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ABSTRACT

Historically turbulence modeling has been sharply divided into Reynolds averaged
Navier-Stokes (RANS), in which all the turbulent scales of motion are modeled, and
large-eddy simulation (LES), in which only a portion of the turbulent spectrum is
modeled. In recent years there have been numerous attempts to couple these two
approaches either by patching RANS and LES calculations together (zonal methods)
or by blending the two sets of equations. In order to create a proper bridging model,
that is, a single set of equations which captures both RANS and LES like behavior,
it is necessary to place both RANS and LES in a more general framework.

The goal of the current work is threefold: to provide such a framework, to demon-
strate how the Flow Simulation Methodology (FSM) fits into this framework, and to
evaluate the strengths and weaknesses of the current version of the FSM. To do this,
first a set of filtered Navier-Stokes (FNS) equations are introduced in terms of an
arbitrary generalized filter. Additional exact equations are given for the second order
moments and the generalized subfilter dissipation rate tensor. This is followed by a
discussion of the role of implicit and explicit filters in turbulence modeling.

The FSM is then described with particular attention to its role as a bridging model.
In order to evaluate the method a specific implementation of the FSM approach is
proposed. Simulations are presented using this model for the case of a separating
flow over a “hump” with and without flow control. Careful attention is paid to error
estimation, and, in particular, how using flow statistics and time series affects the
error analysis. Both mean flow and Reynolds stress profiles are presented, as well as
the phase averaged turbulent structures and wall pressure spectra. Using the phase
averaged data it is possible to examine how the FSM partitions the energy between
the coherent resolved scale motions, the random resolved scale fluctuations, and the

subfilter quantities.
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The method proves to be qualitatively successful at reproducing large turbulent
structures. However, like other hybrid methods, it has difficulty in the region where
the model behavior transitions from RANS to LES. Consequently the phase averaged
structures reproduce the experiments quite well, and the forcing does significantly
reduce the length of the separated region. Nevertheless, the recirculation length is
significantly too large for all the cases.

Overall the current results demonstrate the promise of bridging models in general
and the FSM in particular. However, current bridging techniques are still in their
infancy. There is still important progress to be made and it is hoped that this work

points out the more important avenues for exploration.
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Chapter 1

INTRODUCTION

The only thing new in the world is the history you
don’t know.

HARRY S. TRUMAN

Turbulence modeling is a strangely bifurcated field; on one side recent decades
have brought an explosion of new turbulence models, yet at the same time the tech-
niques used in engineering applications are often the same ones developed thirty years
ago or more - with the basic modeling assumptions dating back to the early 1900s.
For simple canonical flows (e. g., homogeneous isotropic turbulence or zero pressure
gradient boundary layer) current modeling techniques are in excellent agreement with
experiments, yet the scientists studying such flows report that the underlying physics
still eludes us, while the engineer reports that these models are unsatisfactory for more
practical applications. Although our computational resources grow exponentially (a
typical current day desktop machine can beat the performance of the supercomput-
ers of the 1970s), enabling awesome benchmark calculations (e.g., 4096% simulation
of homogeneous isotropic turbulence, Uno et al., 2003), progress towards robust and
reliable models for simulating flows in real world applications seems to inch forward.
One fundamental reason for this dichotomy is that low Reynolds number tur-
bulence is more difficult to model than high Reynolds number turbulence. This is
because turbulence modeling relies on the assumption of universality in the mod-
eled scales. The universality of turbulence is only valid for scales which are much
smaller than the large scale inhomogeneities introduced by the flow geometry and
much larger than the scales at which molecular dissipation occurs. The assumption
of universality is therefore only good at high Reynolds number where both of these

limits can be achieved simultaneously. Low Reynolds number flows do not have a
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universal range, and in this sense many engineering flows are low Reynolds number
flows. Furthermore, even in high Reynolds number flows the local Reynolds number
near the boundaries goes to zero, so in this critical region much of the modeling breaks
down.

If our only goal was to observe turbulence the Navier-Stokes equations would be an
adequate tool since they govern the behavior of all flows, laminar and turbulent. But
solving the Navier-Stokes equations directly is not a satisfactory way of predicting
turbulent flows just as kinetic theory is a poor way to study laminar fluid flow. Aside
from the enormous practical objection of computational cost, which is considerable,
detailed information on the motion of individual small eddies may obscure the large
scale physical processes taking place. In other words, we may lose the forest for the
trees. Turbulence modeling, that is the development of equations which describe the
large scale development of the flow, allows focusing on just the physical mechanisms
of interest, as well as giving a considerable savings in computational cost.

The development of turbulence models is divided into two distinct approaches,
Reynolds averaged Navier-Stokes (RANS) and large-eddy simulation (LES). In the
former all the turbulent scales of motion are modeled, whereas in the latter the model
only replaces smaller scale motions, while the remaining large scales are resolved ex-
plicitly. RANS is consequently less computationally expensive. It also provides cer-
tain flow statistics directly, as opposed to LES which requires averaging over a long
time or an ensemble of simulations. RANS, however, can not be used in situations
where the time dependent behavior of the turbulent structures is important. Exam-
ples include fluid structure interaction problems (where, for example, the frequency
of the unsteady flow may resonate with the structure) or active flow control. For
these situations LES or DNS (direct numerical simulation) is required. However, the
computational cost for even a relatively coarse LES of a significant portion of an
engineering system is currently prohibitive.

In order to make simulations of such flows practical various methods have been
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proposed for combining LES and RANS models in a single simulation. These are
generally referred to as hybrid RANS-LES models. The simplest such approach is
called a zonal method. In this approach regions of the flow are designated as either
RANS or LES at the start of the computation, and two separate models are used, one
in each region. Other hybrid formulations attempt to mix RANS and LES equations,
either through a blending function or other more complex equations, with varying
degrees of success.

The ideal hybrid model would actually eliminate the RANS/LES distinction, re-
placing both with a single model that is capable of doing the job of either one.
Germano (1999) suggests the term “bridging model” for a model that bridges the gap
between RANS and LES. The following definition is adopted here: a bridging model
15 a turbulence model characterized by a user specified filter cutoff scale which models
the turbulent motions smaller than that cutoff scale. Conventional LES models fail
to meet this definition in the coarse grid limit; when the cutoff length scale exceeds
the integral scale the LES is miscalibrated in that the model contribution continues
to increase.

This dissertation examines the Flow Simulation Methodology (FSM) originally
proposed by Speziale (1996) which is arguably the first approach which satisfies the
definition of a bridging model. In addition to this, development of the FSM was
motivated by the desire to incorporate the benefits of state of the art closure tech-
niques developed for RANS models into unsteady LES type simulations. In doing
so the FSM also extends the promise of accurate unsteady simulations with much
coarser grids (and consequently much lower computational costs) than conventional
LES approaches.

The plan of this dissertation is as follows. The remainder of this chapter consists
of a short history of turbulence modeling intended to give an historical motivation
for the approach taken in the rest of the work. Chapter 2 first develops the exact

equations for the filtered flow variables and for the subfilter scale quantities in a
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FIGURE 1.1. The NASA CFDVal 2004 Workshop “hump” experiment.

general form which is more consistent with a bridging model. This naturally leads
into a discussion of the nature of the filter and filtering techniques in turbulence
model. Finally the FSM closure equations are introduced.

The various numerical techniques used in solving the FSM equations are presented
in chapter 3. Chapter 4 examines the issue of error analysis for turbulent flows, in
particular the distinctions between numerical and modeling errors and the nature of
numerical error analysis in the context of stochastic problems.

Chapters 5 and 6 present results for a separating flow with active flow control.
The chosen geometry, the “hump” model from the NASA Langley Research Center
Workshop: “CFD Validation of Synthetic Jets and Turbulent Separation Control,”
is shown in figure 1.1. Chapter 5 contains preliminary laminar simulations which
illustrate some of the basic physics of this flow. Turbulent results corresponding to
the workshop case are presented in chapter 6. These results are used to validate
the FSM model, and to investigate and evaluate the behavior of this new modeling
approach.

Finally some brief conclusions are presented in chapter 7. Additional detail on

some of the material can be found in the appendices.
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1.1 A Brief History of Turbulence Modeling

As in most branches of science, the literature of turbulence modeling has long since
outstripped the ability of even the most dedicated researcher to absorb all of the
ideas that have been proposed in the last decades. Still, even a brief perusal of the
key publications will quickly convince the reader that many supposedly new ideas are
actually old ideas long neglected, that many often cited papers are apparently not
often read, and that many key concepts are routinely and quietly misunderstood. As
a consequence, the perspective motivating the body of this work is to demonstrate
how a proper application of many classical ideas in turbulence modeling naturally
leads to a formulation which is better suited for the development of the latest hybrid
model concepts.

The object of this review is not merely to acknowledge credit due, although this
would be sufficient justification, but to justify and motivate the approach taken to
the development of the principle equations in chapter 2. Hopefully this brief history
will elucidate how a framework for developing a bridging model for turbulence is the

natural consequence of many early ideas in turbulence modeling.

1.1.1 Early History

Descriptions of turbulence predate modern science, the most famous being those of
Leonardo da Vinci, but attempts to model turbulence, that is, to formulate mathe-
matical equations governing turbulent flows, dates to the work of Osborne Reynolds.
In Reynolds (1883), the first of his two classic papers on turbulent flow, he noted that
flow in pipes could be either laminar or turbulent (what he termed “direct” and “sin-
uous” respectively) depending on a certain dimensionless parameter, now known as
the Reynolds number. He further noted that for the laminar case the flow behaved as
predicted by a steady solution of the Navier-Stokes equations. For the turbulent case,

however, the flow no longer behaved according to the steady solution, presumably due
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to the physical effects of the turbulent motions.

Building on these observations Reynolds second paper (1895) gives an equation
for what he termed the “mean-mean-motion.” Motivated by the kinetic theory of
gases (Maxwell, 1867), which related the Navier-Stokes equations to the dynamics
of the “mean-motion” of large numbers of particles, Reynolds proposed decomposing
turbulent flow into “mean-mean-motion” and “relative-mean-motion” by averaging the
velocity at each point over a small volume. Denoting this average by a bracket, (-),

the velocity is decomposed as
f=H+r (1.1)
where [’ is the fluctuations relative to the average.
Applying this average to the Navier-Stokes equations yields a new set of equations

for the averaged velocities,

9 (ui) Ofu) _ 0(p) 0 i
gt ) e = e, g )+ ()] (1.2

These equations are formally identical to the original equations except that they
contain a new term of the form <u§u;> . This term, which plays the same role in the
equations as a stress, is known as the Reynolds stress. In obtaining these equations
Reynolds assumed that (uu;) = (u;) (u;) + (uju), or, more generally, ((f)g') = 0.
This property is not actually correct for spatial averages, a fact that Reynolds himself
noted. The term Reynolds average is commonly used to refer to any average with the

properties

() g) = (F) o)
() =0.

This definition will be adopted here, with the convention that angle brackets always

(1.3)

denote a Reynolds average, in spite of the fact that this definition differs somewhat
with the postulates in Reynolds original paper.
Reynolds did not propose a model for the unknown velocity correlation terms,

merely noting that a solution for the fluctuating quantities u} is “practically impos-
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sible.” It was Taylor (1915) who made the first step toward closing the equations by
proposing a simple conceptual model for the turbulent heat flux. Taylor considered
the heat transfer due to an eddy which is initially at the same temperature as its
surroundings, and which then breaks away and travels a distance ¢ before mixing
with its new surroundings. If such eddies have a characteristic velocity v, the heat

flux, ¢, due to such eddies is
9 {0)
dy

where 6 is the temperature. Noting the similarity between this estimate and the heat

q~ vl (1.4)

flux term in the conduction equation, Taylor dubbed the coefficient v/ the “eddy-
conductivity.” The length scale ¢ is commonly called the mixing length, and this
decomposition is known as the mixing length model. Although momentum is not a
passive scalar, Taylor postulated that the same argument might apply for the mixing

of momentum, in which case the coefficient
vp ~ vl (1.5)

is known as the “eddy-viscosity.”

It was Prandtl (1925) who introduced a practical model for the eddy-viscosity.
Basing his ideas on the work of Boussinesq (1877), rather than Taylor, Prandtl pro-
posed that the velocity scale used in the mixing length could be estimated dimen-

sionally by

9 (u)
~l . 1.6
’ ‘ dy (1.6)
The eddy-viscosity is then given by
9 (u)
~(? : 1.7
vr By (1.7)

(An alternate argument to arrive at this scaling without using the Taylor estimate
(1.5) is to note that (ujub) ~ v?. Using Prandtl’s estimate (1.6) we have (ujub) ~

210 (u) /By|*, which would imply that v must scale like eq. 1.7). All that remains
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to close the equation is a value for /. This may be estimated from geometric consid-
erations, and similarity laws for several simple shear flows have been derived on this

basis.

1.1.2 Reynolds Averaged Navier-Stokes Models

The mixing length model for turbulent diffusion does not specify a choice for the
length and velocity scales but it is natural, perhaps, to associate these scales with the
scales of the primary energy containing eddies, which are responsible for the bulk of
the turbulent mixing. With this choice the resulting mean flow is expected to include
no turbulent fluctuations, as they have been entirely filtered out, and their effect on
the mean flow is entirely modeled by the Reynolds stress. Consequently it is common

to replace Reynolds original local spatial average with a long time average,

@m@:nm—zw+mXo@ (1.82)

a homogeneous spatial average over n dimensions,

@M%wzmnéﬂﬂ@omx (1.8b)

V—oo

or an ensemble average

WNxt—Mn%Ej (1.8¢)

N—oo

where u() are individual realizations of the flow. All of these averages satisfy the
Reynolds averaging properties, (1.3), and models of this type are therefore called
Reynolds averaged Navier-Stokes (RANS) models. Section 2.2 includes a more de-
tailed discussion of the significance of the various averages, but regardless of the
definition of the average the fundamental characteristic of the RANS approach is the

assumption that all important turbulent scales are modeled.
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This assumption generally implies that the modeled turbulence is completely spec-
ified by one set of scales. This is a powerful assumption as it enables making dimen-
sional arguments for the various model quantities. These types of arguments have
been used to obtain scaling laws and similarity solutions for a number of basic flows.
However, it was the advent of the computer as a tool for scientific research that
enabled the validation and further development of progressively more complex tur-
bulence models as well as their application to more complex flows. As a result a
profusion of new turbulence models has appeared over the last forty years.

The simplest models are algebraic or zero-equation models, in which the length
scale is specified algebraically. These models are essentially equivalent to the Prandtl
(1925) model near the wall (1.7), except that numerical solutions can be obtained
using algebraically more complex estimates for the length scale /. The most popular
of these models are probably the Baldwin-Lomax and the Cebicci-Smith models, both
of which use the distance from the wall for the length scale in the inner part of the

boundary layer:

vr = % |wl, (1.9)

where w is the vorticity and the mixing length /¢ is the wall distance modified by the

ramping function of van Driest (1956),
(= Ky (1 — e_y+/A+> .

Here x is the von Karméan constant, y* is the wall distance scaled in inner coordinates,
and A% is a constant. In the outer part of the layer the eddy-viscosity is formulated
using the Taylor mixing length hypothesis, with v and ¢ specified using boundary
layer scales.

The second World War and the subsequent cold war meant that communications
between the major centers of turbulence research in Germany, Russia, and the West

was often minimal. As a result much important work was duplicated independently
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by multiple researchers. The technical literature is therefore often unclear as to the
precise genealogy of certain critical advances. What is clear is that by the early 1940s
it was realized that a better estimate of the turbulent scales could be obtained by
solving additional transport equations.

Reynolds 1895 paper already included an exact equation for k = % (ufw}). Prandtl
(1945) proposed solving a modeled form of this equation to obtain an estimate for v.
The terms which must be modeled in order to close this equation are the turbulent
diffusion of k£ and the turbulent dissipation rate. The turbulent diffusion of £ can rea-
sonably be modeled using the same eddy-viscosity coefficient as used for the diffusion
of momentum, and the dissipation can be estimated dimensionally as

U3

~—. 1.1
en s (1.10)

The exact production term includes the Reynolds stress, which has already been
modeled to obtain a closure for the momentum equation. Setting v ~ k'/2, and again
estimating ¢ based on an algebraic formulation, Prandtl proposed a one-equation
turbulence model. This model, however, is not complete, since it still requires ¢ to be
specified.

Simultaneous with the work Prandtl, Kolmogorov proposed a two-equation model
for k£ and w, where w is a characteristic inverse time scale of the flow. Kolmogorov’s
k equation is identical to Prandtl’s, except that the dissipation estimate is now based

on w:

£~ kw. (1.11)

The w equation is a transport equation derived purely on heuristic grounds. Despite
the fact that the precise physical meaning of w is not entirely clear, k& — w models
have been used very successfully.

Many researchers have preferred to choose a physically well defined quantity for
the second turbulent scale. A natural choice is ¢, which would also allow replacing

the dimensional estimate (1.10) in the k equation. It is possible to derive an exact
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transport equation for €, but it contains a very large number of new terms which must
be modeled. Early attempts to model this equations include the work of Harlow and
Nakayama (1968). The Jones and Launder (1972) formulation is the most common
k — ¢ model. In the £ — ¢ model the exact ¢ equation is replaced with a model
equation which is largely justified on dimensional grounds, although Speziale and
Gatksi (1997) derive a somewhat modified form based on more formal mathematical
arguments. The dimensional estimate (1.10) is now used to compute the turbulent
length scale.

Other two-equation models have been developed; one of the more common choices
is to solve for the turbulent length scale directly (k — ¢ models). The k — ¢ approach
relies on an ad-hoc transport equation to obtain the turbulent length scale. (A more
rigorous ¢ equation was proposed by Lumley et al.; 1999, the derivation of which relies
on a somewhat different definition of /.)

Just as Reynolds introduced exact equations for the mean momentum, Rotta
(1951)," reasoned one could derive exact transport equations for the Reynolds stresses,
rather than modeling them algebraically. An additional equation is also needed in
order to obtain a length scale estimate. Of course, these new transport equations
include new unknown terms which must be modeled. Reynolds stress models are not
often used because of the high computational cost involved in solving seven additional
transport equations.

Another attempt at moving away from the mixing length hypothesis is the con-
stituent relation approach of Lumley (1970). He suggested using the tools developed
in continuum mechanics for deriving a constituent relation for a substance with com-
plex properties, such as the stress-strain relation for a non-Newtonian fluid, to replace
the linear eddy-viscosity relationship with a more general non-linear function. This
approach principally provides guidance on the functional dependencies and tensor

form for the Reynolds stress, with coefficient functions which still must be determined

! Available in English as a NASA Technical Translation, Rotta (1972).
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by physical investigations. However it does provide a rational basis for determining
which tensor products should be used to go from a linear eddy-viscosity model to a
non-linear expression.

Combining the Reynolds stress approach with the constituent relation technique
Pope (1975), and later Gatski and Speziale (1993), proposed using the exact Reynolds
stress equations to extract a constituent relation based not just on continuum prop-
erties, but on the actual structure of the fluid equations. By making an equilib-
rium, or near equilibrium, assumption the time derivative term in the Reynolds stress
anisotropy equations can be eliminated. The result is a set of algebraic equations for
the Reynolds stresses in terms of the turbulence quantities and the tensor invariants of
the velocity gradient tensor which can be solved without integration. Two transport
equations are still necessary to set the turbulent length and velocity scales. Algebraic
stress models (ASM) have proved to be very successful at simulating many effects
that are not well captured by conventional two-equation models.

It should be noted that several one-equation models have been proposed for quan-
tities other than k. The most popular of this type is the Spalart-Almaras (SA) model
(Spalart and Allmaras, 1994), which solves for a quantity which is essentially an eddy-
viscosity. It is important to recognize that models like the SA model are not based
on exact transport equations, rather they are postulated in an ad-hoc manner, unlike
the k equation. There is also some disagreement as to whether the SA model should
be considered complete since it requires wall-distance based ramping functions, but

does not explicitly invoke ¢ as a turbulent scale (Pope, 2000).

1.1.3 Large-Eddy Simulation

There are many problems for which it is necessary to obtain information about the
temporal evolution of some of the unsteady turbulent structures, either because the

modeling is not capable of accurately reproducing their net effect on the flow, or
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because their time history is an important part of the information needed by the
researcher. Of course a DNS could be used, but for many flows DNS is not computa-
tionally feasible. Astrophysical and meteorological flows are particularly difficult in
this regard. The gap between the scales of interest to climatologists and the smallest
scales present in the planetary boundary layer is so extreme that an attempt to resolve
the entire flow is clearly impossible. Smagorinsky (1963) proposed modeling all the
turbulent motions within a grid cell using a mixing length model; however, instead of
using a turbulence length scale to estimate the mixing length, as done in RANS, he
used the grid cell size, A. This approach is called large eddy simulation (LES) since
it models only the small eddies and the large eddies are explicitly resolved.
Smagorinsky’s original formulation was specific to the planetary boundary layer;

in its more general form the Smagorinsky model is

vr = (C,A)*[S

: (1.12)

where C is a (hopefully) universal constant, called the Smagorinsky constant, and
S is the rate-of-strain tensor. The overbar represents a filter operator with a width
corresponding to the LES mixing length. The Smagorinsky formulation is based on
the observation that the Taylor mixing length hypothesis applies to mixing by any
well defined scale of eddies. Prandtl’s mixing length model for the velocity scale is
essentially a dimensional argument, and therefore cannot formally be applied in this
case where there are now multiple length scales. However Lilly (1967) demonstrated
that the scaling of the Smagorinsky model is consistent with the classical Kolmogorov
-5/3 inertial scaling. Comparing (1.9) and (1.12) to Prandtl’s estimate (1.7) reinforces
the underlying similarity between RANS and LES formulations.

Lilly (1967) mathematically formalized the LES formulation by applying a spa-
tial mesh cube average to the Navier-Stokes equations, and Leonard (1974) further

generalized it to filters of the form:

T = [ " Glas - €)1(E) de. (1.13)
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The resulting equations are formally identical to the RANS equations except that the

turbulent stress tensor is now

Ty = Wty — T 0. (1.14)

In addition to this first order theory, Lilly proposed a second order theory in which
he derived transport equations for 7;; and for the subgrid energy, k£ = %Tm These
equations contain unknown third-order moment terms which must be modeled. This
is the LES equivalent of the Rotta (1951) approach, except that in LES there is no
need for an additional equation to set the length scale.

Deardorff (1970) applied the first order theory of Lilly to plane Poiseuille flow at
high Reynolds number. This result confirmed the usefulness of the LES approach, al-
though the magnitude of the velocity profile was significantly overpredicted. Further-
more, Deardorft’s simulations suggested that the theoretical value of the Smagorinsky
coefficient suggested by Lilly was too high. Noting certain physical processes that are
not adequately captured by the standard Smagorinsky model, Deardorff (1973) tested
a variant of the second order theory of Lilly, in which transport equations were solved
for the turbulent stress tensor, as well as for the moments associated with the disper-
sion of a passive scalar (u;0).

Subsequent researchers have also tried one or more LES equation closures. For
LES, since one scale is defined by the filter width, a one-equation model can be con-
sidered complete. Perhaps for this reason, several variants of the one-equation model
have been proposed (Schumann, 1975; Yoshizawa, 1982); in general these models solve

a transport equation for k£ and estimate the eddy-viscosity as
vr = Ck'2A,

similar to the Prandtl estimate for RANS. Schmidt and Schumann (1989) proposed
a one-equation closure with a nonlinear eddy viscosity; the model is very similar to

an ASM.
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Several other approaches, all algebraic in nature should be noted. Germano (1992)
proposed the dynamic subgrid stress (DSGS) model. In DSGS the filtered variables
are explicitly refiltered, and by assuming a sort of similarity across the various filter
scales an expression can be derived for the Smagorinsky constant. This allows the
constant to be dynamically computed, which produces somewhat better results than
the conventional Smagorinsky model. The procedure does not, however, introduce
any meaningful new physics into the model and suffers from many of the disadvantages
of the Smagorinsky model. Also, the dynamic procedure is not numerically robust
and requires clipping and smoothing of the constant in order to remain stable, and is
only formally correct in flows in which Cy is a constant over the region of support of
the test filter kernel.

The scale similarity model (Bardina et al., 1980) models the stress tensor as

Tij = Wity — s ;.

This approach has the advantage of not enforcing an alignment of turbulent stress and
mean strain, but generally underpredicts the turbulent stress. The scale similarity
model has proved somewhat more successful when added to other models (so called
“mixed models”).

It has also been suggested that an LES formulation can be derived in which
the filter consists of a projection onto a set (finite or infinite) of basis functions.
In this case the LES equations can be represented as a nonlinear set of ordinary
differential equations for the evolution of those basis functions. Pope (2001) proposed
using a Galerkin projection which has the advantage that the basis functions can be
exactly represented by the numerical method. Others have suggested using proper
orthogonal decomposition (POD) modes with the expectation that these modes would
best represent the turbulent eddies. To date such approaches have yielded little
success.

In spite of the development of more advanced models, the bulk of LES research
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continues to rely on algebraic closures, typically variants of the Smagorinsky model.
This is in stark contrast to the world of RANS modeling, in which two-equation
models are extremely common. No clear reason for this discrepancy exists; perhaps it
is felt that for well resolved LES, where the unresolved scales are relatively isotropic,
the significant computational costs of higher-order closures are not justified by the

marginal improvements in results.

1.1.4 Hybrid Methods

For flows in complex geometries it is often the case that even the most advanced
RANS models are not able to predict the flow. RANS is also insufficient for problems
in which details of the flow structures are important. For example, in fluid structure
interaction problems the frequency of the large coherent motions of the flow must
be known in order to check for resonances of the mechanical structure. Yet the
prohibitive cost of LES for large problems often makes it an impractical alternative.
Hybrid models are an attempt to combine RANS and LES in some fashion to allow
for the best of both techniques to be used on the same problem.

The most straightforward hybrid approach is a zonal model, in which two calcula-
tions are patched together, one RANS and one LES. This may include feedback from
the LES to the RANS, or may simply use RANS to generate boundary conditions
for the LES. An example of an approach of this type is Felten and Lund (2005). Al-
though conceptually simple, zonal models are quite complex to implement, because of
the information mismatch at the boundary; the RANS data represents the mean flow,
and the LES includes large scale fluctuations. Zonal models have also received much
attention as a method of wall modeling (Piomelli et al., 2002; Tucker and Davidson,
2004); in this approach a RANS in the near wall region is patched to an LES in the
outer region of the flow.

The first hybrid approach that can really be considered a bridging model is the
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Flow Simulation Methodology (Speziale, 1996). As the FSM is the primary focus
of this work, it will not be described in detail here. The underlying concept is to
use a conventional RANS model to obtain a Reynolds stress tensor, and then use
a separate scaling function, called the contribution function, to rescale the stresses
to values appropriate to the local filter scale. The limited numerical scales (LNS)
method of Batten et al. (2000) is another hybrid approach which is loosely based on
Speziale’s proposal.

Other hybrid techniques have been proposed; the most popular is probably the
detached eddy-simulation (DES) introduced by Spalart et al. (1997). In its original
formulation it is a modification of the SA model, in which the wall distance length
scale is replaced by a grid width parameter in the outer flow. Thus it recovers a
RANS model near the wall, but there is no formal justification for the equations used
in the LES region.

Strelets (2001) attempted to generalize the DES approach to the & — w model.
The SA-DES relies on a modification of the destruction term in the eddy-viscosity
transport equation. In extending this to the k — w equations, Strelets modified only
the destruction term in the k£ equation; other terms in which length scale estimates
appear are not modified. In particular, the eddy viscosity is still formed using the
RANS length scale estimate of k'/?/w. This estimate has no validity in the LES
region. In fact, the length scale estimates used in the various terms of the equations
proposed by Strelets are completely inconsistent.

Travin et al. (1999) claim to place DES on a more rigorous footing. To this end
they formally define DES as “a three-dimensional unsteady numerical solution using
a single turbulence model, which functions as a sub-grid-scale model in regions where
the grid density is fine enough for a large-eddy simulation, and as a Reynolds-averaged
model in regions where it is not.” This definition is absurdly broad as it includes most
hybrid approaches; at the same time it fails to include any mathematical statement

of how a DES is formulated.
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1.2 Terminology

Due to the multiplicity of approaches to turbulence modeling, there is some disagree-
ment in the literature as to the definitions of the various categories of models. In
order to avoid contributing further to this confusion the definitions employed in the
present work are clarified here.

The distinction between RANS and LES is usually drawn in terms of which average
is applied. However, as will be discussed in section 2.2, the average is generally a
consequence of the model rather than the reverse. Consequently the term RANS is
reserved for models in which the effect of all turbulent scales of motion are included
in the model. Approaches in which some scales are modeled and others are resolved
will be termed LES.

In order to distinguish between different types of LES simulations, some authors
have introduced the term VLES (very large-eddy simulation). This term is somewhat
inconsistently used in the literature. Pope (2000) suggests that the term VLES should
be reserved for models which capture at least 20% of the turbulent energy. If we
assume a classical Kolmogorov scaling for the decay of the energy in spectral space,
this is equivalent to resolving approximately one decade below the cutoff wavenumber,
which is probably close to the coarsest we can go without significantly distorting the
large scale turbulent structures. It is not always clear how much energy is actually
being modeled in a given calculation, and the line between LES and VLES is not a
sharp one, but modeling at least 20% of the energy seems like a reasonable rough
minimum for VLES.

A term which is much misused in the literature is unsteady RANS or URANS.
In a URANS simulation a RANS model is used with the unsteady terms retained
in the transport equations. URANS models are often incorrectly used as VLES:
by definition the RANS model already accounts for all the turbulent structures and

is therefore too dissipative to predict the evolution of even the largest turbulent
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structures. By way of example, consider the flow over a deflecting flap. If the rate
of flap deflection is very slow, the flow is quasi-steady, and a URANS will produce
no additional insight as compared to a series of steady RANS calculations, one for
each of a series of intermediate flap deflection angles. Conversely, if the flap deflection
happens quickly, it will produce a large vortical structure which will interact with the
turbulence in a manner inconsistent with the RANS assumption that all turbulent
scales are modeled. Cases where URANS is useful are limited to flows in which
there is a large scale turbulent diffusion or transport on a scale much slower than the
turbulence. For example, the dispersion of a passive contaminant where the net effect
of turbulent mixing is important in the time evolution, but the local details of even
the largest structures may not be of interest. URANS is also applicable to the decay
of homogeneous isotropic turbulence since there is a temporal variation even with
all of the spatial scales filtered out. In fact, many RANS models are calibrated by
matching the theoretically predicted rate of energy decay for decaying homogeneous
isotropic turbulence. Unfortunately URANS is generally not used for these type of
problems but is instead applied to flows where it has no chance of correctly predicting
the scales of interest.

Just as RANS and LES do not refer to specific models, but to a general modeling
approach or class of models, the FSM also is a modeling approach, rather than a
specific model. As will be further detailed in section 2.3, the FSM uses an underlying
RANS closure and a contribution function to obtain the subfilter stresses. Although
certain RANS models may be better suited to the FSM approach, in principle FSM
can be formulated using any RANS model. Furthermore, a wide variety of contribu-
tion functions have been suggested. For testing purposes a particular model has been
adopted in the current work, but this represent just one possible implementation of

the FSM philosophy.
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1.3 Validation Geometry

Evaluating advanced turbulence models for use in real world applications requires an
extremely well documented set of experiments. The experimental geometry has to
be sufficiently complex to be representative of relevant engineering applications. Yet
it also has to be simple enough that the computational costs of performing all the
necessary parameter studies remain practical. Fortunately a series of experiments per-
formed at NASA Langley Research Center (LaRC), first by Seifert and Pack (2000b),
and continued by Greenblatt et al. (2004, 2005), fills these requirements perfectly.

The original experiments were performed using a NACA 0015 airfoil to which
periodic excitation was introduced at 10% chord. The airfoil was pitched up and
active flow control was used to keep the flow attached or minimize the effects of
separation. Further experiments revisited the flow control research of Glauert (1945)
and Glauert et al. (1948). These experiments used very thick airfoils with a relatively
sharp corner at about 60% chord, followed by a pressure recovery ramp. As a result
the flow would separate at zero angle of attack. The intention was to use steady
suction to reattach the flow and thereby improve the pressure recovery on the rear of
the airfoil. Drawing on this earlier work, Seifert and Pack (1999) proposed a similar
airfoil. Retaining just the upper surface, which was mounted directly to the wall of
the wind tunnel, they created a generic “hump” that would separate at the sharp
corner if no control was applied. This “hump” geometry was designed specifically to
facilitate comparison with CFD. The advantage to this setup is that circulation effects
are removed from the problem. Additionally, the grid generation is much simplified.
Using this geometry Pack and Seifert (2000) investigated the effects of steady forcing
(blowing or suction) as well as periodic zero-mass flux excitation. The experiments
were performed in the transonic 0.3-meter cryogenic wind tunnel at NASA Langley
Research Center so that the effects of compressibility could also be studied (Seifert
and Pack, 2000a).
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FIGURE 1.2. Profiles of the geometries used in the experiments of Seifert and Pack
(1999) and in the CFDVal 2004 Workshop, based on the QA data.

Interest in these experiments was sufficiently high that the geometry was adopted
by NASA as one of the three test cases for the Langley Research Center Workshop:
“CFD Validation of Synthetic Jets and Turbulent Separation Control.” Largely due
to the difficulty of obtaining flow field data in the transonic wind tunnel a new ex-
periment was built, using an almost identical profile scaled up by a factor of two.
This made it possible to obtain flow field data using particle imaging velocimetry
(PIV). Very detailed measurements have been made for these experiments (Green-
blatt et al., 2004, 2005) and the data has been made available via the World Wide
Web (http://cfdval2004.1arc.nasa.gov). Additionally this case was included in the
11th ERCOFTAC/IAHR Workshop on Refined Turbulence Modelling.

Over the course of the numerical investigations presented here both the Seifert
and Pack and the CFD Validation 2004 geometries were used. The earlier laminar
simulations in chapter 5 were all performed using the original Seifert and Pack version

b3

of the “hump.” The FSM validation results presented in chapter 6 were performed
using the later NASA Workshop “hump.” The two profiles are shown in figure 1.2;
they are almost identical. A comparison of baseline results for the two experiments

shows almost no difference in surface pressure distributions (Greenblatt et al., 2004).
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Chapter 2

THE EQUATIONS OF MOTION FOR A TURBULENT FLUID

Yon foaming flood seems motionless as ice;
Its dizzy turbulence eludes the eye,
Frozen by distance.

W. WORDSWORTH, Address to Kilchurn Castle

We have seen that historically a sharp distinction is drawn in the derivation of
RANS and LES closures. The equations that result are nonetheless formally identi-
cal. The hybrid approach, and especially zonal methods, although offering important
functional improvements over conventional RANS and LES, continues very much in
the traditional paradigm, treating RANS and LES as two irreconcilable procedures.
Any attempt towards creating a truly integrated approach must, from the outset,
make use of the formal similarity of the RANS and LES equations.

This chapter develops the governing equations for a fluid in turbulent motion in
precisely such a light. After presenting the exact equations in the most general form
the nature and requirements of the filter are discussed. Finally the Flow Simulation
Methodology (FSM) is presented, along with the underlying RANS closure which it

requires.

2.1 Exact Transport Equations

The governing equations for fluid flow, whether laminar or turbulent, are the Navier-

Stokes equations:

dp | Opu;
Do oy (2.1)
Opui , Opusu; __ Op Doy (2.2)

ot (9xj 01', (9xj ’
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where p is the density, p is the pressure, u; is the velocity, and o;; is the viscous stress
tensor. (Here, as throughout this work, the Einstein convention for repeated indices
is employed.) For a Newtonian fluid we assume the deviatoric part of the viscous

stress and the rate of strain tensors are proportional so

1
O’,’j = 2u <SZJ — gSkkaz]) (23)

where £ is the molecular viscosity and

Sy = 2 (8@ * Oxi) (24)

is the rate of strain tensor. If we assume the fluid is incompressible the Navier-Stokes

equations reduce to

8u,~ .
oz, 0 (2.5)
ou; ou; _1 op

ot " Yor, T pom

+ vV, (2.6)

where v = 11/p is the kinematic viscosity.
The velocity and pressure are now decomposed into large and small scale compo-

nents by the introduction of a filter operator denoted by an overbar,

f=r+r. (2.7)

(The following notation is adopted in the present work: f represents a general filter,
whereas (f) represents a filter which satisfies the Reynolds averaging properties, 1.3.)
In order to maintain the greatest generality the filter operator is not specified; it is
simply assumed that it in some sense removes the turbulent motions that are not of
interest and retains only those that need to be explicitly resolved. Also, it is required
that the filter operator be linear and commute with differentiation. Armed with
just these two properties, the filter can be applied to the incompressible continuity

equation (2.5), to obtain
Ju;
81172'

~0. (2.8)



41

Applying the filter to the momentum equation (2.6) gives

i T 2 2-—
o + uj oz, O + vV, (2.9)
or,
ou; __ou;  10p , 0
ot Fgn T T pam, TVV W gy, M)l (2.10)
where
7(f,9) Z_Q—TE (2.11)

is the generalized moment operator of Germano (1992). (The generalized moment
operator is further described in appendix A.1.) The moment 7 (u;, u;) is the subfilter
stress (SFS) tensor and it represents the stress on the filtered field produced by the
motions in the subfiltered scales. Here the term “subfilter” is used rather than the
more common “subgrid” since at this stage the equations are still continuous partial
differential equations and are therefore not dependent on a grid. This is a critical
point: the filtering operation produces a new set of differential equations; although
it may be practically useful at a later point to link the filter width to a grid spacing
there is no intrinsic connection between the two.

These two equations, (2.8) and (2.10), are the filtered Navier-Stokes (FNS) equa-
tions. Formally they are identical to the traditional RANS or LES equations; their
significance lies in the fact that in this form they are valid for any linear commuting
filter. As written they are exact but not closed since the SFS is still unknown. We
are looking for model equations which are closed, although not exact, and which will
be obtained by replacing the SF'S term with a model.

One approach would be to close (2.10) directly using an algebraic model. How-
ever, in order to derive higher order moment closures it is instructive to develop
transport equations for turbulence quantities in this generalized notation. (Details

of the derivation can be found in appendix A.2, only the primary results are given
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here). We define the subfilter energy as
1
k= 57 (ws, u;) (2.12)
Introducing a Navier-Stokes operator defined such that (2.6) can be expressed as
N [u;] = 0, (2.13)

then a set of evolution equations can be derived for the SF'S by forming the moment
equation

7 (i, N wg]) + 7 (w5, N [wi]) = 0. (2.14)

Taking one half the trace of this equation we obtain the evolution equation for the

subfilter energy,
ok __ 0Ok

T P 4D 2 2.1
5 T U o, P —e+D+ vV, (2.15a)
where
10 107 (u;, u;, uy)
_ 1 oy 2 9T W, Ui, Ug) 2.1
D = o (- 5 (2.15b)
du;
P — __a;fkT(ui,uk) (2.15¢)
= - 2.1
£ VT (&ck’ 8xk) (2.15d)

are the turbulent diffusion, production, and dissipation of subfilter energy, respec-
tively. (The generalized third order moment 7 (f, g, h) is defined in appendix A.2.)
Similarly we can form the moment equation

2 {7’ (87“” oN [uj]) +7 (ﬁ i [ui])] — 0. (2.16)

Oxy,’  Oxy oxy,’ Oz

Again taking one half the trace we obtain the equation for the dissipation rate scalar,

de _ Oe

E + U]a—xj = Pe — o° + De + I/V2E, (217&)
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where
oo [ (2 Y] (2 2]y
P == _axl &il — 21/8—1']{:7 (axk, a—xl) - V@;plaka (aa’;k s Ul) (2170)
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- O 2.1
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are the turbulent diffusion, production, and dissipation of the subfilter dissipation

rate scalar.

2.2 Filtering

Contrary to the procedure generally adopted in the literature it is clear from the
preceding section (and the supplemental details in appendix A.2) that the equations
for the filtered flow variables can be derived without specifying a particular filter a
priori. It is therefore logical to ask what the filter is and how is it imposed. This point
is widely misunderstood, and has led many investigators to explicitly filter turbulence
simulations, a procedure which, as we shall see, is not necessarily consistent with the

equations.

2.2.1 The Implicit Filter

Pope (2000) argues that, for the Smagorinsky model, the filter is implicitly defined
by the the form of the model. He terms this filter the implicit Smagorinsky filter. In
fact his argument is generally applicable to most models. Because of the importance
of this point it is expanded on here.

Consider as a simple model the one-dimensional wave equation,

ou ou
a + C% = O, (218)
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on the domain x € R and ¢ > 0, along with the initial condition

u(x,0) = f(z). (2.19)

The solution is known to be

u(z,t) = f(x — ct). (2.20)
We can apply our linear commuting filter to obtain the filtered wave equation

ou  Ou

— — =0. 2.21
o " or 0 (2.21)

An initial condition is now required for w. If we put
a(x,0) = g(x) (2.22)

then we can solve the filtered equation (2.21) analytically, treating @ as the dependent

variable in the conventional manner, to get
u(z,t) = g(x — ct). (2.23)

If we set g = f, then the value of % is identical to the one which would be obtained
by filtering the solution obtained from the unfiltered equation (2.18) directly. That
is, comparing the solutions of equations (2.18) and (2.21), the filter observed in the
latter case is entirely determined by the initial data.

Of course the Navier-Stokes equations are non-linear. To introduce non-linear
effects into our model consider the inviscid Burgers equation,

ou 8_u

o Tug =0 (2.24)

Applying the filter produces a model term of the same form as the one seen in the

FNS equations:
au N _ou
—_ u_
ot Ox

%% [uu — wa) . (2.25)
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Consider a particular solution of the unfiltered equation (2.24) which we will denote
u*. We wish to solve (2.25) for the filtered solution corresponding to u* for a certain

filter. Writing the equation as

% +H% = S(z,1), (2.26)
we can, in principle, solve this equation for any value of the source term S(x,t). In
particular if we set the source term to

19

S(z,1) = 20x

[u* u* — u*u*], (2.27)

and appropriately filter the initial conditions, we will obtain a solution for the filtered
field directly without applying any filter during the solution procedure. (Of course
a filter is needed to obtain the source term, but this can be done independently of
solving the equation.) Again, as in the case of the wave equation, the filter is entirely
determined implicitly. If we evaluate S(x,t) using a different filter the solution to
(2.26) will change to correspond to that filter. That is, the value of the source term
(along with the initial condition) sets the filter.

As in the FNS equations we can replace the unclosed term S(x,t) with a model. (In
fact the study of so-called “Burgers turbulence” has been used as model for real fluid
turbulence, although the dynamics of the two turn out to be significantly different.)
In that case it is not obvious that the solution to the filtered equation corresponds to
a specific solution of the original unfiltered equation. But what is clear is that, insofar
as there exists a well defined filter, the shape of that filter is entirely determined by
the model, along with the initial condition, and no explicit filtering is necessary or
warranted in the solution procedure.

The same argument carries over exactly to the Navier-Stokes and FNS equations.
That is, the filter is defined implicitly by the form of the turbulence model. In
principle the initial and boundary data should also affect the implicit filter. However,

we assume that the universality of turbulence means that the effect of the boundary
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conditions on the filter becomes unimportant within a very short distance from a
boundary. The effect of a mismatch between the boundary data and the model can
be observed by, for example, feeding a RANS inflow into an LES, or vice versa. For
an open flow problem the initial condition can be assumed to have little effect after
some initial flow through time. For a closed flow the initial condition could, in theory,
change the implicit filter, however this is unlikely as the physics of the turbulence will
generally act to quickly fill any available scales, while the dissipation of the model
will tend to damp scales smaller than the filter width.

There are several important practical ramifications of this analysis. The first is
that most of the discussion in the literature as to the optimal choice of a filter is
irrelevant, since in general the researcher has little control over which specific filter
is actually employed. By changing the model the shape of the implicit filter will
be affected, but not in any generally predictable way. Also, this underscores the
fundamental connection between RANS and LES in that any real difference between
the two must proceed from the assumptions in the model rather than the filter used to
derive the equations. In a RANS it is assumed that all turbulent scales are modeled
whereas LES only models a certain range of scales. Furthermore, both RANS and
LES can be formulated in terms of either space or time averages. For LES filtering the
width of the filter is usually well defined, at least at the level of a dimensional estimate,
but the shape is unknown. This significantly complicates a posterior: analysis in
which DNS data is filtered and compared to LES data, since it is the unknown implicit
LES filter which should be applied for such comparisons to be valid.

Another consideration is related to the Leonard stress term. It is common in LES

to decompose the SFS tensor into three parts,

T(uuy) = (W +u) (0 + ) — g
= W — W U+ w4 w4 g, (2.28)
N —— 7

Lij Ci' Rij
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the Leonard stress (L;;), the cross-stress (C;;) and the Reynolds stress (R;;). If the
SFS model is taken as a model of the Reynolds stress (as it is by many authors) the
Leonard and cross-stresses remain to be modeled. It has been suggested that the
Leonard stress, which is only a function of the filtered velocities, can be calculated
explicitly. This is not correct, or at best, only approximately true, since the filter that
needs to be applied to maintain consistency is the unknown implicit filter. It should be
noted that this is not a problem for the present approach since the model equations
in sections 2.1 and A.2 are equations for the entire SFS tensor. Additionally, the
Leonard and cross-stresses are not separately Galilean invariant; modeling the entire
SE'S tensor makes it much easier to assure that the SF'S model remains Galilean

invariance.

2.2.2 Explicit Filtering

From the foregoing analysis it would appear that explicit filtering is fundamentally
unjustified. Given that it is very commonly applied, it is instructive to examine why
it is used, what its effect is, and whether it is ever appropriate.

In part the origin may lie in a fundamental misunderstanding of the filtering
operation. In contrast to the procedure followed in section 2.1 it is common to
derive the LES equations by applying a specific filter to the Navier-Stokes equations.
Following such a procedure it is natural that one might presume that a specific filter
can be imposed and the only clear way to do that might appear to be to filter the
solution at each time step. Of course, as has been shown above, this would be an
incorrect interpretation; rather the specific filter must be taken as a constraint on the
model (albeit one which may be practically impossible to impose).

The other reason for explicit filtering can be seen by examining the FNS momen-

tum equation,

ow; __ou;  10p o 0
7 Yo, = g TV gy )
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Note that the purpose of the filter is to remove the “small scales” (in some sense). In
integrating the FNS equation the time rate of change term, the pressure gradient term,
and the viscous diffusion term are all linear, so they cannot generate new small scale
motions. The only terms which generate small scales are the nonlinear advection term
and the turbulence model. Theoretically, in order for the solution to remain “filtered”
the “small scale” part of each of these terms should exactly cancel. This argument can
be made precise for a filter which is a projection operator, in which case the filtered
fields are restricted to a specific subspace. In practice the model is only meaningful
for the large scales. This means that the non-linear behavior of the advection term
and the model may combine to produce small scale noise which could contaminate
or even destabilize the simulation. Of course the model term should primarily be
diffusive, so we might expect that the small scale noise will tend to be damped.

In order to eliminate this small scale contamination the FNS momentum equation

can be reformulated (Lund, 1997) as

0w _ow  19p o 0 __ ==

where the hat represents a filter which is not the same as the original implicit filter.
(Lund neglects the implicit nature of the filter and assumes the two filters are the
same. Thus his proposal is not practically feasible because the implicit filter is actually
unknown.) Now we are required to model a slightly different quantity, although this
new model term should only differ from the old one in the “small scales” where the
model is not accurate anyway.

In order to examine the effect of explicit filtering after each time step (which is

how explicit filters are often applied) consider the following equation:
ur = f(u). (2.30)

We can semi-discretize in time using a forward-Euler method,
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Y A; Yo ), (2.31)
or
u"t = u"t At (u") (2.32)
= u’+ At i f(u). (2.33)
i=1
Applying a linear filter operator we have
untt :@+At§n:f(ui) (2.34)
i=0

which is the correct solution. If instead we apply an explicit filter at each timestep

we have the following numerical procedure:

u"t = un + Atf (un) (2.35)

= " LAY T
=0

) (2.36)
where f(n) represents f filtered n times. If the filter is a projection operator, ? =f,
then these two formulations are the same. Otherwise the effect is that the components
of the solution which are older are repeatedly filtered over the course of the calculation.

Combining the above analysis with the modified FNS formulation in (2.29), one
approach is to project the entire FNS equations into some subspace. The non-linear
terms then can be formally decomposed and only the parts in the projected subspace
retained. Since the linear terms are already in the projected subspace, it no longer
matters whether the projection is applied to the individual non-linear terms or the
whole solution after each time step. However, since the projection operator is different
from the implicit model filter this procedure does change the model, since the original
model was a function of the filtered velocities, %;, and it is now being computed in

terms of the projected component, ;.
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2.2.3 Implicit LES and the Grid Filter

It is worthwhile to take note here of so-called implicit LES (ILES), in which the
dissipation of the numerical scheme is used as a turbulence model. This is related
to the identification by some authors of the effect of discretizing the model equations
with a “grid filter.”

Due to the widespread confusion regarding the implicit nature of the filter dis-
cussed in the previous section, many authors attempted to explain the source of the
“missing” filter operation as associated with the effect of restricting the flow variables
to a finitely resolved discrete grid. Although analysis of this so-called “grid filter” con-
tinues today (e. g. Carati et al., 2001), it is simply incorrect. The filter that appears
in the governing equations is the implicit filter defined by the model, and is therefore
a property of the PDE, not the grid. The effect of discretizing the equations is the
same as for any problem in numerical analysis; there is a great body of literature
on how to analyze the discretization error (comprehensive treatments include Hirsch,
1988; Tannehill et al., 1997).

Pope (2003) suggests that practitioners of LES can be divided into two schools,
one that treat the model in a continuum, and one that considers LES to be a numerical
procedure (or perhaps, more accurately, a discrete model). There have, in fact, been
a few attempts to construct proper discrete models for LES. One approach would
be to use POD modes to reduce the LES equations to a smaller number of ODEs
for the evolution of the POD modes. Another is to attempt to produce a closure
model for Galerkin basis functions directly (Pope, 2001). However, aside from these
relatively unsuccessful suggestions the remaining work in discrete LES is either “grid
filter” analysis which is just a confusion of numerics and modeling, and ILES.

ILES grows out of the realization that under-resolved simulations of the exact
Navier-Stokes equations are sometimes surprisingly successful at predicting turbulent

flows. While this is not expected, it can perhaps be understood in the light of the
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success in simulating low dimensional chaotic systems with finite accuracy discrete
numerics. This will be discussed further in section 4.1.3. The primary difficulty with
ILES methods is applying physical insight derived from continuum models directly
to ILES methods. Partisans of ILES point to the similarity in the form of the nu-
merical error and the leading order turbulence model terms. However, it is difficult
to examine the behavior of these terms since ILES methods cannot be subjected to
grid resolution studies directly. This is because traditional numerical analysis relies
on grid convergence studies and the discrete equations for ILES methods converge
not to a model equation, but rather to the Navier-Stokes equations.

There have been attempts to do more formal analysis of ILES methods. Margolin
and Rider (2002) proposed discretizing and simulating the modified equation of an
ILES method which would make it possible to do a proper grid refinement study of
for ILES. Domaradzki et al. (2003) examined the spectral behavior of the numerical
viscosity in an ILES scheme and compared it to the eddy-viscosity as predicted from
DNS data in order to see to what extent the numerics mimics the physics.

It is true that, as will be shown in more detail in section 4.1.2, it must be expected
that most LES will continue to run in an intermediate region where both model and
numerical effects are significant. However, the conclusion of Pope (2003) that we must
embrace both discrete and continuous LES formulations is unwarranted. Firstly, even
for coarse grids, numerical analysis still provides tools for understanding the numerical
error without resorting to conflation of numerics and modeling. Secondly, although
numerical effects may be significant for conventional LES, they may be dramatically
less so for VLES. And, as it is hoped that this work will demonstrate, bridging models

provide a real promise for the future importance of VLES.

2.3 Flow Simulation Methodology

Speziale (1996) proposed the first bridging approach. His idea was to combine existing
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RANS closures with a contribution function that would be used to scale the magnitude
of the Reynolds stress term depending on the local state of the turbulence and the local
grid resolution. The function is designed to scale the model contribution depending on
how well the turbulence is resolved on the particular grid. The approach assures that
the method recovers a correct RANS closure in the coarse grid limit, and DNS when
the grid is fine enough to resolve down to the Kolmogorov length scale. This procedure
also avoids the need for multiple filter levels or for defiltering. Mathematically the an

FSM is any model which takes the form:

7 (ui,u;) = faREANS, (2.37)

where fa is a contribution function, and R%ANS is the Reynolds stress computed from
some conventional RANS model.

The Flow Simulation Methodology is therefore not a single model, but a general
designation for any model that takes this form. The methodology consists of two
parts: a contribution function, and an underlying RANS model. In order to calculate
the length scales of the turbulence needed by the contribution function, it is preferable
to use a two-equation RANS model, since such models are complete. To date, all work
on the FSM has employed two-equation models. A variety of possible contribution
functions have been explored. In addition to those discussed here, Hussaini et al.
(2003) attempt to use renormalization group (RNG) methods to arrive at a form
for the contribution function. Also, the limited numerical scales (LNS) approach

of Batten et al. (2000), although not exactly taking the form (2.37), is basically a
variation on the FSM.

2.3.1 The Contribution Function

The contribution function should locally approach unity in regions of coarse resolu-

tion and approach zero when the resolution is close to the Kolmogorov length scale.
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Speziale (1998a,b) originally proposed a contribution function of the form

fa = [1 ~ exp (-%)] (2.39)

where 0 is a scale characterizing the filter,
n =34/t (2.39)

is an estimate of the Kolmogorov length scale, and n is a constant. For practically
computations the filter scale is chosen proportional to the grid scale, 6 = A where (3
is a positive constant chosen to provide sufficient numerical resolution at a minimum
of computation cost and A is a characteristic grid spacing, which for the current work
is set to (AzAyAz)"/?. (For further discussion see section 4.1.1). Bachman (2001)
evaluated this contribution function for the case of a zero-pressure gradient boundary
layer with 3 = 0.001 — 0.016 and n = 1 (Speziale’s initial suggestion was 5 = 0.001).
His results show that the size of the smallest scales observed in the instantaneous flow
decrease with increasing (3, but the mean flow profile remains relatively unaffected as
long as the contribution function does not exceed about 10% in the outer part of the
boundary layer (5 = 0.008). Also using this contribution function Fasel et al. (2002)
were able to achieve good results for the wall jet. Sandberg (2004) was reasonably
successful in predicting the axisymmetric wake using this contribution function.

For flows in which a wider range of length scales are present the contribution func-
tion (2.38) was found to be less successful. In particular if the turbulent Reynolds
number, which can be interpreted as a ratio of the largest and smallest length scales
present in the flow, varies significantly across the flow field, this form for contribu-
tion function can have difficulties in properly identifying the coarse grid limit (Israel
and Fasel, 2002). This suggests that the integral length scale, which represents the
characteristic size of the largest eddies, may be important to the proper scaling of

the model contribution. An alternative contribution function which replaces the Kol-
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mogorov scale with the integral scale is

fom i (5)]" a0

where the integral scale is estimated by
L3/2
L= — (2.41)
One indication that the integral length scale is physically a good choice is that for this
function a good calibration is obtained for 5 ~ 1. Israel and Fasel (2002) achieved
limited success with this contribution function.
For the present investigations it has been found that a form that uses both the
integral and Kolmogorov length scales is the least sensitive to 5 as well as numerically

the most robust. An approximate form for the scaling can be obtained by taking the

trace of (2.37). Since fa is a scalar, we must have
k= fAE>

where k is the subfilter energy, and E is the total turbulent energy. For high Reynolds
number turbulence the bulk of the energy is contained in the inertial range, which
follows a five-thirds decay law, as shown in figure 2.1. Estimating F as the area in
the shaded region, and k as the area in the dark shaded region, we have

KL, Ke
/ /@_5/3d/1:fA/ k3 dk

n n

where &, is the wavenumber of the Kolmogorov dissipation scale, x, is the wavenum-
ber of the integral scale, and k. is the wavenumber of the filter, or cutoff, scale.
Integrating and solving for fa yields the following form, which is the contribution

function used in the present work:

§52/3 — p2/3

fa= L2/3 — 23 (2.42)

Clipping is applied to insure that 0 < fa < 1. This function is designed so as

to recover a RANS model as the grid spacing approaches the integral scale, and a
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FIGURE 2.1. Schematic of the turbulent spectrum.

DNS as the grid spacing approaches the Kolmogorov length scale. Setting 6 = A,
the limiting cases of 3 = 0 and § — oo correspond to no model and a pure RANS
simulation respectively. The specific form is motivated by a Kolmogorov inertial range
five-thirds decay law, however this should not be considered a rigorous derivation since
we do not necessarily expect to see a significant inertial spectrum in most of the flow
domain. Except where otherwise noted a value of 3 =1 is used.

In principle, RANS values should be used for k£ and ¢ in the various length scale
estimates above. However, in keeping with Speziale’s original proposal, the subfilter
values are used. This change should only affect 1 weakly, since most of the subfilter

dissipation occurs at the smallest scales; L, however, will probably be underpredicted.
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2.3.2 RANS Model

To complete the method, the FSM requires a RANS closure. In order to compute
the length scales necessary for the contribution function, a two-equation model is
preferred. Speziale (1998a) proposed using the ASM of Gatski and Speziale (1993).
It is particularly important to employ a state of the art Reynolds stress closure for
the FSM since, even if the mean flow is amenable to a simple closure, the structures
themselves may be non-equilibrium, highly anisotropic, and have significant rotation
effects. In the current work, the revised ASM model of Gatski and Jongen (2000)
is employed. This eliminates this assumption that P /e is a constant, at the cost of
requiring the solution of a cubic equation at each point in the flow field. However, it

is found to be more robust.

2.4 Compressible Equations

In order to more clearly illustrate the principles underlying the FNS equations, they
have thus far been derived under the assumption of incompressibility. However, for
many problems it is important to retain the full compressible version of the equa-
tions. For aerodynamic applications compressibility effects often play an important
role. Also, the compressible equations are hyperbolic in time; consequently, numeri-
cal methods for solving the compressible equations do not require the solution of an
elliptic equation at each time step, as is the case for the incompressible Navier-Stokes.
Since the solution can be advanced at each point using only data from neighboring
points, very efficient distributed algorithms are possible for the compressible equa-
tions, which perform well on large parallel computers. However, the compressible

equations do require certain additional model assumptions.
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2.4.1 Thermodynamic Equations

In addition to the continuity and momentum equations, (2.1) and (2.2), a third trans-
port equation is required for one of the thermodynamic variables. Expressing the in-
ternal energy of the fluid in terms of the temperature, the first law of thermodynamics

can be used to obtain the following equation for the temperature,

8pC'UT 8pC’UTuZ . 8u2 8%‘ 8Uj
where
oT
= —\ 2.44

is the conductive heat flux. The thermal conductivity, A, is obtained by assuming a

constant Prandtl number,

(2.45)

Since the mass and momentum are conserved quantities it is useful to express
the energy equation in a conservative form. Using the momentum equation to derive
an equation for the kinetic energy, and adding this to the temperature equation the
following can be obtained for the evolution of the total energy,

OE 0

T = gu, U (B EP) — it wioy) (2.46)

where

E:p(af+%ﬁ) (2.47)

is the total energy.

The energy equation is supplemented with an equation of state of the form:

p=p(p,T),

which relates the three thermodynamic variables. For a gas the ideal gas law provides

a good approximation to the state relationship as long as extreme thermodynamic
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variations are not encountered. Assuming constant thermodynamic properties the
ideal gas law is

p="Cy(y—=1)pT. (2.48)

Additionally, in compressible flow simulations it is common to drop the assumption
of constant molecular viscosity, and instead use a experimentally derived curve fit to
estimate the dependence of the viscosity on temperature. In these investigations the
fluid is assumed to be air and Sutherland’s law is used for this purpose. Sutherland’s

law is incorporated into the following dimensional piecewise curve-fits:

ClTl, T < Ty

w(T) =< CiT, I <T<T (2.49)
T3/2
Cgm, T>1T5
with the constants
T, = 400K
T, = 1104K

C; = 6.80698413 x 1078 Ns/m2.x

Cy = 14.458 x 1077 N's/ip2.k1/2

2.4.2 The Favre Filter

In the equations of motion for a compressible flow, the transport quantities are found
in products with the density. In a DNS it is often convenient therefore to solve the
Navier-Stokes equations in conservative form. When the equations are filtered this
leads to filtered product terms of the form pf. The need to model such terms can be
avoided, and the filtered equations can be considerably simplified by introducing the

Favre filter (denoted by a tilde) defined as:

pf=nf (2.50)
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Favre filtered variables are sometimes referred to as mass averaged. In the incom-
pressible limit, p is a constant and f = f. The fluctuating component relative to the

Favre filter will be denoted by a double prime,
f=Ff+f" (2.51)
2.4.3 Compressible Filtered Navier-Stokes

Filtering the continuity equation (2.1) and using (2.50) we obtain for the filtered

continuity equation,
Jp n Jpu;

Spatial filtering the momentum equation (2.2) as before, and using (2.50) we obtain:

~0. (2.52)

opii  Opua;  op O
- _ il gy 9.
o T ox, ~ om T op 00T (2.53)

where for the compressible equation
Ty = pluiy — Uty). (2.54)
The filtered viscous stress tensor,
_ — 1l

introduces new unknown correlations of the form

8u,~
a (9xj ’

Erlebacher et al. (1992) and Zang et al. (1992) both assume that for small temperature

fluctuations, it is adequate to assume
_ 5 &
7ij = 2 | iSij — gASk0ij (2.56)

where

= p(T). (2.57)
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2.4.4 Resolved Scale Energy Equation

Unfortunately, directly filtering the total energy equation (2.46) leads to an equa-
tion that contains several new terms that need to be modeled. Worse, the resulting

equation is for filtered total energy,
— . 1~

This quantity is not closed since 2 is not known. It is therefore preferable to construct

the quantity Fr, resolved scale energy, which is defined as
-1
Er=7 (CUT + 5{&) : (2.59)
This quantity can be related to E, using the relation
— 1
Ei = ER — 57 (2.60)

We can now derive the governing equation for Ep in the same manner as the equation
for E; is derived.
First we need to derive an equation for the resolved kinetic energy, @?. Multiplying

the resolved scale momentum equation (2.53) by 4, yields

_dpu; . Opu,t; _0p _ 0
. . Y P R Py 261
i ot o Oz, “Zaxi +Ul8xj 755 = 7] (261)
Opisi;  Opiiyiisil; [owm __ow) _op . 0
— . | RN BNt Y 5] (2.62
ot * Oz, i {p ot Tl Oz, “Zaxi +Ul8xj 73 = 7ii)- (2:62)

Multiplying the continuity equation (2.52) by @; we can rewrite the term in brackets

to obtain

opuu; ~ Opwu;u; | Opu; — Oput; _Op 0
=1 — Uj=— + Uj—=—|03; — Tij). 2.63
o on, U Tor T am, | gy, Tl o Tl (269)
The right hand side can now be rewritten using the momentum equation (2.53), to
get the equation for resolved scale turbulent kinetic energy:

1opu®  10puu; . op o
- - —a = - s I B 2 64
2ot T as, U\ o, T, 0 T (2.64)
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To obtain the filtered temperature equation for a compressible fluid we can filter
(2.43) in a similar manner as the momentum equation:

opC,T | OpCTus _ Oui  OF , 0w
815 8$2 N pa.ﬁ(fl 8372 i 8:cj )

(2.65)

Introducing a subfilter-scale heat flux, corresponding to the subfilter-scale stress ten-

sor (2.54)

Qi = pCy(Tu; — Tiy) (2.66)
we can write
opC, T opC,Tu; — du; 0 _ ou;
ot * ox; _paxi B 3—372'[% tQl 02]8—371- (2.67)

where right hand side is still not closed without additional assumptions to model the
filtered correlations. The filtered convective heat flux requires similar treatment to

the viscous stress tensor term, ~
~or
—A .
8@-

We can now write the equation for resolved scale energy, Er, by summing (2.64)

G = (2.68)

and (2.67), and rearranging indices,

Ox , 0iBn _  Tu; 9 du; <_ap 9

S b ) I N S (2.
[q2+Q2]+UUaxj+u2 0:L'i+8xj[0“ TZJ]) (2.69)

ot or; p@xi ox;
We would like to rewrite this equation in a form similar to (2.46) so that we can work
with the same simple form of the equations. This is rendered difficult due to the
presence of disparate types of filtering in the pressure and molecular stress terms.

The pressure terms can be rewritten as

~ A~ ~ " 1 "
_ a]_gul (_8?1,@ _8Uz+_auz + /% _‘_p/%> (270)

Following Erlebacher et al. (1992) we conclude that the last three terms in parenthesis

are negligible. The first two terms could be calculated explicitly if we knew the
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implicit filter, but they give a purely fluctuating component, which can be neglected,
since it should not contribute to the evolution of the filtered fields. Based on the
discussion in section 2.2.2, this is only exactly true for a projection operator. The

viscosity term can be handled similarly,

Ou; _ doi;  0u,oi —l—( Ou; _&li)

Oij +u = Oijm— — Oij =
K 8:@ ! 8.75]' 8.75]' J 8.75]' J 8.75]'

L A~ ~ " 17 - "
_ duoy; <—8“2 AL Ll L LU 8%) (2.71)

Oijo— — Oij5— T 0Tij ij ij
8:@ 8:@ 8:@ 8:cj 8:cj 8:cj

where we again neglect the terms in parentheses.

The last term of (2.69) can be rewritten as (noting that 7;; is symmetric):

_Om; i[~. e Ouy
U o, Ox U;jTij] — Tij oz,
0 (0 o
= ox, T 9 \ Mg, Tﬂ@xj
9 _

The final form of the resolved energy equation is then:

oF 0 . . - o =~
8—tR = % [~ (Er + D) — (G + Qs) + (755 — 7i5)] + 76554 (2.73)

This equation is not conservative because of the subfilter dissipation term; this corre-
sponds to the production term in the k equation and represents the transfer of energy
from the resolved to the subfilter scales.

The ideal gas equation (2.48) can be filtered directly,

p=Cy(y—1)pT. (2.74)

The thermal conductivity is modeled by a constant Prandtl number,

= FC

. (2.75)
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2.4.5 Compressible FSM

To employ the FSM for compressible flow requires two relatively minor changes. First,
a model is required for the subfilter heat flux, ();. Second, the underlying RANS model
must be replaced with one designed for compressible flow.

For the subfilter heat flux a contribution function is employed in a manner com-
pletely analogous to (2.37):

Qi = faQi™. (2.76)

The same contribution function (2.42) is used for both the subfilter stress and the
subfilter heat flux.

For the low Mach number flows considered in this work there are no significant
compressibility effects that require modeling. The compressible £ — ¢ equations are

modeled using

dpk  Opujk 3} _ur\ Ok _ T

hdudhd - EACH INhAa N - 9.

ot * Oz, Oz, [(,u * Pry, ) Ox; PTigSiy — Pe (2.77)
dpe  Opuge O [[(_  pur\ Oe £ —~— _e?
i -7 el il SRS l 9.
ot + 8217]‘ 8217]‘ |i(,U/ + PI'E 8:cj Cgl]{?pTZ]Sw C€2f€2p k ( 78)

For the diffusion terms of the k£ — ¢ equations the eddy viscosity is computed as
jir = CM%. (2.79)

The singularity in the dissipation term of the ¢ equation is removed with the wall

damping function

foo =1—exp ( (2.80)

yVk )
Cxv |’
with C* = 12.

To complete the closure requires an algebraic relation for the Reynolds stress ten-
sor, which we compute using a state of the art algebraic stress model (ASM). This
model contains higher order algebraic terms of the invariants of the strain rate and

vorticity tensors which model non-equilibrium turbulent effects. In his original for-

mulation of the FSM Speziale (1996) proposed using the ASM of Gatski and Speziale
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(1993). Although good results were obtained using this model (e. g. Bachman, 2001)
the current calculations employ the revised ASM model of Gatski and Jongen (2000).

The stress tensor is written as:

9 1
R%ANS = gpk — 2up {(Sij — gSkkéij)

1
azas (SigWij — WigSij) — 2aza4 (Sikskj - gSlekléij)] (2.81)

where
]{32
vp = —onp— (2.82)
and
3 2
(ﬂ) _p (%) i (%) L =0. (2.83)
T T T
The coefficients in the cubic equation (2.83) are given by
m
= 2.84
P= ey (2.842)
1 2 2,2 2 9 9 9 2,2 2)
= ——— | Y= 29°T°ja; — =0T a3 + 26T 2.84b
1= D)y (71 WY — ST A > (2.84b)
(2°7%7)

with



n= SijSZ]
§ = WijWj
1/4
a] = 5 (g — Cg)
LCEeA
Gy = 5 4
1
az = 5 (2 — 03)
ag =T (71 — 27 <_1) 7727'2)
O
Yo = 9
1 052 - 052
* —CO +
M 2 1 Cgl -1

The following value are used for the model constants:

Co=144 C.,=183
V=34 C{=18

Cy =10.36 C3=1.25 C,=04
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(2.85a)
(2.85b)
(2.85¢)
(2.85d)
(2.85¢)
(2.85f)
(2.85g)

(2.85h)

(2.86)

The cubic is solved using the solution procedure outlined in the appendix of Rumsey

and Gatski (2001). The turbulent heat flux is modeled using an eddy conductivity,

C11),UT aT
PI"T 8:61

Q=

(2.87)
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Chapter 3

NUMERICAL METHOD

And yet, someone who might have difficulty
consciously working out what 3 x 4 x 5 comes to would
have no trouble in doing differential calculus and a
whole host of related calculations so astoundingly fast
that they can actually catch a flying ball.

DouacrLAs ADpaMs, Dirk Gently’s Holistic Detective

Agency

Two different CFD codes were used for the results presented here. The original
intention was to perform all the calculations with an high-order accurate explicit code
based on the numerical method of Thumm (1991) which was originally designed for
investigations of supersonic transition on a flat-plate. The method was subsequently
refined by Harris (1995) and was adapted for the plane wake. Preliminary calcula-
tions, however, indicated that for the “hump” model at the experimental Reynolds
number the timestep requirements for the explicit code were too severe. Since no
equivalent high-order accurate implicit code was available, the second-order code
CFL3D, developed by NASA Langley Research Center, was employed. This chapter

describes the numerical method used by each code.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIGURE 3.1. Computational domain



67

3.1 Virtual Fluid Dynamics

VFD-++ (Virtual Fluid Dynamics in C++) is a C++ class library that was developed
as part of the research effort to simplify the implementation and testing of a variety
of turbulence models. Time-stepping algorithms, spatial discretization schemes, dif-
ference equations, and boundary conditions are all implemented using C++ classes
and virtual functions. This allows the user to create modules to implement new equa-
tions, stencils, boundary conditions, etc., and to combine equations and numerical
procedures in a modular fashion. Grid classes provide the vector calculus operators
gradient and divergence so that equations can be written independently of the grid
transformation. Template meta-programming techniques are used to optimize the
most important computational loops in order to be performance competitive with
Fortran.(Veldhuizen, 2000) Parallelization uses the Message Passing Interface (MPI)
and is implemented in the low level subroutines so that new equations may be imple-
mented independently from the parallelization.

The numerical method for the simulations presented here is essentially the same
as that originally developed by Thumm (1991) for linear stability and transition
studies, and later adapted by Harris (1995) for the plane wake and von Terzi (2004)
for the backward facing step. The time advancement algorithm is a fourth-order
explicit Runge-Kutta method in a memory conserving formulation Harris (1995).
Spatial differences are computed using second order split-differences at each step
with alternating direction so as to sum to fourth-order (Turkel et al., 1976).

The spatial differences stencils are slightly different than those given in Harris
(1995), since a third order stencil is used at the boundaries. The stencil used for
interior points is

(0); = 5 (~fiva + 8 7,

with the direction of the stencil alternating for the upwind and downwind steps. On

the boundaries the same stencil is used for the downwind steps, with the following
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Step x-derivative y-derivative z-derivative

1 U U U
2 D D U
3 U D U
4 D U U
) U U D
6 D D D
7 U D D
8 D U D
9 U U U

(U) Upwind/(D) Downwind

TABLE 3.1. Splitting algorithm.

stencils used for the upwind steps:

(0f)o
(0f),

12

(—15f0 +28f1 — 17fy + 4f5)

(—4fo+ fi+4fa— f3).

12

[ NN

Reducing the order of the stencils on the boundary improves stability, but should not
affect the global convergence rate (Gustafsson, 1975).

For three-dimensional simulations Thumm (1991) used a pseudo-spectral decom-
position across the span. This yields significant improvement in numerical accuracy
for linear stability calculations in which the disturbances are applied in Fourier eigen-
modes. In turbulent calculations, where the coherent structures are no longer ex-
pected to have a harmonic shape, the advantage of this decomposition is less clear.
Furthermore, for the highly nonlinear model equations it is computationally advan-
tageous to work entirely in physical space. All the simulations presented here are
therefore performed entirely in physical space. The same split stencils are used for
the spanwise derivatives, with the splitting algorithm expanded to an eight step cycle,
as shown in table 3.1. Inner derivatives are always taken in the opposite direction as

the outer derivatives.
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FIGURE 3.2. Parallel efficiency (left) and runtime (right).

The code is parallelized using MPI. Rather than using a traditional ghost cell
approach, in which boundary data is updated after each sub-step, the boundary data
communication is localized to the differencing subroutine. Spanwise periodicity does
not need to be explicitly implemented, instead it is specified using the topology options
available through the MPI library. In this approach, communication occurs in every
differencing operation, rather than once per sub-step, however only two boundary
lines need to be communicated, instead of four. Also, the governing equations are not
solved at any duplicate or unnecessary data points. This allows the method to scale
to smaller block sizes. The code has been successfully run on up to 128 processors
with near linear speed-up. Figure 3.1 shows the run time and the parallel efficiency

for various numbers of processors. The parallel efficiency is defined as

o TSingle Processor 3.1
CPUs- Wallclock

The super-linear speed up observed up to 16 processors is due to cache effects.

3.1.1 Curvilinear Coordinate Transform

Thumm (1991) designed his code for a uniform rectangular grid. Harris (1995) added

affine grid stretching along the z and y coordinate axis. The current code further
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extends the method by allowing for an arbitrary curvilinear coordinate system. Al-

though the code can support a transform in all three coordinate directions, for the

simulations presented here a transform was applied only in the x — y plane. The

implementation is therefore described with that simplification.

The code uses a formulation that is designed to preserve the conservation proper-

ties of the Navier-Stokes equations. The FNS equations are not conservative, but by

using a slight modification of this formulation, it is assured that those terms which

are conservative remain so in the transformed equations. The FNS equations, along

with the £ — ¢ transport equations, can be expressed in a vector form as

oU OE(U) JF(U) 0G(U)
> H(U
8t+8x+8y+8y+()
where U = (p, pti, pv, pw, Eg, pk, pe)” and
pu
pulu — p (5135(2 Txx)
Pt — (Ouy — Tay)
£ PUW — (Gpy — Taz)
W(Er+D)+ (@ + Qu) — 0 (Fux — Tax) — 0 (uy — Tay) — W (T
piik — (pu+ ;,‘—7;) g
pus — (p+ ff—fg) %
5
ﬁaf; — (Ouy — Tuy)
ﬁvv:l: D= (O — Tyy)
F — pow — (Gy. — Ty2)

pue — /~L+§—f€)

U(Er+p)+ (q_y + Qy) —u (‘_7my - Tmy) -0 (5yy - Tyy) —w (5yz - TyZ)
pok — (pu+ ff—i)

ok
Jy
e
9y

(3.2a)

(3.2b)

(3.2¢)
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o
ﬁfLUN) - <5xz - sz)
P — (Gyz — Tyz)

ﬁFJﬂD +I3 - (5-,22 - Tzz)

G = - _ _ - i -
w (ER +p) + (QZ + Qz) —Uu (sz - T:cz) —v (Uyz - 7_yz) —w (Uzz - TZZ)
pwk — (pu+ £ Prk %
pwe — | p+ & Prs %
(3.2d)
0
0
0
H= 0 (3.2¢)
iS

—C1 5P (S Skk%) + Cszfszp %
It should be noted that the filtered mass and momentum equations remain conser-
vative, while the resolved scale energy equation has a single dissipation term which
represents the transfer of energy to the subfilter scales. The k and ¢ equation both
have production and dissipation terms.

The inner derivatives in the flux vectors can be computed using the chain rule,

0 8
0 _ 9 8 (3.3b)

Equation (3.2a) is then expressed in terms of the computational coordinates &, 7 in

conservative form as

oJu) 0 0 oG
BT + — o€ [J(E&, +FEy)| + 877 [J(En, + Fn,)] + 5, +JH (3.4a)
where
ve In (3.4b)
Ye  UYp

is the Jacobian of the grid transformation. The Jacobian is evaluated numerically at

start up using second-order central differences.
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3.1.2 Boundary Conditions

The computational domain is shown in figure 3.1. At the lower wall the no-slip
condition is enforced for velocity, and a constant temperature is specified. For the
k—e equations, k is set to zero, as is the wall normal derivative of . For simulations of
the LaRC experiments, the upper boundary is treated as a no stress wall to eliminate
the necessity of resolving the upper wall boundary layer. The experimental data
shows that this boundary layer is thin, and therefore it should have no appreciable
impact on the flow field at the lower surface.

Dirichlet conditions are used for all variables at the inflow, and the second deriva-
tive of all conservative variables are set to zero at the outflow. Since the flow is
subsonic, there is one upstream characteristic, which is fixed by imposing a constant
value for pressure at the outflow. To allow disturbances to leave at the inflow, follow-
ing Harris (1995), the pressure on the inflow is set using extrapolation rather than
the state equation.

Disturbances are introduced by wall normal blowing and suction. For the steady

suction case (see section 5.3) the slot velocity distribution is given by

v(z) = —A\/?Sin3 (rz), (3.5)

where A is the steady suction amplitude. For periodic forcing a dipole slot is used:

v(x,t) = A(zf)\/?%sin2 (rx) sin (27z) , (3.6)

where the amplitude, A(t) = Asin (wt) is now varies sinusoidally in time.

3.2 CFL3D

For the high Reynolds number cases considered in chapter 6 the CFL restriction makes
simulation with an explicit code too computationally expensive. (For example, the

cases presented here would require ~200, 000 timesteps per forcing period.) Instead
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the simulations were performed using CFL3D, a CFD code developed at NASA Lan-
gley Research Center and made freely available by NASA under an export restricted
licensing agreement. Although CFL3D is actually a thin-layer Navier-Stokes solver
it has been used with reasonable success for complex geometries. It was among the
codes used by NASA for their own simulations for the CFD Validation 2004 Work-
shop. In addition to being an implicit code, CFL3D was chosen because it already
includes the Gatski and Jongen (2000) EASM model used in the FSM. The complete
capabilities of CFL3D can be found in the User Manual (Krist et al., 1998). The
features used in the current investigations are briefly outlined here.

The governing equations in CFL3D are the thin-layer Navier-Stokes equations.
The thin-layer approximation is made in each of the three spatial dimensions sepa-
rately and the remaining viscous terms can be activated for each direction indepen-
dently. With all viscous terms turned off CFL3D can be used as Euler solver. For
the simulations presented here the viscous terms (both laminar and turbulent) are
retained in all three directions. This is equivalent to neglecting the cross-derivative
terms in the full Navier-Stokes equations. It is not obvious that this approximation
should work well in separated flow. However Rumsey et al. (1987) show that CFL3D
performs reasonably well even in such cases.

CFL3D is a finite volume code. The spatial derivative terms are separated into
convective and viscous flux terms. The viscous flux terms are computed using an
upwind biased third order method (rkap0=0.3333) with flux difference splitting ac-
cording to the method of Roe (ifds=1) and no flux limiting (if1im=0). Both the
molecular and turbulent viscous terms are evaluated with second-order central differ-
ences.

A pseudo-time (7-TS) time advancement is employed. In addition to the physical
time variable ¢ there is a pseudo-time variable 7. At each discrete time step in physical
time, the pseudo-time is advanced a fixed number of sub-iterations, ideally until a

steady state is reached. The time stepping for the pseudo-time variable, 7, is first
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order and fully implicit. In the limit of complete convergence for 7 the resulting
scheme for the advancement of physical time, ¢, is second order. However, the code is
generally run for a fixed number of sub-iterations. The number of subiterations used is
discussed in section 6.1.1. For each sub-iteration, the solution can be further improved
using a multigrid method. The number of multigrid levels available depend on the
details of the grid, and therefore varied among the cases presented here. Further
details on the numerical method, as well as precise explanations of the parameters
settings listed above can be found in Krist et al. (1998).

The boundary conditions are similar to those used in the explicit code. A steady
RANS turbulent profile is imposed at the inflow boundary. In order to allow upstream
pressure disturbances to exit the domain, density, velocity, k, and ¢ are set to fixed
values, and the pressure is extrapolated from the interior. (CFL3D boundary con-
dition type bctype=2008.) The inflow profile is generated by using the stand alone
turbulent boundary layer solver described in appendix B.2, with the leading edge
placed the same distance upstream of the inflow boundary as in the experiments.

At the outflow an extrapolation boundary condition is employed with the pressure
fixed to the ambient pressure. (bctype=2002) The strongly stretched grid serves
to dissipate the outgoing disturbances before they reach the boundary since in the
highly stretched region the FSM model recovers a steady RANS, i.e., fa — 1. As
for the explicit code, a no-slip lower wall (bctype=2004) and a no-stress upper wall

(bctype=1005) are employed.

3.3 Grid Generation

Both VFD++ and CFL3D are formulated for arbitrary structured Cartesian grids.
Orthogonality is not required. Nevertheless it can be shown (Thompson et al., 1985)
that the leading order error term is inversely proportional to sin#, where 6 is the

angle formed by the grid coordinate lines. An orthogonal grid will therefore minimize
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the numerical error.

Duraiswami and Prosperetti (1992) propose a method for generating orthogonal
grids based on conformal maps. Typically grid generation involves the mapping of
a general quadrilateral domain onto a uniform computational rectangle. Conformal
mapping alone is not sufficient for this purpose, since a conformal map cannot map
a general quadrilateral onto a specific rectangle such that verticies are mapped to
verticies. Nevertheless it is possible to use a conformal map to transform a general
quadrilateral onto a rectangle if the aspect ratio of the rectangle is left as an addi-
tional free parameter of the mapping. The resulting rectangle can then be trivially
transformed to onto the computational rectangle by simply rescaling one linear di-
mension. The resulting map preserves orthogonality but not volume. Such a map is
called quasi-conformal and the aspect ratio of the intermediate rectangle turns out to
be a unique property of the original quadrilateral, called the quasi-conformal module.

To control the cluster of grid points Duraiswami and Prosperetti (1992) compose
two additional mappings, an affine transform in each grid direction. The complete se-
quence of mappings is illustrated in figure 3.3. Mathematically the complete mapping

can be performed in one step according to the grid transformation equations

0 ox 0 [10x

a—g[fa—g]w—nl?a—n] =0 (3.72)
9 1,9y| 90 |10y| _

5 [f 8€]+877 [fé‘n} 0 (3.7)

where f(n,£) = Ma(n)b(€) is a separable function that controls the local grid aspect
ratio. The constant M is the quasi-conformal module of the region. The functions
a(n) and b() are the affine transformations which control the grid line clustering,

and which must satisfy the normalizations
1
/ a(mydn = 1 (3.82)
0
1
/b({)d{ = 1 (3.8b)
0
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FIGURE 3.3. Schematic of the grid mapping. Starting with the computational do-
main (top left) a conformal map is applied, followed by a linear stretching onto the
unit square, followed by an affine transformation to produce a uniform coordinate

distribution (lower right).
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As implemented by Duraiswami and Prosperetti, the conformal module of the
physical geometry is required in order to solve the grid transform equations. Letting
@ be the general quadrilateral and M (Q) be the conformal module of @, it can be

shown that if P; is a sequence of polygons such that

then
lim M(P) = M(Q). (3.10)

i—00
Since the quasi-conformal module of a polygon is much easier to compute than that
of a general curvilinear quadrilateral, they used a series of polygonal approximations
to obtain the module. For the geometry of the hump model the physical domain is
almost rectangular. It was found that using the aspect ratio of the enclosing rectangle
as an estimate of the quasi-conformal module of the hump geometry was sufficient to
produce acceptable grids.

The functions a(n) and b(¢) are third order polynomials. For a(n), which provides

the near wall clustering, the function
a(n) = A+ 3(1 — A)n? (3.11)

is used, where A is the stretching parameter. A is approximately the proportion by
which the spacing at the wall has been reduced (for A = 1 there is no stretching). In
order to allow clustering around a point, &, in the middle of the domain, the following
function is used for b(¢):

1-B
% — & + &

where B controls the strength of the clustering (Postl, Personal Communication). The

b(¢) = B + (€ = &) (3.12)

clustering in the downstream direction is used to maintain grid density on the concave
section of the ramp, since the quasi-conformal mapping tends to cluster points near

convex regions and away from concave regions.
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FIGURE 3.4. Computational grid. Every fifth point in y and tenth point in z is
shown. The stretched region actually extends to z/c = 14.0.

Orthogonality is imposed through the boundary condition

drow  ydy _
o£0n  OnoE

The remaining boundary condition is obtained by requiring the points to lie on the

(3.13)

desired boundary curve,

F(z,y) =0. (3.14)

For the curved lower wall boundary, cubic splines are used to approximate the bound-
ary curve, from the QA data provided by the experimentalists.

The grid generation equation (3.7a) and its associated boundary conditions (3.13)
and (3.14) are solved using successive over-relaxation (SOR). For three dimensional
cases the grid is generated in two dimensions and extruded uniformly across the span.
As part of the outflow treatment, a strongly stretched rectangular grid is patched onto

the end of the domain. A typical grid is shown in figure 3.4.
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Chapter 4

ERROR ANALYSIS AND TURBULENCE MODEL
VALIDATION

“You mean it’s okay to say something that’s wrong as
long as the reason is right.”
“Of course. Why else go to the trouble of being a
rational animal?”

UMBERTO Eco0, Foucault’s Pendulum

For simulations of laminar flows the error, defined as the difference between the
exact solution of the Navier-Stokes equations and the computed solution of the dis-
cretized equations, is determined purely by the numerical scheme employed. For
unsteady simulations of turbulent flows, due to the chaotic nature of the flow field,
global convergence cannot be achieved over physically relevant timescales using any
computationally affordable timestep and grid spacing. Consequently the error is
measured in terms of statistics of the flow. (Using statistics in this way is highly
non-trivial, as will be shown in section 4.1.) This introduces an additional source of
error associated with the convergence of the statistics as approximated from a finite
time series, which will be referred to as the averaging error. If the turbulent flow is
computed using a model equation, rather than the Navier-Stokes equations, then a
third error is introduced, the modeling error.

Ideally, when performing a simulation a desired error tolerance would be specified
and the sum of the errors would be required to be smaller than this specified tolerance.
In reality the available computational resources and the available time to solve the
problem are often what determines the error. Since one of the error terms may
dominate the total error it is important to understand the magnitude of each term
and the relative cost for reducing each term individually. In this way effort can be

targeted toward reducing the dominant error term, and practical limitations on the
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accuracy can be understood.

In this chapter each of these error terms will be considered separately. The ex-
pected forms of each of the error terms will be analyzed and the mathematical tools
used to evaluate them will be briefly introduced. This discussion should establish
three things: (1) that the largest error is likely to be the averaging error, (2) that the
cost of reducing the averaging error is prohibitive, and (3) that the averaging error
is only available as an error bound, and can not be held constant as the other er-
rors terms are investigated. This means that for any validation study, errors smaller
than the averaging error cannot be determined. Although this may appear to be
an insurmountable problem, it is offset by the fact that in a predictive calculation
the averaging error is the term which governs the overall error, and therefore in real
world applications numerical and modeling errors need only be made smaller than

the averaging error.

4.1 Numerical Errors
4.1.1 Grid Convergence for Large-Eddy Simulation

Consider the FNS equations (2.8) and (2.10), closed using the standard Smagorinsky
model, eq. 1.12 (the argument may be trivially generalized to any model parameter-

ized in terms of a cutoff length scale). The eddy viscosity is:
vr = €2 |S| .

The length scale ¢ is a parameter which must be specified. In this form the model
is a PDE which, in theory, can be solved exactly for any specified value of ¢. If one
is to perform a grid resolution study for a discretization of this PDE it is necessary
to hold /¢ fixed as the grid is refined. If instead the length scale is chosen in a fixed
ratio to the grid width, ¢ = CsA, as is commonly done, then the resulting equation

is no longer purely a PDE. If the grid is refined holding C's constant, the discretized
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equation is formally consistent not with a turbulence model equation, but rather is
consistent to second order (in the “model” term) with the unfiltered Navier-Stokes
equations.

To better clarify the meaning of ¢, consider the following thought experiment.
Perform a wall resolved DNS for a specified flow. Then perform a series of standard
Smagorinsky LES simulations for the same flow, holding ¢ fixed, while refining the
grid. By comparing the spectrum extracted from the DNS to the spectrum from the
fully grid converged LES it should be possible to estimate what the filter for the LES
model is. Pope (2000) points out that this filter is implicitly defined by the model.
He further points out that this implicit Smagorinsky filter is the filter represented
by the overbar in the FNS equations, and it is different than any explicitly applied
filter which may be used in the numerical solution procedure. Extending this line
of argument, it is possible to extract a characteristic filter width, § from the LES
data. Considering the physical arguments underlying the model, it is reasonable to
expect that ¢ is roughly proportional to ¢. Note that the constant of proportionality,
Cy = /6, is a property of the Smagorinsky model considered as a PDE, and is not
the same as the Smagorinsky coefficient Cs which is related to the grid spacing. We
can relate the two constants by defining a coefficient 5 which represents the number
of grid points required to resolve one characteristic filter width. The model then

becomes,

vr = (CeBA)°|S],

where C;3 = C's. From this analysis it is clear that the Smagorinsky coefficient repre-
sents the combined effect of both a model property and a grid resolution parameter.
In this sense there is no physically “correct” value of Cg. If Cy is sufficiently small
the simulation will be underresolved. If Cyg is sufficiently large, the filter width will
be too large relative to the size of the energy containing eddies. In this light it must

be understood that the value of Cs proposed by Lilly (1967) is really a calibration
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for Cg.

4.1.2 Model of the Error

To better illustrate the behavior of the error terms, consider the following model.
Let u be the solution to the FNS equations closed with a turbulence model with a
characteristic filter width, 0. For an order n numerical method the discritization error
contains terms that are typically of the form
e R
Discritization Error oc A" —. (4.1)
ox™

In order to obtain an estimate for the derivative term note that (Pope, 2000)

<(g;f)2> N /0 2 B () dr

= / K2VG(R)CeY 35 dk (4.2)
0

where G(k) is the implied filter associated with the turbulence model. Since G/(k)
is dependent on d, so too is the integral in (4.2). To recast this integral in a form
independent of §, we can express the implicit filter as G(/—c) = g(kd), where g is a

filter kernel shape which is independent of 4. So,

n—\ 2 )
<<gx:)> ~ 052/3/0 KB g(k6)dk (4.3)

082/352/3—2n /OO /-@'2"_5/39(/4)(1/4 (44)
0

where we note that the integral is now independent of . Substituting this into the

expression for the discritization error yields

Discritization Error oc A™§Y/3—"

— ﬁl/S—nAl/S’ (45)
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or,
= 33, (4.6)

where 6 = SA. (Note that there is no requirement that the filter width, J, be chosen
proportional to the local filter width. However since this form is commonly used, and
is employed in the current work, it is useful to consider.) One important consequence
of this analysis is that if a conventional grid refinement study is performed, in which
the grid is refined while keeping the model parameters constant, i.e., A — 0 while
[ = constant, then the discritization error will scale with A3, regardless of the order
of the numerical method. Nevertheless, higher order methods still retain an advantage
in that, for a fixed value of  (that is, a fixed number of points per characteristic filter
width) the discritization error is likely to be smaller for higher order methods, due to
the 57" term.

Now assuming that the subfilter stress scales as 62, and noting that most models
to leading order also scale as ¢, it is reasonable to assume that the model error term
is also second order, or at least no worse than second order. Combining these two

estimates we can write

Total Error = Discritization Error + Model Error (4.7)
= C137"6Y3 + Cy8?, (4.8)

or,
— 01/61/3—nA1/3 + C2ﬁ2A2 (49)

Note that the constant 3 serves essentially the same role as the FSM [ coefficient
in the contribution functions (2.38), (2.40), and (2.42), and as the Smagorinsky coef-
ficient, Clg, in the Smagorinsky model (1.12). Similar coefficients appear in most LES

models.
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| Error |

FIGURE 4.1. Behavior of the total (discritization plus model) error, based on the
error model (4.9).

The behavior of (4.9) is plotted in figure 4.1. The different curves are for different
grid resolutions, with finer grids resulting in a lower total error. For coarse grids
there is a clear optimal value of 3. For finer grids, however, there is a large range
of values for which the error is small, that is, for which the resulting filter width is
small relative to the largest scales of the turbulent motion, but still large relative to
the grid spacing. So the error is much less sensitive to [ for finer grids.

What is important to note is optimal values of 3 (or Cs in a Smagorinsky model)
culled from numerical studies really only represent the best trade off between nu-
merical and model error for that particular case. The values are therefore both grid
and problem dependent. This helps to explain the wide range of “optimal” C's values
reported in the literature.

It should also be noted that figure 4.1 is based on an order of magnitude analysis.
For small values of 3 we expect that the model will be insufficiently disapative,

whereas for large values of 3 (the RANS limit) the model dissipation will be too high.
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For a code, such as CFL3D, which is disapative in the leading order error terms, this
implies that the discritization error and the model error will tend to combine for high
( and to cancel for smaller 5. In the § = 0 limit, this is precisely the rationale for

ILES methods (see section 2.2.3).

4.1.3 Convergence of Chaotic Systems

In conventional numerical error analysis the error is defined as the time dependent
difference between the exact and numerical solutions. The global error is measured
by a quantity such as the L?-norm of the instantaneous error. It will be noted that in
the previous section the description of a grid convergence study for the FNS equation
is given in terms of the error in the statistics of the solution rather than the error
in the solution itself. The reason is that for simulations of turbulence it is observed
that attaining convergence of the instantaneous solution over a finite time interval
is impossible, whereas the statistics are observed to converge. This is a phenomena
common to chaotic problems. In order to better understand the behavior, and to
justify this use of the statistics of an unconverged solution, it is helpful to look at a
lower order model problem.

Consider an iterative mapping H : R? — R? defined by:

Tivt1 = Y +1-— 141‘22
(4.10)
Yir1 = 0.3x;.

This is the Hénon map (Hénon, 1976). Although deterministic, this mapping is a
chaotic process. Informally this means that the sequence of points generated by this
mapping appears to be random, and that the map exhibits sensitive dependence on
initial conditions. By sensitive dependence on initial conditions it is meant that there
exist pairs of points which are infinitesimally close together but which can be sent a
fixed finite distance apart by the action of a finite number of iterations of the map.

Sensitive dependence on initial conditions poses a significant problem for numer-
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FIGURE 4.2. 100 iteration of x for the Hénon map with the initial condition (z,y) =
(1,1). The grey line is single precision, the black is double precision.

ical simulations. Figure 4.2 shows {z;} for 100 iterations of the Hénon map. Two
realizations are shown: one is computed in single precision arithmetic, the other in
double precision. The difference in the round-off error is enough to cause the two
solutions to diverge within about 50 iterations. In light of this sensitivity it is rea-
sonable to ask whether it is possible to investigate the “real” (that is, exact) behavior
of the map.

If the sequence of points generated by the map is plotted on the Cartesian plane,
the results form a distinct pattern (figure 4.3). This is the Hénon attractor. An
attractor is a set of points which are invariant under the mapping and to which some
larger superset of points eventually tend towards under repeated iterations of the
mapping. The Hénon attractor is a strange attractor which has a complex and fractal
structure as can be seen in the expanded views in the figure. What is more important
for our purposes is that in spite of the pointwise divergence of the two realizations
show in figure 4.2, the shape of the attractor is virtually unchanged down to the fine
scale structure.

This type of behavior is observed in many chaotic systems, and is generally ex-
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FIGURE 4.3. The Hénon attractor (10,000 points are shown). Both single precision
(grey) and double precision (black) realizations are shown.
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plained by in terms of a shadowing property (Pilyugin, 1999). The shadowing property
for a particular mapping is a statement that a slightly perturbed version of the map-
ping (such as that induced by a finite precision numerical simulation) is in some sense
close to some exact history of the unperturbed mapping. More formally we can con-
sider a metric space (X, ), where X is the set and 7 : (X, X) — R is the metric, and
a mapping

¢: X — X. (4.11)

Define an orbit as a sequence generated by iterating the map,
O(z) ={¢"(z)ln e Nyx € X}. (4.12)
We now define a d-pseudo orbit as a sequence {x;} with the property

r(xiv1, o(x;)) < 6. (4.13)

The pseudo-orbit does not have to be generated by a specific mapping, although in
the case of interest here it is generated by the numerical procedure (with round-off
errors included). The pseudo-orbit can be thought of as the result of a numerical
realization for which there is an upper bound on the error committed at any single
time advancement step.

An orbit O(z) is said to e-shadow a pseudo-orbit if

r(wi, ¢'(w9)) <€, (4.14)

that is, if the distance between the orbit and the pseudo-orbit remains bounded
forever. What we want is a statement that given a number ¢ > 0 we can find a § > 0
such that any J-pseudo orbit is e-shadowed by some orbit. This would imply that
although a particular numerical realization will diverge from the exact orbit O(z)
generated from the identical initial conditions, the realization is still within € of some
real orbit, albeit with a slightly perturbed initial condition, provided the error at each

iteration step is made small enough.
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It is interesting to note that there is, in fact, no proof available for a shadowing
property for the Hénon map. Nevertheless, evidence from numerical experiments,
such as the results in figure 4.3, show that it is extremely likely that the Hénon map
has this or some similar property.

Most available shadowing results are for systems with a small finite number of
degrees of freedom. Turbulence is a problem with an infinite number of degrees of
freedom, at least when considered in the infinite Reynolds number limit. For a finite
Reynolds number the number of degrees of freedom is still enormous, scaling with
Re”*. Even for an FNS or VLES approach a formal shadowing theorem is unlikely
to be available.

Berkooz (1994) gives several reasons why shadowing is not sufficient to explain
the convergence of statistics in a turbulence simulation. First, it is not clear that the
Navier-Stokes equations have a shadowing property. (The same objection applies for
the FNS equations with a closure model.) In fact, many flows have symmetries which
make it likely that there is not a shadowing property. Second, many systems have a
shadowing property only in particular subsets. This means that numerical errors may
send the solution out of the region in which the shadowing property holds. Third,
there is no guarantee that the shadowed orbit is representative of a “typical” solution.
For example, the shadowed orbit could be a limit cycle with a very small basin of
attraction.

In spite of these issues, it is observed in numerical simulations that turbulent
statistic do appear to converge. Berkooz (1994) proposes that this reflects some
“deeper dynamical properties of the equations.” Sigeti (1996) presents numerical
evidence suggesting that the presence of a region of exponential decay in the high
wave number spectrum of a simulation of a chaotic (or turbulent) system is a good
indicator that the dynamics have been correctly captured. In what follows it is
assumed that the turbulent statistics predicted by the simulations converge in a well

behaved manner. However, it should be noted that significant further research is
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needed in this area, without which it cannot be definitively asserted that convergence

of turbulence statistics will not fail for certain cases.

4.2 Averaging Errors

The enormous computational cost in modeling time dependent turbulent flows means
that often only a very short physical time can be simulated. While experiments may
collect data over thousands of characteristic times, numerical simulations may be
limited to less than one hundred. As a result, convergence of statistics collected from
simulations may be quite poor. Generally the errors associated with time averaging
are assessed only qualitatively. However, in order to properly quantify the numerical
and modeling errors present in a particular simulation, it is absolutely necessary to
have a quantitative measure of the averaging error.

Given a series of measurements of some variable {x;}, with a mean value

1 N
T=5 ;x (4.15)

the error is expressed as the standard deviation of the mean, \/o02/N, where o is the

sample variance,
N

var[z] = 0% — %Z (2 - 7)°. (4.16)

i=1
Formally, if the data points, x;, are statistically independent, then the standard de-

viation of the mean is related to the variance of the mean by,
var [7] = —. (4.17)

However, for typical numerical simulations data is available with a high enough time
resolution that the points are definitely not statistically independent. In this case the

variance of the mean can be approximated (for large V) as

2ro?

- £(0) (4.18)

var [T] =
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where f(w) is the normalized spectral density function,
1 - —iwr
@)= 5= 3 e i) (419)

" 2r

and p(r) is the auto-correlation function (Priestly, 1981, section 5.3.2).
Since f(w) is not known, it is estimated by fitting an AR(2) process to the data,
with parameters a;,ay. For a discrete AR(2) process, the following formula can be

used (Priestly, 1981, equation 4.10.12):

_ (1 —ay) [(1 + CL2)2 — aﬂ
o= 2m (1 + a») {(1 - a2)2 +a?+2a; (1 —ag) + 4a2} ' (4.20)

In the remainder of this work all error bars represent the square root of the variance
of the mean, y/var [T], as estimated by this method.

One very important consequence of (4.18) is that the averaging error only decreases
as the square root of the computational cost. The cost of reducing the numerical error,
however, will scale with the order of the numerical method; therefore the numerical
error can be decreased much more cheaply than the averaging error. Consequently
it may often be worthwhile to perform simulations with grids and timesteps that are
“good enough” in order to focus computational resources on obtaining a long enough
time series to obtain well converged statistics. In particular, when comparing different
simulations it is important to check that the averaging error is not larger than the the
effect of whatever parameter changes (whether discritization, modeling, or physical

parameters) are being considered.

4.3 A Posteriori Analysis

The implicit nature of the model filter, as discussed in section 2.2.1, has important
implications for model validation. Experimental and DNS data is unfiltered. Results
from model calculations using the FNS equations are filtered values. Since defiltering

is generally an ill-posed problem, in principle it is necessary to filter the experimental



92

or DNS data in order to compare it with FNS results. Such a comparison is called a
posteriori analysis. However, due to the implicit nature of the filter, the filter which
must be applied in order to make the comparison correct is unknown.

Actually, from a purely theoretical point of view, the problem is even greater than
what is typically presented in the literature. By filtering the Navier-Stokes equations
to remove the small scales information has been lost. Consequently it is impossible
for the result of a FNS simulation to actually track a full Navier-Stokes solution.
More precisely, if we let v denote a solution of the FNS equations coupled with some
specific closure model, there is no reason to expect that there exists a filter operator,

G, and a corresponding valid solution to the Navier-Stokes equations, u, such that
v=g[ul.

It is widely recognized (see Lesieur, 1990, for example) that the true intention of LES
is to reproduce the same statistics (to some order) as the original flow, and perhaps
mimic the dynamics of the large structures. This criteria stands in contradiction to
the standard development of the LES equations in terms of a specific deterministic
filter. However, it remains beyond the scope of the present work to address this
issue except to suggest that perhaps a dynamical systems approach, similar to the
shadowing theorems discussed in section 4.1.3, might provide a promising avenue for

further investigating the problem.

4.3.1 Mean Flow

In practice the simplest statistics to obtain from experiments are time averaged mo-
ments. Generally this means either mean flow quantities (first order moments) or
Reynolds stresses (second order moments). These are easy to compute for most ex-
periments. For time accurate FNS simulations time averaging yields not the time
mean quantities, (¢), but the time averaged filtered quantities, <$> That these are

not equivalent in general can be easily seen by considering a shear flow profile, for
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example, and a spatial convolution filter applied across the layer. Nevertheless, since
the filter should ideally only effect small scale motions, and since the time average

filters out the small scales, it is reasonable to assume that

(0) = (). (4.21)
This assumption can also be viewed from the reverse perspective. In principle,
if the FNS filter was known the experimental data could be filtered to obtain <5>
In practice this is impossible since the implicit filter is not known. However, even
were the filter available this procedure would only be useful for validating models
where exact data is available, but not for predictive calculations which would require
defiltering to back out the needed data from the FNS calculation. Therefore (4.21)
can be understood as a necessary condition for a model to be a useful predictive tool,
and it is fair to simply assert it as a requirement of a properly formed model that its
implicit filter obeys (4.21).
Higher order moments are computed using the same assumption. The most com-

mon moment of interest is the Reynolds stress which can be written

<u;u;> = (usu;) — (u;) (u;). (4.22)
The Reynolds stress from the FNS simulation is then approximated as

() — (W) (w5) = (W + 7 (i, uy)) — (W) (5)

= (@) — (@) (@) + {7 (u, ). (4.23)
resolve‘(; stress moderstress

Similarly, for compressible flows we have

Rij = (pustiy) — (p) (@) (@;) +  (7ij) (4.24)
~ — ~—
resolved stress model stress

4.3.2 Phase Averages

If in addition to mean quantities it is desired to investigate the physics of large

coherent structures it becomes necessary to identify a procedure for extracting such
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structures from the data. The literature on coherent structures for turbulence is
quite extensive, suffice it to say that there is no single agreed upon definition of
what constitutes a coherent structure. Among the more popular methods are proper
orthogonal decomposition (POD) and vortex identification parameters such as the @
or )\ criteria (Dubief and Delcayre, 2000). One simple model for coherent structures
in a turbulent flow is the triple decomposition associated with the phase average
(Reynolds and Hussain, 1972). This decomposition has been successfully used to
model growth rates for several types of turbulent shear flows in which large coherent
structures are present (Reau and Tumin, 2002a,b).

The phase average is defined as

ot = Tim =S (t +nAt), (4.25)

6~ 5. (4.26)

This assumption is justifiable when there is a large separation of scales between the
period of the phase average and the timescale associated with the filter width. For
larger filter widths, this assumption may break down. In this case it may again be
better to understand (4.26) as a condition on the model, rather than an assumption
about filters in general.

For purposes of analysis, Reynolds and Hussain (1972) decomposed the flow into
three components: a mean flow, a purely fluctuating phase averaged component, and

the random incoherent fluctuations:

o= ) (6-@) + (6-9) (4.27)

periodic fluctuations  non-periodic fluctuations

In validating the FSM a slightly different decomposition is more natural. The pri-

mary term is a phase averaged (mean and fluctuating) component. The remaining
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incoherent fluctuations are decomposed into resolved and unresolved (or subfilter)

components:
o= o+ (6-9) + 4. (4.28)
~— ~—
coherent subfilter fluctuations

resolved fluctuations

This decomposition assumes that, consistent with (4.26),

¢'=0.
Applying this decomposition to the resolved Reynolds stress (4.23) yields:
) — () () = (@) + (w (5 -5) )

(- 7))+ (- (5-8)) - (3045
- \<“QU_7> = (@) (@) + (@ - ) (1 -5)) (4.29)

J/ J

Vv Vv
coherent stress incoherent stress

~

where the cross terms <(u_Z — u%) u_j> = (0 because of the orthogonality of the periodic

and non-periodic fluctuations.

4.3.3 A Note on Ensemble Averages

Conventionally the ensemble average is defined as an average over a large number of
realizations of a turbulent flow. Formally,

N
1 )
im (@)
lim N ;:1 u'(z,t) (4.30)

N—oo

where u()(z, ) is one particular realization. The problem with this definition is that
the result strongly depends on what set of realizations the sum is taken over. For
experiments, the different realizations are identified with different repetitions of the
experiment. From a mathematical point of view, defining the set in this way is highly
unsatisfactory. For numerical experiments the problem becomes much clearer. Using

deterministic equations each repetition will produce exactly identical results, unless
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a perturbation is explicitly applied. In this case, the value of the ensemble average
might depend on the set of perturbations chosen.

A more formally rigorous definition of the ensemble average can be formulated as
follows. Denote by wu(t|ug, to) the solution at time t of the Navier-Stokes solved using
the initial condition wu(ty) = ug. If €2 is the space of all possible initial conditions and
p: 2 — R is a probability density function that identifies a particular set of initial

conditions, the ensemble average can be expressed as

(u(z, 1)) = /Q (e, Ho, to)p(v)do. (4.31)

Note that, under either definition, the ensemble average is still potentially a space
and time dependent field.

To illustrate why this is important, consider a flow dominated by a periodic com-
ponent, such as the shedding of the turbulent separation bubble. If the ensemble is
chosen so that the initial instant always corresponds to the same phase in the shed-
ding cycle, the resulting ensemble average will be equivalent to a phase average. If,
however, the phases at the initial instant are random, the result will be equivalent to
a time average. This has important consequences for modeling. Additionally, when
invoking the ergodic theorem to identify the ensemble average with a homogeneous
space or time average, it is important to consider exactly which ensemble is being

employed, and whether ergodicity can be applied to that particular ensemble.
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Chapter 5

RESULTS [: LAMINAR SIMULATIONS

In preparation for the turbulent simulations laminar flow for a similar geometry was
investigated. These laminar simulations serve two purposes. The first is to help
understand the extent to which the large structures in the flow and the physical
mechanisms of flow control are the same for the laminar and turbulent flow. Sec-
ond, the results for the laminar calculations are of practical importance for many
applications where the flow remains laminar, such as Micro Aerial Vehicles (MAVs).

The laminar calculations used the earlier experimental geometry of Seifert and
Pack (1999). As can be seen in figure 1.2, the two profiles are almost identical. (Note
that Seifert and Pack used a slightly different length scale, the geometry has been
rescaled to conform to the normalization used in the CFDVal Workshop.) Exper-
imental results for the turbulent flow over the two profiles showed little significant
difference between the experiments except for the strength of the suction peak, which
can be attributed to a difference in the tunnel blockage ratio for the two experi-
ments (Greenblatt et al., 2004). For the Seifert and Pack experiments the “hump”
was mounted on the tunnel side wall, and the computational geometry includes the
entire tunnel width. The hyper-stretched region extends from x/c = 3 to x/c = 14
and all cases are computed in two-dimensions. A longer slot was used than in the
experiments, the slot extends from x/c = 0.45 — 0.65. This slot length was chosen to
be one-quarter of the wavelength associated with the natural shedding frequency in
order to optimize the receptivity of the flow according to linear stability theory. The

Reynolds number based on chord is Re. = 10%, and the Mach number is Ma = 0.25.
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FIGURE 5.1. Instantaneous (top) and mean (bottom) velocity vectors and contours
of spanwise vorticity for the baseline (unforced) flow

5.1 Baseline Case

Figure 5.1 shows the instantaneous and mean flow fields for the flow without any
control. In the experiments the flow was turbulent and the mean separation location
was at the sharp corner (x/¢ = 0.66). For the laminar calculations the unsteady
separation initially appears at the corner but since laminar flows are less resistant to
separation the separation point moves upstream to a mean location of z/c &~ 0.57.
For the unforced case we observe “massive” separation over the rear of the hump, with
a “dead” region of quiescent fluid extending over most of the ramp and downstream

to almost x/c = 1.3. Initially, the formation and shedding of large structures occurs
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over the ramp between z/c = 0.66 — 1.0, however, the “dead” region grows as the
simulation progresses, and the location at which the large structures begin to form
moves downstream, extending from x/c = 1.4 — 2.2. Mean reattachment occurs at
Treattach /€ = 2.36.

The unsteady pressure data from the simulation were averaged in time to obtain
a streamwise distribution of C, (shown in figure 5.3 by the solid line). The flow
experiences a sharp pressure drop as it accelerates over the front side of the airfoil,
with a peak at z/c ~ 0.4. A pressure plateau develops extending over most of
the length of the separation region. Near the reattachment point there is a small
pressure increase. This peak is also observed near the reattachment point for other
reattachment geometries (such as the backward facing step) and is caused by the
streamline curvature as the flow turns parallel to the wall.

Examination of the flow field over a large number of shedding cycles shows a long
time drift of the location of the “mean” reattachment point. This drift is associated
with variations in the size of the “dead” region over long time scales.

Much of the literature, particularly the results of Seifert and Pack (1999) report
frequency information in terms of a reduced frequency scaled by the bubble length,
F* = flsp/Us, where f is the dimensional frequency and Iy, is the length of the
separation bubble. While arguably useful for comparison of different geometries and
parameters, this scaling is problematic for three reasons. First, the unforced bubble
length is difficult to determine with accuracy. (In fact, Seifert and Pack (1999) report
lsep/c = 0.57£0.03, but they use a value of ¢/2 for scaling their reduced frequencies.)
In addition to the long time-scale drift of the bubble length, which we observe, it
is also difficult or impossible to measure the reattachment location directly in an
experiment. Second, for each forcing case the bubble length changes, so to maintain
a physically relevant length scale, one ought to scale the frequency with the separation
length corresponding to that particular forcing case. However, since the bubble length

is a function of amplitude as well as frequency, this would mean that our reduced
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frequency would change if we performed an amplitude response study. Finally, while
it seems dimensionally correct to assume that the relevant scaling parameter is some
length scale associated with the bubble, it is not clear that the bubble height, for
example, is not the correct scaling. In fact, we might argue that while for an absolute
instability the convective time-scale of the bubble is the relevant parameter (and
therefore the correct length scale is lsp), for a convectively unstable bubble, or for
a flow which has been attached by the successful application of active flow control,
we are interested in the local instability modes which should scale on a wall normal
length scale, such as the bubble height or boundary layer thickness.

For these reasons, in this section frequency data is scaled by the natural shedding
frequency, except where other units are noted for reference purposes. For the unforced
case the dominant shedding frequency is Fy = 0.565 non-dimensionalized by chord
and free-stream velocity, which would correspond to a reduced frequency of F;” = 1.3

when scaled by bubble length.

5.2 Periodic Forcing

For the oscillatory case the forcing amplitude is characterized by the oscillatory mo-

mentum coefficient,
<C > _ 2_b <pUj2€t>
: ¢ pUL’

where b is the slot width and ¢ is the chord.

5.2.1 Effect of Amplitude

At first, forcing was applied with the natural shedding frequency for a wide range
of amplitudes. The forcing was accomplished by means of wall normal blowing and
suction. Figure 5.2 shows the variation in the reattachment location with forcing am-

plitude, the reattachment location for the unforced case is indicated by a dashed line.
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FIGURE 5.2. Reattachment location as a function of forcing amplitude, f = 0.565.
The horizontal dashed line shows the reattachment point for the unforced case, and
the symbols indicate the jet angle.

For amplitudes as low as U; /Uy, = 0.0001 ({c,) ~ 4x107?) the “dead” region is signif-
icantly shortened. The forcing becomes dramatically more effective for (c,) > 0.004%
and the effect begins to saturate for (c,) ~ 0.1%. At (c,) ~ 1.6% the reattachment
length actually begins to increase again. This is apparently due to the wall normal
forcing, which penetrates the approach boundary layer completely when applied at
this amplitude. As a result the forcing becomes less effective. Additional calculations
performed at shallower blowing angles result in better performance (figure 5.2).
While it is not possible to completely reattach the flow, reductions of as much as
65% in the length of the separated region are seen. The LaRC experiments required
larger forcing amplitudes to affect the flow. Seifert and Pack (1999) report a level of
(cu) > 0.03% to see a significant change in the mean flow. This may be due to the

stronger coherence of the large structures in the laminar case which makes them more
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FIGURE 5.3. Effect of forcing on the downstream distribution of C,, for various forcing
amplitudes, f = 0.565.

receptive to periodic forcing. A lower level of background noise in the simulations
may also be a factor.

Figure 5.3 shows the effect of forcing on C), for a range of forcing amplitudes at
a fixed frequency of f = Fp, which is the natural shedding frequency. As the forcing
amplitude increases, the pressure recovery begins earlier. The higher peak near the
reattachment point can be attributed to the sharper curvature of the streamlines
due to the shorter separation bubble. The location of the pressure peak is at ~
75% Treattach -

Figure 5.4 shows the downstream development of the amplitude of the temporal
Fourier mode associated with the forcing frequency when the flow is forced at the
natural shedding frequency. For small amplitude forcing there is little change from
the unforced case. At larger forcing amplitudes, the region of disturbance growth

begins further upstream. This, in turn, leads to earlier non-linear saturation. The
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FIGURE 5.4. Downstream evolution of the Fourier amplitude of the response to the
forcing frequency, f = 0.565.

saturation peak for all forcing amplitudes is between 80 — 90% Z cattach-

Examining the phase speed (figure 5.5) we find that upstream of the reattachment
location the phase speed is 0.24 — 0.35. Slightly past the reattachment location the
phase speed shows an increase to 0.71. An inspection of the unsteady flow field shows
that the structures initially form in the slow moving stagnant region close to the wall
and then accelerate as they lift away towards the faster outer part of the boundary

layer.

5.2.2 Effect of Frequency

A series of simulations were run over a range of forcing frequencies at several am-
plitudes. In order to eliminate any hysteresis effects, all simulations were initialized

with the long-time converged unforced state. The size of the separated region is re-
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FIGURE 5.5. Downstream evolution of the Fourier phase for the frequency f = 0.565.
Best fit slopes are given for reference.

duced to some extent for all the cases. Since the forced flow has a shorter separation
length, we expect that the most effective forcing frequency will actually be somewhat
higher than the natural shedding frequency. In fact, the optimal forcing frequency
is at f = 1.2F, = 0.678, which corresponds to F'* = 1.6 when scaled by separation
length. It is interesting to note that this agrees with the value observed by Pack and
Seifert (2000), even though the flow in the experiments was turbulent and at a much
higher Reynolds number. The downstream profiles of the pressure coefficient for the
various forcing cases are shown in figure 5.7. For shorter bubbles the pressure peak
at reattachment is higher, as we saw in section 5.2.1.

For the lowest forcing amplitude, (c,) =~ 0.004%, the receptive region is restricted
to frequencies near 1.2F,. At a slightly higher forcing amplitude, (c,) ~ 0.064%, we
see a much broader range of receptive frequencies.

A closer examination of the most effective forcing amplitude, (c,) ~ 0.064%,
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FIGURE 5.6. Effect of forcing frequency on reattachment location for various forcing
amplitudes. The dashed curve is for the suction case (section 5.3). The horizontal
dashed line shows the reattachment location for the unforced case.

reveals that the bubble wants to respond within a fixed frequency range regardless
of the forcing frequency. For frequencies near 1.2F; the bubble shedding frequency
locks in to the forcing frequency. However, for frequencies above a critical value
of approximately f > 1.6F), we see vortex merging and the shedding locks in to the
subharmonic of the forcing frequency. At 4Fj there are two mergings and the shedding
locks in to the second subharmonic. At still higher frequencies no vortex mergings
are visible and the effectiveness of the forcing is reduced. The vortex merging can
be seen by examining the downstream evolution of the frequency response for three
representative forcing frequencies as shown in figure 5.8.

The anomalously long reattachment length for the case f = 1.6F; (figure 5.6)
can be understood by examining a time trace of the wall vorticity at the station

x/c = 1.35 (figure 5.9). At this forcing frequency the flow is unable to lock in to
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FIGURE 5.7. Effect of forcing on the downstream distribution of for a range of
frequencies, (c,) = 0.004%.

a single frequency. Instead it responds part of the time at the forcing frequency,
shedding at 1.6Fj, and part of the time responds at the subharmonic by a process of
vortex merging. As a result the forcing is less effective than it would be if the flow

could lock into either of these frequencies.

5.3 Suction

Greenblatt and Wygnanski (2000) present results showing that once the flow is at-
tached, additional bubble reduction can be obtained by gradually increasing the forc-
ing frequency. This indicates that the problem of keeping a flow optimally attached
requires higher frequencies than necessary for attaching a separated flow. This can
be explained by the different stability characteristics of the mean attached and mean

separated flows. In order to examine this, steady suction was applied to attach the
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FIGURE 5.8. Downstream evolution of the frequency response for a forcing frequency

of Fyy (top), 2F, (center), and 4F; (bottom), at (c,) ~ 0.064%.
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FIGURE 5.9. Time evolution of the wall vorticity at z/c = 1.35 for the forcing
frequency 1.6F; at (c,) ~ 0.064%.

flow, and then the response of the attached flow to forcing was investigated.

The unforced flow was attached using steady suction with ¢, = 0.45%. The suction
was applied across a slot that extends over the sharp corner (x/c¢ = 0.59 —0.69). The
resulting mean flow is almost completely attached, with the exception of a shallow
separation bubble extending from z/c = 0.7 — 0.9. This bubble also exhibits periodic
shedding with a frequency of f = 1.25. The shedding is much more strongly periodic
than that of the unforced flow without suction and is at a much lower amplitude.

Taking the flow which had been attached by steady suction as an initial condition,
forcing was applied to the flow over a range of frequencies. For each frequency,
the calculation was started with the steady suction turned on and the flow field
converged. The forcing was then applied for several periods to allow the transient
associated with the start up of the forcing to convect out of the computational domain.
After a periodic state was reached, the suction was gradually reduced to zero. The
reattachment location as a function of forcing frequency is shown by the dashed line
in figure 5.6. Near the natural frequency of the unforced flow with zero suction
the suction has little effect. However, near 2F; the suction case with an amplitude of
(cu) =~ 0.004% gives a bubble size close to that of the case with (c,) ~ 0.064% applied
to the zero suction unattached profile. This suggests a bi-stable state in which the

lower amplitude is enough to maintain the shorter bubble, but to shorten the large
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unforced bubble requires a larger forcing amplitude. The fact that the suction profile
is more receptive to 2Fy is consistent with the fact that 2Fj is close to the natural

shedding frequency for the flow when suction is applied.

5.4 Summary

Simulations have been conducted for active control of separation behind a “hump”
geometry. The laminar calculations showed a much longer mean separation length
than the turbulent experiments. However, when frequencies are rescaled based on
the mean separation length, optimal forcing frequencies similar to those in the ex-
periments were found. The amplitudes necessary for the forcing to be effective were
significantly lower for our laminar simulations. In addition, at moderate forcing am-
plitudes, the flow was found to be receptive to higher frequency forcing as well. In

these cases vortex merging was observed.
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Chapter 6

REsSULTS II: NASA WORKSHOP SIMULATIONS

The workshop experiments are described in Greenblatt et al. (2004, 2005), with ad-
ditional details given on the NASA website. The model was designed to replicate the
profile of the Seifert & Pack experiments, with the size scaled up by a factor of two.
Figure 1.2 shows the profiles for the two models based on QA data; they are very close
although not quite identical. The primary difference is in the slot region (figure 1.2,
inset); the slot for the workshop experiments is approximately half as wide.

The experiments were performed in the Langley 20”7 x 28” shear flow tunnel. The
model was mounted on a splitter plate with the leading edge of the plate 1935mm
upstream of the leading edge of the model. (In the Seifert and Pack experiments the
model was mounted flush with the wind tunnel wall.) In order to reduce the effect
of circulation around the splitter plate, a 95mm trailing edge flap was placed at the
trailing edge of the plate and deflected 24°. The distance between the plate and the
upper wall of the wind tunnel was 382mm. End-plates were placed on either side of
the model, 584mm apart. The plates were intended to ensure two dimensionality of
the flow, however it was found that the blockage due to the end-plates presented a
difficulty for simulations which assumed a purely two-dimensional flow.

Suction was produced by a vacuum pump attached to the plenum through a man-
ifold and flexible tubing. For oscillatory forcing a rigid piston assembly was mounted
at the base of the plenum and was activated by six voice-coils. The forcing was cali-
brated for both a quiescent tunnel as well as with the tunnel on. Changing from the
suction manifold to the unsteady actuator reduced the boundary layer thickness by
about 20%, however this had a negligible change on the baseline experimental results,

and the same inflow conditions were used for all the simulations.
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Although several investigators have suggested that it is necessary to model the
flow in the plenum in order to obtain accurate results for this geometry, the workshop
results do not seem to support this contention (Rumsey et al., 2004). Clearly it is
of significant practical benefit if the flow can be predicted with reasonable accuracy
without computing the flow in the plenum. Consequently it was decided that this
approach should be used here.

The available experimental data includes measurements of the flow near the slot
exit. The significant unknowns are the profile of the flow across the slot and the
angle at which the flow exits the slot. The current investigations proceeded on the
assumption that the local details of the flow near the slot could be rather coarsely
resolved, and, in fact a minimal number of grid points were used in this region.
Consistent with this the details of the profile across the slot was deemed relatively
unimportant and it was modeled with a top hat profile. The flow angle is potentially
a more sensitive parameter since it determines the direction of the streamlines near
the slot.

The experiments for the NASA Langley CFD Validation Workshop consisted of
three cases, a baseline unforced case, flow subjected to steady suction, and flow with
periodic zero-mass flux oscillatory forcing. In the current work the FSM was validated
against all three cases, but detailed investigations were conducted only for the oscilla-
tory case. Two primary considerations dictated this choice. First, since the unforced
bubble is known to be extremely sensitive to low amplitude forcing, discrepancies in
the spectra of the background noise for the experiments and the computations might
strongly affect the results for the unforced case. Second, the imposed frequency in
the oscillatory case makes additional flow diagnostic tools available; in particular it
becomes possible to examine the behavior of the large structures by examining phase
averaged data. Additionally, in the steady suction case large scale structures seem to
play a much reduced role, which makes it a poor choice for evaluating the FSM.

For the FSM calculations a steady RANS turbulent profile is imposed at the in-
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FIGURE 6.1. Boundary layer profile at z/c = —2.14 as predicted by the turbulent
boundary layer solver compared to uncorrected Pitot tube measurements from the
experiment.

flow boundary. In order to allow upstream pressure disturbances to exit the domain,
density, velocity, k, and ¢ are set to fixed values, and the pressure is extrapolated
from the interior. In the computational domain the approach boundary layer remains
steady up to the separation location, thus the FSM behaves as a RANS model in this
region. Only after separation are unsteady structures allowed to develop in the sep-
arating shear layer. The inflow profile is generated by using a stand alone turbulent
boundary layer solver for the standard £ — ¢ model as described in appendix B.2,
with the leading edge placed the same distance upstream of the inflow boundary as
in the experiments. Figure 6.1 shows a comparison between the experimentally mea-
sured and computationally predicted boundary layers at a representative upstream
station. The experimental data is uncorrected Pitot tube measurements; the difficulty

measuring near the wall explains the two anomalous points in the figure.
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6.1 Numerical Convergence

Numerical accuracy of a time-dependent solution produced with an iterative code is
controlled by three parameters: the grid spacing, the timestep, and the number of
sub-iterations per timestep. Allowing for anisotropic grid refinement increases the
number of parameters to five (for structured grids) and evaluating the effect of local
grid refinement will further complicate the problem. Although CFL3D is a mature
code, and there is significant literature documenting its convergence properties, much
of this is for time-steady problems, and none is for the type of hybrid turbulence
model that is used here. Since the primary purpose of the current investigations
is to evaluate the turbulence model, rather than the code, exhaustive convergence
studies were not performed. However, the effect of grid, time step, and number of
subiterations was examined for certain representative cases of the oscillatory flow,

which should be sufficient to provide confidence in the reported results.

6.1.1 Subiterations

In principle, the nominal accuracy of the numerical scheme cannot be recovered un-
less the implicit solver is allowed to converge to machine precision. In practice the
computational cost of completely converging the solver is not justified in terms of the
observed improvement in numerical accuracy. Instead the near universal practice is to
perform a fixed number of subiterations designed to reduce the residual sufficiently to
recover an acceptable level of accuracy. The ideal number of subiterations would min-
imize overall error of the code for a given amount of computational effort. Generally
an efficient compromise value is chosen by monitoring the value of the residual.
When comparing computations performed on different grids, two competing fac-
tors affect the rate of convergence. On one hand, convergence tends to be faster on
coarser grids. On the other, finer grids may be capable of supporting more multi-

grid levels, thereby accelerating convergence. For the current study, three grids were
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used, with the two coarser grids created by taking every other point of the next finest
grid. The finest grid was therefore capable of supporting two multigrid sub-levels,
the medium grid one, and the coarse grid did not support multigrid.

The convergence history for various cases is shown in figure 6.2. For the fine
grid (top figure) 10 subiterations per time step is sufficient to reduce the Ly-norm
of the density residual by two orders of magnitude. For the medium grid (middle
figure), which only uses one multigrid level, 20 subiterations are required to achieve
the same residual. In the coarse grid case (bottom figure), the residual at the first
subiteration is approximately an order of magnitude higher than in the two finer grid
cases. Although 20 subiterations are sufficient to reduce the residual by two orders of
magnitude, it requires 40 subiterations to attain the same residual as achieved using
10 subiterations on the fine grid.

Overall, due to the increased use of multigrid, the finer grids actually converge
faster (per subiteration). Nevertheless it should be noted that multigridding signif-
icantly increases the computational effort per subiteration. Therefore these results
should be viewed with the understanding that the time per subiteration increases
much faster than the number of grid points.

For the remainder of this work 10 subiterations were used for the fine and medium
grid simulations and 20 subiterations for the coarse grid, except where otherwise

noted.

6.1.2 Time Step Refinement

In order to assess numerical convergence it is convenient to pick a single figure of
merit to quantify the result of each case. The value used here is the coefficient of

pressure drag,

Cp, =

p 1
§pooU§oC2
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FIGURE 6.3. Time convergence

is the pressure drag, and the integral is over the surface of the “hump.”

Simulations were performed on the medium grid with three different time steps,
At = 0.0548, 0.02974, and 0.01487 (corresponding to 100, 200, and 400 timesteps per
period). The results are shown in figure 6.3. No clear trend is observed. However
the results for all time steps are consistent to within the averaging error as indicated
by the error bars in the plot (see section 4.2). This suggests that the error due to
the time advancement scheme is small relative to the other errors, and the scatter
visible in the figure is due to random fluctuations due to the other error terms.
Nevertheless, there is still the possibility that the simulation is not fully time step
converged. Unfortunately numerical costs preclude further time step refinement. A
value of 200 timesteps per iteration was adopted for all remaining calculations in this

work.

6.1.3 Grid Refinement

As discussed in section 4.1.1, it is vitally important when conducting a grid resolution
study that the filter width, 6 = A, be kept fixed as the grid is refined. In the current

case § = 1is used on the coarsest grid, with § = 2 and 4 on the medium and fine grids
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FIGURE 6.4. Grid refinement

respectively. The results are shown in figure 6.4. The symbols indicate the number

of subiterations used in each calculation. It is clear that the number of subiterations

strongly influences the convergence properties of the scheme. The dashed lines are

curve fits to estimate the convergence rate. That the observed convergence appears

to be consistently better than second order is presumably explained by the improved

convergence on the finer grids. The results further support the idea that it is more

computationally efficient to improve the accuracy by refining the grid rather than by

increasing the number of subiterations.
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6.2 Comparison to Experiments

Simulations were run for each of the three Workshop cases. Each was performed on
the fine grid, and using a value of 3 = 4 corresponding to approximately four grid

points per filter width.

6.2.1 Baseline

Figure 6.5 shows the downstream variation of the time averaged pressure coefficient
and skin-friction coefficient for the unforced flow. The qualitative agreement is good,
but the length of the separation is over-predicted by about 50%. This is most likely
due to insufficient turbulent mixing in the early part of the bubble where the model
transitions from steady to unsteady behavior. This will be further discussed in sec-
tion 6.3. Another possible factor may be higher levels of background disturbances in
the experiments than in the simulations which may be forcing the bubble; certainly
for laminar separation we know that the bubble length is quite sensitive to very low
amplitude forcing (Israel and Fasel, 2001).

The experimental configuration included end-plates on either side of the “hump.”
Although this was intended to aid the match with CFD, by improving the two-
dimensionality of the flow, it also introduced additional blockage in the flow over the
hump. The difference in the suction peak observed in the experiments and in the
simulations is apparently an effect of this blockage. Simulations which model the
entire span including the end-plates matched the suction peak correctly (Krishnan
et al., 2004). In addition, the experiment was repeated for the unforced case with
the end-plates removed. The result without the end-plates is much closer to the CFD
prediction (fig. 6.5(a)). Nevertheless, there is still a small mismatch in the suction
peak, perhaps due to the blockage from the boundary layers on the side walls of the
tunnel itself.

Skin-friction measurements in the experiment were taken using oil film interferom-
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FIGURE 6.5. Time averaged pressure coefficient (a) and skin-friction coefficient (b)
versus downstream distance for the unforced flow. The dashed lines indicate the

locations of the spectra in figure 6.7.

etry (Naughton et al., 2004), as shown in figure 6.5(b). The shape of the skin-friction

profile after separation is very similar for the experiments and simulations, however
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FIGURE 6.6. Profiles of u-velocity at seven downstream stations for the unforced flow
(x/c=0.66, 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3). (—) simulations; (e) experiments.

the simulation data is shifted downstream by about 20% chord due to the longer reat-
tachment length. In examining the experimental data for the skin friction it should
be noted that it is not possible to take data very near the separation location. Nev-
ertheless, from the shallow slope and negative curvature seen at the first available
measurement stations past separation it is possible to infer that there may be a small
region of positive skin-friction just past the separation point. This would indicate
that a small region of counterclockwise rotating fluid resides inside the clockwise ro-
tating separation bubble, as is seen, albeit with a much greater downstream extent,
in the simulations.

The velocity profiles (figure 6.6) also reflect the late reattachment. The very good
agreement at separation (x/c = 0.66) shows that the EASM model is successful at
modeling the approaching boundary layer. Within the bubble the agreement is not as
good, with the exception of the profile at = /c = 1.0, perhaps connected with the fact
that near this location both the C, and c; values for the experiments and simulations
agree. As expected the near wall profiles downstream of reattachment are not as full
as those measured in the experiments due to the delayed reattachment.

Pressure fluctuation spectra at the wall for three selected downstream locations
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of the spectra are indicated in figure 6.5(a) by the dashed lines.
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The locations

are shown in figure 6.7. The experimental C, spectra were computed from the dy-

namic pressure time-history data at the same locations (Greenblatt et al., 2004). The

location of the spectra are indicated by the dashed lines in figure 6.5(a). The envelope

of the experimental and computed spectra are similar, however the spectrum for the

FSM has a sharp peak at 50 Hz (corresponding to a reduced frequency of F'™ ~ 0.3).
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Visualization of the instantaneous flow field data shows that this frequency is as-
sociated with the natural shedding of large structures observed in the simulations;
however it is also present upstream of the “hump.” This upstream traveling acoustic
disturbance may indicate a greater degree of coherence for the large scale structures
observed in the FSM than for those in the experiment, but the possibility that it is a
numerical artifact of feedback between the bubble and the inflow boundary can not
be excluded.

Overall, the turbulence model simulations predict approximately the correct in-
tensity for the turbulent fluctuations. However, near the separation location the
fluctuation intensity is under-predicted. This may be explained by the nature of
the model which transitions from RANS behavior upstream of separation to LES in
the separated flow. In the region just downstream of separation the model is still
transitioning between RANS and LES, and the turbulent fluctuations have not had
sufficient time to grow. After separation, the intensity of the background fluctua-
tions rapidly increases and inside the bubble it matches the experimental values quite
well. Downstream of the experimental reattachment point the simulated turbulence
level is over-predicted; this is consistent with the later reattachment observed in the

simulation.

6.2.2 Steady Suction

Preliminary calculations indicated that the effect of steady suction is highly dependent
on the angle at which the flow enters the slot. For this reason modeling the slot with
a fixed transpiration velocity is not an optimal approach as it requires a fortuitous
choice of suction angle. In keeping with the initial hypothesis that the details of the
flow inside the slot are not important to the outer flow, a pressure boundary condition
was employed. In this approach the pressure along the slot is set to a fixed value, and

both the normal and tangential velocity are allowed to develop naturally.
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FIGURE 6.8. Mass flow rate as a function of back pressure in the slot

Since the rate of suction affects the global pressure distribution there is no simple
way to predict the pressure required to maintain a given flow rate. Instead, a series
of short two-dimensional RANS simulations is used to estimate the response of the
flow. As CFL3D is a finite-volume code it is reasonable to calibrate flow forcing in
terms of the integral quantities (mass and momentum flux) rather than differential
quantities (velocities). The normalized mass flow rate per unit chord as a function of

back pressure in the slot is shown in figure 6.8. The flow rate for the experiment is

mh 0.1518 kg/s »
- =1.509 x 1072
peVew  (1.185k¢/m?)(34.6m/5)(0.42m)(0.584 m) 8

Extrapolating from the plot, this requires a back pressure of

L ~0.99.
Poo
For this case the velocity profiles (figure 6.10) also reflect a late reattachment

relative to the experimental measurements. The spectrum (figure 6.11) near the
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FIGURE 6.9. Time averaged pressure coefficient (a) and skin-friction coefficient (b)
versus downstream distance for the flow with steady suction. The dashed lines indi-
cate the locations of the spectra in figure 6.11.

separation point slightly under-predicts the intensity of the background turbulence,
as in the unforced case. There is not a strong peak in the spectrum, as there was in

the unforced case. This is expected since the bubble is much weaker as is the intensity
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FIGURE 6.10. Profiles of u-velocity at seven downstream stations for the flow with
steady suction (z/c—0.66, 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3). (—) simulations; (e) exper-
iments.

of the shedding.

6.2.3 Oscillatory Blowing

Oscillatory forcing is imposed by varying the velocity over the slot sinusoidally in
time. In the experiment the direction of the flow through the slot will also vary
periodically based on the dynamics of the flow near the slot and inside the nozzle.
However, we assume that as long as the unsteady forcing excites the unstable shear
layer modes the results should be insensitive to the detailed behavior of the flow near
the slot. We have found that if the forcing is introduced normal to the boundary
layer, then at higher amplitudes the unsteady momentum penetrates the boundary
layer completely and is not effective. For this reason, the forcing for this case is
introduced at an angle approximately corresponding to the nozzle exit angle of the
experimental forcing slot.

The agreement is generally quite good (figure 6.12(a)). The discrepancy in the
height of the suction peak is likely due to blockage effects, as in the unforced case,
but no experimental data is available for the forced case without the end-plates. The

over-prediction of the reattachment length is not due to excessive damping of the
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FIGURE 6.11. Wall pressure fluctuation spectra for the flow with steady suction. The
locations of the spectra are indicated in figure 6.9(a) by the dashed lines.

structures by the turbulence model, since the results are insensitive to the degree
of model contribution (as will be discussed in section 6.3). One possibility is that
transition from the RANS region to the LES region occurs slightly too late. Another
possibility is that as the contribution function decreases there is a loss of modeled

turbulent kinetic energy without an explicit mechanism to transfer that energy back
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FIGURE 6.12. Time averaged pressure coefficient (a) and skin-friction coefficient (b)
versus downstream distance for the flow with oscillatory forcing. The dashed lines
indicate the locations of the spectra in figure 6.15.

into unsteady resolved small-scale motions. This means that the initial disturbance
level experienced by the shear layer is slightly too low. This may cause a noticeable
lag in the amplitude attained by the disturbance waves in the shear layer.

The wu-velocity profiles show a somewhat weaker backflow than observed in the
experiments. As in the unforced case, the development of the near wall profile is

delayed corresponding to the later reattachment. The action of the forcing in the
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FIGURE 6.13. Profiles of u-velocity at seven downstream stations for the flow with
oscillatory forcing (z/c=0.66, 0.8, 0.9, 1.0, 1.1, 1.2, and 1.3). (—) simulations; (e)
experiments.

vicinity of the slot can be seen in figure 6.14. At ¢ = 0, which is between the suction
and the blowing phase, the shear layer is close to the wall and the separation point
is somewhat far downstream. During the blowing cycle, which peaks at ¢ = 90 the
shear layer is deflected away from the wall and the separation point moves up close
to the disturbance slot. As the blowing phase concludes, the flow remains separated
near the slot, until the suction phase, which peaks at ¢ = 270, during which the
flow begins to turn close to the surface again, and the separation point is pushed far
downstream.

The spectra for the wall pressure fluctuations show good agreement for the co-
herent signal represented by the sharp peaks in figure 6.15. The experimental peaks
are hard to see, since they lie right on the numerical data. For the experimental data
the even harmonics of the fundamental forcing frequency exhibit a lower envelope
than the odd modes, a feature which is not reproduced by the calculations. Other
than that, the simulation reproduces the response to the forcing quite well. The
background turbulence level is somewhat under-predicted at the first location, again,
probably because we are still too close to the RANS region. Also, at this first location
the 138.5 Hz peak in the experimental spectrum is slightly broader than seen in the

simulation, although by x/c = 0.8 the spectrum from the simulation has broadened
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(b) =90 (d) ¢ =270

FIGURE 6.14. Phase averaged vorticity and velocity vectors near the slot

such that the shape of that peak is nearly identical to the experimental data.
Somewhat farther downstream, in the recirculation zone (the middle plot), the
higher modes have begun to decay, as in the experiment, while the background tur-
bulence level has risen to match the experimental values. A slight remnant of the
higher harmonics is present in the simulation results, although no longer visible in
the experiment. Far downstream the spectrum is very similar to the unforced case,
except that the background turbulence level of the experiment is not overpredicted

quite as much.
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FIGURE 6.15. Wall pressure fluctuation spectra for the flow with oscillatory forcing.
The locations of the spectra are indicated in figure 6.9(a) by the dashed lines.

6.3 Model Performance

Overall the results for the three cases (baseline, steady suction, and oscillatory) are
qualitatively good, but the length of the separated region is consistently overpredicted.

However, the model does predict a significant reduction in the size of the separation
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FIGURE 6.16. Pressure drag as a function of filter width for various values of 3. For
reference the values at the § = 0 and § — oo limits are shown schematically on either
side.

bubble due to forcing. In order to further investigate the performance of the model,

and in particular, to assess the effectiveness of the hybrid methodology, additional

simulations were run for the oscillatory case using varying grids and filter widths.

6.3.1 Pressure Drag

Figure 6.16 shows the variation in the pressure drag with the model filter width
0. Since ¢ is a spatially varying quantity, the value is normalized such that 6 = 1
corresponds to the fine grid with § = 1. That is, taking § = A, and setting Agpe = 1.

The values for the limiting cases of 3 = 0 and  — oo are shown on the left and right
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FIGURE 6.17. Time averaged pressure coefficient versus downstream distance for
several model filter widths.

side of the plot, respectively. Several points are important to note about this figure.
First, while the coarse grid is clearly not well converged, the results on the medium
grid appear to be relatively good. Second, it is clear that the resolution requirements
do not scale with the filter width; the coarse grid results remain poor even for a very
coarse filter. This suggests that the grid requirements are primarily determined by

the need to properly resolve either the mean flow or the largest turbulent structures.

6.3.2 Surface Pressure Distribution

The experimentally measured pressure drag coefficient of Cp, exp ~ 0.036 is under-
predicted by all the simulations. Observing the trend in figure 6.16 one might be
tempted to conclude that the best results are obtained for 6 — 0. However, examin-
ing the C,, profiles (figure 6.17) strongly suggests that this is not the case. Instead it
would appear that the best results (at least as far matching the shape of the pressure
plateau in the bubble) is for the case of § = 4. The results in figure 6.16 can then

be understood as the results of two distinct modeling errors. The first is the overall
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lengthening of the bubble due to the slow growth of the fine scale structures in the
RANS/LES transition region. This discrepancy is relatively insensitive to the value
of §. The second error accounts for the trend in figure 6.16. In this case the discriti-
zation error and the model error may be of opposite sign with the optimal behavior

in the range of § ~ 4.

6.3.3 Reynolds Stresses

To better understand the dynamics of the FSM, and in particular, the reason for the
delayed reattachment, it is helpful to examine the various Reynolds stress terms for the
different simulations. The Reynolds stress components are shown in figures 6.18-6.21,
with the total turbulent stress, which includes of both a resolved scale component
and a modeled component, indicated by the solid curves (see equation 4.23). The
modeled portion of the stress is indicated by the dashed curves.

Qualitatively, the agreement is reasonably good overall. Several general features
should be noted. Consistent with the observations in section 6.2, the delayed reat-
tachment seems to be associated with the transition from RANS to LES. Near the
separation location (z/c = 0.66) the flow is still essentially steady except in a thin
layer immediately adjacent to the slot. At this point the FSM is still functioning as
a RANS and therefore there is no significant dependence of the results on the filter
width. At x/c = 0.8 the model is still transitioning from RANS to LES behavior,
and the fluctuations are underpredicted. As the filter width is increased, so is the
model contribution. This suppresses the growth of the resolved structures. As a re-
sult, in spite of the larger model contribution, the total Reynolds stress is smallest for
the URANS and increases with decreasing filter width. Farther downstream, in the
bubble, the overall level is closer to the experimentally observed values. Additionally,
the strength of the fluctuations cease to be correlated with the filter width, which
is an indication that the RANS to LES transition process has saturated. Finally, at
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FIGURE 6.18. R,, profiles for several downstream locations. Experimental data (e)
and FSM with =0 (O), 2 (¢), 4 (2), 8 (), 16 (V), and oo (>). Dashed lines indicate
the model stress, and solid lines the total (modeled plus resolved) stress.

x/c = 1.2, which is near the reattachment point for the simulations, the strength of
the fluctuations is overpredicted. This is consistent with the fact that at this location
the experimental flow has already reattached and the highest levels of fluctuations
are generally seen just upstream of reattachment.

The results for 6 = 4 seem to be overall the best match with the experiments.
Interestingly while the RR,, and R,, stress components are generally underpredicted,
the R,, component is overpredicted, at least for § < 4. (No experimental data was

available for R,..)
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FIGURE 6.19. R,, profiles for several downstream locations. Experimental data (e)
and FSM with =0 (O), 2 (¢), 4 (2), 8 (1), 16 (V), and oo (>). Dashed lines indicate
the model stress, and solid lines the total (modeled plus resolved) stress.

6.3.4 Phase Averaged Structures

Another way to examine the dynamics of the flow is by considering the phase averaged
structures (section 4.3.2). Figure 6.22 shows the color contours of the phase averaged
vorticity at six different phases. (The phase is defined such that ¢ = 90 corresponds
to the peak of the blowing phase, consistent with the nomenclature of Greenblatt
et al., 2004). Two features to notice are the rapid decay of the structures (although
not quite as rapidly as is observed in the experimental data) and that they are quickly
swept towards where they dissipate at a location which corresponds roughly to the

mean reattachment point.
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FIGURE 6.20. R,, profiles for several downstream locations. FSM with =0 (O), 2
(0),4 (A), 8 (1), 16 (V), and oo (>). Dashed lines indicate the model stress, and solid
lines the total (modeled plus resolved) stress.

Another more quantitative comparison is shown in figure 6.23. The wall phase
averaged pressure at the wall is shown for four different phases. The circles are the
experimental data, and the different curves correspond to different filter widths. The
simulations capture the evolution of pressure disturbances quite well, especially near
the slot; farther downstream the structures in the simulation start to lag the exper-
imental results somewhat. What is surprising is that the strength of the structures
(at least as far as the pressure field is concerned) is almost completely independent
of the filter width, in spite of the fact that the kinetic energy does vary significantly,

particularly for the URANS case (as can be seen from the diagonal Reynolds stresses,
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FIGURE 6.21. R,, profiles for several downstream locations. Experimental data (e)
and FSM with 5=0 (O), 2 (¢), 4 (A), 8 (<), 16 (V), and oo (>). Dashed lines indicate
the model stress, and solid lines the total (modeled plus resolved) stress.

figure 6.18-6.20).

To better comprehend the action of the FSM, it is helpful to further decompose
the resolved scale motions into a coherent (phase averaged) and an incoherent part.
Figure 6.24 shows the Reynolds stress decomposed into the coherent, incoherent, and
modeled parts. The columns are different = stations, while the rows are different
filter widths. As expected, at the first station, x/c = 0.8, the incoherent motions
are quite small and the stress is dominated by the coherent motions when the filter
width is small, with the model becoming significant for the coarser filter cases. This

is consistent with the understanding that at this station the RANS to LES transition
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FIGURE 6.22. Phase averaged vorticity

has not finished. By x/c = 0.9, however, the incoherent part plays a significant role,
and by z/c = 1.1, the incoherent part dominates the flow.

It is also interesting to note that the contribution of the coherent part is generally
positive, although the total Reynolds stress remains negative. This positive Reynolds
stress is consistent with the coherent Reynolds stress predicted for the mixing layer
by Reau and Tumin (2002b). The experimental measurements for the phase averaged
Reynolds stress exhibited strong positive regions in the structures, although for the
coherent Reynolds stress itself these regions averaged out and no significant positive
Reynolds stress was observed.

Based on these observations a much clearer picture of the behavior of the FSM
emerges. The principal operation of the FSM in the LES region is to partitioning the

energy of the incoherent motions between the model and the incoherent resolved stress
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FIGURE 6.23. Phase averaged pressure.
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terms, with the coherent motions remaining largely unaffected. This is consistent with
the triple decomposition approach of Reau and Tumin (2002b); in which the coherent
structure interacts with itself in a deterministic way but interacts with the incoherent
turbulence in a statistical way. In this model, the energy of the coherent part cannot
be partially transfered to the model terms, since what would remain in the resolved
field would be “part” of a structure: such a decomposition could not be expected to
properly capture the essential physics of the dominant coherent structure.

As the FSM filter width is made larger, at some point /L ~ 1 and the model
will very quickly begin to behave as a URANS. For the current simulations, 6 = 8
remains an LES, but by 0 = 16 the results are almost identical to the URANS case.
With this change, the dynamics of the modeling are completely switched. Instead
of being dominated by the incoherent resolved motions, the model terms take over.
Nevertheless, over the entire range of filter widths, the strength of the pressure field
associated with the large coherent structures, at least as recorded by the footprint on
the wall, is only very weakly effected, making the coherent wall pressure trace a poor
diagnostic.

Finally, it is important to note that the apparently small size of model contribution
for most F'SM simulations is somewhat misleading in that even a very small change

in model contribution can yield a large change in the other components.

6.3.5 Spectra

The effect of 5 can also be seen in the spectra (figure 6.25). The broad peak at 50Hz,
which reflects the natural shedding frequency, as well as the sharp peak at the forcing
frequency (138.5Hz) and its harmonics are largely unaffected by the magnitude of
the model contribution. As the model contribution is increased the broader base-
line spectra, which represents the background turbulence, is suppressed especially at

higher frequencies. The higher harmonics of the forcing frequency, however, are not
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FIGURE 6.25. Wall pressure fluctuation spectra for the flow with oscillatory forcing
at x/c = 0.8. The arrow indicates the trend for increasing f.

noticeably affected. These discrete frequencies represent the periodic part of the sig-
nal with period identical to the forcing period. This suggests that the large structures

triggered by the forcing are not significantly distorted by the model.

6.3.6 Instantaneous

Additional physical insight on the effect of 5 can be obtained by observing the flow
structures at a particular instant in time (figure 6.26). Here the structures identified
by the Ay vortex identification criterion (Jeong and Hussain, 1995) are plotted for
different values of 3. The same level of )\, is used to generate all the plots, and
they are taken at the identical physical time of the simulation. For all values of 3 a
strong two-dimensional “roller” in the shear layer can be seen just downstream of the

separation location. However, the degree of three-dimensional modulation of these
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FIGURE 6.26. Isosurfaces of Ay vortex identification criteria for various values of the
contribution constant [3.

rollers varies with 3. Farther downstream a breakdown of the rollers can be observed;

the range of scales resolved clearly increases as the model contribution is reduced.
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Chapter 7

CONCLUSIONS

Attempts to combine RANS and LES techniques have largely foundered because they
treat RANS and LES as completely separate approaches which must be patched to-
gether in some manner. The current approach uses the formal similarity between
the LES and RANS equations (also called the averaging invariance) to unify the two
approaches. This provides a general framework for developing new classes of turbu-
lence models, called bridging models. For the current work, the FSM is presented in
the context of this development. In this light the FSM can be understood not as a
traditional hybrid model, but as the first true bridging model.

Although the FSM was introduced essentially as a hybrid model, that is, as a way
to bridge the divide between RANS and LES, the current results show that one of the
primary strengths of the FSM actually lies in its excellent performance as a VLES.
It appears that by integrating a state of the art RANS model into the method in the
LES regime the model remains robust even for very coarse filters where conventional
LES techniques typically perform quite poorly.

Modifying slightly the traditional definition of VLES to a model in which only the
largest coherent structures are resolved, it becomes clear that there is little difference
between a VLES and a bridging approach. Depending on how coherent structures
are defined, for example, a boundary layer may have no large coherent structures.
Certainly it has no dominant structures in the phase averaged sense. So with this
definition a VLES of boundary layer would reduce to a RANS.

So how does the FSM perform as a bridging model? Qualitatively the FSM is quite
promising, but it still suffers from some of the difficulties common to all hybrid models.

The first and most significant of these is the artificial transition which occurs as the
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model switches from RANS to LES. In such regions the incoming flow is devoid of the
small scale incoherent motions that the model requires to replace the subfilter stresses.
The only mechanism for generating such structures are hydrodynamic instabilities
which follow a route which looks strikingly like transition to turbulence, but which
is occurring in a region where the real flow is already fully turbulent. It is not clear
to what extent, if any, this artificial transition corresponds to any actual physical
process present in the flow.

It is also unclear how the growth of the large coherent waves fares in this tran-
sitional region. In the RANS regime these waves are probably overdamped, since
traditional RANS models are not designed to include unsteady turbulent structures.
It remains to be seen whether further extending the bridging model concept can help
to eliminate this problem.

What the FSM does very well is in balancing the action of the model and the
incoherent resolved motions, so that it provides relatively robust results over a wide
range of filter widths. Although the total Reynolds stress in the LES region is not
completely independent of filter width, it is only weakly dependent. And even that
weak dependence is likely due to the ad-hoc nature of the contribution function.
Although the contribution function introduced in the current work has the correct
qualitative behavior, the actual scaling is based on a k=% spectrum, which is probably
unrealistic for this flow. Also, even the fine grid is still coarse enough that only a
very small range of filter widths can be properly resolved numerically, as discussed in
section 4.1.2.

From the work of Bachman (2001) it was already clear that FSM is least success-
ful when the filter width is just slightly smaller than integral length scale. In this
regime the model contribution is not large enough to replace the large structures, but
is large enough to damp out any large scale structures in the resolved fields. The
current work sheds further light on these dynamics. It is clear that the FSM should

not be understood in terms of a traditional decomposition into resolved and subfilter
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parts, with the contribution function determining the partitioning between them. In-
stead, a better conceptual model is a triple decomposition, with the resolved motions
being further decomposed into coherent motions, which must be resolved, and inco-
herent motions, whose action is mainly statistical. In this model, the contribution
function serves mainly to partition the energy between the model and the incoherent
resolved part, with the coherent resolved part remaining, ideally, unaffected. This
picture, which in some ways is closer to VLES, points to the potential for improving
the methodology to perform well even near the RANS limit, by further refining the
contribution function and adjustments to the underlying RANS model.

RANS modeling has been around for about eighty years, and LES for about half
that time. In comparison, the concept of a bridging model is still in its infancy. In fact,
such ideas as hybrid modeling, VLES, and URANS demonstrate that the turbulence
modeling community has still not reached a consensus on the best direction to go
forward. What is clear is that we need some form of bridging model. Whether the
FSM itself will be that model, or whether other approaches will be developed in the
future, the FSM continues to demonstrate the power of the synergy of bridging the
RANS/LES divide.



147

Appendix A

THE GENERALIZED MOMENT EQUATIONS

A.1 Properties of the Generalized Moments

The generalized second and third order moments are defined as (Germano, 1992):

T(f,9) = fo—Ff7 (A.1)
T(f.g.h) = fgh—fr(g,h) —gr (f,h) —h7(fg)— fgh (A.2)

By inspection the moments are invariant under permutation of the arguments. Lin-

earity is straight forward to demonstrate:

T(fi+afs,g) = (fitafe)g—(fi+taf)g
= fg—fig+a(fg—f27)

= 7(f1,9)+ar(f2,9), (A.3)

and similarly for the third order moments. Linearity also implies the product rule for

differentiation,

or (f, 0 — —_
éj; 5) _ @fg—_fg}

- T(%,Q)—FT(,%), (A4)
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and
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O O (75— Fr g.0) 57 (1.) ~ Fr () ~ T T
0 9] oh
= a—ighﬂLf&—thrfg&—x
of - [0 — oh
g _ [(Of _ oh
—%T(f,h)—g7'<%, )_gT< ,8_I>
Oh — [(Of — dg
—%T(f,g)—hT (%79) —ht <f7%)
Of ~ 09— - _0h
g, = fa h— a4
0 0 oh
= T<a—£,g,h)+7<ﬁ—i>h)+7'<f,97%)- (A.5)
For the Laplacian of a moment we have
o |0
VT (f9) = - [ Téifg)}
0 af dg
= 7(V3f,g) +2r (ggﬂ,gﬁ) +7(f, V). (A.6)

It can be useful expression to express the triple correlation in terms of double corre-

lations by noting that

"(fguh) = Tah—TgH
= Johi—Toh+Tgh—Tgh
= Tof— 70,90~ T

Substituting into the definition of the triple moment we get

T(f>g>h) = m_77(97h)_§7—(f7h>_ET(fvg)_?gﬁ
= T(fg,h)-?T(g,h)—gT(f,h),
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or

7(fg,h) =7(f,9.h) + fr(g,h) —g7(f. D). (A7)

A.2 Generalized Moment Equations
A.2.1 Generalized Subfilter Stress Equations
Denoting the Navier-Stokes operator by
Nu] =0 (A.8)
the evolution equations for the subfilter stress tensor is derived by forming the moment
7 (uiy, N [uy]) + 7 (uj, N [ug]) = 0. (A.9)
Expanding, we obtain
) ) o nt) ()
ot ot 0xy 17 Oy

1 Op Op
=, {T (Um 8—:@) +7 (uj, 8—361):| + 1 (us, V2uy) + v7 (uy, V)

787(?”’“]‘)_'_ . % + . %
o T u“ukﬁxk T UJ’UkaTk

_ (2 ) 2 () — 2wr (2% 0%
= |j' <ul, 8@-) +7 (u],axl)} + vV (ui, uy) — 2T <8xk’8xk ,

where we have used (A.6) to recast the diffusion term. The transport terms can be

rewritten using (A.7):

8uj 8u2
T u,-,uka—%c + 7 uj,uka—xk

=7 (uzuk %) + W <Ui> %) + @T (g, ug)

Oy, T, Oz,
+ . % + un . % + @ ( . )
7| uy, uy, 9 upT | uy, 9, 8ka wj, Uy
07 (w4, uy, up,) +u_87 (wi, uy) N ou; ou;

= o % O aka (ug, ug) + kT (uj, ug)

Dy,
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where we have used incompressibility to combine the triple correlation terms. The

pressure term can be rewritten as

The evolution equations for the subfilter stress tensor can therefore be expressed as

or (us, u;) (;‘;’ U) 4 707 (Wi ) g“;:uj) — UV7 (s, uj) + 1L + Dy + Py — &4, (A.10)
where
)
Dy = oo wpl] = oo () - )
Py =~ (i) = 5o )

B Ou; Ou,
gij = w (8@ a%’k)

are the pressure-strain rate correlation tensor, the turbulent diffusion of subfilter
stress, the production of subfilter stress and the generalized dissipation rate tensor,

respectively.

A.2.2 Generalized Subgrid Dissipation Rate Equations

The equation for the generalized dissipation tensor is derived by forming the moment

Ou; ON [uy] Ouj ON [u] _
2v |i7' (axka axk ) + 7 (a—xka axk =0.

Expanding, we have

0 ou; 0u]
1
p

(B ) o (2 2 1)

al'k al'k (%l 8xk’6xk 81'1

Gorom o))+~ Gz 3]
Oxy,’ Oxy | Ox; dxy,’ Oxy, | Ox;

Ou; Ou; Pu;  O%u;
2 (et} . 7 J
+ vV [T <8$k7 8$k>:| 2vT <8$ka$17 a$k8$l) .
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Now we can recast the transport terms:
(o ) (2 2 )
oy, Orp | O, Oz, Oz | Oxy
<8uz oy, 8uj)+7_ (01/% 0*u; )+T (% %0ui)+ (8% w 9%u; )
Oxy’ Oz, 01 oy, Orp0 Oxy,~ Oxy, Ox; Oxy,’  OxpOx; )
We can recast the first and third term using (A.7), so
<8uZ ouy 8uj) s (% %8%)
oxy’ Oz, 07 Oxy, Oxy, Ox;
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The second and fourth term can be rewritten as
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The pressure term can be rewritten
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Substituting all of the above expressions into the moment equation and multiplying

by 2v and using the definition of ¢;; where appropriate we obtain:

88@' i _852-]-

5 TTg, = P — @5, + 115, + D5, + vV, (A.11)
where

- 2w op 0 |0u 2v op 0 |0y
T =5 H&ck’&ck M)] i H&ck’&ck M)]
b W[ O [ (0w N [0 [ (0w o
v p |0z oz’ Oy p | 0x; oz’ Oz

0, 2 (,, Ou Ouj
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+2v 0w T 8uj + 2v 82u_j T Ou;
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A.2.3 Generalized k — ¢ Equations

Defining the subfilter energy as
1
k= 57 (ug, uy)

the subfilter energy equation can be obtained by taking one half the trace of (A.10).
Noting that the pressure-strain rate correlation tensor is traceless we recover the

following equation:
ok 0Ok

— — =uvV?k+D - A12
o uk@xk vWk+D+P —e¢, ( )
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where

1 8 107— (uiauiauk)

D = —— . _ T \NTw e TR
paxl [7_ (U’Z?p)] 2 axk
o

P = _a:L‘LkT(Ui7Uk)

R

N 2 v 8:@’8:@

Similarly, the scalar dissipation rate equation can be obtained by taking one half the

trace of (A.11):

05 _05 £ 5 15 2
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Appendix B

BOUNDARY LAYER SOLVERS

The computational cost of solving the full Navier-Stokes equations necessitates an-
other method for developing profiles for use as inflow conditions and initial data. For
this work solutions of the appropriate boundary layer equations provide the required
data. In the case of laminar flow a similarity solution is used, whereas in the turbulent
case the boundary layer equations for the flow variables, including k£ and ¢, are solved
directly. In the following presentation, primary focus will be on areas in which the

solution techniques differ from those in the literature.

B.1 Compressible Laminar Boundary Layer

A similarity analysis of the incompressible Navier-Stokes equations for a boundary
layer results in the classical Falkner-Skan family of profiles (including the zero-pressure
gradient Blasius profile). Reducing the compressible equations to a self-similar form
requires a number of additional assumptions on the thermodynamic variables and
material properties of the fluid. There are several transformation which can be used to
obtain a self-similar form of the equations. Here we follow the approach of Illingworth

(1950). Introducing the similarity variables!
o) = [ oo
0
Re
x, = Ux)|——
n(z,y) ()\/25(90)

1The additional factor of vRe is due to the non-dimensionalization.

"NU(2') da’ (B.1)

/ p(z,y')dy, (B.2)
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‘C"Pr ‘Ma‘ 7‘
[1.0]0.71]025[ 14

TABLE B.1. Parameters for the similarity solution for the laminar boundary layer.

where the subscript e represents the external flow (outside the boundary layer), we

wish to find similarity solutions of the form

u(&,n) = Ue&)f(n) (B.3)
hEm) = he(&g(n). (B.4)

If we assume a perfect gas we have the following relationship for p:

— =~ =g0) (B-5)

Making the additional assumptions of constant specific heats and U, = const, H, =
const (corresponding to a zero-pressure gradient flat-plate) we can substitute (B.1)-
(B.4) into the compressible boundary layer equations to obtain the similarity equa-

tions (White, 1991, egs. 7-32a,b, p. 507):

M+ =0 (B.6)
(Cg) +Prfg = —PrC(y—1)Ma’f", (B.7)
where
c=LE B.
i (B.8)

We further assume C' = 1 which implies that the viscosity varies linearly with the
temperature.

These equations can be solved by a shooting method (in this work the implemen-
tation is that of Press et al., 1986). Table B.1 lists the parameters used in solving for
the similarity solution for the zero pressure gradient flat plate boundary layer under

investigation. Unlike the incompressible case, a closed form solution for v requires
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the solution of an integral equation in g(n). To avoid this, the following procedure is

adopted. Equation B.2 is inverted to obtain y(n

on B Re p
oy \/ p \/ Pe

( )

1 [
y = peUe\/;/o g(n) dn. (B.9)

At each x station, this expression is used to obtain y(n). Linear interpolation is used

to obtain the variable p, u, and h from the similarity solution. Finally, once the entire

flow field has been obtained, v can be computed from the continuity equation.

B.2 Turbulent Boundary Layer

The boundary layer equations for a turbulent compressible fluid, including the trans-
port equations for k£ and ¢ can be found in varying forms in the literature. For the low
Mach number flows under consideration the primitive variable formulation is chosen.

The equations are:

dpu  Opv
5 oy = O (B.10)
_0u o dp. 0O 1 ou
Por +p“ay N dr Oy [(Re T y} (B.11)
_.or __oT B 5 dp. 0 1 pur \ 0T
e +pU8y = (1-7)Ma dr + dy {(RePr PrT) 8y]
1\ [oa\?
—y)Ma? [ — | | = — 7)Ma? B.12
ra-pMat () () + 0= vatpe (B2
__ ok __ 0k o[ 1 ok A
Pile TP, = —K +Prk) ay]+“T () = B
_~@+_N% B 1
pu@x pv@y N Pr6
0
+CEIZMT (au> €2f€2 pg (B14)



157

The formulation given here follows that of Schlichting and Gersten (1999, eqs. 19.8-

9,24) with the following additional assumptions and modifications:

1.

The equations have been nondimensionalized.

. The turbulent dissipation rate term has been restored to the temperature equa-

tion (Schlichting and Gersten, 1999, eq. 19.24, approximate it with the produc-
tion, pu’v” ou/0y).

. The molecular diffusion terms have been restored to the k& and ¢ equations.

. The molecular viscosity and thermal diffusivity are assumed to be constant

(u = Uo and A = >\0)

. A linear eddy-viscosity model has been substituted for the Reynolds stress term,

— ou
Tyl — -
puTy Hr 8y7
and for the turbulent thermal stress term,
—pu"T" pr 0T
PI‘T 0y

Suitable wall functions have been introduced in order to make the model con-

sistent with the form given in section 2.4.5.

The equations (B.10-B.14) can be solved using a backward Euler method marching

downstream, (Tannehill et al., 1997, pp. 447-449). The equations are linearized in x

by lagging the coefficients, yielding a tridiagonal system. Introducing the discretized

variable ¢; ; = ¢(z;,y;), we can express the general advection diffusion equation for

¢ as as
5 4 Piv1; — Pij + 5 B Qit1,j41 — Pit1-1
1,7 %] Al, 1,7 °bJ y]+1 — y]_l
1 Dit1,j41 — Pit1j
=———— |(Dijn1 + Dij) —* —
Yjir1 — Yj—1 Yi+1 — Yj

—(Dij + Djj-1) Pirty — Givtjot +Si; (B.15)
Yi —Yj+1
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where S ; is the source term.
For the zero-pressure gradient flat plate boundary layer (dp./dz = 0) the equations
are solved as follows. Starting at the initial station, where uniform plug flow is
assumed, the z-momentum equation (B.11) is solved for @, ;1 using the discretization
described above. The remaining equations are advanced similarly with all the source
terms lagged. (The source terms containing @ could be evaluated without lagging, but
for consistency with the non-linear source terms in the turbulent transport equations
all source terms were lagged. Test computations showed very little difference between
the two methods.) Using the equation of state (2.48) the density at the new station
can be evaluated. Finally, the wall normal velocity, v, can be computed by integrating
from the wall according to
Piji1ij+1 = Py Ui n Pig1j41%it1j+1 — D1 j41li-1,541
Az Yit1 — Yi-1

= 0. (B.16)
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