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Figure 3.10. Solutions to Painlevé III equation . . . . . . . . . . . . . . . . . 102
Figure 3.11. Disks cut from periodic Amsler surfaces colored by k21 + k22 . . . 105
Figure 3.12. Willmore energy of Amsler surfaces . . . . . . . . . . . . . . . . 106

Figure A.1. Parametrization of a surface . . . . . . . . . . . . . . . . . . . . 114
Figure A.2. Interpretation of second fundamental form . . . . . . . . . . . . 119



10

List of Tables

Table B.1. Fourth order approximation to first derivative. . . . . . . . . . . 124
Table B.2. Fourth order approximation to second derivative. . . . . . . . . . 124



11

Abstract

In this dissertation we investigate the behavior of radially symmetric non-Euclidean

plates of thickness t with constant negative Gaussian curvature. We present a com-

plete study of these plates using the Föppl-von Kármán and Kirchhoff reduced the-

ories of elasticity. Motivated by experimental results, we focus on deformations with

a periodic profile.

For the Föppl-von Kármán model, we prove rigorously that minimizers of the

elastic energy converge to saddle shaped isometric immersions. In studying this con-

vergence, we prove rigorous upper and lower bounds for the energy that scale like

the thickness t squared. Furthermore, for deformation with n-waves we prove that

the lower bound scales like nt2 while the upper bound scales like n2t2. We also in-

vestigate the scaling with thickness of boundary layers where the stretching energy is

concentrated with decreasing thickness.

For the Kichhoff model, we investigate isometric immersions of disks with constant

negative curvature into R
3, and the minimizers for the bending energy, i.e. the

L2 norm of the principal curvatures over the class of W 2,2 isometric immersions.

We show the existence of smooth immersions of arbitrarily large geodesic balls in

H
2 into R

3. In elucidating the connection between these immersions and the non-

existence/singularity results of Hilbert and Amsler, we obtain a lower bound for the

L∞ norm of the principal curvatures for such smooth isometric immersions. We

also construct piecewise smooth isometric immersions that have a periodic profile,

are globally W 2,2, and numerically have lower bending energy than their smooth

counterparts. The number of periods in these configurations is set by the condition

that the principal curvatures of the surface remain finite and grow approximately

exponentially with the radius of the disc.
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Chapter 1

Introduction

1.1 The non-Euclidean Model of Differential Growth

Laterally swelling and shrinking thin elastic sheets are ubiquitous in nature and indus-

try and are capable of forming complex surfaces of various geometries. The examples

shown in figure 1.1 include shapes formed by differential growth, thermal expansion,

and the inhomogeneous swelling of hydrogels. The morphology of these structures

is a result of “incompatible” growth in which the growing body adds regions of lo-

cal tension or compression to prevent cavitation and interpenetration of the material

(Goriely & Ben Amar, 2005; Amar & Goriely, 2005; McMahon et al., 2010, 2011a).

The regions of tension and compression manifest themselves as residual stress in the

body, that is stresses that remain in the body in the absence of external forces.

Because of the large deformations possible during the growth or swelling process,

many mathematical models of such processes are set within the framework of finite

elasticity. One such model, which we call the growth tensor model, borrows from

elasto-plasticity theory and decomposes the overall deformation of the body into a

growth step and an elastic response (Rodriguez et al., 1994). The growth step is

characterized by a tensor G that measures how the infinitesimal material lines of

the original body change during the growth. The elastic response is a tensor A

that distorts the grown body so that the product A · G forms the gradient of a true

deformation of the body. In this model the growth is incompatible if G is not a

deformation gradient and the residual stresses in the body depend only on the elastic

response A.

The growth tensor model has been placed on a more rigorous foundation inde-
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(a) (b)

(c)

Figure 1.1. (a) A hybrid species of the Echeveria plant. The rippling near the
boundary is caused by local differential growth and has been the focus of several
works (Marder et al., 2003; Audoly & Boudaoud, 2002, 2003; Liang & Mahadevan,
2009) (Image of Stuart Kent). (b) The heating and subsequent drying of potato chips
generates shapes with a hyperbolic geometry. (c) N-isopropylacrylamide (NIPA) hy-
drogel disk that has undergone controlled shrinking (Klein et al., 2007) (Image cour-
tesy of Rebecca Stockbridge). Hydrogels replicate many of the characteristic features
present in differential growth and are excellent tools for studying such processes quan-
titatively.
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pendent of its origin in elasto-plasticity theory (Hoger, 1997; Chen & Hoger, 2000;

Lubarda & Hoger, 2002; DiCarlo & Quiligotti, 2002) and has been successfully used

to study morphogenesis in growing soft tissue. In particular it has been used to study

buckling patterns in growing shells (Goriely & Ben Amar, 2005; Amar & Goriely,

2005), growing cylinders (Vandiver & Goriely, 2008; Goriely et al., 2008), and grow-

ing thin sheets (Dervaux & Ben Amar, 2008).

Another model of such swelling bodies hypothesizes that the equilibrium configura-

tion is the minimum of a “non-Euclidean” free energy functional E3d : W
1,2(D3d,R

3) →
R defined by

E3d[x3d] =

∫

D3d

‖ (∇x3d)
T · ∇x3d − g3d‖2 dV, (1.1.1)

that measures strains from a fixed three-dimensional Riemannian metric g3d defined

on a simply connected domain D3d ⊂ R
3 (Audoly & Boudaoud, 2003; Marder et al.,

2003; Sharon et al., 2004; Marder & Papanicolaou, 2006; Efrati et al., 2007, 2009;

Lewicka & Pakzad, 2011). The metric g3d encodes how the swelling changes the in-

trinsic distance between nearby material points and this model is essentially the same

as the growth tensor formalism with the correspondence between the models given by
√
g3d = G (Lewicka & Pakzad, 2011). The intuition behind the non-Euclidean model

is that the deformation of the growing body is described by a map x3d ∈ W 1,2(D3d,R
3)

that is “close as possible” to an isometric immersion of the metric g3d (see figure 1.2).

Furthermore, the energy E3d can vanish if and only if the Riemannian curvature ten-

sor R corresponding to g3d vanishes and thus the growth is “incompatible” if and

only if R 6= 0 (McMahon et al., 2011b; Lewicka & Pakzad, 2011).

Laterally swelling thin elastic sheets of thickness t can be modelled in the non-

Euclidean framework by a two dimensional Riemannian metric g defined on the mid-

surface of the sheet D ⊂ R
2. That is, D3d can be decomposed as D3d = D×(−t/2, t/2)

and in an appropriate coordinate system g3d is given by

g3d =

(

g 0
0 1

)

. (1.1.2)
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Figure 1.2. In the non-Euclidean model of elasticity the deformed body selects
a configuration that minimizes a strain energy functional measuring the difference
between the deformation’s induced metric from R

3 and a fixed metric g3d. The metric
g3d measures the intrinsic infinitesimal length between material coordinates induced
by the growth.

Furthermore, for this form of the metric, “incompatible growth” corresponds to when

the Gaussian curvature K corresponding to g satisfies K 6= 0 (Lewicka & Pakzad,

2011).

The non-Euclidean model of elasticity has grown out of experiments that studied

the self-similar rippling patterns observed along the edges of torn elastic sheets and

leaves (Sharon et al., 2002). This rippling pattern was studied in the rectangular

strip geometry by applying the non-Euclidean model with a metric g defined on

the mid-surface that only differs substantially from the Euclidean metric in a small

region near one edge of the strip (Marder et al., 2003; Audoly & Boudaoud, 2002,

2003). In particular, it was shown numerically that the self similar patterns could

be explained as being approximate isometric immersions of the abstract Riemannian

manifold (D, g) that minimize a bending energy functional (Audoly & Boudaoud,

2003).

1.2 Reduced Theories of non-Euclidean Elasticity

In many applications the thickness of latterly swelling sheets is much smaller then

the diameter of D. Consequently, there is considerable interest in obtaining reduced
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energy functionals Et defined on a suitable space of mappings of the mid-surface D
into R

3 such that minimizers of Et approximate minimizers E3d in an appropriate

asymptotic limit of vanishing thickness. For the classical theory of plates, i.e., when

g is the Euclidean metric, one such reduced model is the so called Föppl-von Kármán

equations that reduce the full three dimensional equations of elasticity to a coupled

system of partial differential equations defined on the mid-surface of the plate (Föppl,

1907). These equations are valid in an asymptotic limit of vanishing thickness in which

the thickness scales in a particular manner with external loadings (Ciarlet, 1980) and

different scalings lead to a hierarchy of plate models that includes Föppl-von Kármán

(Friesecke et al., 2006). For non-Euclidean plates, there are two reduced theories that

have recently been rigorously obtained as asymptotic limits using the technique of

Gamma-convergence: the Kirchhoff model (Lewicka & Pakzad, 2011) and the (non-

Euclidean) Föppl-von Kármán (FvK) model (Lewicka et al., 2011).

In the Kirchhoff model, if the set of W 2,2 isometric immersions of the mid-surface

is non-empty, that is AKi = {x ∈ W 2,2(D,R3) : (Dx)T ·Dx = g} 6= ∅, then

Γ− lim
t→0

1

t2
E3d = EKi,

with the curvature functional EKi :W
2,2(D,R3) → R defined by

EKi[x] =







Y

24(1 + ν)

∫

D

[

4H2

1− ν
− 2K

]

dAg if x ∈ AKi

∞ if x /∈ AKi

,

where Y and ν are the Young’s modulus and Poisson ratio of the material respec-

tively, H and K mean and Gaussian curvatures of the surface x(D) respectively, and

dAg the area form induced by g (Lewicka & Pakzad, 2011). This reduced theory

captures the intuition that in the vanishing thickness limit if a W 2,2(D,R3) isomet-

ric immersion of the mid-surface D exists then in the vanishing thickness limit the

mid-surface should deform into an isometric immersion with a low amount of bending

energy. The Kirchhoff model has been used to generate pseudospherical surfaces of
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constant negative Gaussian curvature from closed curves (Trejo et al., 2009) which

has applications to the modelling of growing bodies with a tubular topology.

The FvK model, which is sometimes called the small slope approximation, has

also been rigorously derived as a Γ-limit when the following assumptions are met:

1. The metric g satisfies the following scaling g = g0 + t2g1, where g0 is the

Euclidean metric.

2. The deformation of the mid-surface x : D → R
3 satisfies an “in-plane” and

“out-of-plane” decomposition of the form

x = i+ ti⊥ ◦ η + t2i ◦ χ,

where χ ∈ W 1,2(D,R2), η ∈ W 2,2(D,R), i : R2 → R
3 is the standard immersion

and i⊥ maps into the orthogonal compliment of i(R2).

In this context it is natural to define the FvK admissible set by AFvK =W 1,2(D,R2)×
W 2,2(D,R) with the understanding that when we write that a deformation x : D → R

3

satisfies x ∈ AFvK we mean that there exists (χ, η) ∈ AFvK such that x = i+ti⊥ ◦η+
t2i ◦ χ. The in-plane strain tensor γ : AFvK → R

2×2 is defined in this approximation

by

γ(χ, η) = (Dχ)T +Dχ+ (Dη)T ·Dη − g1, (1.2.1)

which measures to O(t2) the deviation of x from being an isometric immersion.

The reduced energy under the above assumptions is given by the following Γ-limit:

Γ− lim
t→0

1

t4
E3d = EFvK ,

with EFvK : AFvK → R defined by

EFvK [x] =
Y

8(1 + ν)

∫

D
Q(γ) dA+

Y

24(1 + ν)

∫

D
Q(D2η) dA, (1.2.2)

where Q : R2×2 → R is the quadratic form

Q(A) = (1− ν)−1tr(A)2 − 2 det(A),
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D2η the Hessian matrix of second derivatives of η and dA the Euclidean area form

(Lewicka et al., 2011). This energy can be interpreted as approximating E3d by an

energy that is the additive decomposition of a stretching energy functional SFvK :

AFvK → R measuring the lowest order elastic energy of the in-plane components of

the in-plane strain (Dx)T ·Dx−g and a bending energy functional BFvK : AFvK → R

measuring the lowest order approximation of EKi. Additionally, in this approxima-

tion, the terms ∆η and det(D2η) correspond to the mean and Gaussian curvatures

respectively. The Euler-Lagrange equations generated by the variation of EFvK are

a modified version of the classical FvK equations that have been used to model mor-

phogenesis in soft tissue (Dervaux & Ben Amar, 2008; Liang & Mahadevan, 2009).

Moreover, the FvK equations have been used to study the following phenomenon

observed in thin elastic sheets: crumpling (Lobkovsky, 1996; Venkataramani, 2004;

Conti & Maggi, 2008), blistering (Jin & Sternberg, 2001; Jin & Sternberg, 2002), and

wrinkling (Cerda & Mahadevan, 2003; Davidovitch et al., 2011).

1.3 Hydrogels and the Hyperbolic Plane

There is considerable interest in using the non-Euclidean elasticity to model the

equilibrium shapes of swelling hydrogels. Hydrogels have received a lot of atten-

tion because of their ability to undergo large reversible deformations by differen-

tially swelling when activated by external stimuli such as pH (Feil et al., 1992), light

(Juodkazis et al., 2000), warm water (Klein et al., 2007) and solvents (Holmes et al.,

2011). This type of activated morphogenesis has already been used in applications

ranging from site specific delivery of drugs (Brondsted & Kopecek, 1991), scaffolding

in cellular engineering (Rowley et al., 1999), and the construction of microfluidic de-

vices such as valves (Arndt et al., 2000; Yu et al., 2003), pumps (Richter et al., 2004),

and actuators (Richter et al., 2008; Carpi & Smela, 2009). Moreover, hydrogels are

being explored as candidates for self assembling devices at the micro and nanoscale
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(Schmidt & Eberl, 2001; Alben & Brenner, 2007; Zhang et al., 2010). Furthermore,

because of their high water content and elastic properties swelling hydrogels are ca-

pable of mimicking the growth of soft tissue (Mora & Boudaoud, 2006; Klein et al.,

2007) making them excellent experimental tools to explore the complex morphologies

that can be generated by differential growth.

Recently, environmentally responsive hydrogel disks and annuli have been created

using a Hele-Shaw cell to inject water, N-isopropylacrylamide (NIPA), bisacrylamide,

and polymerization agents to create a cross-linked polymer gel with a radially sym-

metric variation of the mixture (Klein et al., 2007). These hydrogels undergo a shape

transition at Tc = 33◦C at which point the material ejects water and shrinks differ-

entially according to the variation of the concentration of NIPA (see figure 1.3). In

terms of the non-Euclidean model the shrinking specifies a metric g on the mid-plane

of the disk which in components is given in geodesic polar coordinates (ρ, θ) by

g11 = 1, g12 = g21 = 0, g22 = ρ2f(ρ), (1.3.1)

where f is a positive function that can be controlled experimentally by varying the

concentration of NIPA.

The Gaussian curvature K0 corresponding to g can also be controlled and satisfies

K0 = − 1

ρf(ρ)

∂2

∂ρ2
[ρf(ρ)] . (1.3.2)

Therefore, by controlling the concentration of NIPA the Gaussian curvature can be

controlled as well. Regions in which K0 < 0 are shrinking faster then the center of

the disk and form a rippling pattern while regions in which K0 > 0 shrink slower and

obtain a spherical dome like shape (see figure 1.4.a). Curiously, Hydrogel disks with

constant negative Gaussian curvature K0 obtain a periodic profile of one wavelength

with a refinement of the number of waves with decreasing thickness (see figure 1.4.b).

The number of waves in these profiles is well fit by the power law n ∼ t−1/2 and the

bending energy EKi diverges according to the scaling EKi ∼ t−1 (Klein et al., 2011).
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Figure 1.3. Non-Euclidean disks with a prescribed radially symmetric metric g are
creating by a using hydrogels that differentially shrink when activated in a warm
water bath (Klein et al., 2007). The amount of shrinking can be controlled by a
computer allowing for the creation of non-Euclidean disks of various geometries.
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This is in sharp contrast to the case when K0 is constant and positive where the

profile seems to be converging with decreasing thickness to a fixed shape (see figure

1.4.c), with the bending energy scaling like EKi ∼ t0 (Klein et al., 2011).

The observed refinement of the number of waves with decreasing thickness for

non-Euclidean gels with K0 < 0 constant and negative is a puzzle. In terms of

the Kirchhoff model, the observed refinement seems to imply that there does not

exist W 2,2 isometric immersions of bounded connected domains of the hyperbolic

plane H
2 into R

3. Indeed, it is a classical result that there does not exist a real

analytic isometric immersion of the entire hyperbolic plane H2 into R
3 (Hilbert, 1901;

Holmgren, 1902) but there does exist C1 isometric immersions of H2 (Nash, 1954;

Kuiper, 1955). Furthermore, by Efimov’s theorem there does not exist C2 isometric

immersions of H2 (Efimov, 1964) and this difference in the regularity of isometric

immersions is sometimes used to explain the rippling morphology of hydrogels with

K0 < 0 (Santangelo, 2009). But, for bounded domains of H2 there exists smooth and

hence W 2,2 isometric immersions (Poznyak, 1973; Han & Hong, 2006) and thus the

Kirchhoff model would seem to imply that there can be no refinement of the number

of waves.

1.4 Structure of Dissertation and Summary of Main Results

In this dissertation we present a study of non-Euclidean plates in both the FvK and

Kirchhoff models. Motived by the experiments on hydrogels, we focus on domains

with a disk or annular geometry and metric gK0
with corresponding constant negative

Gaussian curvature K0. The body of the dissertation is naturally organized into

two chapters that present the detailed studies of these two models. In appendix A

we provide a catalogue of the main definitions, equations, and theorems from the

classical theory of the differential geometry of surfaces that are used throughout the

dissertation.
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(a) (b) (c)

Figure 1.4. (a) By controlling the Gaussian curvature K0, non-Euclidean plates of
different shapes can be constructed (Klein et al., 2007). In the top two images K0 < 0
leading to rippled shapes. In the third image from the top K0 > 0 leading to a spheri-
cal dome like shape. The hydrogel in the bottom image is a combination of an interior
region with K0 > 0 and an outer region with K0 < 0. (b) The equilibrium shapes of
hydrogel disks of constant radius of R = 14mm and varying thickness (t = .75mm,
.6mm, .25mm, and .19mm from top to bottom) with a constant Gaussian curvature
K = .0011mm−2 (Klein et al., 2011). (c) The equilibrium shapes of hydrogel disks of
constant radius of R = 14mm and varying thickness (t = .75mm, .6mm, .25mm, and
.19mm from top to bottom) with a constant Gaussian curvature K = −.0011mm−2

(Klein et al., 2011).
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1.4.1 Main Results from the FvK Model

In chapter 2 we study the behavior of minimizers in the FvK approximation for

a domain D that is an annulus with inner radius ρ and outer radius R over the

admissible set An ⊂ AFvK of deformations with an out-of-plane displacement that

has n-fold rotational symmetry for n ∈ {2, 3, . . .}. The FvK elastic energy in this

geometry is formulated by approximating the metric by gK0
= g0 + ǫ2g1, where

ǫ =
√
−K0R is a dimensionless curvature, and assuming an in-plane and out-of-plane

decomposition of the deformation in the form

x = i+ ǫi⊥ ◦ η + ǫ2i ◦ χ.

For simplicity, we then repose the resulting variational problem as the minimum of

a dimensionless functional Eτ = S + τ 2B, where τ = t/(
√
3Rǫ) is a dimensionless

thickness.

As a basic tool for studying the minimizers of Eτ we derive the Euler-Lagrange

equations and its natural boundary conditions for Eτ . The resulting governing equa-

tions are nonlinear and in general finding exact solutions to the resulting equations

is impractical. Instead, we study the convergence and scaling of minimizers through

Γ-convergence techniques, direct numerical simulation, ansatz free lower and upper

bounds, and asymptotic analysis.

In sections 2.3 and 2.4 we construct minimizers over the admissible sets Af =

{x ∈ An : B[x] = 0} and A0 = {x ∈ An : S[x] = 0}. The set Af consists of flat

deformations and the minimum is obtained by solving the Euler-Lagrange equations

and its natural boundary conditions when η = 0. The set A0 consists of isometric

immersions in the Föppl-von Kármán approximation and can be obtained by solving

the following Monge-Ampere equation:

det(D2η) = −1. (1.4.1)

The global minimum of B over solutions to (1.4.1) are obtained by the approximate
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minimal surfaces η = xy and thus we can rigorously prove using Γ-convergence tech-

niques the following theorem:

Theorem 1.4.1. Let x∗
τ ∈ AFvK be a sequence with corresponding out-of-plane

displacement η∗τ such that inf
x∈AFvK

Eτ [x] = Eτ [x∗
τ ]. Then,

1. lim
τ→0

inf
x∈A

1

τ 2
Eτ [x] = lim

τ→0

1

τ 2
Eτ [x∗

τ ] = inf
x∈A0

B[x] = 2π(1− ρ20R
−2).

2. There exists a subsequence η∗τk and x∗ ∈ A0 with corresponding out-of-plane

displacement η∗ such that η∗τk ⇀ η∗. Moreover, there exists A ∈ SO(2) and

b ∈ R such that η∗(A(x, y)) + b = xy.

Furthermore, in section 2.4 we construct weak solutions to (1.4.1) with n-fold

symmetry and thus An∩A0 6= ∅. Using these constructions as test functions we have

the following result:

Lemma 1.4.2. Let x∗ ∈ An such that Eτ [x∗] = infx∈An Eτ [x], then

Eτ [x∗] ≤ min
{

Cn2τ 2,F
}

,

where F = infx∈Af
Eτ [x] and C is a constant independent of n and τ .

This lemma captures the difference in scaling of Eτ with τ for flat deformations and

isometric immersions by using specific test functions on Eτ .
In section 2.5 we numerically minimize Eτ over An using a Rayleigh-Ritz type

method. The results of the numerics indicate that minimizers transition from flat

deformations to buckled shapes such that with decreasing thickness the deformations

converge to x ∈ An ∩ A0. In the bulk of the domain the stretching energy of these

buckled shapes is approximately zero with regions near the edges and, for n ≥ 3,

along the lines of inflection in which stretching energy is concentrated. These re-

sults indicate that with decreasing thickness the stretching energy is concentrated in
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shrinking boundary layers in which the bending energy of the isometric immersion is

reduced by adding some small localized amount of stretching.

In section 2.6 we improve on lemma 1.4.2 and rigorously prove ansatz free lower

bounds on Eτ . Specifically, we prove using Sobolev estimates the following theorem:

Theorem 1.4.3. Suppose n ∈ {2, 3, . . .} and τ > 0. There exists constants c and C

independent of n such that

min

{

cnτ 2,
F
2

}

≤ inf
x∈An

E [x] ≤ min{Cn2τ 2,F}.

This theorem confirms the numerical results that with decreasing thickness the elastic

energy of the minimizers scales like that of an isometric immersion. Furthermore,

since both the upper and lower bounds in the theorem grow with n it quantifies how

the elastic energy is penalized by adding more waves to a deformation.

In section 2.7 we determine the scaling with τ of the width of the boundary

layers in which the stretching energy is significantly non-zero. Near the edges of

the annulus the out of plane displacement can be additively decomposed into two

terms that separately lower contributions to the bending energy from the mean and

Gaussian curvatures. The width of the regions in which these terms are relevant

satisfies the following scaling:

1. The boundary layer in which one term lowers the magnitude of the Gaussian

curvature has the following scaling

width(θ)ρ=ρ0,R ∼ t
1

2 |K0|−1/4 csc
(π

n

)

cos(θ) cos(π/n− θ).

2. For n ≥ 3, the boundary layer in which one term lowers the magnitude of the

mean curvature has the following scaling

width(θ)ρ=ρ0,R ∼ t
1

2 |K0|−1/4

√

sin
(π

n

)

sec(θ) sec
(π

n
− θ
)

.
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The overlap of these two regions forms the complete boundary layer in which the

total bending energy is lowered by allowing localized stretching. The width of these

boundary layers has the same scaling in thickness obtained by Lamb in the context of

vibrating shells (Lamb, 1889) and Efrati et. al. for non-Euclidean plates with K0 > 0

(Efrati et al., 2007). The fact that there is no boundary layer to reduce the mean

curvature in the case n = 2 is a consequence of the fact that η = xy is a minimal

surface in the FvK approximation.

The width of the boundary layers near the lines of inflection scale like

width(ρ)η=0 ∼ τ
1

3ρ
1

3 |K0|−
1

6 ,

which has the same scaling with thickness, but not ρ, for minimal ridges formed by

crumpling (Lobkovsky, 1996). In this boundary layer the mean curvature is locally

reduced by correcting a jump discontinuity in the azimuthal curvature. This reduction

of energy near this type of singularity is different from the regularization near a ridge

singularity in which the bending energy diverges while the stretching converges to

zero with decreasing thickness (Venkataramani, 2004; Conti & Maggi, 2008).

1.4.2 Main Results from the Kirchhoff Model

In chapter 3 we study the Kirchhoff model for the metric gK0
over a domain D that

is a disk of radius R. Since the admissible set of deformations is exact W 2,2 isometric

immersions of gK0
in the Kirchhoff model, we reformulate the variational problem as

the problem of minimizing the Willmore energy

W[x] =

∫

D

(

k21 + k22
)

dAgK0
,

where k1 and k2 are the principal curvatures of the deformation, over W 2,2 isometric

immersions. Furthermore, we use a particular parametrization of hyperbolic surfaces,

called Chebychev nets, which encodes all of the geometric information about the



27

surface in terms of the angle φ ∈ (0, π) between the asymptotic curves of the surface.

In particular, solutions to the sine-Gordon equation

∂2φ

∂u∂v
= −K0 sin(φ) (1.4.2)

generate Chebychev nets which provides us with a method for constructing hyperbolic

surfaces.

In section 3.2 we use the Chebychev net structure to construct isometric immer-

sions by cutting out subsets of the pseudosphere. These isometric immersions have

large bending energy even away from the singular rim of the pseudosphere and more-

over do not have the rotational n−fold symmetry observed in the experiments on

hydrogels (see figure 1.4.c). Nevertheless, this section is valuable in that it illustrates

the process of how the elastic energy of geodesic disks is calculated and also illustrates

the large amount of bending energy present in smooth isometric immersions of gK0
.

In section 3.3 we use the sine-Gordon equation to construct a direct numerical

minimization scheme for minimizing the Willmore energy. Using this scheme we pro-

vide numerical evidence that the principal curvatures of smooth isometric immersions

satisfy

max{|k1|, |k2|} ≥ 1

64
exp(2R),

with the surfaces that realize the bound being geodesic disks lying on hyperboloids

of revolution. This result illustrates that the bending energy of smooth isometric

immersions grows exponentially with the size of the domain, a phenomenon that is

not captured by the FvK model.

In section 3.4 we show that (weak) W 2,2 isometric immersions with a periodic

profile exist. The bending content of these surfaces is concentrated in small regions

near the edge of the disk and along lines of inflection. These surfaces have lower

bending content then their smooth counterparts lying on the pseudosphere or hy-

perboloids of revolution and qualitatively resemble what is observed experimentally.

Additionally, for each n ≥ 2, there is a radius Rn ∼ log(n) such that the n−periodic
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isometric immersions only exist for radii satisfying 0 < R < Rn. This gives a natural

geometric mechanism for the refinement of the wavelength of the buckling pattern

with increasing radius of the disk.
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Chapter 2

Minimizers in the Föppl-von Kármán

Approximation

In this chapter we study the convergence and scaling of minimizers of the FvK energy

with decreasing values of the thickness t for a metric gK0
that has corresponding

constant negative Gaussian curvature K0. Motivated by experimental results, we

focus on studying minimizers with a periodic profile on a D that is an annulus with

inner and outer radius ρ0 and R respectively. To be precise, for n ∈ {2, 3 . . .}, we
study minimizers over the admissible set of n-periodic deformations An ⊂ AFvK

defined by (χ, η) ∈ An if and only if in polar coordinates (ρ, θ) the out-of-plane

displacement η satisfies

1. η is periodic in θ with period 2π/n,

2. η vanishes along the lines θ = 0 and θ = π/n,

3. η (θ − π/n) = −η(θ).

We call the lines θ = mπ/n, m ∈ {0, . . . , 2n− 1}, lines of inflection.

2.1 Linearized Geometry and the Föppl-von Kármán Energy

In geodesic polar coordinates (ρ, θ), the metric on D is

g = dρ2 +
sinh2(ǫρ/R)

|K0|
dθ2,

where ǫ =
√

|K0|R ≪ 1 is the dimensionless curvature (Spivak, 1979). Therefore,

expanding in ǫ, gK0
can be approximated to order ǫ2 by gK0

= g0 + ǫ2g1 where g0 is

the Euclidean metric on R
2 and

g1 =
ρ4

3R2
dθ2 =

1

3R2

(

v2 du2 − 2uv dudv + u2 dv2
)

,
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with the “Cartesian” coordinates u = ρ cos(θ) and v = ρ sin(θ).

A deformation x : D → R
3 can be constructed that is an isometric immersion of g

to order O(ǫ) by assuming the so called “linearized geometry” approximation. That

is we assume

x = i+ ǫi⊥ ◦ η + ǫ2i ◦ χ, (2.1.1)

where χ ∈ W 1,2(D,R2) and η ∈ W 2,2(D,R) and we calculate all geometric quantities

to O(ǫ2). In the linearized approximation to the geometry, when we write that a

deformation x : D → R
3 satisfies x ∈ AFvK we mean that there exists (χ, η) ∈ AFvK

such that x = i+ ǫi⊥ ◦ η + ǫ2i ◦ χ.
If we let χ = (χ1, χ2) denote the components of χ then the induced Riemannian

metric g′ = (∇x)T · ∇x from the mapping x has the following components in the

linearized geometry:

g′
11 =

∂x

∂u
· ∂x
∂u

= 1 + ǫ2

(

2
∂χ1

∂u
+

(

∂η

∂u

)2
)

,

g′
12 = g′

21 =
∂x

∂u
· ∂x
∂v

= ǫ2
(

∂χ1

∂v
+
∂χ2

∂u
+
∂η

∂u

∂η

∂v

)

,

g′
22 =

∂x

∂v
· ∂x
∂v

= 1 + ǫ2

(

2
∂χ2

∂v
+

(

∂η

∂v

)2
)

.

The unit normal vector field N to x(D) can be found in this approximation by simply

computing the cross product of the coordinate tangent vectors ∂x
∂u

and ∂x
∂v
:

N =

(

−ǫ∂η
∂u
,−ǫ∂η

∂v
, 1 + ǫ2

(

∂χ1

∂u
+ ∂χ2

∂v

))

√

1 + ǫ2
(

∂η
∂u

)2
+ ǫ2

(

∂η
∂v

)2

=

(

−ǫ∂η
∂u
,−ǫ∂η

∂v
, 1− ǫ2

(

1

2

(

∂η

∂u

)2

+
1

2

(

∂η

∂v

)2

− ∂χ

∂u
− ∂χ2

∂v

))

.

Consequently, the components of the second fundamental form h′ are

h′
11 = N · ∂

2x

∂u2
= ǫ

∂2η

∂u2
,
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h′
12 = h′

21 = N · ∂2x

∂u∂v
= ǫ

∂2η

∂u∂v
,

h′
22 = N · ∂

2x

∂v2
= ǫ

∂2η

∂v2
.

Therefore, the Gaussian K and mean H curvatures are given by:

K = det
(

(g′)ikh′
kj

)

=
det(h′)

det(g′)
= ǫ2 det(D2η),

H =
1

2
tr
(

g′)ikh′
kj

)

=
1

2

h′
11g

′
22 − 2h′

12g
′
12 + h′

22g
′
11

det(g′)
=

1

2
ǫ∆η,

where we are using the convention of summing over repeated indices and raised indices

correspond to contravariant components (Spivak, 1979).

Based on (1.2.2) we define the elastic energy Et : A → R by

Et[x] =
Y ǫ4

8(1 + ν)

∫

D

[(

1

1− ν
tr(γ)2 − 2 det(γ)

)

(2.1.2)

+
t2

3R2ǫ2

(

1

1− ν
tr(D2η)2 − 2 det(D2η)

)]

dudv. (2.1.3)

A deformation x ∈ AFvK is called an equilibrium configuration in the FvK ansatz

if

Et[x] = inf
y∈AFvK

Et[y].

Now, define the dimensionless variables x, y, χ′, and η′ by

u = Rx, v = Ry, r = Rρ, χ = Rχ′, η = Rη′,

and (D2)′ the Hessian operator in the coordinates x and y. Then, (D2)′η′ = D2η

and thus introducing the dimensionless thickness τ = t/
(√

3Rǫ
)

and dropping the ′
notation we have that

8(1 + ν)

Y ǫ4R2
Et[x] = Eτ [x] = S[x] + τ 2B[x]

=

∫

B

(

1

1− ν
tr(γ)2 − 2 det(γ)

)

dxdy (2.1.4)

+τ 2
∫

B

(

1

1− ν
tr
(

D2η
)2 − 2 det

(

D2η
)

)

dxdy,
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where B is an annulus with inner radius r0 = ρ0/R and unit outer radius. Minimizers

of Et also minimize Eτ and therefore we will restrict our attention to the functional

Eτ .

2.2 Föppl - von Kármán Equations

In this section let ∂B denote the boundary of B with outward normal vector field n

and tangent vector field t. Also, assume that x ∈ AFvK with corresponding out-of-

plane displacement η and in-plane displacement χ = (χ1, χ2) extremizes Eτ .

2.2.1 First Föppl-von Kármán Equation

Taking the variation with respect to χ1, we obtain

δχ1
Eτ [x] =

∫

B

[

4

1− ν
(γ11 + γ22)

∂

∂x
δχ1 − 4

(

γ22
∂

∂x
δχ1 − γ12

∂

∂y
δχ1

)]

dxdy

= 4

∫

B

(

γ11 + νγ22
1− ν

, γ12

)

· ∇δχ1 dxdy

= 4

∫

∂B

(

γ11 + νγ22
1− ν

, γ12

)

· nδχ1 ds− 4

∫

B

∇ ·
(

γ11 + νγ22
1− ν

, γ12

)

δχ1 dxdy.

Similarly, the variation with respect to χ2 yields:

δχ2Eτ [x] = 4

∫

∂B

(

γ12,
γ22 + νγ11

1− ν
,

)

· nδχ2 ds− 4

∫

B

∇ ·
(

γ12,
γ22 + νγ11

1− ν
,

)

δχ1 dxdy.

Therefore, the governing equations for the in-plane strain are

∇ · ((1− ν)−1(γ11 + νγ22), γ12) = 0, ∇ · (γ12, (1− ν)−1(νγ11 + γ22)) = 0, (2.2.1)

with the natural boundary conditions

n · ((1− ν)−1(γ11 + νγ22), γ12)|∂B = 0, n · (γ12, (1− ν)−1(νγ11 + γ22))|∂B = 0.

Furthermore, the divergence condition (2.2.1) implies that there exists a stress po-

tential function Φ ∈ W 2,2(B,R) satisfying

D2Φ =
1

1− ν

(

νγ11 + γ22 −(1− ν)γ12
−(1− ν)γ12 γ11 + νγ22

)

, (2.2.2)
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(Landau & Lifshitz, 1986).

Now, assuming γ is second differentiable, we have that

∂2γ11
∂y2

− 2
∂2γ12
∂x∂y

+
∂2γ22
∂x2

= 2
∂3χ1

∂x∂y2
+ 2

(

∂η

∂x∂y

)2

+ 2
∂η

∂x

∂3η

∂x∂y2
− 2

3

−2
∂3χ1

∂x∂y2
− 2

∂3χ2

∂x2∂y
− 2

∂2η

∂x2
∂η

∂y2
− 2

∂η

∂x

∂3η

∂x∂y2

−2

(

∂2η

∂x∂y

)2

− 2
∂η

∂y

∂2η

∂y2∂x
− 2

3

+2
∂3χ2

∂x2∂y
+ 2

(

∂η

∂x∂y

)2

+ 2
∂η

∂y

∂3η

∂x2∂y
− 2

3
.

Therefore, upon cancelling terms, we have the following compatibility condition be-

tween γ and η:
∂2γ11
∂y2

− 2
∂2γ12
∂x∂y

+
∂2γ22
∂x2

− 2[η, η]− 2 = 0, (2.2.3)

where the operator [·, ·] : C2(B,R)× C2(B,R) → R is defined by

[f, g] =
1

2

(

∂2f

∂x2
∂g

∂y2
+
∂2f

∂y2
∂2g

∂x2
− 2

∂2f

∂x∂y

∂2g

∂x∂y

)

.

Therefore, inverting (2.2.2) and substituting into (2.2.3) we have the following propo-

sition.

Proposition 2.2.1. If x∗ ∈ A with potential Φ and out-of-plane displacement η

such that Eτ [x∗] = infx∈A Eτ [x], and if Φ is (weakly) four times differentiable then Φ

satisfies the first Föppl - von Kármán equation:

1

2(1 + ν)
∆2Φ + [η, η] = −1. (2.2.4)

Also, Φ satisfies the following natural boundary conditions:

n ·
(

∂2Φ
∂y2

,− ∂2Φ
∂x∂y

)∣

∣

∣

∂B
= 0, n ·

(

− ∂2Φ
∂x∂y

, ∂
2Φ

∂x2

)∣

∣

∣

∂B
= 0. (2.2.5)

Furthermore, by (2.2.2) the stretching energy can be expressed in terms of Φ:

S[x] =
∫

B

(

1

1 + ν
(∆Φ)2 − 2[Φ,Φ]

)

dxdy.
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The next proposition allows us to simplify this energy further and will be useful in

the next section.

Proposition 2.2.2. If x∗ ∈ AFvK with potential Φ and infx∈A Eτ [x] = Eτ [x∗] then

S[x∗] =

∫

B

1

1 + ν
(∆Φ)2 dxdy.

Proof. Let x∗ ∈ AFvK with corresponding potential function Φ such that infx∈A Eτ [x] =
Eτ [x∗]. Using Stokes’ theorem and applying the boundary conditions (2.2.5), we have

that

∫

B

[Φ,Φ] dxdy =

∫

B

(

∂2Φ

∂x2
∂2Φ

∂y2
− ∂2Φ

∂x∂y

∂2Φ

∂x∂y

)

dxdy

=

∫

B

[

∂

∂x

(

∂Φ

∂x

∂2Φ

∂y2
− ∂Φ

∂y

∂2Φ

∂x∂y

)

+
∂

∂y

(

∂Φ

∂y

∂2Φ

∂x2
− ∂Φ

∂y

∂2Φ

∂x∂y

)]

dxdy

=

∫

∂B

(

∂Φ

∂x

∂2Φ

∂y2
− ∂Φ

∂y

∂2Φ

∂x∂y
,
∂Φ

∂y

∂2Φ

∂x2
− ∂Φ

∂x

∂2Φ

∂x∂y

)

· n ds

=

∫

∂B

∂Φ

∂x

(

∂2Φ

∂y2
,− ∂2Φ

∂x∂y

)

· n ds+
∫

∂B

∂Φ

∂y

(

− ∂2Φ

∂x∂y
,
∂2Φ

∂x∂y

)

· n ds

= 0.

Therefore,

S[x∗] =

∫

B

(

1

1 + ν
(∆Φ)2 − 2[Φ,Φ]

)

dxdy =

∫

B

1

1 + ν
(∆Φ)2 dxdy.
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2.2.2 Second Föppl-von Kármán Equation

Now, taking the variation of S with respect to η and applying the boundary conditions

(2.2.5) we have

δηS[x] = 2

∫

B

[

1

1− ν
(γ11 + γ22)

(

∂η

∂x

∂

∂x
δη +

∂η

∂y

∂

∂y
δη

)

−
(

γ11
∂η

∂y

∂

∂y
δη + γ22

∂η

∂x

∂

∂x
δη − γ12

∂η

∂x

∂

∂y
δη − γ12

∂η

∂y

∂

∂x
δη

)]

dxdy

= 8

∫

B

(

∂2Φ

∂y2
∂η

∂x
− ∂2Φ

∂x∂y

∂η

∂y
,
∂2Φ

∂x2
∂η

∂y
− ∂2Φ

∂x∂y

∂η

∂x

)

· ∇δη dxdy

= 8

∫

∂B

[

∂η

∂x

(

∂2Φ

∂y2
,− ∂2Φ

∂x∂y

)

· n+
∂η

∂y

(

− ∂2Φ

∂x∂y
,
∂2Φ

∂x∂y

)

· n
]

δη ds

−8

∫

B

[Φ, η]δη dxdy

= −8

∫

B

[Φ, η]δη dxdy.

Furthermore, taking the variation of the mean curvature we have that

δη
1

2

∫

B

(∆η)2 dxdy =

∫

B

∆η ·∆δη dxdy

=

∫

B

[∇ · (∆η · ∇δη)−∇ (∆η) · ∇δη] dxdy

=

∫

∂B

∆η∇δη · n ds−
∫

∂B

∇(∆η)δη · n ds+
∫

B

∆2ηδη dxdy.

Taking the variation of the Gaussian curvature we have that

δη

∫

B

det(D2η) dxdy

= −
∫

D

[

2
∂2η

∂x∂y

∂2δη

∂x∂y
− ∂2η

∂x2
∂2δη

∂y2
− ∂2δη

∂x2
∂2η

∂y2

]

dxdy

= −
∫

B

[

∂

∂x

(

∂δη

∂y

∂2η

∂x∂y
− ∂δη

∂x

∂2η

∂y2

)

+
∂

∂y

(

∂δη

∂x

∂2η

∂x∂y
− ∂δη

∂y

∂2η

∂x2

)]

dxdy

= −
∫

∂B

[(

∂δη

∂y

∂2η

∂x∂y
− ∂δη

∂x

∂2η

∂y2

)

cos(φ) +

(

∂δη

∂x

∂2η

∂x∂y
− ∂δη

∂y

∂2η

∂x2

)

sin(φ)

]

ds

= −
∫

∂B

(

2 sin(φ) cos(φ)
∂2η

∂x∂y
− sin2(φ)

∂2η

∂x2
− cos2(φ)

∂2η

∂y2

)

∂δη

∂n
ds

−
∫

∂B

(

sin(φ) cos(φ)

(

∂2η

∂y2
− ∂2η

∂x2

)

+
(

cos2(φ)− sin2(φ)
) ∂2η

∂x∂y

)

∂δη

∂t
ds,
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where φ is the angle between n and the x-axis and we have used the following trans-

formation

∂

∂x
= cos(φ)

∂

∂n
− sin(φ)

∂

∂t
∂

∂y
= sin(φ)

∂

∂n
+ cos(φ)

∂

∂t
.

The fact that the variation of the Gaussian curvature reduces to integrals on ∂B

is a realization of the Gauss-Bonet theorem in the FvK approximation. Since ∂B is

a closed contour it follows from integration by parts that

∫

∂B

(

sin(φ) cos(φ)

(

∂2η

∂y2
− ∂2η

∂x2

)

+
(

cos2(φ)− sin2(φ)
) ∂2η

∂x∂y

)

∂δη

∂t
ds

= −
∫

∂B

∂

∂t

(

sin(φ) cos(φ)

(

∂2η

∂y2
− ∂2η

∂x2

)

+
(

cos2(φ)− sin2(φ)
) ∂2η

∂x∂y

)

δη ds.

Therefore, the variation of the total energy with respect to η is given by

δηEτ [x] =

∫

B

(

−8[Φ, η] + 2
τ 2

1− ν
∆2η

)

δη dxdy

+2

∫

∂B

(

1

1− ν
∆η − nT ·D2η · n

)

∂δη

∂n
ds

−
∫

∂B

(

1

1− ν

∂∆η

∂n
+

∂

∂t

(

nT ·D2η · t
)

)

δη ds.

Proposition 2.2.3. If x∗ ∈ A with potential Φ and out-of-plane displacement η,

Eτ [x∗] = infx∈A Eτ [x], and if η is (weakly) four times differentiable then

[Φ, η] =
τ 2

4(1− ν)
∆2η. (2.2.6)

This equation is called the second Föppl - von Kármán equation. Furthermore,

η satisfies the following natural boundary conditions:

1

1− ν
∆η − nT ·D2η · n

∣

∣

∣

∣

∂B

= 0, (2.2.7)

1

1− ν

∂∆η

∂n
+

∂

∂t

(

nT ·D2η · t
)

∣

∣

∣

∣

∂B

= 0. (2.2.8)
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The equations (2.2.4) and (2.2.6) along with the boundary conditions (2.2.5),

(2.2.7) and (2.2.8) are a complete system of equations governing the deformation of

the sheet. For general geometries, the boundary conditions are intractable and in

later sections we will use the geometry of B to simplify these equations further.

2.3 Flat Solution

In general finding exact solutions to the FvK equations and its natural boundary

conditions is intractable. If we make the assumption that the deformation remains

flat, that is the out-of-plane displacement is zero, then the FvK equations can be

significantly simplified. Define the admissible set of flat configurations Af ⊂ A
by Af = {x ∈ A : η = 0} and define F = infx∈Af

Eτ [x]. If x ∈ Af extremizes Eτ with

potential function Φ then, assuming radial symmetry, we have by (2.2.4) and (2.2.5)

that Φ satisfies the following boundary value problem

∂4Φ

∂r4
+

2

r

∂3Φ

∂r3
− 1

r2
∂2Φ

∂r2
+

1

r3
∂Φ

∂r
= −2(1 + ν),

∂Φ

∂r

∣

∣

∣

∣

r=r0,1

= 0. (2.3.1)

The general solution to this differential equation is

Φ = c1 + c2r
2 + c3 ln(r) + c4r

2 ln(r)− (1 + ν)
r4

32
,

where c1, c2, c3 and c4 are arbitrary constants. Since c1 and c3 ln(r) are harmonic func-

tions it follows from proposition 2.2.2 that we can assume without loss of generality

that c1 = c3 = 0. Consequently, the solution to (2.3.1) is

Φ =
1 + ν

32 ln (r0)

[(

r20 − 1− 2 ln(r0)
)

r2 + 2
(

r20 − 1
)

r2 ln(r)− ln (r0) r
4
]

.

Therefore, we have the following result:

Lemma 2.3.1. Suppose x∗ ∈ Af satisfies Eτ [x∗] = infx∈Af
Eτ [x]. Then,

Eτ [x∗] = F =
(1 + ν)π

32 ln(r0)2

[

1

2

(

r20 − 1
)3

+
(

r20 − 1
)2 (

r20 + 1
)

ln(r0) +
2

3

(

1− r60
)

ln(r0)
2

]

.
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The quantity F measures the minimal elastic energy of deformations that undergo

pure stretching, i.e. the bending energy of such deformations is zero. Although we

have found exact solutions to the FvK equations, as we will see in the next section, we

can construct deformations with pure bending energy that have lower elastic energy

if the sheet is sufficiently thin.

2.4 Isometric Immersions

In the FvK approximation, define the set of FvK isometric immersions by A0 =

{x ∈ A : γ = 0}. By (2.2.3), it follows that the solvability condition for the equation

γ = 0 is the Monge-Ampere equation

[η, η] = det
(

D2η
)

= −1, (2.4.1)

which is a version of Gauss’s Theorema Egregium in the FvK ansatz. Consequently,

if x ∈ A0 with corresponding out-of-plane displacement η, it follows that if x satisfies

(2.2.4) and (2.2.6) then ∆2η = 0. Therefore, it is natural to look for solutions to

the FvK equations by finding solutions to the above Monge-Ampere equation (2.4.1)

satisfying ∆2η = 0.

2.4.1 Saddle Isometric Immersions

By (2.1.4) and (2.4.1) it follows that for all x ∈ A0

1

τ 2
inf
x∈A0

Eτ [x] = inf
x∈A0

∫

B

1

1− ν
(∆η)2 dxdy + 2π(1− r20). (2.4.2)

Consequently, since η = xy satisfies (2.4.1) and is harmonic, it follows that the global

minimum of (2.4.2) over A0 is obtained. Therefore, using this deformation as a test

function we can extend lemma 2.3.1 to form the following proposition.

Proposition 2.4.1. Let x∗ ∈ AFvK such that Eτ [x∗] = infx∈AFvK
Eτ [x]. Then,

Eτ [x∗] ≤ min{2πτ 2(1− r20),F}.
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There are two natural test functions for the elastic energy, flat deformations and

isometric immersions, the upper bounds in the above proposition correspond to the

minimum of the elastic energy over these two classes of deformations. Moreover, this

proposition illustrates that with decreasing thickness minimizers of the elastic energy

necessarily must buckle out of the plane.

2.4.2 Convergence of Minimizers

Since the lower bound of the bending energy over A0 is obtained, we can prove rig-

orously, using the notion of Γ−convergence, that in the vanishing thickness limit

minimizers should converge to a saddle shaped isometric immersion. Recall the fol-

lowing definition of Γ−convergence (Braides, 2002):

Definition 2.4.2. On a metric space X a sequence of functionals Ft : X → R

(weakly) Γ−converges as t→ 0 to a functional F0 : X → R, written Γ−limt→0 Ft = F0

if for all x ∈ X we have that

1. (Liminf inequality) - for every sequence x0 (weakly) converging to x

F0[x] ≤ lim inf
t→0

Ft[xt].

2. (Recovery sequence) - there exists a sequence xt (weakly) converging to x

such that

F0[x] ≥ lim sup
t→0

Ft[x].

Lemma 2.4.3. The sequence of functionals Fτ : AFvK → R defined by Fτ = τ−2Eτ
weakly Γ-converge to the limiting functional F0 : AFvK → R defined by

F0[x] =

{

B[x], if S[x] 6= 0

∞, if S[x] = 0.
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Proof. We first prove the liminf inequality. Let xτ ∈ AFvK such that xτ
AFvK−⇀ x, that

is if we let (fτ , gτ ), (f, g) and ητ , η be the corresponding in-plane and out-of-plane

displacements of xτ and x respectively then

fτ
W 1,2(B,R)−⇀ f, gτ

W 1,2(B,R)−⇀ g ητ
W 2,2(B,R)−⇀ η.

To prove the liminf inequality we will show that

B[x] ≤ lim inf
τ→0

B[xτ ] and S[x] ≤ lim inf
τ→0

S[xτ ].

Since η
W 2,2(B,R)−⇀ η it follows that

∂2ητ
∂x2

L2(B,R)−⇀ ∂2η

∂x2
,

∂2ητ
∂x∂y

L2(B,R)−⇀ ∂2η

∂x∂y
,
∂2ητ
∂y2

L2(B,R)−⇀ ∂2η

∂y2
.

It is basic property of weak convergence that for all ψ ∈ L2(B,R) if ψτ
L2(B,R)−⇀ ψ then

we have the following lower semi-continuity property

‖ψ‖L2(B,R) ≤ lim inf
τ→0

‖ψτ‖L2(B,R), (2.4.3)

and ∃C > 0 such that

‖ψτ‖L2(B,R) < C, (2.4.4)

(Evans, 1990). Therefore,

B[x] =

∫

B

(

1

1− ν
(∆η)2 − 2 det(D2η)

)

dxdy

=

∫

B

(

ν

1− ν
(∆η)2 + |D2η|2

)

dxdy

≤ lim inf
τ→0

∫

B

(

ν

1− ν
(∆ηt)

2 + |D2ηt|2
)

dxdy

≤ lim inf
τ→0

B[xt].

Recall that the stretching energy is given by

S[x] =

∫

B

(

1

1− ν
(γ11 + γ22)

2 − det(γ)

)

dxdy

=

∫

B

(

ν

1− ν
(γ11 + γ22)

2 + γ211 + 2γ212 + γ222

)

dxdy.
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Concentrating on one term we have that

∫

B

γ211 dxdy =

∫

B

[

2

(

∂fτ
∂x

)2

+ 4
∂fτ
∂x

(

∂ητ
∂x2

)2

− 2y2

3
+

(

∂ητ
∂x

)4

−2

(

∂ητ
∂x

)2

− 2

(

∂ητ
∂x

)2
y2

3
+
y4

3

]

dxdy.

To understand the limiting behavior of the terms on the right hand of the above

equation we will use the following intermediate results:

1. Since B has finite area and η ∈ W 2,2(B,R) it follows from an application of

Hölder’s inequality that
∂ητ
∂x

∈ W 1,p(B,R) for 1 ≤ p ≤ 2. Therefore, by Rellich’s

compactness theorem (Hunter & Nachtergaele, 2001) it follows that

∂ητ
∂x

Lq(B,R)−→ ∂η

∂x
, (2.4.5)

for 1 ≤ q <∞.

2. Applying the reverse triangle inequality we have that

∣

∣

∣

∣

∣

∥

∥

∥

∥

∂ητ
∂x

∥

∥

∥

∥

Lq(B,R)

−
∥

∥

∥

∥

∂η

∂x

∥

∥

∥

∥

Lq(B,R)

∣

∣

∣

∣

∣

≤
∥

∥

∥

∥

∂ητ
∂x

− ∂η

∂x

∥

∥

∥

∥

Lq(B,R)

and thus for 1 ≤ q <∞ it follows that

lim
τ→0

∥

∥

∥

∥

∂ητ
∂x

∥

∥

∥

∥

Lq(B,R)

=

∥

∥

∥

∥

∂η

∂x

∥

∥

∥

∥

Lq(B,R)

. (2.4.6)

Again since fτ
W 2,2(D,R)−⇀ f it follows that

∂fτ
∂x

L2(B,R)−⇀ ∂f

∂x
which can be used to show

the following limits and inequalities:

i By (2.4.3):

lim
τ→0

∥

∥

∥

∥

∂fτ
∂x

∥

∥

∥

∥

2

L2(B,R)

≥
∥

∥

∥

∥

∂f

∂x

∥

∥

∥

∥

2

L2(B,R)

.
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ii Rearranging we have that

∫

B

∂fτ
∂x

(

∂ητ
∂x

)2

dxdy

=

∫

B

∂fτ
∂x

(

(

∂ητ
∂x

)2

−
(

∂η

∂x

)2
)

dxdy +

∫

B

∂fτ
∂x

(

∂η

∂x

)2

dxdy

=

∫

B

∂fτ
∂x

(

∂ητ
∂x

− ∂η

∂x

)(

∂ητ
∂x

− ∂η

∂x

)

dxdy +

∫

B

∂fτ
∂x

(

∂η

∂x

)2

dxdy.

Applying Hölder’s inequality

∫

B

∂fτ
∂x

(

∂ητ
∂x

− ∂η

∂x

)(

∂ητ
∂x

− ∂η

∂x

)

dxdy

≤
(

∫

B

(

∂fτ
∂x

)2

dxdy

)
1

2

(

∫

B

(

∂ητ
∂x

− ∂η

∂x

)4

dxdy

)
1

4
(
∫

B

(

∂ητ
∂x

+
∂η

∂x

)

dxdy

)
1

4

.

Now, applying the elementary inequality (a+ b)4 ≤ 8(a4+ b4) and (2.4.4) we have

that

∫

B

∂fτ
∂x

(

∂ητ
∂x

− ∂η

∂x

)(

∂ητ
∂x

− ∂η

∂x

)

dxdy

≤ 2
3

4C

∥

∥

∥

∥

∂ητ
∂x

− ∂η

∂x

∥

∥

∥

∥

L4(B,R)

(

∥

∥

∥

∥

∂ητ
∂x

∥

∥

∥

∥

4

L4(B,R)

+

∥

∥

∥

∥

∂η

∂x

∥

∥

∥

∥

4

L4(B,R)

)
1

4

.

Taking limits of both sides it follows that

lim
τ→0

∫

B

∂fτ
∂x

(

(

∂ητ
∂x

)2

−
(

∂η

∂x

)2
)

dxdy = 0.

Furthermore, since
∂fτ
∂x

L2(B,R)−⇀ ∂f

∂x
and

(

∂η

∂x

)2

∈ L2(B,R) we can conclude that

lim
τ→0

∫

B

∂fτ
∂x

(

∂ητ
∂x

)2

dxdy =

∫

B

∂f

∂x

(

∂η

∂x

)2

dxdy.

iii Since
∂fτ
∂x

L2(B,R)−⇀ ∂f

∂x
it follows that

lim
τ→0

∫

B

∂fτ
∂x

y2

3
dA =

∫

B

∂f

∂x

y2

3
dA.
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iv By item 2

lim
τ→0

∥

∥

∥

∥

∂ητ
∂x

∥

∥

∥

∥

4

L4(B,R)

=

∥

∥

∥

∥

∂η

∂x

∥

∥

∥

∥

4

L4(B,R)

.

v Applying the same techniques as in item ii we have that

lim
τ→0

∫

B

(

∂ητ
∂x

)2
y2

3
dxdy =

∫

B

(

∂η

∂x

)2
y2

3
dxdy.

Therefore, by items i-v it follows that

lim inf
τ→0

∫

B

(

2
∂fτ
∂x

+

(

∂ητ
∂x

)2

− y2

3

)2

dxdy ≥
∫

B

(

2
∂f

∂x
+

(

∂η

∂x

)2

− y2

3

)2

dxdy.

Identical arguments can be applied to the other strain terms to show that

S[x] ≤ lim inf
τ→0

S[xτ ]

Now, we can prove the liminf inequality. First, if S[x] = 0 then

lim inf
τ→0

Fτ [xτ ] = lim inf
τ→0

1

τ 2
S[xτ ] + lim inf

τ→0
B[xτ ] ≥ lim inf

τ→0
B[xτ ] ≥ B[x] = F0[x].

If S[x] 6= 0 then

lim inf
τ→0

Fτ [xτ ] ≥ lim inf
τ→0

1

τ 2
S[xτ ] ≥ lim inf

τ→0

1

τ 2
S[x] = ∞ = F0[x].

Finally, to construct the recovery sequence for a deformation y ∈ AFvK we simply

select yt = y. If S[y] = 0 then

lim
τ→0

Fτ [yτ ] = lim
τ→0

(

1

τ 2
S[yτ ] + B[yτ ]

)

= lim
τ→0

B[y] = B[y] = F0[y].

If S[y] 6= 0 then

lim
τ→0

Fτ [yτ ] = lim
τ→0

(

1

τ 2
S[yτ ] + B[yτ ]

)

≥ lim
τ→0

1

τ 2
S[y] = ∞ = F0[y].

Lemma 2.4.4. Let xτ ∈ AFvK such that Fτ [xτ ] = infy Fτ [y]. Then, lim
τ→0

Fτ [xτ ] exists

and 0 ≤ lim
τ→0

Fτ [xτ ] ≤ 2π(1− r20).
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Proof. Fix s, t > 0 such that s < t and let xs,xt such that inf
x∈AFvK

Ft[x] = Ft[x] and

inf
x∈AFvK

Fs[x] = Fs[x]. Then,

Ft[xt] ≤ Ft[xs] =
1

t2
S[xs] + B[xs] <

1

s2
S[xs] + B[xs] = Fs[xs].

Therefore the sequence inf
x∈AFvK

Fs[x] is monotone increasing as s → 0 and by lemma

(2.4.1), satisfies 0 ≤ inf
x∈AFvK

Fs[x] ≤ 2π(1− r20). Therefore, by the Bolzano-Weierstrass

theorem inf
x∈AFvK

Fτ [x] converges.

Definition 2.4.5. Define A′
FvK ⊂ AFvK by

A′
FvK =

{

(f, g, ω) ∈ AFvK : f(0) = g(0) = η(0) = 0 and
∂η

∂x

∣

∣

∣

∣

(0,0)

=
∂η

∂y

∣

∣

∣

∣

(0,0)

= 0

}

.

The above definition fixes the origin of a deformation and aligns the normal at the

origin with the z-axis of R3 and thus removes the possibility of a minimizing sequence

“escaping to infinity”. By a rigid translation and rotation any element x ∈ AFvK can

naturally be identified with an element of A′
FvK .

Theorem 2.4.6. If xτ ∈ A′
FvK is a sequence such that inf

y∈A′

FvK

Fτ [y] = Fτ [xτ ] then

2π(1− r20) = inf
y∈A′

FvK

F0[y] = lim
τ→0

Fτ [xτ ]. (2.4.7)

and every limit of convergent subsequence of xt is a minimum point for F0.

Proof. Let x = (f, g, η) ∈ A′
FvK such that for all τ ∈ (0, 1), Fτ [x] ≤ 2π(1 − r20).

Consequently, there exists C1 > 0 such that

‖∇f‖L2(B,R) < C1, ‖∇g‖L2(B,R) < C1, ‖∇η‖L4(B,R) < C1, ‖|D2η|2‖L2(B,R) < C1.

It follows from Hölder’s inequality that there exists a constant C2 > 0 such that

‖∇η‖L2(B,R) ≤ C2‖∇η‖L4(B,R). Therefore, by Poincaré’s inequality there exists a

constant C3 > 0 such that

‖f‖L2(B,R) < C3, ‖g‖L2(B,R) < C3, ‖η‖L2(B,R) < C3,
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and thus by the Banach-Alaoglu theorem (Hunter & Nachtergaele, 2001) the set K =

{x ∈ A′
FvK : ∀τ ∈ (0, 1), Fτ [x] ≤ 2π(1− r20)} is weakly compact in A′

FvK .

Let xτ be a sequence such that inf
y∈A′

FvK

Fτ [y] = Fτ [xτ ]. By (2.4.1) it follows that

Fτ [xτ ] ≤ 2π(1 − r20) and thus by compactness of K there exists a subsequence xτk

and x∗ ∈ A′
FvK such that xτk

A′

FvK−⇀ x∗. Therefore, by lemmas 2.4.3 and 2.4.4 we have

that

inf
y∈A′

FvK

F0[y] ≤ F0[x
∗] ≤ lim inf

k→0
Fτk [xtk ] = lim

k→0
inf

y∈A′

FvK

Fτk [y] = lim
τ→0

inf
y∈A′

FvK

Fτ [y].

Therefore,

inf
y∈A′

FvK

F0[y] ≤ lim
τ→0

inf
y∈A′

FvK

Fτ [y]. (2.4.8)

Now, fix δ > 0 and let y ∈ AFvK such that F0[y] ≤ inf
z∈A′

FvK

F0[z] + δ. Then, if yj

is recovery sequence for y then

inf
z∈A′

FvK

F0[z] + δ ≥ F0[y] ≥ lim sup
τ→0

Fτ [yt] ≥ lim sup
τ→0

inf
z∈A′

FvK

Fτ [z] = lim
τ→0

inf
z∈A′

FvK

Fτ [z].

By the arbitrariness of δ if follows that

inf
z∈A′

FvK

F0[z] ≥ lim
τ→0

inf
z∈A′

FvK

Fτ [z]. (2.4.9)

Therefore, by (2.4.8) and (2.4.9) we have proved that

inf
z∈A′

FvK

F0[z] = lim
τ→0

inf
z∈A′

FvK

Fτ [z].

Furthermore, if yτ is the sequence as defined above and yτk is a subsequence such

that yτk

A′

FvK−⇀ y∗ then

lim
τ→0

inf
z∈A′

FvK

Fτ [z] = inf
z∈A′

FvK

F0[z] ≤ F0[y
∗] ≤ lim

τ→0
inf

z∈A′

FvK

Fτ [z],

which proves that

inf
z∈A′

FvK

F0[z] = F0[y
∗].
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2.4.3 Periodic Isometric Immersions

The saddle shaped isometric immersion with out-of-plane displacement η = xy is not

the only solution to the Monge-Ampere equation (2.4.1). The one parameter family

of quadratic functions

ηn = y
(

x− cot
(π

n

)

y
)

=
r2

2
csc
(π

n

) [

cos
(π

n
− 2θ

)

− cos
(π

n

)]

, (2.4.10)

satisfy (2.4.1) and ∆2η = 0 as well (Polyanin & Zaitsev, 2004). Furthermore, this

family of surfaces vanish along the lines θ = π/n and θ = 0. Therefore, if n ∈
{2, 3, 4, . . .}, a deformation with a periodic profile can be constructed by odd periodic

extensions (see figure 2.1). It is a basic result of Fourier analysis that ηn has continuous

first partial derivatives but a jump in the second partial derivative with respect to θ

at integer multiples of π/n. Consequently, these lines of inflection are singularities in

the sense that the deformation is not smooth along these lines but ηn ∈ W 2,2(B,R)

and the bending energy remains continuous and is finite. Therefore, these surfaces are

valid isometric immersions in the FvK approximation and thus An ∩ A0 6= ∅ and by

calculating the energy of this configuration we have the following result which agrees

with proposition 2.4.1 when n = 2.

Lemma 2.4.7. Let x∗ ∈ An such that Eτ [x∗] = infx∈An Eτ [x], then

Eτ [x∗] ≤ min

{

τ 2
(

4π cot2(π/n)

1− ν
+ 2π

)

(1− r20),F
}

≤ min
{

Cn2τ 2,F
}

,

where C is a constant independent of n and τ .

Proof. The middle term in the chain of inequalities is the bending energy of the

deformation ηn and the calculation is omitted. Expanding near n = ∞ we have that

4π cot2
(

π
n

)

1− ν
+ 2π =

4n2

π(1− ν)
+

(

2π − 8π

3(1− nu)

)

+ . . . .

Consequently there exists M > 0 and K1 > 0 such that if n ≥M then

4π cot2
(

π
n

)

1− ν
+ 2π ≤ K1n

2.
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Figure 2.1. 1. The one parameter family of isometric immersions with out-of-plane
displacement η = y (x− cot (π/n)) parametrized by n ∈ {2, 3, . . .} vanishes along the
lines θ = 0 and θ = π/n. 2. We can “cut out” the section of the surface bounded
between these two lines. 3. We can take the odd reflection of this isolated piece of
the surface about the the line θ = 0. 4-7. By continually taking the odd reflection of
sectors about lines where the surface vanishes we can construct a periodic isometric
immersion.

Differentiating we have that

d

dn
cot2

(π

n

)

=
2 cot2

(

π
n

)

csc
(

π
n

)

n2

and thus cot2
(π

n

)

is monotone increasing. Consequently, on the interval [2,M ] we

have that
4π cot2

(

π
n

)

1− ν
+ 2π ≤

(

π cot2
(

π
M

)

1− ν
+
π

2

)

n2 = K2n
2.

Therefore, if we set C = max{K1, K2} then the result follows.

The preceding lemma shows that the elastic energy of periodic isometric immer-

sions grows like n2, and thus the two wave isometric immersion is energetically pre-

ferred over isometric immersions with more waves. Furthermore, by theorem 2.4.6

minimizers of the elastic energy converge to a saddle shaped deformation with decreas-

ing thickness. But, the periodic isometric immersions we constructed are qualitatively
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Figure 2.2. Periodic isometric immersions in the FvK ansatz

similar to what is observed in experiments (see figure 2.2) and thus we will continue

to study them in future sections.

2.5 Numerical Solutions

Beyond the flat solution, exact solutions to the Föppl-von Kármán equations are

largely unknown. In this section we construct numerical solutions to illustrate the

transition of the flat solutions to ones that are approximately isometric immersions.

The boundary value problem given by (2.2.4-2.2.8) can be approximately solved by

numerically minimizing Eτ using a Rayleigh-Ritz type algorithm (Szilard, 2004). To

do this, it is convenient to write the energy in the form

Eτ [x] =
∫

B

[

ν

1− ν

(

γ211 + γ22
)2

+ γ211 + 2γ212 + γ222

]

dxdy

+τ 2
∫

B

[

ν

1− ν
(∆η)2 +

(

∂2η

∂x2

)2

+ 2

(

∂2η

∂x∂y

)2

+

(

∂2η

∂y2

)2
]

dxdy. (2.5.1)
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Eτ [x] can then be discretized using a finite difference scheme to approximate the

integrand and a composite quadrature rule to approximate the integrals. This dis-

cretization of (2.5.1) generates a sum of quadratic terms that can then be minimized

using Matlab’s minimization routine lsqnonlin (MATLAB, 2010).

Figure 2.3. Stencil of the domain.

To be specific, we use a uniform discretization in the variables r and θ with spacing

δr and δθ respectively and approximate the integral (2.5.1) in a coordinate rectangle

Bi,j with lower left index (i, j) (see figure 2.3) by

E i,j
τ [x] =

δrδθ

4

1
∑

l=0

1
∑

k=0

[

ν

1− ν

(

γi,j11 + γi,j22
)2

+
(

γi,j11
)2

+ 2
(

γi,j12
)2

+
(

γi,j22
)2
]

ri,j

+τ 2
δrδθ

4

1
∑

l=0

1
∑

k=0

[

ν

1− ν

(

∆ηi,j
)2

+

(

∂2ηi,j

∂x2

)2

+ 2

(

∂2ηi,j

∂x∂y

)2

+

(

∂2ηi,j

∂y2

)2
]

ri,j.

The derivatives are then approximated by a fourth order finite differences with appro-

priate forward and backward schemes near the boundary (see appendix B). Summing
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over i and j the elastic energy is approximated by

E [x] =
∑

i

∑

j

E i,j[x] +O(δr2 + δθ2).

This discrete sum of quadratic terms can then be directly minimized.

It is important to note that we used a fourth order difference scheme to approx-

imate derivatives. This is critical to obtain an accurate approximation in that for

lower order schemes the error in the stretching energy may be significantly bounded

away from zero. That is, the numerical algorithm will not detect the existence of an

isometric immersion. Furthermore, as the thickness decreases the bending content of

an isometric immersion will be lower than the error in approximating the stretching

energy. Therefore, the algorithm will break down at a critical thickness τ ∗ which can

be estimated by

τ ∗ =
√
δr4 + δθ4.

In figure 2.4 we plot the elastic energy of numerical minimizers of Eτ for decreasing
values of τ with r0 = 1 and ν = 1/2. The data in this figure was generated using

the algorithm outlined above with a 40× 40 mesh. The solid line corresponds to the

upper bound in lemma 2.3.1 for flat deformations while the dashed line is the upper

bound in proposition 2.4.1 for isometric immersions. In this figure three representative

minimizers are plotted and colored by the Gaussian curvature K = det(D2η) for

various values of τ . These three surfaces and the scaling of the energy illustrate that

with decreasing thickness the minimizing surface transitions from being flat to one

that is close to the isometric immersion η = xy. For the left most surface, the regions

in which the Gaussian curvature is substantially different from −1 are localized to the

edges of the annulus and shrink with decreasing thickness. This indicates that with

decreasing thickness the stretching energy is being concentrated in boundary layers

in which the bending energy of the isometric energy is slightly reduced.

In figure 2.5 we again plot the numerical minimizers of Eτ using the same param-

eters and discretization used to generate figure 2.4 but with the boundary conditions
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Figure 2.4. The normalized elastic energy of numerical minimizers of Eτ with ν =
1/2 and r0 = 10−1 for decreasing values of τ . The solid line corresponds to the elastic
energy of minimizers over the set of flat deformations given by lemma 2.3.1. The
dashed line corresponds to the elastic energy over the set of deformations satisfying
γ = 0 given in lemma 2.4.1. The three configurations plotted are colored by the
approximate Gaussian curvature K = [η, η]. These three surfaces illustrate that with
decreasing thickness the surface transitions from being a flat surface to one that is
close to the isometric immersion η = xy with localized regions of stretching near the
inner and outer radius of the disk.

η = 0 along the lines θ = 0, π/n, 2π/n, . . . for n ∈ {2, 3, 4, 5}. These boundary con-

ditions were selected to generate numerical minimizers over An. The dashed lines

correspond to the upper bounds for n-periodic isometric immersions given by lemma

2.4.7 while the solid line is again the upper bound in lemma 2.3.1. The four plotted

surfaces are colored by the approximate Gaussian curvature K = [η, η] and were se-

lected to compare the geometry of the boundary layers for n ≥ 3 with the case n = 2.

For n ≥ 3 additional boundary layers form around the lines of inflection in which the

surface stretches to reduce the local mean curvature of the surface. Notice also that

for n ≥ 3 the Gaussian curvature within the boundary layers near the edge of the disk

satisfies [η, η] < −1 which is in contrast to the case when n = 2 where [η, η] > −1.
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Figure 2.5. The normalized elastic energy of numerical minimizers of Eτ over An

with r0 = 10−1 and ν = 1/2. The dashed lines correspond to the upper bounds
given by lemma 2.4.7 while the solid line corresponds to the upper bound in lemma
2.3.1. The configurations plotted are colored by the approximate Gaussian curvature
[η, η]. In the vanishing thickness limit minimizers of Eτ converge to an n-periodic
isometric immersion. The numerical minimizers have localized regions of stretching
near the inner and outer radius and along the lines of inflection. The existence of
these regions indicate that the minimizers are perturbations of an isometric immersion
with boundary layers to account for the natural boundary conditions.

2.6 Scaling Laws for the Elastic Energy of Periodic Defor-

mations

In this section we derive ansatz free lower bounds for n-periodic configurations. The

essential idea of this section is that the bending energy near the edge of the annulus

controls the stretching energy in the bulk of the annulus. Before we state and prove

this lower bound we need several intermediate results. Let n ∈ {2, 3, . . .} and define

the following sets:

1. Sn is the sector in R
2 bounded between θ = 0 and θ = π/n,

2. For z > r0, B
z ⊂ B is the annular region defined by Bz = {(r, θ) ∈ B : r0 ≤
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z ≤ r ≤ 1},

3. Bz
n = Sn∩Bz is a wedge shaped region bounded between θ = 0, θ = π/n, r = 1,

and r = z.

Furthermore, let r∗ = max{.95, r0}.

Lemma 2.6.1. If x ∈ An with corresponding out-of-plane displacement η then

1.
∫

Bz
n

(

∂η

∂r

)2

dA ≤ 1

n2

∫

Bz
n

(

∂2η

∂r∂θ

)2

dA (2.6.1)

2.
∫

Bz
n

η2 dA ≤ π4

48n4

∫

Bz
n

(

∂2η

∂θ2

)2

dA (2.6.2)

3.
∫

Bz
n

(

∂η

∂θ

)2

dA ≤ π2

12n2

∫

Bz
n

(

∂2η

∂θ2

)2

dA (2.6.3)

Proof. Since x ∈ An we have that η = 0 along the lines θ = 0, π/n and thus

∂η

∂r

∣

∣

∣

∣

θ=0,π
n

= 0.

Consequently it follows from Poincare’s inequality with the optimal constant that

∫ π
n

0

(

∂η

∂r

)2

dθ ≤ 1

n2

∫ π
n

0

(

∂2η

∂r∂θ

)2

dθ,

(Payne & Weinberger, 1960). Therefore, integrating we have that

∫

Bz
n

(

∂η

∂r

)2

dA ≤ 1

n2

∫

Bz
n

(

∂2η

∂r∂θ

)2

dA,

proving item 1.

Constructing the Green’s function G(θ, φ) for the operator ∂2

∂θ2
with Dirichlet

boundary conditions on [0, π/n] we have that

η(r, θ) =

∫ π
n

0

G(θ, φ)
∂2η

∂φ2
dφ,
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where

G(θ, φ) =

{

n
π
φ(θ − π/n), if θ < φ

n
π
θ(φ− π/n), if φ < θ

.

Therefore,

η2(r, θ) ≤
(

∫ π
n

0

G2(θ, φ)dA

)(

∫ π
n

0

(

∂2η

∂θ2

)2

dθ

)

=
θ2(π − nθ)2

3nπ

∫ π
n

0

(

∂2η

∂θ2

)2

dθ

≤ π3

48n3

∫ π
n

0

(

∂2η

∂θ2

)2

dθ.

Integrating we have that

∫

Bz
n

η2dA ≤ π4

48n4

∫

Bz
n

(

∂2η

∂θ2

)2

dA,

proving item 2.

Differentiating, we have that

∂η

∂θ
=

∫ π
n

0

∂G

∂θ

∂2η

∂φ2
dφ.

Therefore,

(

∂η

∂θ

)2

≤
(

∫ π
n

0

(

∂G

∂θ

)2

dφ

)(

∫ π
n

0

(

∂2η

∂θ2

)2

dθ

)

=

(

π

3n
− θ +

nθ2

π

)
∫ π

n

0

(

∂2η

∂φ2

)2

dφ

≤ π

12n

∫ π
n

0

(

∂2η

∂φ

)2

dφ.

Integrating we have that

∫

Bz
n

(

∂η

∂θ

)2

dA ≤ π2

12n2

∫

Bz
n

(

∂2η

∂θ2

)2

dA,

proving item 3.
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Lemma 2.6.2. Let x ∈ An with corresponding out-of-plane displacement η. If

B[x] ≤ B0 and n > 2 then there exists a constant C independent of n and x such that

∫

Br∗
n

[

(

∂2η

∂θ2

)2

+

(

∂2η

∂r∂θ

)2
]

dA ≤ C
B0

n
.

Proof. Since B[x] < B0 it follows that

∫

B
r0
n

|D2η|2dA =

∫

B
r0
n

[

1

r2

(

1

r

∂η

∂θ
− ∂2η

∂r∂θ

)2

+
1

r4

(

∂2η

∂θ2
+ r

∂η

∂r

)2

+

(

∂η

∂r

)2
]

dA

≤ B0

2n
.

Therefore,
∫

Br∗
n

[

(

1

r

∂η

∂θ
− ∂2η

∂r∂θ

)2

+

(

∂2η

∂θ2
+ r

∂η

∂r

)2
]

dA ≤ B0

2n

and thus applying the elementary inequality (a+ b)2 ≥ 1
2
a2 − 2b2 we have that

1

2

∫

Br∗
n

[

(

∂2η

∂θ2

)2

+

(

∂2η

∂r∂θ

)2
]

dA− 2

∫

Br∗
n

[

1

r2

(

∂η

∂θ

)2

+ r2
(

∂η

∂r

)2
]

dA ≤ B0

2n
.

Consequently, applying lemma 2.6.1 we have that

∫

Br∗
n

[

(

∂2η

∂θ2

)2

+

(

∂2η

∂r∂θ

)2
]

dA ≤ B0

n
+ 4

∫

Br∗
n

[

1

(r∗)2

(

∂η

∂θ

)2

+

(

∂η

∂r

)2
]

dA

≤ B0

n
+

π2

3n2(r∗)2

∫

Br∗
n

(

∂2η

∂θ2

)2

dA+
4

n2

∫

Br∗
n

(

∂2η

∂r∂θ

)2

dA.

Therefore, since r∗ > π/(2
√
3) and n > 2 the result follows.

Lemma 2.6.3. Let x ∈ An with corresponding out-of-plane displacement η. If

B[x] ≤ B0 and n > 2 then there exists a constant C independent of x and n such that

∫

Br∗
|∇η|4dA ≤ C

B0

n2
.

Proof. By lemmas 2.6.1 and 2.6.2 it follows that

∫

Br∗
n

η2 dA ≤ π4

48n4

∫

Br∗
n

(

∂2η

∂θ2

)2

dA ≤ C1
B0

n5
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and

∫

Br∗
n

|∇η|2dA =

∫

Br∗
n

[

(

∂2η

∂r

)2

+
1

r2

(

∂η

∂θ

)2
]

dA

≤
∫

Br∗
n

[

(

∂2η

∂r

)2

+
1

(r∗)2

(

∂η

∂θ

)2
]

dA

≤ C2
B0

n3
.

By rotational symmetry of An we have that

∫

Br∗
η2 dA ≤ C1

B0

n4
and

∫

Br∗
|∇η|2dA ≤ C2

B0

n2

and therefore by a multiplicative inequality (Maz’ya, 2011) it follows that there exists

a constant C3 independent of x and n such that

∫

Br∗
|∇η|4dA ≤ C3

(
∫

Br∗
η2dA

)
1

2

(
∫

Br∗

(

η2 + |∇η|2 + |D2η|2
)

dA

)
3

2

≤ C
B

1

2

0

n2

(

C1
B0

n4
+ C2

B0

n2
+ B0

)
3

2

≤ C
B2
0

n2
.

Lemma 2.6.4. Let x ∈ A2 with corresponding out-of-plane displacement η. If

Bτ [x] ≤ B0 then there exists a constant C independent of x such that

∫

Br∗
|∇η|4dA ≤ C

B2
0

4

Proof. Since x ∈ A2 it follows that the means of the functions η, ∂η
∂x
, and ∂η

∂y
satisfy

〈η〉 = 1

π(1− (r∗)2)

∫

Br∗
η dA = 0,

〈

∂η

∂x

〉

=
1

π(1− (r∗)2)

∫

Br∗

∂η

∂x
dA = 0,

〈

∂η

∂y

〉

=
1

π(1− (r∗)2)

∫

Br∗

∂η

∂y
dA = 0.
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Therefore, by Poincare’s inequality it follows that there exists constants C1 and C2

independent of x such that

∫

Br∗

(

∂η

∂x

)2

dA ≤ C1

∫

Br∗
|∇η|2dA and

∫

Br∗
|∇η|2dA ≤ C2

∫

Br∗
|D2η|2dA.

Consequently, by applying the same multiplicative inequality as in the proof of lemma

2.6.3 the result follows.

Lemma 2.6.5. Let x ∈ An. If B[x] ≤ B0 then there exists a constant C > 0

independent of x and n such that

S[x] ≥ 1

2
F∗ − C

B2
0

n2
,

where F∗ is the infimum in lemma 2.3.1 with r0 = r∗

Proof. Let η be the out-of-plane displacement corresponding to x and χ = (f, g) the

in-plane displacement with component functions f, g ∈ W 1,2(B,R). Then, by lemmas

2.6.3 and 2.6.4 it follows that there exists a constant C independent of x and n such

that
∫

Br∗
|∇η|4dA ≤

∫

B

|∇η|4dA ≤ C
B0

n2
.

Therefore, the following inequalities hold:

1.

∫

Br∗
γ211 dxdy =

∫

Br∗

(

2
∂f

∂x
+

(

∂η

∂x

)2

− y2

3

)

dxdy

≥ 1

2

∫

Br∗

(

2
∂f

∂x
− y2

3

)2

dxdy − 2

∫

Br∗

(

∂η

∂x

)4

dxdy

≥ 1

2

∫

Br∗

(

2
∂f

∂x
− y2

3

)2

dxdy − 2C
B2
0

n2
.

2.
∫

Br∗
γ222 dxdy ≥ 1

2

∫

Br∗

(

2
∂g

∂y
− x2

3

)2

dxdy − 2C
B2
0

n2
.
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3.
∫

Br∗
γ212 dxdy ≥ 1

2

∫

Br∗

(

∂f

∂y
+
∂g

∂x
+
xy

3

)2

dxdy − 2

∫

Br∗

(

∂η

∂x

)2(
∂η

∂y

)2

dxdy

≥ 1

2

∫

Br∗

(

∂f

∂y
+
∂g

∂x
+
xy

3

)2

dxdy

−2

(

∫

Br∗

(

∂η

∂x

)4

dxdy

)1/2(
∫

Br∗

(

∂η

∂y

)4

dxdy

)1/2

≥ 1

2

∫

Br∗

(

∂f

∂y
+
∂g

∂x
+
xy

3

)2

dxdy − 2C
B2
0

n2
.

4.
∫

Br∗
(γ11 + γ22)

2 dxdy ≥ 1

2

∫

Br∗

(

2
∂f

∂x
+ 2

∂g

∂y
− x2

3
− y2

3

)2

dxdy − 8C
B2
0

n2
.

Therefore, since S[x] can be rewritten in the following form

S[x] =

∫

B

(

1

1− ν
tr(γ)2 − 2 det(γ)

)

dxdy

=

∫

B

(

ν

1− ν
(γ11 + γ22)

2 + γ211 + 2γ212 + γ222

)

dxdy

≥
∫

Br∗

(

ν

1− ν
(γ11 + γ22)

2 + γ211 + 2γ212 + γ222

)

dxdy

it follows by items 1-4 that there exists a constant C independent of n and x such

that

S[x] ≥ 1

2
F∗ − C

B2
0

n2
.

The preceding lemma is the essential estimate that quantifies the trade off between

bending and stretching energy. Furthermore, it shows that in the limit n→ ∞ that S
is bounded away from zero. That is, as the bending energy increases by adding more

waves there is no reduction in the stretching energy. This is in contrast to the behavior

of a minimal ridge in which with decreasing thickness the bending energy diverges

while the stretching energy converges to zero (Venkataramani, 2004; Conti & Maggi,

2008).
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Theorem 2.6.6. Suppose n ∈ {2, 3, . . .} and τ > 0. There exists constants c, C > 0

independent of n such that

min{cnτ 2,F∗/2} ≤ inf
x∈An

E [x] ≤ min{Cn2τ 2,F}.

Proof. By lemma 2.6.5 there exists a constant c1 independent of n and x such that

S[x] ≥ 1

2
F∗ − c1

B[x]2
n2

.

Therefore, minimizing the function E = S + τ 2B subject to the constraints

S ≥ 0, τ 2B ≥ 0, S ≥ 1
2
F∗ − c1

B
n2 ,

it follows that there exists a constant c independent of n and x such that

min
{

cnτ 2,F∗/2
}

≤ inf
x∈An

E [x]

The upper bound follows from lemma 2.4.7.

Corollary 2.6.7. There exists n∗ ≥ 2 such that if τ < [F∗/(4π(1− r20))]
1/2

and

n > n∗ then

inf
x∈A

Eτ [x] < inf
x∈An

Eτ [x].

Proof. By theorem 2.6.6 it follows that there exists a constant c independent of n and

τ such that min{cnτ 2,F∗/2} ≤ infx∈An Eτ [x]. Furthermore, if τ < [F∗/(4π(1− r20))]
1/2

then 2π(1− r20)τ
2 < F∗/2 and if n > 2π(1− r20)/c then 2π(1− r0)

2 < cn. Therefore,

letting n∗ = 2π(1− r20)/c it follows that if τ < [F∗/(4π(1− r20))]
1/2

and n > n∗ then

by proposition 2.4.1

inf
x∈A

Eτ [x] ≤ 2π(1− r20)τ
2 ≤ min{F∗/2, cnτ 2} < inf

x∈An

Eτ [x].

By theorem 2.6.6 and the fact that the upper bound in proposition 2.4.1 corre-

sponds to the elastic energies of deformations in A2 it follows that min{2cτ 2,F∗/2} ≤
2π(1− r0)

2τ 2. Therefore, c ≤ π(1− r20) and consequently n∗ = 2π(1− r20)/c ≥ 2.
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Corollary 2.6.8. Let n ∈ {2, 3, . . .}. There exists constants c, C > 0 independent of

n and τ such that if τ < F∗/(2c)n−1/2 then

cnτ 2 ≤ inf
x∈An

Eτ [x] ≤ Cn2τ 2.

Proof. By theorem 2.6.6 it follows that there exists constants c, C > 0 such that

min{cnτ 2,F∗/2} ≤ inf
x∈An

E [x] ≤ min{Cn2τ 2,F} ≤ Cn2τ 2

Therefore, if τ < F∗/(2c)n−1/2 it follows that min{cnτ 2,F∗/2} = cnτ 2 and the result

follows.

The previous corollaries 2.6.7 and 2.6.8 extend the results of theorem 2.6.6 and

quantify different “crossover regimes” in n and τ . Specifically, corollary 2.6.7 gives

a critical wave number n∗ ≥ 2 such that energetically there can be no refinement

with decreasing thickness of the number of waves greater than n∗. Corollary 2.6.8

gives a crossover condition for when minimizers transition from being close to a flat

deformation to one whose elastic energy scales with τ like an isometric immersion. In

figure 2.6 we plot a schematic of these crossover regimes.

2.7 Boundary Layer Analysis

The n-periodic isometric immersions constructed in section 2.4 satisfy the governing

equations (2.2.4) and (2.2.6) but not the boundary conditions (2.2.7) and (2.2.8).

But, in figure 2.5 we see that in the vanishing thickness limit numerical minimizers

of Eτ over An converge to an isometric immersion. In figure 2.7 we color the annulus

by the Gaussian curvature of numerical minimizers over the set An. We can see that

the Gaussian curvature is significantly different from −1 in regions near the edge of

the annulus and along the lines of inflection. Thus, by the Monge-Ampere equation

2.4.1 the stretching energy is non-zero in these regions and we expect the sheet to

be a perturbation of an isometric immersion that introduces boundary layers near
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Figure 2.6. A schematic of regions in the n − τ plane in which minimizing de-
formations in An “crossover” to different scaling regimes. In the upper left region
minimizing deformations in An have larger energy than minimizers over A. the ex-
istence of this upper bound means that there can be no refinement with decreasing
thickness of the number of waves for minimizers in A. In the lower left region the
minimizing deformations scale in energy like that of an isometric immersion. In the
region on the right the minimizing deformations are either a flat deformation or are
close to being a flat deformation. It is important to note that this figure is just a
schematic drawn for a specific values of the constant c in theorem 2.6.6. Different
values of c will change the positions of the boundaries between the regions but will
not change the qualitative form of the figure.
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the edge of the disk and along the lines of inflection. By theorem 2.6.6 the scaling

in these regions will be selected so that the energy in these regions scales like τ 2 or

smaller.

Figure 2.7. The annular domain colored by the Gaussian curvature of numerical
minimizers over An, with n = 2, 3, 4, 5 clockwise from upper left. The plots indi-
cate that the minimizers are close to isometric immersions with localized regions of
stretching near the edge of the annulus and the lines of inflection.

2.7.1 Governing Equations of Perturbations

Again, let n ∈ {2, 3, . . .}. Define Sn to be the sector in R
2 bounded between θ = 0

and θ = π/n and define Bn = B ∩ Sn. Let x ∈ An with corresponding out-of-plane
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displacement η given by and potential Φ and suppose η and Φ are perturbations of

an n-periodic isometric immersion. That is, on Bn assume η and Φ are of the form

η = y
(

x− cot
(π

n

)

y
)

+ η̃, (2.7.1)

Φ = Φ̃, (2.7.2)

for some perturbations Φ̃ and η̃. Furthermore, since x ∈ An we enforce the Dirichlet

boundary conditions η̃ = 0 along the lines θ = 0 and θ = π
n
.

The elastic energy of this perturbation is

Eτ [x] = 2n

∫

Bn

1

1 + ν

(

∆Φ̃
)2

dxdy + 2nτ 2
∫

Bn

[

1

1− ν

(

∆η̃ − 2 cot
(π

n

))2

+4 cot
(π

n

) ∂2η̃

∂x2
+ 4

∂2η̃

∂x∂y
− 2[η̃, η̃] + 2

]

dxdy. (2.7.3)

If η̃ and Φ̃ extremize (2.7.3) then by (2.2.4-2.2.8), and the fact that δη = 0 along the

lines θ = 0 and θ = π/n, it follows that η̃ and Φ̃ satisfy the following boundary value

problem

1

2(1 + ν)
∆2Φ̃− 2 cot

(π

n

) ∂2η̃

∂x2
− 2

∂2η̃

∂x∂y
+ [η̃, η̃] = 0, (2.7.4)

τ 2

4(1− ν)
∆2η̃ + cot

(π

n

) ∂2Φ̃

∂x2
+

∂2Φ̃

∂x∂y
+ [Φ̃, η̃] = 0, (2.7.5)

1

r

∂2Φ̃

∂θ2
+
∂Φ̃

∂r

∣

∣

∣

∣

∣

r=r0,1

= 0,
∂2Φ̃

∂r∂θ
− 1

r

∂Φ̃

∂θ

∣

∣

∣

∣

∣

r=r0,1

= 0, (2.7.6)

1

1− ν
∆η̃ − nT ·D2η̃ · n

∣

∣

∣

∣

r=r0,1

= − csc
(π

n

)

(

(ν − 2) cos
(

π
n

)

+ ν cos
(

π
n
− 2θ

)

1− ν

)

,

(2.7.7)
1

1− ν

∂∆η̃

∂n
+

∂

∂t

(

nT ·D2η̃ · t
)

∣

∣

∣

∣

r=r0,1

=
2

r
csc
(π

n

)

cos
(π

n
− 2θ

)

∣

∣

∣

∣

r=r0,1

, (2.7.8)

n ·
(

∂2Φ̃

∂y2
,− ∂2Φ̃

∂x∂y

)∣

∣

∣

∣

∣

θ=0,π
n

= 0, n ·
(

− ∂2Φ̃

∂x∂y
,
∂2Φ̃

∂x2

)∣

∣

∣

∣

∣

θ=0,π
n

= 0, (2.7.9)

η̃|θ=0,π/n = 0,
∂2η̃

∂θ2

∣

∣

∣

∣

θ=0,π/n

= 2r2 cot
(π

n

)

. (2.7.10)
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Figure 2.8. The domain for the governing equations of the perturbation from an
isometric immersion is Bn = {(r, θ) : r0 < r < 1, 0 < θ < π/n}.

Remark 2.7.1. So far no approximations have taken place. The boundary value

problem (2.7.4-2.7.10) is the Euler-Lagrange equations corresponding to the ansatz

(2.7.1) and (2.7.2).

Remark 2.7.2. The boundary value problem (2.7.4-2.7.10) for n = 2 is different

from the other cases since cot(π/2) = 0. We will see that for the case n = 2 there is

no need to introduce a boundary layer near the lines of inflection. Furthermore, the

boundary layers near the edges of the annulus will have a different geometry as well.

We look for approximate solutions of (2.7.4) and (2.7.5) that are linear combina-

tions of boundary layer solutions near the interior radius (int), outer radius (out),

bottom of the sector (bt), and the top of the sector (tp) (see figure 2.8). That is we

assume

η̃ = η̃int + η̃out + η̃bt + η̃tp and Φ̃ = Φ̃int + Φ̃out + Φ̃bt + Φ̃tp, (2.7.11)

where each term is found by an appropriate asymptotic expansion. The full configu-

ration with domain B can then be obtained by taking odd extensions of η and even
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extensions of Φ.

Remark 2.7.3. To construct a complete asymptotic solution of the boundary value

problem (2.7.5-2.7.10) we would also need to analyse regions where boundary layers

overlap. In this dissertation we are interested only in the scaling of the width of the

boundary layer and do not analyse these overlap regions in this work.

2.7.2 Boundary Layer Near Outer Radius

Define the rescaled radius r̃out and functions η̃′out and Φ̃′
out by

r̃out = τα(1− r), η̃out = τβ η̃′out, Φ̃out = τγΦ̃′
out

where −α, β, γ ∈ R
+. To lowest order the stretching and bending energies near the

outer radius are

S[x]
2n

= τ 2γ+4α

∫

Bn

1

1 + ν

(

∂2Φ̃′
out

∂r̃2out

)2

dxdy,

τ 2B[x]
2n

= τ 2
∫

Bn

[

1

1− ν

(

τβ+2α ∂
2η̃′out
∂r̃2out

− 2 cot
(π

n

)

)2

+4τβ+2α cos(θ)
(

cot
(π

n

)

+ sin(θ)
) ∂2η̃′out
∂r̃2out

+ 2

]

dxdy,

and the compatibility condition is

1

2(1 + ν)
τγ+4α ∂

4Φ̃′
out

∂r̃4out
− 2τβ+2α cos(θ) (cot(π/n) + sin(θ))

∂2η̃′out
∂r̃2out

= 0.

To ensure that the elastic energy is O(τ 2) and the compatibility condition is non-

trivial we must have that

β + 2α = 0, 2γ + 4α = 2, γ + 4α = β + 2α.

The solution to these equations gives us the following scaling

α = −1
2
, β = 1, γ = 2,
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which motivates the asymptotic expansion

η̃out = τη
(0)
out + τ

3

2η
(1)
out + τ 2η

(2)
out + . . . ,

Φ̃out = τ 2Φ
(0)
out + τ

5

2Φ
(1)
out + τ 3Φ

(2)
out + . . . .

Therefore, to lowest order (2.7.4) and (2.7.5) become

∂4Φ
(0)
out

∂r̃4out
− 4(1 + ν) csc

(π

n

)

cos(θ) cos
(π

n
− θ
) ∂2η

(0)
out

∂r̃2out
= 0, (2.7.12)

∂4η
(0)
out

∂r̃4out
+ 4(1− ν) csc

(π

n

)

cos(θ) cos
(π

n
− θ
) ∂2Φ

(0)
out

∂r̃2out
= 0. (2.7.13)

Furthermore, by (2.7.6), (2.7.7) and (2.7.8) the boundary conditions to lowest order

are
∂Φ

(0)
out

∂r̃out

∣

∣

∣

∣

∣

r̃=0

= 0,
∂3η

(0)
out

∂r̃3out

∣

∣

∣

∣

∣

r̃=0

= 0, (2.7.14)

∂2η
(0)
out

∂r̃2out

∣

∣

∣

∣

∣

r̃out=0

= −2ν csc
(π

n

)

cos(θ) cos
(π

n
− θ
)

+ 2 cot
(π

n

)

. (2.7.15)

To solve the boundary value problem (2.7.12-2.7.15) we make the following ansatz

η
(0)
out = λ3n(θ)A(r̃outλ

−1
n (θ))− B(r̃out, θ),

Φ
(0)
out = λ6n(θ)C(r̃outλ

−1
n (θ))−D(r̃out, θ),

where λn :
(

0, π
n

)

→ R is defined by

λn(θ) = csc
(π

n

)

cos(θ) cos
(π

n
− θ
)

.

This ansatz transforms the boundary value problem (2.7.12-2.7.15) into the following

form
∂4C

∂r̃4out
− 4(1 + ν)

∂2A

∂r̃2out
= 0, (2.7.16)

∂4A

∂r̃4out
+ 4(1− ν)

∂2C

∂r̃2out
= 0, (2.7.17)
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∂4D

∂r̃4out
− 4(1 + ν)λn(θ)

∂2B

∂r̃2out
= 0, (2.7.18)

∂4B

∂r̃4out
+ 4(1− ν)λn(θ)

∂2D

∂r̃2out
= 0, (2.7.19)

∂C

∂r̃out

∣

∣

∣

∣

r̃=0

= 0,
∂D

∂r̃out

∣

∣

∣

∣

r̃=0

= 0, (2.7.20)

∂2A

∂r̃2out

∣

∣

∣

∣

r̃out=0

= −2ν,
∂2B

∂r̃2out

∣

∣

∣

∣

r̃out=0

= −2 cot(π/n). (2.7.21)

∂3A

∂r̃3out

∣

∣

∣

∣

r̃out=0

= 0,
∂3B

∂r̃3out

∣

∣

∣

∣

r̃out=0

= 0. (2.7.22)

The solution to (2.7.16-2.7.22) containing only exponentially decaying terms is given

by

A(r̃outλ
−1
n (θ)) =

ν
√

2(1− ν2)
exp

(

−
√
2r̃out(1− ν2)

1

2

λn(θ)

)

sin

(√
2r̃out(1− ν2)

1

4

λn(θ)
− π

4

)

,

B(r̃out, θ) =
cot(π/n)

λn(θ)
√

2(1− ν2)
exp

(

−
√
2r̃out(1− ν2)

1

4λ
1

2

n(θ)
)

× sin
(√

2r̃out(1− ν2)
1

4λ
1

2

n(θ)−
π

4

)

,

C(r̃outλ
−1
n (θ)) =

ν

2(1− ν)
exp

(

−
√
2r̃out(1− ν2)

1

4

λn(θ)

)

cos

(√
2r̃(1− ν2)

1

4

λn(θ)
− π

4

)

,

D(r̃out, θ) =
cot(π/n)

λn(θ)
√
2(1− ν)

exp
(

−
√
2r̃(1− ν2)

1

4λ
1

2

n (θ)
)

× cos
(√

2r̃out(1− ν2)
1

4λ
1

2

n(θ)−
π

4

)

.

The terms λ3n(θ)A(r̃outλ
−1
n (θ)) and λ6n(θ)C(r̃outλ

−1
n (θ)) can be interpreted as terms

that alone reduce the magnitude of the Gaussian curvature in a thin boundary layer

while B(r̃out, θ) and D(r̃out, θ) alone locally reduce the mean curvature in a separate

boundary layer with a different geometry. In the overlap of these two boundary

layers the bending energy is reduced through the combination of these two effects.

By expressing η
(0)
out and Φ

(0)
out in terms of the actual radius ρ = Rr = Rτ 1/2r̃ we have

the following results for the scaling of the width of these boundary layers:
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1. The width of the boundary layer in which the Gaussian curvature is significantly

reduced satisfies the following scaling

width(θ)ρ=R ∼ t
1

2 |K0|−1/4 csc(π/n) cos(θ) cos(π/n− θ). (2.7.23)

2. For n ≥ 3, the width of the boundary layer in which the mean curvature is

significantly reduced satisfies the following scaling

width(θ)ρ=R ∼ t
1

2 |K0|−1/4
√

sin(π/n) sec(θ) sec(π/n− θ). (2.7.24)

The width of these boundary layers has the same scaling in thickness for a vibrat-

ing shell (Lamb, 1889) and non-Euclidean plates with K0 > 0 (Efrati et al., 2007).

What is unique to the case when K0 < 0 is this existence of two overlapping boundary

layers that arises from the competition between Gaussian and mean curvatures in the

bending energy.

2.7.3 Boundary Layer Near Interior Radius

The boundary layer near r = r0 is completely analogous to the one near r = 1. Define

the rescaled radius r̃int by

r̃int = τ−
1

2 (r − r0)

and consider the asymptotic expansion

η̃int = τη
(0)
int + τ

3

2η
(1)
int + τ 2η

(2)
int + . . .

Φ̃int = τ 2Φ
(0)
int + τ

5

2Φ
(1)
int + τ 3Φ

(2)
int + . . . .

This yields identical governing and boundary equations as the outer radius and thus

η
(0)
int = λ3n(θ)A(r̃int, λ

−1
n (θ))− B(r̃int, θ)

Φ
(0)
int = λ6n(θ)A(r̃int), λ

−1
n (θ)−D(r̃int, θ),

where A,B,C,D are defined as in the previous subsection.
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2.7.4 Boundary Layer Near the Bottom of the Sector

From the observations in the remark 2.7.2 we will assume in this section that n ∈
{3, 4, . . .}. Define the rescaled coordinate ỹbt and functions η̃′bt and Φ̃′

bt by

ỹbt = ταy, η̃bt = τβ η̃′bt, Φ̃bt = τγΦ̃′
bt

where −α, β, γ ∈ R
+. To lowest order the stretching and bending energies near the

outer radius are

S[x]
2n

= τ 2γ+4α

∫

Bn

1

1 + ν

(

∂2Φ̃′
bt

∂ỹ2bt

)2

dxdy,

τ 2B[x]
2n

= τ 2
∫

Bn

[

1

1− ν

(

τβ+2α ∂
2η̃′bt
∂ỹ2bt

− 2 cot
(π

n

)

)2

+ 2

]

dxdy,

and the compatibility condition is

1

2(1 + ν)
τγ+4α ∂

4Φ̃′
bt

∂ỹ4bt
− 2τβ+α ∂2η̃bt

∂x∂ỹbt
= 0.

Therefore, the scaling that ensures the elastic energy is O(τ 2) and the compati-

bility equation is non-trivial is

α = −1
3
, β = 2

3
, γ = 5

3
,

which is a different scaling then the one near the edges of the annulus. This scaling

motivates the asymptotic expansion

η̃bt = τ
2

3 η
(0)
bt + τη

(1)
bt + τ

4

3η
(2)
bt + . . .

Φ̃bt = τ
5

3Φ
(0)
bt + τ 2Φ

(1)
bt + τ

7

3Φ
(2)
bt + . . . .

Consequently, to lowest order (2.7.4) and (2.7.5) become

∂

∂ỹbt

(

∂3Φ
(0)
bt

∂ỹ3bt
− 4(1 + ν)

∂η
(0)
bt

∂x

)

= 0, (2.7.25)
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∂

∂ỹbt

(

∂3η
(0)
bt

∂ỹ3bt
+ 4(1− ν)

∂Φ
(0)
bt

∂x

)

= 0. (2.7.26)

Furthermore, by (2.7.9) and (2.7.10) the boundary conditions are

∂2Φ
(0)
bt

∂x2

∣

∣

∣

∣

∣

ỹbt=0

= 0,
∂2Φ

(0)
bt

∂x∂ỹbt

∣

∣

∣

∣

∣

ỹbt=0

= 0, (2.7.27)

η
(0)
bt

∣

∣

∣

ỹbt=0
= 0,

∂2η
(0)
bt

∂ỹ2bt

∣

∣

∣

∣

∣

ỹbt=0

= 2 cot
(π

n

)

. (2.7.28)

To solve this boundary value problem we make the following ansatz

η̃
(0)
bt = ψ1(x) + ỹ2bt cot

(

π
n

)

f(x, ỹbt),

Φ̃
(0)
bt = ψ2(x) + ỹ2bt cot

(

π
n

)

g(x, ỹbt),
(2.7.29)

which transforms equations (2.7.25) and (2.7.26) into

∂
∂ỹbt

(

ỹ2bt
∂3g
∂ỹ3bt

+ 6ỹbt
∂2g
∂ỹ2bt

+ 6 ∂g
∂ỹbt

− 4(1 + ν)ỹ2bt
∂f
∂x

)

= 0,

∂
∂ỹbt

(

ỹ2bt
∂3f
∂ỹ3bt

+ 6ỹbt
∂2f
∂ỹ2bt

+ 6 ∂f
∂ỹbt

+ 4(1− ν)ỹ2bt
∂g
∂x

)

= 0.
(2.7.30)

If we integrate with respect to ỹbt and make the similarity transformation z = ỹ3bt/x,

we obtain the system of ordinary differential equations given by

27z2 d3g
dz3

+ 108z d2g
dz2

+ 60dg
dz

+ 4(1 + ν)z df
dz

= 0,

27z2 d3f
dz3

+ 108z d2f
dz2

+ 60 df
dz

− 4(1− ν)z dg
dz

= 0.

Solving for dg
dz

we obtain the following single differential equation

4(1+ν)z
df

dz
+

1

1− ν

(

90

z

df

dz
+ 2430

d2f

dz2
+ 4455z

d3f

dz3
+

3645

2
z2
d4f

dz4
+

729

4
z3
d5f

dz5

)

= 0.

(2.7.31)

The general solution to equation (2.7.31) that does not contain exponentially

growing terms is

f(z) =

∫

[

c1z
− 3

2Ker 1

3

(

4 · 3− 3

2 · (1− ν2)
1

4

√
z
)

+c2z
− 3

2Kei 1
3

(

4 · 3− 3

2 · (1− ν2)
1

4

√
z
)]

dz + c3,
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where Ker1/3 and Kei1/3 denote Kelvin functions of the second kind and c1, c2 and c3

are arbitrary constants (Abramowitz & Stegun, 1964). Therefore, we have that

η
(0)
bt = ψ1(x) + ỹ2bt cot(π/n)

(
∫

[

c1z
− 3

2Ker 1

3

(

4 · 3− 3

2 · (1− ν2)
1

4

√
z
)

+c2z
− 3

2Kei 1
3

(

4 · 3− 3

2 · (1− ν2)
1

4

√
z
)]

dz + c3

)

,

Φ
(0)
bt = ψ2(x) + ỹ2bt cot(π/n)

(

√

1 + ν

1− ν

∫

[

c2z
− 3

2Ker 1

3

(

4 · 3− 3

2 · (1− ν2)
1

4

√
z
)

−c1z−
3

2Kei 1
3

(

4 · 3− 3

2 · (1− ν2)
1

4

√
z
)]

dz + c4

)

,

where c4 is an arbitrary constant.

Now, near y = 0, we have that

η
(0)
bt = ψ1(x) + ỹ2bt cot

(π

n

)

[

2−
17

6 3
3

2Γ

(

1

3

)

(1− ν2)−
1

12 (c2 − c1)
x

2

3

ỹ2bt

−2−
13

6 3
1

2Γ

(

−1

3

)

(1− ν2)
1

12

(

c1

(

1 +
√
3
)

+ c2

(

1−
√
3
)) x

1

3

ỹbt
+ c3 + . . .

]

,

Φ
(0)
bt = Ψ2(x) + ỹ2bt cot

(π

n

)

[

−2−
17

6 3
3

2Γ

(

1

3

)

(1− ν2)−
7

12 (1− ν) (c1 + c2)
x

2

3

ỹ2bt

−2−
13

6 3
1

3Γ

(

−1

3

)

(

1− ν2
)

7

12 (1− ν)−1
((

−1 +
√
3
)

c1 +
(

1 +
√
3
)

c2

) x
1

3

ỹbt
+c4 . . .] .

Furthermore,

lim
z→∞

∫

z−
3

2Ker 1

3

(

4 · 3− 3

2 (1− ν2)
1

4

√
z
)

dz =
π

2

√

2 +
√
3,

lim
z→∞

∫

z−
3

2Kei 1
3

(

4 · 3− 3

2 (1− ν2)
1

4

√
z
)

dz =
π

2

√

2−
√
3.

Therefore, to satisfy the boundary conditions (2.7.27) and (2.7.28) we must have that

ψ1(x) = −3
3
2 Γ( 1

3
) cot(π

n)
27/3(1−ν2)

1
3 π
x

2

3 , ψ2(x) = −3(1−ν2)
1
6 Γ( 1

3
) cot(π

n)
2
7
3 (1−ν)π

x
2

3 ,

c1 = − 1+
√
3√

6(1−ν2)
1
4 π
, c2 =

−1+
√
3

3
3
4 (1−ν2)

1
4 π
,

c3 = 1, c4 = −
√

1+ν
3(1−ν)

.

(2.7.32)
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By expressing η
(0)
bt and Φ

(0)
bt in terms of the actual Cartesian coordinates u = Rx

and v = Ry and approximating ρ and θ near y = 0 by ρ ≈ u and θ ≈ v/u, it follows

that the width of the boundary layer in this region scales like

width(ρ)η=0 ∼ τ
1

3ρ
1

3 |K0|−
1

6 . (2.7.33)

This boundary layer can be interpreted as a region in which the mean curvature is

locally reduced while the change in energy contributed from the Gaussian curvature

of the perturbation is of the order O(τ 5/3). This reduction of energy near this type

of singularity is different from the regularization near a ridge singularity in which the

bending energy diverges while the stretching energy converges to zero with decreasing

thickness (Venkataramani, 2004; Conti & Maggi, 2008).

2.7.5 Boundary Layer Near the Top of the Sector

To construct the boundary layer near θ = π/n we can simply rotate the asymptotic

expansion for η̃bt and Φ̃bt through the angle θ = π/n and then evenly reflect about

the line θ = π/n. That is, in polar coordinates we set

η̃tp(r, θ) = η̃bt (r, π/n− θ) and Φ̃tp(r, θ) = Φ̃bt (r, π/n− θ) .

In figure 2.9 we color the annulus by the different boundary layers using the

characteristic widths (2.7.23), (2.7.24), and (2.7.33).
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Figure 2.9. Schematic of the various boundary layers in n-periodic deformations,
n = 2, 3, 4, 5 clockwise from upper left corner. The annulus is colored by the effect of
different boundary layers on the elastic energy.
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Chapter 3

Isometric Immersions and the Kirchhoff Model

In this chapter we study the Kirchhoff model of non-Euclidean plates when the metric

gK0
has corresponding constant negative Gaussian curvature K0 < 0 and the domain

D is now a disk of radius R. Recall that in the Kirchhoff model the elastic energy

EKi : W
2,2(D,R3) → R

3 is given by

EKi[x] =







Y

24(1 + ν)

∫

D

[

4H2

1− ν
− 2K

]

dAgK0
if x ∈ AKi

∞ if x /∈ AKi

,

where Y and ν are the Young’s modulus and Poisson ratio of the material respectively,

H and K mean and Gaussian curvatures of the surface x(D) respectively, and dAgK0

the area form induced by gK0
. We assume without loss of generality that K0 = −1,

since if K0 6= −1 we can always non-dimensionalize by setting the units of length

as (−K0)
−1/2. That is, if a mapping x : D → R

3 is initially parametrized by the

variables u, v then the dimensionless variables u′ =
√
−K0u and v′ =

√
−K0 are

the dimensionless parametrization variables and R′ =
√
−K0R is the dimensionless

radius. Furthermore, we will drop the subscript notation and simply write g instead

of gK0
.

To study the Kirchhoff model for our metric and domain it is necessary to construct

W 2,2 isometric immersions of subsets of the hyperbolic plane H
2, that is solutions to

the differential equation (∇x)T ·∇x = g. In general finding solutions to this equation

for an arbitrary metric is a non-trivial problem. But, by Minding’s theorem, which

states that any two abstract surfaces having the same constant Gaussian curvature are

locally isometric, we can “cut out” subsets of surfaces of constant negative curvature

which will be isometric to pieces of H
2 (Minding, 1839). In particular, if S is a

surface of constant negative curvature and p ∈ S then U = {q ∈ S : d(p, q) < R},
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where d is the distance function inherited from g, is isometric to a disk of radius R

in H
2, provided U is smooth. But, by the non-existence results of Hilbert (Hilbert,

1901) and Holmgren (Holmgren, 1902) it is known that for a fixed p ∈ S the set

U = {q ∈ S : d(p, q) < R} will fail to be smooth for some critical value of R. The

singularities where S fails to be smooth form curves or singular points at infinity that

form boundaries on S beyond which no disks locally isometric to H
2 can be cut out

of the surface (Amsler, 1955).

Now, if we assume that x : D → U ⊂ R
3 forms a surface of constant Gaussian

curvature K = −1 with mean curvature H then

EKi[x] =
Y

24(1 + ν)

∫

D

[

4H2

1− ν
− 2K

]

dAg

=
Y

24(1 + ν)

∫

D

k21 + k22
1− ν

dAg −
Y

24(1− ν)

∫

D
k1k2 dAg

=
Y

24(1− ν)2

∫

D

(

k21 + k22
)

dAg +
Y

24(1− ν)

∫

D
dAg,

where k1 and k2 are the principal curvatures of the surface. Therefore, to study

minimizers over AKi it is sufficient to study minimizers of the following functional

W[x] =

∫

D
(k21 + k22) dAg, (3.0.1)

over AKi which is equivalent to a Willmore functional in this geometry (Willmore,

1982).

Remark 3.0.4. It is important to point out that in the above calculation we showed

that the terms involving the Gaussian curvature are immaterial since k1k2 = K = −1,

but for more general metrics, in which the Gaussian curvature is not constant, the

same term can be removed as a consequence of the Theorema Egregium.

Since we are integrating over a geodesic circle it is convenient to work in geodesic

polar coordinates (r,Ψ) which are the natural analogs of the radial and polar angle
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coordinates on a Riemannian manifold. In this coordinate system the metric g has

components

g11 = 1, g12 = g21 = 0, and g22 = sinh(r), (3.0.2)

and equation (3.0.1) takes the form:

W[x] =

∫ 2π

0

∫ R

0

sinh(r)(k21 + k22) dr dΨ. (3.0.3)

3.1 Chebychev Nets and the Hyperbolic Plane

To study isometric immersions of H
2 we will use Chebyshev nets (C-nets) which

are local parametrizations of a surface whose coordinate curves form quadrilaterals

on the surface with opposite sides having equal length (Gray et al., 2006). To be

precise, a Chebyshev net or a Chebyshev patch is defined to be a parametrization

x : D → U ⊂ R
3 in which the induced metric g′ in the parametrization coordinates

u and v satisfies,

g′ = du2 + 2 cos(φ) + dv2, (3.1.1)

where φ is the angle between the coordinate curves. The key property of a C-net

parametrization is that coordinate curves have unit speed in the parametrization

variables.

Originally, Chebychev used C-nets to describe the arrangement of fibers in clothing

and he showed that a sphere must be covered by at least two cuts of cloth (Chebychef,

1878; McLachlan, 1994). As evidenced by the sphere, C-nets in general are only local

parametrizations of a surface and a global C-net exists if the integral of the magnitude

of the Gaussian curvature over a quadrilateral is less than 2π (Hazzidakis, 1880). In

figure 3.1 we plot the pseudosphere covered by two C-nets that meet at the singular

rim of the pseudosphere.

C-nets are useful parametrizations in that they lead to a natural way to discretize

a surface (Bobenko & Pinkall, 1999) and projections of C-nets onto paper retain the
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Figure 3.1. C-net parametrization of the pseudosphere.

three dimensional properties of the surface (Koenderink & van Doorn, 1998). More-

over, as we shall see in this section all of the geometric properties of the surface are

encoded in the angle φ and for surfaces of constant negative Gaussian curvature φ

satisfies the sine-Gordon equation (Gray et al., 2006). For this reason, we call the

angle φ the generating angle of the surface.

3.1.1 Construction of C-nets

To construct C-nets on surfaces of constant negative Gaussian curvature, we will need

the concept of an asymptotic curve. A curve α on S is an asymptotic curve if for

all s:

h

(

dα

ds
,
dα

ds

)

= 0, (3.1.2)

where h is the second fundamental form of the surface. Thus, by (A.4.1) a curve is

asymptotic if its tangent vectors are aligned with the directions of vanishing curvature

for the surface. Now, if S is a surface with constant negative Gaussian it follows that
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for every point p ∈ S there are two directions of zero curvature. Therefore a pair

of vector fields V and W can be defined on S that are everywhere aligned with the

directions of zero curvature and by the fundamental theorem of vector fields and flows

it follows that on a surface of constant negative curvature the asymptotic curves can

be taken as coordinate curves (Frankel, 2003). We now show that a parametrization

of a surface of constant negative Gaussian curvature in which the coordinate curves

are asymptotic generates a C-net.

Proposition 3.1.1. If p is a point in a surface S of constant negative Gaussian

curvature K = −1, then there is a neighborhood of p with the coordinate curves unit

speed and asymptotic.

Proof. Let x : Ω → S define a parametrization around p with asymptotic coordinates

(u, v). Let g and h be the corresponding first and second fundamental forms of this

parametrization. It follows from the Mainardi-Codazzi equations (A.5.8) and (A.5.9)

that

∂h12
∂u

=
h12

det(gij)

(

1

2

∂ det(gij)

∂u
+ g12

∂g11
∂v

− g11
∂g22
∂u

)

∂h12
∂v

=
h12

det(gij)

(

1

2

∂ det(gij)

∂v
+ g12

∂g22
∂u

− g11
∂g11
∂v

)

.

Furthermore, since the coordinate curves are asymptotic it follows that h11 = h22 = 0

and consequently the Gaussian curvature satisfies

−1 = K =
−h212

det(gij)
.

Therefore, differentiating with we have that

2
∂h12
∂u

h12 =
∂ det(gij)

∂u
and 2

∂h12
∂v

h12 =
∂ det(gij)

∂v
.

Substituting these expressions for ∂h12

∂u
and ∂h12

∂v
into the Mainairdi-Codazzi equations

we obtain

g12
∂g11
∂v

= g11
∂g22
∂u

and g12
∂g22
∂u

= g22
∂g11
∂v

.
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Therefore,

g212
∂g11
∂v

= g11g12
∂g22
∂u

= g11g22
∂g11
∂v

and g212
∂g22
∂u

= g12g22
∂g11
∂v

= g11g22
∂g22
∂u

.

Consequently,

det(gij)
∂g11
∂v

= 0 and det(gij)
∂g22
∂u

= 0.

Since the surface is regular, det(gij) 6= 0 and thus ∂g11
∂v

= 0 = ∂g22
∂u

= 0. Therefore, g11

and g22 are independent of u and v and thus the arc-length of the coordinate curves

is simply

u→
∫ u

0

g
1

2

11(t) dtand v →
∫ v

0

g
1

2

22(t) dt,

and thus inverting this relationship will yield a parametrization with unit speed co-

ordinate curves in the asymptotic directions.

Theorem 3.1.2. Let S be a surface of constant Gaussian curvature K0 = −1 with

a C-net parametrization x : D → S with coordinates (u, v). If φ is the corresponding

generating angle φ then φ satisfies the sine-Gordon equation:

∂2φ

∂u∂v
= sin(φ). (3.1.3)

Proof. By Biroshi’s formula (A.4.4) it follows that

−1 =
1

sin4(φ)
det





∂2

∂u∂v
sin(φ) 0 ∂

∂u
sin(φ)

∂
∂v

sin(φ) 1 sin(φ)
0 sin(φ) 1





=
1

sin4(φ)

[(

− cos(φ)
∂φ

∂u

∂φ

∂v
− sin(φ)

∂2φ

∂u∂v

)

sin2(φ) + sin2(φ) cos(φ)
∂φ

∂u

∂φ

∂v

]

= −
∂2φ
∂u∂v

sin(φ)
.

Now the condition that there must be two distinct asymptotic curves at each point

in S implies that φ must satisfy the constraint

0 < φ(u, v) < π. (3.1.4)
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Therefore, solutions to the sine-Gordon satisfying (3.1.4) generate hyperbolic surfaces.

In fact Hilbert proved that there is no smooth immersion of H2 by showing that there

is no smooth solution to (3.1.3) that satisfies (3.1.4) in the entire u − v plane. The

points on the surface where φ = nπ are precisely the boundaries where the immersion

fails to be smooth. In figure 3.1 this degeneracy of the coordinate curves occurs at

the singular rim.

3.1.2 Geometry of C-nets

For the rest of the section assume that x : D → S is a C-net parametrization by

asymptotic curves of a surface with constant negative Gaussian curvature K = −1

with generating angle φ and first and second fundamental forms g′ and h respectively.

Since the coordinate curves are asymptotic it follows that h11 = h22 = 0. By (A.4.2)

it follows that

−1 =
det(hij)

det(g′ij)
= − h12

sin2(φ)
,

and consequently h12 = ± sin(φ).

Since the second and first fundamental forms only depend on the generating angle

φ it follows that all of the relevant geometric quantities of the surface can be found

as well. From (A.4.2) and (A.4.3) it follows that the principal curvatures k1 and k2

satisfy

k1 + k2 = − tan(φ) and k1k2 = −1.

Therefore,

k21 = tan2(φ/2) and k22 = cot2(φ/2). (3.1.5)

Furthermore, by (A.5.2) the Christoffel symbols satisfy

Γ1
11 = cot(φ)

∂φ

∂u
, Γ2

11 = − csc(φ)
∂φ

∂u
,

Γ1
12 = 0, Γ2

12 = 0,

Γ1
22 = − csc(φ)

∂φ

∂v
, Γ2

22 = cot(φ)
∂φ

∂v
,

(3.1.6)
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which by (A.6.1) gives us the following differential equations satisfied by the compo-

nents (u(t), v(t)) of a geodesic:

d2u

dt2
+

(

du

dt

)2

cot(φ)
∂φ

∂u
−
(

dv

dt

)2

csc(φ)
∂φ

∂v
= 0,

d2v

dt2
−
(

du

dt

)2

csc(φ)
∂φ

∂u
+

(

dv

dt

)2

cot(φ)
∂φ

∂v
= 0.

(3.1.7)

By (3.1.5) it follows that

W[x] =

∫ 2π

0

∫ R

0

sinh(r)(tan2(φ/2) + cot2(φ/2)) dr dΨ. (3.1.8)

Therefore, the bending content diverges if φ = nπ, precisely where the asymptotic

curves become degenerate.

3.1.3 C-nets of the Second Kind

We conclude this section by pointing out that a closely related parametrization of S,

that is sometimes easier to make calculations with, is a parametrization by curves

of principal curvature or a C-net of the second kind (Gray et al., 2006). If x is

a C-net, then a C-net of the second kind y is given by y(η, ξ) = x
(

η+ξ
2
, η−ξ

2

)

. The

components of the metric g′ corresponding to y are

g′11 = cos2(θ), g′12 = g′21 = 0, g′22 = sin2(θ). (3.1.9)

Since g′12 = g′21 = 0, the parameter curves of this parametrization are orthogonal

and in fact they bisect the asymptotic curves. Therefore, θ = φ/2 and thus we can

determine the generating angle by such a parametrization.

3.2 Elastic Energy of the Pseudosphere

In this section we illustrate how isometric immersions of geodesic disks in the hyper-

bolic plane can be constructed from a surface of constant negative Gaussian curvature

by fixing a point p ∈ S and “cutting” out a subset U = {q ∈ S : d(p, q) < R}. To
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illustrate this process we consider a commonly known hyperbolic surface, the pseu-

dosphere. The pseudosphere is parametrized by the following C-net of the second

kind

y(η, ξ) =

(

cos(ξ)

cosh(η)
,
sin(ξ)

cosh(η)
, η − tanh(η)

)

, (3.2.1)

(Gray et al., 2006). The mapping is singular on the curve η = 0, which is where

the surface fails to be a smooth immersion, and consequently we will only consider

the “upper half” η > 0 of the pseudosphere. Furthermore, since the sheets we are

modelling have the topology of a plane and not a tubular surface we will think of the

pseudosphere as a multi-sheeted surface.

Directly calculating, the metric coefficients are given by the following simple ex-

pressions:

g′11 =
∂y

∂η
· ∂y
∂η

= tanh2(η),

g′12 = g′21 =
∂y

∂η
· ∂y
∂ξ

= 0,

g′22 =
∂y

∂ξ
· ∂y
∂ξ

=
1

cosh2(η)
.

Consequently, by equation (3.1.9) the generating angle has the form

φ(η, ξ) = 4 arctan(e−η), (3.2.2)

and thus by (3.1.5) the principal curvatures are

k21 = tan2(2 arctan(e−η)) =
1

sinh2(η)
and k22 = cot2(2 arctan(e−η) = sinh2(η).

(3.2.3)

Therefore, by equation (3.1.8) the elastic energy of a disk U centered at x(η0, 0) and

lying in the pseudosphere is simply

W[y] =

∫ 2π

0

∫ R

0

sinh(r)

(

sinh2(η(r,Ψ)) +
1

sinh2(η(r,Ψ))

)

dr dΨ. (3.2.4)

Now, to determine the dependency between η, ξ and r,Ψ we need to calculate

the arclength of geodesics on the pseudosphere. The arclength of a curve x(η, ξ(η))
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starting at x(η0, 0) and terminating at x(ηf , ξf) is given by the functional

L[ξ(η)] =

∫ ηf

η0

√

tanh2(η) + sinh2(η)

(

dξ

dη

)2

dη. (3.2.5)

Since the integrand does not explicitly depend on ξ, the Euler-Lagrange equation of

this functional is
d

dη

sech2η
√

tanh2(η) + sech2(η) dξ
dη

= 0. (3.2.6)

This can be integrated once, with a constant of integration ± 1√
D
. This generates a

first order separable differential equation that can be integrated with a constant of

integration C. The solution curves, and thus the geodesics, are given by the family

of curves implicitly defined by

cosh2(η) + (ξ + C)2 = D. (3.2.7)

The constants C and D are determined by the condition that the geodesic passes

through (η0, 0) and (ηf , ξf):

C =
cosh(η0)

2 − cosh2(ηf)− ξ2f
2ξf

, (3.2.8)

D = cosh2(η0) +
(cosh2(η0)− cosh2(ηf )− ξ2f)

2

4ξ2f
. (3.2.9)

Define the function L(η, ξ) to be arclength of the geodesic starting at y(η0, 0) and

terminating at y(η, ξ). Since the geodesics fail to be a function of η at the critical

values

η∗ = arccosh
(√

D
)

,

ξ⋆ =
√

cosh2(η0)− cosh2(ηf),

the arclength of a geodesic will have to be computed over both branches of a square

root. Assuming η0 < η we have by equation (3.2.5) that

L(η, ξ) =



















∫ η

η0

√

D tanh2(t)

D−cosh2(t)
dt if 0 < ξ2 < (ξ∗)2

∫ η∗

η0

(√

D tanh2(t)

D−cosh2(t)
+
√

D tanh2(t)

D−cosh2(t)

)

dt if ξ2 > (ξ∗)2

ln
(

cosh(η)
cosh(η0)

)

if ξ = 0

(3.2.10)
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If η0 > η then L(η, ξ) can be computed by switching η0 and η. By making the

substitution z = sech(t), and taking into account the case η0 > η, the integrals can

be explicitly evaluated and simplified into the form

L(η, ξ) =































∣

∣

∣

∣

ln

(

sech(η0)+
√

sech2(η0)− 1

D

sech(η)+
√

sech2(η)− 1

D

)∣

∣

∣

∣

if 0 < ξ2 < (ξ∗)2

∣

∣

∣

∣

∣

ln

(

D
sech(η0)+

√
sech2(η0)− 1

D
(

sech(η)+
√

sech2(η)− 1

D

)

−1

)∣

∣

∣

∣

∣

if ξ2 > (ξ∗)2

∣

∣

∣
ln
(

cosh(η0)
cosh(η)

)∣

∣

∣
if ξ = 0

. (3.2.11)

The contour L(η, ξ) = R forms the boundary of the disk U (see figure 3.2).

Figure 3.2. The pseudosphere colored by the geodesic distance from an arbitrary
point p lying on the surface. Geodesic disks of constant negative curvature can be
formed from the contour data of the arclength of geodesics originating at p and
correspond to isometric immersions of geodesic disks in the hyperbolic plane.

Furthermore, the geodesics on the pseudosphere itself are given by the following

curves:

γ(ξ) = x(arccosh
(

D − (ξ + C)2
)

, ξ)

The angle Ψ a geodesic makes with respect to the basis
(

∂x(η,ξ)
∂ξ

, ∂x(η,ξ)
∂η

)

of the tangent
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plane at the center of the disk can then be found by

d

dξ
x(η(ξ), ξ)

∣

∣

∣

∣

η=η0

· ∂x
∂ξ

∣

∣

∣

∣

η=η0

=

∥

∥

∥

∥

d

dξ
x(η(ξ), ξ)

∥

∥

∥

∥

η=η0

∥

∥

∥

∥

∂x

∂ξ

∥

∥

∥

∥

η=η0

cos(Ψ).

By making the substitution D = cosh(η0)
2 + C2, this calculation gives us that the

angle Ψ satisfies

cos(Ψ) =

√
2csch(η0)

1 + 2C2 + cos(2ξ0)
. (3.2.12)

Consequently, by specifying a value for Ψ we can calculate C and therefore use equa-

tion (3.2.10) to determine η for a particular value of r and Ψ. This allows us to color

the disk by bending energy density (see figure 3.3) and numerically integrate (3.2.4)

over the disk to determine how the bending energy scales with R for various values

of η0 (see figure 3.4).
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Figure 3.3. A representation of the geodesic disks colored by k21 + k22 in which the
radius and polar angle correspond to the geodesic radius r and polar angle Ψ. These
disks are centered at y(η0, 0) for the values η0 = 1.94, 2.54, 2.92, 3.21 respectively. The
concentration of energy at the top of the disk arises from the large amount of bending
in the “skinny” part of the pseudosphere. The narrow region of concentrated energy
near the bottom of the disc corresponds to the divergence of the principal curvatures
near the singular rim.

Now, a disk centered at x(η0, 0) cannot be made arbitrarily large since it will

eventually meet the singular curve corresponding to η = 0. We can prove that the
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largest disk on the pseudosphere with this center has a critical radius of

Rη0 = ln(cosh(η0)).

To prove this, note that the curve ξ = 0 is a geodesic, it trivially solves the Euler-

Lagrange equation, and therefore

L(0, 0) =
∫ η0

0

tanh(u) dη = ln(cosh(η0)). (3.2.13)

Now, let ξ(η) be another geodesic that terminates at a point (0, η∗) on the boundary.

Then,

L(0, ξ∗) =
∫ η0

0

√

tanh2(η) + sinh2(η)

(

dξ

dη

)2

dξ

>

∫ η0

0

tanh(η) dη = ln(cosh(η0)).

Consequently, the contour L(η, ξ) = ln(cosh(η0)) meets the curve η = 0 at only

one point and thus ln(cosh(η0)) is the radius of the largest possible disk centered at

(η0, 0). Therefore, we can see that for arbitrary R we can find a value η0 such that D

is isometric to U , and thus by varying the center of the disk we can create arbitrarily

large isometric immersions. This proves the following proposition

Proposition 3.2.1. Let D be a disk of radius R in the hyperbolic plane. There

exists a smooth isometric immersion x : D → U ⊂ R
3 such that U is a subset of the

pseudosphere.

3.3 Lower Bounds for the Curvature of Smooth Isometric

Immersions

In this section we use the C-net structure to explore numerically how the principal

curvatures of smooth isometric immersions scale with the size of the disk. In partic-

ular, we show that the maximum principal curvature on the disk grows exponentially

in
√
−K0R.
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Figure 3.4. Plot of the energy W of isometric immersions of (D, g) cut from the
pseudosphere for disks centered at y(η0, 0) for the values η0 = 1.94, 2.54, 2.92, 3.21
respectively. The dashed lines correspond to the critical radius when the isometric
immersion fails to be smooth.

Let p denote the center of the disk, and let us choose the asymptotic coordinates

u and v such that p is the point (0, 0). If |u0|+ |v0| < R, it follows easily that there

exists p′ in D with coordinates (u0, v0) since d(p, p′) ≤ |u0| + |v0| < R. Let q, r, s

and t denote the vertices of a “square” denoted [qrst] in asymptotic coordinates given

by the intersections of the asymptotic lines u = −R/(2 + ν), v = −R/(2 + ν), u =

R/(2 + ν), v = R/(2 + ν) for some given ν > 0.

We redefine the variables

u′ =
1

2
+

(2 + η)u

2R
, v′ =

1

2
+

(2 + η)v

2R
, λ =

4|K0|R2

(2 + η)2
, φ′(u′, v′) = φ(u, v),

and then drop the primes to transform equation (3.1.3) into

∂2φ

∂u∂v
= λ sin(φ) on the domain (0, 1)× (0, 1). (3.3.1)

A smooth isometric immersion corresponds to a smooth function φ : (0, 1)2 → (0, π)

satisfying the Sine-Gordon equation (3.3.1).

We want to consider the variational problem for minimizing the Lp norms of the

principal curvatures. The natural mode of converge is then Lp convergence which
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does not preserve the class of smooth functions. We thus enlarge the admissible set.

Let M denote the set of all measurable functions on the unit square with values in

[0, π] and let A ⊆ M be the set of measurable functions φ : [0, 1]2 → [0, π] that are

distributional solutions of the sine-Gordon equation, i.e.,

∫

[0,1]2
φ
∂2g

∂u∂v
dudv = λ

∫

[0,1]2
sin(φ)gdudv, ∀g ∈ C∞

c ((0, 1)2).

Clearly A ⊆ Lp([0, 1]2) for all 1 ≤ p ≤ ∞.

Proposition 3.3.1. A is a closed subset of Lp([0, 1]2) for all 1 ≤ p ≤ ∞.

Proof. Let φn be a sequence in A such that φn → φ in Lp. The mean value theorem

implies that ‖ sin(φn) − sin(φ)‖p ≤ ‖φn − φ‖p → 0. Therefore by the dominated

convergence theorem it follows that for all g ∈ C∞
c ((0, 1)2) we have that

λ

∫

[0,1]2
sin(φ)gdudv = lim

n→∞
λ

∫

[0,1]2
sin(φn)gdudv

= lim
n→∞

∫

[0,1]2
φn

∂2g

∂u∂v
dudv

=

∫

[0,1]2
φ
∂2g

∂u∂v
dudv

implying that φ ∈ A. Consequently, A is a closed subset of Lp([0, 1]2) for all 1 ≤ p ≤
∞.

Remark 3.3.2. (Compactness) Since M consists of bounded measurable functions,

for every sequence φn ∈ M, there exists a subsequence φnk
and a limit point φ∗ ∈ M

such that φnk
⇀ φ∗ weakly in all Lp([0, 1])2 for 1 ≤ p < ∞ and φnk

∗
⇀ φ∗ (converges

weak-∗) in L∞([0, 1]2). Note that the limit φ∗ is independent of p. In fact, on M,

the weak Lp topologies for 1 ≤ p <∞ and the weak-∗ L∞ topology are all the same

(Evans, 1990).

We are interested in a lower bound for the principal curvatures of a Chebychev

patch, i.e., a portion of a surface of constant negative curvature covered by a single
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coordinate system given by a Chebychev net. We thus define

M(λ) = inf
φ∈A

sup
x∈[0,1]×[0,1]

max

[

cot

(

φ

2

)

, tan

(

φ

2

)]

.

While we can estimate M(λ) by direct numerical computation, we use a slightly

different approach that yields some more information. Since cot(φ/2) + tan(φ/2) =

2 csc(φ), we get k21 + k22 = 4 csc2(φ)− 2 = 4 cot2(φ) + 2. This motivates the definition

Ip(λ) = inf
φ∈A

‖ cot2(φ)‖p

where ‖.‖p denotes the Lp norm. This corresponds to the variational problem for

functionals Fp : M → [0,∞] given by

Fp(φ) =

{

‖ cot2 φ‖p, φ ∈ A.
+∞, otherwise.

Note that M(λ) and Ip(λ) are for a unit square in asymptotic coordinates, and this

is not the same thing as a geodesic disk, although the two can be related.

For all p <∞, the map f 7→ ‖f‖p is differentiable at f 6= 0. Also, for any function

f : [0, 1]× [0, 1] → R, the p-norm ‖f‖p is a nondecreasing function of p. It is easy to

see that, as a consequence, Ip is non-decreasing in p.

A natural question is whether there exists a minimizer for Fp. In this context we

have the following proposition.

Proposition 3.3.3. Let φn be a minimizing sequence for Fp, i.e., φn ∈ A and

Fp(φn) → Ip. If φn (or a subsequence) converges pointwise to φ∗, φ∗ is a minimizer

for Fp.

Proof. If φn (or a further subsequence) converges pointwise, it follows from dom-

inated convergence that ‖φn − φ∗‖p → 0. Since A is closed in Lp, it follows that

φ∗ ∈ A. Also, by Fatou’s lemma, we have

Ip ≤ Fp(φ
∗) ≤ lim inf Fp(φn) = Ip

showing that the minimum is attained.
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Remark 3.3.4. The function θ 7→ −λ sin(θ) is convex on (0, π). Therefore, the map

M ∋ φ 7→ −λ
∫

[0,1]2
sin(φ)gdudv, g ∈ C∞

c ((0, 1)2), g ≥ 0,

is weakly lower semi-continuous. If φn ∈ A is any sequence and φn ⇀ φ∗ weakly in

some Lp, 1 ≤ p <∞ or converges weak-∗ in L∞, φn
∗
⇀ φ∗ it follows that

∫

[0,1]2
φ∗ ∂

2g

∂u∂v
dudv − λ

∫

[0,1]2
sin(φ∗)gdudv ≤ 0, ∀g ∈ C∞

c ((0, 1)2), g ≥ 0.

So, in general, φ∗ /∈ A, and thus, the functionals Fp are not lower semi-continuous

with respect to weak or weak-∗ convergence. Thus, it is not enough to have weak

convergence of the minimizing sequence for the existence of a minimizer. The point-

wise convergence in the proposition is also necessary for using the direct method to

show the existence of a minimizer for Fp.

The previous remark suggests considering the problem of minimizing the relaxed

energy F̃p, namely the largest weakly lower semi-continuous function less than or

equal to Fp on M (Pedregal, 1999; Müller, 1999). Let A denote the weak closure of

A in some Lp′ . The relaxation of Fp is defined by

F̃p(φ) =

{

inf{lim infn Fp(φn) : φn ⇀ φ} φ ∈ A.
+∞, otherwise

where the infimum is over all sequences which converge weakly to φ. Clearly, A ⊆
B ⊆ M and F̃p is weakly lower semi-continuous by construction. It thus follows from

Remark 3.3.2 that we can prove the existence of a minimizer for F̃p by the direct

method in the calculus of variations.

The question of the existence of a minimizer for Fp can thus be posed in terms of

the nature of the minimizer of F̃p which always exists. If there exists φ∗ ∈ A which is a

minimizer for F̃P , then φ
∗ is also a minimizer for Fp. Conversely, if all the minimizers

of F̃p are in A\A, it follows that Fp does not have a minimizer. Studying this question

involves computing the relaxation F̃p which in turn needs a careful analysis of the

potential oscillations in weakly convergent sequences of solutions of the sine-Gordon

equation.
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3.3.1 A Numerical Investigation of Lower Bounds for the Curvature

We can discretize the sine-Gordon equation on a N×N grid covering the unit square,

and minimize the lp norms of cot2 φ over all solutions of this discrete sine-Gordon

equation. This is a finite dimensional problem with a coercive energy, so there always

exists a minimizer φN on the N × N grid. Figure 3.3.1 displays the numerically

obtained results for this minimization. Observe the lack of high frequency oscillations

in the numerically obtained minimizers. In fact, increasing the mesh size suggests that

as N → ∞, the numerically obtained minimizers converge pointwise on [0, 1]2. If this

were indeed the case, Proposition 3.3.3 implies the existence of minimizers for the

functionals Fp on the admissible set A.

We will henceforth assume that the infimum is attained, i.e., for any given p and

λ, there is an admissible function φp(λ) ≡ φp ∈ A such that Ip = ‖ cot2(φp)‖p, it
follows that

Ip ≤ I∞ ≤ ‖ cot2(φp)‖∞.

Thus, numerically determining the function φp which minimizes the p-norm of cot2(φ)

in the admissible set, gives both lower and upper bounds for I∞, and the difference

between these bounds gives an estimate for the error in a numerical determination of

I∞.

Once we determine I∞(λ), we can computeM(λ) as the following argument shows:

max(|k1|, |k2|) =
|k1|+ |k2|

2
+

||k1| − |k2||
2

=

√

k21 + 2|k1k2|+ k22
4

+

√

k21 − 2|k1k2|+ k22
4

=

√

k21 + 2 + k22
4

+

√

k21 − 2 + k22
4

=
√

cot2(φ) + 1 +
√

cot2(φ) ≡ g(cot2(φ))

where g(x) =
√
x+

√
1 + x is a monotone function with a monotone inverse. Conse-
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(a)

(b) (c)

(d)

Figure 3.5. (a) Plot of I2n and ‖ cot2(φ2n)‖ as a function of n with λ = 4. The
collapse of these data points onto a single line confirms that these two quantities are
valid approximations to I∞ for large enough n. (b) Plot of φ16 as a function of u and
v with the contour plot of φ16 underneath the surface. We can see from the contour
plot that it appears that lines u + v = constant form the contours suggesting that
φ∞ is a function of u + v. (c) cot2(φ16) plotted as a function of u and v again with
the contour plot cot2(φ16) plotted underneath the surface. (d) Plot of φp(u, v) as a
function of u+v for p = 2, 4, 8, 16 the collapse into a single curve again indicates that
φ∞ is a function of u+ v only.
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quently,

M(λ) = g(I∞(λ)) =
√

I∞(λ) +
√

I∞(λ) + 1,

and the value of M(λ) is attained on φ∞, the extremizer for I∞.

The same argument can be applied to any function ζ(φ) with the property that

there is a continuous monotone function h with a continuous monotone inverse such

that h(ζ(φ)) = cot2(φ). In particular, if ζ(φ) = (φ − π/2)2, there is such a function

h, and it follows that

φ∞ ≡ argmin
φ∈A

max
x∈D

cot2(φ)

= argmin
φ∈A

max
x∈D

max[tan(φ/2), cot(φ/2)]

= argmin
φ∈A

max
x∈D

[

φ− π

2

]2

. (3.3.2)

We can solve any of these minimax problems to determine the extremizing function

φ∞. For our numerics, we use the third formulation of the problem, i.e., finding the

minimax for the square of the deviation of φ from π/2. Also, we note that, I∞ directly

estimates the maximum bending energy density k21 + k22 and I1 estimates the total

bending energy.

Figure 3.5(a) shows the numerically computed values of Ip and ‖ cot2(φp)‖∞ as

a function of p = 2n, n ∈ N, for λ = 4. Figure 3.5(b) and figure 3.5(c) shows the

numerically determined extremizers φp as well as the quantity cot2(φp) for λ = 4 and

p = 16. The figures for other values of λ are similar in character. The key observation

from these figures is that as p gets large φp(u, v) numerically approaches a limit that

is purely a function of the combination u+ v (see figure 3.5(d)). This motivates the

ansatz φ∞(u, v) = ψ(u+ v).

Substituting this ansatz in equation (3.3.1) yields ψ′′ = λ sin(ψ), which is the

Hamiltonian motion of a unit mass in a potential V (ψ) = λ cos(ψ). The trajectories

in phase space (ψ, ψ′) are given by conservation of the energy, ψ′2/2 + λ cos(ψ) = E

(see figure 3.3.1). Now, it known that there are only three distinct types of surfaces of
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revolution of constant negative curvature and for each of these surfaces φ is a function

of u+v only (Rozendorn, 1989). Therefore, the three distinct trajectories in the phase

plane correspond to the three types of surfaces of revolution. The pseudosphere

corresponds to the separatrix, hyperboloid surfaces correspond to closed orbits, and

conical surfaces correspond to unbounded orbits.

Figure 3.6. Phase portrait of the differential equation ψ′′ = λ sin(ψ). The three
different types of orbits correspond to the three different types of surfaces of revolution
of constant negative curvature. The piece of the orbit outlined in bold is the trajectory
ψ : [0, 2] → (0, π) that minimizes the value of cot2(ψ) over all trajectories in the phase
plane defined over the same time domain.

We seek solutions on the unit square, 0 ≤ t ≡ u+ v ≤ 2, that are bounded away

from ψ = π on the interval [0, 2]. If we want trajectories that minimize the maximum

value of cot2(ψ), it is clear from the symmetry of cot(ψ) we are interested in the

closed orbits. Furthermore, we seek a piece of these trajectories that satisfies the
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further symmetry requirement ψ(0) = ψ(2) = π − δ, ψ(1) = δ, and ψ′(1) = 0 since if

these conditions are not met we could select a different piece of the trajectory that

could further minimize cot2(φ). This trajectory is depicted in bold in figure 3.3.1.

The value E of a minimizing trajectory can be computed as E = [ψ′(1)]2/2 +

λ cos(ψ(1)) = λ cos(δ), and the relation between δ and λ is determined by requiring

that the time it takes to get from ψ = π − δ to ψ = δ is 1, i.e.,

∫ π−δ

δ

dθ
√

2λ(cos(δ)− cos(θ))
= 1 (3.3.3)

We can solve this equation numerically, and thereby determine φ∞(u, v) = ψ(u+ v),

provided that our ansatz is valid.

Generating an asymptotic series for (3.3.3), we have for small δ that

− log(δ) + log(8) +O(δ)√
λ

= 1.

Rearranging, we obtain

cot(δ) ∼ δ−1 +O(δ) =
1

8
exp[

√
λ] +O[e−

√
λ] (3.3.4)

This implies I∞(λ) ∼ 1
64
exp[2

√
λ] + O(1). Finally, if we set ν = 0 we have in terms

of
√
−K0R that

I∞(
√
−KR) ∼ 1

64
e2

√
−K0R +O(1). (3.3.5)

3.3.2 Elastic Energy of Hyperboloids of Revolution

We conclude this section by comparing the bending energy of disks cut from hy-

perboloids of revolution with the pseudosphere. The family of hyperboloids are

parametrized by the following family of C-nets of the second kind

y(η, ξ) =
1

b

(

dn(η, b2) cos(bv), dn(η, b2) sin(bξ), u− E(am(η, b2)|b2)
)

, (3.3.6)

where dn, am, sn denote the usual Jacobi elliptic functions, E is the elliptic function

of the second kind, and 0 < b < 1 (Abramowitz & Stegun, 1964; Gray et al., 2006).
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The metric and principal curvatures are given by

g′11 = b4sn2(η, b2), g′12 = g′21 = 0, g′22 = 1− b4sn2(η, b2) (3.3.7)

k21 =
g′22
g′11

=
1− b4sn2(η, b2)

b4sn2(η, b2)
, k22 =

b4sn2(η, b2)

1− b4sn2(η, b2)
. (3.3.8)

The Christoffel symbols for this parametrization are

Γ1
11 =

cn(η,b2)dn(η,b2)
sn(η,b2)

, Γ2
11 = 0

Γ1
12 = 0, Γ2

12 =
−b4sn(η,b2)cn(η,b2)dn(η,b2)

1−b4sn(η,b2)
,

Γ1
22 = − cn(η,b2)dn(η,b2)

sn(η,b2)
Γ2
22 = 0,

(3.3.9)

Therefore, the geodesic equations are

0 =
d2η

dt2
+

cn(η, b2)dn(η, b2)

sn(η, b2)

[

(

dη

dt

)2

+

(

dξ

dt

)2
]

(3.3.10)

0 =
d2ξ

dt2
+

2b4sn(η, b2)cn(η, b2)dn(η, b2)

1− b4sn2(η, b2)
. (3.3.11)

It is easy to see that the principal curvatures diverge when π = am(η, b2). Conse-

quently, the center of the disk is located at the coordinate η0 = F (π/2, b2), where F

is the elliptic function of the first kind, and thus the relationship between δ and b is

given by

δ

2
= arctan

(
√

1− b4 sin2(am(F (π/2, b2))

b4 sin2(am(F (π/2, b2))

)

= arctan

(
√

1− b4

b4

)

. (3.3.12)

Solving this equation yields

b =
√

cos(δ/2). (3.3.13)

Therefore, for a particular radius R we can numerically solve equation (3.3.3) to

obtain b. Once, we determine b we can then numerically integrate the bending energy

W[y] =

∫ 2π

0

∫ R

0

(

1− b4sn2(η, b2)

b4sn2(η, b2)
+

b4sn2(η, b2)

1− b4sn2(η, b2)

)

sinh(r) drdΨ, (3.3.14)

following a similar procedure as we did with the pseudosphere. These results are

summarized in figure 3.3.2.
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(a)

(b)

Figure 3.7. (a) A representation of the geodesic disks cut out of hyperboloid sur-
faces colored by k21 + k22. The radius and polar angle of these disks correspond to
the geodesic radius r and polar angle Ψ. These disks each have a maximum radii
of R = 1.2654, 1.8505, 2.2342, 2.5199. (b) The Willmore energy of disks cut from
hyperboloids plotted versus geodesic radius. The dashed lines correspond to where
the isometric immersions fails to be smooth.
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3.4 Isometric Immersions with a Periodic Profile

In this section we extend the periodic isometric immersions in the FvK ansatz created

in section 2.4.3 to create exact isometric immersions with a periodic profile. The key to

this construction will be the existence of a hyperbolic surface that has two asymptotic

curves that are straight lines that intersect at the origin of U . Hyperbolic surfaces

satisfying this property exist, they are called Amsler surfaces (Bobenko & Eitner,

2000), and form a one parameter family of surfaces Aθ that are uniquely determined

by the angle θ between the asymptotic lines (Amsler, 1955). As in the construction of

surfaces in the FvK ansatz, if the angle θ between the asymptotic lines satisfies θ = π
n

we can take the odd periodic extension of the piece of the Amsler surface bounded

between the asymptotic lines and form a periodic profile with n waves. We call the

surfaces constructed in this manner periodic Amsler surfaces .

3.4.1 Construction of Periodic Amsler Surfaces

The generating angle for the C-net of an Amsler surface is found by the similarity

transformation z = 2
√
uv, ϕ(z) = φ(u, v) which transforms (3.1.3) into a Painlevé III

equation in trigonometric form:

ϕ′′(z) +
1

z
ϕ′(z)− sin(ϕ(z)) = 0, (3.4.1)

where ′ denotes differentiation with respect to z (Amsler, 1955; Bobenko & Eitner,

2000). By imposing the initial conditions ϕ(0) = π
n
and ϕ′(0) = 0 solutions to (3.4.1),

denoted by ϕn(z), generate surfaces such that the u and v axis in D correspond to

the asymptotic lines of the surface. Moreover, the asymptotic lines intersect at the

origin at an angle ϕn(0) =
π
n
and the angle between the coordinate curves along the

lines u = 0 and v = 0 is given by ϕn(0) =
π
n
as well.

To generate the parametrization x : D → R
3 from the generating angle φ, one

could use the Frenet-Serret formulas to relate the second fundamental form and tan-



99

Figure 3.8. Amsler surface with a C-net parametrization. This surface is not in fact
a true Amsler surface but is a discrete Amsler that is generated by a discretization
of the sine-Gordon equation (Bobenko & Pinkall, 1999).

gent vectors to the asymptotic curves and numerically solve the resulting differential

equation (Amsler, 1955). Unfortunately, this direct approach is numerically unstable.

Instead, a theory of discrete surfaces of constant negative Gaussian curvature has been

developed that naturally discretizes a surface from its C-net that is numerically stable

and preserves the intrinsic and extrinsic geometry of the surface (Bobenko & Pinkall,

1999). In this method, if the parametrization x is discretized by F : Z2 → R
3 then

Fi+1,j − Fi,j = Ni+1,j ×Ni,j (3.4.2)

Fi,j+1 − Fi,j = −Ni,j+1 ×Ni,j , (3.4.3)

where Ni,j is the normal to the surface at the lattice point {i, j}. The normals are

then determined by the following relationship

Ni,j+1 = −Ni+1,j +
< Ni+1,j , Ni,j +Ni+1,j+1 >

1+ < Ni,j, Ni+1,j+1 >
(Ni,j +Ni+1,j+1), (3.4.4)

where < ·, · > denotes the standard Euclidean product in R
3.

To construct a discrete Amsler surface for the quadrant u > 0 and v > 0 we

use a lattice {i, j} in which {i, 1} corresponds to the u-axis and {1, j} corresponds

to the v-axis. Furthermore, we assume a uniform spacing δ between lattice points.
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Now, since the u and v axis are mapped to lines in R
3 we have the following initial

conditions

N1,1 = (0, 0, 1) (3.4.5)

Fi,1 = (δ · i, 0, 0) (3.4.6)

F1,j = (δ · j cos(π/n), δ · j sin(π/n), 0). (3.4.7)

Furthermore, by the Weingarten equations (A.5.3) and the fact that x(u, 0) = (u, 0, 0)

and x(0, v) = (cos(π/n)v, sin(π/n)v, 0) it follows that

∂N

∂u

∣

∣

∣

∣

v=0

=
1

sin
(

π
n

)

∂x

∂v

∣

∣

∣

∣

v=0

(3.4.8)

∂N

∂v

∣

∣

∣

∣

v=0

=
1

sin
(

π
n

)

∂x

∂u

∣

∣

∣

∣

u=0

. (3.4.9)

Therefore,
∥

∥

∥

∥

∂N

∂u

∥

∥

∥

∥

v=0

=
1

sin(π/n)
and

∥

∥

∥

∥

∂N

∂v

∥

∥

∥

∥

u=0

=
1

sin(π/n)
(3.4.10)

Consequently, initial conditions for the normal can be specified:

Ni,1 =
(

0,− sin
(

1
sin(π/n)

)

, cos
(

1
sin(π/n)

))

δ · i
N1,j =

(

− sin
(

π
n

)

sin
(

1
sin(π/n)

)

, cos
(

π
n

)

sin
(

1
sin(π/n)

)

, cos
(

1
sin(π/n)

))

δ · j.
(3.4.11)

Therefore, equations (3.4.3-3.4.4) along with the initial conditions (3.4.6-3.4.7) and

(3.4.11) form a complete system of equations that can be solved by “stair casing”

from the lattice point i = 1, j = 1. In figure 3.8 we plot a discrete Amsler surface

generated by this algorithm. A periodic Amsler surface can then be constructed by

periodic reflecting the piece of the surface bounded between the lines u = 0 and v = 0

as we did in section 2.4.3. In figure 3.9 we plot these surfaces.

3.4.2 Maximum Radius of Periodic Amsler Surfaces

As in the case with the pseudosphere, the Amsler surfaces become singular when

ϕn(z) = nπ. In figure 3.10 we plot ϕn versus z which indicates that ϕ−1(π) grows
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Figure 3.9. Periodic Amsler surfaces with n = 2, 3, 4 and 5 waves respectively.
These surfaces are not drawn to scale, but are close to the maximum radii presented
in figure 3.10. The coloring of the disks corresponds to contours of arclength data
and indicate how the different geodesic circles cut from these surfaces would appear.
These surfaces are in fact not true Amsler surfaces but are discrete Amsler surfaces
creating using the algorithm presented in Bobenko & Pinkall (1999).
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approximately logarithmically with increasing n. The following proposition makes

this scaling precise.

Figure 3.10. A plot of ϕ versus r satisfying the initial conditions ϕ(0) = π/n for
n = 2, . . . 10. The dashed horizontal line corresponds to where ϕ(r) = π. At this
point a principal curvature diverges and by choosing a higher value of n a larger
disk can be created. The inset plot illustrates how the maximum radius scales with
n. We can see that the radius grows very slowly with n and it looks to be growing
approximately at a logarithmic rate.

Proposition 3.4.1.

ln
(

cot
( π

4n

))

≤ ϕ−1
n (π). (3.4.12)

Proof. Multiplying equation (3.4.1) by ϕ′(z) we get that

1

2

d(ϕ′)2

dz
= −dϕ

dz

d cos(ϕ)

dϕ
− 1

z
ϕ′(z)2 ≤ −d cos(ϕ)

dz
.

Integrating, and assuming ϕ′(0) = 0 and ϕ(0) = π/n, we have that

1

2
(ϕ′)2 =

1

2

∫ z

0

d

dz
(ϕ′(z))2dz ≤ −

∫ z

0

d

dz
cos(ϕ)dz = cos(π/n)− cos(ϕ).
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and therefore it follows that
∫ π

π/n

dϕ
√

2(1− cos(ϕ))
≤
∫ π

π/n

dϕ
√

2(cos(π/n)− cos(ϕ)
≤ ϕ−1

n (π).

Therefore,

ln
(

cot
( π

4n

))

≤ ϕ−1
n (π).

The geodesic equations (3.1.7) for geodesics starting at the origin with correspond-

ing angle function ϕn(z) take the form:

d2u
dt2

+ 1√
uv

dϕn

dz

(

cot(ϕn)v
(

du
dt

)2 − csc(ϕn)u
(

dv
dt

)2
)

= 0,

d2v
dt2

+ 1√
uv

dϕn

dz

(

cot(ϕn)u
(

dv
dt

)2 − csc(ϕn)v
(

du
dt

)2
)

= 0,
(3.4.13)

with initial conditions u(0) = v(0) = 0, du
dt
(0) = cos(ψ), and dv

dt
(0) = sin(ψ) for ψ ∈

[0, π/2]. As expected, the differential equations are singular on the curve ϕ−1
n (π) which

can be found by numerically solving (3.4.1). Once the singular curve is determined

we can calculate the maximum radius of a periodic Amsler surface with n waves by

determining the shortest geodesic that intersects the singular curve. Now, it follows

from proposition 3.4.1 that by adding more waves this singular curve can be arbitrarily

far from the origin. Thus we have the following proposition.

Proposition 3.4.2. Let D be a disk of radius R in the hyperbolic plane. There exists

a W 2,2 isometric immersion x : D → U ⊂ R
3 such that U is a subset of a periodic

Amsler surface.

Proof. The same argument used to prove (3.4.1) implies that lim
n→∞

ϕ−1
n (π/2) = ∞.

Now, let α(t) = x((u(t), v(t))) be a geodesic lying on a periodic Amsler surface with

generating angle θ = π/n. Suppose α(t) starts at the origin and travels to the

curve
√
v =

ϕ−1
n (π/2)

2
√
u

terminating at the point (uf , vf) and without loss of generality

assume that u(t) is a function of v(t). Then, the arclength of α(t) satisfies:

d(0, (uf , vf)) =

∫ uf

0

√

1 + 2 cos(ϕ)
du

dv
+

(

du

dv

)2

dv >

∫ uf

0

dv = uf . (3.4.14)
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Thus, since uf → ∞ as n→ ∞ it follows that

lim
n→∞

(0, (uf , vf)) = ∞.

3.4.3 Elastic Energy of Periodic Amsler Surfaces

To compute the elastic energy using equation (3.1.8) we need to determine the depen-

dence of u and v on r and Ψ. Let j1 and j2 denote unit vectors in the u−v plane that

are aligned with the u and v axis respectively. If we let x denote the parameterization

of the Amsler surface, then the pushforward or differential of x, denoted x∗, is a linear

map. Furthermore, since x is an isometry and the images of j1 and j2 under x∗ make

an angle of π/n we have without loss of generality that

x∗j1 = e1 and x∗j2 = cos(π/n)e1 + sin(π/n)e2, (3.4.15)

where e1 and e2 are the standard basis elements for the tangent plane at x(0, 0).

Consequently, if we let α(t) = (u(t), v(t)) be a geodesic defined in the u − v plane

satisfying α′(0) = cos(ψ)j1 + sin(ψ)j2 then by linearity we have that

x∗(α
′(0)) = (cos(θ) + sin(θ) cos(π/n)) e1 + sin(θ) sin(π/n)e2. (3.4.16)

Therefore, we can conclude that the polar angle Ψ for this geodesic is given by

Ψ = arctan

(

sin(ψ) sin(π/n)

cos(ψ) + sin(ψ) cos(π/n)

)

. (3.4.17)

Now, we can numerically integrate the elastic bending energy for the periodic

Amsler surfaces. First, by specifying Ψ and numerically solving (3.4.17) for ψ we can

generate initial conditions for equations (3.4.13) which can then be numerically solved

to determine u(t) and v(t). Then, by fixing r and numerically solving the arclength

equation

r =

∫ T

0

√

(

du

dt

)2

+ 2 cos(ϕ)
du

dt

dv

dt
+

(

dv

dt

)2

dt, (3.4.18)
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for T we can calculate the values u(T ) and v(T ) which correspond to the coordinates

(Ψ, r). Finally by setting up a mesh on the rectangle (Ψ, r) ∈ [0, 2π] × [0, R] and

using the above process to determine u and v we can numerically integrate equation

(3.1.8).
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Figure 3.11. A representation of the geodesic disks cut out of Amsler surfaces with
n = 2, . . . , 5 waves colored by k21 + k22 in which the radius and polar angle correspond
to the geodesic radius r and polar angle Ψ. These disks each have a maximum radii
of R = 1.2654, 1.8505, 2.2342, 2.5199 beyond which one of the principal curvatures
diverges. The energy of these disks is concentrated in small regions near the singular
edge of the disk.

In figure 3.11 we plot the contour data of k21 + k22 in geodesic polar coordinates

for periodic Amsler surfaces. The radius of the disk is chosen to be near the critical

value where the immersions fails to be smooth. We can see that the bending energy

is concentrated in small regions near this singular edge. Moreover, for small radii we

can see that k21+k
2
2 is approximately constant. In this region of the disk, the quantity

k21 + k22 is well approximated by the corresponding term
(

∂2η
∂x2

)2

+
(

∂2η
∂y2

)2

in the FvK

ansatz. Therefore, Amsler surfaces are indeed the natural extensions of the periodic
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Figure 3.12. The scaled bending energy of periodic Amsler surfaces with n =
2, . . . , 5 waves plotted versus geodesic radius. We can see that these disks have lower
energy than there counterparts lying in the hyperboloid of revolution. Moreover, the
The vertical dashed lines correspond to the radius where the surface with n waves
can no longer be isometrically embedded.

surfaces constructed in section 2.4.3.

In figure 3.12 we plot the Willmore energy of periodic Amsler surface. These

periodic Amsler surfaces have a lower Willmore energy than the smooth immersions

given by subsets of the pseudosphere and hyperboloids of revolution with constant

Gaussian curvature. Furthermore, we can see that for each n ≥ 2, there is a radius

Rn ∼ log(n) such that the n-periodic Amsler surfaces only exist for a radius 0 <

R < Rn. This gives a natural mechanism for the refinement of the wavelength of the

buckling pattern with increasing radius of the disk.
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Chapter 4

Conclusion

Free non-Euclidean elastic sheets arise in a variety of physical and biological systems.

The morphology of these sheets is usually modelled as the equilibrium deformations

for an appropriate elastic energy. One approach is to model the sheet as a Riemannian

manifold (D3d, g3d) with a prescribed metric g3d, which is then used to define strains

and hence an elastic energy for a configuration.

In this dissertation we presented a study of two reduced theories of non-Euclidean

sheets, the Föppl-von Kármán and Kirchhoff models, for metrics with constant neg-

ative Gaussian curvature K0. Specifically, to obtain a better understanding of the

morphology of swelling hydrogels (Klein et al., 2011), we focused on radially symmet-

ric domains and deformations with a periodic profile with n waves.

4.1 Discussion of Results from the FvK Model

In the FvK approximation, we proved that global minimizers of the bending energy

over the set of isometric immersions in the FvK ansatz are given by a quadratic sad-

dle η = xy. We thus expect that, with decreasing thickness, the configuration of the

sheet will converge to a two wave profile. This is not what is observed experimentally,

where the number of waves increases with decreasing thickness (Klein et al., 2011).

Consequently, the physically realized configurations are not given by the global min-

imizers of this model energy. Note however, that the periodic, non-smooth profiles

that we construct in section 2.4.3 do agree qualitatively, and in scaling behavior, with

the experimental observations. This is surprising since these periodic, non-smooth

profiles are not global minimizers of the energy, and we need a different selection

mechanism if these profiles do indeed represent the experimental configurations.
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The second main result from chapter 2 is theorem 2.6.6, which gives rigorous

upper and lower bounds for the elastic energy of minimizing deformations. This

theorem allows us to construct regions in the τ − n plane in which minimizers of

the elastic energy with n-waves behave either like a flat deformation or an isometric

immersion. The critical thickness t∗ in which an n−periodic deformation transitions

from a flat deformation into an approximate n−periodic isometric immersion scales

like t∗ ∼
√
−K0R

2n−1/2. Moreover, theorem 2.6.6 allows us to prove quantitatively

in the FvK ansatz that there can be no refinement with decreasing thickness of the

number of waves for a sequence of minimizing deformations.

The third main result from chapter 2 is the scaling with τ of the width of bound-

ary layers in which stretching energy is concentrated. In these localized regions of

stretching, the total elastic energy of an isometric immersion is lowered by allowing

some stretching to reduce the bending energy. Near the edge of the annulus the con-

tributions to the bending energy coming from the Gaussian and mean curvatures is

reduced in overlapping boundary layers that scale with the thickness like t1/2|K0|−1/4.

Furthermore, for n ≥ 3 boundary layers form along the lines of inflection in which

the mean curvature of an isometric immersion is reduced by removing a jump discon-

tinuity in the curvature along the azimuthal direction. The width of these boundary

layers scales with the radius and thickness like ρ1/3t1/3|K0|−1/6.

It is important to note that the FvK elastic energy is valid in an asymptotic

limit in which the metric becomes increasingly flat with decreasing thickness, that is

ǫ ∼ t/R. In this dissertation we took ǫ fixed and t decreasing and in particular we

showed that the energy of minimizers scales like τ 2. Consequently, when τ ≪ 1 it is

perhaps more appropriate to consider the Kirchhoff model. But, the Kirchhoff model

is rigid in the sense that there is no competition between stretching and bending

energies and thus there is no possibility of the Kirchohff model alone explaining the

refinement of the number of waves with decreasing thickness.
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4.2 Discussion of Results from the Kirchhoff Model

In chapter 3 we considered the geometric problem of finding exact W 2,2 isomet-

ric immersions of gK0
. We showed that there exists smooth isometric immersions

x : D → R
3 for geodesic disks of arbitrarily large radii. Now, for complete surfaces of

constant negative curvature (or surfaces whose curvature is bounded above by a neg-

ative constant), Hilbert’s theorem (Hilbert, 1901) (resp. Efimov’s theorem (Efimov,

1964)) show that there are no analytic (resp. C2) solutions of H2 in its entirety. In

elucidating the connection between these non-existence results and the existence of

isometric immersions for bounded domains, we provided numerical evidence that the

maximum principal curvature of such immersions is bounded below by a bound which

grows exponentially in
√
−K0R. This is a geometric feature that is in contrast with

the FvK model in which |D2η| does not grow with the size of the domain.

The existence of smooth, and thus also W 2,2 immersions of arbitrarily large disks

has consequences for the modelling of free non-Euclidean sheets. In particular, the

mid-surface of minimizers for the three dimensional elastic energy E3d must converge

as t→ 0 to a minimizer of EKi (Lewicka & Pakzad, 2011). This is again an apparent

contradiction with experimental observations where the bending energy of the mini-

mizer scales with the thickness t and is well fit by a power law, t−1, which diverges

as t→ 0 (Klein et al., 2011).

The smooth immersions x : DR → R
3 constructed in sections 3.2 and 3.3 do not

have the rotational n-fold symmetry (Ψ → Ψ+ 2π/n for the geodesic polar angle Ψ)

of the underlying energy functional, which is also seen in the experimentally observed

configurations. In section 3.4 we generalize the construction of the non-smooth, n-

periodic isometric immersions in the linearized geometry constructed in section 2.4.3

to construct exactW 2,2 isometric immersions which are also non-smooth and have the

same symmetry/morphology as the experimentally observed configurations. These

periodic Amsler surfaces have lower bending energy than the smooth immersions given
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by subsets of the pseudosphere and hyperboloids with constant negative curvature.

For each n ≥ 2, there is a radius Rn ∼ log(n) such that the n-periodic Amsler

surfaces only exist for a radius 0 < R < Rn. This gives a natural mechanism for the

refinement of the wavelength of the buckling pattern with increasing radius of the

disk. However, it does not, at least directly, explain the observed refinement with

decreasing thickness.

4.3 Future Directions

From this work and it is clear that the FvK and Kirchhoff models of non-Euclidean

elasticity cannot completely explain the periodic shapes in experiments. The periodic

shapes we have constructed in both the FvK and Kirchhoff models are qualitatively

similar to the experimental shapes but are only local minimizers of the FvK energy.

A major goal of future works is to connect the existence of these local minimizers to

the observed patterns in experiments. Below we discuss a short list of mathematical

questions and avenues for future research that could shed light on these issues.

1. The exact isometric immersions with a periodic profile constructed in section

4.3 are similar to the n-periodic isometric immersions in the FvK approximation

but have highly localized regions of bending energy near the edge of the disk

and along the lines of inflection. Therefore, in these regions, as in the boundary

layers in the FvK ansatz, it is conceivable that it would be energetically favor-

able to allow some stretching to reduce this localized bending energy. These

observations illustrate the multiple scale behavior of this problem and it may

be more appropriate to consider a combination of different reduced theories in

various regions of the domain. A hierarchy of such reduced theories has recently

been conjectured to exist and further research in this direction may explain the

complex morphologies of non-Euclidean plates (Lewicka et al., 2011).
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2. The periodic shapes in swelling hydrogels are the result of dynamical processes.

It may be more appropriate to model this type of differential growth dynami-

cally, perhaps as a gradient flow of the elastic energy. The pattern could then

be selected for dynamical reasons and not by global minimization of an energy

functional. This might explain why local but not global extrema for the energy

functional seem to describe the observed patterns.

3. Chebychev nets give a natural discretization of surfaces with constant nega-

tive curvature that respects both the intrinsic and the extrinsic geometry of

the surface. This idea has already been used for constructing discrete isometric

immersions (K-surfaces) for such surfaces (Bobenko & Pinkall, 1999). Develop-

ing a numerical methods for minimizing the variational problem exploiting this

structure could increase our understanding of the complex interaction between

geometry and elasticity.

4. Our results in chapter 3 strongly use the fact that the target metric on the

surface has constant negative curvature, which then allows us to naturally as-

sociate a Chebychev net with each isometric immersion through an asymptotic

parametrization (Gray et al., 2006). However, we believe that our results, in

particular the lower bound for the maximum principal curvature (3.3.5), and

the construction of C1,1 and piecewise smooth isometric immersions can also be

extended to other target metrics whose curvature is bounded above by a nega-

tive constant. It is natural to study these questions, in particular the difference

between smooth and C1,1 immersions using the ideas in Chen et al. (2010).

5. For the periodic Amsler surfaces in section 4.3, the global structure, i.e. the

number n of waves is determined by the local structure at the origin. The

origin is a bifurcation point for the Chebyshev net induced by the immersion

in the sense that, every point in the complement of the origin has precisely
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two asymptotic directions, while the origin has n asymptotic directions with

n > 2 (Burago et al., 2005). For surfaces whose total positive curvature is

bounded by 2π, it is always possible to find a global Chebyshev net, except it

can have multiple bifurcation points (Burago et al., 2005). This suggests the

following natural questions: Are there non-smooth immersions (C1,1 or even

W 2,2 immersions) with multiple bifurcation points?
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Appendix A

Differential Geometry of Surfaces

Here we place in one location the definitions and equations from the elementary

differential geometry of surfaces that are relevant to this dissertation. The material

presented here is a survey of some of the standard results from the classical theory of

surfaces and is compiled from Spivak (1979), McCleary (1995), Lee (1997), Frankel

(2003), and Gray et al. (2006). For a more complete understanding of this material

the reader is encouraged to obtain these references.

In this appendix and in some locations in this dissertation we make use of the so

called Einstein summation convention of summation over repeated indices. That is,

for any duplicate occurrence of a superscript and a subscript summation over these

indices is implied. For example,

viv
i =

∑

i

viv
i,

vijv
ik =

∑

i

vijv
ik,

vijv
ij =

∑

i

∑

j

vijv
ij.

A.1 Tangent and Normal Vectors to a Surface

Let x : D → R
3 be a local parametrization of a surface S, with parametrization

variables (u, v). That is, as a vector valued function in R
3 we have that

x(u, v) = (x1(u, v),x2(u, v),x3(u, v)) . (A.1.1)

In the terminology of continuum mechanics the variables (u, v) are called thematerial

coordinates . For fixed v0 or fixed u0 the curves u→ x(u, v0) and v → x(u0, v) form
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the coordinate curves on the surface. At a fixed point P ∈ S the vectors ∂x
∂u

and ∂x
∂v

are tangential to the surface and lie in the directions of the coordinate curves. Thus

if the surface is regular the vectors ∂x
∂u

and ∂x
∂v

form a basis for the tangent plane TpS

and there exists a unit normal vector that can be defined from the structure of R3:

N =
∂x
∂u

× ∂x
∂v

∥

∥

∂x
∂u

× ∂x
∂v

∥

∥

. (A.1.2)

Remark A.1.1. In instances where summation over the coordinates is needed we

will use the variables (u1, u2) to denote the parametrization variables.

Figure A.1. A surface parametrized by a map x(u, v) → R
3. The black curves are

the coordinate curves on the surface. The green and red arrows illustrate tangent
vectors in the direction of the coordinate curves and the blue arrow corresponds to
the normal vector to the surface.

A.2 First Fundamental Form and the Induced Riemannian

Metric

The first fundamental form or the induced Riemannian metric g (classically

written as I) is a symmetric positive definite tensor g : TpS × TpS → R defined by

g(v,w) = v · (∇x)T · ∇x ·wT .



115

As the following calculations show, the metric encodes how the mapping x distorts

lengths, angles, and areas:

1. Let α : [a, b] → D be a differentiable curve. The length L(α) of the image of

the curve on S can be found from the chain rule:

L(α) =

∫ b

a

√

dx(α(s))

ds
· dx(α(s))

ds
ds =

∫ b

a

√

dα

ds
· (∇x)T · ∇x ·

(

dα

ds

)T

ds

=

∫ b

a

√

g

(

dα

ds
,
dα

ds

)

ds.

2. Let α, β : [a, b] → D be differentiable curves with unit speed whose images on S

intersect at a point P ∈ S. The angle θ between the curves at this intersection

point can be calculated:

cos(θ) =
∂x(α(s))

ds
· ∂x(β(s))

ds
=
dα

ds
· (∇x)T · ∇x ·

(

∂α

ds

)T

= g

(

dα

ds
,
dβ

ds

)

.

3. The area A(x(D)) of the image of D is given by

A(D) =

∫

D

∥

∥

∥

∥

∂x

∂u
× ∂x

∂v

∥

∥

∥

∥

dudv. =

∫

D
det(g)dudv =

∫

D
dAg, (A.2.1)

where the area form det(g)dudv = dAg.

A.3 Basic Riemannian Geometry

Since the metric g is coordinate independent and does not depend on the outward

normal N, a metric g can be defined on D independent of the existence of a corre-

sponding parametrization. A domain D equipped with a symmetric positive definite

tensor g, written (D, g), is called an abstract surface or more generally a two

dimensional Riemannian manifold. On a Riemmanian manifold the notions of the

length of a curve, angle between vectors, and area can be defined in terms of g by
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taking items 1-3 above as definitions. Additional, a Riemannanian (D, g) is a metric

space with the distance function d : D ×D → R defined by

d(p, q) = inf{L(α) : α is a piecewise smooth curve in D joining p and q}. (A.3.1)

The metric also allows us to identify when two abstract manifolds have the same

intrinsic geometric properties by defining two manifolds (D1, g1) and (D2, g2) to

be isometric if there exists a diffeomorphism f : D1 → D2 such that g1(u, v) =

g2(f(u, v), f(u, v)). The mapping f is called an isometry. An isometric invariant

is any quantity that is preserved by an isometry. Examples of isometric invariants are

length, area, and angle. An isometric immersion of a Riemannian manifold (x,D)

is a mapping x : D → R
3 such that the induced Riemmanian metric (∇x)T · ∇x

satisfies (∇x)T · ∇x = g.

Also, the Riemannian metric creates a richer structure on a manifold by allowing

one to define the notion of an inner product < ·, · >: TpD × TpD → R by:

< v,w >= g(v,w) = v · g ·wT .

Therefore, if we fix a vector v ∈ TpD we can naturally associate a covector in T ∗
pD,

where T ∗
pD is the dual space of TpD, to v by

v →< v, · > .

If we let ei denote a basis for the tangent plane and ej it corresponding dual basis,

that is ej(ei) = δji , then the components vi of the covector associated with v can be

found by a simple calculation:

vi = gijv
j,

which we call the covariant components of the contravariant vector v. If we

now denote the components of the matrix g−1 by gij we then have that

vi = gijvi.
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Therefore, the metric g allows one to naturally associate covectors and vectors and

thus identifies the tangent and cotangent planes of the Riemannian manifold. The

process of using g to convert a vector into a covector and vice versa is colloquially

called “lowering” and “raising” indices and can be applied to higher order mixed

tensors as well.

Another key property of Riemannian manifolds is that it allows one to identify

rank two tensors with linear transformations, which is important if we want to make

meaningful definitions of quantities such as the determinant and trace of a tensor.

To show this identification we will first show that rank two mixed tensors can be

identified with linear transformations. Let E be a vector space, E∗ its dual space and

A : E → E a linear transformation. We can define a mixed tensor WA : E∗ ×E → R

by WA(α,A(v)) = α(v). If we let ei denote a basis for E and ej its corresponding

dual basis for E∗ then in components

WA
i
j = WA(e

i, ej) = ei(A(ej)) = ei(ekA
k
j ) = δikA

k
j = Ai

j.

That is, the components of WA correspond precisely with the components of A.

Conversely, given a mixed tensor W : A : E∗×E → R we define a A : E∗×E → R to

be the unique linear transformation such that W (α,v) = α(Av), where the existence

and uniqueness of A follows from the bilinearity ofW . Now, in a Riemannian manifold

(D, g) if W : T ∗
pD × T ∗

pD is a rank two tensor then we can associate it with a mixed

tensor by raising its index. The associated mixed tensor has the components

W j
i = gikWkj,

from which quantities like the determinant and trace can be calculated.
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A.4 Second Fundamental Form and Curvature

The second fundamental form h (classically denoted II) is the tensor h : TpS →
TpS defined by

h(v,w) = −v · (dN)T · ∇x ·wT .

Using the fact that N · ∂x
∂u

= 0 and N · ∂x
∂v

= 0 we have that the components of h

satisfy

h11 = −∂N
∂u

· ∂x
∂u

= N · ∂
2x

∂u2
,

h12 = −1

2

(

∂N

∂u
· ∂x
∂v

+
∂N

∂v
· ∂x
∂u

)

= N · ∂2x

∂u∂v
,

h22 = −∂N
∂v

· ∂x
∂v

= N · ∂
2x

∂v2
.

To provide a geometric interpretation of h, let α : [a, b] → D be a curve such that

x(α(s)) defines a unit speed curve C on S with normal n and tangent vector t and

let (u1, u2) denote the parametrization variables. Differentiating, we have that

t =
dx(α(s))

ds
=
∂x

∂ui
dαi(s)

ds
.

Differentiating again and using the fact that curve is unit speed, we have that

κn =
∂2x

∂ui∂uj
dαi(s)

ds

dαj(s)

ds
+
∂x

∂ui
∂2dαi(s)

ds
,

where κ is the curvature of the curve. Now, since ∂x
∂u1 and ∂x

∂u2 are orthogonal to N it

follows that

κN · n =
dα(s)

ds
·D2x ·

(

dα(s)

ds

)T

= h(t, t).

Now, let v ∈ TpS have unit length and Π be the plane spanned by v and N. The

intersection of Π and S forms a plane curve C on S with a unit tangent vector v at

p and thus

h(v,v) = ±κ, (A.4.1)
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where κ is the plane curvature of C at p. That is h(v,v) measures the curvature of

S in the direction of v (see figure A.2). Define the principal curvatures of S at p

by

k1 = max
‖v‖=1

h(v,v) and k2 = min
‖v‖=1

h(v,v).

By compactness there are two vectors that obtain this maximum and minimum and we

call them the principal directions. Furthermore, since h is symmetric the following

theorem follows from linear algebra:

Theorem A.4.1 (Euler). k1 and k2 are the eigenvalues of the linear transformation

H corresponding to h and the principal directions are the eigenvectors. If k1 6= k2

then the principal directions are orthogonal.

Figure A.2. The second fundamental form measures the curvature of the plane
curve formed by the intersection of a plane parallel to the unit normal N and a
tangent vector.

There are two measures of curvature for a point on a surface that correspond to

the two principal invariants of h.

1. The Gaussian curvature K is defined by:

K = det(h) = det(gijhik) =
det(hij)

det(gij)
= k1k2. (A.4.2)
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2. The mean curvature H is defined by:

H =
1

2
tr(h) =

1

2
tr(gijhjk) =

1

2
(k1 + k2) . (A.4.3)

The Gaussian curvature can be interpreted as follows, if K > 0 in the neighborhood of

a point the neighborhood is elliptic or bowl shaped while if K < 0 the neighborhood

is hyperbolic or saddle shaped. The mean curvature is a measure of the bending of

the surface and surfaces with H = 0 are called minimal surfaces.

The definitions of the mean and Gaussian curvature are defined above in terms

of the second fundamental form which depends on the normal N and relies on the

surface being immersed in R
3. It is a remarkable and surprising fact that the Gaussian

curvature can be calculated in terms of g alone. This was first stated and proved by

Gauss in the form of his famous Theorema Egregium (Spivak, 1979).

Theorem A.4.2. (Gauss’s Theorema Egregium) The Gauss curvature K = k1k2 is

an isometric invariant.

This result implies that if a surface is bent without stretching the principal cur-

vatures may change but their product will not. Moreover, this provides a simple

necessary condition to check if two surfaces are isometric.

Corollary A.4.3. Isometric surfaces have the same Gaussian curvatures at corre-

sponding points.

The exact formula for the Gaussian curvature in terms of the components of g is

provided by Biroshi’s formula:

K = det(gij) det





−1
2
∂2g11
∂v2

+ ∂2g12
∂u∂v

− 1
2
∂2g22
∂u2

1
2
∂g11
∂u

∂g12
∂u

− 1
2
∂g11
∂v

∂g12
∂v

− 1
2
∂g22
∂u

g11 g12
1
2
∂g22
∂v

g12 g22





− det(gij) det





0 1
2
∂g11
∂u

1
2
∂g22
∂u

1
2
∂g11
∂v

g11 g12
1
2
∂g22
∂u

g12 g22



 . (A.4.4)
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The above equation allows one to define Gaussian curvature K on abstract surfaces

regardless if there exists an isometric immersion of the abstract surface into R
3.

A.5 Compatibility Conditions

Let (u1, u2) denote the parametrization variables. TheGauss equations for a surface

are obtained by decomposing ∂2x

∂ui∂uj into tangential and normal components:

∂2x

∂ui∂uj
= Γk

ij

∂x

∂uk
+ hijN, (A.5.1)

where the Christoffel symbols Γk
ij are defined by

Γl
jk =

gil

2

(

∂gjl
∂uk

+
∂gkl
∂uj

− ∂gik
∂ul

)

. (A.5.2)

The Weingarten equations are

∂N

∂ui
= gjkhki

∂x

∂uj
. (A.5.3)

From the identities ∂3x
∂ui∂uj∂uk = ∂3x

∂ui∂uk∂uj the following equations - also called the

Gauss equations - can be derived:

g11K =
∂Γ2

11

∂u2
− ∂Γ2

12

∂u1
+ Γ1

11Γ
2
12 + Γ2

11Γ
2
22 − Γ1

12Γ
2
11 − Γ2

12Γ
2
12, (A.5.4)

g22K =
∂Γ2

22

∂u1
− ∂Γ1

12

∂u2
+ Γ1

22Γ
1
11 + Γ2

22Γ
1
12 − Γ1

12Γ
1
12 − Γ2

12Γ
1
12, (A.5.5)

g12K =
∂Γ1

12

∂u1
− ∂Γ1

11

∂u2
+ Γ2

12Γ
1
12 − Γ2

11Γ
1
22, (A.5.6)

g12K =
∂Γ2

12

∂v
− ∂Γ2

22

∂u2
+ Γ1

12Γ
2
12 − Γ1

22Γ
2
11. (A.5.7)

The Mainardi-Codazzi equations follow from the relationship ∂N
∂ui∂uj = ∂N

∂uj∂ui :

∂h11
∂u2

− ∂h12
∂u1

= h11Γ
1
12 + h12

(

Γ2
12 − Γ1

11

)

− h22Γ
2
11, (A.5.8)

∂h12
∂u2

− ∂h22
∂u1

= h11Γ
1
22 + h12

(

Γ2
22 − Γ1

12

)

− h22Γ
2
12. (A.5.9)

The equations (A.5.4-A.5.9) are the compatibility conditions for a surface and are

necessary and sufficient conditions for the existence of a local parametrization of a

surface with first and second fundamental forms g and h respectively (Bonnet, 1865).
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A.6 Geodesics and Geodesic Polar Coordinates

A geodesic is an extension of the concept of a line to a curved manifold or surface

and as such it should retain some familiar properties:

1. A geodesic should be the curve of shortest length between two points.

2. A geodesic should have plane curvature identically zero.

To satisfy item 2, a geodesic on a surface S is defined to be a unit speed curve whose

normal is aligned with the surface normal N . Therefore, if α : [a, b] :→ D is a curve

whose image on S is a geodesic then

d2α(s)

ds2
= κN,

where κ is the curvature of α. Consequently, as measurable from the surface, the curve

has zero curvature. If we again let (u1, u2) denote the parametrization variables of

the surface then it follows from Gauss’s equations (A.5.1) that

d2x(α(s))

ds2
=

∂2x

∂ui∂uj
dαi(s)

ds

dαj(s)

ds
+
∂x

∂uj
∂2αj(s)

ds2

=

(

∂x

∂uk
Γk
ij + hijN

)

dαi(s)

ds

dαj(s)

ds
+

∂x

∂uk
∂2αk(s)

ds2
.

Therefore, a unit speed curve α(s) is a geodesic if and only if its components satisfy

the following coupled system of differential equations

d2αk(s)

ds2
+ Γk

ij

dαi(s)

ds

dαj(s)

ds
= 0. (A.6.1)

The above differential equations are also the Euler-Lagrange equations corresponding

to variation of the arc-length. Therefore, we have the following theorem which satisfies

condition 1.

Theorem A.6.1. If α : [−ǫ, ǫ] → D is a unit-speed curve such that for any a, b ∈
(−ǫ, ǫ), with x(α(a)) = p and x(α(b)) = q, x(α) is the curve of shortest distance

joining p and q in S, then α is a geodesic.
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Since the differential equations for a geodesic equations involve only the Christof-

fel symbols which only depend on the metric g it follows that geodesics are isometric

invariants as well. Moreover, geodesics can also be defined on abstract surfaces inde-

pendent of the existence of an isometric immersion.

The concept of a circle and polar coordinates can also be extended to a Riemannian

manifold. For a Riemannian manifold (D, g), geodesic polar coordinates centered

at p ∈ D are the natural analogs of the radial and polar coordinates defined on a

Riemannian manifold. In these coordinates a neighborhood around p is parametrized

by the coordinates (r,Ψ) which map to a point q satisfying d(p, q) = r and q lies on

a geodesic whose initial velocity vector makes an angle Ψ with a respect to a basis of

the tangent plane at p. In these coordinates the metric g has components

g11 = 1, g12 = g21 = 0, g22 = G(r,Ψ),

where the function G(r,Ψ) satisfies the following differential equation

K = − 1
√

G(r,Ψ)

∂2
√

G(r,Ψ)

∂r2
. (A.6.2)

If K = K0 is constant and negative then the above differential equation can be solved

to yield

G (r,Ψ) = sinh(
√

−K0r). (A.6.3)

Additionally a geodesic circle of radius R centered at p ∈ D is defined to be the set

BR(p) = {q ∈ D : d(p, q) = R}.
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Appendix B

Fourth Order Finite Difference Approximations

Approximation to
df

dx
Error

3f(x−4h)−16f(x−3h)+36f(x−2h)−48f(x−h)+25f(x)
12h

−1

5
h4
d5f

dx5

−f(x−3h)+6f(x−2h)−18f(x−h)+10f(x)+3f(x+h)
12h

1

12
h4
d5f

dx5

f(x−2h)−8f(x−h)+8f(x+h)−f(x+2h)
12h

− 1

30
h4
d5f

dx5

−3f(x−h)−10f(x)+18f(x+h)−6f(x+2h)+f(x+3h)
12h

1

20
h4
d5f

dx5

−25f(x)+48f(x+h)−36f(x+2h)+16f(x+3h)−3f(x+4h)
12h

−1

5
h4
d5f

dx5

Table B.1. Backward, centered, and forward approximations to the first derivative
of a function f(x) on a stencil of uniform width h.

Approximation to
d2f

dx2
Error

−10f(x−5h)+61f(x−4h)−156f(x−3h)+214f(x−2h)−154f(x−h)+45f(x)
12h2 −137

180
h4
d6f

dx6

f(x−4h)−6f(x−3h)+14f(x−2h)−4f(x−h)−15f(x)+10f(x+h)
12h2

13

180
h4
d6f

dx6

−f(x−2h)+16f(x−h)−30f(x)+16f(x+h)−f(x+2h)
12h2 − 1

90
h4
d6f

dx6

10f(x−h)−15f(x)−4f(x+h)+14f(x+2h)−6f(x+3h)+f(x+4h)
12h2

13

180
h4
d6f

dx6

45f(x)−154f(x+h)+214f(x+2h)−156f(x+3h)+61f(x+4h)−10f(x+5h)
12h2 −137

180
h4
d6f

dx6

Table B.2. Backward, centered, and forward approximations to the second deriva-
tive of a function f(x) on a stencil of uniform width h.
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Γ-convergence, 38

Abstract surface, 115

Amsler surfaces, 96

Asmissible set of flat configurations, 36

Asymptotic curve, 76

Bending energy, 17

Biroshi’s formula, 120

Boundary layer, 24, 66, 71

Chebychev net of the second kind, 80

Chebyshev net, 75

Christoffel symbols, 121

Compatibility condition, 32, 64, 68

Coordinate curves, 114

Covector, 116

Crossover regimes, 59

Curvature functional, 15

Dimensionless curvature, 22, 28

Dimensionless Föppl-von Kármán en-

ergy, 31

Dimensionless thickness, 22, 30

Discrete Amsler surface, 98

Elastic energy of perturbation, 62

Equilibrium configuration, 30

Föppl von Kármán admissible set, 16

Föppl-von Kármán isometric immersions,

37

Föppl-von Kármán model, 15, 16

First Föppl - von Kármán equation, 32

First fundamental form, 114

Gauss equations, 121

Gaussian curvature, 119

Generating angle, 76

Geodesic, 122

Geodesic circle, 123

Geodesic polar coordinates, 123

Growth tensor model, 11

Hydrogels, 17

Hyperboloids of revolution, 94

In-plane strain, 17

Incompatible growth, 11, 13

Induced Riemannian metric, 114

Isometric immersion, 116
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Isometric invariant, 116

Isometry, 116

Kelvin functions of the second kind, 70

Kirchhoff model, 15, 73

Kirchhoff model admissible set, 15

Linearized geometry, 29

Lines of inflection, 28

Mainardi-Codazzi equations, 121

Material coordinates, 113

Mean curvature, 120

Minding’s theorem, 73

Minimal surface, 120

Monge-Ampere equation, 22, 37

n-periodic deformations, 28

Natural boundary conditions, 33, 35

Non-Euclidean model, 13

Normal vector, 114

Painlevé III equation, 96

Periodic Amsler suraces, 96

Poincaré’s inequality, 52

Poisson ratio, 15

Principal curvatures, 119

Principal directions, 119

Pseudosphere, 81

Rayleigh-Ritz algorithm, 47

Reduced energy functionals, 14

Riemannian manifold, 115

Riemannian metric, 13, 114

Second Föppl-von Kármán equation, 35

Second fundamental form, 118

Sine-Gordon equation, 26, 78

Small slope approximatin, 16

Strees potential, 32

Stretching energy, 17

Tangent plane, 114

Theorema Egregium, 120

Unit normal, 29

Weingarten equations, 121

Willmore energy, 25

Willmore functional, 74

Young’s modulus, 15
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