
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of "sectioning" the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

University
Microfilms

International
300N.Zeeb Road
Ann Arbor, Ml 48106

1326692

Blake, Carl David

A REAL-TIME MULTI-TASKING OPERATING SYSTEM FOR GENERAL
PURPOSE APPLICATIONS

The University of Arizona M.S. 1985

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

A REAL-TIME MULTI-TASKING

OPERATING SYSTEM FOR

GENERAL PURPOSE APPLICATIONS

by

Carl David Blake

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

19 8 5

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfill­
ment of requirements for an advanced degree at The Universi­
ty of Arizona and is deposited in the University Library to
be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable
without special permission, provided that accurate acknowl­
edgment of source is made. Requests for permission for ex­
tended quotation from or reproduction of this manuscript in
whole or in part may be granted by the head of the major
department or the Dean of the Graduate College when in his
or her judgment the proposed use of the material is in the
interests of scholarship. In all other instances, however,
permission must be obtained from the author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

I - L - .] / J 2 . / ^ ,
T. L. WILLIAMS " ~ " Date

Professor of Electrical Engineering

ACKNOWLEDGMENTS

I would like to thank Dr. T. L. Williams for his

support and encouragement. His guidance and instruction

were invaluable aids in the development of this project.

iii

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS vi

ABSTRACT vii

1. INTRODUCTION 1

2. TASK MANAGER 6

Task Structures 6
Resource Beads 7
Wait Beads 9
Call Beads 10

Starting Tasks 10
The Scheduler 12
Exiting a Task 16

3. EVENT MANAGER 17

4. THE MEMORY MANAGER 2 5

5. THE I/O MANAGER 30

The Serial I/O Driver 35
The Pipe Driver 36
The Disk Driver 36
Conclusion 37

6. EMULATION AND INSTALLION PROCEDURES 39

7. THE COMMAND LINE INTERPRETER 45

Redirection 46
Piping 47
Background Tasks 47
Conclusion 48

8 . C O N C L U S I O N S 5 0

Limitations 51
The Future 53

iv

V

TABLE OF CONTENTS—Continued

Page

APPENDIX A: THE SYSTEM ROUTINES 55

System Calls 55

REFERENCES 61

LIST OF ILLUSTRATIONS

Page

Figure

1. Block Diagram of Operating System 5

2. Organization of Task Structures 8

3. Structures for Event Manager 20

4. Organization of Free List Blocks 26

5. Block Diagram of I/O Manager 33

vi

ABSTRACT

Presented in this thesis is a real-time multi­

tasking general purpose operating system. The system was

designed to allow users to configure it to meet their

specific needs. Devices are set up in a unified input/output

structure and can be connected to the system as desired.

This lets the users easily change devices on the system.

Device dependencies are hidden in the system through the use

of the unified i/o structure. The system was also designed

to be easily moved from one system to another and this is

shown by emulating a low level processor on a mini-computer

and running the system on this emulation.

vii

CHAPTER 1

INTRODUCTION

Operating systems have always been necessary for us­

ing any processor-based equipment. Even small calculators

have a limited operating system to communicate data to the

user and execute commands given by the user. There are many

different kinds of operating systems ranging from very com­

plex multi-user, multi-tasking, time-sharing systems, such

as VMS and UNIX, to single-user, single-tasking operating

systems, such as CPM/80 and MSDOS. They all attempt to

create an environment in which the user can either develop

useful programs or run such programs for his own use.

The purpose of this project was to create a small,

general-purpose operating system. The system was to be

single-user, real-time, and multi-tasking with unified

input/output. Another goal was to create an i/o system which

could easily be added to. This would allow a user to add new

device drivers to the system as necessary. The thrust of

the project was to eventually have an operating system which

could be used on almost any processor and to which additions

could be easily made to create a full system the user would

be happy with. The system was also to be real-time so the

1

2

system could be used in applications such as industrial con­

trollers.

The system was to be as compact as possible and as

changeable as possible. This would allow the users to create

the environment they would be most happy with without the

operating system interfering. This means the operating sys­

tem only does the job of controlling the user's tasks and

lets the users define their own interface. In other words/

any command line interpreter which is needed to provide an

interface to the operating system is considered to be anoth­

er application program which is written by the user and exe­

cuted under the control of the operating system.

Part of the real-time aspect of the operating system

is accomplished by placing all executing tasks in memory.

Unlike UNIX, which swaps tasks out to disk area [4,5], if

there is not enough memory to hold a task then the task can­

not be executed. Real-time is also ensured by causing a new

task to execute every time an interrupt occurs. This makes

sure that a task waiting for an interrupt will be executed

at the right time.

The concept of unified input and output is accom­

plished by providing a single system interface to all dev­

ices. This ensures that devices are all accessed in the

same manner and allows programs to switch from one device to

another without having to change the system routines called

3

to access that device. New device drivers can also be at­

tached to the system. This lets the users write their own

device drivers and allows the system to use these devices by

connecting the drivers to the system. The users will be

able to configure the system to match their own particular

needs.

To demonstrate the portability of the operating sys­

tem, the system was run on a VAX under the VMS operating

system. This also made it easier to debug the operating sys­

tem as it was developed. The idea was to change only a few

special purpose# machine dependent routines to move the

operating system from one machine to another.

The system was developed under the C programming

language [1/3]. The reasons for this was the portability of

C, the availability of the C language on many machines, and

the relatively low level at which C operates allowing a user

to access memory directly and absolutely. This eased the

development of the operating system immensely. It also

forced the system to be developed under some form of struc­

tured programming making it much more modular and easier to

change as problems occurred.

The system consists mainly of a task manager, an

event manager, and a memory manager. These three managers

handle all the multi-tasking and real-time portions of the

system. The i/o manager handles the interface to all devices

4

on the system. These managers are described in more detail

in the chapters that follow. A block diagram of the operat­

ing system is shown in figure 1.

5

system calls from user program

Task | >| Event | >| Memory
Manager |< j Manager |< | Manager

I I/O
| Manager

I
V

Serial
Device
Driver

| Disk |
| Device |
j Driver |

| Pipe
| Device
j Driver

New |
Device j
Driver

Fig. 1. Block Diagram of Operating System

CHAPTER 2

TASK MANAGER

The task manager is the heart of the multi-tasking

portion of the operating system. This is what starts tasks

up, runs them when they should be run and at different

priorities, and cleans them up when they finish. For

single-tasking systems the task manager is not necessary.

A concept used in the task manager is the idea of

attaching small/ fixed sizes of memory to a task to store

small pieces of information about the task. These beads can

be allocated and deallocated by the system as the task uses

resources.

The task manager consists of three parts. A routine

to fork off new tasks for running, a routine to schedule

tasks currently being run, and a routine to clean up those

routines that are finished.

Task Structures

The task structure is used to store information on

each task. The organization of the task structures consists

of an array of circular, singly-linked structures (Fig. 2).

Each linked list corresponds to a different priority. Each

structure consists of the following elements.

6

7

1. A pointer to the next task structure.

2. A pointer to the event which will be ad­
vanced when the task is finished.

3. A pointer to a linked-list of wait beads
for events the task is waiting on.

4. A pointer to a linked-list of resource
beads for resources allocated to this
task.

5. A pointer to a linked-list of call beads
for routines the task is to run when next
scheduled.

6. A pointer to a structure holding informa­
tion about the machine architecture.

7. The task's identification number.

8. Status flags for the task.

9. The current directory and disk drive for
this task.

Resource Beads

The resource beads are used to attach various allo­

cations such as memory and open files to a task. When the

task exits these resources can be returned to the system for

re-allocation. The resource bead is a general-purpose

structure used for all allocations. It consists of the fol­

lowing elements.

1. Status flags for the resource.

2. File descriptor for the resource. Stores
the file descriptor for open files/ the
address of the memory for memory alloca­
tions, and the value returned from event
allocations.

array of task structures
(priority list)

previous task < | task | > next task
| structure |

previous task < 1 next task | > next task
| structure |

Fig. 2. Organization of Task Structures

9

3. Size of the allocations. Normally only
used to save the size of any memory allo­
cated. Undefined for other resources.

4. Next resource bead for this task. Part of
the singly-linked list of resource beads
for the task.

5. Cross link to next resource bead for
copies of this allocation. Part of the
doubly-linked list of resource beads that
use the same allocation.

6. Cross link to previous resource bead for
copies of this allocation. Part of the
doubly-linked list of resource beads that
use the same allocation.

Wait Beads

The wait beads are used to store information on

events the task is waiting on and consist of the following

elements.

1. Pointer to structure holding the event's
count and ticket values.

2. Pointer to the task structure for this
wait bead.

3. Pointer to next wait bead. Part of the
singly- linked list of wait beads for the
task.

4. Cross link to next wait bead which is
waiting on this same event.

6. The value that, when the event count
reaches the same value, the wait bead will
be activated.

10

Call Beads

The call beads are a singly-linked list of beads

which hold information on routines that will be called the

next time the task is rescheduled. The structure of the

beads consists of the address of the routine to be called

and a pointer to the next call bead.

Starting Tasks

The routine to start a new task is called Qtfork and

is passed the items listed below.

1. The address of a subroutine where the task
will start executing.

2. The size of the stack area for this task.

3. The priority level the task should run at.

4. A flag to indicate whether the task can be
aborted by a character from the terminal.

5. An event which will be advanced when the
task is finished.

6. The number of arguments to be passed to
this task.

7. A list of arguments that will be passed to
the new task. The number of arguments in
this list should be equal to the number in

item 6.

The task is initialized with the arguments listed

above and then linked into the correct list of task struc­

tures. Eventually/ when the scheduler is called/ the task

will run.

11

Unlike UNIX, which makes a copy of the task that

called fork and uses the same code area [2,4,5], this system

does not copy anything from the parent task other than using

the same code area. Instead, any arguments the child task

needs to know are passed through Qtfork as indicated in

items 6 and 7 in the list above.

There are disadvantages to this approach. For in­

stance, strings of characters are very difficult to pass to

a new task. Since data areas are not copied from one task to

another, the address of a string is inappropriate to be

passed as an argument to a new task. This is because the

memory being accessed is not part of the new task's

resources and the parent task could remove the memory at any

time. Also, if memory management is used in the system, the

memory may not be accessible to the child task at all.

Therefore, each character should be passed through the stack

when calling Qtfork. Passing the characters in a string on

the stack is hard to work with.

However, to implement the copying of all data and

code areas from one task to another, first memory space must

be allocated for these areas. Then the data must be copied

from one space to another. Two tasks should not be allowed

to access the same memory at the same time. Here is where

the problem occurs. If any addresses are stored in the data

area they must point to the same place in the new task that

12

the pointers addressed in the parent task. That is if the

child task wishes to use these pointers. For systems using

memory management this is not too bad a problem. The

child's data area can be made to look as if it starts in ex­

actly the same placc? the parent's data area started. This

solves the whole problem. However, in non-memory management

systems, there is no possible way to duplicate this solu­

tion. So, either all pointers have to be adjusted by the

system when copying the data, or the child task cannot use

these pointers. Since there is no way the system can know

whether the data being copied is a pointer or not, the child

task cannot use these pointers.

It was decided that since this operating system was

to be fairly simple and compact, and the system was targeted

for low cost hardware - systems probably without memory

management; Qtfork would not copy data areas from the parent

task to the child task.

The Scheduler

The scheduler is the function that stops the current

task and starts the next task in line. It is treated as the

lowest level interrupt in the system. The idea was to start

a scheduling operation by setting a hardware bit which would

cause an interrupt to occur.

13

Since this was to be a real-time operating system#

scheduling can be done at almost any point in a task. Any

interrupt can cause scheduling to occur# and any event that

is advanced and signals a task will cause scheduling. This

can be hazardous if the task is executing a critical portion

of code. Therefore# four functions are used to prevent in­

terference during these periods.

1. diseccalls - This function prevents any
asynchronous calls caused by events. This
is used to prevent a task from exiting
prematurely.

2. eneccalls - This enables asynchronous
event calls.

3. disint - This prevents interrupts from be­
ing acknowledged. This is used when crit­
ical data structures are being altered.

4. enint - This enables interrupts. It will
also execute any interrupts that occurred
while disabled.

If disint or diseccalls are called a number of times

in a row then it takes that same number of enint or enec­

calls in a row to complete an enable of the interrupt.

The reason disabling asynchronous event calls is

necessary is that an event call can occur at any time and

the task can be aborted by the event call. If the task is

in a critical section of the system where memory is being

used by the task which is not attached as a resource and an

abort occurs then the memory will be lost to the system. In

fact in some places certain structures will be destroyed and

14

the system could crash. Therefore event calls should not be

allowed at these places.

The normal place where event calls are needed is

when an i/o function is being performed. At this point

memory is being used to accomplish i/o requests and the task

needs to be protected from prematurely exiting.

The scheduler starts by saving all registers and any

other machine-dependent information in the system structure

for the current task. It then changes stacks to the inter­

rupt stack and calls the main portion of the scheduler. The

main part of the scheduler is not machine dependent while

the portion that saves the registers is.

The scheduler now changes the current task to the

next task ready to run, checks for any calls caused by

events that should be pushed on the stack, and returns to

the machine dependent portion of the scheduler.

Now the machine state is restored from the system

structure of the current task which also restores the pro­

gram counter for this task and immediately starts the task

executing.

For the emulation on the VAX some changes in the

above sequence have to be made. The sequence works for pro­

cessors that can enter any subroutine with any program con­

trol instruction. However, the VAX requires some subrou­

tines to be called using a CALLS instruction to match the

15

return instruction of this subroutine. The problem is when

a task starts it starts at the beginning of a subroutine and

when a call caused by an event occurs it also starts at the

beginning of a subroutine. Therefore, at these two points

the scheduler must execute a CALLS instruction to jump to

these subroutines so when the task returns from this routine

it can return correctly. The scheduler only needs to re­

place the program counter with the correct value elsewhere.

A solution is implemented as follows. When the

scheduler is restoring the registers it checks to see if the

task's stack pointer is pointing to a zero. If a zero is

present then the scheduler restores all registers including

the program counter. Otherwise, the scheduler performs a

CALLS function on the value the stack pointer is pointing

at. When the task returns from this the scheduler pops the

stack and again checks for a zero. This is done until a

zero is found.

An important point about the scheduler is while

scheduling is taking place the scheduler cannot be re­

entered. If a request for scheduling is done then the

search for a runable task is restarted from the top of the

priority chain. This ensures the highest priority task will

be run first if an interrupt causes more than one task of

differing priorities to become ready.

16

Exiting Task

When a task does its final return it will return to

Qtexit. This is the routine that will stop the task, deal­

locate all of its resources, and close all of its files.

This ensures that no resources are lost when the task dies.

When all this is done, Qtexit will reschedule.

CHAPTER 3

EVENT MANAGER

In any multi-tasking operating system some form of

synchronization must be implemented to prevent common areas

of the system from being accessed by more than one task at

the same time.

It was decided synchronization would be performed

with event counts rather than semaphores. The reasons for

this are event counts are much more flexible than semaphores

and they can be used in a wider range of applications. The

main advantage of event counts over semaphores is accesses

to a shared resource using event counts can easily be al­

lowed in the order in which the requests occurred. This is

done using event count tickets which are advanced each time

they are read. The sequence is that each request for access

gets a ticket and waits on that value. Then as the event

count is advanced the requests will be satisfied in the ord­

er in which the tickets were received. This is known as fair

scheduling.

It is much harder to implement fair scheduling with

semaphores. Normally, all the requests that occur at the

same time will wait for the semaphore to become available.

17

18

The request that happens to check the semaphore at the time

the semaphore becomes free will be the one that is allowed

access. There is no way to cause requests to be satisfied

in the order in which they occurred.

Event counts can also honor several requests for the

same event count at the same time while semaphores immedi­

ately become unavailable to any other requests. Also, sema­

phores require memory to be dynamicaly allocated for queues

on who is requesting the use of the semaphore while event

counts can be used without saving any information.

The concept of subroutine calls caused by events is

also used in this operating system. When an event count

reaches a specified value then a subroutine is called the

next time the task is scheduled. The implementation of this

idea was a problem at first.

Originally/ it was planned to have the routine that

advances the event count to set up the task's stack to cause

a call to the subroutine. The trouble with this plan is

there are times when a task is in a critical section of code

and should not be allowed to call a subroutine in this

manner. Therefore, it was decided to let the scheduler han­

dle the problem. When an event count reaches the specified

value then a call bead which holds the address of the sub­

routine to be called is attached to the task. When the task

is next scheduled then the necessary information is placed

19

on the stack and the subroutine is called. This also lets

the scheduler check to see if the task is in a critical sec­

tion of code.

Subroutines called by event counts are very useful.

It allows the users to set up asynchronous interrupts in the

programs they write under control of the operating system.

For instance/ a subroutine could be called every time a

character is received by the serial device. An application

of this idea is in the emulation of another operating system

on top of this system.

The organization of the event manager structures is

shown in figure 3. The basic structures consist of the main

event resource bead, the bead used for storage of the event

count and ticket values, the wait bead which is attached to

tasks waiting on an event, and the call bead which is at­

tached to the task structure for asynchronous subroutine

calls.

The event resource bead consists of the following

elements.

1. The status flags for this resource.

2. The type of resource bead this is.

3. The file descriptor of this resource. This
is not used for events.

4. The size of this resource. Not used here.

5. Cross link to next event resource bead us­
ing same event count. This is part of a

20

prev event< | event | > next event
| resource |
| bead |
| | > next resource bead for task

V

| event |
j count and |
j ticket |

-x

I back link to event count

V I

task < | wait | > next wait bead for task.

| bead |

I I

V
next wait bead for this event count

Fig. 3. Structures for Event Manager.

21

doubly-linked list of structures used to
link together event resources for other
tasks which use the same event count.

6. Cross link to previous event resource bead
using same event count.

7. Link to next resource bead. This is part
of a singly-linked list of structures
which link together the resources for a
task.

8. A pointer to a structure holding values of
event count and ticket.

The structure for the event count bead consists of

the following elements.

1. The value of the current count for this
event.

2. The value of the current ticket for this
event.

3. A pointer to one of the wait beads for
this event. If the pointer is equal to
zero then there are no tasks waiting on
this event.

The structure for the wait bead consists of the fol­

lowing elements.

1. A pointer to the next wait bead for this
task. This allows the task to wait on
several events at the same time.

2. A pointer to the task which is using this
wait bead.

3. A pointer to the next wait bead also using
this event. This is used to check all wait
beads for a specific event to see if any
of wait beads have been satisfied.

4. A back link to the event count structure
for this event. Mainly used to help free
up wait beads that have been satisfied.

22

5. The value this wait bead is waiting for
the event count to reach.

6. The address of a subroutine to call when
this wait bead is satisfied. This is used
by the function Qecall which allows a sub­
routine to be called when a wait bead is
satisfied. If the value of the address is
equal to 0 then this wait bead was set up
by the function Qewait which causes a task
to wait until the wait bead is satisfied.

The structure for a call bead consists of the fol­

lowing elements. It is attached to the task's structure so

when a task is re-scheduled and event count calls are en­

abled, the stack is set up so the subroutine is called

first.

1. A pointer to the next call bead.

2. The address of the subroutine to call when
the task is re-scheduled.

The normal use of events in this operating system

consists of the following sequence.

1. An allocation of an event is first done
using the routine Qealloc. This attaches
the event to the task as a resource so it
can be removed later; especially if the
task exits without freeing the event.

2. Now either the current value of the event
count is read or the current ticket value
is read depending on the use this event is
being put to. If mutual exclusion is need­
ed, then the ticket should be read other­
wise the event count should be read.

3. Now either a Qewait or a Qecall is done.
The value waited on is either the ticket
already read or the value of the event
count plus some value the user wishes.
Qewait will cause the task to wait for the

23

event count to reach the value specified.
Qecall will set up the task for an asyn­
chronous interrupt. When the event count
reaches the value specified/ the subrou­
tine will be called as an interrupt.

4. When the task is finished with the event,
a Qefree will deallocate the event freeing
up the resource for another task.

The system routines made available to the user con­

sist of the following functions.

Qealloc - This routine allocates space and in­
itializes the structures for a new event.
It attaches this new resource to the task
requesting the resource. Qealloc returns
the pointer to the event structure.

Qefree - Qefree removes the event from the
list of resources attached to this task.
It is passed the pointer to the event
structure.

Qeread - This reads the current value of the
event count. It is passed a pointer to an
event structure. When an event is initial­
ized the event count is set to zero.

Qeticket - Qeticket increments the ticket by
one and returns the new value of the tick­
et. When an event is initialized the tick­
et is set to zero.

Qeadvance - This is passed a pointer to an
event. It advances the value of the event
count by one and checks the wait beads as­
sociated with this event for any that are
satisfied. If the wait bead is satisfied
then two things can happen. If the bead
was set up by a call to Qewait then all of
this task's wait beads which were set up
by Qewait are cleared out and the task is
flagged as being ready to run. If the wait
bead was set up by a call to Qecall then
only this wait bead is cleared out and the
task has a call bead attached to its task
bead. When finished checking wait beads

this routine causes a new task to be
started by re-scheduling.

Qewait - Qewait is passed a zero terminated
list of arguments. Each set of arguments
consists of a pointer to an event and the
value the task should wait on for this
event. The routine causes the task to be
flagged as waiting. It also re-schedules.

Qecall - This routine sets up an asynchronous
call to a subroutine when the event is ad­
vanced to the correct value. It is passed
the same arguments as Qewait with one ex­
ception. The first argument is the address
of the subroutine to be called.

There are two routines that allow an event to be al­

located but not attached to any task. This is for situations

such as in device drivers which require use of events but do

not necessarily want the events attached to a specific task.

These routines are Qeopen/ which allocates space for the

event and sets up everything except the attachment to the

task, and Qeclose which frees up the event without removing

the resource links.

CHAPTER 4

THE MEMORY MANAGER

The memory manager is used to allocate and deallo­

cate areas of memory for use by the operating system and the

user of the system. The manager used at this time was a

hardware system that did not include a hardware based memory

manager. The lack of this manager increased the complexity

of allocating and deallocating memory.

The free list of the memory manager consists of the

following elements (Fig. 4). The basic structure is a

doubly-linked list of blocks of memory.

1. A pointer to the next free block of
memory.

2. A pointer to the previous free block of
memory.

3. The size of this free block.

The memory manager is initialized by starting with a

contiguous block of memory. For the emulation on the VAX,

500,000 bytes were allocated from the VAX for use in the

operating system. When the manager starts, there is only one

free block which has the doubly-linked pointers pointing

back to itself. As memory is deallocated and then reallocat­

ed the memory begins to fragment itself into several

25

1 r

v I

| next free block

| previous free block |

| size of this block |

V

| next free block |

| previous free block |_

| size of this block |

V

Fig. 4. Organization of Free List Blocks.

27

separate blocks of memory. If hardware memory management

were used fragmentation would not occur since each block of

memory can be given any address desired. In other words

there would always be only one contiguous free block of

memory which held all available memory.

A basic concept used in this operating system was

the idea of beads. These are small areas of memory which

hold system information. For example/ the areas of memory

which hold information on each task are memory beads. For

the VAX emulation these beads were 32 bytes long. The idea

was to attach beads of information to tasks as more informa­

tion was needed.

There are several routines used for allocation and

deallocation of memory. However, only two routines/ Qmmalloc

and Qmmfree/ will be made available to the user. The reason

for this is Qmmalloc and Qmmfree are the only routines that

handle attaching and detaching memory to and from a task.

The other routines are used by the system for allocating

memory which should not be attached to any specific task.

The routines used for the memory manager are listed

below.

Qmpalloc - The basic allocation routine used
by all other allocation routines. This is
passed the address of the size in bytes
needed. The reason the address of the size
is passed was that Qmpalloc may change the
actual size of memory requested in two
possible ways. If the size is less than a

28

specified size then the size is changed to
that minimum size. If the allocation will
cause a small chunk of memory to be left
behind which is smaller than the minimum
size then the whole block is allocated.
Qmpalloc returns the address of the memory
allocated,

Qmpfree - This is the counter part for Qmpal­
loc. This routine deallocates memory and
places the memory back on the free list.
It is passed the address of the block of
memory and the size of the memory.

Qmballoc - This is the routine which allocates
beads of memory. It has its own free list
of free beads and allocates them as re­
quested. If there are no free beads left
then more memory is allocated through
Qmpalloc. Once memory has been allocated
for use by Qmballoc it is never returned
to the system. The routine is not passed
any arguments since the size of a bead is
a fixed value set by the memory manager
when first compiled.

Qmbfree - This places memory allocated for
beads back on the free list of beads. It
is passed the address of the bead to be
deallocated.

Qmalloc - This routine allocates a specified
size in bytes of memory. It is passed the
size desired. It then calls Qmpalloc with
the size desired plus some space where the
size may be placed. Qmalloc then places
the size in the memory block and returns
the address of the memory just past the
area where the size was saved.

Qmfree - This frees up the memory allocated by
Qmalloc. It is passed the address of the
memory to be deallocated and calls Qmpfree
with the correct address and size taken
from the memory block.

Qmmalloc - This allocates memory for a task.
It is the only allocation routine which
the user should be allowed to use. It

calls Qmalloc to get the memory and then
sets up a resource bead with the informa­
tion about the block of memory and at­
taches the bead to the task. It is passed
the size of memory in bytes to allocate.

Qmmfree - This deallocates memory for a task.
It is the only deallocation routine which
the user should use. It calls Qmfree with
the address of the memory to free and de­
taches the resource bead associated with
this memory. It is passed the address of
the memory to free.

CHAPTER 5

THE I/O MANAGER

The i/o manager handles all devices in the system.

It uses the idea of unified i/o. This causes all devices to

be accessed through the same set of i/o routines. Devices

are identified by a null terminated string of ascii charac­

ters. The device drivers implemented in this description

are a serial device driver for keyboard input and display of

information to and from a terminal, a disk driver for

storage of information/ and a pipe driver for communicating

between two tasks.

The normal use of a device driver consists of first

connecting the device header for the device to the system

and then using the available functions for that device by

calling the i/o manager routines with the name of the dev­

ice.

This approach to i/o managers allows device drivers

to be easily attached to a system. The disadvantage to the

procedure is only a fixed number of routines can be set up

for a device driver. Therefore, the i/o manager should have

a variety of functions that can handle all the requirements

of each device driver connected to the system.

30

31

A block diagram of the i/o manager is shown in fig­

ure 5. The routines that are part of the i/o manager are

listed below.

Qiconnect - This routine connects a device
header into the system. It is passed the
address of the header. Each header con­
sists of a name for the device and a list
of addresses of functions corresponding to
each i/o manager function. It then calls
the connect function for the device
driver.

Qidiscon - This routine disconnects a device
driver from the system. It calls the
disconnect function for the driver. It is
passed the name of the device.

Qiopen - Opens a device for reading or writ­
ing. It is passed the name of the device,
the mode of the open, and the address of
an array of two long integers where the
file size and the block size of the device
can be stored. It passes these parameters
to the device driver's open routine and
then attaches this open request to the
current task as a resource. It returns a
file descriptor this open can be identi­
fied by for reads, writes, and closes.

Qiclose - Closes a device. It is passed the
file descriptor of the corresponding open.
It checks to see if this file descriptor
was opened by the current task and contin­
ues if so. It then calls the close rou­
tine for the device driver and detaches
the resource associated with this file
descriptor from the current task. If the
close routine for the device driver re­
turns a non-zero number then the resource
is not detached from the current task.

Qiread - This function reads a number of bytes
from a device into a given buffer. It is
passed the file descriptor for device
desired, the beginning address of the
buffer to read into, the number of bytes

32

to read from the device/ and a starting
block number. These parameters are passed
to the device driver's read function.

Qiwrite - This is similar to Qiread except
that this will write to a device given the
number of bytes and the address of the
buffer to write from.

Qigetdev - This routine gets the parameters
associated with the device desired. It is
passed the name of the device to get the
information from and the address of the
buffer where the information should be
placed. Each device will have its own or­
ganization for the information returned so
the size of the buffer where the informa­
tion is to be stored will depend on the
device called. It calls the associated
function for the device driver.

Qisetdev - This is similar to Qigetdev except
the parameters of the device are set by
this function rather than read.

Qirename - This function renames a file from
one name to another. It is passed a
pointer to the device name, and a pointer
to the new name for the device. It only
calls the device driver's rename function.
It won't rename the actual name of the
device by which it was connected into the
system.

Qisvcl - This function will call all level 1
interrupt service routines for all device
drivers. It is not presently used.

Qisvc2 - This function will call all level 2
interrupt service routines, for all device
drivers. It is not presently used.

The device header structure consists of the follow­

ing elements.

1. A nul terminated string which is the name
of the device. Wild cards such as
which matches a sequence of alphanumeric

33

called by user

V

I I/O |
| Manager |

V

Serial |
Device |
Driver |

V

| Disk |
j Device j
j Driver |

V

I Pipe |
| Device |
| Driver |

V

| New |
| Device |
j Driver j

Fig. 5. Block Diagram of I/O Manager.

34

characters/ and '?'» which matches any one
alphanumeric character, may be used in the
name.

2. The address of the routine used for con­
necting this driver to the system.

3. The address of the routine used for dis­
connecting this driver.

4. The address of the routine used for open­
ing the device.

5. The address of the routine used for clos­
ing the device.

6. The address of the routine used for read­
ing the device.

7. The address of the routine used for writ­
ing to the device.

8. The address of the routine used to get the
parameters of the device.

9. The address of the routine used to set the
parameters of the device.

10. The address of the routine used to rename
a file.

11. The address of the routine used to handle
level 1 interrupt services.

12. The address of the routine used to handle
level 2 interrupt services.

The organization of the i/o manager allows all dev­

ices to be accessed in the same manner. This is what is

called unified i/o and allows programs to treat all devices

the same without having to know what kind of device is being

accessed. This eases the implementation of redirection in

command line interpreters.

35

A brief discussion of the serial i/o driver, the

pipe driver and the disk driver follow.

The Serial I/O Driver

The serial i/o driver allows access to any serial

devices on the system such as the terminal. It is accessed

with the device name "#?" where any number can be substitut­

ed for the wild card character '?'. This allows for ten

serial devices to be attached to the system.

This driver is quite simple and does not provide for

any command line interpretation of the data being input by

the user on the terminal. It is left up to the user to pro­

vide that interpretation. A command line interpreter written

by the user can easily handle this job. The only special

characters recognized by the serial driver are listed below.

1. An abort character. When the interrupt
service routine for the serial driver sees
this character; it advances an event to
cause all tasks, which were forked without
the no kill flag set, to be aborted.

2. A stop output character. This character
causes output to the serial device to be
stopped until a start output character is
seen.

3. A start output character. This character
resumes output to the serial device.

These functions can be prevented by setting the dev­

ice parameters such that the character which would cause the

specified activity is the ascii nul character.

36

The Pipe Driver

The pipe driver is a buffer management scheme. A

buffer is written to until it is full and then no more

writes are allowed until a read has emptied the buffer. The

pipe device is accessed with the name "j". A different pipe

is opened each time the open is called with the pipe name.

Once a pipe has been opened it has to be closed twice. If a

pipe has been closed once then subsequent reads after the

buffer has been emptied will return an end of file error.

The procedure used here is that after a task has finished

writing to a pipe it closes the pipe once. Then the task

that reads the pipe will read until it receives an end of

file error. It will then close the pipe the second time.

This allows the task reading the pipe to know when there is

no more data being sent by the task which was writing the

pipe.

The Disk Driver

The disk device is a storage system. It is accessed

with the name where is a wild card symbol which

matches any sequence of alphanumeric characters.

The disk was set up to implement a file system. It

is a hierarchical directory system similar to UNIX's direc­

tories with every directory having a link to itself and a

back link to the previous directory. Also implemented is the

