies and Toolkits of Regular Language Algorithms. PhD
thesis, Technische Universiteit Eindhoven.

Watson, B. W. and Daciuk, J. (2003). An efficient incremental DFA minimization algo-
rithm. Natural Language Engineering, 9(1):49–64.

Wehr, H. (1979). A Dictionary of Modern Written Arabic. Spoken Language Services, Inc.,
Ithaca, NY.

Wilbur, R. (1973). The Phonology of Reduplication. PhD thesis, University of Illinois at
Urbana-Champaign.

Woods, W. A. (1970). Transition network grammars for natural language analysis. Com-
munications of the ACM, 13(10):591–606.

Yli-Jyrä, A. (2003). Describing syntax with star-free regular expressions. In 11th EACL
2003, Proceedings of the Conference, pages 379–386.

Yli-Jyrä, A. (2007). A new method for compiling parallel replace rules. Lecture Notes in
Computer Science, 4783.

Yli-Jyrä, A. (2008). Transducers from parallel replace rules and modes with generalized
lenient composition. In Proceedings of FSMNLP 2007.

309

Yli-Jyrä, A. and Koskenniemi, K. (2004). Compiling contextual restrictions on strings into
finite-state automata. In The Eindhoven FASTAR Days Proceedings.

Yona, S. and Wintner, S. (2008). A finite-state morphological grammar of Hebrew. Natural
Language Engineering, 12(2):173–190.

