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ABSTRACT 

Presented in this thesis is a real-time multi­

tasking general purpose operating system. The system was 

designed to allow users to configure it to meet their 

specific needs. Devices are set up in a unified input/output 

structure and can be connected to the system as desired. 

This lets the users easily change devices on the system. 

Device dependencies are hidden in the system through the use 

of the unified i/o structure. The system was also designed 

to be easily moved from one system to another and this is 

shown by emulating a low level processor on a mini-computer 

and running the system on this emulation. 

vii 



CHAPTER 1 

INTRODUCTION 

Operating systems have always been necessary for us­

ing any processor-based equipment. Even small calculators 

have a limited operating system to communicate data to the 

user and execute commands given by the user. There are many 

different kinds of operating systems ranging from very com­

plex multi-user, multi-tasking, time-sharing systems, such 

as VMS and UNIX, to single-user, single-tasking operating 

systems, such as CPM/80 and MSDOS. They all attempt to 

create an environment in which the user can either develop 

useful programs or run such programs for his own use. 

The purpose of this project was to create a small, 

general-purpose operating system. The system was to be 

single-user, real-time, and multi-tasking with unified 

input/output. Another goal was to create an i/o system which 

could easily be added to. This would allow a user to add new 

device drivers to the system as necessary. The thrust of 

the project was to eventually have an operating system which 

could be used on almost any processor and to which additions 

could be easily made to create a full system the user would 

be happy with. The system was also to be real-time so the 
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system could be used in applications such as industrial con­

trollers. 

The system was to be as compact as possible and as 

changeable as possible. This would allow the users to create 

the environment they would be most happy with without the 

operating system interfering. This means the operating sys­

tem only does the job of controlling the user's tasks and 

lets the users define their own interface. In other words/ 

any command line interpreter which is needed to provide an 

interface to the operating system is considered to be anoth­

er application program which is written by the user and exe­

cuted under the control of the operating system. 

Part of the real-time aspect of the operating system 

is accomplished by placing all executing tasks in memory. 

Unlike UNIX, which swaps tasks out to disk area [4,5], if 

there is not enough memory to hold a task then the task can­

not be executed. Real-time is also ensured by causing a new 

task to execute every time an interrupt occurs. This makes 

sure that a task waiting for an interrupt will be executed 

at the right time. 

The concept of unified input and output is accom­

plished by providing a single system interface to all dev­

ices. This ensures that devices are all accessed in the 

same manner and allows programs to switch from one device to 

another without having to change the system routines called 
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to access that device. New device drivers can also be at­

tached to the system. This lets the users write their own 

device drivers and allows the system to use these devices by 

connecting the drivers to the system. The users will be 

able to configure the system to match their own particular 

needs. 

To demonstrate the portability of the operating sys­

tem, the system was run on a VAX under the VMS operating 

system. This also made it easier to debug the operating sys­

tem as it was developed. The idea was to change only a few 

special purpose# machine dependent routines to move the 

operating system from one machine to another. 

The system was developed under the C programming 

language [1/3]. The reasons for this was the portability of 

C, the availability of the C language on many machines, and 

the relatively low level at which C operates allowing a user 

to access memory directly and absolutely. This eased the 

development of the operating system immensely. It also 

forced the system to be developed under some form of struc­

tured programming making it much more modular and easier to 

change as problems occurred. 

The system consists mainly of a task manager, an 

event manager, and a memory manager. These three managers 

handle all the multi-tasking and real-time portions of the 

system. The i/o manager handles the interface to all devices 
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on the system. These managers are described in more detail 

in the chapters that follow. A block diagram of the operat­

ing system is shown in figure 1. 
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system calls from user program 

Task | >| Event | >| Memory 
Manager |< j Manager |< | Manager 

I I/O 
| Manager 

I 
V 

Serial 
Device 
Driver 

| Disk | 
| Device | 
j Driver | 

| Pipe 
| Device 
j Driver 

New | 
Device j 
Driver 

Fig. 1. Block Diagram of Operating System 



CHAPTER 2 

TASK MANAGER 

The task manager is the heart of the multi-tasking 

portion of the operating system. This is what starts tasks 

up, runs them when they should be run and at different 

priorities, and cleans them up when they finish. For 

single-tasking systems the task manager is not necessary. 

A concept used in the task manager is the idea of 

attaching small/ fixed sizes of memory to a task to store 

small pieces of information about the task. These beads can 

be allocated and deallocated by the system as the task uses 

resources. 

The task manager consists of three parts. A routine 

to fork off new tasks for running, a routine to schedule 

tasks currently being run, and a routine to clean up those 

routines that are finished. 

Task Structures 

The task structure is used to store information on 

each task. The organization of the task structures consists 

of an array of circular, singly-linked structures (Fig. 2). 

Each linked list corresponds to a different priority. Each 

structure consists of the following elements. 

6 
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1. A pointer to the next task structure. 

2. A pointer to the event which will be ad­
vanced when the task is finished. 

3. A pointer to a linked-list of wait beads 
for events the task is waiting on. 

4. A pointer to a linked-list of resource 
beads for resources allocated to this 
task. 

5. A pointer to a linked-list of call beads 
for routines the task is to run when next 
scheduled. 

6. A pointer to a structure holding informa­
tion about the machine architecture. 

7. The task's identification number. 

8. Status flags for the task. 

9. The current directory and disk drive for 
this task. 

Resource Beads 

The resource beads are used to attach various allo­

cations such as memory and open files to a task. When the 

task exits these resources can be returned to the system for 

re-allocation. The resource bead is a general-purpose 

structure used for all allocations. It consists of the fol­

lowing elements. 

1. Status flags for the resource. 

2. File descriptor for the resource. Stores 
the file descriptor for open files/ the 
address of the memory for memory alloca­
tions, and the value returned from event 
allocations. 



array of task structures 
(priority list) 

previous task < | task | > next task 
| structure | 

previous task < 1 next task | > next task 
| structure | 

Fig. 2. Organization of Task Structures 
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3. Size of the allocations. Normally only 
used to save the size of any memory allo­
cated. Undefined for other resources. 

4. Next resource bead for this task. Part of 
the singly-linked list of resource beads 
for the task. 

5. Cross link to next resource bead for 
copies of this allocation. Part of the 
doubly-linked list of resource beads that 
use the same allocation. 

6. Cross link to previous resource bead for 
copies of this allocation. Part of the 
doubly-linked list of resource beads that 
use the same allocation. 

Wait Beads 

The wait beads are used to store information on 

events the task is waiting on and consist of the following 

elements. 

1. Pointer to structure holding the event's 
count and ticket values. 

2. Pointer to the task structure for this 
wait bead. 

3. Pointer to next wait bead. Part of the 
singly- linked list of wait beads for the 
task. 

4. Cross link to next wait bead which is 
waiting on this same event. 

6. The value that, when the event count 
reaches the same value, the wait bead will 
be activated. 



10 

Call Beads 

The call beads are a singly-linked list of beads 

which hold information on routines that will be called the 

next time the task is rescheduled. The structure of the 

beads consists of the address of the routine to be called 

and a pointer to the next call bead. 

Starting Tasks 

The routine to start a new task is called Qtfork and 

is passed the items listed below. 

1. The address of a subroutine where the task 
will start executing. 

2. The size of the stack area for this task. 

3. The priority level the task should run at. 

4. A flag to indicate whether the task can be 
aborted by a character from the terminal. 

5. An event which will be advanced when the 
task is finished. 

6. The number of arguments to be passed to 
this task. 

7. A list of arguments that will be passed to 
the new task. The number of arguments in 
this list should be equal to the number in 

item 6. 

The task is initialized with the arguments listed 

above and then linked into the correct list of task struc­

tures. Eventually/ when the scheduler is called/ the task 

will run. 
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Unlike UNIX, which makes a copy of the task that 

called fork and uses the same code area [2,4,5], this system 

does not copy anything from the parent task other than using 

the same code area. Instead, any arguments the child task 

needs to know are passed through Qtfork as indicated in 

items 6 and 7 in the list above. 

There are disadvantages to this approach. For in­

stance, strings of characters are very difficult to pass to 

a new task. Since data areas are not copied from one task to 

another, the address of a string is inappropriate to be 

passed as an argument to a new task. This is because the 

memory being accessed is not part of the new task's 

resources and the parent task could remove the memory at any 

time. Also, if memory management is used in the system, the 

memory may not be accessible to the child task at all. 

Therefore, each character should be passed through the stack 

when calling Qtfork. Passing the characters in a string on 

the stack is hard to work with. 

However, to implement the copying of all data and 

code areas from one task to another, first memory space must 

be allocated for these areas. Then the data must be copied 

from one space to another. Two tasks should not be allowed 

to access the same memory at the same time. Here is where 

the problem occurs. If any addresses are stored in the data 

area they must point to the same place in the new task that 
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the pointers addressed in the parent task. That is if the 

child task wishes to use these pointers. For systems using 

memory management this is not too bad a problem. The 

child's data area can be made to look as if it starts in ex­

actly the same placc? the parent's data area started. This 

solves the whole problem. However, in non-memory management 

systems, there is no possible way to duplicate this solu­

tion. So, either all pointers have to be adjusted by the 

system when copying the data, or the child task cannot use 

these pointers. Since there is no way the system can know 

whether the data being copied is a pointer or not, the child 

task cannot use these pointers. 

It was decided that since this operating system was 

to be fairly simple and compact, and the system was targeted 

for low cost hardware - systems probably without memory 

management; Qtfork would not copy data areas from the parent 

task to the child task. 

The Scheduler 

The scheduler is the function that stops the current 

task and starts the next task in line. It is treated as the 

lowest level interrupt in the system. The idea was to start 

a scheduling operation by setting a hardware bit which would 

cause an interrupt to occur. 
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Since this was to be a real-time operating system# 

scheduling can be done at almost any point in a task. Any 

interrupt can cause scheduling to occur# and any event that 

is advanced and signals a task will cause scheduling. This 

can be hazardous if the task is executing a critical portion 

of code. Therefore# four functions are used to prevent in­

terference during these periods. 

1. diseccalls - This function prevents any 
asynchronous calls caused by events. This 
is used to prevent a task from exiting 
prematurely. 

2. eneccalls - This enables asynchronous 
event calls. 

3. disint - This prevents interrupts from be­
ing acknowledged. This is used when crit­
ical data structures are being altered. 

4. enint - This enables interrupts. It will 
also execute any interrupts that occurred 
while disabled. 

If disint or diseccalls are called a number of times 

in a row then it takes that same number of enint or enec­

calls in a row to complete an enable of the interrupt. 

The reason disabling asynchronous event calls is 

necessary is that an event call can occur at any time and 

the task can be aborted by the event call. If the task is 

in a critical section of the system where memory is being 

used by the task which is not attached as a resource and an 

abort occurs then the memory will be lost to the system. In 

fact in some places certain structures will be destroyed and 
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the system could crash. Therefore event calls should not be 

allowed at these places. 

The normal place where event calls are needed is 

when an i/o function is being performed. At this point 

memory is being used to accomplish i/o requests and the task 

needs to be protected from prematurely exiting. 

The scheduler starts by saving all registers and any 

other machine-dependent information in the system structure 

for the current task. It then changes stacks to the inter­

rupt stack and calls the main portion of the scheduler. The 

main part of the scheduler is not machine dependent while 

the portion that saves the registers is. 

The scheduler now changes the current task to the 

next task ready to run, checks for any calls caused by 

events that should be pushed on the stack, and returns to 

the machine dependent portion of the scheduler. 

Now the machine state is restored from the system 

structure of the current task which also restores the pro­

gram counter for this task and immediately starts the task 

executing. 

For the emulation on the VAX some changes in the 

above sequence have to be made. The sequence works for pro­

cessors that can enter any subroutine with any program con­

trol instruction. However, the VAX requires some subrou­

tines to be called using a CALLS instruction to match the 
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return instruction of this subroutine. The problem is when 

a task starts it starts at the beginning of a subroutine and 

when a call caused by an event occurs it also starts at the 

beginning of a subroutine. Therefore, at these two points 

the scheduler must execute a CALLS instruction to jump to 

these subroutines so when the task returns from this routine 

it can return correctly. The scheduler only needs to re­

place the program counter with the correct value elsewhere. 

A solution is implemented as follows. When the 

scheduler is restoring the registers it checks to see if the 

task's stack pointer is pointing to a zero. If a zero is 

present then the scheduler restores all registers including 

the program counter. Otherwise, the scheduler performs a 

CALLS function on the value the stack pointer is pointing 

at. When the task returns from this the scheduler pops the 

stack and again checks for a zero. This is done until a 

zero is found. 

An important point about the scheduler is while 

scheduling is taking place the scheduler cannot be re­

entered. If a request for scheduling is done then the 

search for a runable task is restarted from the top of the 

priority chain. This ensures the highest priority task will 

be run first if an interrupt causes more than one task of 

differing priorities to become ready. 
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Exiting Task 

When a task does its final return it will return to 

Qtexit. This is the routine that will stop the task, deal­

locate all of its resources, and close all of its files. 

This ensures that no resources are lost when the task dies. 

When all this is done, Qtexit will reschedule. 



CHAPTER 3 

EVENT MANAGER 

In any multi-tasking operating system some form of 

synchronization must be implemented to prevent common areas 

of the system from being accessed by more than one task at 

the same time. 

It was decided synchronization would be performed 

with event counts rather than semaphores. The reasons for 

this are event counts are much more flexible than semaphores 

and they can be used in a wider range of applications. The 

main advantage of event counts over semaphores is accesses 

to a shared resource using event counts can easily be al­

lowed in the order in which the requests occurred. This is 

done using event count tickets which are advanced each time 

they are read. The sequence is that each request for access 

gets a ticket and waits on that value. Then as the event 

count is advanced the requests will be satisfied in the ord­

er in which the tickets were received. This is known as fair 

scheduling. 

It is much harder to implement fair scheduling with 

semaphores. Normally, all the requests that occur at the 

same time will wait for the semaphore to become available. 

17 
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The request that happens to check the semaphore at the time 

the semaphore becomes free will be the one that is allowed 

access. There is no way to cause requests to be satisfied 

in the order in which they occurred. 

Event counts can also honor several requests for the 

same event count at the same time while semaphores immedi­

ately become unavailable to any other requests. Also, sema­

phores require memory to be dynamicaly allocated for queues 

on who is requesting the use of the semaphore while event 

counts can be used without saving any information. 

The concept of subroutine calls caused by events is 

also used in this operating system. When an event count 

reaches a specified value then a subroutine is called the 

next time the task is scheduled. The implementation of this 

idea was a problem at first. 

Originally/ it was planned to have the routine that 

advances the event count to set up the task's stack to cause 

a call to the subroutine. The trouble with this plan is 

there are times when a task is in a critical section of code 

and should not be allowed to call a subroutine in this 

manner. Therefore, it was decided to let the scheduler han­

dle the problem. When an event count reaches the specified 

value then a call bead which holds the address of the sub­

routine to be called is attached to the task. When the task 

is next scheduled then the necessary information is placed 
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on the stack and the subroutine is called. This also lets 

the scheduler check to see if the task is in a critical sec­

tion of code. 

Subroutines called by event counts are very useful. 

It allows the users to set up asynchronous interrupts in the 

programs they write under control of the operating system. 

For instance/ a subroutine could be called every time a 

character is received by the serial device. An application 

of this idea is in the emulation of another operating system 

on top of this system. 

The organization of the event manager structures is 

shown in figure 3. The basic structures consist of the main 

event resource bead, the bead used for storage of the event 

count and ticket values, the wait bead which is attached to 

tasks waiting on an event, and the call bead which is at­

tached to the task structure for asynchronous subroutine 

calls. 

The event resource bead consists of the following 

elements. 

1. The status flags for this resource. 

2. The type of resource bead this is. 

3. The file descriptor of this resource. This 
is not used for events. 

4. The size of this resource. Not used here. 

5. Cross link to next event resource bead us­
ing same event count. This is part of a 



20 

prev event< | event | > next event 
| resource | 
| bead | 
| | > next resource bead for task 

V 

| event | 
j count and | 
j ticket | 

-x 

I back link to event count 

V I 

task < | wait | > next wait bead for task.  

| bead | 

I I 

V 
next wait bead for this event count 

Fig. 3. Structures for Event Manager. 
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doubly-linked list of structures used to 
link together event resources for other 
tasks which use the same event count. 

6. Cross link to previous event resource bead 
using same event count. 

7. Link to next resource bead. This is part 
of a singly-linked list of structures 
which link together the resources for a 
task. 

8. A pointer to a structure holding values of 
event count and ticket. 

The structure for the event count bead consists of 

the following elements. 

1. The value of the current count for this 
event. 

2. The value of the current ticket for this 
event. 

3. A pointer to one of the wait beads for 
this event. If the pointer is equal to 
zero then there are no tasks waiting on 
this event. 

The structure for the wait bead consists of the fol­

lowing elements. 

1. A pointer to the next wait bead for this 
task. This allows the task to wait on 
several events at the same time. 

2. A pointer to the task which is using this 
wait bead. 

3. A pointer to the next wait bead also using 
this event. This is used to check all wait 
beads for a specific event to see if any 
of wait beads have been satisfied. 

4. A back link to the event count structure 
for this event. Mainly used to help free 
up wait beads that have been satisfied. 
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5. The value this wait bead is waiting for 
the event count to reach. 

6. The address of a subroutine to call when 
this wait bead is satisfied. This is used 
by the function Qecall which allows a sub­
routine to be called when a wait bead is 
satisfied. If the value of the address is 
equal to 0 then this wait bead was set up 
by the function Qewait which causes a task 
to wait until the wait bead is satisfied. 

The structure for a call bead consists of the fol­

lowing elements. It is attached to the task's structure so 

when a task is re-scheduled and event count calls are en­

abled, the stack is set up so the subroutine is called 

first. 

1. A pointer to the next call bead. 

2. The address of the subroutine to call when 
the task is re-scheduled. 

The normal use of events in this operating system 

consists of the following sequence. 

1. An allocation of an event is first done 
using the routine Qealloc. This attaches 
the event to the task as a resource so it 
can be removed later; especially if the 
task exits without freeing the event. 

2. Now either the current value of the event 
count is read or the current ticket value 
is read depending on the use this event is 
being put to. If mutual exclusion is need­
ed, then the ticket should be read other­
wise the event count should be read. 

3. Now either a Qewait or a Qecall is done. 
The value waited on is either the ticket 
already read or the value of the event 
count plus some value the user wishes. 
Qewait will cause the task to wait for the 
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event count to reach the value specified. 
Qecall will set up the task for an asyn­
chronous interrupt. When the event count 
reaches the value specified/ the subrou­
tine will be called as an interrupt. 

4. When the task is finished with the event, 
a Qefree will deallocate the event freeing 
up the resource for another task. 

The system routines made available to the user con­

sist of the following functions. 

Qealloc - This routine allocates space and in­
itializes the structures for a new event. 
It attaches this new resource to the task 
requesting the resource. Qealloc returns 
the pointer to the event structure. 

Qefree - Qefree removes the event from the 
list of resources attached to this task. 
It is passed the pointer to the event 
structure. 

Qeread - This reads the current value of the 
event count. It is passed a pointer to an 
event structure. When an event is initial­
ized the event count is set to zero. 

Qeticket - Qeticket increments the ticket by 
one and returns the new value of the tick­
et. When an event is initialized the tick­
et is set to zero. 

Qeadvance - This is passed a pointer to an 
event. It advances the value of the event 
count by one and checks the wait beads as­
sociated with this event for any that are 
satisfied. If the wait bead is satisfied 
then two things can happen. If the bead 
was set up by a call to Qewait then all of 
this task's wait beads which were set up 
by Qewait are cleared out and the task is 
flagged as being ready to run. If the wait 
bead was set up by a call to Qecall then 
only this wait bead is cleared out and the 
task has a call bead attached to its task 
bead. When finished checking wait beads 



this routine causes a new task to be 
started by re-scheduling. 

Qewait - Qewait is passed a zero terminated 
list of arguments. Each set of arguments 
consists of a pointer to an event and the 
value the task should wait on for this 
event. The routine causes the task to be 
flagged as waiting. It also re-schedules. 

Qecall - This routine sets up an asynchronous 
call to a subroutine when the event is ad­
vanced to the correct value. It is passed 
the same arguments as Qewait with one ex­
ception. The first argument is the address 
of the subroutine to be called. 

There are two routines that allow an event to be al­

located but not attached to any task. This is for situations 

such as in device drivers which require use of events but do 

not necessarily want the events attached to a specific task. 

These routines are Qeopen/ which allocates space for the 

event and sets up everything except the attachment to the 

task, and Qeclose which frees up the event without removing 

the resource links. 



CHAPTER 4 

THE MEMORY MANAGER 

The memory manager is used to allocate and deallo­

cate areas of memory for use by the operating system and the 

user of the system. The manager used at this time was a 

hardware system that did not include a hardware based memory 

manager. The lack of this manager increased the complexity 

of allocating and deallocating memory. 

The free list of the memory manager consists of the 

following elements (Fig. 4). The basic structure is a 

doubly-linked list of blocks of memory. 

1. A pointer to the next free block of 
memory. 

2. A pointer to the previous free block of 
memory. 

3. The size of this free block. 

The memory manager is initialized by starting with a 

contiguous block of memory. For the emulation on the VAX, 

500,000 bytes were allocated from the VAX for use in the 

operating system. When the manager starts, there is only one 

free block which has the doubly-linked pointers pointing 

back to itself. As memory is deallocated and then reallocat­

ed the memory begins to fragment itself into several 

25 



1 r 

v I 

| next free block 

| previous free block | 

| size of this block | 

V 

| next free block | 

| previous free block |_ 

| size of this block | 

V 
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separate blocks of memory. If hardware memory management 

were used fragmentation would not occur since each block of 

memory can be given any address desired. In other words 

there would always be only one contiguous free block of 

memory which held all available memory. 

A basic concept used in this operating system was 

the idea of beads. These are small areas of memory which 

hold system information. For example/ the areas of memory 

which hold information on each task are memory beads. For 

the VAX emulation these beads were 32 bytes long. The idea 

was to attach beads of information to tasks as more informa­

tion was needed. 

There are several routines used for allocation and 

deallocation of memory. However, only two routines/ Qmmalloc 

and Qmmfree/ will be made available to the user. The reason 

for this is Qmmalloc and Qmmfree are the only routines that 

handle attaching and detaching memory to and from a task. 

The other routines are used by the system for allocating 

memory which should not be attached to any specific task. 

The routines used for the memory manager are listed 

below. 

Qmpalloc - The basic allocation routine used 
by all other allocation routines. This is 
passed the address of the size in bytes 
needed. The reason the address of the size 
is passed was that Qmpalloc may change the 
actual size of memory requested in two 
possible ways. If the size is less than a 
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specified size then the size is changed to 
that minimum size. If the allocation will 
cause a small chunk of memory to be left 
behind which is smaller than the minimum 
size then the whole block is allocated. 
Qmpalloc returns the address of the memory 
allocated, 

Qmpfree - This is the counter part for Qmpal­
loc. This routine deallocates memory and 
places the memory back on the free list. 
It is passed the address of the block of 
memory and the size of the memory. 

Qmballoc - This is the routine which allocates 
beads of memory. It has its own free list 
of free beads and allocates them as re­
quested. If there are no free beads left 
then more memory is allocated through 
Qmpalloc. Once memory has been allocated 
for use by Qmballoc it is never returned 
to the system. The routine is not passed 
any arguments since the size of a bead is 
a fixed value set by the memory manager 
when first compiled. 

Qmbfree - This places memory allocated for 
beads back on the free list of beads. It 
is passed the address of the bead to be 
deallocated. 

Qmalloc - This routine allocates a specified 
size in bytes of memory. It is passed the 
size desired. It then calls Qmpalloc with 
the size desired plus some space where the 
size may be placed. Qmalloc then places 
the size in the memory block and returns 
the address of the memory just past the 
area where the size was saved. 

Qmfree - This frees up the memory allocated by 
Qmalloc. It is passed the address of the 
memory to be deallocated and calls Qmpfree 
with the correct address and size taken 
from the memory block. 

Qmmalloc - This allocates memory for a task. 
It is the only allocation routine which 
the user should be allowed to use. It 



calls Qmalloc to get the memory and then 
sets up a resource bead with the informa­
tion about the block of memory and at­
taches the bead to the task. It is passed 
the size of memory in bytes to allocate. 

Qmmfree - This deallocates memory for a task. 
It is the only deallocation routine which 
the user should use. It calls Qmfree with 
the address of the memory to free and de­
taches the resource bead associated with 
this memory. It is passed the address of 
the memory to free. 



CHAPTER 5 

THE I/O MANAGER 

The i/o manager handles all devices in the system. 

It uses the idea of unified i/o. This causes all devices to 

be accessed through the same set of i/o routines. Devices 

are identified by a null terminated string of ascii charac­

ters. The device drivers implemented in this description 

are a serial device driver for keyboard input and display of 

information to and from a terminal, a disk driver for 

storage of information/ and a pipe driver for communicating 

between two tasks. 

The normal use of a device driver consists of first 

connecting the device header for the device to the system 

and then using the available functions for that device by 

calling the i/o manager routines with the name of the dev­

ice. 

This approach to i/o managers allows device drivers 

to be easily attached to a system. The disadvantage to the 

procedure is only a fixed number of routines can be set up 

for a device driver. Therefore, the i/o manager should have 

a variety of functions that can handle all the requirements 

of each device driver connected to the system. 

30 



31 

A block diagram of the i/o manager is shown in fig­

ure 5. The routines that are part of the i/o manager are 

listed below. 

Qiconnect - This routine connects a device 
header into the system. It is passed the 
address of the header. Each header con­
sists of a name for the device and a list 
of addresses of functions corresponding to 
each i/o manager function. It then calls 
the connect function for the device 
driver. 

Qidiscon - This routine disconnects a device 
driver from the system. It calls the 
disconnect function for the driver. It is 
passed the name of the device. 

Qiopen - Opens a device for reading or writ­
ing. It is passed the name of the device, 
the mode of the open, and the address of 
an array of two long integers where the 
file size and the block size of the device 
can be stored. It passes these parameters 
to the device driver's open routine and 
then attaches this open request to the 
current task as a resource. It returns a 
file descriptor this open can be identi­
fied by for reads, writes, and closes. 

Qiclose - Closes a device. It is passed the 
file descriptor of the corresponding open. 
It checks to see if this file descriptor 
was opened by the current task and contin­
ues if so. It then calls the close rou­
tine for the device driver and detaches 
the resource associated with this file 
descriptor from the current task. If the 
close routine for the device driver re­
turns a non-zero number then the resource 
is not detached from the current task. 

Qiread - This function reads a number of bytes 
from a device into a given buffer. It is 
passed the file descriptor for device 
desired, the beginning address of the 
buffer to read into, the number of bytes 
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to read from the device/ and a starting 
block number. These parameters are passed 
to the device driver's read function. 

Qiwrite - This is similar to Qiread except 
that this will write to a device given the 
number of bytes and the address of the 
buffer to write from. 

Qigetdev - This routine gets the parameters 
associated with the device desired. It is 
passed the name of the device to get the 
information from and the address of the 
buffer where the information should be 
placed. Each device will have its own or­
ganization for the information returned so 
the size of the buffer where the informa­
tion is to be stored will depend on the 
device called. It calls the associated 
function for the device driver. 

Qisetdev - This is similar to Qigetdev except 
the parameters of the device are set by 
this function rather than read. 

Qirename - This function renames a file from 
one name to another. It is passed a 
pointer to the device name, and a pointer 
to the new name for the device. It only 
calls the device driver's rename function. 
It won't rename the actual name of the 
device by which it was connected into the 
system. 

Qisvcl - This function will call all level 1 
interrupt service routines for all device 
drivers. It is not presently used. 

Qisvc2 - This function will call all level 2 
interrupt service routines, for all device 
drivers. It is not presently used. 

The device header structure consists of the follow­

ing elements. 

1. A nul terminated string which is the name 
of the device. Wild cards such as 
which matches a sequence of alphanumeric 
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Fig. 5. Block Diagram of I/O Manager. 
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characters/ and '?'» which matches any one 
alphanumeric character, may be used in the 
name. 

2. The address of the routine used for con­
necting this driver to the system. 

3. The address of the routine used for dis­
connecting this driver. 

4. The address of the routine used for open­
ing the device. 

5. The address of the routine used for clos­
ing the device. 

6. The address of the routine used for read­
ing the device. 

7. The address of the routine used for writ­
ing to the device. 

8. The address of the routine used to get the 
parameters of the device. 

9. The address of the routine used to set the 
parameters of the device. 

10. The address of the routine used to rename 
a file. 

11. The address of the routine used to handle 
level 1 interrupt services. 

12. The address of the routine used to handle 
level 2 interrupt services. 

The organization of the i/o manager allows all dev­

ices to be accessed in the same manner. This is what is 

called unified i/o and allows programs to treat all devices 

the same without having to know what kind of device is being 

accessed. This eases the implementation of redirection in 

command line interpreters. 
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A brief discussion of the serial i/o driver, the 

pipe driver and the disk driver follow. 

The Serial I/O Driver 

The serial i/o driver allows access to any serial 

devices on the system such as the terminal. It is accessed 

with the device name "#?" where any number can be substitut­

ed for the wild card character '?'. This allows for ten 

serial devices to be attached to the system. 

This driver is quite simple and does not provide for 

any command line interpretation of the data being input by 

the user on the terminal. It is left up to the user to pro­

vide that interpretation. A command line interpreter written 

by the user can easily handle this job. The only special 

characters recognized by the serial driver are listed below. 

1. An abort character. When the interrupt 
service routine for the serial driver sees 
this character; it advances an event to 
cause all tasks, which were forked without 
the no kill flag set, to be aborted. 

2. A stop output character. This character 
causes output to the serial device to be 
stopped until a start output character is 
seen. 

3. A start output character. This character 
resumes output to the serial device. 

These functions can be prevented by setting the dev­

ice parameters such that the character which would cause the 

specified activity is the ascii nul character. 
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The Pipe Driver 

The pipe driver is a buffer management scheme. A 

buffer is written to until it is full and then no more 

writes are allowed until a read has emptied the buffer. The 

pipe device is accessed with the name "j". A different pipe 

is opened each time the open is called with the pipe name. 

Once a pipe has been opened it has to be closed twice. If a 

pipe has been closed once then subsequent reads after the 

buffer has been emptied will return an end of file error. 

The procedure used here is that after a task has finished 

writing to a pipe it closes the pipe once. Then the task 

that reads the pipe will read until it receives an end of 

file error. It will then close the pipe the second time. 

This allows the task reading the pipe to know when there is 

no more data being sent by the task which was writing the 

pipe. 

The Disk Driver 

The disk device is a storage system. It is accessed 

with the name where is a wild card symbol which 

matches any sequence of alphanumeric characters. 

The disk was set up to implement a file system. It 

is a hierarchical directory system similar to UNIX's direc­

tories with every directory having a link to itself and a 

back link to the previous directory. Also implemented is the 


