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ABSTRACT 

Tandem mass spectrometry is widely used in proteomic studies because of its 

ability to identify large numbers of peptides from complex mixtures. In a typical LC-

MS/MS experiment, thousands of tandem mass spectra will be collected and peptide 

identification algorithms are of great importance to translate them into peptide sequences. 

Though these spectra contain both m/z and intensity values, most popular protein 

identi�cation algorithms primarily use predicted fragment m/z values to assign peptide 

sequences to fragmentation spectra. The intensity information is often undervalued, 

because it is not as easy to predict and incorporate into algorithms.  

Nevertheless, the use of intensity to assist peptide identi�cation is an attractive 

prospect and can potentially improve the con�dence of matches and generate more 

identi�cations. In this dissertation, an unsupervised statistical method, K-means 

clustering, was used to study peptide fragmentation patterns for both CID and ETD data, 

and many unique fragmentation features were discovered. For instance, strong cn-1 ions 

were observed in ETD, indicating that the fragmentation site in ETD is highly related to 

the amino acid residue location. 

Based on the fragmentation patterns observed through data mining, a peptide 

identi�cation algorithm that makes use of these patterns was developed. The program is 

named SQID and it is the first algorithm in our bioinformatics project. Our testing results 

using multiple public datasets indicated an improvement in the number of identi�ed 

peptides compared with popular proteomics algorithms such as Sequest or X!Tandem. 

SQID was further extended to improve cross-linked peptide identification (SQID-XLink) 
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as well as blind modification identification (SQID-Mod), and both of them showed 

significant improvement compared with existing methods. In this dissertation the SQID 

algorithm was also successfully applied to a mosquito proteomics project.  

We are incorporating new features and new algorithms to our software, such as 

more fragmentation methods, more accurate spectra prediction and more user-friendly 

interface. We hope the SQID project can continually benefit researchers and help to 

improve the data analysis of proteomics community.  

�  
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CHAPTER 1: SCOPE, BACKGROUND, AND SIGNIFICANCE OF 

PEPTIDE FRAGMENTATION PATTERNS IN TANDEM MASS 

SPECTROMETRY 

 
The main hypothesis of this dissertation is that peptide fragmentation patterns can be 

better incorporated into algorithms to increase protein identification, to identify cross-

linking sites, and to identify modified peptides. This chapter serves as an introduction to 

the fragmentation patterns as well as to all projects described in this dissertation.   

1.1 Tandem mass spectrometry based proteomics 

Tandem mass spectrometry is widely used in proteomic studies because of its 

ability to identify large numbers of peptides from digested proteins of complex mixtures. 

Figure 1.1 shows the general workflow of a proteomics experiment. In a typical LC-

MS/MS experiment, proteins are digested into peptides using a protease such as trypsin. 

Then the digested peptides are separated by one or two stages of liquid chromatography 

and ionized by electrospray ionization. The intact mass of each peptide is measured by 

mass spectrometry, then mass-selected and fragmented to produce MS/MS spectra. These 

spectra are processed by protein identification algorithms to determine peptide sequences, 

which infer protein sequence.1  
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�

Figure 1. 1 Protein identification by LC-MS/MS. From Li Ji dissertation, Wysocki group, 

University of Arizona 

. 

Figure 1.2 shows a detailed example of the mass selection and fragmentation 

process. The peptides are separated by liquid chromatography, and for every several 

seconds, a mass spectrum is collected (MS). For instance, as shown in the figure at 50 

minutes a mass spectrum is collected. The mass spectrum contains several strong peaks, 

which are then sequentially mass selected and fragmented to generate a spectrum 

containing the fragments from that peak (MS/MS). The fragmentation spectrum (MS/MS) 

can be used to match a protein database and assign peptide sequence. However, from 

each run the number of MS/MS spectra generated is in the order of 104, which makes 

manual interpretation impractical. Due to the large number of spectra generated in 
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modern proteomic experiments, protein identification algorithms are increasingly 

important. 

�

Figure 1. 2 Examples of MS and MS/MS spectra. Courtesy of Dr. George Tsaprailis. 

 

1.2 Algorithms for protein identification 

There are generally three methods for peptide identification, including de novo 

sequencing, spectral library search and protein database search.  De novo sequencing 

simply extracts peak intervals from MS/MS spectra and uses them to construct b or y ions 

series, thus deducing the whole peptide sequences. However, due to the incomplete b and 

y ion series in most spectra, this method can seldom provide the complete peptide 

sequence and is mainly used to interpret spectra that are failed in database search or from 

unknown species.  
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Spectral library search is a recently developed method that similar to the search of 

fragmentation spectra of small molecules.2 A large number of identified experimental 

spectra are stored with their sequences as a library, and a new experimental spectrum 

only needs to be compared with these stored spectra to determine the best match. This 

method offers superior speed and sensitivity, however the major limitation is it can only 

be applied to known spectra while not capable of making new discoveries. The most 

popular spectral library is available at National Institute of Standards and Technology 

(NIST) http://peptide.nist.gov. 

Protein database search is the most dominating way for peptide identification and 

this is also the major topic throughout my dissertation. The concept is to generate 

theoretical spectra from available protein sequences and compare them with the 

experimental spectra. It is easy to imagine that the theoretical spectra are not as accurate 

as the spectra in a library, but the protein databases always cover a much larger number 

of proteins either discovered from previous experiments or annotated from the genome 

directly. From this point, all of the algorithms discussed in the dissertation will 

specifically be database search algorithms.  

Most commonly used protein identification algorithms are designed for sequence 

identification from fragmentation spectra produced by collision induced dissociation 

(CID), in which peptide precursor ions collide with inert gas molecules and dissociate. 

CID typically results in fragmentation along the peptide backbone at the amide bonds, 

producing predominantly N-terminal b and C-terminal y ions. Other ion types, including 

neutral water and ammonia losses and side chain cleavages are also possible, but less 
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common. Because the masses of the product ions are predictable, the sequence of the 

original peptide can be reconstructed from the MS/MS spectrum by matching 

experimental fragment ion masses with theoretical ones. For a long time, m/z has been the 

main information used by popular algorithms, including Sequest,3  X!Tandem4  and 

Mascot,5 to assign peptide sequences to fragmentation spectra. The process consists of 

searching a protein database or translated nucleotide database by m/z, within a certain 

tolerance of precursor m/z, for possible peptide candidates.  After candidates are 

identified each experimental spectrum is compared with many constructed theoretical 

spectra or peak lists that correspond to candidate peptide sequences and a score is 

assigned to each candidate sequence based on the similarity between the theoretical and 

experimental spectra, or on the probability that their match is not random (Figure 1.3). 

The strength of the match is finally evaluated according to the top score and the score 

difference between the top and other candidates. Here, a few most frequently used 

database search algorithms will be described, including SEQUEST, Mascot, X!Tandem, 

OMSSA, Phenyx, PEAKS DB and MS-GFDB.  
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Figure 1.3 Comparison of actual peptide fragmentation spectrum (top) to contiguous ion 

series (bottom). Error! Bookmark not defined.1 

 

SEQUEST is an algorithm that correlates a given uninterpreted MS/MS spectrum 

with candidate sequences through the use of scoring and ranking methods based on 

spectral similarity by cross-correlation of the theoretically predicted spectra and the 

experimental spectrum.3 However, SEQUEST does not compare the raw spectra with 

predictions. Instead, it divides the spectrum into 10 bins and normalizes each to the most 

intense peak in the bin, effectively removing relative ion intensity across the entire 

fragmentation spectrum as a strong determinant of a match. This approach has been very 

successful in matching spectra to candidate sequences despite the lack of detailed rules 

for predicting fragment ion intensities.  

MASCOT is an algorithm that contains multiple approaches to database searching, 

of which two use MS/MS data (MS/MS Ion Search and Sequence Query).5 MS/MS Ion 

Search calculates theoretical fragment ion masses in a similar manner to most database 
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search algorithms before matching them to experimental spectra. Sequence Query 

requires some manual interpretation of the MS/MS data during which molecular weight, 

residue composition, and sequence qualifiers are determined for the candidate sequences. 

Both MASCOT strategies use the same probability-based scoring routine based on the 

MOWSE algorithm in which peptide size distributions (or peptide fragment size 

distributions) are considered with respect to protein masses (or peptide masses) in the 

searched database. A cutoff score for the probability that a match is a purely random 

event is given for each search. 

X!Tandem, the most popular open source algorithm, uses intensity in its 

preliminary score, or hyperscore.4 This score is similar to ion intensity current, which is 

the sum of the intensities of all b and y ions found in the experimental spectra. This is not 

the same as using peak intensity information that reflects chemical fragmentation 

suppression or enhancement; it only acknowledges the presence of a peak. Through a 

statistical analysis of the hyperscore of each candidate sequence, an expectation value (E-

value) describing the significance of the difference between the top match and other 

matches is generated and used as the main score of X!Tandem. Because this idea is 

common to several algorithms, the use of a hyperscore alone is not enough to 

significantly improve the success of X!Tandem when compared to other algorithms that 

use additional information and scoring stages to assign peptide spectra. 

OMSSA (Open Mass Spectrometry Search Algorithm) is another example of an 

open source algorithm that uses expectation values as criteria, similar to X!Tandem. The 

older version of OMSSA only uses intensity as a threshold to filter noisy peaks,6 while 

the newer version has improved how intensity is used.7 In the newer edition, each peak in 
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the experimental spectrum is ranked. The sum of the ranks of the matched peaks is 

compared with a normal distribution of ranks of random peak sums to calculate an 

expectation value. Like X!Tandem, OMSSA is complementary to Sequest because it 

gives an identification a probability component, whereas Sequest matches do not include 

probability. 

Phenyx is a platform that generates its score based on an extended match, which 

matches a peptide using a combination of and comparison between theoretical and 

experimental spectra.8 In other words, this method incorporates structural information 

such as intensity, ion series contiguity, and spectral signal-to-noise ratios in addition to 

m/z information, and the extended match score reflects the quality of a match. By 

analyzing a testing set of spectra with known sequences, Phenyx calculates the 

probability of observing the above extended match information when the match is correct 

or if the match is purely random; the ratio of these two probabilities is the Phenyx score. 

When attempting to identify a peptide sequence from an unknown spectrum, similar 

extended match information can be generated against candidate sequences in a given 

database to determine the ratio score. Evaluation of the score will enable true matches to 

be distinguished from false.  

PEAKS DB 9 is a new commercial program that extended from a de novo peptide 

identification algorithm, PEAKS, and it is continually gaining popularities because it 

combined the features of database search and de novo sequencing. More specifically, it 

performs database search and uses de novo sequencing to verify the search results. 

Because no database is required for de novo sequencing, the match between a database 

search result and de novo sequence is very unlikely to be a random event. This unique 
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feature helped PEAKS DB showed significant performance improvement compared with 

many other database search algorithms.  

Lastly, MS-GFDB 10 is a newly developed database search algorithm that based 

on Generating Function in mathematics, which is the coefficient of a formal power series. 

Each coefficient represents some features of the spectra, and the author argue that for 

spectra collected from different instruments, enzymes and fragmentation methods, the 

scoring function should be different, indicating that the coefficient should be different. 

This algorithm gives user the flexibility to generate their unique scoring functions 

(generating functions) for different protocols, thus making it more specific to different 

kinds of experiment.  

While these algorithms are popular and successful in proteomics studies 

worldwide, they are not without limitations. A variety of studies have shown that in a 

typical MS/MS run, over 80% of the peptide identifications by SEQUEST are false and 

filters are necessary to eliminate those low confidence matches; many programs have 

been developed, such as DTASelect, Peptide Prophet, and Protein Prophet, to remove 

these low confidence matches. 11,12,13 However, scoring cut-off filters may also require 

that some correctly identified spectra to be discarded in order to remove a majority of the 

false positive identifications. Though many proteins can still be identified using current 

algorithms, and the use of multiple algorithms can be combined to increase protein 

identification confidence as demonstrated by Searle et al.,14 these algorithms are still far 

from optimally meeting the rapid identification demands of the proteomics experiments 

that generate large volumes of peptide fragmentation spectra. 
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 One common characteristic for all of these widely used algorithms is that they 

mainly utilize the mass-to-charge ratio information from a mass spectrum while ignoring 

the intensity component beyond the intensity threshold.15 Though in many cases the m/z 

information alone is enough to provide reliable identification, intensity can potentially 

improve the confidence and generate more identifications because it is also highly 

dependent on the sequence of the peptide and the amino acid residue compositions. 

Preferential cleavage, for example, is expected at the N-terminus of proline in the 

presence of a mobile proton or the C-terminus of aspartic acid when no mobile proton is 

available.16,17 Nevertheless, intensity is still seldom given much weight in algorithms 

because of the limited ability to predict and quantify the chemical rules of peptide 

fragmentation. Various factors, including size, charge state, amino acid content, and 

charge location, can complicate the process of gas phase peptide dissociation and make 

the resulting peak intensities difficult to predict and interpret.  

The integration of intensity is emphasized in certain algorithms not because it is 

more critical than m/z, but because it can provide additional correlating information that 

can assist with the peptide identification. Studies have shown that the incorporation of 

intensity can reduce peptide fragmentation identification error by 50–96%.18 Clearly, the 

use of intensity to improve peptide identification rates is an attractive prospect. Indeed, 

while we have placed strong emphasis on the relevance of fragment ion intensity to 

proteomic strategies, the importance of m/z values cannot be minimized. Because a wide 

variety of MS platforms are being applied to proteomics, it is of utmost importance that 

proteome researchers be aware of the mass resolution and mass accuracy performance 

characteristics of the mass analyzer being used. Such information is essential for the 
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appropriate setting of precursor and fragment ion mass tolerances, and the specification 

of average versus monoisotopic masses at the database search stage. 

Different from the popular algorithms mentioned above, algorithms incorporating 

intensity do not work under the assumption that the all amino acid pairs and peptide 

patterns dissociate non-selectively to generate peaks without discrimination in intensity. 

Though the appearance of a given spectrum is difficult to predict, results have shown that 

given the same experimental conditions mass spectra are reproducible.17,19  Schutz and 

colleagues assessed this reproducibility by using an ion trap dataset produced by the same 

instrument and parameters via three different methods: correlation between the intensities 

of two spectra as a measure of their similarity, normalized dot product of both the peak 

intensities from pairs of spectra, and the square root of the intensities.20 They found that 

MS/MS spectra, especially of peptides with low charge states, exhibit reproducible 

fragmentation intensities and patterns, which enables the prediction of peak intensity. 

Newer algorithms that incorporate complex intensity models that are based on either 

probability or chemical properties will be discussed below.  

 

1.3 Existing algorithms that consider intensity 

Elias and coworkers used a probabilistic decision tree – specifically, a treelike 

feather extracting graph, which requires the members of each branch to have similar 

properties – to model the probability of observing certain peak intensities in a mass 

spectrum from 27,266 high quality spectra.18 The most confident true matches from 

SEQUEST were selected and decision trees were generated using 63 different attributes, 

including b ion length, y ion length, fraction of basic residues, and peptide length. Each 
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node of the tree represents a chemical property that can separate the intensity into 

different bins, and the likelihood that a certain fragment ion peak will have a certain 

intensity that can be calculated from the distribution of the sizes of the resulting branches. 

With the input of a predicted ion from a candidate sequence, the likelihood of yielding 

the measured intensity in the experimental spectrum can be obtained from the decision 

tree. For both correctly matched and mismatched peptides, the decision trees are made 

and compared to serve as a guideline as to whether an identification is correct or incorrect. 

More than a 50% decrease in peptide identification error rate was achieved when using 

this method in conjunction with SEQUEST. 

Another intensity based algorithm is Narasimhan’s Multinomial Algorithm for 

Spectral Profile-based Intensity Comparison (MASPIC) scorer.21 Though based on a 

popular random match assumption that the correct match should have the least likelihood 

to be achieved randomly by chance only, MASPIC considered the possibility of random 

intensity matches as an alternative to using m/z only. This method divides the whole 

experimental spectrum into +1, +2, and +3 zones according to the charge of the fragment. 

In each zone, peaks are binned into classes with descending intensity, where lower 

intensity classes have more peak members. This process converts the experimental 

spectrum into a probability profile along the m/z axis. It is more likely to randomly match 

a predicted peak from a candidate sequence into the lower intensity class because this 

class has more members, thus decreasing the importance of a match with decreasing 

intensity. When all predicted peaks from a candidate sequence are compared with this 

probability profile, the number of matched and unmatched peaks for each class is counted, 

and further calculations are performed to give a probability of matching. 
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Zhang reported a kinetic model for prediction of low-energy CID spectra from 

sequence in 2004, with a general idea to abandon the traditional statistics model used by 

intensity prediction efforts and mimic the peptide dissociation process based on kinetics 

and the mobile proton model.27 The key assumption is that the intensity of a fragment ion 

is determined by the rate of the dissociation pathway generating this fragment; if the rate 

constants for all fragment ion pathways are known, then the relative intensity of each 

fragment can be predicted. Collision energy, proton density, fragmentation rate, ion 

cooling rate, activation energy, and gas-phase basicity are considered and incorporated 

into the rate calculation of eleven different backbone cleavage pathways as well as side-

chain cleavages and neutral losses. Based on this iterative calculation model, Zhang 

developed an algorithm called MassAnalyzer, which uses a Sim score to evaluate the 

similarity of a simulated and experimental spectrum.40 

The kinetic model is mainly used to confirm the results from popular algorithms 

rather than to provide independent protein identification. This is due to various 

limitations, including variability between spectra acquired on different instruments under 

different experimental conditions and the large number of parameters that must be 

considered, as mentioned above. The Resing group later used this model as one part of 

the Manual Analysis Emulator (MAE), a program intended to improve the validation of 

tandem mass spectra.21 Another part of this MAE program takes into account the 

proportion of the ion current (PIC), which represents the percentage of intensities in an 

experimental spectrum that can be derived from the peptide sequence. A higher PIC score 

means that the program was using the most intense peaks for peptide identification as 

opposed to noise and low abundance peaks. With the incorporation of these two intensity-
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related scores, MAE yielded a better discrimination between true and false matches of 

SEQUEST and Mascot results.  

Lastly, Tabb and coworkers developed a multivariate hypergeometric model for 

peptide identification.41 The major assumption of this model is that a match to an intense 

peak should be more confident than matching to a weak peak. The algorithm divides all 

the peaks in an experimental spectrum into multiple classes based on intensity, and gives 

higher score weight when a peak is matched to a higher intensity class. Though 

Myrimatch is quite effective and popular, one possible drawback of this model is that it 

does not consider the circumstance that some real peaks should be very weak, e.g. the 

cleavages C-terminal to proline are always difficult to observe.  

Clearly, peptide searching algorithms utilize a variety of spectral and chemical 

information to assign peptide sequences to spectra. Selecting a single algorithm over 

another will likely lead to different sets of peptide and protein assignments based on the 

criteria that an algorithm uses. As briefly mentioned earlier, the use of multiple search 

algorithms has been shown to improve confidence of peptide identification. Programs 

such as Scaffold, available from Proteome Software, provide an interface for direct 

comparison of MS/MS data analyzed using a variety of algorithms.14 As new algorithms 

are developed, it is important to understand what spectral characteristics allow the 

algorithm to more accurately match certain spectra to peptide sequences while the 

matches for other spectra with different characteristics are poor. Programs such as 

Scaffold will allow algorithms to be more readily compared. 
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1.4 Peptide pairwise fragmentation patterns in MS/MS 

Our group has been working on peptide fragment intensity studies for several 

years, and in 2008 Huang has reported an application of a statistical data mining strategy, 

penalized K-means clustering, to discover fragmentation patterns for CID.25 In that 

report, 28311 tryptic spectra with known sequences were analyzed and several major 

fragmentation patterns were revealed. Figure 1.4 is an illustration of Huang’s study: four 

fragmentation patterns were distinguished after applying the K-means clustering 

algorithm to the CID dataset.   These include: 1) strong cleavage N-terminal to proline in 

y ions (X-P in y), 2) strong cleavage C-terminal to isoleucine, valine and leucine in y ions 

(I/V/L-X in y), 3) strong cleavage C-terminal to aspartic acid and N terminal to proline in 

b ions in peptides with a high proportion of missed cleavage (D-X and X-P in b), and  4) 

strong cleavage C-terminal to aspartic acid in y ions (D-X in y). Illustration of these 

patterns is potentially helpful to understanding the fragmentation pathways as well as to 

predicting spectrum with intensity. For example, Figure 1.5 is a decision tree for tryptic 

CID peptides to illustrate the relationship between sequence and charge with 

fragmentation patterns. The tree is created by analyzing the sequence features of each 

cluster in Figure 1.4 using a CART (Classification And Regression Tree) program, which 

automatically considers many pre-set sequence features to determine which features are 

of greater importance for the separation of the clusters. Whenever a peptide sequence and 

charge is known, the decision tree can tell which fragmentation map can best describe its 

fragmentation behavior. The following is a list of features considered in CART, where 

“count” means a simple count of the number of that residue in a sequence, POS means 

the position of the amino acid residue in the sequence, indicated as a fraction, DistN 
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means the distance between N terminus and a certain residue, while DistC means the 

distance between C-terminus and a certain residue, m/z means mass-to-charge ratio, and 

H Mobile is defined as (charge – count.R- 0.5*count.K - 0.5* count.H):  

charge, count.Basic, count.Acidic,count.A, count.C, count.D, count.E, count.F, 

count.G,count.H, count.I, count.K, count.L, count.M, count.N, count.P, count.Q, count.R, 

count.S,count.T, count.V, count.W, count.Y, POS.A, POS.C, POS.D, POS.E, POS.F, 

POS.G,POS.H, POS.I, POS.K, POS.L, POS.M, POS.N, POS.P, POS.Q, POS.R, POS.S, 

POS.T,POS.V, POS.W, POS.Y, DistN.A, DistN.C, DistN.D, DistN.E, DistN.F, 

DistN.G,DistN.H, DistN.I, DistN.K, DistN.L, DistN.M, DistN.N, DistN.P, DistN.Q, 

DistN.R,DistN.S, DistN.T, DistN.V, DistN.W, DistN.Y, DistC.A, DistC.C, DistC.D, 

DistC.E,DistC.F, DistC.G, DistC.H, DistC.I, DistC.K, DistC.L, DistC.M, DistC.N, 

DistC.P,DistC.Q, DistC.R, DistC.S, DistC.T, DistC.V, DistC.W, DistC.Y, Length, m/z, 

H.Mobile 
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�

Figure 1.4 Huang’s study revealed four distinct fragmentation behaviors for peptides in 

CID.25 Used by permission from journal of proteome research. 

 



33 
 

 

  

�

Figure 1. 5 Decision tree for tryptic CID peptides. 

1.5 Scope of the dissertation 

The main focus of this dissertation is the incorporation of fragmentation intensity 

studies into algorithms in order to improve peptide and protein identification. The 

resulting algorithm is called SQID (Chapter 2). Several other algorithms were also 

developed based on the SQID platform, including a spectrum predictor (Chapter 2), a 

software for identification of crosslinking sites in proteins (Chapter 4), and an algorithm 

for blind modification searches (Chapter 5). Theclustering method was also applied to 

electron transfer dissociation (ETD) spectra from which totally different fragmentation 

patterns were revealed (Chapter 3). Lastly, some proteomics experiments were performed 
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to study iron metabolism related proteins  from mosquito ovaries, as described in Chapter 

6.  
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CHAPTER 2: SQID: AN INTENSITY-INCORPORATED PROTEIN 

IDENTIFICATION ALGORITHM FOR TANDEM MASS 

SPECTROMETRY 

 

Incorporating pairwise fragmentation intensity into an algorithm is a major project 

finished by the author during his dissertation research. The SQID program was 

successfully developed and people are using it in daily research. The performance 

exceeds many commonly used commercial programs.  

 

2.1 Introduction 

As mentioned in Chapter 1, protein identification algorithms are extremely important due 

to the large number of spectra generated in modern proteomic experiments. Most 

commonly used algorithms are designed for sequence identification from fragmentation 

spectra produced by collision induced dissociation (CID), in which peptide precursor ions 

collide with inert gas molecules and dissociate. CID typically results in fragmentation 

along the peptide backbone at the amide bonds, producing predominantly N-terminal b 

and C-terminal y ions. Other ion types, including neutral water and ammonia losses and 

side chain cleavages are also possible, but less common. Because the masses of the 

product ions are predictable, the sequence of the original peptide can be reconstructed 

from the MS/MS spectrum by matching experimental fragment ion masses with 

theoretical ones. For a long time, m/z has been the main information used by popular 

algorithms, including Sequest,3 X!Tandem 4 and Mascot,5 to assign peptide sequences to 
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fragmentation spectra. The process consists of searching a protein database or translated 

nucleotide database by m/z for possible peptide candidates, comparing each experimental 

spectrum with many constructed theoretical spectra or peak lists that correspond to 

candidate peptide sequences, and assigning a score to each candidate sequence based on 

the similarity between the theoretical and experimental spectra or on the probability that 

their match is not random. The strength of the match is finally evaluated according to the 

top score and the score difference between the top and other candidates.22  

One limitation of the process described above is that all the major ions of a given 

series in a theoretical spectrum are assumed to have the same intensity regardless of the 

properties of the peptide; intensity information contained in an experimental spectrum is 

essentially abandoned. Though in many cases the m/z information alone is enough to 

provide reliable identification, intensity can potentially improve the confidence and 

generate more identifications because it is also highly dependent on the sequence of the 

peptide and the amino acid residue compositions. Preferential cleavage, for example, is 

expected at the N-terminus of proline in the presence of a mobile proton or the C-

terminus of aspartic acid when no mobile proton is available.23 , 24 , 25 Nevertheless, 

intensity is still seldom given much weight in algorithms because of the limited ability to 

predict and quantify the chemical rules of peptide fragmentation. Various factors, 

including size, charge state, amino acid content, and charge location, can complicate the 

process of gas phase peptide dissociation and make the resulting peak intensities difficult 

to predict and interpret. 26 

Clearly, the use of intensity to improve peptide identification provides an 

attractive prospect and efforts have been made by different groups.27 28 29 30 31 32 33  34 
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Elias and coworkers, for example, used a probabilistic decision tree - specifically, a 

treelike feather extracting graph, which requires the members of each branch to have 

similar properties - to model the probability of observing certain peak intensities in a 

mass spectrum so as to improve peptide identification.31 Another algorithm, MASPIC, 

developed by Narasimhan et al., considered the possibility of random intensity matches 

as an alternative to using m/z only, based on the assumption that a random match is more 

likely to match to low intensity peaks since these peaks are more common in tandem 

mass spectra.32 Zhang reported a kinetic model for prediction of low-energy CID spectra 

from sequences, assuming that the intensity of a fragment ion is determined by the 

dissociation pathway and the rate of the dissociation.27, 30 Another intensity model which 

considers more peptide features and fragmentation rules was developed by Zhou.34 

Intensity is emphasized in these algorithms not because that it is more critical than m/z, 

but because it can provide additional information that can assist with the peptide 

identification. The goal of the work presented here is to develop a simple, fast database 

search algorithm that incorporates rough intensity information to assist peptide 

identification. In our previously reported study of fragmentation intensity patterns, we 

introduced a routine to mine a large number of spectra with known sequences for 

fragment ion intensity based on pairwise amino acid (AA) cleavage patterns, and the 

relative peak intensity for each AA pair was recorded. Because the probability that a data 

peak of a specific intensity corresponds to any given AA pair cleavage is directly 

proportional to the probability of that AA pair cleavage resulting in a peak of that 

intensity, we can evaluate whether the intensity for a certain AA pair in an experimental 

spectrum is consistent with statistical values. We applied this approach to our SQID 
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algorithm described in this paper. As with other algorithms, the SQID score depends on 

the presence or absence of ion series peaks at the expected m/z, but is also heavily 

affected by intensity information to increase the evidence for sequence identification. 

This is analogous to the manual process of verifying peptide identifications by looking 

for known fragmentation motifs (e.g. looking for enhanced cleavage at the N-terminus of 

proline), but with the objectivity of using statistical information gathered in the data-

mining process.  

 

2.2. Methods: 

2.2.1 Algorithm Design 

SQID is designed for identification of peptides from ion trap tandem mass spectra 

in LC-MS/MS experiments but with the ability to extend to spectra acquired using 

different instruments or dissociation methods (e.g. ETD, ECD) in the future. It is written 

in C language and has been tested in Windows XP and Windows 7 operation systems. 

The software is available at this URL: 

http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm. SQID contains a one-time 

training stage to generate intensity tables that are used in scoring. In the training stage, 

spectra with known sequence are used to generate the pairwise intensity statistical lookup 

tables, which quantify the probability to observe a strong peak given a certain amino acid 

pair. The tables from the training stage are stored in the algorithm and do not need to be 

re-generated. The scoring process makes use of information from the experimental 

spectrum and intensity tables to evaluate a match. The algorithm design is described 

below. 
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Step 1: Collect pairwise cleavage intensities 

The dataset used for training contains 138,033 unique D. melanogaster (version: 

drosophila-7-14-2008-it) and S. cerevesiae (version: yeast-5-04-2009-it) ion trap spectra 

extracted from the National Institute of Standards and Technology (NIST) Libraries of 

Peptide Tandem Mass Spectra (http://peptide.nist.gov/). 35 It is a set of spectra with 

known sequences and consists of singly-, doubly-, and triply-charged tryptic peptides 

ranging from 5 to 56 amino acid residues in length. It contains unmodified peptides as 

well as peptides with carbamidomethylation of C or oxidation of M. However, currently 

we do not treat these modified residues (C+57, M+16) as unique amino acids and their 

results are combined with corresponding unmodified residues (C, M). For each training 

spectrum, the mass of each expected b and y ion was calculated based on the assigned 

peptide sequence. Ions outside of the ion trap mass range (high mass cutoff = 2000; low 

mass cutoff = (precursor m/z)*0.28) were not included (the low and high mass cutoffs can 

be adjusted as necessary to match the instrument type). The peak intensity of each b and 

y ion was scaled to the most abundant peak of its own series. The intensity information 

was sorted by ion type and by the amino acid residue pair cleavage responsible for the 

fragment ions. All of the training spectra generated a histogram containing the relative 

peak intensities for every expected peak sorted by amino acid pair. When the expected 

peak was not present, a zero value was included.  

 

Step 2: Calculate probability of strong fragment ions for each AA pair  
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The relative abundance information for each amino acid pair was separated into 

three bins: no abundance (intensity = 0), weak (>0 –33%) or strong (>33% – 100%). The 

ranges defined as weak and strong intensity were empirically determined and the 

intensity strength for a certain amino acid pair is roughly proportional to the probability 

of observing a strong peak from that amino acid pair. The probability to have a strong 

peak (Pr) is defined as the number of strong peaks divided by the total number of 

expected peaks for the amino acid pair cleavage: 

Pr = (number of strong peaks) / (total number of expected peaks) 

For instance, the AP pair has a y ion Pr of 0.57, meaning that there is a 57% 

probability of seeing a cleavage between A and P with a strong y ion peak (>33%). In 

contrast, the PA pair has a Pr of 0.03, which means that there is only 3% probability of 

seeing a strong y ion peak for cleavage of the PA pair. In general, these values are in 

agreement with empirical knowledge and provide a quantitative basis for rough peak 

intensity prediction given a peptide sequence. Part of the pairwise cleavage intensity 

probabilities table is shown in Table 1. The full table can be found in supporting 

information. 
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Table 2.1. Pairwise cleavage intensity probability table for selected amino acid pairs. 

                         

 

Step 3: Scoring experimental spectra 

Experimental spectra are assigned peptide sequences by scoring a list of candidate 

peptide sequences against each spectrum. Each experimental spectrum is modified by 

eliminating precursor ions, water and ammonia loss products from precursor ions (mass 

tolerance is the same as fragment threshold), and isotopes (SQID uses a simple 

deisotoping algorithm for ion trap data: if the two peaks differs by 1 +/- 0.25 and the 

intensity of the first peak is greater than the second one’s, the second peak is considered 

to be an isotope peak and removed. The main purpose of deisotoping is to ensure that 

isotopes of high abundant peaks will not be accidentally selected as top peaks in intensity 

score calculation). The top 80 most abundant peaks from each spectrum are then kept for 
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scoring. For each spectrum, a list of candidate peptides (with mass within user-defined 

tolerance of the precursor mass of the experimental spectrum) is generated from a user 

defined fasta protein database. Each candidate sequence is scored by the following 

method: 

1. Calculate the masses of expected fragment ions from the candidate peptide 

sequence (same high and low mass cutoffs as in training). In the present work only 

b and y ions are considered along with H2O and NH3 losses from b and y ions. 

Doubly charged fragments are considered in the circumstance that the precursor 

ion is triply charged and the mass of the fragment is greater than 900.   

2. Count the number of matched peaks in the experimental spectrum corresponding to 

the masses of the expected ions for the candidate sequence, within a user defined 

fragment threshold. If an expected water loss or ammonia loss product is observed, 

the total number of matched peaks is increased by 0.5. The number of matched 

fragments is used as a preliminary score and only the top 200 candidates are 

retained. 

3. Count the number of consecutive ion pairs for a match. For instance, if y5 and y6 

ions are found, they are counted as a consecutive ion pair. Though in many cases 

consecutive ion pairs increases almost linearly with the number of matched ions, 

this was found to provide better discrimination than using the number of matched 

ions alone (see Results and Discussion).  

4. For the most abundant K peaks in an experimental spectrum (K depends on the 

mass of peptide, and equals the integer portion of (2+mass/330)), the Pr of amino 

acid pairs that result in these peaks are summed and the sum is used as the intensity 
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score: . The intensity score is affected by two factors: how many top peaks 

are matched and how well the corresponding intensity matches. Because the Pr of 

amino acid pairs range from 0.01 to 0.72, both factors could play an importance 

role depending on the sequence.  

During the scoring process, several thresholds (number of peaks matched, number 

of consecutive ion pairs, intensity scores) are applied to remove those candidates with 

very few matches. For some spectra, only one or a few candidate sequences can pass 

these filters and the final report will have only one or a few matches.  

The final SQID score is calculated as:  

   (1), 

where m is the number of matched peaks, n is the number of consecutive ions pairs, Pr is 

the probability for a certain AA pair to have strong peaks, and K is the number of most 

intense peaks used to calculate the intensity score. In the scoring function, the left part 

(m+n) of the score measures the number of matched peaks and numbers of ion pairs, and 

increased m and n will increase the confident of the match; The right part of the score 

(1+� Pr)/(1+0.155K) measures whether the observed intensity (the numerator) is better 

than the expected value (the denominator). We expect that the average Pr of the top K 

peaks is greater than the average of all Prs in the statistical table, which is 0.155 (in the 

statistical table, Pr ranges from 0.01 to 0.72; the average is 0.155). A more detailed 

discussion of the scoring function can be found in the “Results and Discussion” section. 

The specific form of the scoring function is empirically determined in a trial-and-error 
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manner to reach the optimized performance using the PNNL dataset (the first test dataset), 

and then applied to other datasets without any changes. Besides the SQID score, a delta 

score can be used to give further discrimination. Calculation of delta score in SQID was 

the same as that in Sequest: the difference between the top score and second score was 

divided by the top score, which gives the percentage difference between the second and 

the top score.  

The well-matched peptide sequences and final scores can be reported either with a 

single excel file or with separate text files. The results can be reported in .OUT or .SQT 

format (mimic Sequest output) for importing into Scaffold 36  to compare with other 

algorithms, as was done in the present work.  Work is in progress to allow future versions 

of Scaffold to include a separate SQID input.   

 

2.2.2 Parameters and datasets for performance test 

Datasets: 

Three ion trap datasets were used to test the performance of SQID:  

1. PNNL dataset: PNNL dataset contains 28311 spectra (25% singly charged, 62% 

doubly charged and 13% triply charged) from unmodified Deinococcus radiodurans and 

Shewanella oneidensis peptides collected by the Pacific Northwest National Laboratories 

(PNNL) on a Thermo LCQ ion trap mass spectrometer. 25, 37, 38 When these spectra were 

collected, FT-ICR was used simultaneously for accurate mass measurements. Each LCQ 

spectrum was then analyzed by the Sequest search engine with D. radiodurans and S. 

oneidensis protein databases, respectively, to assign a sequence. Preliminary 

identifications of peptides with a minimum cross-correlation score of 1.5 (Xcorr �  1.5) 
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were validated by measurements of Accurate Mass Tags (AMTs) from FT-ICR (mass 

measurement accuracy < 10 ppm). Though the spectra are of high quality, the error rate 

of the initial assigned sequences is unclear considering the low Xcorr threshold used. As 

a result, in current work we do not use these initially assigned sequences to evaluate the 

confidence of matches. Spectra were identified against the Deinococcus radiodurans and 

Shewanella oneidensis database (7984 entries). 

2.18 Protein Mixture dataset: This dataset contains 37044 spectra collected by the 

Keller group, Institute for Systems Biology, Seattle, 39 from a mixture of 18 purified 

proteins using a ThermoFinnigan ESI-ITMS. The dataset was collected with 22 LC-

MS/MS runs, and only the most abundant peak in each full scan was selected for 

fragmentation, followed by 3 minutes of dynamic exclusion. The dataset is available at 

http://regis-web.systemsbiology.net/PublicDatasets/omics_dataset/. Spectra were 

searched against a reverse version of Deinococcus radiodurans and Shewanella 

oneidensis database (7984 entries) plus the 18 protein mixture and common contaminants 

(trypsin, human keratin, protein standards for MS calibration such as bovine serum 

albumin and angiotensin, etc).  

3. Yeast Dataset: A dataset of 54799 spectra from a MudPIT experiment of yeast-

extract collected by the students (group A) of Dr. Andrew Link during 2006 Cold Spring 

Harbor Laboratory Proteomics course on a Thermo LTQ ion trap mass spectrometer. 40 

This MudPIT data includes six SCX/RP LC separations and top five most abundant peaks 

in each full scan were selected for fragmentation. Raw data can be downloaded from 

http://www.mc.vanderbilt.edu/root/vumc.php?site=msrc/bioinformatics&doc=21164. 

Spectra were identified against a yeast database (14590 entries) extracted from NCBI 
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non-redundant database (ftp.ncbi.nih.gov/blast/db/fasta/). All sequence with “yeast” or 

“Saccharomyces cerevisiae” in the description line were included.   

 

Search parameters and false discovery rate determination: 

The above three datasets were converted to DTA file format using Bioworks 

(Version 3.2). Sequest (Version 28, rev.12) and X!Tandem (Version Tornado 

2008.02.01.3) were run simultaneously to evaluate the performance of SQID. Sequest 

was chosen mainly because the Sequest and SQID are scored in similar manners, which 

involves no expectation value calculation; X!Tandem was chosen because it is open 

source and based on expectation values. All algorithms were used with a parent mass 

tolerance of 1.5 Da and a fragment mass tolerance of 0.5 Da, and a maximum of two 

missed tryptic cleavage sites. Refinement for X!Tandem was disabled, and the maximum 

valid E-value for reporting was set to 10000. PNNL and 18 protein mixture datasets were 

searched with semi-tryptic cleavage (tryptic required at one terminus only) and without 

chemical modifications. The yeast dataset was searched with full tryptic and with 

variable modification of C+57 (carbamidomethylation) and M+16 (oxidation).  

For PNNL dataset and yeast dataset, the false discovery rate (FDR) was 

determined using a target-decoy database search strategy. The database mentioned above 

was appended with a reverse database using “decoy.pl” program from Matrix Science 

(http://www.matrixscience.com/help/decoy_help.html#WHAT). At a certain score 

threshold, the spectra matched to target sequences were labeled “Target” and the ones 

matched to decoy sequences were labeled “Decoy”. The FDR was calculated as: FDR = 
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(2 x Decoy) / (Target + Decoy). 41 FDR can be further expressed as q-value,42 which is 

the minimal FDR threshold at which a given match is considered positive.  

For the 18 protein mixture dataset, an identification was assumed to be “True” in 

the circumstance that the top hit belongs to any of those 18 proteins or common 

contaminants. At a score threshold which allow “x” spectra (among which “y” of them 

are true) to pass, FDR was simply calculated as: FDR = 1- y/x.  

 

2.3. Results and Discussion 

2.3.1 Calculation of intensity score 

 

Figure 2.1. The calculation of intensity score in SQID. The bottom is a labeled 

experimental spectrum when matching it to the candidate sequence YEFGIFNQK2+. The 

top peaks used for intensity score calculation are circled. The numbers above b ions and 
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below y ions are the probabilities to observe strong peaks with Pr values extracted from 

the intensity table.  

 

Intensity information is incorporated into the SQID scoring process by using 

statistical intensity tables. Figure 1 is an example of how the intensity score is calculated. 

For the experimental spectrum with precursor MH+ 1144.8, the top five peaks are used 

for intensity scoring. Given the candidate sequence YEFGIFNQK 2+, SQID will first 

determine that the top five peaks are matching to two b ions (b2, b5) and three y ions ( y4, 

y6, y7 ), which correspond to EF and IF pairs for b ions and EF, FG and IF pairs for y ions. 

By looking up the intensity table, the probabilities to have strong (>33%) peaks (Pr) for 

each ion pair are 0.13 (EF pair, b2 ion), 0.18 (IF pair, b5 ion), 0.32 (EF pair, y7 ion), 0.34 

(FG pair, y6 ion) and 0.42 (IF pair, y4 ion). The sum of the above values returns the 

intensity score. From the graph, it can be clearly seen that the Pr of the top five peaks 

(shown in red) are among the largest compared with Pr for other peaks (in black), which 

means that the most abundant peaks in the spectrum are also expected to be statistically 

strong based on the training set. In general, a higher intensity score indicates that the 

statistical fragmentation trends are reflected in the match so the confidence of the 

identification is increased.  

 

2.3.2 Effect of individual components in SQID score function 

In addition to the number of matched ions used in most algorithms, SQID score 

function (Equation 1) involves two features to improve peptide identification: 

consecutive ion series n and intensity (1+� Pr)/(1+0.155K). To evaluate their contribution 
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in SQID function, four searches were conducted using the PNNL dataset: 1) “Standard 

SQID search” with equation 1, with Pr values adopted from probability table (variable 

intensity). 2) “With constant intensity” for each ion type: Pr value is 0.22 for y ions and 

0.09 for b ions. These are the average Pr for each ion type in the table. 3) “No intensity”: 

(both  and K equal zero, which completely removed the effect of intensity and ion 

type). The score function is actually (m+n). 4) “No intensity, no consecutive ion series”. 

The score equals the number of matched ions m.  For each search, the results were ranked 

by the top scores from high to low and q-values were determined as described in method 

section. By plotting q-value versus the number of peptide hits, Figure 2 shows that fewer 

peptides were identified when gradually removing the intensity related terms as well as 

consecutive ion pairs from the scoring function. From the plot, it should be notice that by 

adopting the number of matched ions alone (m), a significant number of peptides can be 

identified (orange dot-dashed lines). This proves that m/z is still the most powerful 

information for peptide identification. By adding consecutive ion series (scoring function 

is now m+n), the performance increases as charge state increases (green dotted lines). 

This may be explained by the fact that higher charged peptides normally have longer 

sequences and more theoretical peaks, which will increase the chance of finding 

consecutive ion pairs. At 0.05 q-value cutoff, performance improved 8% for doubly 

charged spectra. Adding an intensity term with a constant intensity (blue dashed line)  

gives a bonus when the theoretical peak is matched to a highly abundant peak, with a 

higher bonus for the y ion and lower bonus for the b ion. This step gives an additional 6% 

(based on “no intensity search”) for doubly charged spectra at the 0.05 q-value cutoff. 

Lastly, the standard SQID score (red solid line), which gives a statistically determined 
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bonus when a theoretical peak is matched to a highly abundant peak, improved the 

overall performance by another 4% (based on “constant intensity”) for doubly charged 

spectra at 0.05 q-value cutoff. The actual performance boost differs for different charge 

state and q-value cutoffs. At lower q-value cutoffs (q-value<0.01), the difference between 

“constant intensity” and “no intensity” is negligible, but the gap between “standard SQID 

search” and “constant intensity” can increase to over 10% (0.005 q-value cutoff for 1+, 

2+  spectra). If the differences between “no intensity” (green dotted line) and “standard 

SQID search”(red solid line) are counted as the contribution of intensity, the value is 

averaged around 8-12 %.  
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Figure 2.2. Plot of q-value versus identified peptides showing the effect of individual 

components in SQID scoring function for a)singly b)doubly c)triply charged peptides. 

Fewer peptides were identified when gradually removing the intensity related terms as 

well as consecutive ion pairs from the scoring function.  

 

2.3.3 Comparison of algorithm performances 

A fully objective comparison of algorithms is always difficult because each 

algorithm uses a different spectrum preprocessing method, a different scoring scheme and 

report different scores. In the spectrum preprocessing step, Sequest preprocess the 

spectrum by keeping the top 200 peaks and separates the spectrum into ten bins for 

normalization; SQID keeps the top 80 peaks after removing parent related peaks and 

obvious non-monoisotopic peaks; Instead, X!Tandem simply keeps the 50 most abundant 

peaks by default.  Though a larger collection of peaks can increase sensitivity, at the 

same time specificity may be penalized. In terms of score report, X!Tandem reports “E-

value” and a much less important hyperscore, while SQID and Sequest report delta score 

in addition  to the main score. Here, only the main scores, E-value, SQID score and Xcorr, 

will be used for a relatively fair comparison. It is important to note that the above 

spectrum prepossessing steps and score usage can potentially affect the search results 

demonstrated below.  

SQID was compared with Sequest and X!Tandem using PNNL, 18 protein 

mixture, and the yeast dataset. The main score for each algorithm, SQID score, Xcorr and 

E-value, was sorted respectively for filtering and q-value determination. Figure 3, 4 and 5 

compares the search results of SQID with Sequest and Tandem for each dataset and each 



52 
 

 

  

charge state. Correspondingly, table 2, 3 and 4 are the unique peptide (no duplicated 

sequences) overlap table for each dataset at 0.05 q-value cutoffs. The performance of 

SQID varies on different datasets, charge states and q-value threshold. For the PNNL 

dataset, it can be seen that SQID yielded a similar performance with Sequest for singly 

and triply charged peptides, but had much more identifications for doubly charged 

peptides, especially at low q-value cutoffs. At a 0.05 q-value cutoff, a total of 22,135 

unique peptides are identified by SQID, compared with 19,678 by Sequest and 14,878 by 

X!Tandem.  The 18 protein mixture dataset shows a smaller difference between SQID 

and Sequest at all charge states, but X!Tandem still lags behind. SQID, Sequest and  

X!Tandem identified 292, 273 and 241 unique peptides, respectively at 0.05 q-value 

cutoff. For the yeast dataset, SQID exhibited a strong performance for all charge states in 

a wide confidence range. At q-value cutoff of 0.05, the number of unique peptides leads 

Sequest or X!Tandem by 25% (4,355 for SQID, 3,319 for Sequest and 3,501 for 

X!Tandem). It is also noted that compared with X!Tandem, Sequest shows a reduced 

performance for this dataset. This may be due to the fact that the spectra are relatively 

noisy, and Sequest relies primarily on the number of matched ions and keeps more peaks 

in spectrum preprocessing.  For all three datasets, SQID can identify a significant number 

of unique peptides that are not identified by either Sequest or X!Tandem, and the overlap 

region between SQID and Sequest or SQID and X!Tandem are normally larger than the 

region between Sequest and X!Tandem (Table 2, 3, 4). SQID also shows a better 

discrimination power at lower q-value cutoffs, which can be seen from the figures.  
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Figure 2.3. A comparison of SQID, Sequest and X!Tandem by plotting q-value (a measure 

of FDR) versus identified peptide-spectrum match for PNNL dataset. (a) Singly charged 

peptides. (b) Doubly charged peptides. (c) Triple charged peptides. (d) A combination of 

all charge states. 

�
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Table 2.2. Unique peptide overlap table for PNNL dataset at 0.05 q-value cutoff. A total 

of 22135 unique peptides are identified by SQID, compared with 19678 by Sequest and 

14878 by X!Tandem.  
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Figure 2.4. A comparison of SQID, Sequest and X!Tandem by plotting q-value (a measure 

of FDR) versus identified peptide-spectrum match for 18 protein mixture dataset. (a) 

Singly charged peptides. (b) Doubly charged peptides. (c) Triple charged peptides. (d) A 

combination of all charge states. 
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Table 2.3. Unique peptide overlap table for 18 protein mixture dataset at 0.05 q-value 

cutoff. A total of 292 unique peptides are identified by SQID, compared with 273 by 

Sequest and 241 by X!Tandem.  

�

�
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Figure 2.5. A comparison of SQID, Sequest and X!Tandem by plotting q-value (a measure 

of FDR) versus identified peptide-spectrum match for yeast dataset. (a) Singly charged 

peptides. (b) Doubly charged peptides. (c) Triple charged peptides. (d) A combination of 

all charge states. 
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Table 2.4. Unique peptide overlap table for yeast dataset at 0.05 q-value cutoff. A total of 

4355 unique peptides are identified by SQID, compared with 3319 by Sequest and 3501 

by X!Tandem. 

�

 

Because both SQID and Sequest are not probability based, it will be informative 

to compare their scores when they are matching the same peptide sequence to the same 

spectra. We extracted the doubly charged spectra that reached the same peptide 

identifications by SQID and Sequest in the 18 protein mixture dataset. Of all the 18,496 

doubly charged spectra, only 2,571 ( 13.9% ) identifications were overlapped by SQID 

and Sequest, among which 1,912 ( 74.4% of 2571 ) belonged to the 18 protein mixture or 

contaminations (True) and the remaining 659 belonged to the reverse proteins dataset? 
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(False). Figure 6a plots Xcorr with (m+n) , the sum of matched ions and consecutive ion 

series (SQID score without the intensity part),  and figure 6b plots Xcorr with the whole 

SQID score. It can be seen that (m+n) is almost proportional to Xcorr for both true and 

false identification. However, the full SQID score (with the intensity part) increases much 

slower than Xcorr for false identifications in figure 6b, and a better separation between 

true and false is achieved. The two bold lines are the corresponding Xcorr and SQID 

score threshold (experimentally determined from figure 4b) for 0.05 q-value cutoffs. At 

this confidence level, the peptides in the upper-right corner (Xcorr>= 2.07, SQID score>= 

11.97) can be identified by both algorithms; the peptides in the upper-left corner (Xcorr < 

2.07, SQID score>= 11.97) will be identified only by SQID and the peptides in the lower-

right corner will be identified only by Sequest. 

 

Figure 2.6. A plot of Xcorr versus a) m+n b) SQID score for 2571 peptide-spectrum 

matches extracted from 18 protein mixture dataset. Every spot is scored by Sequest and 

SQID using the same experimental spectrum and the same peptide sequence.  
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2.4 Spectrum Predictor: Prediction of spectrum with intensity 

We also developed a program called spectrum predictor based on the CID 

fragmentation patterns from Huang’s study. By simply input a peptide sequence, the CID 

spectrum with intensity can be predicted. The program mainly takes into account of two 

clusters based on the mobile proton feature, which is defined as the number of charge 

minus the number of Arg and half the number of Lys and His. For each cluster an 

intensity lookup table was created and used for corresponding peptides. Figure 2.7 is a 

comparison of the predicted spectrum versus experimental spectrum for peptide 

FFESFGDLSSANAVMNNPK2+ and VNVEEVGGEALGR2+. It is clear that the 

predicted and experimental spectra match very well, especially for the most abundant 

peaks (e.g. in the first example the predicted top peaks are y11, y5 and y8, which are in 

agreement with experimental results). Figure 2.8 evaluated the performance of spectrum 

predictor using a subset of the 28311 tryptic data set. The similarity of the predicted 

spectrum and experimental spectrum is calculated as a dot product as shown in the figure. 

If two spectra totally overlap, the similarity is 1; if there is no overlap at all, the similarity 

is 0. The figure shows the distribution of similarity scores when intensity is not 

considered (blue) or considered (red). A significant improvement of similarity score 

distribution is observed when intensity is considered. It should be noted that all the 

intensity values used in this calculation are normalized and the similarity score here only 

considered b and y ions.  

The spectrum predictor program can be downloaded at  
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http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm. 

 

�

Figure 2.7 Predicted spectrum from spectrum predictor versus experimental spectrum. 
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�

Figure 2.8 Comparison of predicted spectra with and without considering intensity. 

 

One important usage for the spectrum predictor is to predict the transitions in 

Multiple Reaction Monitoring (MRM) experiment, simply speaking, predict the several 

most abundant peaks given a peptide sequence and charge. We compared the 

performance of spectrum predictor with a very popular MRM software package, 

Skyline,43 for MRM transition predictions. Skyline uses an easy model to predict MRM 

and provides 4 transitions without intensity. Its predictions are simply several y ions 

around the middle part of the peptide plus the y ion from N-terminal cleavage of proline. 

To make a fair comparison, 4 most abundant peaks in spectrum predictor are used. The 
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software with more peaks matched to the top 4 experimental peaks is considered better. 

By testing 45 high confident identifications from a Coccidioides dataset, the results are as 

follows: 

Table 2.5 Comparison of Spectrum predictor versus Skylne on MRM transition 

predictions.  
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It is clear that the transition prediction of skyline is not as good as 

spectrum predictor. The strength of Skyline is mainly to analyze data when the 

experimental spectra for those peptides are available rather than predicting them.  

 

2.5. Amendment of SQID 

Several amendments of SQID were performed to make the software more 

powerful and easier to use. 

 

2.5.1 Discriminant score 

Most peptide identification algorithms, including SQID, report multiple scores. 

For example, SEQUEST uses Xcorr as the main score while also report a delCN score, 

which indicates the difference between top score and second score; similarly, X!Tandem 
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uses E-value as the main score and reports another hyperscore; SQID reports a main 

score and a delta score. Though in this chapter only the main score is used, it is also of 

importance to explore the impact of delta score in peptide identification. 

Discriminant analysis is a statistical method to create a linear combination of 

multiple variables, in order to achieve better separation for two groups. When applying to 

SQID, the linear combination of SQID score and delta score are tested and optimized to 

better separate true and false identifications. The 18 protein mixture dataset was used and 

the standardized canonical discriminant functions are as follows: 

Charge 1:  Discriminant score = 0.146 * Score + 2.476 * deltaScoer - 2.223 

Charge 2:  Discriminant score = 0.14 * Score + 2.496 * deltaScoer – 1.537 

Charge 3:  Discriminant score = 0.201* Score + 1.563 * deltaScoer – 1.82 

By testing the 18 protein mixture dataset, using the above scoring functions instead of 

standard SQID scoring functions improved the performance by about 6%.  However, 

SQID is mimicking the result format of Sequest when importing into Scaffold, so the 

discriminant scoring function cannot be implemented into Scaffold so far. As a result, we 

are currently keeping the standard SQID functions and hopefully these discriminant 

scores will be useful in the future.  

 

2.5.2 Reading Thermo raw data 

One problem with SQID is that it only reads dta files, the small text files that are 

difficult to generate and transport. In SQID 2.0 version (available in 

http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm), an improvement is enabling 

SQID to read thermo raw files directly. 
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The improvement is realized by using a small exe program from Thermo 

XCalibur software, called extract_msn.exe. This executable can extract scan information 

from raw file directly and write into dta format. This process is automated so the effect is 

equivalent to reading raw file directly, and researchers do not need to do any file 

conversion before importing the data into SQID.  

 

Figure 2.9. Interface that showing a list of raw files are input into SQID 2.0 directly.  

2.5.3 Output mzIdentML file 

MzIdentML is one of the standards developed by the Proteomics Informatics 

working group of the Proteomics Standards Initiative� �PSI). This output is aimed at 

creating a universal output standard so that the output from each algorithm can have the 
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same format, which will be much easier to read. For example, currently Scaffold-PTM is 

able to support this universal format regardless of what algorithms are used. 

In order for SQID output more widely accepted by various data integration tools 

especially Scaffold, we modified the code to support mzIdentML output format (.mzid). 

In Figure 2.9, if the checkbox “output as .mzid” is checked, the output will be a single 

mzid file, and can be loaded directly into Scaffold-PTM.  

A couple of standard control vocabulary (cv) terms were assigned to SQID by 

PSI. These terms were used in mzid file to distinguish SQID from other algorithms.  

MS:1001886, SQID, Software for data analysis of peptides and proteins; 

MS:1001887, SQID:score, The SQID result 'Score'; 

MS:1001888, SQID:deltaScore, The SQID result 'deltaScore'.; 

MS:1001889, SQID:protein score, The SQID result 'protein score'. 

 

2.5.4 Incorporating ProteoWizard into SQID 

ProteoWizard (http://proteowizard.sourceforge.net/index.shtml) is an online C++ 

library which is aimed at reducing the effort of proteomics software development. It is a 

collection of routine processes to read mass spectrometry data, perform spectrum 

cleaning, and write standardized file format. By incorporating these codes, researchers 

can simply focus on the development of scoring algorithm itself rather than spend 

considerable time on routine procedures, like reading different file formats.  

One main advantage of ProteoWizard is that it includes various codes to read 

different file formats, including mzML, mzXML, MGF, Agilent,  Bruker FID/YEP/BAF, 
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Thermo RAW, Waters RAW and MS2/CMS2/BMS2. Many of these files are vendor 

specific binary files which lacks effective tool to read them. By incorporating these 

ProteoWizard codes, SQID can read all these formats which will make it extremely 

convenient. Technically the incorporation should be smooth because SQID and 

ProteoWizard are written in two close languages, C and C++. The essential steps for the 

incorporation are as follows: 

1. Build ProteoWizard with quickbuild or quichbuild.sh, and several static library 

files (.lib) will be generated. 

When build PWZD with Microsoft Visual Studio (MSVC) 

All Programs > Microsoft Visual Studio 2005 > Visual Studio 

Tools > Visual Studio 2005 Command Prompt 

Right click project in msvc, choose C/C++, add additional folder (the one 

contains the sources of headers and codes) 

Right click project in msvc, choose “linker”, add additional folder (the one 

contains “lib” files). In “Input”, add the specific “lib” file. 

2. Important codes and explanations for file reading and writing: 

Read file 
#include  "pwiz_tools/common/FullReaderList.hpp"  
#include  "pwiz/data/msdata/MSDataFile.hpp"  
#include  "pwiz/utility/misc/Std.hpp"  
#include  "pwiz/utility/misc/Filesystem.hpp"  
using  namespace  pwiz::msdata; 
using  namespace  pwiz::cv; 
 
//all datatype 
FullReaderList readers; 
//get data 
MSDataFile msd(filename, &readers); 
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//get spectrum list 
SpectrumList& spectrumList = *msd.run.spectrumListP tr; 
size_t numSpectra = spectrumList.size();  //get the number of 
spectrum 
//get individual spectrum from list 
SpectrumPtr spectrum;  //pointer to a spectrum object  
spectrum = spectrumList. spectrum( i, getBinaryData); //get i-th 
spec,getbinarydata= true  
 
//get mz list in a vector, each m/z and intensity i s an pair object. 
vector<MZIntensityPair> pairs; 
spectrum->getMZIntensityPairs(pairs); 
 
//iterate through all m/z vector 
for  (vector<MZIntensityPair>::const_iterator it = pair s.begin(), end 
= pairs.end(); it!=end; ++it) { 
 cout<<it->mz<< '\t' << it->intensity<<endl; 
 ++counter; 
} 
 
id::value(spectrum->id, "scan" )             print scan number 
"ms"  + spectrum->cvParam(MS_ms_level).value             print as ms1 
 

Write file 
//write parameters 
MSDataFile::WriteConfig writeConfig; 
 
// write an mzML file format: 
writeConfig.format = MSDataFile::Format_mzML;    
 
//change precisions (not necessary) 
writeConfig.binaryDataEncoderConfig.precision = 
BinaryDataEncoder::Precision_64; 
writeConfig.binaryDataEncoderConfig.precisionOverri des[MS_m_z_array] 
= BinaryDataEncoder::Precision_64; 
writeConfig.binaryDataEncoderConfig.precisionOverri des[MS_intensity_a
rray] = BinaryDataEncoder::Precision_32; 
 
//write the file 
MSDataFile::write(msd, outputFileName, writeConfig) ; 
struct  PWIZ_API_DECL MSDataFile : public  MSData 
struct  PWIZ_API_DECL WriteConfig is a member structure in  MSDataFile 
 
    /// data format for write()  
enum PWIZ_API_DECL Format {Format_Text, Format_mzML, Fo rmat_mzXML, 
Format_MGF, Format_MS2, Format_CMS2, Format_MZ5}; 
    if  (!msd.run.spectrumListPtr.get()) 
        throw  runtime_error( "[mscat] No spectra found." ); 
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#include  "pwiz/data/msdata/MSDataFile.hpp"  
#include  "pwiz/data/msdata/Serializer_mzML.hpp"  
#include  "pwiz/data/msdata/Diff.hpp"  
#include  "pwiz/data/msdata/examples.hpp"  
#include  "pwiz/utility/misc/unit.hpp"  
#include  "pwiz/utility/misc/Std.hpp" 
 
    // create the MSData object in memory  
    MSData msd; 
    examples::initializeTiny(msd);  
   
  // write MSData object to a stream  
    ostringstream oss; 
    Serializer_mzML serializer; 
    serializer.write(oss, msd); 
 
    // read back into another object  
    MSData msd2; 
    shared_ptr<istream> iss( new istringstream(oss.str())); 
    serializer.read(iss, msd2); 
 
//write mzXML 
MSDataFile::write(msd, filename, MSDataFile::Format _mzXML); 

 

2.6 Clustering of NIST CID dataset 

The performance of clustering highly defends on the size of the size and quality of 

the dataset. As mentioned in the SQID project in Chapter 2, a large CID dataset was 

recently available from National Institute of Standards and Technology (NIST) Libraries 

of Peptide Tandem Mass Spectra (http://peptide.nist.gov/). The dataset contains 138033 

unique D. melanogaster (version: drosophila-7-14-2008-it) and S. cerevesiae (version: 

yeast-5-04-2009-it) ion trap spectra. We performed penalized k-means clustering analysis 

on this dataset, in the hope that it will give more accurate details about CID 

fragmentation patterns. However, our results show that the same patterns were observed 

as we seen on 28311 data. Figure 2.10 shows four clusters, strong X-P, strong D/E-X, 
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strong I/L/V, and a cluster similar to the previous b,y cluster. However, these maps do 

give more details about the low abundant residues such as Cys and Met.  
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Figure 2.10 The clustering results for NIST CID dataset.  

�  
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2.7. Using multiple clusters for SQID 

As discussed in this chapter, SQID currently makes use of the intensity table for 

all the peptides instead of using clusters. This is mainly due to the difficulty of 

normalizing clusters when scoring, e.g., for the same spectrum, if some candidates are 

using the intensity table for the X-P cluster and the other candidates for the same 

experimental spectrum are using the intensity table for the I/V/L-X cluster, there will be 

normalization issues because these two intensity tables have different properties, 

especially different average intensity values. But here, as a preliminary test, we have 

examined whether utilizing two clusters can improve the performance of SQID.  

 

Figure 2.11 Comparison of “two cluster method” versus regular SQID search.   

Similar to Spectrum Predictor, the two clusters, with and without mobile protons, 

are used in this test. The intensity table for mobile proton cluster is extracted from the X-
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P and I/V/L-X clusters in NIST dataset (70749 peptides), and the non-mobile cluster is 

extracted from D/E-X and b ion clusters in NIST dataset (60421 peptides). To evaluate 

the performance of this “two cluster method” versus regular SQID, we applied them to 

the 28311 dataset using the same searching method in Chapter 2.3. As shown in Figure 

2.11, the two methods are quite similar, but the “two cluster method” can identify more 

peptides at lower FDR.  

The effect of this method on peptides with different properties was further 

examined using the clusters from the 28311 dataset. From Figure 2.12 it is clear that the 

“two cluster method” (blue curve) can constantly improve the performance of X-P and 

D/E-X peptide identifications, while cannot show obvious improvement for other two 

groups. This is probably a result of the normalization issue mentioned above, or simply 

due to the fact that the scoring function was empirically derived and optimized for the 

current intensity table. To solve these problems, a potential method is to optimize the full 

spectrum prediction from the Spectrum Predictor, and use an auto cross-correlation 

function to compare two spectra (like Sequest does). 
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Figure 2.12 Comparison of two cluster method versus regular SQID search, on peptides 

with different properties. X-axis is the number of false identifications and y-axis is the 

number of true identifications. The blue curve in each graph is for the “two cluster 

method”, and the red curve is for regular SQID search without clusters.   

�

2.8. Conclusions 

In general, SQID shows a marked performance compared with popular algorithms 

as shown by the results from three different datasets, with a good number of unique 

identifications.  Combining SQID with other algorithms will thus be potentially 
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beneficial, such as increasing the number of peptide hits and the confidence of 

identifications. SQID also has the potential to be applied to electron transfer dissociation 

(ETD) spectra as long as corresponding intensity tables are elucidated. By analyzing over 

10,000 high resolution ETD spectra from the Coon group, the University of Wisconsin-

Madison, we found that the peak intensities in ETD spectra are also highly dependent on 

the amino acid composition, e.g. amino acid pairs containing basic residues tend to have 

enhanced cleavage, while pairs containing hydrophobic residues have weaker intensity. 

This study could help intensity-based prediction in ETD, and at the same time, provide 

evidence to clarify the controversial dissociation mechanisms. As a new algorithm, SQID 

still requires further optimization to improve the overall performance. Future efforts will 

include incorporating different intensity histograms corresponding to specific instrument 

types and specific sequence motifs, combining SQID score and delta score to give a 

single discrimination score, and developing programs that directly modify scores from 

other search engines. 

�  
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CHAPTER 3: STATISTICAL STUDY OF ELECTRON TRANSFER 

DISSOCIATION FRAGMENTATION PATTERNS 

 

This project is an extension of Huang’s fragmentation pattern study on CID data. The 

result is surprising and of great importance to ETD studies. This project is in 

collaboration with Dr. George C. Tseng from University of Pittsburgh and Dr. Joshua J. 

Coon from University of Wisconsin, Madison. Dr. Tseng provided us with statistical 

technique support and Dr. Coon provided all the ETD spectra.  

3.1 Introduction 

Tandem mass spectrometry based peptide and protein identification involves the 

dissociation of peptide or protein ions to generate fragment ions. A conventional 

dissociation method is collision induced dissociation (CID), in which peptide precursor 

ions collide with inert gas molecules and dissociate. CID typically results in 

fragmentation along the peptide backbone at the amide bonds, producing predominantly 

N-terminal b and C-terminal y ions. It is widely known that the CID fragmentation 

patterns are highly dependent on the sequence of the peptide and the amino acid (AA) 

residue composition. Preferential cleavage, for example, is expected at the N-terminus of 

proline in the presence of a mobile proton or the C-terminus of aspartic acid when no 

mobile proton is available.23,44 ,25 In Chapter 2 many studies show that understanding 

these fragmentation patterns can potentially improve the interpretation of CID spectra as 

well as peptide and protein identifications. An example of this is our recently reported 

peptide identification algorithm SQID,45 which incorporates intensity statistics from a 
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large CID dataset and shows improved performance compared with several popular 

algorithms that do not strongly consider intensity.  

Electron transfer dissociation (ETD),46  similar to electron capture dissociation 

(ECD), 47  has gained popularity because of its ability to retain post-translational 

modifications and produce distinct c and z ion types compared with the b and y ions 

produced by CID. The electron transfer and dissociation, which cleaves the N-C�  bond,  

involve the formation of an aminoketyl radical and the backbone cleavage is believed to 

be less selective than CID with no strong cleavage preferences.48 To date, several 

statistical studies have been published to examine the underlying fragmentation trends, 

e.g., Savitski and coworkers analyzed the pairwise fragmentation trends of ECD spectra 

of 14967 tryptic peptide dications and found that the preference is complementary to 

CID;49 Chalkley and coworkers characterized the frequency of observing different ion 

types in ETD in terms of protease used and charge states.48 These studies have provided 

valuable information for understanding ETD mechanism as well as interpreting ETD 

spectra. However, no study has been done to examine fragmentation trend for large 

datasets of ETD spectra using more advanced statistical techniques. 

 

3.2 Methods  

Our group has reported previously application of a statistical data mining strategy, 

penalized K-means clustering, to discover fragmentation patterns for CID,25,50 and in the 

research reported here, we apply K-means clustering to ETD for fragmentation pattern 

discovery. Several ETD datasets collected by the Coon group at the University of 

Wisconsin - Madison, with sequences assigned to spectra by OMSSA, were subjected to 
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analysis: one with 11954 Lys-C digested unique peptides, one with 12042 Glu-C digested 

unique peptides, and one with 6423 high resolution spectra of tryptic unique peptides. 

Mass spectra for all datasets were obtained using an LTQ-Orbitrap (Thermo Fisher 

Scientific, San Jose, CA) to achieve high resolution and high mass accuracy; MS/MS of 

the Lys-C and Glu-C datasets were measured using the LTQ front end of the instrument 

(low resolution) and the tryptic dataset was obtained by using the orbitrap as a high 

resolution analyzer for product ions. The normalized fragment intensity for cleavage at 

each amino-acid pair was extracted from each spectrum. As an example, c and z ions 

were identified from the spectrum of the MH2
2+ ion of the peptide AAEDVAK and were 

then normalized to the most abundant peak among all c and z ions in that spectrum 

(higher charged fragments will also be included depending on the precursor ion charge). 

For c ions, the normalized intensities of c1, c2, c3, c4, c5 and c6 ions were associated 

with AA pairs A-A, A-E, E-D, D-V, V-A and A-K respectively, which correspond to the 

cleavage sites. After the information was collected for all the spectra in the dataset, a 

matrix was created for c ions containing 400 AA combinations (20 AA * 20 AA; all 

cysteines in these datasets are carbamidomethylated, so “Cys” in this report are actually 

carbamidomethylated Cys), and each combination includes a number of normalized 

intensity values. The same procedure was performed for z ions and both c and z data 

were used together for clustering. The relationship between AA pairs and normalized 

intensity can be visualized by quantile maps51 as shown in Figure 3.1, in which the left 

column represents the N-terminal residue of the pairwise cleavage site and the top row 

represents the C-terminal residue of the pair of cleaving amino acids. The horizontal 

dimension of each spot is proportional to the number of instances of a given pair, and a 
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wider spot means more occurrences thus higher confidence. In each spot, ten quantiles of 

intensities of the entire distribution are plotted on circles using gradient colors. The 

darkness of the color represents the normalized intensity. A full dark spot represents high 

intensities for all occurrences in the distribution (e.g. A-K of c-ion in the left cluster of 

Figure 3.1). A spot with small dark dot in the center and white in the surrounding 

represents a bimodal distribution (i.e. a portion of high intensities but low intensities for 

other cleavage occurrences; e.g. A-H of c-ion in the left cluster of Figure 3.1). 

The K-means clustering algorithm partitions all spectra into K clusters based on 

the pairwise cleavage behaviors, with the principle that the peptides within a given cluster 

fragment as similarly as possible to each other and as differently as possible from those 

peptides in other clusters. More specifically, each peptide spectrum is plotted in a 400 

dimensional space with each dimension represent the cleavage intensity from a certain 

AA combination; then the space is tentatively and repeatedly separated into K parts until 

the sum squared distance of each spectrum to its centroid is minimized. This approach 

allows the extraction of independent patterns that were previously mixed. One drawback 

is that one must choose the number of clusters “K”. In this work we produce multiple sets 

of clusters and choose the optimal K that produces distinct clusters without obvious sub-

clustering. After the clustering, a CART (Classification And Regression Tree) program is 

used to extract sequence features for each cluster, so that the relationship between the 

sequence features and fragmentation behaviors can be established. 
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3.3 Results and discussions 

 

Figure 3.1 a) Quantile maps for the three clusters obtained by K-means clustering of 

11954 spectra of Lys-C digested unique peptides. Two quantile maps are plotted for each 

cluster, one for c ions (top) and one for z ions (bottom); b) Quantified cleavage 

preference in Cluster 2. The left graph represents the cleavage C-terminal to a certain 

residue and the right graph represents the cleavage N-terminal to a certain residue. 

Cleavage preference (y axis) is represented by the probability for a certain amino acid 

pair to have strong cleavages (reference 9 for detailed calculation), e.g., cleavages C-

terminal to E, H, N, Q, R and W are relatively strong, and cleavages N-terminal to G, I ,V 
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are rather weak. 

  

Table 3.1. Peptide charge and length distribution for lys-C digestion ETD dataset and 

corresponding clusters.  

��  
All  (11954 
peptides) 

Cluster 1 (3522 
peptides) 

Cluster 2 (4737 
peptides) 

Cluster 3 (3695 
peptides) 

Charge 

2 14% 36% 3% 8% 

3 45% 38% 60% 33% 

4 29% 21% 29% 36% 

5 and more 12% 5% 9% 22% 

Average charge 3.4 3.0 3.5 3.7 

Average length 17  14  14  21  

Sequence with 
internal Lys 

28% 13% 31% 38% 

Sequence with 
internal Arg 

63% 54% 66% 66% 

Fragmentation 
patterns 

N/A 
Very strong X-K 
cleavage (Cn-1 
ion) 

Moderate 
cleavage for 
selected residue 
pairs 

No cleavage 
preference 

 

3.3.1 Lys-C digestion 

Clustering of the Lys-C digested peptides resulted in three clusters with distinct 

fragmentation behaviors (Figure 3.1a): 1) a cluster with extremely strong cleavage N-

terminal to Lys (the majority are cn-1 ions with “n” indicating the total number of residues 

because only 13% of the peptides have internal Lys); 2) a cluster with moderate cleavage 

preference for certain residues (see Figure 3.1b); 3) a cluster with more uniform 
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cleavages. CART analysis showed that the separation mainly depends on charge and 

length (Table 3.1). Peptides in Cluster 1 are lower charged and shorter, with 36% doubly 

charged peptides, 38% triply charged peptides, and an average length of 14. Cluster 2 

peptides are the same length as those in Cluster 1 but have higher average charge (3.5 

versus 3.0). Peptides in Cluster 3 are longer and more highly charged, with an average 

length of 21 and average charge of 3.7. With the consideration of the fragmentation 

patterns in each cluster, it can be seen that the backbone cleavage selectivity decreases 

with increasing charge states and length. This may indicate that the selective cleavage is 

charge or radical directed. For a lower charged Lys-C peptide, the C-terminal Lys is the 

primary electron attachment location, which results in dominant cn-1 ions; as the charge 

increases, there are more electron attachment locations thus more cleavable sites along 

the peptide backbone, so that the selectivity decreases.  

Besides the features mentioned above, it is also observed that cleavage N-terminal 

to Pro is prohibited, which is expected because of its ring structure. In addition, the z ions 

from the cleavage N-terminal to carbamidomethylated Cys are generally missing due to a 

-90 neutral loss of the side chain.52,53  When the loss of 90 is considered, the missing z ion 

column can be recovered. This phenomenon suggests that ETD search engine should use 

the mass with neutral loss when the cleavage happens N-terminal to 

carbamidomethylated Cys. 
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Figure 3.2. Quantile maps for the two clusters obtained by K-means clustering from 

12042 spectra of Glu-C digested unique peptides. Two quantile maps are plotted for each 

cluster, one for c ions (top) and one for z ions (bottom). 
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Figure 3.3. ETD spectrum of 3+ AAFRNIKTIAE. A strong c10
2+ ion was observed which 

corresponds to the cleavage before the C-terminal residue Glu. Complementary c4/z7 ions 

correspond to the cleavage between Arg and Asn.  

Table 3.2. Peptide charge and length distribution for Glu-C digestion ETD dataset and 

corresponding clusters.  

��  
All  (12042 
peptides) 

Cluster 1 (5340 
peptides) 

Cluster 2 (6702 
peptides) 

Charge 

2 1% 0% 1% 

3 45% 32% 56% 

4 43% 57% 33% 

5 and more 10% 11% 10% 

Average charge 3.6 3.8  3.5 

Average length 16.2 15.3  17  

Sequence with 
internal E 

38% 33% 42% 

Fragmentation N/A Moderate Very strong 
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patterns cleavage for 
selected residue 
pairs 

cleavage at X-E 

 

3.3.2 Glu-C digestion 

Glu-C digested peptides, which are mainly triply and quadruply charged, 

separated into two main clusters of behaviors. The first cluster (5340 peptides, Figure 3.2 

left) shows moderate cleavage preferences at various locations, which is similar to 

Cluster 2 of the Lys-C digested peptides. The other distinct cluster (Figure 3.2 right) 

shows very strong cleavage at N-terminal to Glu. Though 42% of these peptides have 

internal Glu, 98% of these X-E cleavages are cn-1 ions involving no internal Glu. Table 

3.2 summarizes the charge and length distributions for the separation. It can be seen that 

the cluster with strong X-E cleavages (Figure 3.2, right) are relatively lower in charge 

(3.5 versus 3.8) but a little longer (17 versus 15). Figure 3.3 is an ETD spectrum showing 

an example of the enhanced cleavage N-terminal to Glu. This looks very similar to X-K 

cleavage in the Lys-C dataset, with both X-K and X-E cleavage generating strong cn-1 

ions.  
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Figure 3.4. Quantile maps for the two clusters obtained by K-means clustering of 6423 

high resolution spectra of unique tryptic peptides. 

Table 3.3. Peptide properties for tryptic ETD dataset and corresponding clusters.  

��  

All  (�����
peptides) 

Cluster 1 (2977 
peptides) 

Cluster 2 (3446 
peptides) 

Lys ending 60% 58% 61% 

Arg ending 40% 41% 39% 

Sequence with 
internal Lys 

10% 10% 9% 

Sequence with 
internal Arg 

15% 15% 12% 
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Average charge 3.2 3.4  3.1 

Average length 16.4 19.6 13.6 

Fragmentation 
patterns 

N/A 
No cleavage 
preference 

Strong X-K and 
X-R cleavage 

�

3.3.3 Trypsin digestion 

The final spectral dataset subjected to clustering corresponds to 6423 tryptic 

peptides. All peptides in this high resolution tryptic dataset have three or more charges, 

with 79% triply charged and 19% quadruply charged peptides. Two clusters were 

achieved through clustering: 1) a cluster with uniform cleavages; 2) a cluster with 

moderate cleavage preferences at various locations, including strong cleavage at the N-

terminus of Lys and Arg in the c ions. As expected from the cleavage patterns in Figure 

3.4, CART analysis (Table 3.3) shows that peptides in the first cluster are generally 

longer (20 versus 14) and slightly more highly charged (3.4 versus 3.1), while Cluster 2 

peptides are shorter and lower charged. The low percentage of internal Lys and Arg 

strongly indicates the preference for cn-1 ion, which is in agreement with the observation 

in Lys-C and Glu-C datasets. Note that strong preferential cleavage at Arg is seen only in 
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this dataset, where Arg occupies the C terminal positions. 

 

Figure 3.5. a) Bar graph indicating the numbers of unique peptides distributions (550 

total, not ending with K,R and E) in which the cn-i  ion is the most intense peak among all 

c ions (n is the peptide length, i means the ith residue to the C-terminal of the peptide). b) 



89 
 

 

  

Distributions in terms of charge states.  

Results from the three datasets indicate that cn-1 is a preferred cleavage site for 

Lys-C, Glu-C and tryptic peptides, but cannot indicate whether the preference is simply 

due to a position effect or the fact that the peptides are ending with the specific basic and 

acidic residue Lys, Arg and Glu. To clarify the issue, we analyzed the spectra of 550 

peptides that do not end with Lys, Arg and Glu. These are non-specifically cleaved 

peptides from the Lys-C, Glu-C and trypsin datasets. Figure 3.5 shows the distributions 

of 550 peptides: the cn-i  ion  was found to be the most intense peak among all c ions. It 

can be clearly seen that the cleavage intensity decreases as the distance from the C-

terminus increases, and the cn-1 ion is significantly stronger than the other c ions. This 

observation unequivocally indicates that the cleavage preference in ETD is highly 

affected by the residue position, which is possibly determined by the gas phase precursor 

structure as suggested by Moss and coworkers using model peptides.54 As the charge 

getting higher, the structures of the peptides will change, and this position effect diminish 

(Figure 3.5B), in agreement with the Lys-C clustering results. 

Table 3.4. Summary of observed ETD fragmentation patterns.  
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Table 3.4 summarizes the ETD fragmentation patterns observed by applying the 

K-means clustering method to Lys-C, Glu-C and tryptic datasets. The patterns highly 

depend on charge state. At higher charges states, the cleavage is non- selective with no 

preferential cleavage. At lower charge states, there are very strong cn-1 ions, and moderate 

preferred cleavages involving certain residues, such as enhanced cleavages C-terminal to 

E, H, N, Q, R and W, and suppressed cleavages N-terminal to G, I and V. Though these 

trends are not phenomenal enough to be unequivocally described as dominating 

cleavages, many of them can also be observed in the ECD statistics published 

previously.49 In addition, limited cleavage occurs to the N-terminus of Pro, which is 

expected due to the ring structure, and the z ions from the N-terminal cleavage of 

carbamidomethylated Cys are always missing, due to the -90 neutral loss of the side 

chain.52,53 We also examined the hydrogen transfer products in ETD and the data are 

shown in supporting material. Strong c-1 radical ions, formed after hydrogen transfer, are 

also observed corresponding to cleavage N-terminal to Lys and Glu, for Lys-C and Glu-C 

peptides. All these patterns could be used directly for ETD fragment intensity prediction, 

and at the same time, provide guidance to clarify the underlying dissociation 

mechanisms. The results will be incorporated into our intensity based algorithm, SQID,45 

to improve ETD peptide identification.  
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3.4. Charge transfer products 

We also examined the hydrogen transfer process in ETD which generates c-1 and 

z+1 ions. A deisotoping procedure was used to remove the portion of the z+1 ion 

intensity that comes from the first isotope peak of a regular z ion. Both c-1 and z+1 ions 

were mined for clustering. For the Lys-C (Figure 3.6) and Glu-C (Figure 3.7) datasets, 

strong c-1 ions were observed for cleavage N-terminal to Lys and Glu, respectively, 

while no strong z+1 ions were observed. We examined the sequence features (charge, 

length, residue positions, etc.) for this separation and did not see any dominating factor. 

This is in conflict with previous reports that extensive hydrogen transfer products were 

observed for doubly charged peptides, but much less for triply or higher charged 

peptides.48 The tryptic dataset does not contain doubly charged peptides so Figure 3.8 

only reflects pairwise fragmentation patterns of c-1 and z+1 ions for peptides with three 

and more charges. Clustering produced two clusters, one with no c-1, z+1 ions  and the 

other with very strong c-1 ions at the N-terminus of Lys and relatively strong z+1 ions at 

the N terminus of Arg. The clusters for c-1 and z+1 ions from the three datasets share the 

same trends as c and z ions, which implies that hydrogen transfer products are coming 

from the same dissociation pathway as c, z ions.  
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Figure 3.6. Quantile maps for the two clusters obtained by K-means clustering of 11954 

spectra of Lys-C unique peptides, for c-1 (top) and z+1 ions (bottom).  

�
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Figure 3.7. Quantile maps for the two clusters obtained by K-means clustering of 12042 

spectra of Glu-C unique peptides, for c-1 (top) and z+1 ions (bottom).  

�
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Figure 3.8. Quantile maps for the two clusters obtained by K-means clustering of 6423 

high resolution spectra of tryptic unique peptides, for c-1 (top) and z+1 ions (bottom).  

�
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Figure 3.9. Summary of ETD clustering.  

3.5. Directions of ETD algorithms 

As we know, collision activated dissociation (CAD) and electron transfer 

dissociation (ETD) are two peptide fragmentation methods frequently used in modern 

mass spectrometry based proteomics experiments. CAD fragments peptides by colliding 

them with inert gas atoms or molecules, resulting in energy randomization and 

subsequent dissociation of weaker bonds such as amide bonds.  In ETD, however, 

multiply-charged peptides cations receive electrons from radical anions to form an 

aminoketyl radical, and further dissociate primarily at N-C�  bonds.46 This distinct 

mechanism gives ETD spectra many unique features. 1) N-C�  cleavage generates c, 

z· ions rather than the b, y ions of CAD. 2) Peptides with higher charge states generally 

fragment better with ETD than CAD. 3) ETD spectra normally have intense charge 

reduced precursor peaks ([ET-no-D] products) as well as corresponding neutral loss 

peaks.  4) Charge transfer products, especially c-1 and z+1 ions, are frequency observed 

in ETD spectra.  5)  Cleavage with ETD is less selective, generating more extensive ion 

series. 6) Labile posttranslational modifications which are often lost in CAD can be 

retained in ETD.46,48,49,55 Understanding these unique features is extremely helpful for the 

correct interpretation of ETD data.     

However, because ETD is a newer technique, most of the protein identification 

algorithms for ETD are still a simple derivation of well-established CAD algorithms, 

only  searching with c, z· ions instead of b, y ions.56 Though this model works, it is over-

simplified because it only considers the first ETD feature mentioned above while 
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ignoring all the others. This could be problematic in many cases, e. g., the strong charge 

reduced precursor peaks can be accidently matched to fragment ions, resulting in a higher 

false discovery rate (FDR). Clearly, specialized algorithms should be developed for ETD, 

or existing algorithms should be adapted for ETD, by considering unique ETD features, 

and efforts have already been made by many groups. 57,58,59 

The database search method used in peptide identification can be simply 

described as comparing an experimental spectrum with a set of theoretical spectra or peak 

lists derived from candidate sequences pulled from a sequence library by setting a 

particular mass tolerance for the precursor ion. To do this, nearly all the current 

algorithms involve the pre-processing of an experimental spectrum, generation of a set of 

theoretical spectra, and  using certain scoring functions to evaluate the similarities of the 

theoretical spectrum to the experimental spectrum to determine the best match. The 

transition of CAD algorithms to ETD mainly focused on the first two aspects which will 

be discussed here.  

  The major purpose of pre-processing an experimental spectrum is to remove 

peaks that are not less indicative of the peptide sequences or can lead to false peak 

matches, including non-product ions, isotope ions and noise peaks. In CAD, the 

fragmentation is efficient that remaining precursor is not a concern, while in ETD charge 

reduced precursor ions and corresponding neutral loss ions are too abundant to be ignored. 

These ions are double-edged swords for ETD peptide identification: on one hand, these 

derivatives of precursors are confounding because they account for a large portion of 

total ion current (TIC) but contain little information about backbone fragmentation. Good 
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and coworkers first reported improved peptide identification by removing these 

“interfering ions” before submitting the data for search.57,60 On the other hand, these ions 

may be used to deduce the property of the precursor. Xia reported using the amino acid 

side chain neutral loss in ETD as a fingerprint for amino acid composition.53 For instance, 

a neutral loss of 43Da from precursor suggests the presence of arginine, which can 

greatly reduce the search space. Sridhara and coworkers showed that the distribution of 

charge reduced precursors and neutral losses can be used to predict precursor charge.61  

An ideal way for ETD spectrum pre-processing is probably a combination of the two: 

using charge reduced precursors and neutral loss to get hints of the sequence and charge, 

then remove them during spectra comparison.   

In terms of theoretical ETD spectra generation, in-depth understanding of the ion 

types and fragment intensities in ETD is required. Chalkley and coworkers did a 

statistical study on ETD spectra and showed that besides c, z ions, y, z+1 and c-1 ions are 

also abundant and their occurrence varies by charge states.48 They later implemented a 

charge and sequence dependent scoring method and reported an 80% increase in peptide 

identification.58 A similar concept has also been implemented into algorithms such as 

pFind.59 Fragment intensity in ETD is less understood and could  be the next catalyst to 

boost ETD peptide identification, and it is already well accepted that intensity patterns 

can improve peptide identification for CAD.  Recent intensity pattern studies show that 

selective cleavage also exists for ETD, and is dependent upon both the amino acid 

composition and the position of cleavage sites.55 These information can be incorporated 

into ETD identification algorithms to further improve peptide identification. 
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In sum, the process of implementing known fragmentation features, or chemical 

knowledge, into algorithms involves both deep understanding of the chemical knowledge 

as well as numerous efforts for optimization. We anticipate that as more researchers 

obtain instruments with ETD and as researchers better define ETD acquisition methods 

and search algorithms, ETD will continue to increase in popularity due to its 

complementary fragmentation patterns to CAD and the ability to retain post-translational 

modifications. The exponential growth of ETD datasets as well as higher mass accuracy 

requires faster algorithms that are optimized for high resolution data.  It is important to 

make large and high resolution ETD datasets available so that researchers can extract 

more ETD features using statistical methods (clustering, linear discriminant analysis, etc.) 

to add into algorithms and evaluate their performance. Other peptide identification 

methods, such as ETD spectral library searches and ETD de novo sequencing, will also 

benefit from a deeper understanding of ETD features. Lastly, more post-processing tools 

such as Scaffold should be developed to integrate data from multiple fragmentation 

methods and multiple algorithms.36,62 

�  
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CHAPTER 4: SQID-XLINK: DEVELOPING AN ALGORITHM FOR 

CROSS-LINKED PEPTIDE IDENTIFICATIONS 

 

The initial motivation to develop a program for cross-linking was to help researchers in 

the Wysocki laboratory better analyze cross-linking data. Later we found that it works 

very effectively so a user friendly interface was developed and results were published.   

4.1 Abstract 

Appropriate algorithms are a major bottleneck for mass spectrometry based 

chemical cross-linking experiments. Our lab recently developed an intensity-incorporated 

peptide identification algorithm, and here we implemented this scheme for cross-linked 

peptide discovery. Our program, SQID-XLink, searches all regular, dead-end, intra and 

inter cross-linked peptides simultaneously, and its effectiveness is validated by testing a 

published dataset.  This new algorithm provides an alternative approach for high 

confidence cross-linking identification. SQID-XLink program is freely available for 

download from http://quiz2.chem.arizona.edu/wysocki/bioinformatics.htm 

4.2 Introduction 

Chemical cross-linking coupled with mass spectrometry is a powerful approach to 

analyze protein structures and interactions. 63,64 In such an experiment, spatially adjacent 

amino acid residues from one or more proteins are covalently linked by chemical 

reagents.  The cross-linked proteins are then enzymatically digested and the resulting 

cross-linked peptide pairs can be detected by mass spectrometry.  Identification of these 
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cross-linked peptides enables researchers to define the interaction sites of proteins in a 

complex in their native states and to build or confirm structural models. Compared with 

traditional techniques such as NMR and X-ray crystallography, mass spectrometry based 

chemical cross-linking does not require a large quantity of sample.65 Moreover, recent 

development of high resolution and high throughput mass spectrometers such as the 

Orbitrap have offered increased efficiency and sensitivity required for the identification 

of cross-linked peptides.  

Although the chemical crosslinking approach is promising, the data analysis for 

chemical cross-linking forms a major limitation for this technique.65 This is mainly 

because cross-linked sequences are non-linear, thus traditional protein database search 

algorithms such as Sequest and X!Tandem cannot be directly employed.  The 

development of new database searching algorithms enables more and more protein 

identification from a single shot-gun proteomics experiment, however, these novel 

approaches have seldom implemented a cross-linking search function to increase the 

number of identified cross-linked peptides. Moreover, many current cross-linking 

algorithms are slow, lack graphical user interfaces and need extensive manual data 

interpretation before and after the search. These shortcomings motivated us to make a 

powerful and user-friendly tool to identify cross-linked peptides. 

Here we report the implementation of our recently developed peptide 

identification algorithm, SQID,55 to cross-linked peptide identification (SQID-XLink). 

Our algorithm features an intensity incorporated scoring function: when a strong peak in 

a spectrum agrees with the statistical value, the confidence will be boosted. For example, 
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if a CID-induced cleavage occurs N-terminal to proline or C-terminal to glutamic acid or 

aspartic acid, the score will be higher. This is similar to manually checking a spectrum to 

confirm if the strong peaks are from cleavages expected to lead to abundant peaks. Due to 

the low abundance of cross-linked peptides and corresponding poorer spectral quality, 

incorporating intensity into cross-linking search algorithms will be potentially very 

beneficial. In addition, SQID-XLink searches all regular, dead-end (cross-linked at only 

one reactive site of the cross-linker), intra-peptide(cross-linked at two locations within a 

single peptide) and inter-peptide cross-links simultaneously with the same scoring 

function, so that the probability of false identification can be minimized.   

4.3 Methods 

SQID-XLink is a modified version of SQID which is specifically designed for 

cross-linking searches. It is written in C language with a user-friendly interface from 

visual basic 6.0. It has been tested in Windows XP and Windows 7 operating systems. 

Currently the program supports BS2G-d0/d4 (Bis[Sulfosuccinimidyl] glutarate), BS3-

d0/d4 (Bis[Sulfosuccinimidyl] suberate) and EDC(1-Ethyl-3-[3-

dimethylaminopropyl]carbodiimide) cross-linkers.  

   SQID-XLink processes a fasta database by generating regular peptides, and 

peptides with a variable modification of the mass of dead-end or intra-peptide cross-

linker. Peptides containing cross-linkable residues are extracted and paired through 

combination of any two peptides. During the search, the two peptides in a cross-linkable 

pair are linearized into two sequences by putting one sequence before the other (AB and 

vice versa BA) and searched respectively, as reported by Maiolica.66 Ions generated by 
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cleaving the sequences between the cross-linkable locations are excluded and the search 

results of the two linearized sequences are combined as the final result of for cross-linked 

peptide pair. The final SQID-XLink score is calculated as:    

 

   where m is the number of matched peaks, Pr is the probability for a certain amino 

acid pair to have strong peaks (stored in a table), and K is the number of most intense 

peaks used to calculate the intensity score � Pr (K depends on the mass of peptide, and 

equals the integer portion of [2+mass/330]). The term (1+ � Pr)/(1 + 0.155K) measures 

whether the observed intensity (the numerator) is better than the expected value (the 

denominator).The function is similar to the SQID scoring function except that 

consecutive ion series are not used. This is because consecutive ion series tend to greatly 

increase the confidence when a part of the whole peptide sequence is matched, but cross-

linked peptides involve two independent sequences. The Pr table and a more detailed 

explanation of Equation 1 can be found in Chapter 2.55 
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4.4 Results  

 

Figure 4.1 a) Score distribution versus precursor m/z error. Blue spots represent the hits 

by searching with cytochrome P450 2E1 and cytochrome b5 sequences, while red spots 

are by searching with decoy sequences. b) Unique cross-linked peptides identified by 

SQID-XLink, and a comparison with xQuest and Crux/Popitam. Only high confidence 

matches (FDR<1%) are considered. Bold font indicates the location of cross-linking. 

*Data from Table 2, McIlwain et al., 2010.67 **These two peptides can be identified with 

a higher FDR by Crux (3%) or xQuest (5%). 
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A published EDC cross-linking dataset of human cytochrome P450 2E1 (P450) 

and cytochrome b5 (B5) was used to test the program.67 The dataset contains 3314 

spectra, and was collected using an LTQ-Orbitrap with high resolution for both the 

precursor and MS2 masses. The search was performed with 3 missed cleavages and a 50 

ppm precursor and 20 ppm fragment m/z tolerance against both the target and decoy 

version of the database. The decoy database was built with reverse sequences of the two 

proteins plus twice the number of randomized sequences, with 5.4 times larger search 

space compared with the target database. Figure 1a shows a plot of score versus precursor 

m/z error. The majority of high score hits observed have a precursor mass error within -5 

to 20 ppm, and decoy hits have a maximum score of 3.22.  As a result, using -5 to 20 ppm 

and a score of 3.22 as a threshold should give a false discovery rate (FDR) close to 0. 

With these parameters we discovered 163 high confidence peptide-spectrum matches, 

with 140 from non-crosslinked tryptic peptides, 22 from cross-linked peptides, and 1 

from intra-peptide crosslinks.  The minimum score for matched cross-linked peptides was 

4.45, which is far above the threshold used. Figure 1b summarizes the unique cross-

linked peptides that are assigned by SQID-XLink, and comparison with a popular cross-

linking search engine, xQuest ,64 as well as comparison with previously published results 

from Crux (Table 2, McIlwain et al., 2010)67 and Popitam (Table 1, Singh et al., 2008)68. 

XQuest was searched using the same parameters as SQID-XLink and the FDR was 

determined with the same target-decoy database search strategy. We use published 

Popitam and Crux results directly instead of using our own search results because 

Popitam needs an additional algorithm to pre-filter the data and needs extensive manual 

interpretation to associate the modification mass with peptide sequence, while Crux relies 
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on its own FDR estimation system which needs the optimization of many parameters. 

The published data were already optimized by the author and manually verified, so they 

represent the best performance of the two algorithms. Our results show that SQID-XLink 

can identify a larger number of cross-linked peptides at high confidence. The two intra-

protein cross-linked products (GTVVVPTLDSVLYDNQEFPDPEK, 

FKPEHFLNENGK) and (LYTMDGITVTVADLFFAGTETTSTTLR, 

YGLLILMKYPEIEEK) in Table 2 of the reference McIlwain et al., 2010 67 are matched 

to linear peptides with missed cleavages by both SQID-XLink and xQuest. The spectra of 

these products as well as a complete list of identified peptides by SQID-XLink, Crux 

(from our own searches) and xQuest can be found in section 4.6. In terms of speed, the 

total search time including database processing was only 2.3 minutes for SQID-XLink 

and 6.5 minutes for Crux, on a 64-bit computer with Intel Xeon 2.4GHz cpu (Crux only 

works on 64-bit computer), while it took 36~127 minutes for the xQuest webserver, 

depending on the server condition.   
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4.5 Spectra and searching results 

�

Figure 4. 2 Spectrum of cross-linked peptide (EMSKTFIIGELHPDDRPK, LYMAED) 5+ 

for Scan Number 2067. 

  



 

Figure 4. 3 Spectrum of cross

Scan Number 1682 (annotation generated using xQuest).

  

 

Spectrum of cross-linked peptide (YKLcVIPR, FLEEHPGGEEVLR) 4+          

Scan Number 1682 (annotation generated using xQuest). 
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linked peptide (YKLcVIPR, FLEEHPGGEEVLR) 4+          



 

Figure 4. 4 Spectrum of 

EQAGGDATENFEDVGHSTDAR)5+ scan 1758. If the fragment y18 2+(cleavage 

between AG) at 939.39130 is considered as noise, the cross

(YSDYFKPFSTGK,  EQAGGDATENFEDVGHSTDAR)5+.

  

(annotation generated using xQuest)

 

 

 

Spectrum of cross-linked peptide (YSDYFKPFSTGK,  

EQAGGDATENFEDVGHSTDAR)5+ scan 1758. If the fragment y18 2+(cleavage 

between AG) at 939.39130 is considered as noise, the cross-linked location can also be  

(YSDYFKPFSTGK,  EQAGGDATENFEDVGHSTDAR)5+. 

ed using xQuest) 
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linked peptide (YSDYFKPFSTGK,  

EQAGGDATENFEDVGHSTDAR)5+ scan 1758. If the fragment y18 2+(cleavage 

linked location can also be  



 

Figure 4. 5 Spectrum of cross

EQAGGDATENFEDVGHSTDAR)5+          scan 1615.

  

(annotation generated using xQuest)

 

 

Spectrum of cross-linked peptide (YSDYFKPFSTGKR, 

EQAGGDATENFEDVGHSTDAR)5+          scan 1615. 

(annotation generated using xQuest) 
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linked peptide (YSDYFKPFSTGKR, 
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Figure 4. 6 Spectrum of non-cross-linked peptide 

GTVVVPTLDSVLYDNQEFPDPEKFKPEHFLNENGK 5+  scan 2565. 

  

This spectrum is identified as a linear peptide by xQuest and SQID-XLink while 

Crux identifies it as a cross-linked peptide (GTVVVPTLDSVLYDNQEFPDPEK, 

FKPEHFLNENGK).  All major peaks in the spectrum are assigned and there is no peak 

supporting the cross-linking of E and K.  
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�

Figure 4. 7 Comparison of SQID-XLink versus xQuest and Crux (run by us). 

  

The FDR level is determined using a target-decoy database search strategy by 

separately searching a target database and a decoy database. When a peptide is matched 

to a target protein, it is considered “True”; if it is matched to a reverse protein, it is 

considered “false”. FDR level is associated with score thresholds. At a certain FDR level, 

any hits above the score threshold are considered “Positive”. If a peptide from the decoy 

database has a score above that threshold, it is considered a “false positive”. That means 

the comparisons we performed have an equal percentage of “false positives” for each 

algorithm. It is a fair comparison and proved that at the same FDR level SQID-XLink 

identifies more cross-linked peptides. 
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It should be noted that for the Figure 4.7 we searched Crux ourselves without 

using the published crux results, and the “True positives” include all linear peptides, 

looped peptides and cross-linked peptides for all algorithms. If only cross-linked peptides 

are consider, the number is too small to determine an error rate. The graph shows that 

SQID-XLink leads to significantly more identifications. We tried our best to use as 

similar parameters as possible for each algorithm, and the same target-decoy database 

search strategy was used. Detailed parameters from each algorithm can be found below: 

SQID-XLink search.    

The search was performed with 3 missed cleavages and a 50 ppm precursor and 

20 ppm fragment m/z tolerance against both the target and decoy version of the database. 

The decoy database was built with reverse sequences of the two proteins plus twice the 

amount of randomized sequences, with 5.4 times larger search space compared with the 

target database. The results were filtered to -5 to 20 ppm after search.  

Table 4. 1. Cross-linked peptides identified by XLink-SQID  at 1% FDR.  The results is 

sorted by “Final score” column. “XL-Position” indicates the position of the residue in the 

protein.  
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xQuest search.    

xQUEST parameters: 

number of proteins: 2 

number of peptides: 184 

number of theoretical x-link combinations (n^2/2): 16928  

database Cytochrome.fasta 

number of missed cleavages allowed -> 3 

minimum peptide size -> 3 

maximum peptide size -> 40 

fixed modification -> C:57.0215 

fragmentions considered (abcxyz) -> 010010 
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reactive amino acid(s) -> K,D,E 

mass added by x-linker for x-links and looplinks -> -18.010565 

mass(es) added by x-linker for mono-link -> 0.0 

search in ion-tag mode -> 0 

search in enumeration mode, memory mode -> 1 

units for MS1 tolerance -> ppm 

precursor mass tolerance -> 50 

fragment mass tolerance [m/z] -> 0.03 

fragment mass tolerance for xlink-ions [m/z] -> 0.03 

minimum fragment ion m/z -> 200 

maximum fragment ion m/z -> 1800 

MS/MS peak intensity threshold -> 0 

mass difference of light and heavy x-linker -> 0.0 

MS/MS peak intensity dynamic range -> 9999 

 

Because xQuest does not have EDC as a choice, the results contain some cross-

linked sites between D-D, D-E, E-E and K-K. A house made perl script is used to filter 

out the cross-linked peptides that are not cross-links  between K-E or K-D. For instance, 

if the top hit is a cross-link between D-E and the second hit is a cross-link between D-K, 

the top hit will be removed and the second hit becomes the best hit. Up to 5 hits were 

considered. The results were filtered to -5 to 20 ppm after search, as SQID-XLink. The 

same decoy database was used for reverse search.  
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Crux search:    

Parameters: 

Crux involves about 100 search parameters, and we tried to set the parameters as similar 

as SQID-XLink and xQuest as possible. Here are some important parameters: 

50 ppm precursor tolerance, mono-isotopic  

0.03 Da bin width for fragments, mono-isotopic  

500 min-weibull-points 

Fixed modification C+57.02Da, Crux cross-link does not accept variable modifications.  

The same decoy database was searched as SQID-XLink and xQuest. However, 

Crux reports an Xcorr score as well as a p-value. Ranking the hits using Xcorr or p-value 

gives similar but not the same results. A comparison can be found in Figure 4.7.  

 

4.6 Algorithm for Bpa cross-link 

P-benzoylphenylalanine (Bpa) is a photoactive amino acid which can be 

incorporated into a protein sequence by replacing another residue. The cross-linking site 

involves the Bpa residue and any other residues. 69 Because incorporating Bpa into a 

protein involves much more work than just reacting  BS2G or BS3 with proteins in 

solution, it is not a very popular cross-linker and so far there is no effective program to 

search Bpa data.   Based on the original Perl codes for SQID-XLink, a Perl based 
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program was developed for Bpa data, which can be downloaded from 

https://dl.dropbox.com/u/44737319/crosslink_BPA.zip.  

Procedure: 

Must have cygwin with perl installed in cygwin. Run the following commands from 

Cygwin in the directory containing the Perl file: 

1. Perl 1_digestBP.pl YOURFASTAFILE.fasta digestOut 3 monoMass 

(this performs tryptic digest of the database, with 3 missed cleavages and monoMass for 

precursors. For non-tryptic peptides, please use protein prospector to replace this step). 

2. Perl 2_create_database_BPA.pl 

(this creates the crosslinked database).  

3. Perl 3_ScoreTheCrosslin_f_charge10ppm.pl YOURDTAFOLDER 

4. Run extractresults.pl in the dta folder.  
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Figure 4.8 Cygwin output for the BPA cross-link search.  

4.7 Conclusions 

We have introduced SQID-XLink, an open source program for cross-linked 

peptide identification. By testing it with a published dataset and comparing it with the 

results of existing algorithms, SQID-XLink demonstrated its ability to identify more 

cross-linked peptides at high confidence. In addition, SQID-XLink is fast and has an 

easy-to-use graphical user interface. More cross-linker support and better visualization of 

the results will be added in the near future. 70 

 

 

�  
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CHAPTER 5: SQID-MOD: DEVELOPING AN ALGORITHM FOR 

BLIND MODIFICATION SEARCH 

 
Although a large number of researchers are trying to use higher resolution instruments 

and smaller mass errors for MS/MS searches, we realized that very large mass errors 

can identify peptides with unknown modifications. We are still improving this algorithm 

though current results are encouraging.  

 

5.1 Introduction 

Many peptides contain modifications. These modifications could be a result of 

post-translational modifications (PTMs) from native proteins, such as phosphorylation 

and glycosylation, or introduced during sample preparation, such as oxidation of 

methionine and carbamidomethylation of cysteine. Identification of these modifications, 

especially PTMs, gives more sequence information as well as better understanding of the 

structure and function of the proteins. For nearly all the current algorithms, users can 

specify static and variable modifications as searching parameters. Static modifications 

assume that all instances of a certain residue are modified with a fixed mass, which can 

be easily searched by replacing the mass of that residue with a modified mass; variable 

modifications assume that some instances of a certain residue are modified while the 

others are not, resulting in two forms of peptides: modified and unmodified version. 

Because variable modification can significantly increase the number of peptide 

candidates to be searched, most algorithms only allow a limited number of modifications 

in a search, e.g., Sequest allows up to 5 variable modifications. In real practice, the most 
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commonly used modifications only include oxidation of methionine (M+16) and 

carbamidomethylation of cysteine (C+57), and sometimes the phosphorylation of serine, 

threonine, and tyrosine (S,T,Y+80). Figure 5.1 is a demonstration of the traditional 

method for modification search.  

 

Figure 5. 1 Traditional way for modification search. The unmodified and modified 

peptides are generated when processing the database. 

 

A major drawback of the above method is that only the specified modifications 

will be considered while other modifications, if any, will all be ignored. According to 

Unimod PTM database,71 there are more than 500 known modifications so to only 

consider less than 5 can potentially result in loss of a lot of valuable information. To date, 

many algorithms have been developed to address this problem. These modification 

approaches can be divided into three basic categories. The first category is similar to de 



120 
 

 

  

novo sequencing, which uses sequence tags to build the peptide sequence and uses 

modifications to explain the unexpected mass difference (InsPecT,72  MODi, 73  and 

ByOnic 74). The second category assumes that both the modified and unmodified version 

of a peptide should exist in the same sample. When an unmodified peptide is identified, 

the algorithm will automatically search modified versions of that peptide (MS-

Alignment)75 . The third category simply tries to increase the number of known 

modifications specified in the parameter by improving the efficiency of search (Peaks 

PTM 76). Though all these algorithms were able to identify a large number of modified 

peptides which are commonly missed by regular algorithms, limitations still exist. For 

instance, the sequence-tag based method requires well-defined ion series so that the tags 

can be extracted unambiguously; the peptide pair method can potentially lose many 

identifications because modified and unmodified versions of a peptide may not 

necessarily both appear; the last search method is not totally blind, and there is no chance 

to find modifications that are not listed (such as single amino acid mutations). Here we 

reported an alternative method for  blind modification search which is easy to implement 

and does not use any tags or peptide pairs. 

5.2. Methods 

When a peptide is modified, the mass of a modification will be reflected in both 

the precursor mass and the masses of the fragment containing the modified residue. As 

shown in Figure 5.2, the phosphorylation of serine increases the precursor mass by 80 Da 

and the b andy ions containing the residue by 80 Da. If we assume all candidate peptides 

contain ONE potential modification, the modification mass will equal the mass difference 
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(� m) between the experimental mass and the unmodified peptide candidate mass. By 

searching four ion series b, y, b+� m and y+� m, we are able to distinguish whether a 

peptide is modified or not (Figure 5.3). 

 

 

 

Figure 5. 2 The phosphorylation of serine increased the precursor mass by 80 Da and the 

b, y ions containing the residue by 80 Da. 
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Figure 5.3. The mass difference and the four ion series indicate a modification of � m on 

serine. 

 

The basis of our method is to increase the precursor mass tolerance for a search, 

e.g. use 100 Da as precursor mass tolerance, instead of the commonly used 3 Da or less. 

When matching a spectrum with a candidate peptide, we always assume the peptide is 

modified and the modification mass equals the mass difference between the experimental 

spectrum and candidate peptide. For example, if the precursor mass of an experimental 

spectrum is 1100 Da and the mass of a candidate peptide is 1050 Da, the potential 

modification will be 50 Da. When matching the fragments, four ion series are considered, 

b, y, b+50 and y+50, which ensure all the possible fragments are included regardless of 

the position of the modification. The workflow is illustrated in Figure 5.4. The advantage 
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of this method is that the search is completely blind and does not rely on sequence tags, 

while the disadvantage is that the localization of the modification site may be difficult 

(e.g., not all ions of a contiguous series can be detected and some peptides with multiple 

modifications cannot be easily identified). We are making efforts to solve these problems. 

 

Figure 5.4  General workflow of the modification search. A large mass tolerance (100 Da) 

is used as precursor mass tolerance, and four ion series b, y, b+ � m, and y+ � m are 

considered. 

Because searching with a large mass tolerance can significantly increase the 

search time (search time increases linearly with mass tolerance, e.g. using a 100 Da mass 

error will spend 100 time more time than using 1 Da mass error), in real practice we 

adopted a two round search method to speed up the search. The first round is a regular 

search with small precursor mass tolerance (e.g. 1.5 Da) which will identify unmodified 

peptides as well as modified peptides with user specified modifications. Only b, y ions 

will be considered in this round. Then a smaller database will be created which only 

contains peptides from the identified proteins and the second round search will use a 
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large mass tolerance (e.g. 100 Da), as well as the four ion series mentioned above. This 

routine can significantly increase search speed without compromising identification rate 

(Figure 5.8). The program was tested and confirmed that search time only increased 

about 1 fold compared with regular searches. 

 5.3. Results and discussion 

We applied the above method to a dataset collected using LTQ orbitrap, with high 

resolution for precursors and low resolution for fragments. The sample is from a de-

identified human infected by Aspergillus, and we searched the data against a large 

database containing human and many other fungal proteins. For the first round, a 

precursor mass error of 0.1 Da was used to identify peptides, and later a smaller database 

was created which only include proteins that have at least 1 identified peptide with a 

SQID score above 10. The second round search used a precursor mass error of 100 Da. 

0.5 Da fragment error was used for all the searches.  
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Figure 5.5 Illustration of the blind modification search results by ploting mass error 

versus score. 

Figure 5.5 illustrates the preliminary results we collected. Each spot is a peptide 

match. The x-axis is mass error in Da and the y-axis is the SQID score. Higher score 

means the identification is more reliable. Normally a score above 25 can be considered a 

very reliable match. We are surprised to see how many peptides with a large mass error 

have a high score. These mass errors reveal a modification. For instance, +57 can be 

explained by carbamidomethylation, and -18 can be explained by water loss. The 

importance of this research is, if the blind modification search is not used, only peptides 

with a mass error within 0.1 Da can be identified, while all others are lost.  

Figure 5.6 illustrates the search results for the yeast lysate dataset  (as used in the 
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SQID chapter). It is low resolution Ion trap data searched with semi-tryptic criteria and 

variable modifications of C+57 and M+16. Again, it is clear that there are many high 

scoring modifications which prove the effectiveness of this program.  

 

 

Figure 5.6 Ploting � m and SQID score for yeast dataset. The plot indicates a large 

number of modified peptides exist in the sample which cannot be discovered in the 

traditional search. 
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Figure 5. 7 An example spectrum.  A modification of -14 on alanine indicates a mutation 

from Ala to Gly. 

Figure 5.7 is an example spectrum from the peptide SAGWNIPMA(-14)K 2+. 

The experimental mass is 14 Da smaller than the theoretical mass, which can be 

explained by a modification of -14. Good series of b ions and (y-14) ions at many 

residues tell us the modification is on Ala, which indicates a mutation from Ala to Gly. 

From a codon table, it is easy to rationalize that this is a single nucleoside mutation from 

C to G (GCX for Ala and GGX for Gly). This new algorithm is capable of identifying 

peptides with modifications, mutations, amino-acid deletions and insertions.  
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Figure 5. 8 A comparison of searches with or without modifications, for full tryptic and 

semi tryptic, using 18 protein mixture dataset. 

Figure 5.8 shows the comparison between searches with or without modifications 

using the 18 protein mixture dataset (the one used in Chapter 2). For full tryptic searches, 

a 50% increase in the number of identified peptides was observed when modification 

search was applied (blue curve versus red curve).  For semi tryptic searches, the 

difference is smaller and modification method only outperforms regular method at higher 

FDRs.  This can be potentially explained by the difference between search spaces. The 

database contains about 8000 proteins and for the full tryptic search, the number of 

proteins is reduced to about 150 during the second round of search. However, for the 

semi tryptic search, there will be more random matches in the first round (the total 

number of peptide candidates increases about 20 folds) thus creating a larger protein list 

for the second round (about 1000 proteins). To overcome this limitation, a dynamic 
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threshold determination method should be developed so that the proteins for the second 

round can be selected using FDR instead of a fixed score.  

5.4. Conclusions and future directions 

SQID-MOD is a powerful algorithm to identify peptides with modifications, 

mutations, amino-acid deletions and insertions. Because no modification needs to be 

explicitly specified before the search, the algorithm can discover unknown modifications. 

Two limitations are that the algorithm cannot be applied to peptides with more than one 

modification, and the introduction of additional ion series (b-� m, y-� m) can potentially 

increase the chance of random matches. We are making modifications to the algorithm to 

make it more sensitive and specific (e.g. carefully adjusting the threshold for 2nd search).  
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CHAPTER 6: IDENTIFICATION OF IRON METABOLISM 

RELATED PROTEINS IN MOSQUITO OVARY 

 

This is a proteomics project in collaboration with Dr. Joy J. Winzerling from the 

Department of Nutritional Sciences. The digestion and LTQ runs are strictly following 

the protocols downloaded from proteomics facility. The project also serves as an 

opportunity to test SQID in a real experiment.  

 

6.1 Introduction and methods 

6.1.1 Background of the project 

Female mosquitoes require a blood meal for oogenesis and receive an iron load in 

this meal in the form of holo-transferrin and hemoglobin. During the course of digestion, 

the iron concentration in the gut decreases 10-fold from ingestion to 72 hours, while the 

iron concentration in the ovaries more than doubles from ingestion to 72 hours. 77 In the 

end, eggs are laid with ~125 ng blood meal Fe each. Iron is mitogenic and iron deposition 

in the ovaries should induce changes in the endogenous protein expression profile. 

Proteomic analysis of up- and down- regulated proteins from developing ovaries could 

provide further insight into the effect of iron on mosquito fecundity. 78,79,80 
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6.1.2 Samples preparation  

Ovaries and eggs from three groups of mosquitoes were obtained. They are 

individuals fed on blood meal, artificial blood meal with iron and artificial blood meal 

without iron, respectively. The samples were prepared with the following procedures: 

�  Adult Aedes aegypti mosquitoes were raised at 27oC, 70-80% relative humidity 

and a photoperiod of 12:12 h (L:D) and provided 10% sterile sucrose solution (~ 

1.3 ng Fe/ml) ad libitum for daily energy requirements. 

�  12 h prior to the feeding experiment, the sucrose was removed from the cages. 

�  Adult female mosquitoes, 15 per group, were then feed one of three diets 

maintained at 27oC in glass feeders for 2 h 8-9 days post-eclosion. The dirt 

contains one of the following: 

1. De-fibrinated Porcine Blood meal (~603 ng Fe/ml) 

2. Kogan’s Artificial Blood meal + Iron*: Isoprotein with 10% w/v Porcine 

Albumin (Sigma) , 1.5% w/v Porcine IgG (Sigma), 0.8% w/v Porcine 

Hemoglobin (Sigma) and 5 mM ATP (Sigma) in feeding buffer (100 mM 

NaHCO3; 150 mM NaCl, pH 7.0) (~56 ng Fe/ml) 81 

3. Kogan’s Artificial Blood meal – Iron: Isoprotein with 10.7% w/v Porcine 

Albumin (Sigma), 1.6% w/v Porcine IgG (Sigma) and 5 mM ATP (Sigma) 

in feeding buffer (100 mM NaHCO3; 150 mM NaCl, pH 7.0) (~24 ng Fe/ml) 

�  24 h later animals were cold anesthetized and ovaries from each group were 

dissected and pooled into disruption buffer (10 mM Tris-HCl, pH 7.9; 1.5 mM 

MgCl2; 0.5 mM DTT added fresh; 2x Protease Inhibitor cocktail (Calbiochem) 

added fresh). 
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�  Ovarian protein extraction was performed as follows for optimal LC-MS/MS 

analysis: 

• Samples underwent three cycles of liquid N2 freeze-thaw-homogenization 

• Samples were centrifuged at 100,000x g for 30 min, 4oC, to separate 

soluble and insoluble fractions 

• Insoluble fraction samples were suspended and washed three times in 1 

M NaCl, centrifuged at 15,000x g for 5 min, 4oC, and the supernatant was 

transferred to a new 1.5 ml tube 

• Resultant insoluble fraction samples were suspended in extraction buffer 

(50 mM Tis-HCl, pH 7.8; 2% w/v SDS; 100 mM NaEDTA; 20 mM 

DTT), boiled for 5 min and centrifuged at 15,000x g for 5 min, 4oC 

• Total protein concentration from soluble fraction samples was determined 

by the method of SDS-Lowry 82  

• Insoluble fraction samples were suspended and washed two times in 1 M 

NaCl, centrifuged at 15,000x g for 5 min, 4oC, and the resultant pellet 

was suspended in 1 M NaCl 

• Total protein concentration from the pellet samples was determined by 

the method of Bradford. 83 Though Bradford’s method is not as sensitive 

as SDS-Lowry’s, SDS-Lowry’s method was not used here because the 

high Na+ concentration can affect its accuracy.  
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6.1.3 Digestion and LC-MS/MS analysis 

Independent, duplicate mosquito ovarian protein samples from each diet group 

were processed for LC-MS/MS analysis. 30 mg of ovarian protein was separated per lane 

by 12% SDS-PAGE, and stained via Bio-Safe Coomassie Blue (Bio-rad, Inc). Each gel 

lane was cut into 4 gel pieces corresponding to molecular weight markers (10-25 kDa, 

25-50 kDa, 50-100 kDa,100-250 kDa). Proteins in each gel piece were digested with 

trypsin (Sigma Aldrich,) for 15 hours according to the protocol from Arizona Proteomics 

Consortium 

(����:;;������	
�+*��
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��+;������	
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5 ���*���;)
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���
����+
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�
��
�*��) ). Briefly, the gel pieces were cut into 1mm3, cleaned sequentially with water, 

50% acetonitrile in 50 mM NH3HCO3 solution, 100% acetonitrile, then dried with speed 

vac. The dried gel pieces were treated with 10 mM DTT and 55 mM iodoacetamide to 

reduce and carbaminomethylate the disulfide bonds. Carbaminomethylation results in a 

modification of 57 Da in cysteine residue. After additional washes, digestion was 

performed using trypsin (sequencing grade, Sigma) for 15 hours, and the gel piece were 

extracted several times with 60% acetonitrile to maximize the peptide recovery. For 

blood meal samples, a 1 to 5 trypsin : protein ratio was used, while for artificial blood 

meals +Iron/-Iron: 1 to 10 trypsin : protein was used. After digestion and extraction, C18 

columns were used to de-salt the sample solution before mass spectrometry analysis. The 

samples were analyzed by nano LC-MS/MS using self-packed capillary C18 column and 

a Thermo-Fisher LTQ linear ion trap mass spectrometer, with 90 minutes LC gradient 

and top 7 most abundant peaks selected after each full MS scan. 90 seconds dynamic 

exclusion was used to avoid picking the same peak multiple times.  
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6.1.4 Data analysis with Sequest, SQID and Scaffold 

After LC-MSMS, the results for the 4 gel pieces per lane were combined and 

peptide identification were performed using Sequest and SQID against the Aedes aegypti 

database, download from NCBI. As in Chapter 2, the search was performed with a 

regular database appended with a reverse database, and false discovery rate (FDR) was 

determined as FDR = 2 * ReverseID / (ForwardID + ReverseID). More specifically, 

result spectra list was generated by choosing “export -> to Excel -> spectrum report” in 

Scaffold (Version 3.1.2; Proteome Software, Portland, Oregon, USA), and ranked using 

“Xcorr” column (or SQID score column for SQID) to manually calculate peptide FDR in 

Excel. 10% peptide FDR and a minimum of two peptides per protein were used as protein 

threshold, which is equivalent to a 1% protein FDR (10%*10%). 

 

The whole proteomics work flow is illustrated in Figure 6.1: 
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�

Figure 6 1 The proteomics work flow of mosquito project. Three different samples were 

separated by 1-D gel, digested, and analyzed by an LTQ mass spectrometer.  

 

6.2 Results and discussions 

Because all these samples are from the same tissues, from the gel image the 

protein profiles look very similar for +Fe, -Fe and blood fed sample. This indicates that 

the differentially expressed proteins are probably of low abundance.  
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�

Figure 6 2Gel image of Coomassie blue stained independent, duplicate mosquito ovarian 

protein samples (30 mg total protein/lane). 
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6.2.1 Compare SQID with Sequest 

�

Figure 6 3 Venn diagram for blood meal sample. 

 

Because the proteome of mosquito ovary has not been studied before, the main 

task for the blood meal sample is to characterize as many proteins as possible. We used 

Sequest and SQID to analyze the data separately and the results are shown in Figure 6.3. 

At 1% protein FDR, SQID identified 168 proteins while Sequest identified 157. This 

agrees with the SQID testing results in Chapter 2 and proves that SQID works in real 

experiments.  

�

Figure 6 4 79% of spectra were matched to 3 very high abundant proteins. 
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However, the total number of proteins identified (189 proteins) in the experiment 

is limited by several factors. For example, 79% (5784 out of 7290) identified MS/MS 

spectra were matched to 3 very high abundance proteins, significantly lowering the 

chances to detect other low abundance proteins. The three proteins are all conserved 

hypothetical proteins, which are identified to be different forms of vitellogenin, an egg 

yolk precursor. In future experiments, an antibody of vitellogenin will be used to 

immunoprecipitate these high abundance proteins before digestion.  

6.2.2 Differentially displayed proteins identified by SQID 

�

Figure 6 5 Scaffold view for +Fe vs –Fe samples. The two green columns show the 
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number of unique peptides from each sample.  

 

 For +Fe and –Fe samples, the main task is to identify differentially displayed 

proteins. Using SQID 181 proteins were identified for +Fe samples and 186 proteins 

were identified for –Fe samples, at 1% FDR rate. As shown by Figure 6.5, majority of the 

high abundance proteins have similar number of identified peptides. To pick out the 

differentially displayed low abundance proteins, we use the following criteria to filter the 

protein list. A candidate protein is valid only when it can meet all the 3 criteria:�

 1. The number of unique peptides is very different for +Fe and -Fe samples. 

 2. The same difference is observed in both the first and second run. 

 3. The chromatogram agrees with the proposed difference.  

For example,  

1. In the wl_211077 run, “ferritin subunit 1” is only observed in +Fe sample: 

2. In the wl_210409 run (a biological duplicate of wl_211077), “ferritin subunit 1” 

is also only observed in +Fe sample: 

3. Selected ion chromatogram of three m/z (LNYDHEVPTVTTGESALETALQK, 

m/z 839.8; LGEFLFDK, m/z 485; EFDASIIYLK, m/z 600.2) from “ferritin 

subunit 1” were checked: 
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�

�

Figure 6 6 Chromatogram of m/z 839.8 for +Fe and -Fe samples. A peak is observed for 

the +Fe sample at approximately 40.75 minutes while no peak is observed at that 

retention time  for  the  -Fe sample . The peak at 52.50 minutes was checked to see if it 

corresponded to the same peptide (in the case of poor chromatographic reproducibility) 

but it was clear that it corresponds to 54.17 minute peak above.  

 

�
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Figure 6 7 Chromatogram of m/z 485 for +Fe and -Fe samples. A peak is observed for 

the +Fe sample while not for the -Fe sample. 

 

�

Figure 6 8 Chromatogram of m/z 600.2 for +Fe and -Fe samples. A peak is observed for 

the +Fe sample while no peak is observed for the -Fe sample. 

 

 Note: The chromatogram is only restricted to a certain m/z range so that all 

species with that m/z can be observed; for instance, the chromatogram in next slide is 

limited to m/z 839.5-840.3, so all species with m/z in this range will be observed, 

including the peptide “LNYDHEVPTVTTGESALETALQK, m/z 839.8”. The peak at 

40.75 min is from this peptide (Figure 6.6).  
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With these criteria, 9 differentially expressed proteins were identified. Future 

analysis will be evaluating the possible roles of these proteins in iron regulation. For 

example, it is already known that ferritin plays an important role in this process. 79 

Table 6.1 Differential displayed proteins in +Fe and –Fe samples. Comparison is based 

on the number of unique peptides.  

 

6.3 On-going work and future directions 

The recent addition of an LTQ-orbitrap instrument provides higher sensitivity and 

scan rates for proteomics experiments. Currently we are repeating the experiment with 

the orbitrap to verify our findings, as well as expecting more discoveries after 

immunoprecipitating high abundance proteins. The new experimental design mainly 

involves the following two parts: 

1. Comparing the difference between two blood feed samples: 24 h after blood 

feeding and 72 h after blood feeding. This will enable the understanding of iron 
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metabolism in mosquito ovaries. In order to identify more proteins, each gel lane 

was cut into 8 pieces instead of 4, and analyzed by orbitrap with high resolution 

for precursors. The new ProteaseMax method (Promega, Inc., 

����:;;"""*���	���*��	;��+�����+;��������+;�����
�� �'������
�+;�<�;������+�	�='

+��)������'����+
�'��������'��������; ) was also used which reduced the digestion 

time from 15 hours to 1 hour (at 50oC). Three sets of biological duplicates will be 

analyzed and currently 1.5 sets have been finished. Preliminary data show that for 

the first set, 816 proteins were identified (from both 24 and 72 hour samples), 

which is significant higher than previous LTQ results. A detailed comparison can 

be performed once all the three duplicates are finished. Figure 6.9 is the protein 

Venn diagram for 24 and 72 hour samples, followed by a list of unique proteins 

for each sample. 

�

Figure 6. 9 Protein Venn diagram for 24 and 72 hour blood samples. 

Unique proteins for 24 hour sample: 

Accession Protein Name 
gi|108871293 2-amino-3-ketobutyrate coenzyme a ligase [Aedes aegypti] 
gi|108877486 3-hydroxyisobutyrate dehydrogenase [Aedes aegypti] 
gi|108869599 3-hydroxyisobutyrate dehydrogenase [Aedes aegypti] 
gi|108883381 CRAL/TRIO domain-containing protein [Aedes aegypti] 
gi|108869079 DEAD box ATP-dependent RNA helicase [Aedes aegypti] 
gi|108875224 DNA-directed RNA polymerase II subunit [Aedes aegypti] 
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gi|121959431 RecName: Full=60S ribosomal protein L38 
gi|121959243 RecName: Full=Eukaryotic translation initiation factor 3 subunit F 
gi|108875369 TraB, putative [Aedes aegypti] 
gi|108870967 arginine/serine-rich splicing factor [Aedes aegypti] 
gi|108884042 conserved hypothetical protein [Aedes aegypti] 
gi|108884043 conserved hypothetical protein [Aedes aegypti] 
gi|108883537 conserved hypothetical protein [Aedes aegypti] 
gi|108871348 conserved hypothetical protein [Aedes aegypti] 
gi|108875525 cysteine synthase [Aedes aegypti] 
gi|108871626 hypothetical protein AaeL_AAEL012022 [Aedes aegypti] 
gi|108872016 importin alpha [Aedes aegypti] 
gi|108877408 innexin [Aedes aegypti] 
gi|108881298 inorganic pyrophosphatase [Aedes aegypti] 
gi|108874647 inosine-5-monophosphate dehydrogenase [Aedes aegypti] 
gi|108873918 lethal giant larva, putative [Aedes aegypti] 
gi|108881343 low molecular weight protein-tyrosine-phosphatase [Aedes aegypti] 
gi|108876629 myosin light chain 1, putative [Aedes aegypti] 
gi|108878040 n-myc downstream regulated [Aedes aegypti] 
gi|108877443 nucleolysin tia-1 [Aedes aegypti] 
gi|108878691 nucleosome assembly protein [Aedes aegypti] 
gi|108879922 predicted protein [Aedes aegypti] 
gi|108877398 predicted protein [Aedes aegypti] 
gi|108876237 regulator of chromosome condensation [Aedes aegypti] 
gi|108873452 rer1 protein [Aedes aegypti] 
gi|108878811 septin [Aedes aegypti] 
gi|108876724 serine-threonine kinase receptor-associated protein (strap) [Aedes aegypti] 
gi|108871205 short-chain dehydrogenase [Aedes aegypti] 
gi|108874199 signal transducer and activator of transcription [Aedes aegypti] 
gi|108878631 sorting nexin [Aedes aegypti] 
gi|108877401 ss-DNA binding protein 12RNP2 precursor, putative [Aedes aegypti] 
gi|108866407 tryptophanyl-tRNA synthetase [Aedes aegypti] 
gi|108876959 ubiquilin 1,2 [Aedes aegypti] 
gi|108873193 vesicular mannose-binding lectin [Aedes aegypti] 
 
Unique proteins for 72 hour sample: 

Accession Protein Name 
gi|108880950 conserved hypothetical protein [Aedes aegypti] 
gi|108883908 conserved hypothetical protein [Aedes aegypti] 
gi|108877806 conserved hypothetical protein [Aedes aegypti] 
gi|108872920 conserved hypothetical protein [Aedes aegypti] 
gi|108874461 conserved hypothetical protein [Aedes aegypti] 
gi|108880948 conserved hypothetical protein [Aedes aegypti] 
gi|108872868 conserved hypothetical protein [Aedes aegypti] 
gi|108877808 conserved hypothetical protein [Aedes aegypti] 
gi|108878509 conserved hypothetical protein [Aedes aegypti] 
gi|108883912 conserved hypothetical protein [Aedes aegypti] 
gi|108868662 conserved hypothetical protein [Aedes aegypti] 
gi|108869063 conserved hypothetical protein [Aedes aegypti] 
gi|108869062 conserved hypothetical protein [Aedes aegypti] 
gi|108873051 conserved hypothetical protein [Aedes aegypti] 
gi|108883914 conserved hypothetical protein [Aedes aegypti] 
gi|108869792 conserved hypothetical protein [Aedes aegypti] 
gi|108873060 conserved hypothetical protein [Aedes aegypti] 
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gi|108884433 conserved hypothetical protein [Aedes aegypti] 
gi|108876745 conserved hypothetical protein [Aedes aegypti] 
gi|108877807 conserved hypothetical protein [Aedes aegypti] 
gi|108877809 conserved hypothetical protein [Aedes aegypti] 
gi|108875341 conserved hypothetical protein [Aedes aegypti] 
gi|108878508 conserved hypothetical protein [Aedes aegypti] 
gi|108875862 conserved hypothetical protein [Aedes aegypti] 
gi|108878096 conserved hypothetical protein [Aedes aegypti] 
gi|108884380 cysteine-rich venom protein, putative [Aedes aegypti] 
gi|108872151 eukaryotic translation initiation factor [Aedes aegypti] 
gi|108881204 hypothetical protein AaeL_AAEL003315 [Aedes aegypti] 
gi|108875180 hypothetical protein AaeL_AAEL008797 [Aedes aegypti] 
gi|108875181 hypothetical protein AaeL_AAEL008799 [Aedes aegypti] 
gi|108873971 retinoblastoma-binding protein 4 (rbbp4) [Aedes aegypti] 
gi|108877328 yellow protein precursor [Aedes aegypti] 
 
 

2. Verify the difference between +Fe and –Fe samples using TMT labeling (Thermo 

fisher, Inc., ����:;;"""*�
�������*��	;
�+�����
��+;����<8�*��) ). TMT is an 

isobaric peptide tag, with different m/z fragment “reporter” ions, designed for 

peptide quantification. All samples will be labeled with different tags and mix in 

equal amounts. During MS/MS, the peptide tags will break and generate reporter 

ions with different masses, whose relative intensity can be used for quantification.  

 

The overall experiment is expected to be finished in 2 months.  
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS 

 
In the past 5 years in Wysocki’s group, I have been involved in multiple exciting projects, 

and here are some conclusions and directions for each project. 

 

7.1. Overview of the dissertation 

Peptide identification from MS/MS data is still a big challenge for the proteomics 

community. The research presented in this dissertation used statistical methods, K-means 

clustering and CART, to explore peptide fragmentation patterns and use these patterns to 

improve peptide identifications as well as cross-linking and PTM identifications. As 

shown in Figure 7.1, the dissertation described a complete scheme from data mining,   

machine learning, to software implementation. This scheme can essentially be applied to 

any other datasets generated using different enzymes (GluC, Pepsin, AspN, etc), 

fragmentation methods (HCD, ECD, SID, IRMPD, etc), and instruments (MALDI-TOF, 

FT-ICR, Orbitrap, Q-TOF, etc), to further improve the performance of corresponding 

spectra interpretation. A detailed direction of each project will be discussed in this 

chapter.  
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�

Figure 7. 1 The scheme described this dissertation. Statistical information was extracted 

and used to improve spectra interpretation.  

 

7.2. SQID Project 

As presented in Chapter 2, the first algorithms in our group, SQID, was 

successfully developed, and showed improved performance compared with traditional 

algorithms. A couple of amendments have been performed to make the algorithm more 

powerful and user-friendly. The algorithm currently uses the statistical results from all 

peptides instead of clusters, and in the future, separated clusters should be used to further 

enhance the performance. A preliminary test that considered mobile protons was 

performed recently, and a small percentage of improvement was observed by searching 
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proline and acidic residue (D, E) rich peptides (Cluster 1 and 3 in Figure 1.5), while no 

statistically significant difference was observed for peptides from the other clusters. This 

may simply due to the fact that the scoring function was empirically derived and 

optimized for the current intensity table. Another potential problem involved is the 

normalization of different clusters, e.g., for the same spectrum, if some candidates are 

using the intensity table for the X-P cluster and the other candidates for the same 

experimental spectrum are using the intensity table for the I/V/L-X cluster, there will be 

normalization issues because these two intensity tables have different properties, 

especially different average intensity values. A potential method to solve this problem is 

to optimize the full spectrum prediction from the spectrum predictor, and use an auto 

cross-correlation function to compare two spectra (like Sequest does). This will avoid 

biased normalization between clusters. Though Spectrum Predictor is already a very 

useful program, it still needs further modifications, such as taking into account charge 

distribution effects and the positions of basic/acid residues. A web version of spectrum 

predictor will be released soon to make it more accessible to researchers. 

 

7.3. ETD Statistics  

Chapter 3 is an extension of Yingying Huang’s clustering work 25 and it is 

potentially of great importance to ETD development, especially to develop ETD specific 

peptide identification algorithms. It is the first publication that reports the strong cn-1 ions, 

and implies that in ETD the fragmentation site not only depends on amino acid pairs, but 

is also heavily affected by amino acid locations. This is a very different picture from CID. 

The phenomenon may be a result of some unknown mechanisms and it is worthy of 
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further investigation. More interestingly, many singly charged CID peptides showed 

similar effects. 

This chapter further proves that statistical methods such as K-means clustering are 

powerful approaches to observe underlying trends from large datasets. Thus, a lot of 

effort should be made to apply K-means, penalized K-means, or other clustering 

approaches to our existing data and any other publicly available large datasets, 

particularly special peptides (such as cross-linked peptide or modified peptides) and the 

ones generated from new dissociation technologies and instruments. For example, 

recently it is reported that strong x ions were observed in phosphorylated peptides,84 and 

this could be very easy to detect using our statistical methods applied to a large 

phosphorylation dataset.  

 

7.4. Cross-linking 

SQID-XLink was motivated by cross-linking researchers from our group and 

department, and it is satisfying to see that it can benefit researchers. Based on the SQID 

scoring function, the program is now well-established in our laboratory and, as shown in 

the publication that is now web accessible,70 proved its superiority compared with major 

cross-linking software such as xQuest, Popitam and Crux. The main direction in the 

future should focus on improving the evaluation of the results, such as how to more 

accurately determine false discovery rate. The final goal is to easily identify cross-linked 

peptides with zero manual spectrum interpretation involved, even for more complicated 

cross-linkers such as BPA. Another possible direction is to characterize the differences 

between a cross-linked peptide spectrum and a regular spectrum, and use a more specific 
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scoring function for cross-linked peptide identification. This specific aim requires a large 

cross-linking dataset available. However, some preliminary work can be carried out using 

synthesized model cross-linked peptides.   

  

 

7.5. Blind modification search 

The results from blind modification searches are very exciting because they 

significantly improve the number of modified peptides identified from a simple 

proteomics experiment. The main future directions include locating modification sites, 

calculating false discovery rates, improving speed, and processing peptides with 2 or 

more modifications. Nevertheless, this program is definitely a powerful and easy-to-use 

tool for researchers. Based on results to date, I predict that in the near future peptide 

identification with blind modification search will become a standard practice in the 

proteomics field.   

 

7.6. Mosquito project 

The addition of an LTQ Velos orbitrap instrument in proteomics facility can 

provide higher resolution and higher scan rates for proteomics experiments. As 

mentioned in Chapter 6, currently we are repeating the experiment with the orbitrap to 

verify the findings, as well as discover more proteins. Preliminary data show that the new 

experimental design can provide significantly more reliable quantifications, especially for 

low abundance proteins. Two manuscripts are in preparation for this project, with one 
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focusing on the comparison of 24 and 72 hour samples  and one focusing on the 

comparison of +Fe and –Fe samples. 

 

7.7. Software downloads 

Researchers from worldwide are downloading and using our programs. In this 

map, the size of spots represents the number of downloads from a certain location. The 

huge red spot is from Tucson.  

�

Figure 7. 2 Software downloads worldwide from the Wysocki group website in 6 months 

(01/12-07/12). 

�  
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