
Approved by: 

Dr. Klaus Lux 

Computational Abstract Algebra: 

Using Monomial Matrices to Represent Groups in GAP 

By 

Zachary Robert Rome 

A Thesis Submitted to The Honors College 

In Partial Fulfillment of the Bachelors degree 
With Honors in 

Mathematics 

THE UNIVERSITY OF ARIZONA 

MAY2012 

Department of Mathematics 



Computational Abstract Algebra : Using

Monomial Matrices to Represent Groups in GAP

Zachary Robert Rome

May 2012

Abstract

A monomial matrix is a matrix with exactly one non-zero element in
each row and column. We will utilize GAP to construct all (transitive)
representations of a given group using monomial matrices. First, essential
group theory definitions and theorems will be provided, as well as an in-
depth look at table of marks and monomial matrices. After describing the
necessary mathematics, we will explore the GAP programming needed to
achieve this goal. Ultimately we want a table, where each row represents
a subgroup of the given group and, within the row, the table will hold the
linear characters fixed by the monomial matrices of that subgroup. We will
furthermore explore how to represent monomial matrices computationally
in different ways and how to create a data structure to represent them.
Our final goal will require GAP functions for finding all homomorphisms
from a subgroup to roots of unity, using these homomorphisms to create
monomial matrix representations of the group, and iterating through the
subgroups of the group (up to conjugacy) to find all (transitive) monomial
matrix representations of the group.

Contents

1 Groups 2
1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Table Of Marks 4
2.1 Creating A Table Of Marks . . . . . . . . . . . . . . . . . . . . . 4
2.2 Example : The Symmetric Group S3 . . . . . . . . . . . . . . . . 5

3 Monomial Matrices 6
3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Representing A Group With Monomial Matrices . . . . . . . . . 7
3.3 Example : The Symmetric Group S3 . . . . . . . . . . . . . . . . 7

3.3.1 Subgroup < (123) > . . . . . . . . . . . . . . . . . . . . . 7
3.3.2 Subgroup < (12) > . . . . . . . . . . . . . . . . . . . . . . 9

1



4 GAP 10
4.1 Creating A Data Structure For Monomial Matrices . . . . . . . . 10

4.1.1 Using A Full Matrix . . . . . . . . . . . . . . . . . . . . . 10
4.1.2 Storing Only Column And Scalar . . . . . . . . . . . . . . 14
4.1.3 Storing A Permutation And List Of Scalars . . . . . . . . 18
4.1.4 Creating The Data Structure . . . . . . . . . . . . . . . . 23

4.2 Representing A Given Group With Monomial Matrices . . . . . . 27
4.2.1 MonomialTable . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 FixedPoints . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.3 AllMonomials . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.4 MonomialInit . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.5 Monomial . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2.6 Homomorphism . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.7 Redundants . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.8 CyclicToCyclotomic . . . . . . . . . . . . . . . . . . . . . 40

5 Results 41

1 Groups

1.1 Definitions

First we will set up some necessary definitions of group theory in order to intro-
duce the syntax of the rest of the paper. These can be found in A First Course
In Abstract Algebra [2] and Contemporary Abstract Algebra [3].

A group G is a set, along with a binary operation, call it ∗, such that:
(1) For all a,b, and c in G, a ∗ (b ∗ c) = (a ∗ b) ∗ c,
(2) There exists an identity element e such that for all a in G, e∗a = a = a∗e,

and
(3) For all a in G, there exists an inverse a−1 such that a∗a−1 = e = a−1 ∗a,

where e is the identity element of G.

A subgroup, H, of a group, G, with binary operation ∗ is a non-empty subset
of G that is a group with ∗ (or in other words H is closed under ∗ and for all
h ∈ H the inverse of h is also in H).

A coset of a subgroup H in its group G, gH, is the set of all elements g ∗ h,
where g is a given element of G and h is any element of H.

A coset representative for gH is any g′ in G such that g′H = gH.

The order of a group G, |G|, is the number of elements in the group.

2



The index of a subgroup H in a group G, [G : H], is the number of cosets
of H in G.

A group action, · : G×X → X, where G is a group (with binary operation
∗) and X is a set, is a binary operation such that:

(1) For all x in X, e · x = x, where e is the identity element of G, and

(2) for all g, h in G and all x in X, g · (h · x) = (g ∗ h) · x.

This X is called a G-set.
Example: Suppose G is a group and H is a subgroup of G. Let X be the

set of cosets of H ({gH|g ∈ G} = G/H). Then X is a G-set.
Proof: Consider arbitrary elements a ∈ G and gH ∈ X. Then we define the

action on the coset to be a · gH = (ag)H = g′H ∈ X since g′ = (ag) ∈ G. Let
e be the identity element of G. Then e · gH = (eg)H = gH. Finally, consider
a, b ∈ G. Then a·(b·gH) = a·((bg)H) = (abg)H = (ab)·gH. Thus X is a G-set.

A transitive G-set, X, is a G-set such that for every x1, x2 ∈ X, there exists
g ∈ G such that gx1 = x2. Note that the cosets G/H is a transitive G-set.

The stabilizer of an element x in G-set X, Gx or FixG(x), is the set of all
elements g in group G such that g · x = x.

A subgroup N of a group G is normal if for all n ∈ N , for all g ∈ G,
gng−1 ∈ N .

The normalizer of a subgroup H of a group G, NG(H), is the set of all a ∈ G
such that aHa−1 = H.

The orbit of element x of a G-set X under a group G, OrbG(x), is the set
of g · x for all g in G.

Subgroups H and K of a group G are conjugate if there exists some g in G
such that gHg−1 = K.

A commutator of elements g and h of a group G, [g, h], is g−1h−1gh. Note
that [g, h]−1 = [h, g].

The commutator subgroup of a group is the subgroup generated by all com-
mutators of the group.

3



1.2 Theorems

Now we will provide some basic theorems that use the above definitions. These
can also be found in A First Course In Abstract Algebra [2] and Contemporary
Abstract Algebra [3].

Given a group G, a subgroup H of G, and a subgroup K of H, [G : K] =
[G : H][H : K].

(Lagrange’s Theorem) Given a group G and a subgroup, H, of G, |G| = [G :
H]|H|.

Given a group G, a subgroup H of G, and a subgroup K of H, if g1, ..., gn are
the coset representatives of H in G and h1, ..., hm are the coset representatives
of K in H, then the set of gihj , where 1 ≤ i ≤ n and 1 ≤ j ≤ m, are the coset
representatives of K in G.

(Orbit-Stabilizer Theorem) Given a group G and a G-set X, for all x ∈ X,
|OrbG(x)| = [G : FixG(x)] = |G|/|FixG(x)|.

Any G-set is the disjoint union of transitive G-sets.

Any transitive G-set is equivalent to G/StabG(x) for any x ∈ X by the
Orbit-Stabilizer Theorem.

(Fundamental Theorem of Finite Abelian Groups) Every finitely generated
abelian group, G, is isomorphic to a direct sum of primary cyclic groups and
infinite cyclic groups. In other words, G = Zn ⊕ Zq1 ⊕ ...⊕ Zqk , where q1, ..., qk
are prime powers and n = 0 if G is finite.

Corollary: G can also be written as G = Zn⊕Zc1⊕ ...⊕Zck where ki divides
ki+1 for every 1 ≤ i ≤ k − 1.

2 Table Of Marks

2.1 Creating A Table Of Marks

To create a table of marks for some group G we start off with a square matrix.
Label the rows and columns with the subgroups of G up to conjugacy, G1, ..., Gn,
including the entire group and the identity group (the group containing only the
identity of G). Each entry, [i, j], in the table is then determined by how many
cosets G/Gi are fixed by Gj . In other words, [i, j] = |FixGj (G/Gi)|, where
FixGj

(X) is the set of all elements of X fixed by all elements of Gj (the inter-
section of Fixg(X) for all g in Gj).

4



2.2 Example : The Symmetric Group S3

Below we show the table of marks for the symmetric group on three elements.


< () > < (12) > < (123) > S3

< () > 6 0 0 0
< (12) > 3 1 0 0
< (123) > 2 0 2 0
S3 1 1 1 1


Now we will calculate the entry at position [2, 2] of the above table. Let us

denote S3 to be the symmetric group on three elements. Let H be the sub-
group of S3 generated by (123), or the label of the second row and column.
Then the entry at position [2, 2] = |FixH(S3/H)|, where S3/H = H, (12)H =
{{(), (123), (132)}, {(12), (13), (23)}}. Now we must check which cosets, S3/H,
are fixed by (), (123), and (132).

()H = ()(), ()(123), ()(132) = (), (123), (132) = H

()(12)H = ()(12), ()(13), ()(23) = (12), (13), (23) = (12)H

Thus () fixes S3/H.

(123)H = (123)(), (123)(123), (123)(132) = (123), (132), (123) = H

(123)(12)H = (123)(12), (123)(13), (123)(23) = 13, (23), (12) = (12)H

Thus (123) fixes S3/H.

(132)H = (132)(), (132)(123), (132)(132) = (132), (), (123) = H

(132)(12)H = (132)(12), (132)(13), (132)(23) = (23), (12), (13) = (12)H

Thus (132) fixes S3/H.

Since all elements of H fix both cosets S3/H, [2, 2] = |FixH(S3/H)| = 2, as
can be seen in the above table.

Note that FixH(G/H) = {gH|g ∈ NG(H)} = [NG(H) : H] = |NG(H)|/|H|.
And from this we can derive |NG(H)|.

5



3 Monomial Matrices

3.1 Definition

A monomial matrix is a matrix with exactly one non-zero entry in each row and
column. This is a generalization of a permutation matrix in which the non-zero
entries can be scalars other than just 1.

Remember that any G-set X is a disjoint union of transitive G-sets. Fur-
thermore, any transitive G-set X is congruent to the G-set G/StabG(x) for any
x ∈ X.

Theorem : Every monomial matrix can be written as the product of a per-
mutation matrix (a matrix with exactly one entry 1 in each row and column and
zeros elsewhere) and a diagonal matrix (a matrix whose only non-zero entries
are on the diagonal).

Theorem : All monomial matrices of GLn(F ), the group of n× n invertible
matrices with entries in the field F , form a subgroup of GLn(F ), denoted by
Mn(F ).

For our purposes, we need only consider the invertible matrices with entries
in the complex numbers.

Proof. We will prove that all monomial matrices, or matrices with exactly one
non-zero entry in each row and column, of GLn(F ) form a subgroup. In order
to prove this, we must show that the identity matrix of GLn(F ) is a monomial
matrix, that monomial matrices are closed under matrix multiplication, and
that the inverse of each monomial matrix is a monomial matrix.

First, it is true by definition that the identity matrix is a monomial matrix
because there is exactly one non-zero entry in each row and column.

Secondly, we will prove that monomial matrices are closed under matrix
multiplication. Suppose that X and Y are monomial matrices of GLn(F ). We
must prove that XY is a monomial matrix in GLn(F ). Consider the fact that
Zij of XY is given by Xi1Y1j +Xi2Y2j + . . .+XinYnj , where Xi1, . . . , Xin is row
i of X and Y1j , . . . , Ynj is column j of Y (that is, 0 ≤ i, j ≤ n).

Assume Zia and Zib (two elements of the same row in XY ) are both non-zero,
where 0 ≤ a, b ≤ n. Because each row and column of X and Y has one element,
Zia = XimYmj and Zib = XipYpj (all other pairs would be zero). However, X
and Y are monomial matrices, so the only way that Zia or Zib are non-zero is
if m = p. Thus a = b if Zia and Zib are both non-zero and there is only one
element in each row that is non-zero.

Similarly, assume Zaj and Zbj (two elements of the same column of XY )
are both non-zero, where 0 ≤ a, b ≤ n. Because each row and column of X and
Y has one element, Zaj = XmjYim and Zbj = XpjYip (all other pairs would
be zero). However, X and Y are monomial matrice, so the only way that Zaj

6



or Zbj are non-zero is if m = p. Thus a = b if Zaj and Zbj are both non-zero
and there is only one element in each column that is non-zero. Thus monomial
matrices of GLn(F ) are closed under matrix multiplication.

Finally, we need to prove that every monomial matrix has an inverse. We
know that every such matrix can be written as the product of a permutation
matrix and a diagonal matrix. Suppose we have monomial matrix M = P ·D,
where P is a permutation matrix and D is a diagonal matrix. We want to
find M−1 such that M ·M−1 = I, where I is the identity (monomial) matrix.
However, since M = P ·D, P ·D ·M−1 = I and thus M−1 = P−1 ·D−1, where
P−1 is the inverse of P , which exists because every permutation matrix has an
inverse, and D−1 is the inverse of D, which exists because we are only looking
at monomial matrices of GLn(F ) and thus D has no non-zero entries on the
diagonal and is invertible. Thus P−1 ·D−1 exists so M−1 = P−1 ·D−1 exists
and M ·M−1 = P ·D · P−1 ·D−1 = I so M is invertible.

Therefore monomial matrices of GLn(F ) are a subgroup of GLn(F ).

3.2 Representing A Group With Monomial Matrices

Now we represent a group, G, using monomial matrices. We do this by defining a
homomorphism ψ : G→Mn(C), where each ψ(g) is a monomial matrix. There
will be different monomial matrix representations for G using each subgroup
H, described as follows. First we choose coset representatives S = {g1, ..., gn},
where n = [G : H]. Thus for all elements g of G and gi ∈ S, ggi = gjh for
some gj ∈ S and some h ∈ H. Next we choose a homomorphism, ϕ, from H to
R(C) = {e(2πik)/n|0 ≤ k ≤ n, n > 1, n ∈ Z, k ∈ Z}. For each element of g ∈ G,
it’s monomial matrix will have rows and columns labelled 1, ..., n and row i will
have an entry of ϕ(h) at j, where ggi = gjh. In other words, ψ(g)ij = ϕ(h)δij ,
where δij is 1 if gi and gj hold in the previous equation and 0 otherwise. Note
that we are creating monomial matrices using every subgroup, H, of G and
every homomorphism from H to R(C), the subgroup of C∗.

3.3 Example : The Symmetric Group S3

Now let us look at an example of monomial matrix representations of the sym-
metric group on three elements, S3:

3.3.1 Subgroup < (123) >

First we will look at the subgroup < (123) >. The cosets of S3/ < (123) > can
be represented by () and (12). Then,

(123)() = ()(123)

(123)(12) = (13) = (12)(132)

7

D 



(12)() = (12)()

(12)(12) = () = ()()

Assume that the first row and column is labelled by () and the second row and
column is labelled by (12).

Thus if our homomorphism is ϕ(h) = 1 for all h ∈ H, then our monomial
matrix representations for g = (123) is:

( () (12)

() 1 0
(12) 0 1

)

And our monomial matrix representation for g = (12) is:

( () (12)

() 0 1
(12) 1 0

)

We can also use the homomorphism ϕ(()) = 1, ϕ((123)) = E(3), and
ϕ((132)) = E(3)2, where E(3) is e(2πi)/3. Then our monomial matrix for
g = (123) is:

( () (12)

() E(3) 0
(12) 0 E(3)2

)

And our monomial matrix for g = (12) would be the same (because ϕ(()) is
still 1).

Finally, we can use the homomorphism ϕ(()) = 1, ϕ((123)) = E(3)2, and
ϕ((132)) = E(3). Then our monomial matrix representation for g = (123) is:

( () (12)

() E(3)2 0
(12) 0 E(3)

)

And again our monomial matrix for g = (12) is the same.

8



3.3.2 Subgroup < (12) >

Next we will look at the subgroup < (12) >. The cosets of < (123), (12) > / <
(12) > can be represented by (12), (23), and (13). Then,

(123)(12) = (13)()

(123)(23) = (12) = (12)()

(123)(13) = (23) = (23)()

(12)(12) = (12)(12)

(12)(23) = (123) = (13)(12)

(12)(13) = (132) = (23)(12)

Assume that the first row and column is labelled by (12), the second row
and column is labelled by (23), and the third row and column is labelled by (13).

Thus if our homomorphism is ϕ(h) = 1 for all h ∈ H, then our monomial
matrix representations for g = (123) is:


(12) (23) (13)

(12) 0 0 1
(23) 1 0 0
(13) 0 1 0



And our monomial matrix representation for g = (12) is:


(12) (23) (13)

(12) 1 0 0
(23) 0 0 1
(13) 0 1 0



We can also use the homomorphism ϕ(()) = 1 and ϕ((12)) = −1. Then our
monomial matrix representation for g = (123) is still:


(12) (23) (13)

(12) 0 0 1
(23) 1 0 0
(13) 0 1 0



9



And our monomial matrix representation for g = (12) is now:


(12) (23) (13)

(12) −1 0 0
(23) 0 0 −1
(13) 0 −1 0



This method should be continued with the identity subgroup, < () >, and
the full group as a subgroup, < (123), (12) >, using every subgroup, and every
homomorphism from the subgroup to R(C), in order to fully represent the group
with monomial matrices. However, the above should provide enough of an ex-
ample on how to create monomial matrix representations of a group, satisfying
the homomorphism ψ : G → Mn(C), where Mn(C) is the subgroup of GLn(C)
containing all n× n monomial matrices.

4 GAP

4.1 Creating A Data Structure For Monomial Matrices

Now we will use GAP to represent groups using monomial matrices. First we
must create a data structure to represent the monomial matrices in GAP. Among
other things, it is important that we can multiply monomial matrices, find the
inverse of a monomial matrix, and generate an identity monomial matrix in
GAP (similar to the case of G-sets, only monomial matrix representations of a
group can be written as a sum of the ones I have described).

4.1.1 Using A Full Matrix

The first thought would be to store the monomial matrix as a list of lists rep-
resenting the matrix. This is implemented with the following functions:

# checkMonomial takes a list of lists and makes sure it is a

# monomial matrix

checkMonomial := function(mono)

local size, seen, toFill, found, colnum, row, col;

size:= Length(mono);

seen:= [];

10



toFill := 1;

while toFill <= size do

seen[toFill] := 0;

toFill := toFill+1;

od;

for row in mono do

# check that row is the correct length

if not (Length(row) = size) then return false;

fi;

found := false;

colnum := 0;

#check that we have exactly one non-zero entry in each

for col in row do

colnum := colnum+1;

# if we found the non-zero entry

if not (col = 0) then

if found then return false;

else found := true;

fi;

if seen[colnum] = 1 then return false;

else seen[colnum] := 1;

fi;

fi;

od;

od;

return true;

end;

As is described in the code, checkMonomial takes a list of lists and de-
termines if it represents a monomial matrix. First we zero out the list seen,
making it the same length as the given list (the number of rows in the matrix).
Then we iterate through each row. First we check to see if the row is long

11



enough. If not, we immediately know this is not a monomial matrix. Then we
iterate through each element of the row, noting which column we are currently
looking at. Once we find a non-zero element we enter the final loop. The first
if statement here determines if we have already found a non-zero element in
this row. If so, we know this is not a monomial matrix and return false. The
second if statement determines if we have already found a non-zero element in
this column by checking seen. If seen[colnum] is 0 then we have not and we
mark seen accordingly by changing it to 1 and move on. Otherwise, this is the
second non-zero element in this column and we return false, showing that what
is given is not a monomial matrix.

# multiplyMonomials takes two monomial matrices and multiplies them

multiplyMonomials := function(mono1,mono2)

local r, c, result, entry, total;

if not checkMonomial(mono1) then return false;

elif not checkMonomial(mono2) then return false;

elif not (Length(mono1) = Length(mono2)) then return false;

else;

fi;

r := 1;

c := 1;

result := [];

#go through each row of the first monomial matrix

while r <= Length(mono1) do

c := 1;

while c <= Length(mono2) do

entry := 1;

total := 0;

while entry <= Length(mono1) do

total := total + (mono1[r][entry]*mono2[entry][c]);

entry := entry+1;

od;

12



if c=1 then result[r] := [];

fi;

result[r][c] := total;

c := c+1;

od;

r := r+1;

od;

return result;

end;

Here is how we multiply two monomial matrices represented in this way.
The first thing that we do is check that both given monomial matrices are in
fact monomial matrices. The above is the basic algorithm for multiplying two
matrices, where r represents the current row of the first matrix we are looking
at, c represents the current column of the second matrix, and entry iterates
over every element of each of these. Of course, GAP supports straightforward
multiplication of matrices, so mono1 ∗mono2 could have also sufficed.

# generateIdentity generates an identity matrix of size n x n

generateIdentity := function(n)

local row, col, result;

row := 1;

col := 1;

result := [];

while row <= n do

col := 1;

while col <= n do

if col = 1 then result[row] := [];

fi;

13



if row = col then result[row][col] := 1;

else result[row][col] := 0;

fi;

col := col+1;

od;

row := row+1;

od;

return result;

end;

Now we need to generate an identity matrix. The above goes through one
row at a time and makes the element 1 if the column, col, we are at is equal to
the row number, row, and 0 otherwise.

# monomialInverse gives us the inverse of a

# monomial matrix

monomialInverse := function(mono)

if not checkMonomial(mono) then return false;

fi;

return mono^-1;

end;

Now we need to find the inverse of a monomial matrix. The above code
checks that the given object is a monomial matrix and then uses the inverse
function already supported by GAP to return the inverse of the matrix.

4.1.2 Storing Only Column And Scalar

The above function will correctly support a data structure for monomial matri-
ces in GAP. However, each object takes up much more space than is necessary.
Note that the majority of the matrices are 0’s. In fact, as we know, each row has

14



only one non-zero entry. Thus we need only store what that entry is and which
column it is located in to retain all necessary information about the monomial
matrix. The next set of functions again utilize a list of lists to represent the
monomial matrix, but now each inner list only stores the column number of the
non-zero entry and the entry itself. Note that each inner list has a constant two
elements instead of the arbitrary amount of elements needed for the last repre-
sentation, putting the space needed at O(n) instead of O(n2) for each monomial
matrix.

# checkMonomial takes a list of lists and makes sure it is a

# monomial matrix

checkMonomial := function(mono);

local size, seen, toFill, row;

size := Length(mono);

seen := [];

toFill := 1;

while toFill <= size do

seen[toFill] := 0;

toFill := toFill+1;

od;

for row in mono do

if row[1] > size then return false;

elif seen[row[1]] = 1 then return false;

elif row[2] = 0 then return false;

else seen[row[1]] := 1;

fi;

od;

return true;

end;

The above function checks if the given object is a monomial matrix. It
makes all the same checks as the previous function, but quicker because of the

15



new implementation. For each row we check if the column number is possible,
if there has already been a non-zero element in that same column, and if the
given scalar entry is non-zero. If all of these conditions are met, then we note
that we have seen a non-zero entry in the given column and check the next row.

# multiplyMonomials takes two monomial matrices and multiplies them

multiplyMonomials := function(mono1,mono2);

local result, r, row;

#check both matrices

if not checkMonomial(mono1) then return false;

elif not checkMonomial(mono2) then return false;

elif not (Length(mono1) = Length(mono2)) then return false;

else;

fi;

# result will hold the matrix representation

result := [];

# r will hold the current row number

# (of first matrix and thus of resulting matrix)

r := 1;

# go through first matrix

for row in mono1 do

result[r] := [];

# this is the corresponding row in the second matrix

row2 := mono2[row[1]];

result[r][1] := row2[1];

result[r][2] := (row2[2] * row[2]);

r := r+1;

od;

return result;

end;

16



Again, while multiplying two monomial matrices, we first check if both ob-
jects are in fact monomial matrices. We need only multiply each row in the first
monomial matrix with the entry of the row in the second monomial matrix that
corresponds to the column of the non-zero entry in the row of the first monomial
matrix because the rest of the entries in the row are 0. Knowing this, we get
the corresponding column from the column in the row of the second monomial
matrix and we get the entry by multiplying the entries of the two rows we are
looking at. Clearly this multiplyMonomials function is more efficient than the
previous one.

# generateIdentity generates an identity matrix of size n x n

generateIdentity := function(n)

local curr, result;

curr := 1;

result := [];

while curr <= n do

result[curr] := [];

result[curr][1] := curr;

result[curr][2] := 1;

curr := curr+1;

od;

return result;

end;

In order to generate the identity monomial matrix with this representation,
we iterate from 1 to n, where n is the size of the matrix, and set the column
number to this row number and the entry to 1.

# monomialInverse gives us the inverse of

# a monomial

monomialInverse := function(mono)

17



local row, i, j, result;

if not checkMonomial(mono) then return false;

fi;

result := [];

# Create a full matrix

for i in [1..Length(mono)] do

row := [];

# Zero out the row

for j in [1..Length(mono)] do

row[j] := 0;

od;

# Set the non-zero entry

row[mono[i][1]] := mono[i][2];

# Append to result

Append(result, [row]);

od;

return result^-1;

end;

In adding to the previous function, the current implementation ofmonomialInverse
makes the monomial matrix into a full square matrix and uses GAP’s inverse
function.

4.1.3 Storing A Permutation And List Of Scalars

The final representation of monomial matrices is slightly more efficient and
provides more utility. We will use the fact that all monomial matrices can be
rewritten as the product of a permutation matrix and a diagonal matrix. Hence,
we will store the permutation as one list and the scalars of the diagonal matrix
as another list for each monomial matrix.

18



# checkMonomial takes a list of lists and makes sure it is a

# monomial matrix

checkMonomial := function(mono)

local col, coeff, size, seen, toFill;

#check that the format is correct

if not (Length(mono[1]) = Length(mono[2])) then return false;

fi;

size := Length(mono[1]);

seen := [];

toFill := 1;

# fill seen with 0’s

while toFill <= size do

seen[toFill] := 0;

toFill := toFill+1;

od;

#check that the permutation makes sense

for col in mono[1] do

if col > size then return false;

elif seen[col] = 1 then return false;

else seen[col] := 1;

fi;

od;

# check that the coefficients make sense

for coeff in mono[2] do

if coeff = 0 then return false;

fi;

od;

return true;

19



end;

In order to check if a given monomial matrix is correctly in the aforemen-
tioned representation, we first check that the length of the permutation list
and scalar list are the same. If this were not the case, the matrices that these
represent could not be multiplied. Then we check that the permutation list is
accurate by checking that each element in the list is within the bounds of the
size of the matrix and that we do not repeat anything in the permutation list.
This is done in the same fashion as before. Finally, we check that the coefficients
are all accurate by ensuring they are all non-zero.

# multiplyMonomials takes two monomial matrices and multiplies them

multiplyMonomials := function(mono1,mono2)

local perm, result, row, inverse;

# check monomial matrices

if not checkMonomial(mono1) then return false;

elif not checkMonomial(mono2) then return false;

elif not (Length(mono1) = Length(mono2)) then return false;

else;

fi;

result := [[],[]];

row := 1;

perm := PermList(mono1[1]) * PermList(mono2[1]);

while row <= Length(mono1[1]) do

# get permutation entry

Append(result[1], [row^perm]);

# get coefficient entry

Append(result[2],

[mono1[2][row]*mono2[2][row^PermList(mono1[1])]]);

row := row+1;

od;

20



return result;

end;

As with the previous multiplyMonomials functions, we first check that the
given objects are actually monomial matrices. Next we find the permutation
of the result by changing each of the given lists representing permutations into
actual permutations and finding the product. Then we go through each row
and do the following: find the column that the row goes to (it’s permutation)
using the previously acquired permutation, and find the coefficient of that row
by multiplying the corresponding coefficient from the first monomial matrix and
the coefficient from the correct row of the second monomial matrix (found by
using the first monomial matrix’s permutation and the current row).

# generateIdentity generates an identity matrix of size n x n

generateIdentity := function(n)

local curr, result;

curr := 1;

result := [[],[]];

while curr <= n do

result[1][curr] := curr;

result[2][curr] := 1;

curr := curr+1;

od;

return result;

end;

The generateIdentity function is similar to the last implementation except
now the row number is continuously added to the first inner list and 1 is always
added to the second list.

21



# monomialInverse gives us the inverse of a monomial matrix

monomialInverse := function(mono)

local result, row;

if not checkMonomial(mono) then return false;

fi;

result := [[],[]];

# Get permutation matrix first

result[1] := ListPerm(PermList(mono[1])^-1);

# fill permutation if necessary

while Length(result[1]) < Length(mono[1]) do

Append(result[1], [Length[result[1]]+1]);

od;

row := 1;

while row <= Length(mono[1]) do

# get coefficient entry

Append(result[2], [(mono[2][row^PermList(mono[1])])^-1]);

row := row+1;

od;

return result;

end;

Lastly, we must implement how to find the inverse of a monomial matrix
represented in this way. First, as always, we check that we are given a well-
formed monomial matrix. Finding the permutation of the permutation portion
of the monomial matrix is simple, we need only change the list to an actual per-
mutation, find it’s inverse using GAP, and then convert it back to a list. Note
that we must also make sure that this resulting permutation list is long enough
because if any of the biggest points are not permuted they will not appear in
the permutation or the inverse of that permutation, and hence they will not
show up in the resulting list either. Finally, we get the non-zero element in the

22



scalar portion of the inverse of the monomial matrix by taking the inverse of
the scalar at which that row is permuted to.

Here is a look at why the method used for finding the inverse works. Say we
have monomial matrix M and we want to find it’s inverse, call it M ′. Then we
know MM ′ = I, where I is the identity matrix. Furthermore, we can represent
both M and M ′ as the product of a permutation matrix and diagonal matrix.
Thus PDP ′D′ = I, where P and P ′ are permutation matrices and D and D′

are diagonal matrices and M = PD and M ′ = P ′D′. Note that diagonal matri-
ces cannot permute the column that the non-zero entry of each row is located.
Thus the only way to get an identity matrix would be if P ′ = P−1. Now we
have PDP−1D′ = I and, because all of these matrices are invertible (proven in
the previous section), D′ = P−1DP . From here we can find that if the diagonal
entries of D are [d1, ..., dn], then the entries of D′ should be [d1Q

−1, ..., dnQ
−1].

Thus we must use the permutation on the diagonal matrix to find the scalar
entry, then take it’s inverse, in order to find the scalars for the inverse of a given
monomial matrix.

4.1.4 Creating The Data Structure

Now that we know how we want to represent monomial matrices, and how to
find the product of two monomial matrices, the identity monomial matrix, and
the inverse of a monomial matrix, the following will allow us to create objects
of type MonomialPermutation:

DeclareCategory( "IsMonomialPermutation",

IsMultiplicativeElementWithInverse and IsAssociativeElement and

IsFiniteOrderElement );

DeclareCategoryCollections( "IsMonomialPermutation" );

InstallTrueMethod( IsGeneratorsOfMagmaWithInverses,

IsMonomialPermutationCollection );

BindGlobal( "MonomialPermutationsFamily",

NewFamily( "PermutationsFamily", IsMonomialPermutation,

CanEasilySortElements, CanEasilySortElements ) );

BindGlobal( "MonomialPermutationDefaultType",

NewType( MonomialPermutationsFamily,

IsMonomialPermutation and IsComponentObjectRep ) );

BindGlobal( "MonomialPermutation", function( permpart, scalarpart )

23



if not (IsPerm(permpart) and IsList(scalarpart)) then

Print("Monomial must be a permutation and list of scalars\n");

return false;

elif LargestMovedPoint(permpart) > Length(scalarpart) then

Print("Permutation does not match scalar list\n");

return false;

elif 0 in scalarpart then

Print("Cannot have a scalar of 0\n");

return false;

else

return Objectify( MonomialPermutationDefaultType,

rec( perm:= permpart, scal:= scalarpart ) );

fi;

end);

Take note of the final BindGlobal function. A MonomialPermutation is de-
fined to have two parts, a permutation part and a scalar part. We have slightly
altered our representation to include an actual permutation instead of a list
representing a permutation. This will avoid the need to convert back and forth
using the PermList and ListPerm functions. First we check that the permuta-
tion is in fact a permutation and that the scalar part is a list. Then we check that
the largest moved point of the permutation is less than or equal to the length of
the scalar part. Otherwise, we would be permuting cosets with the permutation
that are not represented in the scalar part. Finally, we check that none of our
scalars are 0. If all of these conditions are met then the MonomialPermutation
is stored as a record with perm as the permutation and scal as the list of scalars.

Next, we must utilize our identity, multiplication, and inverse functions in
the data structure, along with other methods that all data structures are re-
quired to have.

InstallMethod( PrintObj,

[ IsMonomialPermutation ],

function( monperm )

Print( "MonomialPermutation( ", monperm!.perm, ", ",

monperm!.scal, " )" );

end );

InstallMethod( \=,

[ IsMonomialPermutation, IsMonomialPermutation ],

function( monperm1, monperm2 )

return monperm1!.perm = monperm2!.perm and

24



monperm1!.scal = monperm2!.scal;

end );

InstallMethod( \<,

[ IsMonomialPermutation, IsMonomialPermutation ],

function( monperm1, monperm2 )

# Perhaps change the definition of ‘<’.

if monperm1!.perm < monperm2!.perm then

return true;

elif monperm1!.perm > monperm2!.perm then

return false;

elif monperm1!.scal < monperm2!.scal then

return true;

else

return false;

fi;

end );

The above methods are somewhat unimportant for out purposes. The first
allows aMonomialPermutation to be printed, printing outMonomialPermutation(perm, scal)
where perm is the permutation and scal is the list of scalars of the monomial
matrix. The second determines that two MonomialPermutations are equal if
their permutation are the same and their list of scalars are the same. The third
claims that a monomial matrix is < another monomial matrix if it’s permuta-
tion is < the other’s permutation, or if they are the same, if the list of scalars is
< the other. Again, this is irrelevant for our uses, but creating a data structure
in GAP requires this functionality.

InstallMethod( \*,

[ IsMonomialPermutation, IsMonomialPermutation ],

function( monperm1, monperm2 )

# Enter your code here!

local perm, result, row, inverse;

result := [];

row := 1;

perm := monperm1!.perm * monperm2!.perm;

while row <= Length(monperm1!.scal) do

# get coefficient entry

25



Append(result,

[monperm1!.scal[row]*monperm2!.scal[row^(monperm1!.perm)]]);

row := row+1;

od;

return MonomialPermutation( perm , result );

end );

This method allows two MonomialPermutations to be multiplied together.
This is taken almost directly from the previous multiplyMonomials function,
the only differences being that, given a monomial matrixmonperm, monperm!.scal
is being used to get the list of scalars, monperm!.perm is begin used to get the
permutation, and we can directly calculate the resulting permutation since our
we are now utilizing a permutation instead of a list representing a permutation.

InstallMethod( InverseOp,

[ IsMonomialPermutation ],

function( monperm )

# Enter your code here!

local result, row, perm;

result := [];

row := 1;

perm := (monperm!.perm)^-1;

while row <= Length(monperm!.scal) do

# get coefficient entry

Append(result, [monperm!.scal[row^perm]^-1]);

row := row+1;

od;

return MonomialPermutation( perm , result );

end );

Similarly to the function for multiplying two MonomialPermutations, this
function for finding the inverse of a MonomialPermutation is taken almost di-

26



rectly from it’s previous counterpart. Again, the only differences lie in how we
are acquiring the permutation and list of scalars, and finding the permutation
portion of the resulting inverse is much easier now that we are using permuta-
tions.

InstallMethod( OneOp,

[ IsMonomialPermutation ],

function( monperm )

local i, result, entry;

entry := monperm!.scal[1];

result := [];

result:= List ( [1..Length(monperm!.scal)], x->entry^0 );

return MonomialPermutation( (), result );

end );

This method, for finding the identity element of aMonomialPermutation, is
fairly different from it’s counterpart above. Including the identity permutation is
a simple change, but in order to fill the scalar part of theMonomialPermutation
with identity elements, we take the corresponding entry in the givenMonomialPermutation
and raise it to the 0 power. We also use the length of the givenMonomialPermutation’s
list of scalars to ensure that our identity element is the correct size.

4.2 Representing A Given Group With Monomial Matri-
ces

Now that we have a data structure for monomial matrices, we will tackle our
original issue of representing a given group using monomial matrices. In order
to do this, we will observe the necessary functions in the sequential order in
which they would be called.

4.2.1 MonomialTable

The ultimate goal will be to create a table of monomial matrices similar to the
table of marks.

# MonomialTable returns a table based on all the subgroups of a

# given group, their MonomialPermutation representations,

27



# and their fixed points

MonomialTable := function(group)

local allMonos, table, gens, sub, fixed, i, sum, row, mono,

imagegroup, phi, subgens, imgsubgens, tom, j, record;

allMonos := AllMonomials(group);

table := [];

gens:=GeneratorsOfGroup(group);

tom := TableOfMarks(group);

# Go through each subgroup

for j in [1..Length(allMonos[2])] do

#for sub in allMonos[2] do

sub := allMonos[2][j];

for mono in sub[2] do

# get fixed points

row := [];

imagegroup:=Group(mono);

phi:=

GroupHomomorphismByImages(group, imagegroup, gens,mono);

for i in [1..Length(OrdersTom(tom))] do

subgens:=

GeneratorsOfGroup(RepresentativeTom(tom,i));

# Get the identity if necessary

if (Length(subgens) = 0) then

subgens :=

[ GeneratorsOfGroup(RepresentativeTom(tom,2))[1]^0 ];

fi;

imgsubgens:=List(subgens,x->x^phi);

record := allMonos[1][i];

fixed := FixedPoints(imgsubgens, record);

Append(row, [fixed]);

od;

28



od;

Append(table, [row]);

od;

return table;

end;

As previously stated, we want to ultimately create a table that uniquely
represents a given group using monomial matrices. To do this, we will need all
of the monomial matrices using all of the subgroups of the group, which will
be given to us from AllMonomials (see code below). We will also need the
generators of the group (from GeneratorsOfGroup) and the table of marks for
the group (from TableOfMarks). AllMonomials will return a list of records
for each subgroup and a list containing separate lists for each subgroup of the
given group. Within each of these inner lists will be two lists, the first con-
taining the subgroup itself (like a label for the list) and the second containing
all the MonomialPermutations for the subgroup in the given group. Each
subgroup will have it’s own row in our final table, so we first iterate through
each of the lists provided by AllMonomials. Then we iterate through each of
the monomial matrices within the subgroup. We must create a homomorphism
from the given group to the group of MonomialPermutations in order to work
with them. Now we pass information to FixedPoints (see code below) in order
to find the linear characters that are fixed. This will be explained further in the
description of FixedPoints. In the end, the list of these fixed linear characters
will uniquely describe the given group.

4.2.2 FixedPoints

# FixedPoints takes a group (of MonomialPermutations) and

# determines which points in the permutation are fixed.

# It then finds the linear character corresponding to

# fixed points and returns this.

FixedPoints := function(gens, record)

local result, size, isFixed, gen, i, point, sum, lin, class, isLin;

result := [];

size := Length(gens[1]!.scal);

isFixed := true;

29



# Go through each possible point

for point in [1..size] do

# Reset this boolean

isFixed := true;

# Go through each generator until the point is not fixed

for gen in gens do

# If not fixed, set isFixed and break

if not (point^(gen!.perm) = point) then

isFixed := false;

break;

fi;

od;

# if fixed, find the linear character

if isFixed then

# go through all linear characters, find matching one

for lin in record.subLin do

# Reset isLin

isLin := true;

for class in [1..Length(gens)] do

if not (lin[record.conj[class]] =

gens[class]!.scal[point]) then

isLin := false;

fi;

od;

# Check if this is the correct linear character

if isLin then

Append(result, [lin]);

break;

fi;

30



od;

# Check that we found a linear character

if not isLin then

Append(result, ["NOT HERE"]);

#Error("Linear character not found");

fi;

fi;

od;

return result;

end;

Given a list of generators of a group and a rec (record in GAP) of informa-
tion, we want to determine the linear characters corresponding to fixed points
in the group. First we determine the points that could be possibly fixed by the
number of elements in the list of scalars and iterate from 1 to this size. Iterating
through these points, first we determine if the point is fixed by checking that
it is fixed by every generator. Then, if the point is fixed, we iterate through
every linear character (a list of which is found in the record passed in) and de-
termine which one corresponds to this fixed point. We do this by checking, for
each linear character, if the conjugacy class that corresponds to each generator
(stored previously, see Homomorphism function below) has the same value in
the linear character as the scalar of this generator. If this is the case, then
we append this linear character to our result and break out of the loop, as we
have found the one and only linear character corresponding to this fixed point.
Finally, we check that, for every fixed point, we have found the corresponding
linear character. If we have not we can either include the string ’NOT HERE’ in
the result to indicate where the error has occurred or use GAP to throw an error.

4.2.3 AllMonomials

# AllMonomials takes a group and initializes a record for the

# group and each of it’s subgroups and then calls Monomial

# for each of these records

AllMonomials := function(group)

local tom, subs, x, sub, output, record, records;

31



# Get the Table Of Marks

tom := TableOfMarks(group);

group := UnderlyingGroup(tom);

records := [];

# subs will hold all the subgroups

subs := List([1..Length(OrdersTom(tom))],

x -> RepresentativeTom(tom,x));

output := [];

for sub in subs do

record := MonomialInit(group,sub);

Append(records, [record]);

Append(output, [[sub, Monomial(record)]]);

od;

return [records,output];

end;

AllMonomials is used to take a group and provide a list of two lists: records
of information for every subgroup and MonomialPermutations using every
subgroup. This latter list contains a list for each subgroup which also has two
inner lists, the first of which tells the subgroup and the second of which holds
all the MonomialPermutations using that subgroup in the given group. First,
we obtain the table of marks for the given group. From this we can get all
the subgroups (up to conjugacy) of the group. For each of these subgroups, we
get a record of information from MonomialInit (described below) and all the
monomial matrices using the subgroup from Monomial (also described below).
We then return all of this information as a list in the aforementioned way.

4.2.4 MonomialInit

# MonomialInit is passed a group and subgroup and initializes

# a record that holds data for further use in the other functions

MonomialInit := function(group, subgroup)

local info, norm;

32



norm := Normalizer(group,subgroup);

info := rec(group := group, sub := subgroup,

reps := RightTransversal(group,subgroup),

gens := GeneratorsOfGroup(group), norm := norm,

subConj := ConjugacyClasses(subgroup),

subLin := LinearCharacters(subgroup),

subGens := GeneratorsOfGroup(subgroup),

normGens := GeneratorsOfGroup(norm));

return info;

end;

MonomialInit takes in a group and subgroup and returns a record of all
information that may be useful for other functions throughout the process of
representing a group with monomial matrices. This function is used so that
other functions need only be passed the record, and thus all information in the
record need be calculated only once. The following is a description of everything
contained in the record returned by MonomialInit.

group is the group given to MonomialInit.
sub is the subgroup given to MonomialInit.
reps are coset representatives for the subgroup in the group.
gens are generators for the given group.
norm is the normalizer of the subgroup in the group.
subConj are the conjugacy classes of the subgroup.
subLin are the linear characters of the subgroup.
subGens are the generators of the subgroup.
normGens are the generators of the normalizer.

4.2.5 Monomial

# To Use: Call Monomial(info)

# where info is a record obtained by MonomialInit

Monomial := function(info)

local monos, homo, output, monperm, monomial, row, col, x,

result, coeff, g, i, rep, elem, r;

#info should be a record created by MonomialInit

33



output := [];

for homo in Homomorphism(info) do

monos := [];

# go through each group element

for g in info.gens do

monomial := [[],[]];

row := 1;

col := 1;

# Here we are filling the monomial matrix with 0’s

for i in info.reps do

monomial[1][row] := 0;

monomial[2][row] := 0;

row := row+1;

od;

# Reset row, as we will use it later

row := 1;

# go through each coset representative

for rep in info.reps do

# x is the element times the representative

x := rep*g;

# check which coset it is in, coefficient it should have

for elem in info.sub do

result := elem*x;

coeff := elem^homo[1];

# Go through and set the coefficent for each col

col := 1;

for r in info.reps do

if result = r then

monomial[1][row] := col;

monomial[2][row] :=

CyclicToCyclotomic(coeff, homo[2]);

else;

fi;

col := col+1;

od;

34



od;

#increase row

row := row+1;

od;

monperm :=

MonomialPermutation(PermList(monomial[1]),monomial[2]);

Append(monos, [monperm]);

od;

Append(output, [monos]);

od;

return output;

end;

The above function is used to find all MonomialPermutations for a group
and subgroup of that group. Note that Monomial should be passed a record
created by MonomialInit that contains the group, subgroup, and other infor-
mation. The first thing we do is iterate through homomorphisms from the sub-
group to elements of a cyclic group (provided by the Homomorphism function,
which is described below). Then, for each homomorphism, we look at each gen-
erator of the group and determine the corresponding MonomialPermutation.
We calculate the monomial matrix as a list of columns and scalars (see section
Storing Only Column And Scalar above) and then use PermList to provide
the list of columns as a permutation. We do this using the same algorithm
described in the Monomial Matrices section. For each coset representative we
multiply the representative and the group generator and then use the subgroup
generators to determine which column the result will be in (using the list of
coset representatives) and the scalar (using the given homomorphism). Note
that the homomorphism goes to an element of a cyclic group and must be con-
verted to a root of unity. For further explanation of the process and correctness
in creating the monomial matrix representation refer to the Monomial Matrices
section above.

4.2.6 Homomorphism

# Homomorphism takes a record from MonomialInit

35



# and returns all the homomorphisms of the group

# into the smallest possible cyclic group using the group’s

# conjugacy classes, linear characters, and generators

# (from info)

Homomorphism := function(info)

local redOrbits, nonRed, gen, classes, homos, homo, conj, class,

elem, base, root, power, roots, cyclRoots, lcm, cyclic, i, r,

mult, homomorphism;

# classes holds which class each generator is in

classes := [];

homos := [];

redOrbits := Redundants(info);

nonRed := [];

# utilize the Redundants function to use only necessary homomorphisms

for homo in [1..Length(redOrbits)] do

# We will only use the first from each orbit

Append(nonRed, [info.subLin[redOrbits[homo][1]]]);

od;

# Add the identity permutation if subgroup is the identity

if info.subGens = [] then info.subGens := [info.gens[1]^0];

fi;

# find which conjugacy class each generator is in

for gen in info.subGens do

for i in [1..Length(info.subConj)] do

if gen in info.subConj[i] then

Append(classes, [i]);

fi;

od;

od;

info.conj := classes;

36



# go through each linearCharacter

# find the corresponding homomorphism

for homo in nonRed do

# roots holds which root of unity

# corresponds to each generator

roots := [];

# cyclRoots holds the corresponding

# elements of the cyclic group

cyclRoots := [];

# go through each conjugacy class and find

# the corresponding root of unity

for class in classes do

elem := homo[class];

base := Order(elem);

root := E(base);

power := 1;

while not (root^power = elem) do

power := power+1;

od;

# each will be kept as a pair [base, power]

Append(roots, [[base, power]]);

od;

# find the LCM of all the bases

lcm := Lcm(List ( [1..Length(roots)], x->roots[x][1] ));

# cannot use cyclic group of just 1, so make at least 2

if lcm = 1 then

cyclic := CyclicGroup(2);

# convert each pair in roots to an element of cyclic

for r in roots do

Append(cyclRoots, [ (cyclic.1)^(0) ] );

od;

else

cyclic := CyclicGroup(lcm);

37



# convert each pair in roots to an element of cyclic

for r in roots do

mult := lcm/(r[1]);

Append(cyclRoots, [ (cyclic.1)^(mult*r[2]) ] );

od;

fi;

homomorphism :=

GroupHomomorphismByImages(info.sub,cyclic,info.subGens,cyclRoots);

Append(homos, [[homomorphism, cyclic]]);

od;

return homos;

end;

The Homomorphism function uses a record from MonomialInit to find all
non-redundant homomorphisms from a subgroup to elements of a cyclic group,
using linear characters and other information from the given record. First, we
utilize the Redundants function (see below) to get only non-redundant linear
characters from the linear characters of the subgroup in the given record. Next
we find which conjugacy class each generator is in (storing only the integer rep-
resentative of this conjugacy class because the order in which the classes are
stored does not change) and store this in our record as well for further use.
Then for each of these linear characters, we must determine the corresponding
homomorphism. We will use the function GroupHomomorphismByImages,
but GAP cannot create homomorphisms into roots of unity (R(C)), so we con-
vert from roots of unity to elements of a cyclic group (for the homomorphism)
and can convert to roots of unity later. In order to do this, we first take each
root of unity from the linear character and convert it to a pair containing which
root of unity we have and what power it is raised to. Then we use the least
common multiple of the bases to find the cyclic group that we should utilize
and convert these roots of unity to elements of this cyclic group. Finally, we use
GAP’s GroupHomomorphismByImages to get the homomorphism into the
cyclic group and also pass along the cyclic group itself, so we can later convert
these elements back into roots of unity.

4.2.7 Redundants

38



# Redundants takes record created by MonomialInit

# It returns the orbits of a group of linear characters

Redundants := function(info)

local gen, class, rep, new, class2, list, perm, permGroup, orbits,

homo, newHomo, homPerms, homList, homo2;

homPerms := [];

for gen in info.normGens do

list := [];

homList := [];

for class in [1..Length(info.subConj)] do

rep := Representative(info.subConj[class]);

new := (gen^-1) * rep * gen;

for class2 in [1..Length(info.subConj)] do

if new in info.subConj[class2] then list[class] := class2;

fi;

od;

od;

perm := PermList(list);

# Find homomorphisms based on permutation of conj. classes

for homo in info.subLin do

newHomo := [];

# Get the new Homomorphism

for class in [1..Length(homo)] do

Append(newHomo, [homo[class^perm]]);

od;

# Find which one matches the new Homomorphism

for homo2 in [1..Length(info.subLin)] do

39



if info.subLin[homo2] = newHomo

then Append(homList, [homo2]);

fi;

od;

od;

Append(homPerms, [PermList(homList)]);

od;

permGroup := Group(homPerms);

orbits := Orbits(permGroup, [1..Length(info.subLin)]);

return orbits;

end;

Redundants is given a record (from MonomialInit) and finds the orbits of
the linear characters in that record and returns them. This is important because
we need only consider linear characters in different orbits, and we can discard
the rest (as is done in the Homomorphism function). To do this, we iterate
through the generators of the normalizer of the given subgroup in the group.
For each conjugacy class of the subgroup, we take a representative and find it’s
conjugate with the generator. We then find what conjugacy class this conjugate
is in and record that, creating a permutation of where the conjugacy classes go
when they are conjugated by the generator. Now we iterate through the linear
characters and use the permutation of the conjugacy classes to determine a per-
mutation in the linear characters (which linear character goes to which other
linear character when it’s conjugacy classes are permuted in the given way). We
then make this list into a permutation, and all of these permutations (for each
generator) into a group. Then we can use GAP to find the orbits of this group
and return these orbits, so we can only utilize one linear character from each.

4.2.8 CyclicToCyclotomic

# CyclicToCyclotomic takes an element of a cyclic group and

# converts it to a Cyclotomic (root of unity)

CyclicToCyclotomic := function(elem, group)

40



local base, power, cyc;

base := Order(group);

# check if we have the identity

if base = 1 then

return E(1);

fi;

power := 1;

# find the power

while not (((group.1)^power) = elem) do

power := power+1;

od;

return E(base)^power;

end;

CyclicToCyclotomic converts an element of a cyclic group to a cyclotomic
element (a root of unity, R(C)), given the element and the group it is in. Which
root of unity to use is determined from the order of the cyclic group provided.
If the order is 1 we return E(1) which is just 1. Otherwise we continue to raise
the root of unity to a higher power until we reach a root of unity that is equal
to the element given. At this point, we are done and return the correct root of
unity.

5 Results

Now we can use all of the functions above to run MonomialTable and get the
table output of fixed monomial matrices. Here are some examples, providing
only the number of fixed linear characters in each entry of the table, for sim-
plicity of viewing. The runtime for the function is given as well.

The command MonomialTable(SymmetricGroup(3)) runs in 125 ms and
gives us:


6 0 0 0
3 1 0 0
2 0 2 0
1 1 1 1



41



The command MonomialTable(SymmetricGroup(4)) runs in 714 ms and
gives us:



24 0 0 0 0 0 0 0 0 0 0
12 4 0 0 0 0 0 0 0 0 0
12 0 2 0 0 0 0 0 0 0 0
8 0 0 2 0 0 0 0 0 0 0
6 6 0 0 6 0 0 0 0 0 0
6 2 2 0 0 2 0 0 0 0 0
6 2 0 0 0 0 2 0 0 0 0
4 0 2 1 0 0 0 1 0 0 0
3 3 1 0 3 1 1 0 1 0 0
2 2 0 2 2 0 0 0 0 2 0
1 1 1 1 1 1 1 1 1 1 1



The command MonomialTable(SymmetricGroup(5)) runs in 2656 ms and
gives us:



120 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
60 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 6 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0
30 0 2 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
30 6 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0
24 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0
20 6 0 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0
20 0 4 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0
20 2 0 2 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0
15 3 3 0 3 1 1 0 0 0 0 1 0 0 0 0 0 0 0
12 0 4 0 0 0 0 2 0 0 0 0 2 0 0 0 0 0 0
10 0 2 4 2 0 0 0 0 0 0 0 0 2 0 0 0 0 0
10 4 2 1 0 0 2 0 1 1 1 0 0 0 1 0 0 0 0
6 0 2 0 0 2 0 1 0 0 0 0 1 0 0 1 0 0 0
5 3 1 2 1 1 1 0 2 0 0 1 0 1 0 0 1 0 0
2 0 2 2 2 0 0 2 0 2 0 0 2 2 0 0 0 2 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1



The command MonomialTable(AlternatingGroup(4)) runs in 209 ms and
gives us:

42




12 0 0 0 0
6 2 0 0 0
4 0 1 0 0
3 3 0 3 0
1 1 1 1 1



The command MonomialTable(AlternatingGroup(5)) runs in 557 ms and
gives us:



60 0 0 0 0 0 0 0 0
30 2 0 0 0 0 0 0 0
20 0 2 0 0 0 0 0 0
15 3 0 3 0 0 0 0 0
12 0 0 0 2 0 0 0 0
10 2 1 0 0 1 0 0 0
6 2 0 0 1 0 1 0 0
5 1 2 1 0 0 0 1 0
1 1 1 1 1 1 1 1 1



References

[1] Curtis, Charles W. Linear Algebra: An Introductory Approach. Boston:
Springer, 1974.

[2] Fraleigh, John B. A First Course In Abstract Algebra. Boston: Addison
Wesley, 7th Edition, 2003.

[3] Gallian, Joseph A. Contemporary Abstract Algebra. Duluth: Brooks Cole,
7th Edition, 2009.

[4] Lux, K. and H. Pahlings. Representations Of Groups: A Computational
Approach. Cambridge: Cambridge University Press, 2010.

43




