INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.
ZIPPERIAN, DONALD CHARLES

THE RECOVERY OF VANADIUM FROM DILUTE ACID SULFATE SOLUTIONS BY RESIN ION EXCHANGE

THE UNIVERSITY OF ARIZONA

M.S. 1984

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106
PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark √.

1. Glossy photographs or pages _____
2. Colored illustrations, paper or print _____
3. Photographs with dark background _____
4. Illustrations are poor copy _____
5. Pages with black marks, not original copy _____
6. Print shows through as there is text on both sides of page _____
7. Indistinct, broken or small print on several pages √
8. Print exceeds margin requirements _____
9. Tightly bound copy with print lost in spine _____
10. Computer printout pages with indistinct print _____
11. Page(s) ___________ lacking when material received, and not available from school or author.
12. Page(s) ___________ seem to be missing in numbering only as text follows.
13. Two pages numbered ___________. Text follows.
14. Curling and wrinkled pages _____
15. Other ________________________________
THE RECOVERY OF VANADIUM FROM DILUTE
ACID SULFATE SOLUTIONS BY RESIN ION EXCHANGE

by

Donald Charles Zipperian

A Thesis Submitted to the Faculty of the
DEPARTMENT OF METALLURGICAL ENGINEERING
In Partial Fulfillment of the Requirements
For the Degree of
MASTER OF SCIENCE
WITH A MAJOR IN METALLURGY

In the Graduate College
THE UNIVERSITY OF ARIZONA

1984
STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

SIGNED: Donald C. Zuppinger

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

S. Raghavan
Professor of Metallurgy

2/3/84
Date
ACKNOWLEDGEMENTS

The author wishes to express his deep appreciation to Dr. S. Raghavan whose guidance and technical advice were a valuable tool in the preparation of this thesis.

I would also like to thank the Metallurgical Engineering Department for their support during my studies. The financial aid from the Phillips Foundation and MMRRI Fellowships were deeply appreciated.

I would also like to extend my gratitude to William Lorenz and the Anamax Mining Corporation for their technical advice, and for providing the ion exchange resin. I also appreciate the sulfate analysis provided by Kerley Chemical Corporation. Appreciation also goes to Don Rice of Dow Chemical Company, who supplied valuable data on the resin DOWEX 21K.

Finally, I would like to thank Marie Benitez for typing this manuscript.
TABLE OF CONTENTS

LIST OF ILLUSTRATIONS .. vi
LIST OF TABLES .. viii
ABSTRACT .. ix

CHAPTER

1. INTRODUCTION .. 1

2. BACKGROUND AND LITERATURE REVIEW 3
 A. Hydrometallurgical Techniques for Vanadium Production 3
 B. Resin Ion Exchange .. 4
 C. Solution Chemistry of Vanadium 6
 D. The Anamax Copper-Uranium Operation 8

3. EXPERIMENTAL MATERIALS 10

4. EXPERIMENTAL PROCEDURE 11
 A. Resin Pretreatment and Regeneration 11
 B. Experimental Methods 12

5. RESULTS ... 15

6. DISCUSSION .. 50
 A. Vanadium Loading as Predicted by Eh-pH Diagram 50
 B. Kinetic Model for Vanadium Uptake at pH 4.0 51
 C. Kinetic Model for Vanadium Uptake at pH 2.0 52

7. CONCLUSIONS .. 59

APPENDIX A: FREE ENERGY CALCULATIONS FROM Log K VALUES..... 62
TABLE OF CONTENTS--Continued

APPENDIX B: RESIN CAPACITY CALCULATION 74
APPENDIX C: ARRHENIUS PLOT FOR DETERMINING ACTIVATION ENERGY AT pH 2.0 78
APPENDIX D: MAXIMUM THEORETICAL LOADING OF COMPETING ANIONIC SPECIES IN SOLUTION 81
APPENDIX E: MEAN RESIDENCE TIME CALCULATIONS FROM TRACER DATA 84
APPENDIX F: APPLICATION OF FILM DIFFUSION MODEL TO VANADIUM UPTAKE AT pH 4.0 86
APPENDIX G: APPLICATION OF FILM DIFFUSION MODEL TO VANADIUM UPTAKE AT pH 2.0 96
APPENDIX H: PARTICLE DIFFUSION MODEL FOR A WELL-STIRRED SOLUTION OF LIMITED VOLUME 101
REFERENCES ... 111
LIST OF ILLUSTRATIONS

Figure

1. Ion Exchange Resins .. 5
2. Predominance Diagram For V(V)-OH^- Species at 25°C 7
3. Experimental Apparatus For Batch Resin Loading of Vanadium .. 13
4. Experimental Apparatus For Column Loading of Vanadium .. 14
5. Eh-pH Diagram For V-H_2O System .. 18
7. Change in Solution Potential as a Function of Time at a pH of 2.0 at Different Hypochlorite Concentrations .. 21
8. Change in Solution Potential as a Function of Time at a pH of 4.0 at Different Hypochlorite Concentrations 23
9. Effect of Hypochlorite Concentration on the Potential of a 10 ppm Vanadium Solution .. 24
10. Vanadium Uptake by DOWEX 21K at pH 2.0 and 4.0 as a Function of Vanadium Concentration (Batch test) .. 25
11. Dependence of Vanadium Loading on Solution Potential 27
12. Kinetics of Vanadium Uptake at Different pH Values 28
13. Kinetics of Vanadium Uptake at pH 4.0 at Different Stirring Speeds .. 30
14. Kinetics of Vanadium Uptake at pH 2.0 at Different Stirring Speeds .. 31
15. Interruption Tests at pH 4.0 to Determine the Role of Particle Diffusion .. 33
LIST OF ILLUSTRATIONS—Continued

Figure

16. Interruption Tests at pH 2.0 to Determine the Role of Particle Diffusion ... 34
17. Effect of Temperature on Vanadium Uptake at pH 2.0 ... 35
18. Effect of Temperature on Vanadium Uptake at pH 4.0 ... 36
19. Arrhenius Plot For Determining Activation Energy at pH 2.0 ... 37
20. Effect of pH on Iron Precipitation ... 41
21. Kinetics of Iron Uptake at pH 2.0 ... 42
22. Effect of Fe$^{+3}$ Concentration on the Kinetics of Vanadium Uptake ... 45
23. Column Residence Time Distribution ... 47
24. Column Breakthrough Curve ... 49
25. Test of Applicability of Film Diffusion Model to the Experimental Data at pH 4.0 ... 53
26. Test of Applicability of Film Diffusion Model to the Experimental Data at pH 2.0 ... 55
LIST OF TABLES

Tables

1. Anamax Leach Liquor ... 9
2. Free Energy Data for Vanadium Species 16
3. Consumption of Hypochlorite ion 39
4. Iron Loading .. 44
5. Column Specifications ... 46
6. Mass Transfer Coefficient at pH 4.0 54
7. Application of Particle Diffusion Model
 at pH 2.0: Considering Different Partition
 Coefficients and Diffusion Coefficients 58
8. Roots of $\tan q_n = \frac{3q_n}{3+aq_n^2}$ 103
ABSTRACT

A detailed study has been carried out to investigate the possibility of recovering vanadium by resin ion exchange from acid sulfate solutions containing 10 ppm vanadium. In particular the recovery of vanadium by an anion exchange resin DOWEX 21K, has been investigated. Batch loading tests have been carried out to elucidate the role of Eh and pH on vanadium loading. An Eh-pH diagram has been constructed to determine the most stable vanadium species in solution at different Eh and pH conditions, and this information has been used to explain and predict the loading of vanadium onto the anion exchange resin. Kinetic data have been obtained for the loading of vanadium at different pH values. A film diffusion model has been found to fit the experimental data gathered at pH 4.0, while a particle diffusion model seems to offer a better fit to the experimental data at pH 2.0. Experiments have also been carried out to study the loading characteristics of vanadium in an anion exchange column.
CHAPTER 1
INTRODUCTION

In recent years U.S. import reliance for vanadium has ranged from 28 percent in 1979 to 42 percent in 1981. Vanadium availability is affected by factors that are not directly related to demand. For example, only a single domestic deposit is processed solely for its vanadium content. Most vanadium is a coproduct of the production of another element, such as iron, phosphorus, or uranium (which alone accounts for as much as 50 percent of domestic vanadium production) (1-3). Owing to stagnation of the nuclear power industry, with the attendant decrease in both the demand for and price of uranium, the future supply of vanadium from uranium production is uncertain (4).

Ores containing uranium and vanadium are usually dissolved with sulfuric acid, and the uranium and vanadium in solution are subsequently separated by a solvent extraction step using amine type extractants (5). The separation of uranium and vanadium by solvent extraction is usually accomplished by exploiting the inability of vanadium (IV) species to form ion-pair complexes with amine reagents (6).

The concentration of vanadium in many ore bodies is less than 0.5%. The Anamax Twin Buttes Mine in Arizona has both vanadium and uranium in a copper oxide ore body. Copper is the main metal occurring in the ore body, but uranium is also currently recovered as a by-product because of its economic value. It has been surmised that the vanadium is leached along with the copper and uranium during the acid leaching of the ore,
but only the uranium is currently recovered by the resin ion exchange process (7). Presently it is believed that vanadium does not load onto the exchange resin in any significant amounts (8). The fact that vanadium does not load onto the resin is considered beneficial since vanadium is believed to be a resin poison (9). The vanadium solubilized by the sulfuric acid is of interest because of possible recovery of vanadium as a by-product using the present plant set-up.

This research was undertaken to study the effects that solution conditions have on the resin ion exchange of vanadium, with the view of determining the possibility of recovering vanadium by a resin ion exchange process. In particular, the effect that solution conditions such as pH, solution potential, and the concentration of competing ions have on the resin loading have been explored in detail. A kinetic model for vanadium uptake has been developed.
CHAPTER 2
BACKGROUND AND LITERATURE REVIEW

A. Hydrometallurgical Techniques For Vanadium Production

Vanadium occurring in ore bodies can be dissolved by either an acid or alkaline lixiviant. Extraction is usually low, unless higher acid concentrations is used than is normal for uranium dissolution or unless a salt roasting step is incorporated in the alkaline processes. According to Merritt, vanadium extraction seldom exceeds 80% by any of these methods (10).

There are two commonly used solvent extraction processes to recover and separate uranium and vanadium. In both processes, the vanadium must be in the reduced form (vanadium (IV)) while the uranium must be oxidized to the uranyl ion (UO$_2^{+2}$) so that the uranium can be extracted with a tertiary amine. In the DEHPA (di-2-ethylhexyl phosphoric acid) process, vanadium (IV) is extracted directly. In the tertiary amine process, the vanadium must be oxidized to the +5 state before it can be extracted. The amine process is currently favored as it gives easier separation from iron and is compatible with the uranium extraction circuit.

Vanadium recovery by solvent extraction has been well established, but resin ion exchange processes for vanadium have not been commercially developed. Since vanadium occurs in trace quantities in many ore bodies, and since resin ion exchange becomes more economical than the solvent
The extraction process at solution concentrations below 10 parts per million, development of resin ion exchange methods is vital for the processing of low grade vanadium ore bodies.

B. Resin Ion Exchange

Resin ion exchange is a reversible interchange of ions between a porous solid resin and a liquid phase, where there is no permanent change in the structure of the solid (12).

An ion exchange reaction can be represented by the reversible reaction:

\[
R^+ A^- + B^- \rightleftharpoons R^+ B^- + A^-
\]

where: \(A^- \) represents the exchangable ion (counter ion) in the resin.
\(B^- \) represents the counter ion in the solution phase.
\(B^- \) represents the \(B^- \) ion loaded onto the resin.
\(A^- \) represents the counter ion released from the resin into the solution.

At equilibrium, both the resin and the solution compete for the counter ion species of \(A^- \) and \(B^- \), but generally the ion exchange resin has a greater selectivity for one species over another. An ideal resin is one that exhibits a high affinity for a given species (loading), but also exhibits a complete shift in the equilibrium for removal of the species (stripping).

The loading of a resin is dependent on its capacity. Ion-exchange may be expressed as the total capacity (total number of sites available for exchange) or operating capacity (measure of the performance obtained
with the ion exchange material operating in a column under some
definite prescribed set of conditions) (14). Typical ion exchange
capacities are in the range of 1-5 milliequivalents per gram of resin.

Most modern resins are classified as anionic or cationic with a
few ampheteric resins available (15) (Figure 1). Physical and chemical
stability are important characteristics of modern day resins. Physi­
cally resins need to support their own bed weight and the weight of the
liquid phase. Often resins are subject to acidic, basic, oxidizing or
reducing conditions and chemical stability is critical (17).

Figure 1. Ion Exchange Resins (16).

Ion exchange kinetics can be controlled by one or more of the
following mechanisms: film diffusion, particle diffusion, and/or
exchange reaction (18-20). Film diffusion is the diffusion of ions
through a Nernst film layer around the resin beads (21). The Nernst
layer is more prominent when exchange rates at the exchange sites is
fast and solution mixing is low. Particle diffusion is the diffusion
of ions through the resin structure. Exchange reaction is the exchange of ions at the exchange sites of the resin; this is usually not the rate controlling step unless a chelating resin is used (22).

Ion exchange operations are usually carried out in columns (23). The feed solution continuously enters the column and the barren solution leaves the column. The process proceeds until the resin has been loaded and a "breakthrough" has occurred. Breakthrough volume is usually defined as the volume fed to the column until the effluent contains the metal ion to be exchanged at a concentration equal to a certain percentage (usually 2%) of that in the feed solution (24). After the breakthrough is reached, the resin is removed and stripped to recover the metal values. Another characteristic of a breakthrough curve is its slope after breakthrough (25). This slope indicates the resin preference for the exchanging ion; a larger slope indicates a greater preference.

C. Solution Chemistry of Vanadium

Vanadium can exist in oxidation states of +2, +3, +4 and +5 in aqueous solutions. The tetravalent state is particularly stable in the form of the vanadyl ion, VO\(^{2+}\), vanadium (II) is unstable with respect to the slow oxidation by water, and vanadium (V) is the stable state in the presence of air (26). A comprehensive account of the different vanadium (V) species and their hydrolysis equilibria is available in the literature (27). The distribution of vanadium (V) species as a function of pH at different total molalities of vanadium is given in Figure 2 (28). In acid solutions and a low vanadium concentration \((<10^{-4} M)\), vanadium is usually present in the +5 valence state, predominantly in the
Figure 2. Predominance Diagram for V(V)-OH⁻ Species at 25°C (Reference 28).
form VO_2^+. At moderate acidities (pH 1-6) and vanadium concentrations ($>10^{-2}$ M), VO_2^+ polymerizes to form decavanadates, $V_{10}\text{O}_{28}^2(\text{OH})_{2z}^z$ (29).

D. The Anamax Copper-Uranium Operation

The Anamax Twin Buttes Operation in Southern Arizona processes a copper oxide ore body containing approximately 0.6% copper and 50 parts per million uranium by a sulfuric acid leach technique. A typical composition of the Anamax leach liquor is given in Table 1.

The leach liquor is first processed in a uranium by-product plant where the uranium is recovered by a combination of resin ion exchange and solvent extraction (Eluex process) (30). The resin ion exchange step involves the loading of the anionic sulfate complexes of uranium (31). The resin used in the process is the strongly basic anionic resin, DOWEX 21K, which is produced by the Dow Chemical Company. Copper in solution does not load onto the resin because it is in the cationic form, consequently the copper leaves the resin column unaffected. The uranium loaded resin is subsequently stripped to recover uranium valves, and the uranium containing pregnant solution is further upgraded by a solvent extraction step. The pH of the leach liquor is controlled in the range of 1.6 to 2.0 and the oxidation potential of the leach liquor is approximately 650 mV, (vs. Ag/AgCl).

The leach liquor contains approximately 7 parts per million vanadium as compared to 8 parts per million for uranium as $U_3\text{O}_8$ (32). At present no attempts are made to recover vanadium from the leach liquor, and the actual degree of loading of vanadium is not known.
<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration (g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uranium (U_3O_8)</td>
<td>0.008</td>
</tr>
<tr>
<td>Vanadium</td>
<td>0.007</td>
</tr>
<tr>
<td>Iron (Fe^{3+})</td>
<td>2.0</td>
</tr>
<tr>
<td>Sulfate (SO_4^{2-})</td>
<td>30.0</td>
</tr>
<tr>
<td>Chloride (Cl^-)</td>
<td>0.15</td>
</tr>
<tr>
<td>Silica (SiO_2)</td>
<td>0.8</td>
</tr>
<tr>
<td>Copper (Cu)</td>
<td>3.5</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>0.004</td>
</tr>
<tr>
<td>Nitrate (NO_3)</td>
<td>0.02</td>
</tr>
</tbody>
</table>
CHAPTER 3
EXPERIMENTAL MATERIALS

The resin DOWEX 21K, manufactured by Dow Chemical Company was used in the investigations. DOWEX 21K was chosen because of its high affinity for anionic complexes. It is a strong base anionic resin and the sequence for nonvalent ions in decreasing order of preference is as follows (33):

\[
\text{NO}_3^- > \text{CN}^- > \text{HSO}_4^- > \text{Cl}^- > \text{HCO}_3^- > \text{OH}^- > \text{F}^-
\]

The minimum total net capacity of the resin is claimed to be 1.2 milliequivalent per milliliter (34).

Reagent grade VOSO_4 (Formula weight = 163) was purchased from Aldrich Chemical Company. Solution redox potentials were adjusted either with a hypochlorite solution (purchased as Chlorox) or with a 30% hydrogen peroxide solution purchased from Ashland Chemical. Reagent grade sulfuric acid and sodium hydroxide were used for pH adjustments.
A. Resin Pretreatment and Regeneration

In the as received state, the exchangeable anion in the DOWEX 21K resin was the chloride ion (35). Since the loading of the vanadium from sulfate solution was to be investigated, the resin was first converted to the sulfate form. This conversion was achieved by the following method (36):

a. Resin for batch tests (30 grams resin).
 1. Rinsing with 400 ml of 10% NaOH (0.01 M NaOH).
 2. Rinsing with 400 ml of H₂O.
 3. Rinsing with 400 ml of 10 g/l H₂SO₄.
 4. Rinsing with approximately 4000 ml of deionized water (in 400 ml aliquots) to bring pH of wash water to above 2.0.

b. Resin for column tests.
 1. Rinsing with (passing) 4 batch volumes of 4% NaOH in one hour (0.04 M NaOH).
 2. Rinsing with 1 batch volume of H₂O.
 3. Rinsing with (passing) 8 batch volumes at 10 g/l H₂SO₄.
 4. Rinsing with deionized H₂O until pH of H₂O exceeds 2.0.

The regeneration of the resin (for batch tests) was effected by rinsing the loaded resin with 400 ml of water followed by rinsing with 100 grams/liter sulfuric acid. The acid rinsing step was followed by
washing with 4000 ml of deionized water (in 400 ml aliquots) to bring the pH value of wash water to just above 2.0.

B. Experimental Methods

A schematic sketch of the experimental set-up used for batch resin loading tests is given in Figure 3. A majority of the tests were carried out with 30 grams of resin and 1000 ml of vanadium solution (of a predetermined concentration) in a 2000 ml beaker. The pH of the suspension was measured with a Fisher (model 650) pH meter. The redox-potential of the solution was measured with a Orion Pt-redox electrode using a Orion ion-meter. The vanadium concentration in solution was measured with a Perkin Elmer (model 2380) atomic absorption spectrophotometer.

The experimental set-up for the investigation of column loading of vanadium is shown in Figure 4. The column used was 17 cm long and 1.5 cm in diameter and was packed with 10 grams of dry resin. The vanadium solution was pumped at a flow rate of 8.4 ml/minute and 16.8 ml/minute through the column at pH 2.0 and 4.0, respectively.

The residence time distribution (RTD) in the column was determined using copper sulfate as a tracer (37).

The hypochlorite concentration in solution was determined by an iodine titration. The titration technique involved the addition of 1 gram of KI and 10 ml of 2 M H$_2$SO$_4$ to a 25 ml aliquot of hypochlorite solution and titrating the liberated iodine with a standard thiosulfate solution with starch as the indicator (38).
Figure 3. Experimental Apparatus For Batch Resin Loading of Vanadium.
Figure 4. Experimental Apparatus For Column Loading of Vanadium.
CHAPTER 5
RESULTS

Recovery of vanadium by resin ion exchange will depend on the nature of vanadium species that can exist in solution at different Eh and pH conditions. Hence, the first step in the research was directed towards gathering free energy data for various vanadium species and constructing an Eh-pH (Pourbaix) diagram. The Pourbaix diagram was constructed with the use of a computer program (39).

The Pourbaix diagram for the V-H_2O system was constructed considering the species listed in Table 2, for a vanadium concentration of 10 parts per million (Figure 5). For the recovery of vanadium with an anionic exchange resin DOWEX 21K, the pH and Eh conditions should be chosen such that, vanadium exists as an anionic species in solution.

Figure 5 indicates that vanadium (+5) can form an anionic complex at pH values in excess of 4.0. At pH values less than 4 the most stable vanadium (+5) species is the cationic species VO_2^+ (H_4VO_4^+) or the neutral species VO(OH)_3. As was described earlier, the pH of the Anamax leach liquor is about 1.8 and the Eh value is approximately 850 mV. Under these conditions, from Figure 5 it is clear that it is not possible to load vanadium onto the anionic resin DOWEX 21K. However, it should be stated that for higher concentrations of vanadium in solution it is possible to form anionic vanadium complexes (especially the anionic decavanadates at acid pH values). The formation of the decavanadates at acidic pH values is clear from the predominance
Table 2. Free Energy Data for Vanadium Species.

<table>
<thead>
<tr>
<th>Species</th>
<th>ΔG_f (kcal/mole)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>0.0</td>
<td>40,43</td>
</tr>
<tr>
<td>VOH$^{+2}$</td>
<td>-111.4</td>
<td>41,44+</td>
</tr>
<tr>
<td>VO$^{+2}$</td>
<td>-160.7</td>
<td>42,43</td>
</tr>
<tr>
<td>VOH$^+$</td>
<td>-101.0</td>
<td>40</td>
</tr>
<tr>
<td>VOOH$^+$</td>
<td>0157.0</td>
<td>40</td>
</tr>
<tr>
<td>VO$_2^+$</td>
<td>-140.3</td>
<td>41,43</td>
</tr>
<tr>
<td>V$^{+2}$</td>
<td>-106.7</td>
<td>41</td>
</tr>
<tr>
<td>V$^{+3}$</td>
<td>-57.8</td>
<td>41</td>
</tr>
<tr>
<td>VO(SO)$_4$(aq)</td>
<td>-288.0</td>
<td>40</td>
</tr>
<tr>
<td>V(OH)$_3$(aq)</td>
<td>-212.9</td>
<td>41</td>
</tr>
<tr>
<td>VO(OH)$_3$(aq)</td>
<td>-350.4</td>
<td>44+</td>
</tr>
<tr>
<td>V$_2$O$_5$(s)</td>
<td>-339.3</td>
<td>43,44+</td>
</tr>
<tr>
<td>V${10}$O${26}$(OH)$_2^{4-}$</td>
<td>-1847.4</td>
<td>44+,47++,46</td>
</tr>
<tr>
<td>V${10}$O${27}$(OH)$_5^{5-}$</td>
<td>-1843.3</td>
<td>44+,47++,48</td>
</tr>
<tr>
<td>VO$_2$(OH)$_2^-$</td>
<td>-244.9</td>
<td>44+</td>
</tr>
<tr>
<td>VO$_4^3^-$</td>
<td>-213.8</td>
<td>44+,46</td>
</tr>
<tr>
<td>VO$_3^{3^-}$</td>
<td>-571.2</td>
<td>44+</td>
</tr>
<tr>
<td>VO$_3$(OH)$_2^{2^-}$</td>
<td>-233.2</td>
<td>44+,42</td>
</tr>
<tr>
<td>V${10}$O${28}^{6^-}$</td>
<td>-1834.1</td>
<td>44+,47++</td>
</tr>
<tr>
<td>V(OH)$_2$</td>
<td>-163.2</td>
<td>41</td>
</tr>
<tr>
<td>VOH$^{+2}$</td>
<td>-111.4</td>
<td>41</td>
</tr>
<tr>
<td>H$_4$VO$_4^+$</td>
<td>-253.7</td>
<td>41</td>
</tr>
<tr>
<td>Species</td>
<td>ΔG_f (kcal/mole)</td>
<td>Reference</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>H_3VO_4</td>
<td>-249.2</td>
<td>41</td>
</tr>
<tr>
<td>H_2VO_4^-</td>
<td>-244.0</td>
<td>41</td>
</tr>
<tr>
<td>$\text{HV}_2\text{O}_7^{3-}$</td>
<td>-424.1</td>
<td>47++, 46</td>
</tr>
<tr>
<td>$\text{V}_2\text{O}_6(\text{OH})^{3-}$</td>
<td>-423.6</td>
<td>44+</td>
</tr>
<tr>
<td>$\text{V}_2\text{O}_7^{4-}$</td>
<td>-410.0</td>
<td>44+</td>
</tr>
</tbody>
</table>

+ Appendix A$_1$
+ Appendix A$_2$
Figure 5. Eh-pH Diagram For V-H$_2$O System.
diagram drawn for vanadium (V) at different total vanadium molalities (see Figure 2).

It should also be mentioned that the formation of the doubly charged anionic vanadium species in strong acid solutions has been postulated according to the following mechanism (49):

\[
2x\text{VO}_2^+ + (x+2) \text{H}_2\text{O} \rightarrow (\text{H}_2\text{V}_{2x}\text{O}_{5x+2})^{2-} + (2x+2) \text{H}^+
\]

However, no thermodynamic data is available for these species, and hence it was not possible to consider these in the construction of the Eh-pH diagram.

As a first step towards investigating the role of solution redox potential on the loading of vanadium at different pH values, the efficiency of two oxidants (\(\text{H}_2\text{O}_2\) and hypochlorite ions) in raising the solution potential was investigated. These investigations were carried out with a 10 ppm vanadium solution maintained at pH values of 2.0 and 4.0. Figure 6 shows the results obtained with hydrogen peroxide. The data in Figure 6 show that \(\text{H}_2\text{O}_2\) concentrations in excess of 5% have no effect on solution potential. Besides, the highest solution potential that can be achieved with \(\text{H}_2\text{O}_2\) is only about 350 mV (with respect to Ag/AgCl) at pH 4.0 and about 500 mV (with respect to Ag/AgCl) at pH 2.0.

In comparison to hydrogen peroxide, hypochlorite oxidation of 10 ppm vanadium solutions can result in oxidation potentials in excess of 1000 mV (with respect to Ag/AgCl), as is evident from Figure 7 and Figure 8. Figure 7 depicts the change in solution potential as a function of time at a pH of 2.0 at different hypochlorite
Figure 6. Effect of Hydrogen Peroxide Concentration on the Potential of a 10 ppm Vanadium Solution.
Figure 7. Change in Solution Potential as a Function of Time at a pH of 2.0 at Different Hypochlorite Concentrations.
concentrations. At low hypochlorite concentrations (approximately 1×10^{-4} M and 1×10^{-3} M) the solution potential was not stable and decreased steadily with time. At hypochlorite concentrations above 2×10^{-3} M, the solution potential was reasonably constant.

The change in solution potential at a pH of 4.0 as a function of time is displayed in Figure 8. A comparison of Figure 7 and Figure 8 indicates that for a given hypochlorite concentration, the redox potential at pH 4.0 is less than the redox potential at pH 2.0. A comprehensive plot of the effect of hypochlorite concentration and solution pH on the redox potential is given in Figure 9 for a conditioning time of fifteen minutes.

Preliminary experiments were carried out to determine the batch capacity of the resin for vanadium at pH values of 2.0 and 4.0, and at an Eh of 1070 mV maintained with hypochlorite. These two pH values were chosen since the Eh-pH diagram indicated an anionic complex forms at pH 4, and a cationic species forms at pH 2. The results obtained from these experiments are plotted in Figure 10. The vanadium uptake from the solution maintained at pH 2 is rather poor as was predicted by the Eh-pH diagram. The vanadium uptake from a 10 parts per million vanadium solution is nearly 100% at pH 4 and only about 20% at pH 2. The vanadium uptake at pH 4 reaches a saturation value at solution concentrations in excess of 50 parts per million. The calculated batch exchange capacity of the resin at pH 4 under the conditions of investigation is 0.28 meq/ml (wet basis).

Since the principal objective of the study was to look at recovery of vanadium from dilute solutions, the next series of tests
Figure 8. Change in Solution Potential as a Function of Time at a pH of 4.0 at Different Hypochlorite Concentrations.
Figure 9. Effect of Hypochlorite Concentration on the Potential of a 10 ppm Vanadium Solution.
Figure 10. Vanadium Uptake by DOWEX 21K at pH 2.0 and 4.0 as a Function of Vanadium Concentration (Batch test).
were conducted to study the effect of solution potential and pH values on the vanadium uptake from a 10 ppm vanadium solution. Three pH values were chosen for this study, via pH 2, 3 and 4. For these and subsequent tests the resin content was increased to 30 grams per liter of solution. The results of this series of tests is displayed in Figure 11. A striking observation that can be made from Figure 11 is that almost complete loading is possible at pH 4 for solution potential in excess of 400 mV (with respect to Ag/AgCl). At pH 2.0 practically no vanadium is loaded onto the resin if the solution potential is below 500 mV, with respect to Ag/AgCl (i.e. at Eh less than 720 mV).

Referring to the Eh-pH diagram (Figure 5), the inability of vanadium to load onto the resin is clearly due to the fact that it is present as a cationic species, V⁰⁺² at a pH value of 2 and an Eh of 720 mV. At a pH of 2.0 if the solution potential is increased to about 800 mV, with respect to Ag/AgCl (Eh of 1020 mV), about half the vanadium in a 10 ppm solution can be loaded onto the resin. This is somewhat surprising since vanadium is expected to be present as H₄VO₄⁺ in solution under these conditions. A vanadium concentration of 10 parts per million is rather low for the formation of any anionic decavanadates.

The loading curve for pH 3.0 is between the loading curves for pH 2.0 and pH 4.0. The Eh-pH diagram indicates at pH 3.0 and in the Eh range above 800 mV, the predominant species is the neutral species V⁰(OH)₃. It is somewhat surprising this neutral species loads onto an anionic resin.

The kinetics of vanadium uptake from solutions of different pH values at an Eh of 1070 mV is given in Figure 12. It is apparent
FIGURE II. Dependence of Vanadium Loading on Solution Potential.

VANADIUM
10 ppm, DOWEX 21K
T=25°C
Stirring 550 rpm
30 grams resin/l
Contact Time 30 minutes
○ pH 2.0
□ pH 3.0
△ pH 4.0

FIGURE II. Dependence of Vanadium Loading on Solution Potential.
FIGURE 12. Kinetics of Vanadium Uptake at Different pH values.

VANADIUM
10 ppm, DOWEX 21K
T=25°C
Stirring 550 rpm
△ pH 2.0
○ pH 3.0
□ pH 4.0

TIME (minutes)
from Figure 12 that vanadium loading is quite rapid at pH values of 3 and 4, with a maximum loading after a contact time of 10 minutes.

The next step in the research was to conduct tests which would help gain an insight to the mechanisms involved in the kinetics of vanadium uptake by the resin at pH values of 2 and 4. As was mentioned earlier, film diffusion and or particle diffusion is likely to be the rate controlling steps in the uptake process. The possibility of film diffusion as the rate controlling step was investigated by measuring the vanadium uptake at different stirring speeds at pH values of 2 and 4. The data obtained for pH 4.0 is given in Figure 13. Stirring speeds in the range of 160 rpm to 700 rpm were used in these experiments. As can be observed from Figure 13, stirring has a marked effect on the rate of vanadium uptake from the solution. Stirring speeds in excess of 500 rpm do not appear to effect the kinetics of vanadium uptake from solutions at pH 4.0.

The effect of stirring speed on the rate of vanadium uptake from solutions maintained at pH 2.0 is shown if Figure 14. The rate of vanadium uptake at pH 2.0 is also affected by the degree of agitation.

The possibility of particle diffusion as the rate controlling step was examined with an interruption test. For an interruption test the resin and solution are mixed for a finite time and then separated to allow the exchanging ions to diffuse into the resin and to the exchange sites.
Figure 13. Kinetics of Vanadium Uptake at pH 4.0 at Different Stirring Speeds.
Figure 14. Kinetics of Vanadium Uptake at pH 2.0 at Different Stirring Speeds.
This interruption is usually carried out for a predetermined period of time; only with particle diffusion control is the exchange rate higher upon reimmersion than at the moment of interruption, because internal concentration gradients have had time to level out (50, 51). The results of the interruption tests carried out at pH 4.0 are given in Figure 15. Neither nor the time at which interruption is made has any significant effect on the rate of vanadium uptake at pH 4. This is not the case at pH 2 as can be noted from the data in Figure 16. For example, if the interruption is made at 5 minutes from the start of the experiment and the length of interruption is 30 minutes the rate of vanadium uptake is almost tripled compared to the case where there is no interruption. This certainly indicates the possibility of particle diffusion as the rate controlling step at pH 2.0.

The effect of temperature on vanadium uptake was investigated at pH 2 and 4 to gain additional information for the deciphering of the rate controlling mechanism. The effect of temperature on vanadium loading at pH values of 2 and 4 are represented in Figures 17 and 18, respectively. Three different temperatures, namely 25°C, 50°C, and 70°C were chosen for these experiments. From Figure 17 it can be observed that temperature has a significant effect on vanadium uptake from 10 parts per million vanadium solutions maintained at a pH of 2.0. The activation energy for the uptake process at pH 2 was determined by an Arrhenius type of plot as shown in Figure 19. The activation energy was calculated to be 5.5 kcal/mole. This low value for the activation energy would indicate that the diffusion of exchangeable ions in the pore water to the exchange sites is probably the rate
Figure 15. Interruption Tests at pH 4.0 to Determine the Role of Particle Diffusion.

VANADIUM

10 ppm, DOWEX 21K
pH=4.0, Eh=1070 mV
Stirring 550 rpm
T=25°C

- Standard test, no interruption.
- Interrupted at 1 minute for 30 minutes.
- Interrupted at 5 and 15 minutes for 5 minutes.
Figure 16. Interruption Tests at pH 2.0 to Determine the Role of Particle Diffusion.
Figure 17. Effect of Temperature on Vanadium Uptake at pH 2.0.
Figure 18. Effect of Temperature on Vanadium Uptake at pH 4.0.
Figure 19. Arrhenius Plot for Determining the Activation Energy at pH 2.0.

VANADIUM
10 ppm, DOWEX 21K
pH=2.0, Eh=1070 mV

Slope = \(-\frac{E_a}{R}\) = \(-2.76\times10^3\) cal/mole

\(E_a = 5.48\) kcal/mole
controlling mechanism at pH 2.0. Temperature, however, seems to have very little effect on the kinetics of vanadium uptake from a solution maintained at a pH of 4.0. This perhaps indicates that the rate controlling mechanism at pH 4.0 is different from the rate controlling mechanism at pH 2.0.

Limited experiments were carried out to elucidate the role of anions which can compete with vanadium for sites on the resin. These include hypochlorite ions and iron sulfate complexes. The competing effects of the hypochlorite ions was first determined. In this series of tests, 30 grams of resin was conditioned in one liter of 10 parts per million vanadium solution, maintained at 1070 mV and at a pH value of 2 or 4. A hypochlorite concentration of 0.13 M was required at pH 2 to maintain an oxidation potential of 1070 mV before the solution was contacted with the resin. At pH 4 a hypochlorite concentration of 0.22 M was required to maintain the desired potential. The hypochlorite concentration in solution at different conditioning times was determined by titration and is tabulated in Table 3. The maximum theoretical amount of hypochlorite loading that is possible is also given in Table 3. A comparison of hypochlorite lost to decomposition and/or adsorption is rather small compared to the maximum (theoretical) amount of hypochlorite that would be lost if hypochlorite adsorbed onto all the exchange sites. This indicates that the resin is not very selective to the hypochlorite ions.

Many leach solutions contain iron, and it has been established that at acidic pH values, iron and sulfate can form anionic complexes. Thus, iron becomes a competing ion for the exchange sites on the resin.
Table 3. Consumption of Hypochlorite Ion

10 ppm Vanadium

\[T = 25^\circ C \]

\[\text{Eh} = 1070 \text{ mV} \]

Solution volume 1000 ml

30 grams of dry resin, Dowex 21K

Initial \(\text{OCI}^- \) concentrations:

\[\text{pH} = 2.0 \quad \text{OCI}^- = 0.13 \text{ M} \]

\[\text{pH} = 4.0 \quad \text{OCI}^- = 0.22 \text{ M} \]

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>pH</th>
<th>moles OC1^- lost by adsorption or decomposition</th>
<th>Maximum possible theoretical loading of OC1^- (moles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>(3.37 \times 10^{-4})</td>
<td>(7 \times 10^{-2})</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>(6.72 \times 10^{-4})</td>
<td>(7 \times 10^{-2})</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>(9.95 \times 10^{-4})</td>
<td>(7 \times 10^{-2})</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>(1.15 \times 10^{-4})</td>
<td>(7 \times 10^{-2})</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>(2.26 \times 10^{-4})</td>
<td>(7 \times 10^{-2})</td>
</tr>
<tr>
<td>20</td>
<td>4</td>
<td>(3.38 \times 10^{-4})</td>
<td>(7 \times 10^{-2})</td>
</tr>
</tbody>
</table>
DOWEX 21K [In the Anamax process it has been established that iron competes with uranium for sites on the resin (52)]. The presence of iron in leach solutions containing vanadium and sulfate will pose certain problems. For example, even though it has been shown that vanadium loading is rapid and almost complete at pH 4.0 it will be practically impossible to adjust the solution pH to 4.0 since iron will precipitate.

A brief study was done to investigate the exact pH at which iron would precipitate from a sulfate solution. For this test a 2800 parts per million Fe$^{+3}$ solution was used (this concentration was chosen to simulate the ferric ion concentration in the Anamax leach liquor at a natural Eh (850 mV) and at an Eh value of 1070 mV. The results of these precipitation tests are given in Figure 20. It is apparent that the onset of iron precipitation occurs at pH values slightly greater than 2.2. Hence, even though vanadium loading is thermodynamically and kinetically favorable at pH 4, in actual practice, it will be complicated by iron precipitation.

The extent of loading of iron onto the resin was determined for two different iron concentrations (2800 and 3500 ppm Fe$^{+3}$) at pH 2 and an Eh of 1070 mV. This solution also contained 10 ppm vanadium and 30 grams per liter sulfate. The results of this test are presented in Figure 21. From Figure 21 it is clear that iron loads to a significant amount on the resin DOWEX 21K.

The predominant iron complex that exists in sulfuric acid solutions in claimed to be [Fe(OH)(SO$_4$)$_2$]$^{--}$ (53).
Figure 20. Effect of pH on Iron Precipitation.
Figure 21. Kinetics of Iron Uptake at pH 2.0.
The maximum possible loading is compared to the actual amount of iron loading in Table 4.

The effect that the presence of iron in solution has on vanadium loading was also investigated, and is shown in Figure 22. These tests were done at a pH of 2.0 and an Eh of 1070 mV. The vanadium uptake was investigated for a solution containing no iron, a solution containing 2000 ppm iron, and a solution containing 3500 ppm iron. The vanadium loading from a solution containing 2000 ppm iron is slightly higher than from a solution containing no iron. This perhaps could be attributed to some interaction between the H_4VO_4^+ vanadium species and the anionic iron sulfate complexes. However, if the iron concentration is increased to 3500 parts per million the vanadium uptake is slightly less than that from a solution containing no iron. This slight decrease in loading can be attributed to the larger amount of iron which is available to load onto the resin, resulting in a decrease in the number of sites available for the vanadium species.

Limited experiments were conducted to investigate the column loading of vanadium for dilute vanadium solutions. The column specifications are listed in Table 5. The first step in the column tests was to determine the residence time distribution and the mean residence time in the column. This was determined by using a step input of a CuSO$_4$ tracer at a flowrate of 8.4 ml/minute. The residence time distribution curve is shown in Figure 23, and from this the mean residence time was calculated to be 2.65 minutes.

As was described earlier, the affinity of the resin for the vanadium species can be obtained from the slope of the curve after
Table 4. Iron Loading

\[T = 25^\circ C \]
\[\text{Eh} = 1070 \text{ mV} \]

10 ppm Vanadium

Solution volume 1000 ml

30 grams of dry resin, DOWEX 21K

<table>
<thead>
<tr>
<th>Initial Iron Concentration (ppm)</th>
<th>Fraction Iron Loading</th>
<th>mole ([\text{Fe(OH)}(\text{SO}_4)_2]^n) adsorbed</th>
<th>Theoretical Maximum ([\text{Fe(OH)}(\text{SO}_4)_2]^n) adsorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>2100</td>
<td>0.45</td>
<td>1.7 \times 10^{-2}</td>
<td>3.5 \times 10^{-2}</td>
</tr>
<tr>
<td>3500</td>
<td>0.54</td>
<td>3.4 \times 10^{-2}</td>
<td>3.5 \times 10^{-2}</td>
</tr>
</tbody>
</table>
Figure 22. Effect of Fe$^{+3}$ Concentration on the Kinetics of Vanadium Uptake.
Table 5 Column Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column height</td>
<td>17 cm</td>
</tr>
<tr>
<td>Column diameter</td>
<td>1.5 cm</td>
</tr>
<tr>
<td>Weight of dry resin</td>
<td>10 grams</td>
</tr>
<tr>
<td>Water retention capacity</td>
<td>53.2%</td>
</tr>
<tr>
<td>Resin type</td>
<td>Strongly basic, polystyrene trimethylamine (DOWEX 21K)</td>
</tr>
<tr>
<td>Resin wet capacity</td>
<td>1.2 meg/ml</td>
</tr>
<tr>
<td>Resin size</td>
<td>16-30 mesh</td>
</tr>
<tr>
<td>Resin density</td>
<td>1.1 grams/cm³</td>
</tr>
<tr>
<td>Column flowrate</td>
<td>8.4 ml/minute at pH 2.0</td>
</tr>
<tr>
<td></td>
<td>16.8 ml/minute at pH 4.0</td>
</tr>
<tr>
<td>Mean residence time</td>
<td>2.65 minutes at pH 2.0</td>
</tr>
</tbody>
</table>
Tracer Solution: CuSO$_4$

10 grams dry resin

$T = 25^\circ C$

Flowrate: 8.4 ml/minute

$\tau = 2.65$ minutes

Figure 23. Column Residence Time Distribution.
breakthrough. Since there were clear indications from the Eh-pH dia-
gram and the experimental data, that different vanadium species are
responsible for loading at pH 2 and 4, it was decided to determine the
breakthrough curves at pH 2 and 4. At pH 2 the breakthrough occurred
at about 160 ml of eluate as can be observed from the data in Figure
24. At pH 4 the breakthrough did not occur even at 100,000 ml of
eluate. Complete loading of vanadium from 100,000 ml of 10 parts per
million vanadium solution will correspond to about 1 meg/ml of wet
resin. Hence the failure of the breakthrough to occur at 100,000 ml
indicates that the resin has a high affinity for the vanadium species
at pH 4.
Figure 24. Column Breakthrough Curve.

DOWEX 21K
10 grams dry weight
Flowrate: 8.4 ml/minute
T=25°C

- CuSO₄ tracer
- 10 ppm Vanadium, pH 2.0
 Eh=1070 mV

Note: 10 ppm Vanadium at pH=4.0 had not achieved breakthrough after a reasonable amount of time.
A. Vanadium-Loading as Predicted by Eh-pH Diagram

From the Eh-pH diagram drawn for the vanadium-water system it can be clearly seen that vanadium loading at pH 4 is thermodynamically possible in oxidizing atmospheres, using an anionic exchange resin since the most predominant vanadium species in solution is the anionic complex \(\text{VO}_2\text{(OH)}_2^- \). The experimental results are in accord with the prediction of the Eh-pH diagram. Further, according to the Eh-pH diagram the vanadium species that should exist at pH values less than 4.0 under oxidizing conditions, are either positively charged or neutral. For example, at pH 2 and an Eh of 1.0 volt the vanadium should be present as the \(\text{H}_4\text{VO}_4^+ \) complex. If this were true, vanadium loading onto the resin at pH 2 would not be possible. However, experimentally it has been found that almost half the vanadium can be loaded onto 30 grams of DOWEX 21K resin from a 10 ppm vanadium solution. Since this concentration of vanadium is very small for the formation of decavanadates, it can only be speculated that some complex of \(\text{H}_4\text{VO}_4^+ \) and sulfate such as \([\text{H}_4\text{VO}_4\text{(SO}_4\text{)}_2^-] \), is the species that loads onto the resin. Neither the existence of nor the thermodynamic properties of these types of species are reported in the literature.

It is also difficult to explain the loading of vanadium at pH 3 and for Eh values in excess of 600 mV, where the most predominant species is \(\text{VO(OH)}_3^- \) (aq). The reason why this species loads onto the
resin is also somewhat puzzling.

An attempt will now be made to fit the kinetic data obtained from vanadium uptake at pH 2 and 4 to different kinetic models.

B. Kinetic Model For Vanadium Uptake at pH 4.0

It may be recalled that vanadium uptake at pH 4.0 is significantly improved by increased degree of agitation and that the rate of uptake is not affected by interruption of the uptake experiment. Besides, temperature does not have any significant effect on the rate or extent of uptake. All these factors point to film diffusion as a possible rate controlling step.

A film diffusion (external mass transfer control) model can be postulated as follows:

\[\frac{1}{N_4 \pi a^2} \frac{dN_v}{dt} = k_f [(C_v)_{bulk} - (C_v)_{surface}] \] \[(6.1) \]

In the above equation, \(\frac{dN_v}{dt} \) is the rate of change of vanadium content (moles) in the bulk solution, \((C_v)_{bulk} \) concentration of vanadium in bulk, \((C_v)_{surface} \) is the concentration of vanadium at the surface of the resin, 'a' is the radius of a resin particle, 'N' is the total number of resin particles in the system, and 'k_f' is the external mass transfer coefficient. Assuming that \((C_v)_{surface} \) is approximately equal to zero and replacing \((C_v)_{bulk} \) by \(Nv/V \) (where 'V' is the total volume of solution, equation (6.1) can be integrated to give the following expression:

\[-\ln(1 - X_v) = k'k_f t \] \[(6.2) \]

In equation (6.2), \(k' = \frac{N_4 \pi a^2}{V} \) and \(X_v \) is the fraction of vanadium
removed from solution. If film diffusion is the rate controlling step, a plot of \(\ln(1 - X_v) \) versus time should yield a straight line and from the slope of the plot, the mass transfer coefficient can be calculated. A plot of the experimental data at different agitation speeds according to equation (6.2) appears in Figure 25. The plots are straight lines for all speeds of agitation and indicate that the uptake is film diffusion controlled. The values of 'k_f' calculated from the slope of these straight lines are tabulated in Table 6.

C. Kinetic Model For Vanadium Uptake at pH 2.0

The vanadium uptake at pH 2.0 was found to be significantly affected by the interruption of the uptake experiment and by an increase in temperature. The uptake was also influenced by the increased agitation. Prior to developing a model for uptake at pH 2 it was first decided to check whether the film diffusion model developed for pH 4 would be applicable to the data obtained at pH 2.0. It can be easily discerned from Figure 26, that the film diffusion model does not adequately fit the data collected at pH 2.0. Since the interruption tests strongly indicated the possibility of particle diffusion control, it was decided to develop a particle diffusion model.

The diffusion model developed is for the case of diffusion to a sphere from a well stirred solution of limited volume. This model and its solution have been dealt with in detail by J. Crank (54). The basic requirements of the model are that the sphere (resin particles) is initially free from solute and that the concentration of solute in solution is always uniform and is initially at a value of \(C_0 \). Under
Figure 25. Test of Applicability of Film Diffusion Model to the Experimental Data at pH 4.0.
Table 6. Mass Transfer Coefficient at pH 4.0

<table>
<thead>
<tr>
<th>RPM</th>
<th>Slope α (min)$^{-1}$</th>
<th>k_f (cm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>6.77×10^{-3}</td>
<td>4.51×10^{-4}</td>
</tr>
<tr>
<td>400</td>
<td>2.56×10^{-2}</td>
<td>1.73×10^{-3}</td>
</tr>
<tr>
<td>550</td>
<td>0.11</td>
<td>7.52×10^{-3}</td>
</tr>
</tbody>
</table>
Figure 26. Test of Applicability of Film Diffusion Model to the Experimental Data at pH 2.0
these conditions the solution for the uptake of the solute by the resin is given by the following equation:

\[X_v = \frac{M_t}{M_\infty} = 1 - \sum_{n=1}^{\infty} \frac{6a (a+1) \exp \left(-Dq_n^2 t/a^2 \right)}{9 + 9\alpha + q_n^2 \alpha^2} \](6.3)

where \(M_\infty \) is the amount of solute in the sphere after an infinite time, \(M_t \) is the amount of solute in sphere after time \(t \), \(V \) is the volume of solution excluding the volume of sphere, \(a \) is the radius of the sphere, \(N \) is the number of resin particles, \(\alpha \) is the ratio of solution volume to resin volume, adjusted for a partition coefficient, \[\alpha = \left(\frac{4}{3} \pi a^3 / NV \right) \left(\frac{1}{K} \right) \]. The values of \(q_n \) are the non-zero roots to the equation:

\[\tan q_n = \frac{3q_n}{3 + \alpha q_n^2} \](6.4)

The expression for \(\alpha \) contains a parameter \(K' \). \(K' \) is the partition factor and is given as the concentration of solute in the resin over the concentration of solute in the bulk solution. A value of \(K' \) greater than one would indicate that the concentration of solute in resin is greater than the concentration of solute in the solution.

It can be seen from equation 6.3 that conversion \(X_v \) is a function of time, the diffusion coefficient \(D \) and the partition factor \(K \). A computer program was developed to find the best value for the diffusion coefficient for a given partition coefficient, which would predict a conversion nearly equal to the experimentally measured conversion.
This search was carried out for times of 2, 5, 10, 18 and 30 minutes. A paired difference statistical test was then performed to evaluate the prediction of the model. The results from this search are given in Table 7, and the methodology and the computer program are given in Appendix H. It can be seen from the data in this Table that the best fit to the experimental data occurs when the value of $'K'$ is 10 ($\alpha = 13.8$), and the diffusion coefficient is of the order 2.6×10^{-7} cm2/sec. A $'K'$ equal to 10 indicates that the resin has a much larger capacity for the solute than the solution, which incidentally is one of the requirements for resin ion exchange. A rough calculation of $'K'$ using the equilibrium loading on the resin and the equilibrium concentration of vanadium in solution gave a value of 20. The calculated diffusion coefficient is well in the range reported in the literature. The fit at $'K'$ equal to 10 can be statistically accepted at a level of significance of 0.80 and rejected at a level of significance of 0.90 (55-56).
Table 7. Application of Particle Diffusion Model at pH 2: Considering Various Partition Coefficients and Diffusion Coefficients.

<table>
<thead>
<tr>
<th>Partition Coefficient</th>
<th>Diffusion Coefficient (cm/sec)</th>
<th>2.0</th>
<th>5.0</th>
<th>10.0</th>
<th>18.0</th>
<th>30.0</th>
<th>T Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2.5×10^{-7}</td>
<td>0.415</td>
<td>0.603</td>
<td>0.766</td>
<td>0.894</td>
<td>0.976</td>
<td>-0.619</td>
</tr>
<tr>
<td>5.0</td>
<td>2.610×10^{-7}</td>
<td>0.415</td>
<td>0.605</td>
<td>0.770</td>
<td>0.897</td>
<td>0.968</td>
<td>-0.384</td>
</tr>
<tr>
<td>10.0</td>
<td>2.64×10^{-7}</td>
<td>0.415</td>
<td>0.608</td>
<td>0.772</td>
<td>0.899</td>
<td>0.969</td>
<td>-0.168</td>
</tr>
<tr>
<td>15.0</td>
<td>2.46×10^{-7}</td>
<td>0.401</td>
<td>0.591</td>
<td>0.756</td>
<td>0.885</td>
<td>0.962</td>
<td>-2.23</td>
</tr>
<tr>
<td>20.0</td>
<td>2.18×10^{-7}</td>
<td>0.414</td>
<td>0.597</td>
<td>0.755</td>
<td>0.881</td>
<td>0.959</td>
<td>-1.664</td>
</tr>
<tr>
<td>50.0</td>
<td>1.86×10^{-7}</td>
<td>0.426</td>
<td>0.607</td>
<td>0.757</td>
<td>0.877</td>
<td>0.953</td>
<td>-1.198</td>
</tr>
<tr>
<td>100.0</td>
<td>0.93×10^{-7}</td>
<td>0.535</td>
<td>0.683</td>
<td>0.801</td>
<td>0.892</td>
<td>0.954</td>
<td>1.372</td>
</tr>
</tbody>
</table>

Experimental Data - 0.415 0.610 0.755 0.890 1.000 -
CHAPTER 7
CONCLUSIONS

1. Vanadium recovery from dilute acid sulfate solutions is a function of solution Eh and pH.

2. At pH 4.0 the loading of vanadium is independent of solution Eh, in the range 400 to 850 mV (with respect to Ag/AgCl).

3. The vanadium loading at pH 4.0 can be attributed to the presence of vanadium in the form of the anionic complex, \(\text{VO}_2(\text{OH})_2^- \) in solution.

4. At pH 2.0 the vanadium uptake onto the resin DOWEX 21K, increases with increasing Eh.

5. The Eh-pH diagram constructed has shown that vanadium can exist only as the cationic species \(\text{H}_4\text{VO}_4^+ \) in dilute vanadium solution maintained at pH 2.0 and at Eh values greater than 800 mV. In this context the loading of vanadium onto the anionic exchange resin at pH 2.0 can only be explained by postulating the formation of a complex between the \(\text{H}_4\text{VO}_4^+ \) species and the sulfate ion.

6. The rate of vanadium uptake from 10 ppm solutions maintained at pH 4.0 is extremely rapid and almost complete. The rate of this vanadium uptake is affected by the amount of agitation.
7. The rate of vanadium uptake from dilute vanadium solutions maintained at pH 2.0 is affected by temperature and internal concentration gradients within the resin particle. It is also slightly sensitive to the agitation.

8. A film diffusion model seems to fit the uptake data observed at pH 4.0 and a particle diffusion model seems to fit the uptake data at pH 2.0.

9. The loading capacity for vanadium in column tests is greater than 1.0 meq/ml at pH 4.0, and only about 0.0016 meq/ml at pH 2.0, indicating that the resin preference is greater for the vanadium species at pH 4.0.

10. The DOWEX resin 21K does not have a high affinity for the hypochlorite ion.

11. In solutions containing iron, vanadium, and sulfate, both vanadium and iron sulfates load onto the resin. The loading of vanadium in the presence of iron is slightly enhanced when the iron concentration is about 2000 ppm. However, if the iron concentration is about 3500 ppm, vanadium loading is slightly decreased.

12. The tests carried out to determine the loading of iron onto the resin indicate that in sulfate solutions iron forms anionic sulfate complexes and loads onto the resin to a considerable extent.

13. The resin seems to exhibit a high degree of selectivity to the vanadium species that exists in solution at pH values greater than 4.0.
However, exploitation of this fact will be very difficult in industrial operations which have to treat leach liquors containing not only vanadium and sulfate, but also iron. Iron will precipitate out as a ferric hydroxyl sulfate complex in the presence of sulfate at pH values greater than 2.2 under oxidizing conditions.
APPENDIX A

FREE ENERGY CALCULATIONS
FROM LOG K VALUES

Appendix A1 log K values from Reference 44.
Appendix A2 log K values from Reference 47.
Equations:

\[\Delta G = \Delta G^\circ + RT \ln K \]

\[\Delta G = 0 \text{ at equilibrium} \]

\[\Delta G^\circ = -RT \ln K \]

\[\Delta G^\circ_{\text{reaction}} = \Delta G^\circ_{\text{Products}} - \Delta G^\circ_{\text{Reactants}} \text{ (at 298 K)} \]
Appendix A1

<table>
<thead>
<tr>
<th>Reaction</th>
<th>equilibrium</th>
<th>Log K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\text{VO}_2^{+} + 2\text{H}_2\text{O} \rightleftharpoons \text{VO(OH)}_3^{\text{aq}} + \text{H}^+$</td>
<td></td>
<td>-3.3</td>
</tr>
<tr>
<td>2. $\text{VO}_2^{+} + 2\text{H}_2\text{O} \rightleftharpoons \text{VO}_2^{2-} + 2\text{H}^+$</td>
<td></td>
<td>-7.3</td>
</tr>
<tr>
<td>3. $10\text{VO}2^{+} + 8\text{H}2\text{O} \rightleftharpoons \text{V}{10\text{O}{26}}^{4-} + 14\text{H}^+$</td>
<td></td>
<td>-10.7</td>
</tr>
<tr>
<td>4. $\text{VO}_2^{2-} \rightleftharpoons \text{V}_3^{2-} + \text{H}^+$</td>
<td></td>
<td>-8.55</td>
</tr>
<tr>
<td>5. $2\text{VO}_2^{2-} \rightleftharpoons \text{V}_2\text{O}_6^{3-} + \text{H}^+ + \text{H}_2\text{O}$</td>
<td></td>
<td>-6.53</td>
</tr>
<tr>
<td>6. $\text{V}_3^{2-} \rightleftharpoons \text{V}_4^{3-} + \text{H}^+$</td>
<td></td>
<td>-14.26</td>
</tr>
<tr>
<td>7. $2\text{V}_3^{2-} \rightleftharpoons \text{V}_2\text{O}_7^{4-} + \text{H}_2\text{O}$</td>
<td></td>
<td>0.56</td>
</tr>
<tr>
<td>8. $3\text{V}_3^{2-} + 3\text{H}^+ \rightleftharpoons \text{V}_3\text{O}_9^{3-} + 3\text{H}_2\text{O}$</td>
<td></td>
<td>31:81</td>
</tr>
<tr>
<td>9. $\text{V}{10\text{O}{26}}^{4-} \rightleftharpoons \text{V}{10\text{O}{27}}^{5-} + \text{H}^+$</td>
<td></td>
<td>-3.6</td>
</tr>
<tr>
<td>10. $\text{V}{10\text{O}{27}}^{5-} \rightleftharpoons \text{V}{10\text{O}{28}}^{6-} + \text{H}^+$</td>
<td></td>
<td>-6.15</td>
</tr>
<tr>
<td>11. $\frac{3}{2}\text{V}_2\text{O}_5^{(c)} + \text{H}^+ \rightleftharpoons \text{VO}_2^{+} + \frac{3}{2}\text{H}_2\text{O}$</td>
<td></td>
<td>-0.66</td>
</tr>
</tbody>
</table>

ΔG_f°, $\text{H}_2\text{O} = -57,250$ cal/mole

ΔG_f°, $\text{VO}_2^{+} = -140,400$ cal/mole (Reference 40)
1. \(\text{VO}_2^+ + 2\text{H}_2\text{O} \rightleftharpoons \text{VO(OH)}_3^{(aq)} + \text{H}^+ \)

\[
\Delta G^o_f = \Delta G^o_{f,\text{VO(OH)}_3} + \Delta G^o_{f,\text{H}^+} + 2\Delta G^o_{f,\text{H}_2\text{O}} - 2\Delta G^o_{f,\text{VO}_2^+}
\]

\[
\Delta G^o_{f,\text{VO(OH)}_3} = \Delta G^o_f - \Delta G^o_{f,\text{H}^+} + 2\Delta G^o_{f,\text{H}_2\text{O}} + \Delta G^o_{f,\text{VO}_2^+}
\]

\[
\Delta G^o_f = -RT\ln K
\]

\[
\Delta G^o_f = -2.303 (1.987) (298) \ln K
\]

\[
\Delta G^o_f = -1364 (-3.3)
\]

\[
\Delta G^o_f = 4500 \text{ cal/mole}
\]

\[
\Delta G^o_{f,\text{VO(OH)}_3} = 4500 - 0 + 2(-57,250) + (-140,400) \text{ cal/mole}
\]

\[
\Delta G^o_{f,\text{VO(OH)}_3} = -250.4 \times 10^3 \text{ cal/mole}
\]

\[
\Delta G^o_{f,\text{VO(OH)}_3} = -250.4 \text{ kcal/mole}
\]

2. \(\text{VO}_2^+ + 2\text{H}_2\text{O} \rightleftharpoons \text{VO}_2(\text{OH})_2^- + 2\text{H}^+ \)

\[
\Delta G^o_f = \Delta G^o_{f,\text{VO}_2(\text{OH})_2^-} + 2\Delta G^o_{f,\text{H}^+} - \Delta G^o_{f,\text{VO}_2} - 2\Delta G^o_{f,\text{H}_2\text{O}}
\]

\[
\Delta G^o_{f,\text{VO}_2(\text{OH})_2^-} = \Delta G^o_f - 2\Delta G^o_{f,\text{H}^+} + \Delta G^o_{f,\text{VO}_2} + 2\Delta G^o_{f,\text{H}_2\text{O}}
\]

\[
\Delta G^o_f = -RT\ln K
\]

\[
\Delta G^o_f = -1364 (-7.3)
\]

\[
\Delta G^o_f = 9957 \text{ cal/mole}
\]

\[
\Delta G^o_{f,\text{VO}_2(\text{OH})_2^-} = 9957 - 2(0) + (-140,400) + 2(-57,250)
\]

\[
\Delta G^o_{f,\text{VO}_2(\text{OH})_2^-} = -244.9 \times 10^3 \text{ cal/mole}
\]

\[
\Delta G^o_{f,\text{VO}_2(\text{OH})_2^-} = -244.9 \text{ kcal/mole}
\]
3. \[10\text{VO}_2^+ + 8\text{H}_2\text{O} \rightleftharpoons V_{10}^0\text{26(OH)}_2^{4-} + 14\text{H}^+ \] \[\text{Log } K = -10.7\]

\[\Delta G_f^o = 14\Delta G_f^{o\text{,H}^+} + \Delta G_f^{o\text{,V}_{10}^0\text{26(OH)}_2^{4-}} - 8\Delta G_f^{o\text{,H}_2\text{O}} - 10\Delta G_f^{o\text{,VO}_2^+}\]

\[\Delta G_f^{o\text{,V}_{10}^0\text{26(OH)}_2^{4-}} = \Delta G_f^o - 14\Delta G_f^{o\text{,H}^+} + 8\Delta G_f^{o\text{,H}_2\text{O}} + 10\Delta G_f^{o\text{,VO}_2^+}\]

\[\Delta G_f^o = -RT\ln K\]

\[\Delta G_f^o = -1364 \text{ (-10.7)}\]

\[\Delta G_f^o = 14595 \text{ cal/mole}\]

\[\Delta G_f^{o\text{,V}_{10}^0\text{26(OH)}_2^{4-}} = 14595 - 14(0) + 8(-57,250) + 10(-140,400)\]

\[\Delta G_f^{o\text{,V}_{10}^0\text{26(OH)}_2^{4-}} = -1847 \times 10^3 \text{ cal/mole}\]

\[\Delta G_f^{o\text{,V}_{10}^0\text{26(OH)}_2^{4-}} = -1847 \text{ kcal/mole}\]

4. \[\text{VO}_2\text{(OH)}_2^- \rightleftharpoons \text{VO}_3\text{(OH)}_2^- + \text{H}^+ \] \[\text{Log } K = -8.55\]

\[\Delta G_f^o = \Delta G_f^{o\text{,H}^+} + \Delta G_f^{o\text{,VO}_3\text{(OH)}_2^-} - \Delta G_f^{o\text{,VO}_2\text{(OH)}_2^-}\]

\[\Delta G_f^{o\text{,VO}_3\text{(OH)}_2^-} = \Delta G_f^o - \Delta G_f^{o\text{,H}^+} + \Delta G_f^{o\text{,VO}_2\text{(OH)}_2^-}\]

\[\Delta G_f^o = -RT\ln K\]

\[\Delta G_f^o = -1364 \text{ (-8.55)}\]

\[\Delta G_f^o = 11662 \text{ cal/mole}\]

\[\Delta G_f^{o\text{,VO}_3\text{(OH)}_2^-} = 11662 + 0 + (-244,900) = -233.2 \times 10^3\]

\[\Delta G_f^{o\text{,VO}_3\text{(OH)}_2^-} = -233.2 \text{ kcal/mole}\]
5. $2\text{VO}_2(\text{OH})_2^- \rightleftharpoons \text{VO}_2\text{O}_6(\text{OH})^{3-} + \text{H}^+ + \text{H}_2\text{O}$ \hspace{1cm} \log K = -6.53

$\Delta G_f^o = \Delta G_{f,\text{VO}_2\text{O}_6(\text{OH})^{3-}}^o + \Delta G_{f,\text{H}^+}^o + \Delta G_{f,\text{H}_2\text{O}}^o - 2\Delta G_{f,\text{VO}_2(\text{OH})_2^-}^o$

$\Delta G_{f,\text{VO}_2\text{O}_6(\text{OH})^{3-}}^o = \Delta G_f^o - \Delta G_{f,\text{H}^+}^o - \Delta G_{f,\text{H}_2\text{O}}^o + 2\Delta G_{f,\text{VO}_2(\text{OH})_2^-}^o$

$\Delta G_f^o = -RT \ln K$

$\Delta G_f^o = -1364 \text{ (-6.53)} = 8907 \text{ cal/mole}$

$\Delta G_{f,\text{VO}_2\text{O}_6(\text{OH})^{3-}}^o = 8907 - 0 - (-57,250) + 2(-244,900)$

$\Delta G_{f,\text{VO}_2\text{O}_6(\text{OH})^{3-}}^o = -423.6 \times 10^3 \text{ cal/mole}$

$\Delta G_{f,\text{VO}_2\text{O}_6(\text{OH})^{3-}}^o = -423.6 \text{ kcal/mole}$

6. $\text{VO}_3(\text{OH})^{2-} \rightleftharpoons \text{VO}_4^{3-} + \text{H}^+$ \hspace{1cm} \log K = -14.25

$\Delta G_f^o = \Delta G_{f,\text{VO}_4^{3-}}^o + \Delta G_{f,\text{H}^+}^o - \Delta G_{f,\text{VO}_3(\text{OH})^{2-}}^o$

$\Delta G_{f,\text{VO}_4^{3-}}^o = \Delta G_f^o - \Delta G_{f,\text{H}^+}^o + \Delta G_{f,\text{VO}_3(\text{OH})^{2-}}^o$

$\Delta G_f^o = -RT \ln K$

$\Delta G_f^o = -1364 \text{ (-14.26)} = 19451 \text{ cal/mole}$

$\Delta G_{f,\text{VO}_4^{3-}}^o = 19451 - 0 + (-233,200) = -213.8 \times 10^3 \text{ cal/mole}$

$\Delta G_{f,\text{VO}_4^{3-}}^o = -213.8 \text{ kcal/mole}$
7. \[2\text{VO}_3(\text{OH})^{2-} \rightarrow \text{V}_2\text{O}_7^{4-} + \text{H}_2\text{O} \quad \log K = 0.56 \]

\[\Delta G_f^o = \Delta G_f,\text{V}_2\text{O}_7^{4-} + \Delta G_f,\text{H}_2\text{O} - 2\Delta G_f,\text{VO}_3(\text{OH})^{2-} \]

\[\Delta G_f,\text{V}_2\text{O}_7^{4-} = \Delta G_f^o - \Delta G_f,\text{H}_2\text{O} + 2\Delta G_f,\text{VO}_3(\text{OH})^{2-} \]

\[\Delta G_f^o = -RT \ln K \]

\[\Delta G_f = -1364 (0.56) = 764 \text{ cal/mole} \]

\[\Delta G_f,\text{V}_2\text{O}_7^{4-} = 764 - (-57,250) + 2(-233,200) = -410.0 \times 10^3 \]

\[\Delta G_f,\text{V}_2\text{O}_7^{4-} = -410 \text{ kcal/mole} \]

8. \[3\text{VO}_3(\text{OH})^{2-} + 3\text{H}^+ \rightarrow \text{V}_3\text{O}_9^{3-} + 3\text{H}_2\text{O} \quad \log K = 31.81 \]

\[\Delta G_f^o = \Delta G_f,\text{V}_3\text{O}_9^{3-} + 3\Delta G_f,\text{H}_2\text{O} - 3\Delta G_f,\text{VO}_3(\text{OH})^{2-} - 3\Delta G_f,\text{H}^+ \]

\[\Delta G_f,\text{V}_3\text{O}_9^{3-} = \Delta G_f^o - 3\Delta G_f,\text{H}_2\text{O} + 3\Delta G_f,\text{VO}_3(\text{OH})^{2-} + 3\Delta G_f,\text{H}^+ \]

\[\Delta G_f^o = -RT \ln K \]

\[\Delta G_f = -1364 (31.81) = -43.39 \times 10^3 \text{ cal/mole} \]

\[\Delta G_f,\text{V}_3\text{O}_9^{3-} = -43388 - 3(-57,250) + 3(-233,200) + 3(0) \]

\[\Delta G_f,\text{V}_3\text{O}_9^{3-} = -571.2 \times 10^7 \text{ cal/mole} \]

\[G_f,\text{V}_3\text{O}_9^{3-} = -571.2 \text{ kcal/mole} \]
9. \[V_{10}O_{26}(OH)^{4-} \rightleftharpoons V_{10}O_{27}(OH)^{5-} + H^+ \] \[\log K = -3.6 \]

\[\Delta G_f^o = \Delta G_{f,V_{10}O_{27}(OH)^{5-}}^o + \Delta G_{f,H^+}^o - \Delta G_{f,V_{10}O_{26}(OH)^{4-}}^o \]

\[\Delta G_{f,V_{10}O_{27}(OH)^{5-}}^o = \Delta G_f^o - \Delta G_{f,H^+}^o + \Delta G_{f,V_{10}O_{26}(OH)^{4-}}^o \]

\[\Delta G_f^o = -RT \ln K \]

\[\Delta G_f^o = -1364 (-3.6) = 4910 \text{ cal/mole} \]

\[\Delta G_{f,V_{10}O_{27}(OH)^{5-}}^o = 4910 - 0 + (-1847,000) = -1842.5 \times 10^3 \text{ cal/mole} \]

\[\Delta G_{f,V_{10}O_{27}(OH)^{5-}}^o = -1842.5 \text{ kcal/mole} \]

10. \[V_{10}O_{27}(OH)^{5-} \rightleftharpoons V_{10}O_{28}^{6-} + H^+ \] \[\log K = -6.15 \]

\[\Delta G_f^o = \Delta G_{f,V_{10}O_{28}^{6-}}^o + \Delta G_{f,H^+}^o - \Delta G_{f,V_{10}O_{27}(OH)^{5-}}^o \]

\[\Delta G_{f,V_{10}O_{28}^{6-}}^o = \Delta G_f^o - \Delta G_{f,H^+}^o + \Delta G_{f,V_{10}O_{27}(OH)^{5-}}^o \]

\[\Delta G_f^o = -RT \ln K \]

\[\Delta G_f^o = -1364 (-6.15) = 8389 \text{ cal/mole} \]

\[\Delta G_{f,V_{10}O_{28}^{6-}}^o = 8389 - 0 + (-1842,500) = -1834.1 \times 10^3 \text{ cal/mole} \]

\[\Delta G_{f,V_{10}O_{28}^{6-}}^o = -1834.1 \text{ kcal/mole} \]
11. $\frac{1}{2}V_2O_5(c) + H^+ \rightleftharpoons VO_2^+ + \frac{1}{2}H_2O \quad \log K = -0.66$

$$\Delta G_f^o = \frac{1}{2} \Delta G_{f,H_2O}^o + \Delta G_{f,VO_2}^o - \frac{1}{2} \Delta G_{f,V_2O_5}^o - \Delta G_{f,H^+}^o$$

$$\Delta G_{f,V_2O_5}^o = 2 \left(- \Delta G_f^o + \frac{1}{2} \Delta G_{f,H_2O}^o + \Delta G_{f,VO_2}^o - \Delta G_{f,H^+}^o \right)$$

$$\Delta G_f^o = -RT \ln K$$

$$\Delta G_f^o = -1364 (-0.66) = 900 \text{ cal/mole}$$

$$\Delta G_{f,V_2O_5}^o = 2 \left(900 + (-57,250) + (-140,400) - 0 \right)$$

$$\Delta G_{f,V_2O_5}^o = -339.8 \times 10^3 \text{ cal/mole}$$

$$\Delta G_{f,V_2O_5}^o = -339.8 \text{ kcal/mole}$$
Summary of Calculations:

<table>
<thead>
<tr>
<th>Species</th>
<th>ΔG°_f (kcal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VO(OH)_3 (aq)</td>
<td>-250.4</td>
</tr>
<tr>
<td>$\text{VO}_2(\text{OH})_2^-$</td>
<td>-244.9</td>
</tr>
<tr>
<td>$\text{V}{10}^{0.26}(\text{OH}){2}^{4-}$</td>
<td>-1847.0</td>
</tr>
<tr>
<td>$\text{VO}_3(\text{OH})_2^{2-}$</td>
<td>-233.2</td>
</tr>
<tr>
<td>$\text{V}_{2}^{0.6}(\text{OH})_3^{3-}$</td>
<td>-423.6</td>
</tr>
<tr>
<td>$\text{V}_{3}^{0.9}$</td>
<td>-213.8</td>
</tr>
<tr>
<td>$\text{V}_{2}^{0.7}$</td>
<td>-410.0</td>
</tr>
<tr>
<td>$\text{V}_{3}^{0.9}$</td>
<td>-571.2</td>
</tr>
<tr>
<td>$\text{V}_{10}^{0.27}(\text{OH})_5^{5-}$</td>
<td>-1842.5</td>
</tr>
<tr>
<td>$\text{V}_{10}^{0.28}$</td>
<td>-1834.1</td>
</tr>
<tr>
<td>$\text{V}_{2}^{0.5}(c)$</td>
<td>-339.8</td>
</tr>
</tbody>
</table>
Appendix A2 Free Energy Calculations

1. \(2\text{HVO}_4^{2-} \rightleftharpoons \text{HV}_2\text{O}_7^{3-} + \text{OH}^-\)
\[\Delta G_f^o = \Delta G_{f,\text{OH}^-}^o + \Delta G_{f,\text{HV}_2\text{O}_7^{3-}}^o - 2\Delta G_{f,\text{HVO}_4^{2-}}^o\]
\[\Delta G_{f,\text{HV}_2\text{O}_7^{3-}}^o = \Delta G_f^o - \Delta G_{f,\text{OH}^-}^o + 2\Delta G_{f,\text{HVO}_4^{2-}}^o\]
\[\Delta G_f^o = -2.303 \text{ (298K)} (1.987) \log K\]
\[\Delta G_f^o = -1364 \text{ (-3.18)} = 4.34 \text{ kcal/mole}\]
\[1000\]
\[\Delta G_{f,\text{HV}_2\text{O}_7^{3-}}^o = 4.34 - (-37.595) + 2 (-233.0)\]
\[\Delta G_{f,\text{HV}_2\text{O}_7^{3-}}^o = 424.1 \text{ kcal/mole}\]

2. \(10\text{VO}_2^+ + 8\text{H}_2\text{O} \rightleftharpoons \text{H}_2\text{V}_1\text{O}_{28}^{4-} + 14\text{H}^+\)
\[\Delta G_f^o = \Delta G_{f,\text{H}_2\text{V}_1\text{O}_{28}^{4-}}^o + 14\Delta G_{f,\text{H}^+}^o - 8\Delta G_{f,\text{H}_2\text{O}}^o - 10 \Delta G_{f,\text{VO}_2^+}^o\]
\[\Delta G_{f,\text{H}_2\text{V}_1\text{O}_{28}^{4-}}^o = \Delta G_f^o - 14\Delta G_{f,\text{H}^+}^o + 8\Delta G_{f,\text{H}_2\text{O}}^o + 10\Delta G_{f,\text{VO}_2^+}^o\]
\[\Delta G_f^o = -1364 \text{ (-6.75)} = 9.21 \text{ kcal/mole}\]
\[\Delta G_{f,\text{H}_2\text{V}_1\text{O}_{28}^{4-}}^o = 9.21 - 14 \text{ (0)} + 8 \text{ (-57.25)} + 10\text{(-140.3)}\]
\[\Delta G_{f,\text{H}_2\text{V}_1\text{O}_{28}^{4-}}^o = -1851.8 \text{ kcal/mole}\]
3. \[\begin{align*}
H_2V_{10028}^{4-} & \rightleftharpoons HV_{10028}^{5-} + H^+ \\
\Delta G_f^0 &= \Delta G_{f, HV_{10028}^{5-}}^0 + \Delta G_{f, H^+}^0 - \Delta G_{f, H_2V_{10028}^{4-}}^0 \\
\Delta G_{f, HV_{10028}^{5-}}^0 &= \Delta G_f^0 - \Delta G_{f, H^+}^0 + \Delta G_{f, H_2V_{10028}^{4-}}^0 \\
\Delta G_f^0 &= -1.364 (-4.34) = 5.92 \text{ kcal/mole} \\
\Delta G_{f, HV_{10028}^{5-}}^0 &= 5.92 - 0 + (-1851.8) = -1845.9 \text{ kcal/mole}
\end{align*} \]

4. \[\begin{align*}
HV_{10028}^{5-} & \rightleftharpoons V_{10028}^{6-} + H^+ \\
\Delta G_f^0 &= \Delta G_{f, V_{10028}^{6-}}^0 + \Delta G_{f, H^+}^0 - \Delta G_{f, HV_{10028}^{5-}}^0 \\
\Delta G_{f, V_{10028}^{6-}}^0 &= \Delta G_f^0 - \Delta G_{f, H^+}^0 + \Delta G_{f, HV_{10028}^{5-}}^0 \\
\Delta G_f^0 &= -1.364 (-6.95) = 9.47 \text{ kcal/mole} \\
\Delta G_{f, V_{10028}^{6-}}^0 &= 9.47 - 0 + (-1845.9) = -1836.4 \text{ kcal/mole}
\end{align*} \]

\[\Delta G_{f, HV_{20.7}}^0 = -424.1 \text{ kcal/mole} \]

\[\Delta G_{f, H_2V_{10028}^{4-}}^0 = -1851.8 \text{ kcal/mole} \]

\[\Delta G_{f, HV_{10028}^{5-}}^0 = -1845.9 \text{ kcal/mole} \]

\[\Delta G_{f, V_{10028}^{6-}}^0 = -1836.4 \text{ kcal/mole} \]
APPENDIX B

RESIN CAPACITY CALCULATION
(Equivalents per liter)

A Vanadium Capacity at pH 4.0 (Batch Test)

B Vanadium Capacity at pH 4.0 (Column Test)

C Vanadium Capacity at pH 2.0 (Column Test)
% Moisture in resin

Weight of wet resin and beaker 68.76
Weight of beaker 53.34
Weight of wet resin 15.42

Drying for 24 Hours

Weight of dry resin and beaker 60.56
Weight of beaker 53.34
Weight of dry resin 7.22

\[
\frac{\text{Weight of wet resin}}{\text{Weight of dry resin}} = \frac{15.42}{7.22} \times 100\% = 53.2\%
\]

A. Resin Capacity at pH 4.0 (Batch Tests)

From Figure 9:

\[
\text{Adsorption} = \left(\frac{28\ \text{mg Vanadium}}{\text{gm dry resin}} \right) \left(\frac{0.468\ \text{gm dry resin}}{1\ \text{gm wet resin}} \right)
\]

\[
\text{Adsorption} = 13.10\ \text{mg Vanadium/\text{gm wet resin}}
\]

\[
\left(\frac{13.10\ \text{mg Vanadium}}{\text{gm wet resin}} \right) \left(\frac{1}{50.94\ \text{mg Vanadium/meg}} \right) = 0.257\ \text{meg V/\text{gm wet resin}}
\]
Density of wet resin 1.1 gm/ml

\[0.257 \text{ meq/gm wet resin} \times \frac{1.1 \text{ gm wet resin}}{\text{ml}} \]

Resin capacity = 0.283 meq Vanadium or 0.283 eq Vanadium/1 (pH 4.0 batch)

B. Column breakthrough capacity at pH 4.0

Breakthrough volume greater than 128,000 ml Vanadium solution.

\[
\begin{array}{c|c|c|c}
128,000 \text{ ml} & 10 \mu g & 10^{-3} \text{ mg} & 1280 \text{ mg} \\
\hline
\text{ml} & \mu g & 10 \text{ gm dry resin} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
1280 \text{ mg V} & 0.468 \text{ gm dry resin} & 59.9 \text{ mg V} \\
\hline
10 \text{ gm dry resin} & 1 \text{ gm wet resin} & \text{gm wet resin} \\
\end{array}
\]

\[
\begin{array}{c|c|c|c}
59.9 \text{ mg/gm wet resin} & \frac{1.18 \text{ mg V}}{50.94 \text{ mg/meq}} & \text{gm wet resin} \\
\hline
\end{array}
\]

1.18 meq/gm wet resin (1.1 gm wet resin/ml)

Resin capacity for column at pH 4.0 = 1.29 meq Vanadium/1
C. Column Capacity at pH 2.0

Breakthrough Volume 160 ml

| 160 ml | 10 µg | 10^{-3} mg | \text{ml} | \text{µg} | = 1.6 mg V | 10 gm dry resin |

\[
\begin{array}{c|c|c|c|c|c|c}
1.6 mg V & 0.468 gram dry resin & \text{=} & 0.075 & \text{mg V} \\
10 gram dry resin & 1 gram wet resin & & & \text{gm wet resin} \\
\end{array}
\]

\[
\frac{0.075 \text{ mg V/ gm wet resin}}{50.94 \text{ mg/meq}} = 1.47 \times 10^{-3} \frac{\text{meq}}{\text{gm wet resin}}
\]

Resin capacity for column at pH 2.0 = \(1.62 \times 10^{-3}\) meq Vanadium/ l
APPENDIX C

ARRHENIUS PLOT FOR DETERMINING ACTIVATION ENERGY AT pH 2.0
\[\frac{d \ln k}{dt} = \frac{E}{RT^2} \]

Upon integration:

\[\ln k = -\frac{E}{RT} + C \]

with limits \(k = k_1 \) at \(T = T_1 \)
\[k = k_2 \text{ at } T = T_2 \]

\[\ln \frac{k_1}{k_2} = \frac{E}{1.987} \times \frac{T_2 - T_1}{T_1 T_2} \]

where \(T_2 > T_1 \)

Estimate the ratio of reaction rate constants equals the ratio of reaction rates.

\[\ln \frac{r_2}{r_1} = \frac{E}{1.987} \times \frac{T_2 - T_1}{T_1 T_2} \]

Thus we can find \(E \) from two different temperatures or from a plot of \(\ln r \) vs. \(1/T \) which yields a linear line with slope equal to \(-E/R\).
<table>
<thead>
<tr>
<th>r^{-1} (min)$^{-1}$</th>
<th>Temperature ($^\circ$C)</th>
<th>ln r</th>
<th>$1/T$ (1/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22</td>
<td>25</td>
<td>-1.51</td>
<td>3.36×10^{-3}</td>
</tr>
<tr>
<td>0.56</td>
<td>50</td>
<td>-0.58</td>
<td>3.10×10^{-3}</td>
</tr>
<tr>
<td>0.76</td>
<td>70</td>
<td>-0.27</td>
<td>2.92×10^{-3}</td>
</tr>
</tbody>
</table>

From Figure 19, Slope = $\frac{-E}{R} = -2.76 \times 10^3$

$$E = 2.76 \times 10^3 \times (1.987 \text{ cal/mole}) \times \frac{1 \text{ kcal}}{1000 \text{ cal}}$$

$$E = 5.48 \text{ kcal/mole}$$
APPENDIX D

MAXIMUM THEORETICAL LOADING OF COMPETING ANIONIC SPECIES IN SOLUTION

Appendix D1 Maximum Theoretical Hypochlorite Loading

Appendix D2 Maximum Theoretical Iron Loading
Appendix D-1 OCl\(^{-}\) Loading

\[
\frac{1.2 \text{ meq}}{\text{ml}} \times \frac{1 \text{ ml}}{1.1 \text{ grams wet resin}} = 1.09 \text{ meq/gram wet resin}
\]

M.W. OCl\(^{-}\) = 51.43 mg/meq

\[
1.09 \frac{\text{meq}}{\text{gm wet resin}} \times (51.43 \text{ mg/meq}) = 56.10 \frac{\text{mg OCl}^{-}}{\text{gm wet resin}}
\]

30 grams dry resin \(\left(\frac{1 \text{ gram wet resin}}{0.468 \text{ grams wet resin}}\right)\) = 64.10 grams wet resin

\[
56.10 \frac{\text{mg OCl}^{-}}{\text{gram wet resin}} \times (64.10 \text{ grams wet resin}) = 3596 \text{ mg OCl}^{-}
\]

3.596 grams OCl\(^{-}\)

\[
(3.596 \text{ grams OCl}^{-}) \times \left(\frac{1 \text{ mole OCl}^{-}}{51.43 \text{ grams}}\right) = 7.0 \times 10^{-2} \text{ moles OCl}^{-}
\]

Maximum OCl\(^{-}\) loading capacity onto 30 grams resin \(7.0 \times 10^{-2} \text{ moles}\)
Appendix D2 \([\text{Fe(OH)}(\text{SO}_4)_2]^n\) loading

\[
1.2 \frac{\text{meq}}{\text{ml}} \times \frac{1.0 \text{ ml}}{1.1 \text{ gm wet resin}} = 1.09 \frac{\text{meq}}{\text{gram wet resin}}
\]

\[
\text{M.W./eq} = \frac{265}{2} \text{ mg/meq} = 132.5 \text{ mg/meq}
\]

\[
\frac{1.09 \text{ meq}}{\text{gram wet resin}} \times 132.5 \text{ mg/meq} = 144.4 \frac{\text{meq [Fe(OH)(SO}_4)_2]^n}{\text{gram wet resin}}
\]

\[
= 64.10 \text{ grams wet resin}
\]

\[
\frac{144.4 \text{ mg [Fe(OH)(SO}_4)_2]^n}{\text{gram wet resin}} \times 64.10 \text{ grams wet resin} = 9257.6 \frac{\text{mg [Fe(OH)(SO}_4)_2]^n}{\text{gram wet resin}}
\]

\[
9.258 \text{ grams [Fe(OH)(SO}_4)_2]^n \times 1 \text{ mole [Fe(OH)(SO}_4)_2]^n = 3.5 \times 10^{-2} \text{ mole [Fe(OH)(SO}_4)_2]^n \quad 265 \text{ grams}
\]

For 30 grams of resin \(3.5 \times 10^{-2}\) moles of \([\text{Fe(OH)}(\text{SO}_4)_2]^n\) is the maximum.

54% loading at 3500 ppm Fe and 45% loading at 2100 ppm Fe.

\[
0.54 (3.5 \text{ gm/l}) (1 \text{ liter}) \times \frac{1 \text{ mole Fe}}{55.85 \text{ grams}} \times \frac{1 \text{ mole [Fe(OH)(SO}_4)_2]^n}{1 \text{ mole Fe}} = 3.4 \times 10^{-2} \text{ moles}
\]

\[
0.45 (2.1 \text{ gm/l}) (1 \text{ liter}) \times \frac{1 \text{ mole Fe}}{55.85 \text{ grams}} \times \frac{1 \text{ mole [Fe(OH)(SO}_4)_2]^n}{1 \text{ mole Fe}} = 1.7 \times 10^{-2} \text{ moles}
\]
APPENDIX E

MEAN RESIDENCE TIME FOR EXCHANGE COLUMN
\[
\begin{align*}
\text{Time} & \quad \text{ml Solution} & \quad \text{Cu eluate concentration} & \quad F = \frac{C}{C_0} & \quad E = \frac{dF}{dt} = \frac{\Delta F}{\Delta t} & \quad tE \\
0.0 & 0.0 & 0.0 & 0.0 & - & - \\
1.0 & 8.4 & 0.0 & 0.0 & 0.0 & 0.0 \\
1.5 & 12.6 & 0.07 & 0.011 & 0.022 & 0.033 \\
2.0 & 16.8 & 2.3 & 0.36 & 0.698 & 1.396 \\
2.5 & 21.0 & 4.6 & 0.71 & 0.70 & 1.75 \\
3.0 & 25.2 & 5.6 & 0.87 & 0.35 & 1.05 \\
3.5 & 29.4 & 5.8 & 0.91 & 0.08 & 0.28 \\
4.0 & 33.6 & 6.0 & 0.94 & 0.06 & 0.24 \\
4.5 & 37.4 & 6.35 & 0.99 & 0.10 & 0.45 \\
5.0 & 42.0 & 6.4 & 1.0 & 0.02 & 0.10 \\
5.5 & 46.2 & 6.4 & 1.0 & 0.0 & 0.0 \\
6.0 & 50.4 & 6.2 & 1.0 & 0.0 & 0.0 \\
6.5 & 54.6 & 6.4 & 1.0 & 0.0 & 0.0 \\
7.0 & 58.8 & 6.4 & 1.0 & 0.0 & 0.0 \\
7.5 & 63.0 & 6.4 & 1.0 & 0.0 & 0.0 \\
8.0 & 67.4 & 6.4 & 1.0 & 0.0 & 0.0 \\
8.5 & 71.4 & 6.4 & 1.0 & 0.0 & 0.0 \\
9.0 & 75.6 & 6.4 & 1.0 & 0.0 & 0.0 \\
\end{align*}
\]

\[
\bar{t} = \int_0^\infty tE \, dt = \sum_{t=0}^9 tE \, \Delta t = 5.3 \times 0.5 = 2.65 \text{ minutes}
\]
APPENDIX F

APPLICATION OF FILM DIFFUSION MODEL
TO VANADIUM UPTAKE AT pH 4.0

Appendix F1 Derivation of film diffusion model.

Appendix F2 Statistical Linear regression Model to fit data.
Appendix F1.

Film Diffusion model

Solution volume \(V = 1000 \text{ ml} \)

Resin 16-30 mesh

14-mesh = 1168 \(\mu \text{m} \)

35-mesh = 417 \(\mu \text{m} \)

Average diameter of resin = 792.5 \(\mu \text{m} \)

\(r_o = 3.96 \times 10^{-2} \text{ cm} \)

\[
\frac{1}{N_B(4\pi r_o^2)} \left[\frac{dN_v}{dt} \right] = k_f [(C_v)_\text{bulk} - (C_v)_\text{surface}]
\]

\((C_v)_\text{bulk}\) - concentration of vanadium in bulk

\((C_v)_\text{surface}\) - concentration of vanadium at resin surface

\(N_B\) - number of resin beads

\[
- \frac{\dot{V}}{N_B(4\pi r_o^2)} \left[\frac{dC_v}{dt} \right] = k_f (C_v)_\text{bulk}
\]

\((C_v)_\text{surface}\) = 0 at surface

Let \(K' = \frac{N_B (4\pi r_o^2)}{V} \)

\[
\frac{dC_v}{C_v} = -K' k_f dt
\]
Integration yields

\[\ln C_v \left|_{C_v^e}^{C_v} \right. = -K'k_ft \left|_t^0 \right. \]

\[\ln C_v - \ln C_v^o = -K'k_ft \]

\[-\log (1-X_v) = -\frac{K'k_f t}{2.303} \]

Let \(\alpha = \frac{K'k_f}{2.303} \)

\[-\log (1-X_v) = \alpha t \]

A plot of \(-\log (1-X_v) \) vs. \(t \) should yield a straight line with slope \(\alpha \) if film diffusion is rate controlling.

\[k_f = \frac{\alpha(2.303)}{K'} \]

\[k_f = \alpha(2.303) \left(\frac{V}{N(4\pi r^2)} \right) \]

\[k_f = \alpha(2.303) \left(\frac{1000 \text{ cm}^3}{(2.87 \times 10^4)(4\pi)(3.96 \times 10^{-2} \text{ cm})^2} \right) \]

\[k_f = 4.062 \text{ a cm/min} \]

\[k_f = 4.062 \text{ a} \left(\frac{1 \text{ minute}}{60 \text{ sec}} \right) = 6.77 \times 10^{-2} \text{ a cm/sec} \]

\[k_f = 6.77 \times 10^{-2} \text{ a cm/sec} \]

where \(a \) is (minutes)\(^{-1}\)
Appendix F2. **Linear Regression Model with an Intercept at the Origin**

The linear regression model minimizes the sum of the squares of the residuals, where the residual is the difference between the experimental data point and the best fitting line.

The data points are given as \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\), such that:

\[
\begin{align*}
 y_1 &= bx_1 \\
 y_2 &= bx_2 \\
 y_3 &= bx_3 \\
 &\vdots \\
 y_n &= bx_n
\end{align*}
\]

The minimization process can be obtained by taking the derivative and setting it equal to zero, or by taking the matrix and multiplying through by its transpose.

Matrix \(A = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix}\), coefficient \(b = [b]\), matrix \(B = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_n \end{bmatrix}\).
The transpose of $A = A^T = [x_1, x_2, x_3, \ldots, x_n]$

$A A^T b = A^T b$

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_n
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 \vdots \\
 x_n
\end{bmatrix}
\begin{bmatrix}
 y_1 \\
 y_2 \\
 y_3 \\
 \vdots \\
 y_n
\end{bmatrix}
\]
\[
\left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right) = \sum_{i=1}^{n} x_i y_i
\]
Stirring Speed 180 rpm

pH 4.0

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>X_v</th>
<th>$[1-X_v]$</th>
<th>$-\log(1-X_v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.12</td>
<td>0.88</td>
<td>0.056</td>
</tr>
<tr>
<td>5</td>
<td>0.12</td>
<td>0.88</td>
<td>0.056</td>
</tr>
<tr>
<td>10</td>
<td>0.23</td>
<td>0.77</td>
<td>0.114</td>
</tr>
<tr>
<td>18</td>
<td>0.27</td>
<td>0.73</td>
<td>0.137</td>
</tr>
<tr>
<td>30</td>
<td>0.32</td>
<td>0.68</td>
<td>0.167</td>
</tr>
</tbody>
</table>

\[
\sum_{i=1}^{n} x_i y_i = 9.01 \quad \sum_{i=1}^{n} x_i^2 = 1353
\]

\[
b = \frac{9.01}{1353} = 6.66 \times 10^{-3}
\]

\[
k_f = 6.66 \times 10^{-3} (6.77 \times 10^{-2}) = 4.51 \times 10^{-4} \text{ cm/sec}
\]
Stirring Speed 400 rpm
pH 4.0

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>X_v</th>
<th>$[1-X_v]$</th>
<th>$-\log[1-X_v]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.23</td>
<td>0.77</td>
<td>0.114</td>
</tr>
<tr>
<td>5</td>
<td>0.38</td>
<td>0.62</td>
<td>0.208</td>
</tr>
<tr>
<td>10</td>
<td>0.54</td>
<td>0.46</td>
<td>0.337</td>
</tr>
<tr>
<td>18</td>
<td>0.66</td>
<td>0.74</td>
<td>0.468</td>
</tr>
<tr>
<td>30</td>
<td>0.81</td>
<td>0.19</td>
<td>0.721</td>
</tr>
</tbody>
</table>

\[
\frac{\sum x_i y_i}{n} = 34.69 \quad \frac{\sum x_i^2}{n} = 1353
\]

\[
b = \frac{34.69}{1353} = 2.56 \times 10^{-2}
\]

\[
k_f = 2.56 \times 10^{-2} \times (6.77 \times 10^{-2}) = 1.73 \times 10^{-3} \text{ cm/sec}
\]
Stirring Speed 550 rpm

pH 4.0

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>(X_v)</th>
<th>([1-X_v])</th>
<th>(-\log[1-X_v])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.328</td>
</tr>
<tr>
<td>2</td>
<td>0.53</td>
<td>0.47</td>
<td>0.328</td>
</tr>
<tr>
<td>5</td>
<td>0.75</td>
<td>0.25</td>
<td>0.602</td>
</tr>
<tr>
<td>10</td>
<td>0.91</td>
<td>0.09</td>
<td>1.046</td>
</tr>
<tr>
<td>18</td>
<td>0.97</td>
<td>0.03</td>
<td>1.523</td>
</tr>
<tr>
<td>30</td>
<td>0.99</td>
<td>0.01</td>
<td>2.000</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\sum_{i=1}^{n} x_i y_i &= 14.126 \\
\sum_{i=1}^{n} x_i^2 &= 127
\end{align*}
\]

\[
b = \frac{14.126}{127} = 0.111
\]

\[
k_f = 0.111 \times (6.77 \times 10^{-2}) = 7.52 \times 10^{-3} \text{ cm/sec}
\]
<table>
<thead>
<tr>
<th>RPM</th>
<th>Best Fitting equation to data</th>
<th>mass transfer coefficient (cm/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>$y = 6.66 \times 10^{-3}x$</td>
<td>4.5×10^{-4}</td>
</tr>
<tr>
<td>400</td>
<td>$y = 2.56 \times 10^{-2}x$</td>
<td>1.73×10^{-3}</td>
</tr>
<tr>
<td>550</td>
<td>$y = 0.111x$</td>
<td>7.52×10^{-3}</td>
</tr>
</tbody>
</table>
APPENDIX G

APPLICATION OF FILM DIFFUSION MODEL
TO VANADIUM UPTAKE AT pH 2.0
Stirring Speed 160 rpm
pH 2.0

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>X_v</th>
<th>$1 - X_v$</th>
<th>$-\log (1 - X_v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
<td>0.96</td>
<td>0.018</td>
</tr>
<tr>
<td>5</td>
<td>0.07</td>
<td>0.93</td>
<td>0.032</td>
</tr>
<tr>
<td>10</td>
<td>0.10</td>
<td>0.90</td>
<td>0.046</td>
</tr>
<tr>
<td>18</td>
<td>0.10</td>
<td>0.90</td>
<td>0.046</td>
</tr>
<tr>
<td>20</td>
<td>0.12</td>
<td>0.88</td>
<td>0.056</td>
</tr>
</tbody>
</table>

\[
\sum_{i=1}^{n} X_i Y_i = 3.164
\]

\[
\sum_{i=1}^{n} X_i^2 = 1353
\]

\[
b = \frac{3.164}{1353} = 2.34 \times 10^{-3}
\]
Stirring Speed 320 rpm

pH 2.0

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>X_v</th>
<th>$(1-X_v)$</th>
<th>$-\log (1 - X_v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.04</td>
<td>0.96</td>
<td>0.018</td>
</tr>
<tr>
<td>5</td>
<td>0.11</td>
<td>0.86</td>
<td>0.066</td>
</tr>
<tr>
<td>10</td>
<td>0.17</td>
<td>0.83</td>
<td>0.081</td>
</tr>
<tr>
<td>18</td>
<td>0.22</td>
<td>0.78</td>
<td>0.108</td>
</tr>
<tr>
<td>30</td>
<td>0.26</td>
<td>0.74</td>
<td>0.131</td>
</tr>
</tbody>
</table>

\[
\sum_{i=1}^{n} x_i y_i = 7.05
\]

\[
\sum_{i=1}^{n} x_i^2 = 1353
\]

\[
\beta = \frac{7.05}{1353} = 3.53 \times 10^{-3}
\]
Stirring Speed 500 rpm

pH 2.0

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>X_v</th>
<th>$(1-X_v)$</th>
<th>$-\log (1 - X_v)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.20</td>
<td>0.80</td>
<td>0.097</td>
</tr>
<tr>
<td>5</td>
<td>0.29</td>
<td>0.71</td>
<td>0.149</td>
</tr>
<tr>
<td>10</td>
<td>0.41</td>
<td>0.59</td>
<td>0.229</td>
</tr>
<tr>
<td>18</td>
<td>0.46</td>
<td>0.54</td>
<td>0.268</td>
</tr>
<tr>
<td>30</td>
<td>0.54</td>
<td>0.46</td>
<td>0.337</td>
</tr>
</tbody>
</table>

\[\sum_{i=1}^{n} x_i y_i = 18.16 \]

\[\sum_{i=1}^{n} x_i^2 = 1353 \]

\[b = \frac{18.16}{1353} = 1.3 \times 10^{-2} \]
<table>
<thead>
<tr>
<th>Stirring Speed</th>
<th>Best Fitting Linear Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>$y = 2.34 \times 10^{-3}x$</td>
</tr>
<tr>
<td>320</td>
<td>$y = 3.53 \times 10^{-3}x$</td>
</tr>
<tr>
<td>500</td>
<td>$y = 1.30 \times 10^{-2}x$</td>
</tr>
</tbody>
</table>
Appendix H

PARTICLE DIFFUSION MODEL FOR A
WELL-STIRRED SOLUTION OF LIMITED VOLUME

Appendix H1 . Derivation of Particle Diffusion Model and Calculated Partition Coefficient.
Appendix H2 . Statistical Analysis of Particle Diffusion Model.
Appendix H3 . Computer Program to Evaluate Particle Diffusion Model.
APPENDIX H1 (Reference 54)

Requirements:

1. Concentration of solute in solution is always uniform and is initially \(C_0 \).

2. Resin initially free from solute.

\(M_\infty \) - Amount of solute in sphere after infinite time.

\(M_t \) - Amount of solute in sphere after time \(t \).

\(V \) - Volume of solution, excluding the volume of spheres.

\[a = \frac{3V}{N(4a^3)} \]

\(a \) - radius of sphere = \(3.96 \times 10^{-2} \) cm

\(t \) - time (seconds)

\(N \) - Number of spheres

\[X_B = \frac{M_t}{M_\infty} = 1 - \sum_{n=1}^{\infty} \frac{6a(x+1)\exp(-Dq_n^2t/a^2)}{9+5\alpha+q_n^2a^2} \]

where \(q_n \)'s are the non-zero roots of:

\[\tan q_n = \frac{3q_n}{3+\alpha q_n^2} \]

Number of spheres for 30 grams of dry resin = \(2.8 \times 10^4 \).
Table 8. Roots of \(\tan q_n = \frac{3q_n}{3 + \alpha q_n^2} \)

<table>
<thead>
<tr>
<th>Fractional Uptake</th>
<th>(\alpha)</th>
<th>(q_1)</th>
<th>(q_2)</th>
<th>(q_3)</th>
<th>(q_4)</th>
<th>(q_5)</th>
<th>(q_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>(\infty)</td>
<td>3.1416</td>
<td>6.2832</td>
<td>9.4248</td>
<td>12.5664</td>
<td>15.7080</td>
<td>18.8496</td>
</tr>
<tr>
<td>0.1</td>
<td>9.0000</td>
<td>3.2410</td>
<td>6.3353</td>
<td>9.4599</td>
<td>12.5928</td>
<td>15.7292</td>
<td>18.8671</td>
</tr>
<tr>
<td>0.2</td>
<td>4.0000</td>
<td>3.3485</td>
<td>6.3979</td>
<td>9.5029</td>
<td>12.6254</td>
<td>15.7554</td>
<td>18.8891</td>
</tr>
<tr>
<td>0.3</td>
<td>2.3333</td>
<td>3.4650</td>
<td>6.4736</td>
<td>9.5567</td>
<td>12.6668</td>
<td>15.7888</td>
<td>18.9172</td>
</tr>
<tr>
<td>0.4</td>
<td>1.5000</td>
<td>3.5909</td>
<td>6.5665</td>
<td>9.6255</td>
<td>12.7205</td>
<td>15.8326</td>
<td>18.9541</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0000</td>
<td>3.7264</td>
<td>6.6814</td>
<td>9.7156</td>
<td>12.7928</td>
<td>15.8924</td>
<td>19.0048</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6667</td>
<td>3.8711</td>
<td>6.8246</td>
<td>9.8369</td>
<td>12.8940</td>
<td>15.9779</td>
<td>19.0784</td>
</tr>
<tr>
<td>0.7</td>
<td>0.4286</td>
<td>4.0236</td>
<td>7.0019</td>
<td>10.0039</td>
<td>13.0424</td>
<td>16.1082</td>
<td>19.1932</td>
</tr>
<tr>
<td>0.8</td>
<td>0.2500</td>
<td>4.1811</td>
<td>7.2169</td>
<td>10.2355</td>
<td>13.2689</td>
<td>16.3211</td>
<td>19.3898</td>
</tr>
<tr>
<td>0.9</td>
<td>0.1111</td>
<td>4.3395</td>
<td>7.4645</td>
<td>10.5437</td>
<td>13.6133</td>
<td>16.3211</td>
<td>19.3898</td>
</tr>
<tr>
<td>1.0</td>
<td>0.0</td>
<td>4.4934</td>
<td>7.7253</td>
<td>10.9041</td>
<td>14.0662</td>
<td>17.2208</td>
<td>20.3713</td>
</tr>
</tbody>
</table>
Calculation of Partition Coefficient

Volume of resin

\[
\rho_{\text{resin}} = 1.1 \frac{\text{gm}}{\text{cm}^3}
\]

Weight of resin

\[
\text{Weight of resin} = \frac{30 \text{ grams dry resin} \times 1 \text{ gm wet resin}}{0.468 \text{ gm dry resin}}
\]

Volume of resin

\[
\text{Volume of resin} = \frac{(64 \text{ grams})}{1.1 \frac{\text{grams}}{\text{cm}^3}} = 58.28 \text{ cm}^3
\]

Conversion at 30 minutes 0.54 for 10 ppm solution (1000 ml solution)

\[
10 \frac{\mu \text{g}}{\text{ml}} (1000 \text{ ml}) = 10^{-6}(1000) = 10^{-2} \text{ grams vanadium}
\]

5.4 \times 10^{-3} \text{ grams V in resin}

4.6 \times 10^{-3} \text{ grams V in solution}

\begin{align*}
\bar{C}_\infty &= \frac{\text{concentration V in resin}}{\text{volume of resin}} \\
C_\infty &= \frac{\text{concentration V in solution}}{\text{volume of solution}} \\
\bar{C}_\infty &= \frac{5.4 \times 10^{-3} \text{ grams}}{58.27 \text{ ml}} = 9.2 \times 10^{-5} \\
C_\infty &= \frac{4.6 \times 10^{-3}}{1000 \text{ ml}} = 4.6 \times 10^{-6} \text{ gm/ml}
\end{align*}
\[
\frac{C_a}{C} = K \text{(partition factor)}
\]

\[
K = \frac{9.2 \times 10^{-5}}{4.6 \times 10^{-6}} = 20.0
\]

\[
K = 20.0
\]
<table>
<thead>
<tr>
<th>TIME (minutes)</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Test 4</th>
<th>Test 5</th>
<th>Test 6</th>
<th>S</th>
<th>\bar{X}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>-</td>
<td>0.00</td>
</tr>
<tr>
<td>2</td>
<td>0.23</td>
<td>0.22</td>
<td>0.20</td>
<td>0.23</td>
<td>0.26</td>
<td>0.20</td>
<td>0.022</td>
<td>0.22</td>
</tr>
<tr>
<td>5</td>
<td>0.35</td>
<td>-</td>
<td>0.29</td>
<td>0.28</td>
<td>0.32</td>
<td>0.28</td>
<td>0.030</td>
<td>0.030</td>
</tr>
<tr>
<td>10</td>
<td>0.43</td>
<td>0.40</td>
<td>0.41</td>
<td>0.40</td>
<td>0.38</td>
<td>0.36</td>
<td>0.024</td>
<td>0.40</td>
</tr>
<tr>
<td>18</td>
<td>0.50</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.45</td>
<td>0.49</td>
<td>0.020</td>
<td>0.47</td>
</tr>
<tr>
<td>30</td>
<td>0.55</td>
<td>0.54</td>
<td>0.54</td>
<td>0.53</td>
<td>0.50</td>
<td>0.54</td>
<td>0.018</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Note: The standard deviation is approximately constant, therefore we can do a difference test between \(\bar{X} \) and the theoretical loading \((T_n) \) for each time interval, and take the average value \((\bar{T}_n) \). A hypothesis test is done on the experimental and theoretical data where the null and alternative hypotheses are:

\[H_0 : \mu_T = \mu_{exp} \text{ or } \mu_d = 0 \]
\[H_1 : \mu_T = \mu_{exp} \text{ or } \mu_d \neq 0 \]
Using a T statistic the calculated value for the t-distribution is:

\[t = \frac{\bar{d}}{s_d/\sqrt{n}} \]

For this t-value the largest value of \(\alpha \) (level of significance) or the smallest critical region that is possible without rejecting the null hypothesis is examined. The values for \(\alpha \) can be found in statistics tables (56).

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>(M_t/M_\infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.415</td>
</tr>
<tr>
<td>5</td>
<td>0.610</td>
</tr>
<tr>
<td>10</td>
<td>0.755</td>
</tr>
<tr>
<td>18</td>
<td>0.890</td>
</tr>
<tr>
<td>30</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Experimental Values of \(M_t/M_\infty \)

\(M_\infty = 0.53 \)
APPENDIX H-3 PROGRAM FOR PARTICLE DIFFUSION MODEL.

This program was developed to solve an equation modeling particle diffusion. The program can consider both variable partition coefficients and diffusion coefficients. The program calculates the fractional conversion for times of 2, 5, 10, 15, and 30 minutes. The sum of the differences between the calculated and theoretical conversions was calculated for a statistical analysis. The t statistic was calculated to comparison to tabulated values, from this value the size of the critical region can be found.

The value of the partition coefficient is used in determining alpha. Knowing alpha, the equation is solved for the first six roots of the equation:

\[\tan q_n = \frac{3q_n}{3 + \alpha q_n^2} \]

The roots of \(q_n \) are tabulated by J. Crank for different values of \(\alpha \). The value of the partition coefficient is used in determining alpha.

VARIABLE LIST

- \(T(1) \) - Time at 2 minutes.
- \(T(2) \) - Time at 5 minutes.
- \(T(3) \) - Time at 10 minutes.
- \(T(4) \) - Time at 18 minutes.
- \(T(5) \) - Time at 30 minutes.
- \(V \) - Volume of reactor.
- \(RADIUS \) - Radius of resin particle.
- \(NUMBER \) - Number of resin particles.
- \(\chi_K \) - Partition coefficient.
- \(\alpha \) - Ratio of resin and liquid volume adjusting for the partition coefficient.
- \(q \) - Roots listed by J. Crank in solving equation.
- \(\text{DIFF} \) - Diffusion coefficient.
- \(\text{XB} \) - Theoretical conversion.
- \(\text{E} \) - Experimental average fraction loading data.
- \(\text{ON} \) - Difference between theoretical and experimental data.
- \(\text{XDN} \) - Average difference between theoretical and experimental data.
- \(\text{STEP} \) - Change in step size for varying diffusion coefficient.
- \(\text{STAND} \) - Standard deviation.
- \(\text{TSTAT} \) - T statistic.
- \(N \) - Number of step reduction.
DIMENSION T(5),Q(5),XB1(10),XB2(10),XB3(10),X8(10),E(10),DN(10)

C
PROGRAM CONSTANTS

C

N=3
T(1)=120.0
T(2)=300.0
T(3)=600.0
T(4)=1000.0
T(5)=1800.0
V=1000.0
PHI=3.14159
RADIUS=0.0396
NUMBER=2.87E04

C
CONTINUE

C
INPUT VALUE OF PARTITION COEFFICIENT
C

TYPE 10
F0RMAT(1H1* 'INPUT VALUE OF PARTITION COEFFICIENT'#F6.3)
ACCEPT *XK

C
CALCULATE ALPHA.
C

ALPHA=3.0*V/(4.0*PHI*(RADIUS**3.0)*XK*NUMBER)

TYPE 20, ALPHA
F0RMAT(1H , 'VALUE FOR ALPHA=',F7.3)

TYPE 30
F0RMAT(1H , 'ENTER VALUES FOR Q(roots)')

DO 1 I=1,6

 TYPE 50
F0RMAT(1H , 'F7.5)
ACCEPT *Q(I)

CONTINUE

CONTINUE

TYPE 5
F0RMAT(1H , 'STEP SIZE FOR DIFFUSION COEFFICIENT',F6.3)
ACCEPT *STEP

C
FIRST GUESS FOR THE DIFFUSION COEFFICIENT
C

TYPE 60
F0RMAT(1H , 'ENTER VALUE FOR DIFFUSION COEFFICIENT',E12.5)
ACCEPT *DIFF

DO 55 K=1,N
XB(1)=0.0

C
CALCULATION OF THEORETICAL CONVERSION.
C

DO 3 I3=1,5
XB1(I3)=0.0
XB2(I3)=0.0
XB3(I3)=0.0
XB5=0.0

DO 4 J=1,N
XB1(J)=EXP(-DIFF*Q(J)*Q(J)/T(1))/(RADIUS**2.0))
XB2(J)=Q(J)*DIFF+XB1(J)*2.0*(PHI*Q(J)*Q(J)/T(1))/(RADIUS**2.0)
XB3(J)=XB1(J)/XB2(J)
XB5=XB5+XB3(J)

CONTINUE
YB = 6.0*ALPHA*(ALPHA+1.0)
XB(13) = 1-(YB*XB5)

CONTINUE

EXPERIMENTAL CONVERSION:
E(1) = 0.415
E(2) = 0.610
E(3) = 0.755
E(4) = 0.890
E(5) = 1.00
DN(1) = 0.0
DNT = 0.0

T STATISTIC VALUE
DD 6 I5 = 1,5
DN(I5) = (XB(I5)-E(I5))

CONTINUE

DNT = DN(1)+DN(2)+DN(3)+DN(4)+DN(5)
DNS = DN(1)**2+DN(2)**2+DN(3)**2+DN(4)**2+DN(5)**2
STAND = ((5.*DNS-(DNT)**2))**0.5
XDN = DNT/5.0
TSTAT = XDN*(5.*0.5)/STAND

TYPE RESULTS

TYPE 110, DIFF
110 FORMAT(/, 5X, 'DIFFUSION COEFFICIENT', 2X, E12.5)

TYPE 150
150 FORMAT(1H, 3X, 'XB1', 4X, 'XB2', 4X, 'XB3', 4X, 'XB4', 4X, 'XB5', 6X, 'T')

TYPE 200, XB(1), XB(2), XB(3), XB(4), XB(5), TSTAT
200 FORMAT(1H, 2X, F4, 3X, F4, 3X, F4, 3X, F4, 3X, F4, 3X, E12.5)

DIFF = DIFF/STEP

CONTINUE

TYPE 75
75 FORMAT(/, ' TO DECREASE DIFF. COEF. TYPE 1, TO STOP TYPE 0', I2)

ACCEPT * I9
IF(I9.EQ.1) GOTO 100

TYPE 80
80 FORMAT(/, ' TO CHANGE ALPHA TYPE 1, STOP PROGRAM TYPE 0', I2)

ACCEPT * I8
IF(I8.EQ.1) GOTO 99

END
REFERENCES

25. Friedrich Helfferich, pp. 422-424.

32. William P. Lorenz, p. 4.

34. Telephone interview with Don Rice of Dow Chemical Company.

44. Charles F. Baes Jr., and Robert E. Mesmer, p. 209.

52. William P. Lorenz, p. 2.

53. Robert C. Merritt, p. 149.

