
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of "sectioning" the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

University
Micrririlms

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

1326693

Cai, Wenlong

ZERO-ONE PROGRAMMING ANALYSIS OF MINE PRODUCTION
SCHEDULING PROBLEMS

The University of Arizona M.S.

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

ZERO-ONE PROGRAMMING ANALYSIS OF MINE

PRODUCTION SCHEDULING PROBLEMS

by

rfenlong Cai

A Thesis Submitted to the Faculty of the

DEPARTMENT OF MINING AND GEOLOGICAL ENGINEERING

in Partial Fulfillment of the Requirements
For tne Degree of

MASTER OF SCIENCE
WITH A MAJOR IN MINING ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

19 8 5

STATEMENT B'f AUTHOR

Tnis thesis has been submitted in partial fulfillment of
requirements for an advanced degree at the University of Arizona and is
deposited in the University Library to oe made available to borrowers
under rules of the Library.

Brief quotations from this thesis are allowable without
special permission, provided that accurate acknowledgment of source is
made. Requests for permission for extended quotation from or
reproduction of this manuscript in whole or in part may be granted by
the nead of the major department or the Dean of the Graduate College
when in his or her judgiiient the proposed use of the material is in the
interest of scholarship. In all other instances, however, permission
must be obtained from the author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

C 2/. /9tr
// Y. C. KIM Date

Professor, Department of
Mining & Geological Engineering

ACKNOWLEDGMENT

The autnor would like to thank his advisor: Dr. Y. C. Kim for

his great neip in ootn tnesis organization and English corrections.

Without his patient and sound advice, this thesis would be impossiole.

The author would also like to thank Dr. Roy E. Marsten,

professor of Management Information Systems and Dr. Satya Harpalani,

assistant professor of Mining Engineering for oeing the author's

committee member.

Finally, many tnanks to Mintec Inc., a mining engineering

consulting company in Tucson, Arizona, for providing data in this study.

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS iii
LIST OF FIGURES vi
LIST OF TABLES viii

ABSTRACT ix

I. INTRODUCTION 1

1.1 General Introduction 1
1.2 Problem Statement 2
1.3 Scope of Study and Solution Technique 6

II. ZERO-ONE PROGRAMING AND SR CONSTRAINT
MODEL PRESENTATION 7

II. 1 Zero-one Programming 7
11.2 Solution Techniques for 0-1 Programming

Problems 9
11.3 Remarks on Balas' Implicit

Enumeration Algorithm 14
11.4 Customary Precedence Constraint

Formulation 15
11.5 Development of a Formulation If
11.6 Proof of the New Formulation 20
11.7 Generalization of Standard 0-1

Programming Formulation 24

III. FORMULATION OF THE GRIGG RIVER
MINE PROBLEM 27

III. 1 Analysis of Problem 27
111.2 Problem Formulation Stage - One 32
111.3 Problem Formulation Stage - Two 38
111.4 Problem Formulation for the 1st Period

- Sanple Layout 41
111.5 Assumptions on tne Study of the Grigg

River Mine Problem 49

IV. SOLUTION OF PROBLEM AND ANALYSIS OF RESULTS 51

IV.1 Modification of an Available Fortran Code
51

i v

V

TABLE OF CONTENTS--Continued

IV.2 Using a Test Model 55
IV.3 General Solution Report 58
IV.4 Discussion of Solution Process 63
IV.5 Analysis of Hesults 64

V. CONCLUSION 67

V.1 Experiences of This Study 67
V.2 Unsolved Problans and Recommendations

for r uture Research 71

APPENDIX A: Predicted Coal & Waste Information 72
APPENDIX B: Definition of FORTRAN Variables and

Input Data Format 81
APPENDIX C: Input Data for Period 1 - 5 85
APPENDIX D: Solution Report for Period 2-5 89
APPENDIX E: Computer Time Comparison Between

Customary Precedent Constraint
and the New Formulation 100

REFERENCES 103

LIST OF FIGURES

Figure Page

2-1. Solution Network for 4 Variable
0-1 Problems 14

3-1. Predicted Coal & Waste Data for Pit
JK and AB 31

3-2. 4 Pit Lines According to the
Preferred Pit Mining Sequence 32

3-3. Problem Formulation for the
1st Period 47

3-4. Standardized Problem Formulation
for the 1st Period 51

4-1. Input Data for the 1st Period 60

4-2. Typical Output for a Feasible
Solution 61

4-3. Computer Output for the 1st Period 63

5-1. Alternative Solution Approach
for the 1st Period 73

A-1. Predicted Coal & Waste Data for
Pit CD and P31 79

A-2. Predicted Coal 4 Waste Data for
Pit LM1 and PQ2 80

A—3• Predicted Coal 4 Waste Data for
Pit LM2 and PQ3 81

A-4. Predicted Coal & Waste Data for
Pit KK and JMW 82

A-5. Predicted Coal & Waste Data for
Pit HI3 and JME 83

A-6. Predicted Coal & Waste Data for
Pit CD2 and HIW 84

vi

vj i

LIST OF FIGURES—Continued

Figure Page

A-7. Predicted Coal & Waste Data for
Pit HI4 and CD3 : 85

A-8. Predicted Coal 4 Waste Data for
Pit HIE and NO 86

C-1. Input Data for the 1st &
2nd Period Run 92

C-2. Input Data for the 3rd &
4th Period Run 93

C-3. Input Data for the 5tn Period Run 94

LIST OF TABLES

Table Page

1-1. Production Target During
Each Period 5

1-2. Preferred Pit Mining
Sequence 5

3-1. Decision Variable Assignment
for the 1st Period 44

4-1. Solution Report for Period 1 61

3-1. Definition of FORTRAN Variables and
Input Data Format 82

D-1. Solution Report for Period 2 90

D-2. Solution Report for Period 3 92

D-3. Solution Report for Period 4 94

D-4. Solution Report for Period 5 97

£-1. Summary of the computer time
comparison between customary
precedence constraint and the
new formulation 102

vi i i

ABSTRACT

During the study of Grigg River Mine long term mine production

scheduling problem, it is realized that there are large amount of

sequential requirements (SR) or precedence requirements (PR) among

benches in a pit. An alternative Zero-One linear integer programming

(0-1 programming) PR formulation is developed to handle the SR more

efficiently.

The development of the new approach is based on special

feature of the 0-1 programming and search technique, specifically,

Balas' implicit enumeration method.

The Grigg River Mine long term mine production scheduling is

formulated and solved by applying the new 0-1 programming SR

formulation.

The computer execution time comparison between the new SR

formulation and the customary SR formulation is performed. The results

show that enormous computer time can be saved by applying the new SR

approach.

Experiences of this study are also discussed.

ix

CHAPTER I

INTRODUCTION

1.1 General Introduction

Today's modern mining industry is characterized by automation,

mechanization in production operation and computerization in management

and planning. Large scale is an important feature of today's mining

industry. It is not uncommon for an open pit mine to excavate several

hundred thousand tons of ore and waste daily. For example, the Bingham

Canyon Mine of Kennecott Copper, a major open pit mine in Utah,

excavates 300,000 tpd of ore and waste (Given, 1973)-

To handle the problems and questions arising from daily mining

activities which could be unpredictably complex, some kind of scientific

decision-making techniques must be adopted. Operation Research is such

a scientific decision-making technique which can be readily adopted.

Operation Research, often abbreviated as OR, may not be quite

unfamiliar to everyone. " With the aid of the electronic computer,

Operation Research has had an increasingly great impact on business and

industrial activities in recent years. In fact, with the exception of

the advent of the electronic computer, the extent of this impact seems

to be unrivaled by that of any other recent developments" (Hillier,

Lieberman, 1980).

This thesis is a study and application of one of the OR

1

2

techniques, specifically a study of how zero-one programming can be

applied to solve mine production scheduling problems.

Needless to say that there are many algorithms and computer

programs available for OR applications today. However, practical

problems often require more than straight application of existing

algorithms and computer codings for their solutions. In fact, this

study is devoted to the means by whicn the practical approach should be

adopted to apply available zero-one programing algorithm to an actual

production scneduling proDlem.

1.2 Problem Statement

Today's mining operations are still generally classified into

two main categories, i.e., underground or open pit operations. Although

these two kinds of mining operations may differ from each other in

actual management and production implementation, botn need production

scheduling before actual production operation starts.

"Production scheduling is a timed plan for production whi ;h

can be either short-range or long-range, depending on the time-interval

and factors selected" (Mahvla, Venkataramani, 1973).

Since production scheduling is the actual layout and

implementation of long-range or short-range mine plan, production

scheduling is undoutedly the foundation of mine planning. The absence

of a feasible production schedule would bring chaos to the mining

operation while an absence of an optimal production scheduling plan

would incur the opportunity cost. For various reasons, production

3

scheduling is a more demanding task to achieve. However, compared to

the current computer usage in long-range and short-range mine planning,

very little computer usage is being made in production scheduling to

date, although many production scheduling problems have been begging for

solutions during the past decade (Kim, 1979).

Among the production scheduling problems begging for

solutions, the one which has physical sequential constraints will be the

main concern of this thesis.

In mine production scheduling, one must not forget an

important aspect of mine reserves. This is the fact that the mine

reserves are strictly predefined by nature. The shape, the grade and

their locations are all predefined by nature. What we can do before

mining operation starts is to gain the knowledge about the reserve. The

best scenario of mine plan can be worked out based only on the full

understanding of the reserves.

Physical sequential requirement is a kind of problem which is

brought to us by nature. This problem ha3 been one of the more

difficult ones in production scheduling. The production scheduling

involves determining among vast alternative mining sections, which

section should be mined in what sequence in order to satisfy certain

objectives. An example of physical sequential requirement is that, in

an open pit mine, one cannot mine the 5th bench without removing the

1st, 2nd, 3rd and 4th benches which cover the 5th bench. Similar

situations can be found in an underground mine. A "typical" mine

production scheduling problem of this type includes so called 'quality

4

control' problems such as coal blending, grades balancing and so forth.

Throughout the discussions of this thesis, we shall refer PSR to

physical sequential requirements and SR to sequential requirements.

Since there seems to be no systematic approach to optimal mine

production scheduling under a large amount of physical sequential

constraints to date, the main thrust of this study is to present an

alternative 0-1 programming approach to solve the production scheduling

problem under a large amount of PSR. The study will be based on the

problem of the Grigg River Mine in Canada.

The Grigg River Mine problem which has been simplified can be

stated as follows:

Based on the company's long term mine plan, there will be 18

potential open pits during various periods in the Grigg River Mine.

Since the coal quality parameters do not vary too much, only the

production target to achieve a certain amount of coal tonnage and waste

BCM during each scheduling period is the primary consideration of the

mine plan.

The management wishes to achieve a coal and waste target

listed in table 1-1 and also to follow, if possible, approximately a pit

mining sequence specified in table 1-2. The detailed coal tonnage and

waste BCM figures for each bench and each pit are given in appendix A.

TABLE 1-1. PRODUCTION TARGET DURING EACH PERIOD

Period Working Coal Tonnage Waste tonnage Duration

No. Pits (tons) (BCMs) (hours)

1 3 2,784,000 9,000,000 8,100

2 3 2,934,000 13,000,000 8,100

3 2 2,93̂ ,000 16,500,000 8,100

4 5 2,934,000 14,500,000 8,100

5 5 2,934,000 15,900,000 8,100

TABLE 1-2. PREFERRED PIT MINING SEQUENCE

Sequence No. Pit Name Sequence No. Pit Name

1 CD 10 JME

2 PQ1 11 CD2

3 LM1 12 HIW

4 PQ2 13 HI4

5 LM2 14 CD3

6 PQ3 15 HIE

7 KK FREE AB

8 JMW FREE NO

9 HI3 FREE JK

6

1.3 Scope of Study and Solution Technique

The task for this study is to arrive at a proper schedule

which tells where and how many benches should be mined during each

period to fulfill the management requirement.

The following reasons favor the use of zero-one programming

for the mine production scheduling problem under study:

a. We are selecting some elements from a large population

which has a vast number of elanents to choose from, i.e., we are to

answer yes or no questions to each element.

b. Given the exception of SR, the decisions with regards to

the objective value are independent, i.e., the effects of a decision to

choose one specific mining section on the objective function value will

have nothing to do with the decision to choose other sections in the

future.

c. Zero-one programming is a proven technique; i.e., many

production planning problems in various fields have been formulated and

solved.

d. Some computer codes for solving general zero-one

programming problens are available on hands.

An exposition of the mechanics of zero-one programming will be

discussed in the subsequent chapter.

CHAPTER II

ZERO-ONE PROGRAMMING AND SR

CONSTRAINT MODEL PRESENTATION

II.1 Zero-One Progranming

We all frequently face decisions where only two choices are

available, yes or no. For exanple, should we mine this block? Should

we locate this facility at this particular site? What are the effects

of these decisions toward our objective value?

With just two choices, these kinds of decisions can be

represented by decision variables that are restricted to just two

values, i.e., zero or one and these types of problems are often solved

by zero-one integer linear programming technique.

Zero-one integer linear programming is a special case of

integer linear progranming when the decision variables of the latter can

only achieve two possible values, i.e., zero and one. Mathematically,

the standard general zero-one integer linear programming problem can be

stated in the following form:

n

Minimize

Subject to: (2.1)

7

8

cj > 0

Xj = 0,1 j = 1,2, ..., n

Pi > 0

1 < i < m

Where Cj's are the coefficients in the objective function,

Xj's are the decision variables of the problem, and p̂ s are the right-

hand side elements. The â 's are the coefficients of all the linear

inequalities. A feasible solution is a vector X = (x1tx2,...,xn) which

satisfies (2.1); here xi , x2 ,..., xn will be either zero or one. An

optimum solution is the feasible solution which minimizes the objective

function.

To solve (2.1), we usually rearrange it into the following

form:

Minimize Z ojxj
j=l n

Subject to: -p̂ ̂+ I aij*j > ° (2-2)

Cj > 0

Xj =0,1 j = 1,2,3, ... n

Pi > 0

1 < i < m

9

II.2 Solution Techniques for 0-1 Programming Problems

All the solution techniques for the integer programing

problems are applicable to the 0-1 programming problems by adding the

constraint that all variables must be less than or equal to 1.

The solution techniques for solving 0-1 programming problems

can be classified into two categories; i.e., (1) cutting plane method

and (2) searcii methods. The two most commonly used search methods are

"branch and bound" and "implicit enumeration". This study will rely on

the implicit enumeration technique to obtain the solution. The principle

of these techniques are briefly discussed next.

Cutting Plane Method:

In this method, Gomory's method is the most widely accepted

one. The cutting plane method starts by relaxing the integer

requirement for all variables and solving the resulting linear

prograaming problem. The method is then modified by adding constraints

until its continuous optimum extreme point satisfies the integer

conditions. If X is an optimum solution of the resulting linear

programming problem without the integer constraints, a cutting plane is

defined as a hyperplane that separates X from the set of integer

feasible solutions, with X on one side of it and the integer feasible

solution of the problem on it or on the other side of it. The cutting

plane method proceeds as follows:

(i) Solve the current problem via simplex technique after relaxing

the integer requirement. If the current problem is infeasible, the

10

original integer problem is also infeasible. If the optimun solution

satisfies the integer requirement, the solution is the optimum solution

to original integer problem, therefore stop, otherwise go to next step.

(ii) Use a cut generation method to obtain a cutting plane. Add

the cutting plane to the constraints of the current problem and go to

(i) above.

The optimum solution of the integer programming problem, if

there is one, is achieved by repeating the above two steps.

Cutting algorithms are well described by Gomory (I960), Glover

(1965), and Balas (1971).

Branch and Bound Method:

The basic idea of the branch-and-bound technique is as

follows. Suppose that the objective function is to be minimized.

Assume that an upper bound on the optimal value of the objective

function is available. (This usually is the value of the objective

function for the best feasible solution identified thus far.) The first

step is to partition the set of all feasible solutions into several

subsets. For each subset, a lower bound is obtained for the value of

the objective function of the solution within that subset. Those

subsets whose lower bounds exceed the current upper bound on the

objective function value are then excluded from further consideration.

One of the remaining subsets, say, the one with the smallest lower

bound, is then partitioned further into several subsets. Their lower

bounds are obtained in turn and used as before to exclude some of these

11

subsets from further consideration. From all the remaining subsets,

another one is selected for further partitioning and so on. This

process is repeated again and again until it is certain that no feasible

solution exists or a feasible solution is found such that the

corresponding value of the objective function is no greater than the

lower bound for any subset. Such a feasible solution must be optimal

since none of the subsets can contain a better solution.

If the objective function is to be maximized, the approach

will be the same except that the subset with the largest higher bound

will be further considered.

The branch-and-bound algorithm is discussed by Lawler & tfood

(1966), Mitten (1970) and McMillan,Jr. (1975).

Implicit Enumeration Method :

Implicit enumeration method is also known as Balas' additive

implicit enumeration algorithm. The principle employed in implicit

enumeration method is the following. For a n-variable 0,1 programming

problem, there will be 2n possible solutions, most of which may be

infeasible. By employing a certain strategy for selecting a few

solutions to be enumerated explicitly, most of the 2n solutions could be

enumerated implicitly. The computations could thus be reduced

enormously.

The implicit enumeration method is essentially a tree search

algorithm that uses information generated in the search to exclude

portions of the tree for further considerations. An optimal solution,

12

if the solution exists, is obtained by following some branches of the

tree rather than the whole tree. A solution network for a 4 variable 0-

1 programming problem is shown in figure 2-1.

1,2,3,4

FIGURE 2-1. SOLUTION NETWORK FOR 4 VARIABLE

0-1 PROBLEMS

In figure 2-1, each node denotes a solution and each node in

the solution network, except the one which has all the variables raised

to 1 already, can be viewed as an origin node and considered to be a

13

partial solution. All the descendant nodes derived from the origin node

are considered to be the completions of the origin node or the

completions of the partial solution.

The implicit enumeration method proceeds as follows.

Starting with node 0, meaning no variable has been raised to 1

yet, the implicit enumeration method checks at the origin nodes to see

if the descendant nodes can be reached, i.e., if the completions of

these partial solutions are feasible. Sets of descending solutions are

ignored, as the enumeration proceeds, when,

(1) "Completions" of partial solutions are found to be

infeasible, or

(2) "Completions" of partial solutions are found to be less

attractive due to a feasible solution being found.

This is accomplished by backtracking with some provisions to avoid

duplicating the previously examined branches and provisions to exclude

all the descendant branches from further consideration.

When the enumeration process can not go any further, the

solution enumeration process is finished and all the 2n solutions have

been enumerated either explicitly or implicitly.

The last feasible solution enumerated is always the optimum solution for

(2.1) since each successive feasible solution sets a new lower bound for

the objective function value during the solution process.

The implicit enumeration algorithms is discussed by Balas

(1965), Plane & McMillan,Jr. (1971) and McMillan,Jr. (1975).

14

II.3 Remarks on Balas' Implicit Enumeration Algorithm

The following are the theoretical foundations of Balas'

additive algorithm:

(1) An objective function is to be minimized while subject to

the constraints that; 1) algebraic sums of all left side items in eacin

constraint must be non-negative, 2) all decision variables can only

achieve either 0 or 1.

(2) Tne lesser the decision variables involved in a solution

are raised to 1, the better the objective value will be. Hence, tne

algorithm starts the enumeration process with all Xj's set to 0 and

raises to 1 only those decision variables which are absolutely necessary

to meet the constraint requirements.

(3) Only those variables having positive coefficients in a

constraint could be helpful to make the algebraic sum of all left hand

items of that constraint become non-negative. Thus, the coefficient sum

of one variaole may reflect the "helpfulness" to bring about

feasibility. This is one way to determine which variable will be

introduced into a partial solution.

(4) The last enumerated feasible solution sets up a new upper

bound for objective function coefficients. This guarantees that the

objective value is always being improved and that the last feasiole

solution fathomed is optimal.

(5) For a n-variable 0-1 linear integer programing problem,

there are a total of 2n possible solutions. No matter how large the

number of possible solutions could be, the number is finite. Therefore,

15

the solution enumeration process of Balas' additive algorithm would come

to an end after a finite number of iterations. Since most of tne

solutions will be enumerated implicitly and only very small portion of

the solutions will be enumerated explicitly, the solution enumeration

process should terminate after a reasonable number of iterations. It

should be noted here, however, that this 'reasonable number' still could

be too large to be cost-effective if there are too many variables

involved.

(6) The solution enumeration process is a process of

examination, meaning that when the process is finished, all the

solutions (not necessarily feasible) have been examined either

explicitly or implicitly. This, naturally, does not guarantee a

feasible solution for sure. When Balas' additive algorithm is applied

to solve a zero-one programming problan and no feasible solution is

found at the end of the enumeration process, then there is no feasible

solution from the problem itself rather than from the algorithm!

II.4 Customary Precedent Constraint Formulation

As we shall see later in chapter III, to provide a solution to

the Grigg River Mine problem stated in chapter I, we must face a large

amount of SR among benches from the same pits due to the definition of

one bench as one decision variable.

To accomplish the coal tonnage and waste BCM requirements, we

are to determine, for each period, wnich bench from which pit ought to

be mined. If the benches of 3 pits are to be considered in one period

16

and each pit has 15 benches on average, we would have 3 x 15; i.e., 45

SR to consider.

In 0-1 programming, the SK, or precedent constraints, are

customarily formulated in this way (Plane, McMillan,Jr, 1971) :

If xi must precede Xj, then xj. For example, if x1 must

precede x̂ , we set x-j > Xjj. One SR will basically need one constraint

inequality.

For 45 SR, 45 inequalities would be needed. Hie more SR is

involved, the more SR constraints will be needed. Five aspects have

stimulated a search for a more efficient SR formulation with an attempt

to reduce the number of SR constraints and the computer execution time.

These five aspects are listed as follows:

1) During a solution process, a solution must be examined by

every problem constraint at a given iteration.

2) The time spent on a constraint computation has little to do

with the number of variables in that constraint, i.e., the time spent on

the SR constraints is almost the same as the time spent on the basic

problem constraint.

3) The more constraints are involved in a problem formulation,

the more time is needed to examine them at a given iteration.

4) The more iterations are involved to solve a problem, the

more time will be spent on the SR constraints.

5) The computer execution time for the 0-1 programming problem

is too long to be cost-effective when the number of decision variables

is large (above 40 - 50).

17

It has been found that it is possible to reduce the number of

SR constraints and the computer execution time enormously when the SR

among the 0-1 decision variables possess a special feature (See Appendix

E). This special feature is that the SR can be grouped into several SR

sets and the number of SR sets is much smaller than the total number of

SR. Also, each SR set should consist of successive decision variables

linked together like a chain. For example, X|>X2>X3 is one SR set of

which the variables are linked together like a chain, x̂ x̂ xy forms

another set (chain). But, these two chains cannot be linked together as

one chain because x̂ is missing. Therefore, they must be viewed as two

SR sets.

The SR involved in the Grigg River Mine problem possesses this

special feature because tne benches from one pit form one SR chain and

the number of pits is much less than the number of benches.

SR constraint formulation involving such a special feature is

developed next.

II.5 Development of a Formulation

In dealing with a 0-1 programming problem, suppose there are n

decision variables labeled x-),x2,x2,...,xn with a priority sequence from

the highest to the lowest. If x1 has the highest priority and xn the

lowest, a feasible solution (in terms of completed partial solutions)

would be x.j,X2,X2»...Xq, where 1 < q < n.

Based on the fact that the decision variables in a 0-1

programming problem can achieve only values of either 0 or 1 and based

18

on the implicit enumeration principle, a SR constraint formulation can

be developed this way:

First, for one set of SR, a discrete function B(q) is defined

as given by equation (2.3)*

q

j = l

where n = total number of decision variables in a 0-1 problem;

q = maximum subscript value of decision variables in

completions of a partial solution at a given

iteration;

aj = convenient constant values assigned by user at

problem formulation stage; and

aj > 0 for Xj's subject to SR,

aj = 0 otherwise.

Next, we define another discrete function S(q) as given in

equation (2.4) below.

q

where in (2.4), except Xj, all elements have been defined as

in (2.3). Xj's are decision variables of the 0-1 problem under study.

Finally, we combine (2.3) with (2.4) and get (2.5):

for 1 £ q < n (2.3)

 ̂ajXj = S(q) for 1 _< q < n (2.4)

j=l

q q

for 1 < q < n (2.5)

j=l j=l

19

To apply (2.5) as single SR constraint set, one assumption is

necessary. This assumption is that one knows in advance which decision

variables are subject to SR and which are not.

The assumption tells which specific aj should be assigned zero

and which specific aj should be assigned a convenient positive, non-zero

value. Since we have already known that q < n, the assumption will help

us to quantify B(q) and aj's in the above equations.

It should oe noted here that since q is defined as the maximum

subscript value of decision variables in the current solution under

examination, q will vary according to the maximum subscript values of

solutions at different iterations during the solution enumeration

process. It should also be noted that the equation (2.5) assumes a

priority sequence from the highest to the lowest for Xj's when j

achieves a sequence values of 1,2,3, ..., n.

During the solution enumeration process, suppose we are in kth

iteration. Every element in (2.5) is known. The value of q will

determine how many aj's are involved. Since we have assigned zero

values to aj's of those variables which are not subjected to SR, (2.5)

has no effect on the xj's which are not subject to SR. Also, since

equation (2.5) can be satisfied only when all xj's are 1's corresponding

to all aj's > 0 and since this implies that specified SR is being met,

(2.5) can effectively serve as single composite SR constraint for a SR

chain.

Often, there exists more than one set of SR chains among

decision variables of zero-one progranming problems, as is the case with

20

our problem. The benches from one pit constitutes one SR chain. We can

handle the situation by letting one constraint equation to represent

each set of the SR chain, following the same rule as we did for (2.5).

Therefore, if q represents the maximum subscript value of Xj's of a

solution under examination at a given iteration, we develop the k-th set

of SR constraint formulation as follows:

q q

]T akjxj = akj (2-6)

j=l J=1

1 < q < n

1 < k < s

where in (2.6),

n = total number of decision variables of 0-1 problem;

q = the maximum subscript value of decision variables in a

solution under examination;

k = subscript for a given SR chain;

â j = convenient constant values assigned oy user at problem

formulation stage for the k-th set of SR chain; and

> 0 for xj*s subject to SR;

akj = 0 otherwise.

Now, we have generalized (2.5) to (2.6), namely, from taking

care of only one set of SR to multi-set of SR.

II.6 Proof of the New Formulation

There are five aspects that require proof in equation (2.5)

21

and (2.6). Since (2.6) is derived from (2.5), the proof of equation

(2.5) will be sufficient for both of the equations. The first is that

one q value corresponds to one unique SR only. The second is that the

value of q which represents the maximun subscript value of Xj's in a

partial solution under examination is completely traceable during

solution enumeration process. The third is that combining (2.5) with

the customary zero-one programming formulation (2.1) will not result in

the solution enumeration process to become divergent. The fourth is

that the equality in equation (2.5) can be relaxed to greater than or

equal type. And finally, the fifth is that a substitution of xj with (1

- yj) will only affect (2.5) when q is greater than or equal to j.

Proof of the first aspect :

From the definition of discrete function B(q), we know that

the coefficients of the aj's are all non-negative constants. Therefore,

B(q) is an increasing function; i.e., for any q2 2.̂ 11 B(q2) >. B(q1).

Since the q's and aq's correspond to x̂ 's on a one to one basis, a

change in the maximum subscript value will change the pattern of aq's

and the value of q as well. A change in the value of q will result in a

change in the value of B(q). Therefore, corresponding to a unique value

of q, there exists a unique value of B(q) so that we get a unique

pattern of Xq's (q = 1,2, ... , n) through (2.5).

Proof of the second aspect :

To introduce (2.5) into the zero-one programming formulation,

we must trace the value of q at each iteration of solution enumeration

process of Balas' implicit enumeration algorithm so that we can

22

calculate the value of B(q) at each step as a right hand side value.

Fortunately, if we recall the solution enumeration process of Balas'

implicit enumeration algorithm, the maximum subscript value of xq in a

partial solution is always known to us at a given iteration. Therefore,

the value of q is traceable and B(q) can be calculated at each step of

the solution enumeration process. This is important because this means

that (2.5) can be treated the same way as the usual zero-one programming

constraints.

Proof of the third aspect :

Since the value of B(q) keeps changing at each step of the

solution enumeration process, one may question if the solution

enumeration process will ever end. The answer is yes. From (2.5), the

possible values of B(q) are merely the sura of all possible combinations

among the left hand side coefficients to insure that all feasible

solutions will satisfy the SR. Also, one value of B(q) correponds to a

unique pattern of the x̂ 's. Since Balas' additive algorithm is

essentially a solution enumeration process for all possible 2n solutions

and since the solutions which can satisfy constraint (2.5) are all

within the possible solution list, the solutions which satisfy equation

(2.5) should all be enumerated during the solution enumeration process.

In Balas' implicit enumeration algorithm, a constraint only

serves to determine whether or not a solution is feasible. If, during

enumeration process, any one of constraints is violated, the current

partial solution is nevertheless enumerated. A new partial solution is

next formed and the enumeration process continues. Once all possible

23

solutions are enumerated explicitly or implicitly, the enumeration

process is terminated. If we do not obtain any feasible solutions at

the end of the solution enumeration, this fact only means that the

problem under study has no feasible solution. Therefore, the

incorporation of (2.5) into the general zero-one programming formulation

will not cause the enumeration process to diverge.

Proof of the fourth aspect:

The equality constraint of equation (2.5) can be relaxed to

greater than or equal type and the greater than or equal constraint has

the sane effect as the equality of (2.5) in meeting the Srt. To prove

this, we need only to prove that the left hand side sum value will never

become greater than the RHS value in (2.5). Since Xj's can only achieve

values of either 0 or 1 and all other elements in (2.5) are identical on

a one to one basis, the left hand side value will always be less than or

equal to the RHS value in (2.5). Therefore, the equal type constraint

in (2.5) is identical to the greater than or equal type constraint in

terms of specifying the SR constraint. Since we need to formulate one

equality constraint into two inequality constraints in standard 0-1

problem formulation, the above proof serves to eliminate the other half

constraints and shows that the remaining half SR constraints are still

sufficient for our purposes.

Proof of the fifth aspect:

A substitution of Xj with (1 - yj) will only affect the B(q)'s

when q is greater than or equal to j. To view this more clearly, we

extend equation (2.5) as follows:

24

q=1: a -j x i = a-|

q=2: a-|X1 + a2x2 ~ a1 + a2

q=3: a-|Xi + a2X̂ + â x̂ = + a2 + â

• • • • • •

q=n: â i + a2x2 + ••• anxn = a1 + a2 + ••• + an

From above, we can see that there is one relationship which

holds to be true for every j on the right hand side, i.e., B(j) = B(j-1)

+ aj. There is a similar relationship for the left hand side of the

equation. It can be seen that a substitution of x̂ with (1 - ŷ) will

affect all but the first two of the above equations since there is no x̂

in the first two equations. It is not difficult to reason that there is

a sirailiar general rule for all substitutions on the Xj's, i.e., a

substitution of Xj with (1 - yj) will only affect the B(q)'s when q is

greater than or equal to j. This proof prevents us from simply

suostracting aj's value from all the right hand side elements when we

make the substitution.

tfith the discussions so far, we are ready to combine (2.o)

with the customary zero-one programming formulation defined by (2.1) to

get a generalized zero-one programming formulation.

II.7 Generalization of Standard Zero-One Progranroing Formulation

By combining the customary zero-one programming formulation of

(2.1) with the formulation of (2.6) developed specifically for sets of

25

SR chains, we get a generalized zero-one programming formulation that

can accommodate sets of SR chains among decision variables:

n

Minimize:) ĉ x.
J

Subject to: j=l n
- I -

: j=l n

q U ,

a k j (2 . 7)

1 < q < n

xj = 0,1

Pi > 0

1 < i < m

1 < k < s

where :

n = total number of decision variables in problem formulation;

m = number of basic problem constraints excluding SR;

s = total number of SR constraint sets;

q = the maximum subscript value of decision variables in a

solution under examination.

Cj = non-negative coefficient of objective function;

Pi = customary RHS value for the basic problem formulation;

ajj = coefficient of basic problem constraint;

26

akj = coefficient whose value are assigned by user at

problem formulation stage; and

akj > 0 for decision variables subject to SR;

akj = 0 otherwise.

In the above generalized formulation of zero-one programming,

the objective function and the first m constraint inequalities are the

customary zero-one programming formulation. Only those s constraints

are added for SR. If there is no SR at all in a 0-1 problem, the

additional constraints specifically for SR will be automatically dropped

from the problem formulation, thereby, reducing (2.7) to the customary

zero-one programming formulation.

CHAPTER III

FORMULATION Of THE GRIGG RIVER MINE PROBLEM

III.1 Analysis of the Problem

The Grigg River Mine problem has three requirements. These

are: 1) to obtain a certain amount of coal tonnage and waste BCM

during each planning period; 2) to follow approximately certain pit

mining sequence; and 3) to control the total number of pits working

during each planning period. For illustration purposes, the coal

tonnage and waste BCM information for pits JK and AB are snown in figure

3-1, where the coal tonnage and waste BCM information are given by

benches. Tnerefore, the s-nallest mining section for planning purposes

is one bench.

To accomplish the coal tonnage and waste BCM requirements for

a period, we need to select benches from each pit under consideration

and to calculate the comoined coal tonnage and waste BCM from the

benches selected.

The pit mining sequence and the number of pits working can be

met by suDjective judgement since no clear cut objective exists. Tne pit

raining sequence specified in table 1-2 (Page 5) actually sorts all the

18 pits into 4 pit lines, with sequence free pits NO,JK and AB in 3

separate lines and the rest of the sequence subjected 15 pits in one

line (See Figure 3-2). The simplest way of meeting the pit mining

27

28

COAL & WASTE INFORMATION FOR PIT JK

BENCH COAL WASTE CUMMULATIVE CUMMULATIVE RATIO OF
NO. (TON) (BCM) COAL (TON) WASTE (BCM) W/C

1 138 9287 138 9287 67.297
2 25838 179744 25976 • 189031 7.277
3 103916 270521 129892 459552 3.538
4 108723 288936 238615 748488 3.137
5 79989 325460 318604 1073948 3.371
6 152280 432715 470884 1506663 3.200
7 190980 196055 661864 1702718 2.573
8 146086 66516 807950 1769234 2.190
9 112414 11460 920364 1780694 1.935
10 60943 22224 981312 1802918 1.837

COAL 4 WASTE INFORMATION FOR PIT AB

BENCH COAL WASTE CUMMULATIVE CUMMULATIVE RATIO OF
NO. (TON) (BCM) COAL (TON) WASTE (BCM) W/C

1 0 5556 0 5556 .000
2 4720 58291 4720 63847 13.527
3 64453 210121 69173 273968 3.961
4 266909 78737 336082 352705 1.049
5 117940 30513 454022 383218 .844
6 81805 6638 535827 389856 .728
7 1399 6905 537226 396761 .739

Figure 3-1• Predicted Coal & Waste Data for Pit JK and AB

