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ABSTRACT

Tandem mass spectrometry is widely used in proteomic studiesideeof its
ability to identify large numbers of peptides from complex megurn a typical LC-
MS/MS experiment, thousands of tandem mass spectra will bectewll and peptide
identification algorithms are of great importance to trangtege into peptide sequences.
Though these spectra contain both m/z and intensity values, most popoti@n pr
identi cation algorithms primarily use predicted fragment m&ues to assign peptide
sequences to fragmentation spectra. The intensity informationtaa ohdervalued,

because it is not as easy to predict and incorporate into algorithms.

Nevertheless, the use of intensity to assist peptide identi cati@n attractive
prospect and can potentially improve the con dence of matches aretagenmore
identi cations. In this dissertation, an unsupervised statisticathod, K-means
clustering, was used to study peptide fragmentation pattert®tiorCID and ETD data,
and many unique fragmentation features were discovered. For inst&ocey .1 ions
were observed in ETD, indicating that the fragmentation site D &Thighly related to

the amino acid residue location.

Based on the fragmentation patterns observed through data mining,ide pept
identi cation algorithm that makes use of these patterns wadapmae The program is
named SQID and it is the first algorithm in our bioinformaticgemt. Our testing results
using multiple public datasets indicated an improvement in the nuafbiglenti ed
peptides compared with popular proteomics algorithms such as Sequ€3taadem.

SQID was further extended to improve cross-linked peptide idemiicéSQID-XLink)
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as well as blind modification identification (SQID-Mod), and bothtleém showed
significant improvement compared with existing methods. In this rtidsen the SQID

algorithm was also successfully applied to a mosquito proteomics project.

We are incorporating new features and new algorithms to owraseft such as
more fragmentation methods, more accurate spectra prediction aedusesrfriendly
interface. We hope the SQID project can continually benefit refse@ and help to

improve the data analysis of proteomics community.
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CHAPTER 1: SCOPE, BACKGROUND, AND SIGNIFICANCE OF
PEPTIDE FRAGMENTATION PATTERNS IN TANDEM MASS
SPECTROMETRY

The main hypothesis of this dissertation is that peptide fragmentationngatian be
better incorporated into algorithms to increase protein identificationdemiify cross-
linking sites, and to identify modified peptides. This chapter saves introduction to

the fragmentation patterns as well as to all projects described in this dissertation.
1.1 Tandem mass spectrometry based proteomics

Tandem mass spectrometry is widely used in proteomic studiesideeof its
ability to identify large numbers of peptides from digested pro@fim®mplex mixtures.
Figure 1.1 shows the general workflow of a proteomics expgetimn a typical LC-
MS/MS experiment, proteins are digested into peptides using a ggataah as trypsin.
Then the digested peptides are separated by one or two stdggsdothromatography
and ionized by electrospray ionization. The intact mass of egutidpas measured by
mass spectrometry, then mass-selected and fragmented to pkt8(M& spectra. These
spectra are processed by protein identification algorithms to detepeyitiele sequences,

which infer protein sequence.
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= %{ Digestion HPLC ~MS

A R =

A
‘
Abundance

Protein #1 — ShBok = \Q}
\ FWSEFR—K —

Abundance Abundance

Protein #2 — \ —_—
Peptide Peptide

Sequence Identification MS/MS
Algorithm

Figure 1. 1 Protein identification by LC-MS/MS. From Li Ji dissertation, Wysocki group,

University of Arizona

Figure 1.2 shows a detailed example of the mass selectionragrentation
process. The peptides are separated by liquid chromatography, aadefgrseveral
seconds, a mass spectrum is collected (MS). For instansbpas in the figure at 50
minutes a mass spectrum is collected. The mass spectrunnsmsgsaeral strong peaks,
which are then sequentially mass selected and fragmented &atgera spectrum
containing the fragments from that peak (MS/MS). The fragmentapectrum (MS/MS)
can be used to match a protein database and assign peptide seHoereer, from
each run the number of MS/MS spectra generated is in the ordef,ofibh makes

manual interpretation impractical. Due to the large number oftispeenerated in
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modern proteomic experiments, protein identification algorithms iaoeeasingly

important.
50min
700.0
3 3
s C
5 g
S 15 =
2 B — g
e e 738.0
z S 14644 J 1106.5
& 2
S = L | N
Time (min) s
1c MS
Fragmentation
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% of peptide
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Assign 3
sequence =
| |
= Ll J.In.l | nl...I.JJJm.:”, Jn..‘l JLJI. |||||L.|‘._\ Wl “"-. l| l u..lk

m/z
MS/MS

Figure 1. 2 Examples of MS and MS/MS spectra. Courtesy of Dr. George Tsaprailis.

1.2 Algorithms for protein identification

There are generally three methods for peptide identificationydimg} de novo
sequencing, spectral library search and protein database sdaecimovosequencing
simply extracts peak intervals from MS/MS spectra and uses them to cobsbrucions
series, thus deducing the whole peptide sequences. However, duentmthplete b and
y ion series in most spectra, this method can seldom provideothplate peptide
sequence and is mainly used to interpret spectra that ae ifaitlatabase search or from

unknown species.
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Spectral library search is a recently developed method that similar tatich sé
fragmentation spectra of small molecules.2 A large number of identiffestimental
spectra are stored with their sequences as a library, and a new exdrapectrum
only needs to be compared with these stored spectra to determine the best match. This
method offers superior speed and sensitivity, however the major limitattorais only
be applied to known spectra while not capable of making new discoveries. The most
popular spectral library is available at National Institute of Standard$extuhology

(NIST) http://peptide.nist.gov.

Protein database search is the most dominating way for peptidéicdénn and
this is also the major topic throughout my dissertation. The concefat generate
theoretical spectra from available protein sequences and o®ntham with the
experimental spectra. It is easy to imagine that the thealrspectra are not as accurate
as the spectra in a library, but the protein databases alwags & much larger number
of proteins either discovered from previous experiments or anddtate the genome
directly. From this point, all of the algorithms discussed in digsertation will

specifically be database search algorithms.

Most commonly used protein identification algorithms are desifmesequence
identification from fragmentation spectra produced by collision indutiegociation
(CID), in which peptide precursor ions collide with inert gas mokscaind dissociate.
CID typically results in fragmentation along the peptide backlairnte amide bonds,
producing predominantly N-terminal b and C-terminal y ions. Othretypes, including

neutral water and ammonia losses and side chain cleavagesangossible, but less
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common. Because the masses of the product ions are predictablequbacseof the
original peptide can be reconstructed from the MS/MS spectrymmhtching
experimental fragment ion masses with theoretical ones. For a longriateas been the
main information used by popular algorithms, including Seqtieéffandem’ and
Mascot® to assign peptide sequences to fragmentation spectra. Thepumesists of
searching a protein database or translated nucleotide database lyithin a certain
tolerance of precursor m/z, for possible peptide candidates.er Afindidates are
identified each experimental spectrum is compared with manyrooted theoretical
spectra or peak lists that correspond to candidate peptide seguand a score is
assigned to each candidate sequence based on the similarity btevélesoretical and
experimental spectra, or on the probability that their matetoigandom (Figure 1.3).
The strength of the match is finally evaluated accordinthéotop score and the score
difference between the top and other candidates. Here, a fewfraqaently used
database search algorithms will be described, including SEQUE&3cot, X!Tandem,

OMSSA, Phenyx, PEAKS DB and MS-GFDB.
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Figure 1.3 Comparison of actual peptide fragmentation spectrum (top) to contiguous ion

series (bottom)Error! Bookmark not definedl

SEQUEST is an algorithm that correlates a given unintegpM®&MS spectrum
with candidate sequences through the use of scoring and ranking metisedsoba
spectral similarity by cross-correlation of the theoretyjcgtedicted spectra and the
experimental spectruthHowever, SEQUEST does not compare the raw spectra with
predictions. Instead, it divides the spectrum into 10 bins and normeéizésto the most
intense peak in the bin, effectively removing relative ion intgnadross the entire
fragmentation spectrum as a strong determinant of a matchagieach has been very
successful in matching spectra to candidate sequences dbaspiéek of detailed rules
for predicting fragment ion intensities.

MASCOT is an algorithm that contains multiple approaches tddsg¢asearching,
of which two use MS/MS data (MS/MS lon Search and Sequence GUdSIMS lon

Search calculates theoretical fragment ion masses in Rrsimanner to most database
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search algorithms before matching them to experimental speseguence Query
requires some manual interpretation of the MS/MS data durinhwhadecular weight,
residue composition, and sequence qualifiers are determined farithelate sequences.
Both MASCOT strategies use the same probability-based gcorirtine based on the
MOWSE algorithm in which peptide size distributions (or peptide it size
distributions) are considered with respect to protein massgsefitide masses) in the
searched database. A cutoff score for the probability thaatahms a purely random
event is given for each search.

XITandem, the most popular open source algorithm, uses intensity in its
preliminary score, or hyperscotéhis score is similar to ion intensity current, which is
the sum of the intensities of all b and y ions found in the experaingpéctra. This is not
the same as using peak intensity information that reflebtsnical fragmentation
suppression or enhancement; it only acknowledges the presence ak.alpmugh a
statistical analysis of the hyperscore of each candidateseguan expectation value (E-
value) describing the significance of the difference betweenahermiatch and other
matches is generated and used as the main score of X!TanéeausB this idea is
common to several algorithms, the use of a hyperscore alone i€nooigh to
significantly improve the success of X!ITandem when comparedh&r algorithms that
use additional information and scoring stages to assign peptide spectra.

OMSSA (Open Mass Spectrometry Search Algorithm) is an@&tk@mple of an
open source algorithm that uses expectation values as criteniiay 0 X!Tandem. The
older version of OMSSA only uses intensity as a threshold to filesy peak$ while

the newer version has improved how intensity is Udadhe newer edition, each peak in
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the experimental spectrum is ranked. The sum of the ranks of tlehadapeaks is
compared with a normal distribution of ranks of random peak sums ¢alatal an
expectation value. Like XITandem, OMSSA is complementary to Séduexause it
gives an identification a probability component, whereas Sequest matches doutst incl
probability.

Phenyx is a platform that generates its score based onendedtmatch, which
matches a peptide using a combination of and comparison between ithéast
experimental spectfaln other words, this method incorporates structural information
such as intensity, ion series contiguity, and spectral sigradise ratios in addition to
m/z information, and the extended match score reflects the qulity match. By
analyzing a testing set of spectra with known sequences, Phealgulates the
probability of observing the above extended match information whenatehns correct
or if the match is purely random; the ratio of these two probakilis the Phenyx score.
When attempting to identify a peptide sequence from an unknown spedcimitar
extended match information can be generated against candidateceeqire a given
database to determine the ratio score. Evaluation of the sdoenable true matches to
be distinguished from false.

PEAKS DB? is a new commercial program that extended froe aovopeptide
identification algorithm, PEAKS, and it is continually gaining poptiks because it
combined the features of database searchdandovosequencing. More specifically, it
performs database search and uses de novo sequencing to verifyaritte results.
Because no database is required for de novo sequencing, the match lzentetabase

search result ande novosequence is very unlikely to be a random event. This unique
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feature helped PEAKS DB showed significant performance improvecoempared with

many other database search algorithms.

Lastly, MS-GFDB'is a newly developed database search algorithm that based
on Generating Function in mathematics, which is the coefficieatf@fmal power series.
Each coefficient represents some features of the spectraharauithor argue that for
spectra collected from different instruments, enzymes and é&aigition methods, the
scoring function should be different, indicating that the coefficsdauld be different.
This algorithm gives user the flexibility to generate theirquei scoring functions
(generating functions) for different protocols, thus making it mpexific to different

kinds of experiment.

While these algorithms are popular and successful in proteomichest
worldwide, they are not without limitations. A variety of studiesenahown that in a
typical MS/MS run, over 80% of the peptide identifications by SEQUE® false and
filters are necessary to eliminate those low confidencehwaat many programs have
been developed, such as DTASelect, Peptide Prophet, and Protein Propkatpve
these low confidence matchés*?**However, scoring cut-off filters may also require
that some correctly identified spectra to be discarded in ordentove a majority of the
false positive identifications. Though many proteins can still betifteed using current
algorithms, and the use of multiple algorithms can be combined toasecrnerotein
identification confidence as demonstrated by Searle & thlese algorithms are still far
from optimally meeting the rapid identification demands of thegamics experiments

that generate large volumes of peptide fragmentation spectra.
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One common characteristic for all of these widely used algosi is that they
mainly utilize the mass-to-charge ratio information fromassspectrum while ignoring
the intensity component beyond the intensity thresholdhough in many cases the m/z
information alone is enough to provide reliable identification, intercaty potentially
improve the confidence and generate more identifications becausealso highly
dependent on the sequence of the peptide and the amino acid residue compositions
Preferential cleavage, for example, is expected at the mNres of proline in the
presence of a mobile proton or the C-terminus of aspartic a@d wh mobile proton is
available’®'” Nevertheless, intensity is still seldom given much weight gorithms
because of the limited ability to predict and quantify the chamicles of peptide
fragmentation. Various factors, including size, charge statencamcid content, and
charge location, can complicate the process of gas phase pdiptideiation and make
the resulting peak intensities difficult to predict and interpret.

The integration of intensity is emphasized in certain algorithatdbecause it is
more critical than m/z, but because it can provide additional atimglinformation that
can assist with the peptide identification. Studies have shown thatdabwporation of
intensity can reduce peptide fragmentation identification errd&s6%:° Clearly, the
use of intensity to improve peptide identification rates is aaditte prospect. Indeed,
while we have placed strong emphasis on the relevance of fragomenitensity to
proteomic strategies, the importance of m/z values cannot be izedinBecause a wide
variety of MS platforms are being applied to proteomics, it istofost importance that
proteome researchers be aware of the mass resolution andeoasscy performance

characteristics of the mass analyzer being used. Such atformis essential for the
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appropriate setting of precursor and fragment ion mass toleraarmbshe specification
of average versus monoisotopic masses at the database search stage.

Different from the popular algorithms mentioned above, algorithmspocating
intensity do not work under the assumption that the all amino acid gairpeptide
patterns dissociate non-selectively to generate peaks withoutdistion in intensity.
Though the appearance of a given spectrum is difficult to predsilts have shown that
given the same experimental conditions mass spectra are reptedit? Schutz and
colleagues assessed this reproducibility by using an ion trap datasetgorbgube same
instrument and parameters via three different methods: correlegtar@en the intensities
of two spectra as a measure of their similarity, normaldmgdproduct of both the peak
intensities from pairs of spectra, and the square root of taesities?’ They found that
MS/MS spectra, especially of peptides with low chargeestaéxhibit reproducible
fragmentation intensities and patterns, which enables the poedizti peak intensity.
Newer algorithms that incorporate complex intensity models tteatbased on either

probability or chemical properties will be discussed below.

1.3 Existing algorithms that consider intensity

Elias and coworkers used a probabilistic decision tree — spdgifiaatreelike
feather extracting graph, which requires the members of eacithbito have similar
properties — to model the probability of observing certain peak inensit a mass
spectrum from 27,266 high quality specffaThe most confident true matches from
SEQUEST were selected and decision trees were generatgd@sdifferent attributes,

including b ion length, y ion length, fraction of basic residues, aptige length. Each
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node of the tree represents a chemical property that can seplaeaintensity into
different bins, and the likelihood that a certain fragment ion pedkhaile a certain
intensity that can be calculated from the distribution of the sizes of the resuhlimghes.
With the input of a predicted ion from a candidate sequence, théhdkeliof yielding
the measured intensity in the experimental spectrum can be abfeone the decision
tree. For both correctly matched and mismatched peptides, théoddceses are made
and compared to serve as a guideline as to whether an identification is comeotrect.
More than a 50% decrease in peptide identification error radeasiieved when using
this method in conjunction with SEQUEST.

Another intensity based algorithm is Narasimhan’s MultinomigjoAthm for
Spectral Profile-based Intensity Comparison (MASPIC) scdr@hough based on a
popular random match assumption that the correct match should hdeadhikelihood
to be achieved randomly by chance only, MASPIC considered the pibgsibrandom
intensity matches as an alternative to using m/z only. Thisadetlivides the whole
experimental spectrum into +1, +2, and +3 zones according to thes afaige fragment.
In each zone, peaks are binned into classes with descending interistg Mwer
intensity classes have more peak members. This process cotiheerexperimental
spectrum into a probability profile along the m/z axis. It is more likelyndaomly match
a predicted peak from a candidate sequence into the lower intelasisybecause this
class has more members, thus decreasing the importance dtla with decreasing
intensity. When all predicted peaks from a candidate sequena®rapared with this
probability profile, the number of matched and unmatched peaks for @sshskcounted,

and further calculations are performed to give a probability of matching.
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Zhang reported a kinetic model for prediction of low-energy ClBcsp from
sequence in 2004, with a general idea to abandon the traditionsticgatiodel used by
intensity prediction efforts and mimic the peptide dissociation ggbased on kinetics
and the mobile proton mod&|The key assumption is that the intensity of a fragment ion
is determined by the rate of the dissociation pathway genethtsharagment; if the rate
constants for all fragment ion pathways are known, then the reiatmesity of each
fragment can be predicted. Collision energy, proton density, fraghwntrate, ion
cooling rate, activation energy, and gas-phase basicity are caubsialed incorporated
into the rate calculation of eleven different backbone cleavapevags as well as side-
chain cleavages and neutral losses. Based on this iterative tafcutaodel, Zhang
developed an algorithm called MassAnalyzer, which uses a Sim sra@wealuate the
similarity of a simulated and experimental spectfim.

The kinetic model is mainly used to confirm the results from poltporithms
rather than to provide independent protein identification. This is dueatmus
limitations, including variability between spectra acquired on ffeinstruments under
different experimental conditions and the large number of parasnétat must be
considered, as mentioned above. The Resing group later used this model@st of
the Manual Analysis Emulator (MAE), a program intended to imprbeevalidation of
tandem mass spectra.Another part of this MAE program takes into account the
proportion of the ion current (PIC), which represents the pemgergaintensities in an
experimental spectrum that can be derived from the peptide segadmgeer PIC score
means that the program was using the most intense peaks fatepelantification as

opposed to noise and low abundance peaks. With the incorporation of these two intensity-
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related scores, MAE vyielded a better discrimination betwaen dnd false matches of
SEQUEST and Mascot results.

Lastly, Tabb and coworkers developed a multivariate hypergecnmetdel for
peptide identificatiorf® The major assumption of this model is that a match to an intense
peak should be more confident than matching to a weak peak. The algonttes dill
the peaks in an experimental spectrum into multiple classed badsatensity, and gives
higher score weight when a peak is matched to a higher intecla$g. Though
Myrimatch is quite effective and popular, one possible drawbathki®imodel is that it
does not consider the circumstance that some real peaks should/ lveeag&r e.g. the
cleavages C-terminal to proline are always difficult to observe.

Clearly, peptide searching algorithms utilize a variety otcspkeand chemical
information to assign peptide sequences to spectra. Selectimgla algorithm over
another will likely lead to different sets of peptide and protesigmments based on the
criteria that an algorithm uses. As briefly mentioned earlex use of multiple search
algorithms has been shown to improve confidence of peptide idetmificdrograms
such as Scaffold, available from Proteome Software, provide arface for direct
comparison of MS/MS data analyzed using a variety of algorithms new algorithms
are developed, it is important to understand what spectral ch&stacserallow the
algorithm to more accurately match certain spectra to pegedgiences while the
matches for other spectra with different characteristics pa@. Programs such as

Scaffold will allow algorithms to be more readily compared.
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1.4 Peptide pairwise fragmentation patterns in MS/MS

Our group has been working on peptide fragment intensity studies Vierake
years, and in 2008 Huang has reported an application of a statisti@ahining strategy,
penalized K-means clustering, to discover fragmentation pattern€I®f° In that
report, 28311 tryptic spectra with known sequences were analyzed \&rdl s@ajor
fragmentation patterns were revealed. Figure 1.4 is an illiestrat Huang’s study: four
fragmentation patterns were distinguished after applying thmeKns -clustering
algorithm to the CID dataset. These include: 1) strong cledNageminal to proline in
yions (X-P in y), 2) strong cleavage C-terminal to isoleucine, valgeleucine in y ions
(WVIL-X in y), 3) strong cleavage C-terminal to asparttdaand N terminal to proline in
b ions in peptides with a high proportion of missed cleavage (D-XXaadn b), and 4)
strong cleavage C-terminal to aspartic acid in y ions (DvX)i lllustration of these
patterns is potentially helpful to understanding the fragmentatidnwpgt as well as to
predicting spectrum with intensity. For example, Figure 1.5 isceside tree for tryptic
CID peptides to illustrate the relationship between sequence chiadge with
fragmentation patterns. The tree is created by analyzingetiigesce features of each
cluster in Figure 1.4 using a CART (Classification And Regpastree) program, which
automatically considers many pre-set sequence features toohetevhich features are
of greater importance for the separation of the clustersnéitee a peptide sequence and
charge is known, the decision tree can tell which fragmentatiorcarapest describe its
fragmentation behavior. The following is a list of features constden CART, where
“count” means a simple count of the number of that residue in a sEjUR@®S means

the position of the amino acid residue in the sequence, indicatedrastian, DistN
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means the distance between N terminus and a certain residue,Digi{le means the
distance between C-terminus and a certain residue, m/z measstorcharge ratio, and

H Mobile is defined as (charge — count.R- 0.5*count.K - 0.5* count.H):

charge, count.Basic, count.Acidic,count.A, count.C, count.D, count.E, count.F,
count.G,count.H, count.l, count.K, count.L, count.M, count.N, count.P, count.Q, count.R,
count.S,count.T, count.V, count.W, count.Y, POS.A, POS.C, POS.D, POS.E, POS.F,
POS.G,POS.H, POS.I, POS.K, POS.L, POS.M, POS.N, POS.P, POS.Q, POS.R, POS.S,
POS.T,POS.V, POS.W, POS.Y, DistN.A, DistN.C, DistN.D, DistN.E, DistN.F
DistN.G,DistN.H, DistN.l, DistN.K, DistN.L, DistN.M, DistN.N,isEIN.P, DistN.Q,
DistN.R,DistN.S, DistN.T, DistN.V, DistN.W, DistN.Y, DistC.Ast@C, DistC.D,
DistC.E,DistC.F, DistC.G, DistC.H, DistC.l, DistC.K, DistC.L,isBC.M, DistC.N,
DistC.P,DistC.Q, DistC.R, DistC.S, DistC.T, DistC.V, DistC.Wt@ig, Length, m/z,

H.Mobile
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Figure 1.4 Huang’s study revealed four distinct fragmentation behaviors furdes in

CID.?*Used by permission from journal of proteome research.
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Figure 1. 5 Decision tree for tryptic CID peptides.
1.5 Scope of the dissertation

The main focus of this dissertation is the incorporation oinfiexgation intensity
studies into algorithms in order to improve peptide and protein idetiticaThe
resulting algorithm is called SQID (Chapter 2). Several othgorithms were also
developed based on the SQID platform, including a spectrum pred@tapier 2), a
software for identification of crosslinking sites in proteinig@ter 4), and an algorithm
for blind modification searches (Chapter 5). Theclustering metvaxl also applied to
electron transfer dissociation (ETD) spectra from which lto@ifferent fragmentation

patterns were revealed (Chapter 3). Lastly, some proteomicsregpes were performed
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to study iron metabolism related proteins from mosquito ovasegescribed in Chapter

6.



35

CHAPTER 2: SQID: AN INTENSITY-INCORPORATED PROTEIN
IDENTIFICATION ALGORITHM FOR TANDEM MASS
SPECTROMETRY

Incorporating pairwise fragmentation intensity into an algorithm is a major qutoj
finished by the author during his dissertation research. The SQID program w
successfully developed and people are using it in daily research. Thanpante

exceeds many commonly used commercial programs.

2.1 Introduction

As mentioned in Chapter 1, protein identification algorithms amrealy important due
to the large number of spectra generated in modern proteomic regp&si Most
commonly used algorithms are designed for sequence identifictim fragmentation
spectra produced by collision induced dissociation (CID), in which peptedirsor ions
collide with inert gas molecules and dissociate. CID typicadsults in fragmentation
along the peptide backbone at the amide bonds, producing predominaetimiNal b
and C-terminal y ions. Other ion types, including neutral water amdosma losses and
side chain cleavages are also possible, but less common. Becausasties of the
product ions are predictable, the sequence of the original peptide cacdmstructed
from the MS/MS spectrum by matching experimental fragmemt masses with
theoretical ones. For a long tim@/z has been the main information used by popular

algorithms, including Seque$!Tandem® and Mascot, to assign peptide sequences to
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fragmentation spectra. The process consists of searching a mtatabase or translated
nucleotide database Iy/zfor possible peptide candidates, comparing each experimental
spectrum with many constructed theoretical spectra or ps#k thhat correspond to
candidate peptide sequences, and assigning a score to each castjdatee based on
the similarity between the theoretical and experimental specton the probability that
their match is not random. The strength of the match is fieatiyuated according to the
top score and the score difference between the top and other canidates.

One limitation of the process described above is that all ther moas of a given
series in a theoretical spectrum are assumed to have thardgansity regardless of the
properties of the peptide; intensity information contained in ger@xental spectrum is
essentially abandoned. Though in many casesritzgénformation alone is enough to
provide reliable identification, intensity can potentially improve tconfidence and
generate more identifications because it is also highly depémoh the sequence of the
peptide and the amino acid residue compositions. Preferential cleéwaggample, is
expected at the N-terminus of proline in the presence of a mptwten or the C-
terminus of aspartic acid when no mobile proton is availabf. 2> Nevertheless,
intensity is still seldom given much weight in algorithms becafisiee limited ability to
predict and quantify the chemical rules of peptide fragmentatiomiod& factors,
including size, charge state, amino acid content, and charge locatmoomplicate the
process of gas phase peptide dissociation and make the repelikgtensities difficult
to predict and interpref®

Clearly, the use of intensity to improve peptide identification plevian

attractive prospect and efforts have been made by differenpsf’ 229 30313233 34
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Elias and coworkers, for example, used a probabilistic decisien-tspecifically, a
treelike feather extracting graph, which requires the mesnbkeeach branch to have
similar properties - to model the probability of observing cerfsak intensities in a
mass spectrum so as to improve peptide identificdtigmother algorithm, MASPIC,
developed by Narasimhan et al., considered the possibilityndbra intensity matches
as an alternative to usimg/zonly, based on the assumption that a random match is more
likely to match to low intensity peaks since these peaks are coonenon in tandem
mass spectri. Zhang reported a kinetic model for prediction of low-energy CIDtsmec
from sequences, assuming that the intensity of a fragment idetésmined by the
dissociation pathway and the rate of the dissoci&fidiAnother intensity model which
considers more peptide features and fragmentation rules was meEveby Zhou”
Intensity is emphasized in these algorithms not becauset ikamnore critical thamm/z
but because it can provide additional information that can assikt tivt peptide
identification. The goal of the work presented here is to devebmple, fast database
search algorithm that incorporates rough intensity information dsista peptide
identification. In our previously reported study of fragmentationngitg patterns, we
introduced a routine to mine a large number of spectra with knoguesees for
fragment ion intensity based on pairwise amino acid (AA) clgavaatterns, and the
relative peak intensity for each AA pair was recorded. Becthesprobability that a data
peak of a specific intensity corresponds to any given AA pamvelge is directly
proportional to the probability of that AA pair cleavage resgltin a peak of that
intensity, we can evaluate whether the intensity for aiceftA pair in an experimental

spectrum is consistent with statistical values. We appliedagmwsoach to our SQID
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algorithm described in this paper. As with other algorithms, thi®3Qore depends on
the presence or absence of ion series peaks at the expeletdout is also heavily
affected by intensity information to increase the evidence fqQuesee identification.
This is analogous to the manual process of verifying peptide idativhs by looking
for known fragmentation motifs (e.g. looking for enhanced cleavatie aN-terminus of
proline), but with the objectivity of using statistical informat gathered in the data-

mining process.

2.2. Methods:

2.2.1 Algorithm Design

SQID is designed for identification of peptides from ion trap tano&®ss spectra
in LC-MS/MS experiments but with the ability to extend to $@e@cquired using
different instruments or dissociation methods (e.g. ETD, ECD) ifutiiee. It is written
in C language and has been tested in Windows XP and Windows 7iapanastems.
The software is available at this URL:
http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm. SQID containenetime
training stage to generate intensity tables that are used ingchr the training stage,
spectra with known sequence are used to generate the painersstinstatistical lookup
tables, which quantify the probability to observe a strong peak gieertan amino acid
pair. The tables from the training stage are stored in tlegitdlgn and do not need to be
re-generated. The scoring process makes use of information Fenexipperimental
spectrum and intensity tables to evaluate a match. The algod#ésign is described

below.
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Step 1: Collect pairwise cleavage intensities

The dataset used for training contains 138,033 uriju@elanogastefversion:
drosophila-7-14-2008-it) an8l. cerevesiaéversion: yeast-5-04-2009-it) ion trap spectra
extracted from the National Institute of Standards and Technd@MIST) Libraries of

Peptide Tandem Mass Specttattif:/peptide.nist.goy/ * It is a set of spectra with

known sequences and consists of singly-, doubly-, and triply-chargetit tpeptides
ranging from 5 to 56 amino acid residues in length. It contains unnubgh&ptides as
well as peptides with carbamidomethylation of C or oxidation of Bweéver, currently
we do not treat these modified residues (C+57, M+16) as unique amdsoaaa their
results are combined with corresponding unmodified residues (C, Medéh training
spectrum, the mass of each expected b and y ion was calculagedddrathe assigned
peptide sequence. lons outside of the ion trap mass range (higleutass 2000; low
mass cutoff = (precurson/2*0.28) were not included (the low and high mass cutoffs can
be adjusted as necessary to match the instrument type). Thenfeadity of each b and
y ion was scaled to the most abundant peak of its own series. Thetiniaformation
was sorted by ion type and by the amino acid residue pair cleassgensible for the
fragment ions. All of the training spectra generated a histog@ntaining the relative
peak intensities for every expected peak sorted by amino acid/faen the expected

peak was not present, a zero value was included.

Step 2: Calculate probability of strong fragment ions for each AA pair
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The relative abundance information for each amino acid pair wasassgpanto
three bins: no abundance (intensity = 0), weak (>0 —33%) or strong (>38%%). The
ranges defined as weak and strong intensity were empiricgtgrmined and the
intensity strength for a certain amino acid pair is roughbpertional to the probability
of observing a strong peak from that amino acid pair. The probatulihave a strong
peak Pr) is defined as the number of strong peaks divided by the total numhber
expected peaks for the amino acid pair cleavage:

Pr = (number of strong peaks) / (total number of expected peaks)

For instance, the AP pair has a y iBn of 0.57, meaning that there is a 57%
probability of seeing a cleavage between A and P with a syroag peak (>33%). In
contrast, the PA pair hasRa of 0.03, which means that there is only 3% probability of
seeing a strong y ion peak for cleavage of the PA pair. In geribese values are in
agreement with empirical knowledge and provide a quantitative basi®ugh peak
intensity prediction given a peptide sequence. Part of the paichMswage intensity
probabilities table is shown in Table 1. The full table can be foundupporting

information.
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Table 2.1. Pairwise cleavage intensity probability table for selectewauid pairs.

Step 3: Scoring experimental spectra

Experimental spectra are assigned peptide sequences by sctishgf candidate
peptide sequences against each spectrum. Each experimental spsctnaulified by
eliminating precursor ions, water and ammonia loss products frorarpoedons (mass
tolerance is the same as fragment threshold), and isotopes (8€8® a simple
deisotoping algorithm for ion trap data: if the two peaks differslby- 0.25 and the
intensity of the first peak is greater than the second one’settend peak is considered
to be an isotope peak and removed. The main purpose of deisotoping is & thasur
isotopes of high abundant peaks will not be accidentally selecte@ asaks in intensity

score calculation). The top 80 most abundant peaks from each speartitarakept for
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scoring. For each spectrum, a list of candidate peptides (vas mithin user-defined
tolerance of the precursor mass of the experimental specsugenerated from a user
defined fasta protein database. Each candidate sequence is scotieel fojlowing
method:

1. Calculate the masses of expected fragment ions from the cendiéatide
sequence (same high and low mass cutoffs as in training). prekent work only
b and y ions are considered along witfOHand NH losses from b and y ions.
Doubly charged fragments are considered in the circumstancéhéharecursor
ion is triply charged and the mass of the fragment is greater than 900.

2. Count the number of matched peaks in the experimental spectrum corraggondi
the masses of the expected ions for the candidate sequence, witen defined
fragment threshold. If an expected water loss or ammonia loss pisdinserved,
the total number of matched peaks is increased by 0.5. The numbertatfech
fragments is used as a preliminary score and only the top 200datewiare
retained.

3. Count the number of consecutive ion pairs for a match. For instifrygeand
ions are found, they are counted as a consecutive ion pair. Though ircasasy
consecutive ion pairs increases almost linearly with the nuofoeratched ions,
this was found to provide better discrimination than using the numbeatwhed
ions alone (see Results and Discussion).

4. For the most abundamt peaks in an experimental spectrukh depends on the
mass of peptide, and equals the integer portion of (2+mass/330p); tieamino

acid pairs that result in these peaks are summed and the sum is used as the intensi
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score: . The intensity score is affected by two factors: hanwyniop peaks

are matched and how well the corresponding intensity matchesudgetteePr of

amino acid pairs range from 0.01 to 0.72, both factors could play an img®rta
role depending on the sequence.

During the scoring process, several thresholds (number of peaks dhatah#er
of consecutive ion pairs, intensity scores) are applied to rethomge candidates with
very few matches. For some spectra, only one or a few candidgtences can pass
these filters and the final report will have only one or a few matches.

The final SQID score is calculated as:

(1),

wherem is the number of matched peakss the number of consecutive ions pailsjs

the probability for a certain AA pair to have strong peaks, Kl the number of most
intense peaks used to calculate the intensity score. In the séamictgpn, the left part
(m+n) of the score measures the number of matched peaks and nafriberpairs, and
increasedm andn will increase the confident of the match; The right parthef $core

(1+ Pr)/(1+0.15K) measures whether the observed intensity (the numerator)tés bet
than the expected value (the denominator). We expect that thgateraf the topK
peaks is greater than the average oPadlin the statistical table, which is 0.155 (in the
statistical tablePr ranges from 0.01 to 0.72; the average is 0.155). A more detailed
discussion of the scoring function can be found in the “Results anddSisnll section.

The specific form of the scoring function is empiricallyetetined in a trial-and-error
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manner to reach the optimized performance using the PNNL détasétst test dataset),
and then applied to other datasets without any changes. Beside3lhe&re, a delta
score can be used to give further discrimination. Calculation & detire in SQID was
the same as that in Sequest: the difference between theotepastl second score was
divided by the top score, which gives the percentage differencedrtihe second and
the top score.

The well-matched peptide sequences and final scores can bedepitiner with a
single excel file or with separate text files. The restéis be reported in .OUT or .SQT
format (mimic Sequest output) for importing into Scaffdldo compare with other
algorithms, as was done in the present work. Work is in progreBewofature versions

of Scaffold to include a separate SQID input.

2.2.2 Parameters and datasets for performance test

Datasets:
Three ion trap datasets were used to test the performance of SQID:

1. PNNL dataset: PNNL dataset contains 28311 spectra (25% shagiyed, 62%
doubly charged and 13% triply charged) from unmodifeinococcus radioduranand
Shewanella oneidensigeptides collected by the Pacific Northwest National Labdes
(PNNL) on a Thermo LCQ ion trap mass spectrométet’ *3When these spectra were
collected, FT-ICR was used simultaneously for accurate maasunegnents. Each LCQ
spectrum was then analyzed by the Sequest search enginB.wilklioduransand S.
oneidensis protein databases, respectively, to assign a sequence. iRagfim

identifications of peptides with a minimum cross-correlationesadrl.5 (Xcorr 1.5)
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were validated by measurements of Accurate Mass Tags $AfMdm FT-ICR (mass
measurement accuracy < 10 ppm). Though the spectra are of hidi, doe@ error rate
of the initial assigned sequences is unclear considering the low Xeeshold used. As
a result, in current work we do not use these initially assigegdesices to evaluate the
confidence of matches. Spectra were identified againddeé®coccus radioduranand
Shewanella oneidensiatabase (7984 entries).

2.18 Protein Mixture dataset: This dataset contains 37044 spectic@emly the
Keller group, Institute for Systems Biology, Seatffefrom a mixture of 18 purified
proteins using a ThermoFinnigan ESI-ITMS. The dataset was twallegith 22 LC-
MS/MS runs, and only the most abundant peak in each full scan weageselfor
fragmentation, followed by 3 minutes of dynamic exclusion. Thesdaia available at

http://reqis-web.systemsbiology.net/PublicDatasets/omics_datasetbpectra were

searched against a reverse version D#inococcus radioduransand Shewanella
oneidensiglatabase (7984 entries) plus the 18 protein mixture and common atartésni
(trypsin, human Kkeratin, protein standards for MS calibration such as bsemen
albumin and angiotensin, etc).

3. Yeast Dataset: A dataset of 54799 spectra from a MudPITieguerof yeast-
extract collected by the students (group A) of Dr. Andrew ldaking 2006 Cold Spring
Harbor Laboratory Proteomics course on a Thermo LTQ ion trap spessrometef*

This MudPIT data includes six SCX/RP LC separations and top five most abundant peaks
in each full scan were selected for fragmentation. Raw databe downloaded from
http://www.mc.vanderbilt.edu/root/vumc.php?site=msrc/bioinformatics&doc=21164.

Spectra were identified against a yeast database (14590 eeiiesjted from NCBI
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non-redundant database (ftp.ncbi.nih.gov/blast/db/fasta/). All sequence yedkt™ or

“Saccharomyces cerevisiae” in the description line were included.

Search parameters and false discovery rate determination:

The above three datasets were converted to DTA file format B&imgorks
(Version 3.2). Sequest (Version 28, rev.12) and X!Tandem (Version Tornado
2008.02.01.3) were run simultaneously to evaluate the performance of S€YDesh
was chosen mainly because the Sequest and SQID are scoredanrs@mners, which
involves no expectation value calculation; X!Tandem was chosen bedaissepen
source and based on expectation values. All algorithms were usea wéahent mass
tolerance of 1.5 Da and a fragment mass tolerance of 0.5 Da, madi@mum of two
missed tryptic cleavage sites. Refinement for X!Tandem vwsbldid, and the maximum
valid E-value for reporting was set to 10000. PNNL and 18 protein migatesets were
searched with semi-tryptic cleavage (tryptic required attermainus only) and without
chemical modifications. The yeast dataset was searched fwithryptic and with
variable modification of C+57 (carbamidomethylation) and M+16 (oxidation).

For PNNL dataset and yeast dataset, the false discovery(F&R) was
determined using a target-decoy database search strategyat@base mentioned above
was appended with a reverse database using “decoy.pl” prdgpamMatrix Science

(http://lwww.matrixscience.com/help/decoy help.htmIi#WHATAt a certain score

threshold, the spectra matched to target sequences were |abaigédt” and the ones

matched to decoy sequences were labeled “Decoy’. The FDRaladated as: FDR =
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(2 x Decoy) / (Target + Decoy}' FDR can be further expressed as g-vafuehich is
the minimal FDR threshold at which a given match is considered positive.

For the 18 protein mixture dataset, an identification was asstoriss “True” in
the circumstance that the top hit belongs to any of those 18 nmotei common
contaminants. At a score threshold which allow “x” spectra (amdrigh “y” of them

are true) to pass, FDR was simply calculated as: FDR = 1- y/x.

2.3. Results and Discussion

2.3.1 Calculation of intensity score

Figure 2.1. The calculation of intensity score in SQID. The bottom is aethbel
experimental spectrum when matching it to the candidate sequence YEPKZFNThe

top peaks used for intensity score calculation are circled. The numbers Bhors and
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below y ions are the probabilities to observe strong peaks with Prsvakieacted from

the intensity table.

Intensity information is incorporated into the SQID scoring prodsssising
statistical intensity tables. Figure 1 is an example of l@irttensity score is calculated.
For the experimental spectrum with precursor MH44.8, the top five peaks are used
for intensity scoring. Given the candidate sequence YEFGIFNQISQID will first
determine that the top five peaks are matching to two b ignbsjland three y ions (sy
Ve, Y7 ), Which correspond to EF and IF pairs for b ions and EF, FG and IF payrsofts.
By looking up the intensity table, the probabilities to have strong (>3&%#s Pr) for
each ion pair are 0.13 (EF paig,ibn), 0.18 (IF pair, bion), 0.32 (EF pair, xion), 0.34
(FG pair, ¥ ion) and 0.42 (IF pair, yion). The sum of the above values returns the
intensity score. From the graph, it can be clearly seenthbkdr of the top five peaks
(shown in red) are among the largest compared Riitfor other peaks (in black), which
means that the most abundant peaks in the spectrum are alse@éxpdat statistically
strong based on the training set. In general, a higher intersitg shdicates that the
statistical fragmentation trends are reflected in the Imatw the confidence of the

identification is increased.

2.3.2 Effect of individual components in SQID score function

In addition to the number of matched ions used in most algorithms, SQIB s
function (Equation 1) involves two features to improve peptide identidicati

consecutive ion serigsand intensity (1+Pr)/(1+0.15X). To evaluate their contribution
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in SQID function, four searches were conducted using the PNNisetatl) “Standard
SQID search” with equation 1, withr values adopted from probability table (variable
intensity). 2) “With constant intensity” for each ion tyf:value is 0.22 for y ions and

0.09 for b ions. These are the averRgdor each ion type in the table. 3) “No intensity”:

(both andK equal zero, which completely removed the effect of intensityi@md
type). The score function is actually (m+n). 4) “No intensityconsecutive ion series”.
The score equals the number of matched mn&or each search, the results were ranked
by the top scores from high to low and g-values were determingelsasbed in method
section. By plotting g-value versus the number of peptide hits,d&-@yghows that fewer
peptides were identified when gradually removing the intensigtaglterms as well as
consecutive ion pairs from the scoring function. From the plot, it dimeihotice that by
adopting the number of matched ions alomg @ significant number of peptides can be
identified (orange dot-dashed lines). This proves that m/z listlsti most powerful
information for peptide identification. By adding consecutive ion s€siesring function

is now m+n), the performance increases as charge stawases (green dotted lines).
This may be explained by the fact that higher charged peptiolesally have longer
sequences and more theoretical peaks, which will increase hidwecec of finding
consecutive ion pairs. At 0.05 g-value cutoff, performance improved 8%ldobly
charged spectra. Adding an intensity term with a constant intefiitg dashed line)
gives a bonus when the theoretical peak is matched to a highly abyeddntwith a
higher bonus for the y ion and lower bonus for the b ion. This step gives an adlé¥#ona
(based on “no intensity search”) for doubly charged spectra at theg®.albie cutoff.

Lastly, the standard SQID score (red solid line), which givesitstically determined
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bonus when a theoretical peak is matched to a highly abundant peak, imgreved
overall performance by another 4% (based on “constant intensay'joubly charged
spectra at 0.05 g-value cutoff. The actual performance boost diffedsfferent charge
state and g-value cutoffs. At lower g-value cutoffs (g-value<0.01), ffezatice between
“constant intensity” and “no intensity” is negligible, but the gapwveen “standard SQID
search” and “constant intensity” can increase to over 10% (0.005 g-gvataff for 1+,
2+ spectra). If the differences between “no intensity” (gaited line) and “standard
SQID search’(red solid line) are counted as the contribution ofsitye the value is

averaged around 8-12 %.
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Figure 2.2. Plot of g-value versus identified peptides showing the effect of individual

components in SQID scoring functitor a)singly b)doubly c)triply charged peptides.

Fewer peptides were identified when gradually removing the intensity relatesl &sr

well as consecutive ion pairs from the scoring function.

2.3.3 Comparison of algorithm performances

A fully objective comparison of algorithms is always difficldlecause each
algorithm uses a different spectrum preprocessing method, a diffeceimgsscheme and
report different scores. In the spectrum preprocessing step, Squmeesbcess the
spectrum by keeping the top 200 peaks and separates the spectruienifitins for
normalization; SQID keeps the top 80 peaks after removing pareteédepeaks and
obvious non-monoisotopic peaks; Instead, X!'Tandem simply keeps the 5@bmaosiant
peaks by default. Though a larger collection of peaks canasersensitivity, at the
same time specificity may be penalized. In terms of sapert, X!Tandem reports “E-
value” and a much less important hyperscore, while SQID and Segpest delta score
in addition to the main score. Here, only the main scores, E-value, SQIDascoxeorr,
will be used for a relatively fair comparison. It is importaotriote that the above
spectrum prepossessing steps and score usage can potentiatlyth&ffeearch results
demonstrated below.

SQID was compared with Sequest and X!Tandem using PNNL, 18 protein
mixture, and the yeast dataset. The main score for eachtlabgp8QID score, Xcorr and
E-value, was sorted respectively for filtering and g-value detettion. Figure 3, 4 and 5

compares the search results of SQID with Sequest and Tdodeach dataset and each



52

charge state. Correspondingly, table 2, 3 and 4 are the unique peptidap{ioated
sequences) overlap table for each dataset at 0.05 g-value cuitedfgperformance of
SQID varies on different datasets, charge states and g-trakshold. For the PNNL
dataset, it can be seen that SQID yielded a similar perfa@naith Sequest for singly

and triply charged peptides, but had much more identifications for dalhayged
peptides, especially at low g-value cutoffs. At a 0.05 g-value cutdfftah of 22,135
unique peptides are identified by SQID, compared with 19,678 by Sexqde4e,878 by
XITandem. The 18 protein mixture dataset shows a smaller ehfferbetween SQID

and Sequest at all charge states, but X!Tandem still ldgadeSQID, Sequest and
XITandem identified 292, 273 and 241 unique peptides, respectively at 0.05 g-value
cutoff. For the yeast dataset, SQID exhibited a strong perfamen@r all charge states in

a wide confidence range. At g-value cutoff of 0.05, the number of upiepiides leads
Sequest or X!Tandem by 25% (4,355 for SQID, 3,319 for Sequest and 3,501 for
XITandem). It is also noted that compared with X!Tandem, Secaesivs a reduced
performance for this dataset. This may be due to the facthbapectra are relatively
noisy, and Sequest relies primarily on the number of matched ionsapd iore peaks

in spectrum preprocessing. For all three datasets, SQIRieatify a significant number

of unique peptides that are not identified by either Sequest om¥éha, and the overlap
region between SQID and Sequest or SQID and X!Tandem are nptargkr than the
region between Sequest and X!Tandem (Table 2, 3, 4). SQID also shbeten

discrimination power at lower g-value cutoffs, which can be seen from tiredig
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Figure 2.3. A comparison of SQID, Sequest and X!Tandem by plotting g-value (a measure
of FDR) versus identified peptide-spectrum match for PNNL dataset. (ay Shagbed
peptides. (b) Doubly charged peptides. (c) Triple charged peptides. (d) A caobivfat

all charge states.
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Table 2.2. Unique peptide overlap table for PNNL dataset at 0.0kug-gatoff. A total
of 22135 unique peptides are identified by SQID, compared with 19678 bysSeaade

14878 by X!Tandem.
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Figure 2.4. A comparison of SQID, Sequest and X!Tandem by plotting g-value (a measure
of FDR) versus identified peptide-spectrum match for 18 protein mixtureetlataps
Singly charged peptides. (b) Doubly charged peptides. (c) Triple charged peptides. (d)

combination of all charge states.
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Table 2.3. Unique peptide overlap table for 18 protein mixture datafe®atg-value
cutoff. A total of 292 unique peptides are identified by SQID, contpari¢h 273 by

Sequest and 241 by X!Tandem.
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Figure 2.5. A comparison of SQID, Sequest and X!Tandem by plotting g-value (a measure
of FDR) versus identified peptide-spectrum match for yeast dataset. (a) Siaghed
peptides. (b) Doubly charged peptides. (c) Triple charged peptides. (d) A caobivfat

all charge states.
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Table 2.4. Unique peptide overlap table for yeast dataset at 0.0Gegerabff. A total of
4355 unique peptides are identified by SQID, compared with 3319 by Seque3501

by X!Tandem.

Because both SQID and Sequest are not probability based, it viiifdvenative
to compare their scores when they are matching the same pepfidse to the same
spectra. We extracted the doubly charged spectra that reachesartie peptide
identifications by SQID and Sequest in the 18 protein mixtureselat®f all the 18,496
doubly charged spectra, only 2,571 ( 13.9% ) identifications were ovedldpyp8QID
and Sequest, among which 1,912 ( 74.4% of 2571 ) belonged to the 18 protein arixture

contaminations (True) and the remaining 659 belonged to the rgwertsins dataset?
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(False). Figure 6a plots Xcorr with (m+n) , the sum of matdbes and consecutive ion
series (SQID score without the intensity part), and figlorglots Xcorr with the whole
SQID score. It can be seen that (m+n) is almost proportional @or Xar both true and
false identification. However, the full SQID score (with the intensity) pacreases much
slower than Xcorr for false identifications in figure 6b, and aebetéparation between
true and false is achieved. The two bold lines are the correspoXdorg and SQID
score threshold (experimentally determined from figure 4b) for 0-@&lue cutoffs. At
this confidence level, the peptides in the upper-right corner (Xcorr>= 2.07, $Qi&>s
11.97) can be identified by both algorithms; the peptides in the ugpeotaer (Xcorr <
2.07, SQID score>= 11.97) will be identified only by SQID and the peptides in the lowe

right corner will be identified only by Sequest.

Figure 2.6. A plot of Xcorr versus a) m+n b) SQID score for 2571 peptide-spectrum
matches extracted from 18 protein mixture dataset. Every spot is scored by Sequest and

SQID using the same experimental spectrum and the same peptide sequence.
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2.4 Spectrum Predictor: Prediction of spectrum with intensity

We also developed a program called spectrum predictor based on the CID
fragmentation patterns from Huang’s study. By simply inputpige sequence, the CID
spectrum with intensity can be predicted. The program mainlg take account of two
clusters based on the mobile proton feature, which is defined as riteenof charge
minus the number of Arg and half the number of Lys and His. For dastercan
intensity lookup table was created and used for corresponding peptigese Ei7 is a
comparison of the predicted spectrum versus experimental spectunpeptide
FFESFGDLSSANAVMNNPK* and VNVEEVGGEALGR®. It is clear that the
predicted and experimental spectra match very well, espedémallthe most abundant
peaks (e.g. in the first example the predicted top peaks'arg’yand ¥, which are in
agreement with experimental results). Figure 2.8 evaluated tfemance of spectrum
predictor using a subset of the 28311 tryptic data set. The siynitd the predicted
spectrum and experimental spectrum is calculated as a dot prediivan in the figure.
If two spectra totally overlap, the similarity is 1; if tkas no overlap at all, the similarity
is 0. The figure shows the distribution of similarity scorelBew intensity is not
considered (blue) or considered (red). A significant improvementnoasity score
distribution is observed when intensity is considered. It should be noa¢dcalt the
intensity values used in this calculation are normalized andrthilarsty score here only
considered b and y ions.

The spectrum predictor program can be downloaded at
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http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm

Figure 2.7 Predicted spectrum from spectrum predictor versus experimentalispect
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Figure 2.8 Comparison of predicted spectra with and without considering intensity.

One important usage for the spectrum predictor is to predictrdnsitions in
Multiple Reaction Monitoring (MRM) experiment, simply speakinggdict the several
most abundant peaks given a peptide sequence and charge. We compared the
performance of spectrum predictor with a very popular MRM soéwaackage,
Skyline” for MRM transition predictions. Skyline uses an easy model toigir&IRM
and provides 4 transitions without intensity. Its predictions ar@lgirseveral y ions
around the middle part of the peptide plus the y ion from N-terralaalvage of proline.

To make a fair comparison, 4 most abundant peaks in spectrum predetosed. The
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software with more peaks matched to the top 4 experimental peakgasidered better.
By testing 45 high confident identifications from a Coccidioidessdditdhe results are as
follows:

Table 2.5 Comparison of Spectrum predictgrsus Skylne on MRM transition

predictions.

It is clear that the transition prediction of skyline is not gsod as
spectrum predictor. The strength of Skyline is mainly to analyaga when the

experimental spectra for those peptides are available rather thanipgettiem.

2.5. Amendment of SQID

Several amendments of SQID were performed to make the software

powerful and easier to use.

2.5.1 Discriminant score

Most peptide identification algorithms, including SQID, report multipteres.
For example, SEQUEST uses Xcorr as the main score whileegdsat a delCN score,

which indicates the difference between top score and second soularys X!'Tandem
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uses E-value as the main score and reports another hypelSQIE;reports a main
score and a delta score. Though in this chapter only the main samsed, it is also of
importance to explore the impact of delta score in peptide identification.
Discriminant analysis is a statistical method to creatmear combination of
multiple variables, in order to achieve better separation forgnoups. When applying to
SQID, the linear combination of SQID score and delta scoréeated and optimized to
better separate true and false identifications. The 18 proteinmidataset was used and
the standardized canonical discriminant functions are as follows:
Charge 1: Discriminant score = 0.146 * Score + 2.476 * deltaScoer - 2.223
Charge 2: Discriminant score = 0.14 * Score + 2.496 * deltaScoer — 1.537
Charge 3: Discriminant score =@* Score + 1.563 * deltaScoer — 1.82
By testing the 18 protein mixture dataset, using the above gclhmttions instead of
standard SQID scoring functions improved the performance by about H@aever,
SQID is mimicking the result format of Sequest when importimg Scaffold, so the
discriminant scoring function cannot be implemented into Scaffoldrsédaa result, we
are currently keeping the standard SQID functions and hopefullg tissriminant

scores will be useful in the future.

2.5.2 Reading Thermo raw data

One problem with SQID is that it only reads dta files, the ktesl files that are
difficult to generate and transport. In SQID 2.0 version (availabie

http://quiz2.chem.arizona.edu/wysocki/bioinformatics fatem improvement is enabling

SQID to read thermo raw files directly.
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The improvement is realized by using a small exe program ffdr@armo
XCalibur software, called extract_msn.exe. This executablexdeacescan information
from raw file directly and write into dta format. This procesautomated so the effect is
equivalent to reading raw file directly, and researchers do ned n@ do any file

conversion before importing the data into SQID.

Figure 2.9. Interface that showing a list of raw files are input into SQID 2.0 directly.

2.5.3 Output mzldentML file

MzldentML is one of the standards developed by the Proteomicsniafics
working group of the Proteomics Standards InitiatiaSI). This output is aimed at

creating a universal output standard so that the output from &gmittan can have the
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same format, which will be much easier to read. For exampieeraly Scaffold-PTM is
able to support this universal format regardless of what algorithms are used.

In order for SQID output more widely accepted by various datgriatien tools
especially Scaffold, we modified the code to support mzldentML outporatof. mzid).
In Figure 2.9, if the checkbox “output as .mzid” is checked, the outpubwilh single
mzid file, and can be loaded directly into Scaffold-PTM.

A couple of standard control vocabulary (cv) terms were assign&QiD by
PSI. These terms were used in mzid file to distinguish SQID from other algarithms

MS:1001886, SQID, Software for data analysis of peptides and proteins;

MS:1001887, SQID:score, The SQID result 'Score’;

MS:1001888, SQID:deltaScore, The SQID result 'deltaScore'.;

MS:1001889, SQID:protein score, The SQID result 'protein score'.

2.5.4 Incorporating ProteoWizard into SQID

ProteoWizard littp://proteowizard.sourceforge.net/index.shtmlan online C++

library which is aimed at reducing the effort of proteomizivgare development. It is a
collection of routine processes to read mass spectrometry ptirm spectrum
cleaning, and write standardized file format. By incorporathegse codes, researchers
can simply focus on the development of scoring algorithm itsgtier than spend

considerable time on routine procedures, like reading different file formats.

One main advantage of ProteoWizard is that it includes various codes to read

different file formats, including mzML, mzXML, MGF, Agilent, Bruker FNEP/BAF,
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Thermo RAW, Waters RAW and MS2/CMS2/BMS2. Many of these files are vendor
specific binary files which lacks effective tool to read them. By incorpuy éihese
ProteoWizard codes, SQID can read all these formats which will make inekyre
convenient. Technically the incorporation should be smooth because SQID and
ProteoWizard are written in two close languages, C and C++. The ekstmsafor the

incorporation are as follows:

1. Build ProteoWizard with quickbuild or quichbuild.sh, and several static library
files (.lib) will be generated.
When build PWZD with Microsoft Visual Studio (MSVC)
All Programs > Microsoft Visual Studio 2005 > Visual Studio

Tools > Visual Studio 2005 Command Prompt

Right click project in msvc, choose C/C++, add additional folder (the one

contains the sources of headers and codes)

Right click project in msvc, choose “linker”, add additional folder (the one
contains “lib” files). In “Input”, add the specific “lib” file.
2. Important codes and explanations for file reading and writing:

Read file

#include  "pwiz_tools/common/FullReaderList.hpp"
#include  "pwiz/data/msdata/MSDataFile.hpp"
#include  "pwiz/utility/misc/Std.hpp"

#include  "pwiz/utility/misc/Filesystem.hpp"

using namespace pwiz::msdata;

using namespace pwiz::cv;

/[all datatype

FullReaderList readers;

/lget data

MSDataFile msd(filename, &readers);



/lget spectrum list

SpectrumList& spectrumList = *msd.run.spectrumListP tr;

size_t numSpectra = spectrumList.size(); /lget the number of
spectrum

/lget individual spectrum from list

SpectrumPtr spectrum; /Ipointer to a spectrum object

spectrum = spectrumList. spectrum( i, getBinaryData); /lget i-th

spec,getbinarydata= true

/lget mz list in a vector, each m/z and intensity i S an pair object.
vector<MZIntensityPair> pairs;
spectrum->getMZintensityPairs(pairs);

/literate through all m/z vector
for (vector<MZIntensityPair>::const_iterator it = pair s.begin(), end
= pairs.end(); it'=end; ++it) {

cout<<it->mz<< \t' << it->intensity<<endl;

++counter;
}
id::value(spectrum->id, "scan" ) print scan number
"ms" + spectrum->cvParam(MS_ms_level).value print as ms1
Write file

[/Iwrite parameters
MSDataFile::WriteConfig writeConfig;

/[ write an mzML file format:
writeConfig.format = MSDataFile::Format_mzML;

/Ichange precisions (not necessary)
writeConfig.binaryDataEncoderConfig.precision =
BinaryDataEncoder::Precision_64;

writeConfig.binaryDataEncoderConfig.precisionOverri des[MS_m_z_array]
= BinaryDataEncoder::Precision_64;
writeConfig.binaryDataEncoderConfig.precisionOverri des[MS_intensity_a

rray] = BinaryDataEncoder::Precision_32;

IIwrite the file

MSDataFile::write(msd, outputFileName, writeConfig) ;

struct PWIZ_API_DECL MSDataFile : public MSData

struct  PWIZ_API_DECL WriteConfig is a member structure in MSDataFile

/Il data format for write()
enum PWIZ_API_DECL Format {Format_Text, Format_mzML, Fo rmat_mzXML,
Format_MGF, Format_MS2, Format_CMS2, Format_MZ5};
if (!msd.run.spectrumListPtr.get())
throw runtime_error( "[mscat] No spectra found." );

68



69

#include  "pwiz/data/msdata/MSDataFile.hpp"
#include  "pwiz/data/msdata/Serializer_mzML.hpp"
#include  "pwiz/data/msdata/Diff.hpp"
#include  "pwiz/data/msdata/examples.hpp”
#include  "pwiz/utility/misc/unit.hpp"
#include  "pwiz/utility/misc/Std.hpp"
/I create the MSData object in memory
MSData msd;
examples::initialize Tiny(msd);
/[ write MSData object to a stream
ostringstream o0ss;
Serializer_mzML serializer;
serializer.write(oss, msd);
/I read back into another object
MSData msd2;
shared_ptr<istream> iss( new istringstream(oss.str()));
serializer.read(iss, msd2);

/Iwrite mzXML
MSDataFile::write(msd, filename, MSDataFile::Format _mzXML);

2.6 Clustering of NIST CID dataset

The performance of clustering highly defends on the size of the size and quality of
the dataset. As mentioned in the SQID project in Chapter 2, a Giyalataset was
recently available from National Institute of Standards and Tecon@MIST) Libraries
of Peptide Tandem Mass Spectra (http://peptide.nist.gov/). The dategains 138033
unique D. melanogaster (version: drosophila-7-14-2008-it) and S. cereyesia®n:
yeast-5-04-2009-it) ion trap spectra. We performed penalized k-rketsring analysis
on this dataset, in the hope that it will give more accurateilsletdout CID
fragmentation patterns. However, our results show that the sateenpatere observed

as we seen on 28311 data. Figure 2.10 shows four clusters, strongtrgrg, D/E-X,
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strong I/L/V, and a cluster similar to the previous b,y clustenvéler, these maps do

give more details about the low abundant residues such as Cys and Met.



Figure 2.10 The clustering results for NIST CID dataset.
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2.7. Using multiple clusters for SQID

As discussed in this chapter, SQID currently makes use ohtéesity table for
all the peptides instead of using clusters. This is mainly duehedodifficulty of
normalizing clusters when scoring, e.g., for the same spectflsomie candidates are
using the intensity table for the X-P cluster and the other caedidat the same
experimental spectrum are using the intensity table for the-lR/cluster, there will be
normalization issues because these two intensity tables hawereniff properties,
especially different average intensity values. But herea aseliminary test, we have

examined whether utilizing two clusters can improve the performance of SQID.

Figure 2.11 Comparison of “two cluster method” versus regular SQID search.

Similar to Spectrum Predictor, the two clusters, with and withaldile protons,

are used in this test. The intensity table for mobile proton clissextracted from the X-
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P and I/V/L-X clusters in NIST dataset (70749 peptides), and the obilercluster is
extracted from D/E-X and b ion clusters in NIST dataset (604pfides). To evaluate
the performance of this “two cluster method” versus regular S@Bapplied them to
the 28311 dataset using the same searching method in Chapter g®wksin Figure
2.11, the two methods are quite similar, but the “two cluster methedideatify more

peptides at lower FDR.

The effect of this method on peptides with different properties tuather
examined using the clusters from the 28311 dataset. From Figuré & tZar that the
“two cluster method” (blue curve) can constantly improve the pedace of X-P and
D/E-X peptide identifications, while cannot show obvious improvement for atine
groups. This is probably a result of the normalization issue orettiabove, or simply
due to the fact that the scoring function was empirically deravad optimized for the
current intensity table. To solve these problems, a potential methmadpgimize the full
spectrum prediction from the Spectrum Predictor, and use an autecorpsation

function to compare two spectra (like Sequest does).
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Figure 2.12 Comparison of two cluster method versus regular SQID search, on peptides
with different properties. X-axis is the number of false identifications and ysakis i
number of true identifications. The blue curve in each graph is for the “two cluster

method”, and the red curve is for regular SQID search without clusters.

2.8. Conclusions

In general, SQID shows a marked performance compared with polgdathans
as shown by the results from three different datasets, withod gumber of unique

identifications. Combining SQID with other algorithms will thus petentially
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beneficial, such as increasing the number of peptide hits and thedeswdi of
identifications. SQID also has the potential to be applied torefettansfer dissociation
(ETD) spectra as long as corresponding intensity tablesurielaled. By analyzing over
10,000 high resolution ETD spectra from the Coon group, the University sfongin-
Madison, we found that the peak intensities in ETD spectra ardiglsly dependent on
the amino acid composition, e.g. amino acid pairs containing basitties tend to have
enhanced cleavage, while pairs containing hydrophobic residues have weaksity.
This study could help intensity-based prediction in ETD, and at the sae, provide
evidence to clarify the controversial dissociation mechanisma. esv algorithm, SQID
still requires further optimization to improve the overall perforogarFuture efforts will
include incorporating different intensity histograms correspondingéoifsc instrument
types and specific sequence motifs, combining SQID score and stelta to give a
single discrimination score, and developing programs that direwddify scores from

other search engines.
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CHAPTER 3: STATISTICAL STUDY OF ELECTRON TRANSFER
DISSOCIATION FRAGMENTATION PATTERNS

This project is an extension of Huang's fragmentation pattern study on CID Taa.
result is surprising and of great importance to ETD studies. Thgegr is in
collaboration with Dr. George C. Tseng from University of Pittsburgh andl@shua J.
Coon from University of Wisconsin, Madison. Dr. Tseng provided us witististat

technique support and Dr. Coon provided all the ETD spectra.

3.1 Introduction

Tandem mass spectrometry based peptide and protein identificationesbe
dissociation of peptide or protein ions to generate fragment ions. A camaint
dissociation method is collision induced dissociation (CID), in whightide precursor
ions collide with inert gas molecules and dissociate. CID tyyicatsults in
fragmentation along the peptide backbone at the amide bonds, producing predgmina
N-terminal b and C-terminal y ions. It is widely known that D fragmentation
patterns are highly dependent on the sequence of the peptide and tbeaaidi (AA)
residue composition. Preferential cleavage, for example, is @xpatthe N-terminus of
proline in the presence of a mobile proton or the C-terminus of asjpartli when no
mobile proton is availabl&** ?°In Chapter 2 many studies show that understanding
these fragmentation patterns can potentially improve the ietatfon of CID spectra as
well as peptide and protein identifications. An example of thsuisrecently reported

peptide identification algorithm SQIffwhich incorporates intensity statistics from a
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large CID dataset and shows improved performance compared withalspopular
algorithms that do not strongly consider intensity.

Electron transfer dissociation (ETEfsimilar to electron capture dissociation
(ECD),*" has gained popularity because of its ability to retain post-atmsal
modifications and produce distinct ¢ and z ion types compared with #mal ly ions
produced by CID. The electron transfer and dissociation, which clébeeN-C bond,
involve the formation of an aminoketyl radical and the backbone cleasdgieved to
be less selective than CID with no strong cleavage preferéhdes.date, several
statistical studies have been published to examine the undefiggmgentation trends,
e.g., Savitski and coworkers analyzed the pairwise fragmentatimatstad ECD spectra
of 14967 tryptic peptide dications and found that the preference is coerbem to
CID;* Chalkley and coworkers characterized the frequency of observiregediffion
types in ETD in terms of protease used and charge &taféese studies have provided
valuable information for understanding ETD mechanism as well agpiaeteg ETD
spectra. However, no study has been done to examine fragmeritatdnfor large

datasets of ETD spectra using more advanced statistical techniques.

3.2 Methods

Our group has reported previously application of a statisticalndiaiag strategy,
penalized K-means clustering, to discover fragmentation patter@ Eor%and in the
research reported here, we apply K-means clustering to ETDalgmentation pattern
discovery. Several ETD datasets collected by the Coon group dtrtiversity of

Wisconsin - Madison, with sequences assigned to spectra by OM&SA subjected to
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analysis: one with 11954 Lys-C digested unique peptides, one with 12042 Glastzdig
unique peptides, and one with 6423 high resolution spectra of tryptic unepiieles.
Mass spectra for all datasets were obtained using an LTQ&rbiThermo Fisher
Scientific, San Jose, CA) to achieve high resolution and high ncessaay; MS/MS of
the Lys-C and Glu-C datasets were measured using the lohQend of the instrument
(low resolution) and the tryptic dataset was obtained by usiagotbitrap as a high
resolution analyzer for product ions. The normalized fragment ityefios cleavage at
each amino-acid pair was extracted from each spectrum. Asample, ¢ and z ions
were identified from the spectrum of the MHion of the peptide AAEDVAK and were
then normalized to the most abundant peak among all ¢ and z ions ispétatum
(higher charged fragments will also be included depending on tharpoe ion charge).
For c ions, the normalized intensities of c1, c2, c3, c4, c5 and c6 Emsassociated
with AA pairs A-A, A-E, E-D, D-V, V-A and A-K respectivel which correspond to the
cleavage sites. After the information was collected for allsjpectra in the dataset, a
matrix was created for ¢ ions containing 400 AA combinations (20 AZ0 *AA; all
cysteines in these datasets are carbamidomethylated, sbifCiis report are actually
carbamidomethylated Cys), and each combination includes a number oflinedma
intensity values. The same procedure was performed for z ions dna laotd z data
were used together for clustering. The relationship betwerp#rs and normalized
intensity can be visualized by quantile ni#@s shown in Figure 3.1, in which the left
column represents the N-terminal residue of the pairwise deasite and the top row
represents the C-terminal residue of the pair of cleaving aagids. The horizontal

dimension of each spot is proportional to the number of instancesieéragair, and a
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wider spot means more occurrences thus higher confidence. In eadesgptantiles of
intensities of the entire distribution are plotted on circlengugjradient colors. The
darkness of the color represents the normalized intensity| Adtk spot represents high
intensities for all occurrences in the distribution (e.g. A-kc-obn in the left cluster of
Figure 3.1). A spot with small dark dot in the center and whit¢éhé surrounding
represents a bimodal distribution (i.e. a portion of high intensitieolwuintensities for
other cleavage occurrences; e.g. A-H of c-ion in the left cluster ofd-§y1).

The K-means clustering algorithm partitions all speatta K clusters based on
the pairwise cleavage behaviors, with the principle that the peptides wighiaracluster
fragment as similarly as possible to each other and as diffigies possible from those
peptides in other clusters. More specifically, each peptide spectryotted in a 400
dimensional space with each dimension represent the cleavagetynfemsi a certain
AA combination; then the space is tentatively and repeatedlyatedanto K parts until
the sum squared distance of each spectrum to its centroid is m&dinTihis approach
allows the extraction of independent patterns that were previousgd. One drawback
is that one must choose the number of clusters “K”. In this worgreguce multiple sets
of clusters and choose the optimal K that produces distinct clugtbmut obvious sub-
clustering. After the clustering, a CART (Classification ArebRession Tree) program is
used to extract sequence features for each cluster, so thalatienship between the

sequence features and fragmentation behaviors can be established.
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3.3 Results and discussions

Figure 3.1 a) Quantile maps for the three clusters obtained by K-mdastering of
11954 spectra of Lys-C digested unique peptides. Two quantile maps aed foottach
cluster, one for c ions (top) and one for z ions (bottom); b) Quantifiedvage
preference in Cluster 2. The left graph represents the cleavager@itl to a certain
residue and the right graph represents the cleavage N-terminal to arcedsidue.
Cleavage preference (y axis) is represented by the probability tmrtain amino acid
pair to have strong cleavages (reference 9 for detailed calculatiog.), deavages C-

terminal to E, H, N, Q, R and W are relatively strong, and cleavagesminal to G, | ,V
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Table 3.1. Peptide charge and length distribution for lys-C digestidh dafaset and

corresponding clusters.

All (11954 | Cluster 1 (3522 | Cluster 2 (4737 | Cluster 3 (3695
peptides) peptides) peptides) peptides)
2 14% 36% 3% 8%
3 45% 38% 60% 33%
Charge
4 29% 21% 29% 36%
5and more | 12% 5% 9% 22%
Average charge 3.4 3.0 35 3.7
Average length 17 14 14 21
Sequence With | 2696 13% 31% 38%
internal Lys
Sequence With | 6396 54% 66% 66%
internal Arg
. Very strong X-K Moderate
Fragmentation cleavage for | No cleavage
N/A cleavage (C,1 .
patterns ion) selected residue | preference
pairs

3.3.1 Lys-C digestion

Clustering of the Lys-C digested peptides resulted in thre¢ectusith distinct

fragmentation behaviors (Figure 3.1a): 1) a cluster witheety strong cleavage N-

terminal to Lys (the majority arg.¢ions with “n” indicating the total number of residues

because only 13% of the peptides have internal Lys); 2) a cistemoderate cleavage

preference for certain residues (see Figure 3.1b); 3) a rcluste more uniform
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cleavages. CART analysis showed that the separation mainly depencsarge and
length (Table 3.1). Peptides in Cluster 1 are lower changédlaorter, with 36% doubly
charged peptides, 38% triply charged peptides, and an average |lérdgthQluster 2
peptides are the same length as those in Cluster 1 but have highegeacharge (3.5
versus 3.0). Peptides in Cluster 3 are longer and more highly dhavige an average
length of 21 and average charge of 3.7. With the consideration of taeingation
patterns in each cluster, it can be seen that the backbone cleeleq®iy decreases
with increasing charge states and length. This may indicat¢hihaelective cleavage is
charge or radical directed. For a lower charged Lys-C pephdeC-terminal Lys is the
primary electron attachment location, which results in dominagntons; as the charge
increases, there are more electron attachment locations thascheavable sites along
the peptide backbone, so that the selectivity decreases.

Besides the features mentioned above, it is also observed tnagdeN-terminal
to Pro is prohibited, which is expected because of its ringtateudn addition, the z ions
from the cleavage N-terminal to carbamidomethylated Cygemerally missing due to a
-90 neutral loss of the side chaft® When the loss of 90 is considered, the missing z ion
column can be recovered. This phenomenon suggests that ETD searclskagidaise
the mass with neutral loss when the cleavage happens N-terntma

carbamidomethylated Cys.
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Figure 3.2. Quantile maps for the two clusters obtained by K-means clustering from
12042 spectra of Glu-C digested unique peptides. Two quantile maps are plotted for each

cluster, one for c ions (top) and one for z ions (bottom).
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Figure 3.3. ETD spectrum of 3+ AAFRNIKTIAE. A stropg‘don was observed which
corresponds to the cleavage before the C-terminal residue Glu. Complemargaons

correspond to the cleavage between Arg and Asn.

Table 3.2. Peptide charge and length distribution for Glu-C digestion dat&set and

corresponding clusters.

All (12042 | Cluster 1 (5340 | Cluster 2 (6702
peptides) peptides) peptides)
2 1% 0% 1%
3 45% 32% 56%
Charge
4 43% 57% 33%
5and more | 10% 11% 10%
Average charge 3.6 3.8 3.5
Average length 16.2 15.3 17
_Sequence with 38% 33% 12%
internal E
; N/A
Fragmentation Moderate Very strong
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patterns cleavage for | cleavage at X-E
selected residue
pairs

3.3.2 Glu-C digestion

Glu-C digested peptides, which are mainly triply and quadruply charged
separated into two main clusters of behaviors. The first cl(B340 peptides, Figure 3.2
left) shows moderate cleavage preferences at various locations) vghisimilar to
Cluster 2 of the Lys-C digested peptides. The other distinctecl{Bigure 3.2 right)
shows very strong cleavage at N-terminal to Glu. Though 42% oé theystides have
internal Glu, 98% of these X-E cleavages afgions involving no internal Glu. Table
3.2 summarizes the charge and length distributions for the sepaidattan be seen that
the cluster with strong X-E cleavages (Figure 3.2, righd)ralatively lower in charge
(3.5 versus 3.8) but a little longer (17 versus 15). Figure 3.3 @nhspectrum showing
an example of the enhanced cleavage N-terminal to Glu. This looksivatar to X-K
cleavage in the Lys-C dataset, with both X-K and X-E cleagyerating strongng

ions.
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Figure 3.4. Quantile maps for the two clusters obtained by K-means clustering of 6423

high resolution spectra of unique tryptic peptides.

Table 3.3. Peptide properties for tryptic ETD dataset and correspondingsluster

All ( Cluster 1 (2977 | Cluster 2 (3446
peptides) peptides) peptides)

Lys ending 60% 58% 61%

Arg ending 40% 41% 39%

Sequence with 10% 10% 9%

internal Lys

Sequence with 15% 15% 12%

internal Arg
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Average charge 3.2 3.4 3.1

Average length 16.4 19.6 13.6
Fragmentation N/A No cleavage | Strong X-K and
patterns preference X-R cleavage

3.3.3 Trypsin digestion

The final spectral dataset subjected to clustering correspon@g23 tryptic
peptides. All peptides in this high resolution tryptic dataset liae or more charges,
with 79% triply charged and 19% quadruply charged peptides. Two clustres
achieved through clustering: 1) a cluster with uniform cleava@gsa cluster with
moderate cleavage preferences at various locations, includargy stleavage at the N-
terminus of Lys and Arg in the c ions. As expected from the algapatterns in Figure
3.4, CART analysis (Table 3.3) shows that peptides in the fuster are generally
longer (20 versus 14) and slightly more highly charged (3.4 versus 3.19, @lbster 2
peptides are shorter and lower charged. The low percentage ofalnkgis and Arg
strongly indicates the preference fqri¢on, which is in agreement with the observation

in Lys-C and Glu-C datasets. Note that strong preferentiavatge at Arg is seen only in
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this dataset, where Arg occupies the C terminal positions.

Figure 3.5. a) Bar graph indicating the numbers of unique peptides distributions (550
total, not ending with K,R and E) in which thg ¢on is the most intense peak among all

c ions (n is the peptide length, i means thesidue to the C-terminal of the peptide). b)
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Distributions in terms of charge states.

Results from the three datasets indicate thati€ a preferred cleavage site for
Lys-C, Glu-C and tryptic peptides, but cannot indicate whether therenee is simply
due to a position effect or the fact that the peptides are endimghe specific basic and
acidic residue Lys, Arg and Glu. To clarify the issue, we aedlythe spectra of 550
peptides that do not end with Lys, Arg and Glu. These are non-spdgiftteaved
peptides from the Lys-C, Glu-C and trypsin datasets. Figureh®wssthe distributions
of 550 peptides: the,¢ ion was found to be the most intense peak among all ¢ ions. It
can be clearly seen that the cleavage intensity decreasdse distance from the C-
terminus increases, and thg;@n is significantly stronger than the other c ions. This
observation unequivocally indicates that the cleavage preference Dnig&highly
affected by the residue position, which is possibly determindgtidogas phase precursor
structure as suggested by Moss and coworkers using model pép#deshe charge
getting higher, the structures of the peptides will change,ramgdsition effect diminish
(Figure 3.5B), in agreement with the Lys-C clustering results.

Table 3.4. Summary of observed ETD fragmentation patterns.

% *5 o+ &(-. 0L

) "1'2.3.4




90

1 # $

5 ) 1 '#678%# ++

Table 3.4 summarizes the ETD fragmentation patterns observapplbying the
K-means clustering method to Lys-C, Glu-C and tryptic dé&gadéhe patterns highly
depend on charge state. At higher charges states, the cleavage iselective with no
preferential cleavage. At lower charge states, there ayestreng .1 ions, and moderate
preferred cleavages involving certain residues, such as enhdeaedges C-terminal to
E, H, N, Q, R and W, and suppressed cleavages N-terminal tar@, V. Though these
trends are not phenomenal enough to be unequivocally described as dominating
cleavages, many of them can also be observed in the ECD ictafmtblished
previously?® In addition, limited cleavage occurs to the N-terminus of Pro, wtsch
expected due to the ring structure, and the z ions from the N-tdrigavage of
carbamidomethylated Cys are always missing, due to the @@ahéoss of the side
chain®®°® We also examined the hydrogen transfer products in ETD and theadat
shown in supporting material. Strong c-1 radical ions, formed aftboggn transfer, are
also observed corresponding to cleavage N-terminal to Lys and Glu,de€ ayd Glu-C
peptides. All these patterns could be used directly for ETD fragmiensity prediction,
and at the same time, provide guidance to clarify the underlyisgodation
mechanisms. The results will be incorporated into our intensity lzgedthm, SQID°

to improve ETD peptide identification.
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3.4. Charge transfer products

We also examined the hydrogen transfer process in ETD which generated c-1 a
z+1 ions. A deisotoping procedure was used to remove the portion of the z+1 ion
intensity that comes from the first isotope peak of a regular z ion. Both c-1 angha+1 i
were mined for clustering. For the Lys-C (Figure 3.6) and Glu-C (€iguf) datasets,
strong c-1 ions were observed for cleavage N-terminal to Lys and Glu, reslyect
while no strong z+1 ions were observed. We examined the sequence features (charge,
length, residue positions, etc.) for this separation and did not see any dominating factor
This is in conflict with previous reports that extensive hydrogen transfer psogaot
observed for doubly charged peptides, but much less for triply or higher charged
peptides’® The tryptic dataset does not contain doubly charged peptides so Figure 3.8
only reflects pairwise fragmentation patterns of c-1 and z+1 ions for peptidethreie
and more charges. Clustering produced two clusters, one with no c-1, z+1 ions and the
other with very strong c-1 ions at the N-terminus of Lys and relativelggizél ions at
the N terminus of Arg. The clusters for c-1 and z+1 ions from the three datasetthsha
same trends as ¢ and z ions, which implies that hydrogen transfer products age comi

from the same dissociation pathway as c, z ions.
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Figure 3.6. Quantile maps for the two clusters obtained by K-means clustering of 11954

spectra of Lys-C unique peptides, for c-1 (top) and z+1 ions (bottom).
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Figure 3.7. Quantile maps for the two clusters obtained by K-means clustering of 12042

spectra of Glu-C unique peptides, for c-1 (top) and z+1 ions (bottom).
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Figure 3.8. Quantile maps for the two clusters obtained by K-means clustering of 6423

high resolution spectra of tryptic unique peptides, for c-1 (top) and z+1 ions (bottom).
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Figure 3.9. Summary of ETD clustering.
3.5. Directions of ETD algorithms

As we know, collision activated dissociation (CAD) and electron fieans
dissociation (ETD) are two peptide fragmentation methods frequas#dyg in modern
mass spectrometry based proteomics experiments. CAD fragpeptides by colliding
them with inert gas atoms or molecules, resulting in eneegpdamization and
subsequent dissociation of weaker bonds such as amide bonds. In ETD, however,
multiply-charged peptides cations receive electrons from radicains to form an
aminoketyl radical, and further dissociate primarily at N-Bonds?® This distinct
mechanism gives ETD spectra many unique features. 1) Nkavage generates c,

z- ions rather than the b, y ions of CAD. 2) Peptides with highegelsiates generally
fragment better with ETD than CAD. 3) ETD spectra normallyehamtense charge
reduced precursor peaks ([ET-no-D] products) as well as correspondirical loss
peaks. 4) Charge transfer products, especially c-1 and z+1 ioriggqarency observed

in ETD spectra. 5) Cleavage with ETD is less selectigaeating more extensive ion
series. 6) Labile posttranslational modifications which are ofteh ih CAD can be
retained in ETO**®4°**Understanding these unique features is extremely helpful for the

correct interpretation of ETD data.

However, because ETD is a newer technique, most of the proteiiificde¢ion
algorithms for ETD are still a simple derivation of wedkablished CAD algorithms,
only searching with ¢, z- ions instead of b, y iBhshough this model works, it is over-

simplified because it only considers the first ETD featurentroeed above while
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ignoring all the others. This could be problematic in many cases, #he strong charge
reduced precursor peaks can be accidently matched to fragmemegaritng in a higher
false discovery rate (FDR). Clearly, specialized algoritshwuld be developed for ETD,
or existing algorithms should be adapted for ETD, by considerirguarktTD features,

and efforts have already been made by many gra(iis?®

The database search method used in peptide identification can bey simpl
described as comparing an experimental spectrum with a set of tb@asptctra or peak
lists derived from candidate sequences pulled from a sequence Iliyasetting a
particular mass tolerance for the precursor ion. To do this, ynadrithe current
algorithms involve the pre-processing of an experimental spectemerajion of a set of
theoretical spectra, and using certain scoring functions to évdh&similarities of the
theoretical spectrum to the experimental spectrum to deterthedodst match. The
transition of CAD algorithms to ETD mainly focused on the fivad aspects which will

be discussed here.

The major purpose of pre-processing an experimental spectriion resmove
peaks that are not less indicative of the peptide sequences deathto false peak
matches, including non-product ions, isotope ions and noise peaks. In CAD, the
fragmentation is efficient that remaining precursor is nasrecern, while in ETD charge
reduced precursor ions and corresponding neutral loss ions are too abundant to be ignored.
These ions are double-edged swords for ETD peptide identificatioone hand, these
derivatives of precursors are confounding because they account dogeaportion of

total ion current (TIC) but contain little information about backbwagrhentation. Good
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and coworkers first reported improved peptide identification by removirese
“interfering ions” before submitting the data for seatctf.On the other hand, these ions
may be used to deduce the property of the precursor. Xia repomgdtius amino acid
side chain neutral loss in ETD as a fingerprint for amino acid compositieor.instance,

a neutral loss of 43Da from precursor suggests the presence wheargvhich can
greatly reduce the search space. Sridhara and coworkers shmawéidet distribution of
charge reduced precursors and neutral losses can be used to gmeslicsor charg®.
An ideal way for ETD spectrum pre-processing is probably a conntnaf the two:
using charge reduced precursors and neutral loss to get hintssefgiience and charge,

then remove them during spectra comparison.

In terms of theoretical ETD spectra generation, in-depth unddistpof the ion
types and fragment intensities in ETD is required. Chalkley @mslorkers did a
statistical study on ETD spectra and showed that besides c, y,j@at4d and c-1 ions are
also abundant and their occurrence varies by charge %tateey later implemented a
charge and sequence dependent scoring method and reported an 80% inqueptide
identification®® A similar concept has also been implemented into algorithms such a
pFind>® Fragment intensity in ETD is less understood and could be theakgst to
boost ETD peptide identification, and it is already well accepiiat intensity patterns
can improve peptide identification for CAD. Recent intensitygpatstudies show that
selective cleavage also exists for ETD, and is dependent upon bo#mthe acid
composition and the position of cleavage siteBhese information can be incorporated

into ETD identification algorithms to further improve peptide identification.
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In sum, the process of implementing known fragmentation features, orazhe
knowledge, into algorithms involves both deep understanding of the chémmaledge
as well as numerous efforts for optimization. We anticipate deamore researchers
obtain instruments with ETD and as researchers better defineaqdsition methods
and search algorithms, ETD will continue to increase in populatitg to its
complementary fragmentation patterns to CAD and the abilitgttorr post-translational
modifications. The exponential growth of ETD datasets as wdligdeer mass accuracy
requires faster algorithms that are optimized for high resoluata. It is important to
make large and high resolution ETD datasets available so tlegrchers can extract
more ETD features using statistical methods (clusteringaridescriminant analysis, etc.)
to add into algorithms and evaluate their performance. Other peipigdgification
methods, such as ETD spectral library searches andde€Timbvosequencing, will also
benefit from a deeper understanding of ETD features. Lastlye pust-processing tools
such as Scaffold should be developed to integrate data from mul@gmédntation

methods and multiple algorithnmis®?
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CHAPTER 4: SQID-XLINK: DEVELOPING AN ALGORITHM FOR
CROSS-LINKED PEPTIDE IDENTIFICATIONS

The initial motivation to develop a program for cross-linking was to help researchers in
the Wysocki laboratory better analyze cross-linking data. Later we found that & work

very effectively so a user friendly interface was developed and resultpusished.

4.1 Abstract

Appropriate algorithms are a major bottleneck for mass spectyprbesed
chemical cross-linking experiments. Our lab recently developedtamsity-incorporated
peptide identification algorithm, and here we implemented this seliemcross-linked
peptide discovery. Our program, SQID-XLink, searches all regulad-ded, intra and
inter cross-linked peptides simultaneously, and its effectivesesaidated by testing a
published dataset. This new algorithm provides an alternativeoagprfor high
confidence cross-linking identification. SQID-XLink program is lyeavailable for

download fromhttp://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm

4.2 Introduction

Chemical cross-linking coupled with mass spectrometry is anbavaoproach to
analyze protein structures and interacti6fi&?In such an experiment, spatially adjacent
amino acid residues from one or more proteins are covalently linkedhémical
reagents. The cross-linked proteins are then enzymaticallyteligasd the resulting

cross-linked peptide pairs can be detected by mass spectrorfungification of these
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cross-linked peptides enables researchers to define the imtersités of proteins in a
complex in their native states and to build or confirm structural lro@@mpared with
traditional techniques such as NMR and X-ray crystallograpiags spectrometry based
chemical cross-linking does not require a large quantity of sathplereover, recent
development of high resolution and high throughput mass spectrometerssstich a
Orbitrap have offered increased efficiency and sensitivity requor the identification

of cross-linked peptides.

Although the chemical crosslinking approach is promising, the datigsas for
chemical cross-linking forms a major limitation for this technifju@his is mainly
because cross-linked sequences are non-linear, thus traditionah ratabase search
algorithms such as Sequest and X!Tandem cannot be directly employdwe
development of new database searching algorithms enables moreaxadprotein
identification from a single shot-gun proteomics experiment, howebese novel
approaches have seldom implemented a cross-linking search functiooréase the
number of identified cross-linked peptides. Moreover, many current -lonk8sy
algorithms are slow, lack graphical user interfaces and neeshstx@ manual data
interpretation before and after the search. These shortcomingsat@dtus to make a

powerful and user-friendly tool to identify cross-linked peptides.

Here we report the implementation of our recently developed peptide
identification algorithm, SQID? to cross-linked peptide identification (SQID-XLink).
Our algorithm features an intensity incorporated scoring functionn\argrong peak in

a spectrum agrees with the statistical value, the confidericbenboosted. For example,
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if a CID-induced cleavage occurs N-terminal to proline orr@eal to glutamic acid or
aspartic acid, the score will be higher. This is similantmually checking a spectrum to
confirm if the strong peaks are from cleavages expected to lead to abundtanDueato
the low abundance of cross-linked peptides and corresponding poorer sqeatitg]
incorporating intensity into cross-linking search algorithms Ww#l potentially very
beneficial. In addition, SQID-XLink searches all regular, dead-erak$-linked at only
one reactive site of the cross-linker), intra-peptide(cross-liakedo locations within a
single peptide) and inter-peptide cross-links simultaneously withs#dme scoring

function, so that the probability of false identification can be minimized.

4.3 Methods

SQID-XLink is a modified version of SQID which is specifigallesigned for
cross-linking searches. It is written in C language with a-nggrdly interface from
visual basic 6.0. It has been tested in Windows XP and Windows 7 apesgitems.
Currently the program supports BS2G-d0/d4 (Bis[Sulfosuccinimidyliagate), BS3-
do/d4 (Bis[Sulfosuccinimidyl] suberate) and EDC(1-Ethyl-3-[3-

dimethylaminopropyl]carbodiimide) cross-linkers.

SQID-XLink processes a fasta database by generating regejdides, and
peptides with a variable modification of the mass of dead-end @-peftide cross-
linker. Peptides containing cross-linkable residues are exdraate paired through
combination of any two peptides. During the search, the two peptidesross-linkable
pair are linearized into two sequences by putting one sequence beoother (AB and

vice versa BA) and searched respectively, as reported by b&idlons generated by
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cleaving the sequences between the cross-linkable locatioegcneled and the search
results of the two linearized sequences are combined as#hedsult of for cross-linked

peptide pair. The final SQID-XLink score is calculated as:

where m is the number of matched peaks, Pr is the probdbiliycertain amino
acid pair to have strong peaks (stored in a table), and K is the nomb®st intense
peaks used to calculate the intensity scdPe (K depends on the mass of peptide, and
equals the integer portion of [2+mass/330]). The term ®#/(1 + 0.155K) measures
whether the observed intensity (the numerator) is better thanxpeeted value (the
denominator).The function is similar to the SQID scoring functiomepk that
consecutive ion series are not used. This is because consecntsaries tend to greatly
increase the confidence when a part of the whole peptide sequeratehgan but cross-
linked peptides involve two independent sequences. The Pr table and a tadesl de

explanation of Equation 1 can be found in Chapt&r 2.
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4.4 Results

Figure 4.1 a) Score distribution versus precursor m/z error. Blue spptesent the hits
by searching with cytochrome P450 2E1 and cytochrome b5 sequencesedlsfmots
are by searching with decoy sequences. b) Unique cross-linked pepliheiad by
SQID-XLink, and a comparison with xQuest and Crux/Popitam. Only high cocdiden
matches (FDR<1%) are considered. Bold font indicates the locatiomogk-tinking.
*Data from Table 2, Mcllwain et al., 2000**These two peptides can be identified with

a higher FDR by Crux (3%) or xQuest (5%).
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A published EDC cross-linking dataset of human cytochrome P450 2E1 (P450)
and cytochrome b5 (B5) was used to test the pro§fafine dataset contains 3314
spectra, and was collected using an LTQ-Orbitrap with higblutsn for both the
precursor and MS2 masses. The search was performed withedlmisavages and a 50
ppm precursor and 20 ppm fragment m/z tolerance against both ¢gle¢ aad decoy
version of the database. The decoy database was built witheessggences of the two
proteins plus twice the number of randomized sequences, with 5.4 @inges $earch
space compared with the target database. Figure 1a shows a plot of sam@nemsrsor
m/z error. The majority of high score hits observed have a preauess error within -5
to 20 ppm, and decoy hits have a maximum score of 3.22. As a result, using -5 to 20 ppm
and a score of 3.22 as a threshold should give a false discoverydg ¢lose to O.
With these parameters we discovered 163 high confidence peptideispaunatches,
with 140 from non-crosslinked tryptic peptides, 22 from cross-linked peptaied 1
from intra-peptide crosslinks. The minimum score for matched trdesd peptides was
4.45, which is far above the threshold used. Figure 1b summarizesiithee cross-
linked peptides that are assigned by SQID-XLink, and comparisonawatipular cross-
linking search engine, xQue&tas well as comparison with previously published results
from Crux (Table 2, Mcllwain et al., 2010)and Popitam (Table 1, Singh et al., 2688)
XQuest was searched using the same parameters as SQ@iR-xhd the FDR was
determined with the same target-decoy database searcbggird/e use published
Popitam and Crux results directly instead of using our own seasihits because
Popitam needs an additional algorithm to pre-filter the datanaeds extensive manual

interpretation to associate the modification mass with peptide segughile Crux relies
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on its own FDR estimation system which needs the optimization o¥ rparameters.
The published data were already optimized by the author and mawneafigd, so they
represent the best performance of the two algorithms. Our rebolisthat SQID-XLink
can identify a larger number of cross-linked peptides at highdmnde. The two intra-
protein cross-linked products (GTVVVPTLDSVLYDNQEFPDPEK,
FKPEHFLNENGK) and (LYTMDGITVTVADLFFAGTETTSTTLR,
YGLLILMKYPEIEEK) in Table 2 of the reference Mcllwain at., 2010°” are matched
to linear peptides with missed cleavages by both SQID-XLink andstQTiee spectra of
these products as well as a complete list of identified pepbgeSQID-XLink, Crux
(from our own searches) and xQuest can be found in section 4.6mk eérspeed, the
total search time including database processing was only 2.3 miout8QID-XLink
and 6.5 minutes for Crux, on a 64-bit computer with Intel Xeon 2.4GHz omux @ly
works on 64-bit computer), while it took 36~127 minutes for the xQuebtaveer,

depending on the server condition.
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4.5 Spectra and searching results

Figure 4. 2 Spectrum of cross-linked peptide (EMSKTFIIGELHPDDRPK, LYMAED) 5+

for Scan Number 2067.



107

il i a S
FI FFH P‘E__E-'F FuWwI=R common—peak s
Lo | L g irb— :
QT o xlirk—peaks
YELCWIPR labrl=s indicate mateked peaks
LLLLLL
i
‘-I
—
]
¥
£
=
]
™
g g
| '
= (o]
" ]
= =
V ]
= =
= =
= =
E ><I
ol =3
N

Mu.u\....l

40000 A0y ARCO

H‘lj

<1
— £
7 \
! e
-4 2
oo !
g 7 o =
1 - ES =
_E bl g wd &
T = - = !
e;: = L N
= ! =
i = g =
E ul = ]
= = o
J |
i
[

)
o
o
gl
=3
=)

Figure 4. 3 Spectrum of cro-linked peptide (YKLcVIPR, FLEEHPGGEEVLR) 4+

Scan Number 1682 (annotation generated using xQ@



108

i I e B B e |
FORGGDATEMFEDYEHSTDAR Common-peak s
T S
T - T T T T - - xlink-peaks
T a
YEDOY FEPFSTRE labels indicate matched peaks
“ [
-
+=
o
-
T
5.}
9 =
5 3
= g
£
=
T
L
[l
) +
+
! =
E=3 -]
- =
7 =
NI CI g -+
= 4
2 = F o
! g ol - o *
= 3 T * @ o a
E | ol i o 0 o o 1
£ o = ! ] + [ T A ]
=] Yoo + ] & o Mo o F
z' o T 1 ; P " 5 n: = 3'
= 3 |= i M ; £ o 0w oo
Z 5 P F = - o ]
0 b= =l £ o =
E = E = " >*-| =
= — o
=] O 8 — o IR i
S 1 MIRE: ! ]
“} m ‘ “} ‘ ‘
1L |,||\,|||,\,|1|||,, L -
L 1100 15580 2000

Figure 4. 4  Spectrum of crosstinked peptide (YSDYFKPFSTG!

EQAGGDATENFEDVGHSTDAR)5+ scan 1758. If the fragmgh8 2+(cleavage

between AG) at 939.39130 is considered as noisecits-linked location can also b

(YSDYFKPFSTGK, EQAGGDATENFEDVGHSTDAR

(annotation generatl using xQues



o1
+ N
ol
‘_‘I
=
-
=3
S -
ol = Y
- * ) Ly~
T i i =l
1 < L] ]
3] - LM
\ | . o
= I o HS
2 g o ¥OBE
2
H r £ 7 3 :
B o = = .
3 3 g =
| w2 o~ = 5 "y ]
R = ) = ﬂ
= Ch| I [ a j'
S b A Y
55 [ °
o g S
L =1
f_'ll r ‘I
i L ‘
T T T T I T T T

109

common-peaks
zlink-peaks

labels indicate matche

d pecks

200 a50 mz 1100

Figure 4. 5 Spectrum of cro-linked peptide

EQAGGDATENFEDVGHSTDAR)5+ scan 1

(annotation generated using xQu

1550

(YSDYFKPFSTGK



110

9* 8

% ++ :'*08

Figure 4. 6 Spectrum of non-cross-linked peptide

GTVVVPTLDSVLYDNQEFPDPEKFKPEHFLNENGK 5+ scan 2565.

This spectrum is identified as a linear peptide by xQuest anD-ZQink while
Crux identifies it as a cross-linked peptide (GTVVVPTLDSVLYQEFPDREK,
FKPEHFLNENGK). All major peaks in the spectrum are assigmetithere is no peak

supporting the cross-linking of E and K.
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Figure 4. 7 Comparison of SQID-XLink versus xQuest and Crux (run by us).

The FDR level is determined using a target-decoy datalesehsstrategy by
separately searching a target database and a decoy dat&basea peptide is matched
to a target protein, it is considered “True”; if it is nfed to a reverse protein, it is
considered “false”. FDR level is associated with score liotds. At a certain FDR level,
any hits above the score threshold are considered “Positive”. fital@dérom the decoy
database has a score above that threshold, it is consideredeapthaitive”. That means
the comparisons we performed have an equal percentage of “fals@gsddior each
algorithm. It is a fair comparison and proved that at the dabie level SQID-XLink

identifies more cross-linked peptides.
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It should be noted that for the Figure 4.7 we searched Crux oursehesitw
using the published crux results, and the “True positives” includénelr peptides,
looped peptides and cross-linked peptides for all algorithms. If onlg-tréed peptides
are consider, the number is too small to determine an errorTitaegraph shows that
SQID-XLink leads to significantly more identifications. We drieur best to use as
similar parameters as possible for each algorithm, and the taget-decoy database

search strategy was used. Detailed parameters from each algoaithe found below:

SQID-XLink search.

The search was performed with 3 missed cleavages and a 5prppuansor and
20 ppm fragment m/z tolerance against both the target and designvef the database.
The decoy database was built with reverse sequences of thedigmgmplus twice the
amount of randomized sequences, with 5.4 times larger search spguaedmvith the

target database. The results were filtered to -5 to 20 ppm after search.

Table 4. 1. Cross-linked peptides identified by XLink-SQID at 19RFOhe results is
sorted by “Final score” column. “XL-Position” indicates the posittdthe residue in the

protein.



xQuest search.

XQUEST parameters:

number of proteins: 2

number of peptides: 184

number of theoretical x-link combinations (n"2/2): 16928
database Cytochrome.fasta

number of missed cleavages allowed -> 3

minimum peptide size-> 3

maximum peptide size -> 40

fixed modification  -> C:57.0215

fragmentions considered (abcxyz) -> 010010

113
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reactive amino acid(s)-> K,D,E

mass added by x-linker for x-links and looplinks ~ ->-18.010565
mass(es) added by x-linker for mono-link  -> 0.0

search in ion-tag mode >0

search in enumeration mode, memory mode ->1

units for MS1 tolerance -> ppm
precursor mass tolerance -> 50
fragment mass tolerance [m/z] ->0.03

fragment mass tolerance for xlink-ions [m/z]-> 0.03
minimum fragment ion m/z  -> 200

maximum fragment ion m/z -> 1800

MS/MS peak intensity threshold >0

mass difference of light and heavy x-linker ->0.0

MS/MS peak intensity dynamic range -> 9999

Because xQuest does not have EDC as a choice, the results contain some cross-

linked sites between D-D, D-E, E-E and K-K. A house made perl script is useetto filt

out the cross-linked peptides that are not cross-links between K-E or K-D. faoicmss

if the top hit is a cross-link between D-E and the second hit is a cross-link betwéen D-

the top hit will be removed and the second hit becomes the best hit. Up to 5 hits were

considered. The results were filtered to -5 to 20 ppm after search, as S@IR-Xhe

same decoy database was used for reverse search.
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Crux search:
Parameters:

Crux involves about 100 search parameters, and we tried to set dneepens as similar

as SQID-XLink and xQuest as possible. Here are some important parameters

50 ppm precursor tolerance, mono-isotopic

0.03 Da bin width for fragments, mono-isotopic

500 min-weibull-points

Fixed modification C+57.02Da, Crux cross-link does not accept variable modifications.

The same decoy database was searched as SQID-XLink andt.xBoegver,
Crux reports an Xcorr score as well as a p-value. Rankingttheding Xcorr or p-value

gives similar but not the same results. A comparison can be found in Figure 4.7.

4.6 Algorithm for Bpa cross-link

P-benzoylphenylalanine (Bpa) is a photoactive amino acid which lma
incorporated into a protein sequence by replacing another residueroBsdinking site
involves the Bpa residue and any other residtieBecause incorporating Bpa into a
protein involves much more work than just reacting BS2G or BS3 witleipsoin
solution, it is not a very popular cross-linker and so far there idfectiee program to

search Bpa data. Based on the original Perl codes faD-8Qhk, a Perl based
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program was developed for Bpa data, which can be downloaded from

https://dl.dropbox.com/u/44737319/crosslink_BPA.zip

Procedure:

Must have cygwin with perl installed in cygwin. Run the following commands from
Cygwin in the directory containing the Perl file:

1. Perl 1_digestBP.pl YOURFASTAFILE.fasta digestOut 3 monoMass

(this performs tryptic digest of the database, with 3 missed cleavages and rssrioMa
precursors. For non-tryptic peptides, please use protein prospector to replaep}his s
2. Perl 2_create_database BPA.pl

(this creates the crosslinked database).

3. Perl 3_ScoreTheCrosslin_f_chargelOppm.pl YOURDTAFOLDER

4. Run extractresults.pl in the dta folder.
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Figure 4.8 Cygwin output for the BPA cross-link search.

4.7 Conclusions

We have introduced SQID-XLink, an open source program for cnolssdi
peptide identification. By testing it with a published dataset amdparing it with the
results of existing algorithms, SQID-XLink demonstrated itsitgbtb identify more
cross-linked peptides at high confidence. In addition, SQID-XLink s¢ &d has an
easy-to-use graphical user interface. More cross-linker supmbtiedter visualization of

the results will be added in the near futdfe.
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CHAPTER 5: SQID-MOD: DEVELOPING AN ALGORITHM FOR
BLIND MODIFICATION SEARCH

Although a large number of researchers are trying to use higher resolustriments
and smaller mass errors for MS/MS searches, we realized thatargey inass errors
can identify peptides with unknown modifications. We are still improvisgatgorithm

though current results are encouraging.

5.1 Introduction

Many peptides contain modifications. These modifications could beudt &
post-translational modifications (PTMs) from native proteins, suchhasphorylation
and glycosylation, or introduced during sample preparation, such as i@xidat
methionine and carbamidomethylation of cysteine. Identificatiotmese modifications,
especially PTMs, gives more sequence information as wektsr understanding of the
structure and function of the proteins. For nearly all the currgatritims, users can
specify static and variable modifications as searching paeasneébtatic modifications
assume that all instances of a certain residue are modifiecaviixed mass, which can
be easily searched by replacing the mass of that residueawbdified mass; variable
modifications assume that some instances of a certain residuaaaified while the
others are not, resulting in two forms of peptides: modified and unmodiéiesion.
Because variable modification can significantly increase the beunof peptide
candidates to be searched, most algorithms only allow a limitetberuof modifications

in a search, e.g., Sequest allows up to 5 variable modificatiomeall practice, the most
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commonly used modifications only include oxidation of methionine (M+1&J a
carbamidomethylation of cysteine (C+57), and sometimes the phgklwr of serine,
threonine, and tyrosine (S,T,Y+80). Figure 5.1 is a demonstration of abeianal

method for modification search.

Figure 5. 1 Traditional way for modification search. The unmodified and modified

peptides are generated when processing the database.

A major drawback of the above method is that only the specifiedficaithns
will be considered while other modifications, if any, will all igmored. According to
Unimod PTM databasE, there are more than 500 known modifications so to only
consider less than 5 can potentially result in loss of a lot of valusfiormation. To date,
many algorithms have been developed to address this problem. Thedeatioudli

approaches can be divided into three basic categories. The fegboais similar tade
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novo sequencing, which uses sequence tags to build the peptide se@mehcses
modifications to explain the unexpected mass difference (InsPeMQDi, ® and
ByOnic "%). The second category assumes that both the modified and unmodifiesh versi
of a peptide should exist in the same sample. When an unmodified peptidatified,

the algorithm will automatically search modified versions o#t tipeptide (MS-
Alignment)”®. The third category simply tries to increase the number of known
modifications specified in the parameter by improving the effmyeof search (Peaks
PTM ). Though all these algorithms were able to identify a largebeuraf modified
peptides which are commonly missed by regular algorithms,aliimits still exist. For
instance, the sequence-tag based method requires well-definedigsnseethat the tags
can be extracted unambiguously; the peptide pair method can poyeldsdl many
identifications because modified and unmodified versions of a peptide noay
necessarily both appear; the last search method is not totallly &ahd there is no chance
to find modifications that are not listed (such as single amiroh raditations). Here we
reported an alternative method for blind modification search whiehsg to implement

and does not use any tags or peptide pairs.

5.2. Methods

When a peptide is modified, the mass of a modification will bectftl in both
the precursor mass and the masses of the fragment containimgdifeed residue. As
shown in Figure 5.2, the phosphorylation of serine increases the prenas®by 80 Da
and the b andy ions containing the residue by 80 Da. If we asallpsndidate peptides

contain ONE potential modification, the modification mass will etjualmass difference
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( m) between the experimental mass and the unmodified peptideda@nanass. By
searching four ion series b, y, biA and y+ m, we are able to distinguish whether a

peptide is modified or not (Figure 5.3).

Figure 5. 2 The phosphorylation of serine increased the precursor mass by 80 Da and the

b, y ions containing the residue by 80 Da.
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Figure 5.3. The mass difference and the four ion series indicate a modificationaf

serine.

The basis of our method is to increase the precursor masantmefor a search,
e.g. use 100 Da as precursor mass tolerance, instead of the conusexhlyy Da or less.
When matching a spectrum with a candidate peptide, we alwaymashe peptide is
modified and the modification mass equals the mass differencedretive experimental
spectrum and candidate peptide. For example, if the precursoromassexperimental
spectrum is 1100 Da and the mass of a candidate peptide is 1050 Da, ethigalpot
modification will be 50 Da. When matching the fragments, four iolesare considered,
b, y, b+50 and y+50, which ensure all the possible fragments are inclegidless of

the position of the modification. The workflow is illustrated in Fegbr4. The advantage
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of this method is that the search is completely blind and does gairredequence tags,
while the disadvantage is that the localization of the modificagittnmay be difficult
(e.g., not all ions of a contiguous series can be detected and sptigegpeavith multiple

modifications cannot be easily identified). We are making efforts to solse greblems.

Figure 5.4 General workflow of the modification search. A large nwssance (100 Da)
is used as precursor mass tolerance, and four ion series b, ynband y+ m are

considered.

Because searching with a large mass tolerance can sagmljicincrease the
search time (search time increases linearly with maseatate, e.g. using a 100 Da mass
error will spend 100 time more time than using 1 Da mass emorgal practice we
adopted a two round search method to speed up the search. The ficsisr@uregular
search with small precursor mass tolerance (e.g. 1.5 Da) wiiickentify unmodified
peptides as well as modified peptides with user specified mddbfisa Only b, y ions
will be considered in this round. Then a smaller database willrdsted which only

contains peptides from the identified proteins and the second round sethrake a



124

large mass tolerance (e.g. 100 Da), as well as the four i@s seantioned above. This
routine can significantly increase search speed without comprgmdentification rate
(Figure 5.8). The program was tested and confirmed that saarehonly increased

about 1 fold compared with regular searches.

5.3. Results and discussion

We applied the above method to a dataset collected using LTQ orhittamigh
resolution for precursors and low resolution for fragments. The sasptem a de-
identified human infected byAspergillus and we searched the data against a large
database containing human and many other fungal proteins. Forrsheaofind, a
precursor mass error of 0.1 Da was used to identify peptidédater a smaller database
was created which only include proteins that have at least 1fiddnpeptide with a
SQID score above 10. The second round search used a precursor mass I€fdobDa.

0.5 Da fragment error was used for all the searches.



125

Figure 5.5 lllustration of the blind modification search results by ipéptmass error

VErsus score.

Figure 5.5 illustrates the preliminary results we collectetthEspot is a peptide
match. The x-axis is mass error in Da and the y-axis iSO score. Higher score
means the identification is more reliable. Normally a setw@ve 25 can be considered a
very reliable match. We are surprised to see how many peptittes varge mass error
have a high score. These mass errors reveal a modificationngtande, +57 can be
explained by carbamidomethylation, and -18 can be explained by Vest®e The
importance of this research is, if the blind modification searctotisised, only peptides

with a mass error within 0.1 Da can be identified, while all others are lost.

Figure 5.6 illustrates the search results for the yeast lysatetddtssused in the
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SQID chapter). It is low resolution lon trap data searched with sepiietigriteria and
variable modifications of C+57 and M+16. Again, it is clear that there are highy

scoring modifications which prove the effectiveness of this program.

Figure 5.6 Ploting m and SQID score for yeast dataset. The plot indicates a large
number of modified peptides exist in the sample which cannot be discavetieel

traditional search.
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Figure 5. 7 An example spectrum. A modification of -14 on alanine indigategation

from Ala to Gly.

Figure 5.7 is an example spectrum from the peptide SAGWNIPMM-2+.
The experimental mass is 14 Da smaller than the theoretiaak,nwhich can be
explained by a modification of -14. Good series of b ions and (y-14) ionsaay
residues tell us the modification is on Ala, which indicates atiaut from Ala to Gly.
From a codon table, it is easy to rationalize that thissisgle nucleoside mutation from
C to G (GCX for Ala and GGX for Gly). This new algorithmadapable of identifying

peptides with modifications, mutations, amino-acid deletions and insertions.
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Figure 5. 8 A comparison of searches with or without modifications, fotrjgtic and

semi tryptic, using 18 protein mixture dataset.

Figure 5.8 shows the comparison between searches with or withoudtcatomis
using the 18 protein mixture dataset (the one used in Chapter 2). IRoydtit searches,
a 50% increase in the number of identified peptides was observed mbdification
search was applied (blue curve versus red curve). For septictrsearches, the
difference is smaller and modification method only outperformslaegnethod at higher
FDRs. This can be potentially explained by the differencevdmt search spaces. The
database contains about 8000 proteins and for the full tryptic searchuniiger of
proteins is reduced to about 150 during the second round of search. Howevtke, for
semi tryptic search, there will be more random matches irfitsteround (the total
number of peptide candidates increases about 20 folds) thus crektiggrgprotein list

for the second round (about 1000 proteins). To overcome this limitationnamey
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threshold determination method should be developed so that the proteins $ectmd

round can be selected using FDR instead of a fixed score.

5.4. Conclusions and future directions

SQID-MOD is a powerful algorithm to identify peptides with maozhfions,
mutations, amino-acid deletions and insertions. Because no modificageds to be
explicitly specified before the search, the algorithm carogiescunknown modifications.
Two limitations are that the algorithm cannot be applied to peptidign more than one
modification, and the introduction of additional ion series - y- m) can potentially
increase the chance of random matches. We are making modifidatitresalgorithm to

make it more sensitive and specific (e.g. carefully adjusting the thresmalf search).
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CHAPTER 6: IDENTIFICATION OF IRON METABOLISM
RELATED PROTEINS IN MOSQUITO OVARY

This is a proteomics project in collaboration with Dr. Joy J. Winmgrlirom the
Department of Nutritional Sciences. The digestion and LTQ runs ardystfiatiowing
the protocols downloaded from proteomics facility. The project also semgean

opportunity to test SQID in a real experiment.

6.1 Introduction and methods

6.1.1 Background of the project

Female mosquitoes require a blood meal for oogenesis and recéige brad in
this meal in the form of holo-transferrin and hemoglobin. Durimgciburse of digestion,
the iron concentration in the gut decreases 10-fold from ingesti@@ hours, while the
iron concentration in the ovaries more than doubles from ingestion to 7& Hdaorthe
end, eggs are laid with ~125 ng blood meal Fe each. Iron is mitogenic and ironioeposit
in the ovaries should induce changes in the endogenous protein expressitm profi
Proteomic analysis of up- and down- regulated proteins from developaries could

provide further insight into the effect of iron on mosquito fecundft{’
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6.1.2 Samples preparation

Ovaries and eggs from three groups of mosquitoes were obtained.afdey
individuals fed on blood meal, artificial blood meal with iron and iaraf blood meal
without iron, respectively. The samples were prepared with the following presedur

Adult Aedes aegyptinosquitoes were raised at°€7 70-80% relative humidity

and a photoperiod of 12:12 h (L:D) and provided 10% sterile sucrose solution (~

1.3 ng Fe/mlgd libitumfor daily energy requirements.

12 h prior to the feeding experiment, the sucrose was removed from the cages.

Adult female mosquitoes, 15 per group, were then feed one of three diets

maintained at 2 in glass feeders for 2 h 8-9 days post-eclosion. The dirt

contains one of the following:

1. De-fibrinated Porcine Blood meal (~603 ng Fe/ml)

2. Kogan's Artificial Blood meal + Iron*: Isoprotein with 10% w/v Parei
Albumin (Sigma) , 1.5% w/v Porcine IgG (Sigma), 0.8% w/v Porcine
Hemoglobin (Sigma) and 5 mM ATP (Sigma) in feeding buffer (100 m
NaHCQs; 150 mM NaCl, pH 7.0) (~56 ng Fe/nif)

3. Kogan's Atrtificial Blood meal — Iron: Isoprotein with 10.7% w/v Hoec
Albumin (Sigma), 1.6% w/v Porcine IgG (Sigma) and 5 mM ATP rf&iy
in feeding buffer (100 mM NaHC£ 150 mM NaCl, pH 7.0) (~24 ng Fe/ml)

24 h later animals were cold anesthetized and ovaries from each gere

dissected and pooled into disruption buffer (10 mM Tris-HCI, pH 7.9; 1.5 mM

MgCly; 0.5 mM DTT added fresh; 2x Protease Inhibitor cocktail (Calbioghem

added fresh).
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Ovarian protein extraction was performed as follows for optim@MS/MS
analysis:

» Samples underwent three cycles of liquigfiéeze-thaw-homogenization

« Samples were centrifuged at 100,009xor 30 min, 4C, to separate
soluble and insoluble fractions

* Insoluble fraction samples were suspended and washed three tithes in
M NacCl, centrifuged at 15,000xfor 5 min, 4C, and the supernatant was
transferred to a new 1.5 ml tube

* Resultant insoluble fraction samples were suspended in extraction buffe
(50 mM Tis-HCI, pH 7.8; 2% w/v SDS; 100 mM NaEDTA; 20 mM
DTT), boiled for 5 min and centrifuged at 15,0a9for 5 min, 4C

» Total protein concentration from soluble fraction samples was determined
by the method of SDS-Lowf?

* Insoluble fraction samples were suspended and washed two times in 1 M
NaCl, centrifuged at 15,000 for 5 min, 4C, and the resultant pellet
was suspended in 1 M NaCl

» Total protein concentration from the pellet samples was deternbiped
the method of Bradford® Though Bradford’s method is not as sensitive
as SDS-Lowry’s, SDS-Lowry’'s method was not used here because the

high N& concentration can affect its accuracy.
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6.1.3 Digestion and LC-MS/MS analysis

Independent, duplicate mosquito ovarian protein samples from each diet group
were processed for LC-MS/MS analysis. 30 mg of ovarian protesrsejparated per lane
by 12% SDS-PAGE, and stained via Bio-Safe Coomassie BlueréBiolnc). Each gel
lane was cut into 4 gel pieces corresponding to molecular weigiiens (10-25 kDa,
25-50 kDa, 50-100 kDa,100-250 kDa). Proteins in each gel piece were digaited w
trypsin (Sigma Aldrich,) for 15 hours according to the protocol fAatmona Proteomics
Consortium

(. +* 5 * i+ + +* 5 * 3 +:3 +  +

* ) ). Briefly, the gel pieces were cut into 1rfmleaned sequentially with water,
50% acetonitrile in 50 mM N¥HCO; solution, 100% acetonitrile, then dried with speed
vac. The dried gel pieces were treated with 10 mM DTT and 55iadbbhcetamide to
reduce and carbaminomethylate the disulfide bonds. Carbaminomethykdidts in a
modification of 57 Da in cysteine residue. After additional washegeston was
performed using trypsin (sequencing grade, Sigma) for 15 hours, agdlthece were
extracted several times with 60% acetonitrile to maximiee geptide recovery. For
blood meal samples, a 1 to 5 trypsin : protein ratio was udeite for artificial blood
meals +Iron/-Iron: 1 to 10 trypsin : protein was used. After digestnd extraction, C18
columns were used to de-salt the sample solution before mas®spry analysis. The
samples were analyzed by nano LC-MS/MS using self-packedargp@il8 column and
a Thermo-Fisher LTQ linear ion trap mass spectrometer, 9Gtiminutes LC gradient
and top 7 most abundant peaks selected after each full MS scan. 90 shoumusc

exclusion was used to avoid picking the same peak multiple times.
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6.1.4 Data analysis with Sequest, SQID and Scaffold

After LC-MSMS, the results for the 4 gel pieces per laneewsmmbined and
peptide identification were performed using Sequest and SQliDsagheAedes aegypti
database, download from NCBI. As in Chapter 2, the search wasrmed with a
regular database appended with a reverse database, and faisergisate (FDR) was
determined as FDR = 2 * ReverselD / (ForwardID + Reverselbre specifically,
result spectra list was generated by choosing “export -> ¢telEx spectrum report” in
Scaffold (Version 3.1.2; Proteome Software, Portland, Oregon, USA)raanked using
“Xcorr” column (or SQID score column for SQID) to manually cadtelpeptide FDR in
Excel. 10% peptide FDR and a minimum of two peptides per protein were used as protein

threshold, which is equivalent to a 1% protein FDR (10%*10%).

The whole proteomics work flow is illustrated in Figure 6.1:
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Figure 6 1 The proteomics work flow of mosquito project. Three diffesemples were

separated by 1-D gel, digested, and analyzed by an LTQ mass spectrometer.

6.2 Results and discussions

Because all these samples are from the same tissues, Heogelt image the
protein profiles look very similar for +Fe, -Fe and blood fed samphis indicates that

the differentially expressed proteins are probably of low abundance.
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Figure 6 2Gel image of Coomassie blue stained independent, duplicate mosqu#a ovar

protein samples (30 mg total protein/lane).
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6.2.1 Compare SQID with Sequest

Figure 6 3 Venn diagram for blood meal sample.

Because the proteome of mosquito ovary has not been studied beforgirthe m
task for the blood meal sample is to characterize as manynsreie possible. We used
Sequest and SQID to analyze the data separately and the aesudt®own in Figure 6.3.

At 1% protein FDR, SQID identified 168 proteins while Sequest idedtit57. This
agrees with the SQID testing results in Chapter 2 and proveS@Ii& works in real

experiments.

Figure 6 4 79% of spectra were matched to 3 very high abundant proteins.
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However, the total number of proteins identified (189 proteins) in thergwment
is limited by several factors. For example, 79% (5784 out of 7290J)ifiddnMS/MS
spectra were matched to 3 very high abundance proteins, signifiéantring the
chances to detect other low abundance proteins. The three protiaf eaonserved
hypothetical proteins, which are identified to be different forinsitellogenin, an egg
yolk precursor. In future experiments, an antibody of vitellagemwill be used to

immunoprecipitate these high abundance proteins before digestion.

6.2.2 Differentially displayed proteins identified by SQID

Figure 6 5 Scaffold view for +Fe vs —Fe samples. The two green mslghow the
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number of unique peptides from each sample.

For +Fe and —Fe samples, the main task is to identify ditiaty displayed
proteins. Using SQID 181 proteins were identified for +Fe samplds186 proteins
were identified for —Fe samples, at 1% FDR rate. As shown by Figure &dyjtgnof the
high abundance proteins have similar number of identified peptides.ckoopt the
differentially displayed low abundance proteins, we use the followaribgria to filter the

protein list. A candidate protein is valid only when it can meet all the 3 criteria:

1. The number of unique peptides is very different for +Fe and -Fe samples.

2. The same difference is observed in both the first and second run.

3. The chromatogram agrees with the proposed difference.

For example,

1. Inthe wl_211077 run, “ferritin subunit 1” is only observed in +Fe sample:

2. In the wl_210409 run (a biological duplicate of wl_211077), “ferritin subunit 1”

is also only observed in +Fe sample:

3. Selected ion chromatogram of three m/z (LNYDHEVPTVTTGESAREQK,
m/z 839.8; LGEFLFDK, m/z 485; EFDASIIYLK, m/z 600.2) from “femiti

subunit 1” were checked:
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Figure 6 6 Chromatogram of m/z 839.8 for +Fe and -Fe samples. A peak is observed for
the +Fe sample at approximately 40.75 minutes while no peak is observed at that
retention time for the -Fe sample . The peak at 52.50 minutes was checked to see if it
corresponded to the same peptide (in the case of poor chromatographic reproducibility)

but it was clear that it corresponds to 54.17 minute peak above.
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Figure 6 7 Chromatogram of m/z 485 for +Fe and -Fe samples. A peakassetidor

the +Fe sample while not for the -Fe sample.

Figure 6 8 Chromatogram of m/z 600.2 for +Fe and -Fe samples. A peak ived$er

the +Fe sample while no peak is observed for the -Fe sample.

Note: The chromatogram is only restricted to a certain @mwige so that all
species with that m/z can be observed; for instance, the chigmaraton next slide is
limited to m/z 839.5-840.3, so all species with m/z in this randkebe observed,
including the peptide “LNYDHEVPTVTTGESALETALQK, m/z 839.8". The peak

40.75 min is from this peptide (Figure 6.6).
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With these criteria, 9 differentially expressed proteirevewidentified. Future
analysis will be evaluating the possible roles of these proteim®n regulation. For

example, it is already known that ferritin plays an important role in this gsdce

Table 6.1 Differential displayed proteins in +Fe and —Fe samptespé&rison is based

on the number of unique peptides.

6.3 On-going work and future directions

The recent addition of an LTQ-orbitrap instrument provides highertisgéigsand
scan rates for proteomics experiments. Currently we aretimegpdhe experiment with
the orbitrap to verify our findings, as well as expecting more odextes after
immunoprecipitating high abundance proteins. The new experimental desigly ma
involves the following two parts:

1. Comparing the difference between two blood feed samples: 24 h bidizt

feeding and 72 h after blood feeding. This will enable the understandlingn
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metabolism in mosquito ovaries. In order to identify more proteing, gelclane
was cut into 8 pieces instead of 4, and analyzed by orbitrdphwgh resolution

for precursors. The new ProteaseMax method (Promega, Inc.,

:..mm* * 3 +- +- ' < + =

+) "+t ) was also used which reduced the digestion

time from 15 hours to 1 hour (at %). Three sets of biological duplicates will be
analyzed and currently 1.5 sets have been finished. Preliminarghdatathat for
the first set, 816 proteins were identified (from both 24 and 72 hour egmpl
which is significant higher than previous LTQ results. A deadlemparison can
be performed once all the three duplicates are finished. F&g8ris the protein
Venn diagram for 24 and 72 hour samples, followed by a list of uniqueinsot

for each sample.

Figure 6. 9 Protein Venn diagram for 24 and 72 hour blood samples.

Unique proteins for 24 hour sample:

Accession Protein Name

0i|108871293  2-amino-3-ketobutyrate coenzyme atidAedes aegypti]
0i|108877486  3-hydroxyisobutyrate dehydrogenasel¢sdaegypti]
0i|[108869599  3-hydroxyisobutyrate dehydrogenasel¢sdaegypti]
0i|108883381  CRAL/TRIO domain-containing proteirepfes aegypti]
0i|108869079  DEAD box ATP-dependent RNA helicasedés aegypti]
0i|108875224  DNA-directed RNA polymerase |l subjiAides aegypti]



0i|121959431
0i|121959243
0i|108875369
0i|108870967
0i|108884042
0i|108884043
0i|108883537
0i|108871348
0i|108875525
0i|108871626
0i|108872016
0i|108877408
0i|108881298
0i|108874647
0i|108873918
0i|108881343
0i|108876629
0i|108878040
0i|108877443
0i|108878691
0i|108879922
0i|108877398
0i|108876237
0i|108873452
0i|108878811
0i|108876724
0i|108871205
0i|108874199
0i|108878631
0i|108877401
0i|108866407
0i|108876959
0i|108873193

RecName: Full=60S ribosomal protei@ L3

TraB, putative [Aedes aegypti]

arginine/serine-rich splicing factdefles aegypti]

conserved hypothetical protein [AexkEs/pti]

conserved hypothetical protein [AexkEp/pti]

conserved hypothetical protein [Aexkgp/pti]

conserved hypothetical protein [AemkEs/pti]

cysteine synthase [Aedes aegypti]

hypothetical protein AaeL_AAEL012022fes aegypti]
importin alpha [Aedes aegypti]

innexin [Aedes aegypti]

inorganic pyrophosphatase [Aedes dggyp
inosine-5-monophosphate dehydrogdAasies aegypti]
lethal giant larva, putative [Aedegypdi]

low molecular weight protein-tyrosptesphatase [Aedes aegypti]
myosin light chain 1, putative [Aedegypti]

n-myc downstream regulated [Aedes gy

nucleolysin tia-1 [Aedes aegypti]

nucleosome assembly protein [Aedegieg

predicted protein [Aedes aegypti]

predicted protein [Aedes aegypti]

regulator of chromosome condensafiedgs aegypti]

rerl protein [Aedes aegypti]

septin [Aedes aegypti]

serine-threonine kinase receptor-&seacprotein (strap) [Aedes aegypti]
short-chain dehydrogenase [Aedes &ggyp

signal transducer and activator afsteption [Aedes aegypti]
sorting nexin [Aedes aegypti]

ss-DNA binding protein 12RNP2 precyrsutative [Aedes aegypti]
tryptophanyl-tRNA synthetase [Aedeag/p8]

ubiquilin 1,2 [Aedes aegypti]

vesicular mannose-binding lectin [/Aeaegypti]

Unique proteins for 72 hour sample:

Accession

0i|108880950
0i|108883908
0i|108877806
0i|108872920
0i|108874461
0i|108880948
0i|108872868
0i|108877808
0i|108878509
0i|108883912
0i|108868662
0i|108869063
0i|108869062
0i|108873051
0i|108883914
0i|108869792
0i|108873060

Protein Name

conserved hypothetical protein [Aeakgp/pti]
conserved hypothetical protein [Aeakgp/pti]
conserved hypothetical protein [Aeakgp/pti]
conserved hypothetical protein [AexkEs/pti]
conserved hypothetical protein [AexkEs/pti]
conserved hypothetical protein [Aeakp/pti]
conserved hypothetical protein [Aeakp/pti]
conserved hypothetical protein [AexkEp/pti]
conserved hypothetical protein [Aeakgp/pti]
conserved hypothetical protein [Aeakgp/pti]
conserved hypothetical protein [Aeakgp/pti]
conserved hypothetical protein [Aeakgp/pti]
conserved hypothetical protein [Aeakgp/pti]
conserved hypothetical protein [Aeakgp/pti]
conserved hypothetical protein [AexkEs/pti]
conserved hypothetical protein [AemkEs/pti]
conserved hypothetical protein [Aeakp/pti]
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0i|108884433  conserved hypothetical protein [Aexky/pti]
0i|108876745  conserved hypothetical protein [Aexky/pti]
0i|108877807  conserved hypothetical protein [Aexky/pti]
0i|108877809  conserved hypothetical protein [AemkEs/pti]
0i|108875341  conserved hypothetical protein [AemkEs/pti]
0i|108878508  conserved hypothetical protein [AemkEs/pti]
0i|108875862  conserved hypothetical protein [Aemkgs/pti]
0i|108878096  conserved hypothetical protein [Aemkgs/pti]
0i|108884380  cysteine-rich venom protein, putafhedes aegypti]
0i|108872151  eukaryotic translation initiation facfAedes aegypti]
0i|108881204  hypothetical protein AaeL_AAEL0033R&{es aegypti]
0i|108875180  hypothetical protein AaeL_AAEL00872édles aegypti]
0i|108875181  hypothetical protein AaeL_AAEL00872@(les aegypti]
0i|108873971  retinoblastoma-binding protein 4 (dd@edes aegypti]
0i|108877328  yellow protein precursor [Aedes aefjypt

Verify the difference between +Fe and —Fe samples using [ab&ling (Thermo

fisher, Inc., * 4 +:. <8*) ). TMT is an

isobaric peptide tag, with different m/z fragment “reportenis, designed for
peptide quantification. All samples will be labeled with differeags and mix in
equal amounts. During MS/MS, the peptide tags will break and genefairter

ions with different masses, whose relative intensity can be used for quiatific

The overall experiment is expected to be finished in 2 months.
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

In the past 5 years in Wysocki’'s group, | have been involved inpfeudtxciting projects,

and here are some conclusions and directions for each project.

7.1. Overview of the dissertation

Peptide identification from MS/MS data is still a big chaljerior the proteomics
community. The research presented in this dissertation usedahtisethods, K-means
clustering and CART, to explore peptide fragmentation patterns arntieseepatterns to
improve peptide identifications as well as cross-linking and PTMtifigations. As
shown in Figure 7.1, the dissertation described a complete sdn@medata mining,
machine learning, to software implementation. This scheme cantedly be applied to
any other datasets generated using different enzymes (GlyssinP&AspN, etc),
fragmentation methods (HCD, ECD, SID, IRMPD, etc), and instrun{&d.DI-TOF,
FT-ICR, Orbitrap, Q-TOF, etc), to further improve the perforoganf corresponding
spectra interpretation. A detailed direction of each project balldiscussed in this

chapter.
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Figure 7. 1 The scheme described this dissertation. Statistical iafimmwas extracted

and used to improve spectra interpretation.

7.2. SQID Project

As presented in Chapter 2, the first algorithms in our group, SQIB, wa
successfully developed, and showed improved performance comparettadlitional
algorithms. A couple of amendments have been performed to make théhaigoore
powerful and user-friendly. The algorithm currently uses thesstat results from all
peptides instead of clusters, and in the future, separatedrslsitaild be used to further
enhance the performance. A preliminary test that considered mpiotens was

performed recently, and a small percentage of improvement wayethdsr searching
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proline and acidic residue (D, E) rich peptides (Cluster 1 and 3yurd-iL..5), while no
statistically significant difference was observed for peptfda®s the other clusters. This
may simply due to the fact that the scoring function was ecaflyi derived and
optimized for the current intensity table. Another potential problevolved is the
normalization of different clusters, e.g., for the same spectfusgne candidates are
using the intensity table for the X-P cluster and the other caedidat the same
experimental spectrum are using the intensity table for the-lR/cluster, there will be
normalization issues because these two intensity tables hawereniff properties,
especially different average intensity values. A potentigthind to solve this problem is
to optimize the full spectrum prediction from the spectrum predietad, use an auto
cross-correlation function to compare two spectra (like Seqlaest). This will avoid
biased normalization between clusters. Though Spectrum Predicthresgly a very
useful program, it still needs further modifications, such as takittgaccount charge
distribution effects and the positions of basic/acid residueselA wersion of spectrum

predictor will be released soon to make it more accessible to researchers.

7.3. ETD Statistics

Chapter 3 is an extension of Yingying Huang's clusteringkw@rand it is
potentially of great importance to ETD development, especiallyvelole ETD specific
peptide identification algorithms. It is the first publication tiegdorts the strong,gions,
and implies that in ETD the fragmentation site not only depends aroanid pairs, but
is also heavily affected by amino acid locations. This is a défigrent picture from CID.

The phenomenon may be a result of some unknown mechanisms and ithg @for
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further investigation. More interestingly, many singly chargad® peptides showed
similar effects.

This chapter further proves that statistical methods such as K-nastesing are
powerful approaches to observe underlying trends from large thatd$mis, a lot of
effort should be made to apply K-means, penalized K-means, or oth&teroig
approaches to our existing data and any other publicly availabje ldatasets,
particularly special peptides (such as cross-linked peptideodified peptides) and the
ones generated from new dissociation technologies and instrumentsex&wople,
recently it is reported that strong x ions were observed in phosprehypeptide&’ and
this could be very easy to detect using our statistical methpgéed to a large

phosphorylation dataset.

7.4. Cross-linking

SQID-XLink was motivated by cross-linking researchers from gnaup and
department, and it is satisfying to see that it can beresfgarchers. Based on the SQID
scoring function, the program is now well-established in our laborataity as shown in
the publication that is now web accessillleroved its superiority compared with major
cross-linking software such as xQuest, Popitam and Crux. The maitialr in the
future should focus on improving the evaluation of the results, such as hoeréo
accurately determine false discovery rate. The final igo@ easily identify cross-linked
peptides with zero manual spectrum interpretation involved, evendog complicated
cross-linkers such as BPA. Another possible direction is to cleaethe differences

between a cross-linked peptide spectrum and a regular spectrumgamdnose specific
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scoring function for cross-linked peptide identification. This speaific requires a large
cross-linking dataset available. However, some preliminary warlbeacarried out using

synthesized model cross-linked peptides.

7.5. Blind modification search

The results from blind modification searches are very excitiagause they
significantly improve the number of modified peptides identified framsimple
proteomics experiment. The main future directions include locatiogjfivation sites,
calculating false discovery rates, improving speed, and progepsiotides with 2 or
more modifications. Nevertheless, this program is definitghpwerful and easy-to-use
tool for researchers. Based on results to date, | predict thhkindar future peptide
identification with blind modification search will become a staddpractice in the

proteomics field.

7.6. Mosquito project

The addition of an LTQ Velos orbitrap instrument in proteomics facdan
provide higher resolution and higher scan rates for proteomics exp&imas
mentioned in Chapter 6, currently we are repeating the experimémthe orbitrap to
verify the findings, as well as discover more proteins. Pneting data show that the new
experimental design can provide significantly more reliable queatibns, especially for

low abundance proteins. Two manuscripts are in preparation for thecprejith one
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focusing on the comparison of 24 and 72 hour samples and one focusing on the

comparison of +Fe and —Fe samples.

7.7. Software downloads

Researchers from worldwide are downloading and using our prograntisis|
map, the size of spots represents the number of downloads fromia tma&iion. The

huge red spot is from Tucson.

Figure 7. 2 Software downloads worldwide from the Wysocki group website amtGam

(01/12-07/12).
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