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ABSTRACT 

During the study of Grigg River Mine long term mine production 

scheduling problem, it is realized that there are large amount of 

sequential requirements (SR) or precedence requirements (PR) among 

benches in a pit. An alternative Zero-One linear integer programming 

(0-1 programming) PR formulation is developed to handle the SR more 

efficiently. 

The development of the new approach is based on special 

feature of the 0-1 programming and search technique, specifically, 

Balas' implicit enumeration method. 

The Grigg River Mine long term mine production scheduling is 

formulated and solved by applying the new 0-1 programming SR 

formulation. 

The computer execution time comparison between the new SR 

formulation and the customary SR formulation is performed. The results 

show that enormous computer time can be saved by applying the new SR 

approach. 

Experiences of this study are also discussed. 

ix  



CHAPTER I 

INTRODUCTION 

1.1 General Introduction 

Today's modern mining industry is characterized by automation, 

mechanization in production operation and computerization in management 

and planning. Large scale is an important feature of today's mining 

industry. It is not uncommon for an open pit mine to excavate several 

hundred thousand tons of ore and waste daily. For example, the Bingham 

Canyon Mine of Kennecott Copper, a major open pit mine in Utah, 

excavates 300,000 tpd of ore and waste (Given, 1973)-

To handle the problems and questions arising from daily mining 

activities which could be unpredictably complex, some kind of scientific 

decision-making techniques must be adopted. Operation Research is such 

a scientific decision-making technique which can be readily adopted. 

Operation Research, often abbreviated as OR, may not be quite 

unfamiliar to everyone. " With the aid of the electronic computer, 

Operation Research has had an increasingly great impact on business and 

industrial activities in recent years. In fact, with the exception of 

the advent of the electronic computer, the extent of this impact seems 

to be unrivaled by that of any other recent developments" (Hillier, 

Lieberman, 1980). 

This thesis is a study and application of one of the OR 
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techniques, specifically a study of how zero-one programming can be 

applied to solve mine production scheduling problems. 

Needless to say that there are many algorithms and computer 

programs available for OR applications today. However, practical 

problems often require more than straight application of existing 

algorithms and computer codings for their solutions. In fact, this 

study is devoted to the means by whicn the practical approach should be 

adopted to apply available zero-one programing algorithm to an actual 

production scneduling proDlem. 

1.2 Problem Statement 

Today's mining operations are still generally classified into 

two main categories, i.e., underground or open pit operations. Although 

these two kinds of mining operations may differ from each other in 

actual management and production implementation, botn need production 

scheduling before actual production operation starts. 

"Production scheduling is a timed plan for production whi ;h 

can be either short-range or long-range, depending on the time-interval 

and factors selected" (Mahvla, Venkataramani, 1973). 

Since production scheduling is the actual layout and 

implementation of long-range or short-range mine plan, production 

scheduling is undoutedly the foundation of mine planning. The absence 

of a feasible production schedule would bring chaos to the mining 

operation while an absence of an optimal production scheduling plan 

would incur the opportunity cost. For various reasons, production 
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scheduling is a more demanding task to achieve. However, compared to 

the current computer usage in long-range and short-range mine planning, 

very little computer usage is being made in production scheduling to 

date, although many production scheduling problems have been begging for 

solutions during the past decade (Kim, 1979). 

Among the production scheduling problems begging for 

solutions, the one which has physical sequential constraints will be the 

main concern of this thesis. 

In mine production scheduling, one must not forget an 

important aspect of mine reserves. This is the fact that the mine 

reserves are strictly predefined by nature. The shape, the grade and 

their locations are all predefined by nature. What we can do before 

mining operation starts is to gain the knowledge about the reserve. The 

best scenario of mine plan can be worked out based only on the full 

understanding of the reserves. 

Physical sequential requirement is a kind of problem which is 

brought to us by nature. This problem ha3 been one of the more 

difficult ones in production scheduling. The production scheduling 

involves determining among vast alternative mining sections, which 

section should be mined in what sequence in order to satisfy certain 

objectives. An example of physical sequential requirement is that, in 

an open pit mine, one cannot mine the 5th bench without removing the 

1st, 2nd, 3rd and 4th benches which cover the 5th bench. Similar 

situations can be found in an underground mine. A "typical" mine 

production scheduling problem of this type includes so called 'quality 
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control' problems such as coal blending, grades balancing and so forth. 

Throughout the discussions of this thesis, we shall refer PSR to 

physical sequential requirements and SR to sequential requirements. 

Since there seems to be no systematic approach to optimal mine 

production scheduling under a large amount of physical sequential 

constraints to date, the main thrust of this study is to present an 

alternative 0-1 programming approach to solve the production scheduling 

problem under a large amount of PSR. The study will be based on the 

problem of the Grigg River Mine in Canada. 

The Grigg River Mine problem which has been simplified can be 

stated as follows: 

Based on the company's long term mine plan, there will be 18 

potential open pits during various periods in the Grigg River Mine. 

Since the coal quality parameters do not vary too much, only the 

production target to achieve a certain amount of coal tonnage and waste 

BCM during each scheduling period is the primary consideration of the 

mine plan. 

The management wishes to achieve a coal and waste target 

listed in table 1-1 and also to follow, if possible, approximately a pit 

mining sequence specified in table 1-2. The detailed coal tonnage and 

waste BCM figures for each bench and each pit are given in appendix A. 



TABLE 1-1. PRODUCTION TARGET DURING EACH PERIOD 

Period Working Coal Tonnage Waste tonnage Duration 

No. Pits (tons) (BCMs) (hours) 

1 3 2,784,000 9,000,000 8,100 

2 3 2,934,000 13,000,000 8,100 

3 2 2,93̂ ,000 16,500,000 8,100 

4 5 2,934,000 14,500,000 8,100 

5 5 2,934,000 15,900,000 8,100 

TABLE 1-2. PREFERRED PIT MINING SEQUENCE 

Sequence No. Pit Name Sequence No. Pit Name 

1 CD 10 JME 

2 PQ1 11 CD2 

3 LM1 12 HIW 

4 PQ2 13 HI4 

5 LM2 14 CD3 

6 PQ3 15 HIE 

7 KK FREE AB 

8 JMW FREE NO 

9 HI3 FREE JK 



6 

1.3 Scope of Study and Solution Technique 

The task for this study is to arrive at a proper schedule 

which tells where and how many benches should be mined during each 

period to fulfill the management requirement. 

The following reasons favor the use of zero-one programming 

for the mine production scheduling problem under study: 

a. We are selecting some elements from a large population 

which has a vast number of elanents to choose from, i.e., we are to 

answer yes or no questions to each element. 

b. Given the exception of SR, the decisions with regards to 

the objective value are independent, i.e., the effects of a decision to 

choose one specific mining section on the objective function value will 

have nothing to do with the decision to choose other sections in the 

future. 

c. Zero-one programming is a proven technique; i.e., many 

production planning problems in various fields have been formulated and 

solved. 

d. Some computer codes for solving general zero-one 

programming problens are available on hands. 

An exposition of the mechanics of zero-one programming will be 

discussed in the subsequent chapter. 



CHAPTER II 

ZERO-ONE PROGRAMMING AND SR 

CONSTRAINT MODEL PRESENTATION 

II.1 Zero-One Progranming 

We all frequently face decisions where only two choices are 

available, yes or no. For exanple, should we mine this block? Should 

we locate this facility at this particular site? What are the effects 

of these decisions toward our objective value? 

With just two choices, these kinds of decisions can be 

represented by decision variables that are restricted to just two 

values, i.e., zero or one and these types of problems are often solved 

by zero-one integer linear programming technique. 

Zero-one integer linear programming is a special case of 

integer linear progranming when the decision variables of the latter can 

only achieve two possible values, i.e., zero and one. Mathematically, 

the standard general zero-one integer linear programming problem can be 

stated in the following form: 

n 

Minimize 

Subject to: (2.1) 

7 
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cj > 0 

Xj = 0,1 j = 1,2, ..., n 

Pi > 0 

1 < i < m 

Where Cj's are the coefficients in the objective function, 

Xj's are the decision variables of the problem, and p̂ s are the right-

hand side elements. The â 's are the coefficients of all the linear 

inequalities. A feasible solution is a vector X = (x1tx2,...,xn) which 

satisfies (2.1); here xi , x2 ,..., xn will be either zero or one. An 

optimum solution is the feasible solution which minimizes the objective 

function. 

To solve (2.1), we usually rearrange it into the following 

form: 

Minimize Z ojxj 
j=l n 

Subject to: -p̂  ̂+ I aij*j > ° (2-2) 

Cj > 0 

Xj =0,1 j = 1,2,3, ... n 

Pi > 0 

1 < i < m 
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II.2 Solution Techniques for 0-1 Programming Problems 

All the solution techniques for the integer programing 

problems are applicable to the 0-1 programming problems by adding the 

constraint that all variables must be less than or equal to 1. 

The solution techniques for solving 0-1 programming problems 

can be classified into two categories; i.e., (1) cutting plane method 

and (2) searcii methods. The two most commonly used search methods are 

"branch and bound" and "implicit enumeration". This study will rely on 

the implicit enumeration technique to obtain the solution. The principle 

of these techniques are briefly discussed next. 

Cutting Plane Method: 

In this method, Gomory's method is the most widely accepted 

one. The cutting plane method starts by relaxing the integer 

requirement for all variables and solving the resulting linear 

prograaming problem. The method is then modified by adding constraints 

until its continuous optimum extreme point satisfies the integer 

conditions. If X is an optimum solution of the resulting linear 

programming problem without the integer constraints, a cutting plane is 

defined as a hyperplane that separates X from the set of integer 

feasible solutions, with X on one side of it and the integer feasible 

solution of the problem on it or on the other side of it. The cutting 

plane method proceeds as follows: 

(i) Solve the current problem via simplex technique after relaxing 

the integer requirement. If the current problem is infeasible, the 
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original integer problem is also infeasible. If the optimun solution 

satisfies the integer requirement, the solution is the optimum solution 

to original integer problem, therefore stop, otherwise go to next step. 

(ii) Use a cut generation method to obtain a cutting plane. Add 

the cutting plane to the constraints of the current problem and go to 

(i) above. 

The optimum solution of the integer programming problem, if 

there is one, is achieved by repeating the above two steps. 

Cutting algorithms are well described by Gomory (I960), Glover 

(1965), and Balas (1971). 

Branch and Bound Method: 

The basic idea of the branch-and-bound technique is as 

follows. Suppose that the objective function is to be minimized. 

Assume that an upper bound on the optimal value of the objective 

function is available. (This usually is the value of the objective 

function for the best feasible solution identified thus far.) The first 

step is to partition the set of all feasible solutions into several 

subsets. For each subset, a lower bound is obtained for the value of 

the objective function of the solution within that subset. Those 

subsets whose lower bounds exceed the current upper bound on the 

objective function value are then excluded from further consideration. 

One of the remaining subsets, say, the one with the smallest lower 

bound, is then partitioned further into several subsets. Their lower 

bounds are obtained in turn and used as before to exclude some of these 
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subsets from further consideration. From all the remaining subsets, 

another one is selected for further partitioning and so on. This 

process is repeated again and again until it is certain that no feasible 

solution exists or a feasible solution is found such that the 

corresponding value of the objective function is no greater than the 

lower bound for any subset. Such a feasible solution must be optimal 

since none of the subsets can contain a better solution. 

If the objective function is to be maximized, the approach 

will be the same except that the subset with the largest higher bound 

will be further considered. 

The branch-and-bound algorithm is discussed by Lawler & tfood 

(1966), Mitten (1970) and McMillan,Jr. (1975). 

Implicit Enumeration Method : 

Implicit enumeration method is also known as Balas' additive 

implicit enumeration algorithm. The principle employed in implicit 

enumeration method is the following. For a n-variable 0,1 programming 

problem, there will be 2n possible solutions, most of which may be 

infeasible. By employing a certain strategy for selecting a few 

solutions to be enumerated explicitly, most of the 2n solutions could be 

enumerated implicitly. The computations could thus be reduced 

enormously. 

The implicit enumeration method is essentially a tree search 

algorithm that uses information generated in the search to exclude 

portions of the tree for further considerations. An optimal solution, 
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if the solution exists, is obtained by following some branches of the 

tree rather than the whole tree. A solution network for a 4 variable 0-

1 programming problem is shown in figure 2-1. 

1,2,3,4 

FIGURE 2-1. SOLUTION NETWORK FOR 4 VARIABLE 

0-1 PROBLEMS 

In figure 2-1, each node denotes a solution and each node in 

the solution network, except the one which has all the variables raised 

to 1 already, can be viewed as an origin node and considered to be a 



13 

partial solution. All the descendant nodes derived from the origin node 

are considered to be the completions of the origin node or the 

completions of the partial solution. 

The implicit enumeration method proceeds as follows. 

Starting with node 0, meaning no variable has been raised to 1 

yet, the implicit enumeration method checks at the origin nodes to see 

if the descendant nodes can be reached, i.e., if the completions of 

these partial solutions are feasible. Sets of descending solutions are 

ignored, as the enumeration proceeds, when, 

(1) "Completions" of partial solutions are found to be 

infeasible, or 

(2) "Completions" of partial solutions are found to be less 

attractive due to a feasible solution being found. 

This is accomplished by backtracking with some provisions to avoid 

duplicating the previously examined branches and provisions to exclude 

all the descendant branches from further consideration. 

When the enumeration process can not go any further, the 

solution enumeration process is finished and all the 2n solutions have 

been enumerated either explicitly or implicitly. 

The last feasible solution enumerated is always the optimum solution for 

(2.1) since each successive feasible solution sets a new lower bound for 

the objective function value during the solution process. 

The implicit enumeration algorithms is discussed by Balas 

(1965), Plane & McMillan,Jr. (1971) and McMillan,Jr. (1975). 
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II.3 Remarks on Balas' Implicit Enumeration Algorithm 

The following are the theoretical foundations of Balas' 

additive algorithm: 

(1) An objective function is to be minimized while subject to 

the constraints that; 1) algebraic sums of all left side items in eacin 

constraint must be non-negative, 2) all decision variables can only 

achieve either 0 or 1. 

(2) Tne lesser the decision variables involved in a solution 

are raised to 1, the better the objective value will be. Hence, tne 

algorithm starts the enumeration process with all Xj's set to 0 and 

raises to 1 only those decision variables which are absolutely necessary 

to meet the constraint requirements. 

(3) Only those variables having positive coefficients in a 

constraint could be helpful to make the algebraic sum of all left hand 

items of that constraint become non-negative. Thus, the coefficient sum 

of one variaole may reflect the "helpfulness" to bring about 

feasibility. This is one way to determine which variable will be 

introduced into a partial solution. 

(4) The last enumerated feasible solution sets up a new upper 

bound for objective function coefficients. This guarantees that the 

objective value is always being improved and that the last feasiole 

solution fathomed is optimal. 

(5) For a n-variable 0-1 linear integer programing problem, 

there are a total of 2n possible solutions. No matter how large the 

number of possible solutions could be, the number is finite. Therefore, 
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the solution enumeration process of Balas' additive algorithm would come 

to an end after a finite number of iterations. Since most of tne 

solutions will be enumerated implicitly and only very small portion of 

the solutions will be enumerated explicitly, the solution enumeration 

process should terminate after a reasonable number of iterations. It 

should be noted here, however, that this 'reasonable number' still could 

be too large to be cost-effective if there are too many variables 

involved. 

(6) The solution enumeration process is a process of 

examination, meaning that when the process is finished, all the 

solutions (not necessarily feasible) have been examined either 

explicitly or implicitly. This, naturally, does not guarantee a 

feasible solution for sure. When Balas' additive algorithm is applied 

to solve a zero-one programming problan and no feasible solution is 

found at the end of the enumeration process, then there is no feasible 

solution from the problem itself rather than from the algorithm! 

II.4 Customary Precedent Constraint Formulation 

As we shall see later in chapter III, to provide a solution to 

the Grigg River Mine problem stated in chapter I, we must face a large 

amount of SR among benches from the same pits due to the definition of 

one bench as one decision variable. 

To accomplish the coal tonnage and waste BCM requirements, we 

are to determine, for each period, wnich bench from which pit ought to 

be mined. If the benches of 3 pits are to be considered in one period 
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and each pit has 15 benches on average, we would have 3 x 15; i.e., 45 

SR to consider. 

In 0-1 programming, the SK, or precedent constraints, are 

customarily formulated in this way (Plane, McMillan,Jr, 1971) : 

If xi must precede Xj, then xj. For example, if x1 must 

precede x̂ , we set x-j > Xjj. One SR will basically need one constraint 

inequality. 

For 45 SR, 45 inequalities would be needed. Hie more SR is 

involved, the more SR constraints will be needed. Five aspects have 

stimulated a search for a more efficient SR formulation with an attempt 

to reduce the number of SR constraints and the computer execution time. 

These five aspects are listed as follows: 

1) During a solution process, a solution must be examined by 

every problem constraint at a given iteration. 

2) The time spent on a constraint computation has little to do 

with the number of variables in that constraint, i.e., the time spent on 

the SR constraints is almost the same as the time spent on the basic 

problem constraint. 

3) The more constraints are involved in a problem formulation, 

the more time is needed to examine them at a given iteration. 

4) The more iterations are involved to solve a problem, the 

more time will be spent on the SR constraints. 

5) The computer execution time for the 0-1 programming problem 

is too long to be cost-effective when the number of decision variables 

is large (above 40 - 50). 
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It has been found that it is possible to reduce the number of 

SR constraints and the computer execution time enormously when the SR 

among the 0-1 decision variables possess a special feature (See Appendix 

E). This special feature is that the SR can be grouped into several SR 

sets and the number of SR sets is much smaller than the total number of 

SR. Also, each SR set should consist of successive decision variables 

linked together like a chain. For example, X|>X2>X3 is one SR set of 

which the variables are linked together like a chain, x̂ x̂ xy forms 

another set (chain). But, these two chains cannot be linked together as 

one chain because x̂  is missing. Therefore, they must be viewed as two 

SR sets. 

The SR involved in the Grigg River Mine problem possesses this 

special feature because tne benches from one pit form one SR chain and 

the number of pits is much less than the number of benches. 

SR constraint formulation involving such a special feature is 

developed next. 

II.5 Development of a Formulation 

In dealing with a 0-1 programming problem, suppose there are n 

decision variables labeled x-),x2,x2,...,xn with a priority sequence from 

the highest to the lowest. If x1 has the highest priority and xn the 

lowest, a feasible solution (in terms of completed partial solutions) 

would be x.j,X2,X2»...Xq, where 1 < q < n. 

Based on the fact that the decision variables in a 0-1 

programming problem can achieve only values of either 0 or 1 and based 
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on the implicit enumeration principle, a SR constraint formulation can 

be developed this way: 

First, for one set of SR, a discrete function B(q) is defined 

as given by equation (2.3)* 

q 

j = l  

where n = total number of decision variables in a 0-1 problem; 

q = maximum subscript value of decision variables in 

completions of a partial solution at a given 

iteration; 

aj = convenient constant values assigned by user at 

problem formulation stage; and 

aj > 0 for Xj's subject to SR, 

aj = 0 otherwise. 

Next, we define another discrete function S(q) as given in 

equation (2.4) below. 

q 

where in (2.4), except Xj, all elements have been defined as 

in (2.3). Xj's are decision variables of the 0-1 problem under study. 

Finally, we combine (2.3) with (2.4) and get (2.5): 

for 1 £ q < n (2.3) 

 ̂ajXj = S(q) for 1 _< q < n (2.4) 

j=l 

q q 

for 1 < q < n (2.5) 

j=l j=l 
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To apply (2.5) as single SR constraint set, one assumption is 

necessary. This assumption is that one knows in advance which decision 

variables are subject to SR and which are not. 

The assumption tells which specific aj should be assigned zero 

and which specific aj should be assigned a convenient positive, non-zero 

value. Since we have already known that q < n, the assumption will help 

us to quantify B(q) and aj's in the above equations. 

It should oe noted here that since q is defined as the maximum 

subscript value of decision variables in the current solution under 

examination, q will vary according to the maximum subscript values of 

solutions at different iterations during the solution enumeration 

process. It should also be noted that the equation (2.5) assumes a 

priority sequence from the highest to the lowest for Xj's when j 

achieves a sequence values of 1,2,3, ..., n. 

During the solution enumeration process, suppose we are in kth 

iteration. Every element in (2.5) is known. The value of q will 

determine how many aj's are involved. Since we have assigned zero 

values to aj's of those variables which are not subjected to SR, (2.5) 

has no effect on the xj's which are not subject to SR. Also, since 

equation (2.5) can be satisfied only when all xj's are 1's corresponding 

to all aj's > 0 and since this implies that specified SR is being met, 

(2.5) can effectively serve as single composite SR constraint for a SR 

chain. 

Often, there exists more than one set of SR chains among 

decision variables of zero-one progranming problems, as is the case with 
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our problem. The benches from one pit constitutes one SR chain. We can 

handle the situation by letting one constraint equation to represent 

each set of the SR chain, following the same rule as we did for (2.5). 

Therefore, if q represents the maximum subscript value of Xj's of a 

solution under examination at a given iteration, we develop the k-th set 

of SR constraint formulation as follows: 

q q 

]T akjxj = akj (2-6) 

j=l J=1 

1 < q < n 

1 < k < s 

where in (2.6), 

n = total number of decision variables of 0-1 problem; 

q = the maximum subscript value of decision variables in a 

solution under examination; 

k = subscript for a given SR chain; 

â j = convenient constant values assigned oy user at problem 

formulation stage for the k-th set of SR chain; and 

> 0 for xj*s subject to SR; 

akj = 0 otherwise. 

Now, we have generalized (2.5) to (2.6), namely, from taking 

care of only one set of SR to multi-set of SR. 

II.6 Proof of the New Formulation 

There are five aspects that require proof in equation (2.5) 
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and (2.6). Since (2.6) is derived from (2.5), the proof of equation 

(2.5) will be sufficient for both of the equations. The first is that 

one q value corresponds to one unique SR only. The second is that the 

value of q which represents the maximun subscript value of Xj's in a 

partial solution under examination is completely traceable during 

solution enumeration process. The third is that combining (2.5) with 

the customary zero-one programming formulation (2.1) will not result in 

the solution enumeration process to become divergent. The fourth is 

that the equality in equation (2.5) can be relaxed to greater than or 

equal type. And finally, the fifth is that a substitution of xj with (1 

- yj ) will only affect (2.5) when q is greater than or equal to j. 

Proof of the first aspect : 

From the definition of discrete function B(q), we know that 

the coefficients of the aj's are all non-negative constants. Therefore, 

B(q) is an increasing function; i.e., for any q2 2.̂ 11 B(q2) >. B(q1). 

Since the q's and aq's correspond to x̂ 's on a one to one basis, a 

change in the maximum subscript value will change the pattern of aq's 

and the value of q as well. A change in the value of q will result in a 

change in the value of B(q). Therefore, corresponding to a unique value 

of q, there exists a unique value of B(q) so that we get a unique 

pattern of Xq's (q = 1,2, ... , n) through (2.5). 

Proof of the second aspect : 

To introduce (2.5) into the zero-one programming formulation, 

we must trace the value of q at each iteration of solution enumeration 

process of Balas' implicit enumeration algorithm so that we can 
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calculate the value of B(q) at each step as a right hand side value. 

Fortunately, if we recall the solution enumeration process of Balas' 

implicit enumeration algorithm, the maximum subscript value of xq in a 

partial solution is always known to us at a given iteration. Therefore, 

the value of q is traceable and B(q) can be calculated at each step of 

the solution enumeration process. This is important because this means 

that (2.5) can be treated the same way as the usual zero-one programming 

constraints. 

Proof of the third aspect : 

Since the value of B(q) keeps changing at each step of the 

solution enumeration process, one may question if the solution 

enumeration process will ever end. The answer is yes. From (2.5), the 

possible values of B(q) are merely the sura of all possible combinations 

among the left hand side coefficients to insure that all feasible 

solutions will satisfy the SR. Also, one value of B(q) correponds to a 

unique pattern of the x̂ 's. Since Balas' additive algorithm is 

essentially a solution enumeration process for all possible 2n solutions 

and since the solutions which can satisfy constraint (2.5) are all 

within the possible solution list, the solutions which satisfy equation 

(2.5) should all be enumerated during the solution enumeration process. 

In Balas' implicit enumeration algorithm, a constraint only 

serves to determine whether or not a solution is feasible. If, during 

enumeration process, any one of constraints is violated, the current 

partial solution is nevertheless enumerated. A new partial solution is 

next formed and the enumeration process continues. Once all possible 
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solutions are enumerated explicitly or implicitly, the enumeration 

process is terminated. If we do not obtain any feasible solutions at 

the end of the solution enumeration, this fact only means that the 

problem under study has no feasible solution. Therefore, the 

incorporation of (2.5) into the general zero-one programming formulation 

will not cause the enumeration process to diverge. 

Proof of the fourth aspect: 

The equality constraint of equation (2.5) can be relaxed to 

greater than or equal type and the greater than or equal constraint has 

the sane effect as the equality of (2.5) in meeting the Srt. To prove 

this, we need only to prove that the left hand side sum value will never 

become greater than the RHS value in (2.5). Since Xj's can only achieve 

values of either 0 or 1 and all other elements in (2.5) are identical on 

a one to one basis, the left hand side value will always be less than or 

equal to the RHS value in (2.5). Therefore, the equal type constraint 

in (2.5) is identical to the greater than or equal type constraint in 

terms of specifying the SR constraint. Since we need to formulate one 

equality constraint into two inequality constraints in standard 0-1 

problem formulation, the above proof serves to eliminate the other half 

constraints and shows that the remaining half SR constraints are still 

sufficient for our purposes. 

Proof of the fifth aspect: 

A substitution of Xj with (1 - yj) will only affect the B(q)'s 

when q is greater than or equal to j. To view this more clearly, we 

extend equation (2.5) as follows: 
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q=1: a -j x i = a-| 

q=2: a-|X1 + a2x2 ~ a1 + a2 

q=3: a-|Xi + a2X̂  + â x̂  = + a2 + â  

• • • • • • 

q=n: â i + a2x2 + ••• anxn = a1 + a2 + ••• + an 

From above, we can see that there is one relationship which 

holds to be true for every j on the right hand side, i.e., B(j) = B(j-1) 

+ aj. There is a similar relationship for the left hand side of the 

equation. It can be seen that a substitution of x̂  with (1 - ŷ ) will 

affect all but the first two of the above equations since there is no x̂  

in the first two equations. It is not difficult to reason that there is 

a sirailiar general rule for all substitutions on the Xj's, i.e., a 

substitution of Xj with (1 - yj) will only affect the B(q)'s when q is 

greater than or equal to j. This proof prevents us from simply 

suostracting aj's value from all the right hand side elements when we 

make the substitution. 

tfith the discussions so far, we are ready to combine (2.o) 

with the customary zero-one programming formulation defined by (2.1) to 

get a generalized zero-one programming formulation. 

II.7 Generalization of Standard Zero-One Progranroing Formulation 

By combining the customary zero-one programming formulation of 

(2.1) with the formulation of (2.6) developed specifically for sets of 
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SR chains, we get a generalized zero-one programming formulation that 

can accommodate sets of SR chains among decision variables: 

n 

Minimize: ) ĉ x. 
J 

Subject to: j=l n 
- I -

: j=l n 

q U , 

a k j  ( 2 . 7 )  

1 < q < n 

xj = 0,1 

Pi > 0 

1 < i < m 

1 < k < s 

where : 

n = total number of decision variables in problem formulation; 

m = number of basic problem constraints excluding SR; 

s = total number of SR constraint sets; 

q = the maximum subscript value of decision variables in a 

solution under examination. 

Cj = non-negative coefficient of objective function; 

Pi = customary RHS value for the basic problem formulation; 

ajj = coefficient of basic problem constraint; 
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akj = coefficient whose value are assigned by user at 

problem formulation stage; and 

akj > 0 for decision variables subject to SR; 

akj = 0 otherwise. 

In the above generalized formulation of zero-one programming, 

the objective function and the first m constraint inequalities are the 

customary zero-one programming formulation. Only those s constraints 

are added for SR. If there is no SR at all in a 0-1 problem, the 

additional constraints specifically for SR will be automatically dropped 

from the problem formulation, thereby, reducing (2.7) to the customary 

zero-one programming formulation. 



CHAPTER III 

FORMULATION Of THE GRIGG RIVER MINE PROBLEM 

III.1 Analysis of the Problem 

The Grigg River Mine problem has three requirements. These 

are: 1) to obtain a certain amount of coal tonnage and waste BCM 

during each planning period; 2) to follow approximately certain pit 

mining sequence; and 3) to control the total number of pits working 

during each planning period. For illustration purposes, the coal 

tonnage and waste BCM information for pits JK and AB are snown in figure 

3-1, where the coal tonnage and waste BCM information are given by 

benches. Tnerefore, the s-nallest mining section for planning purposes 

is one bench. 

To accomplish the coal tonnage and waste BCM requirements for 

a period, we need to select benches from each pit under consideration 

and to calculate the comoined coal tonnage and waste BCM from the 

benches selected. 

The pit mining sequence and the number of pits working can be 

met by suDjective judgement since no clear cut objective exists. Tne pit 

raining sequence specified in table 1-2 (Page 5) actually sorts all the 

18 pits into 4 pit lines, with sequence free pits NO,JK and AB in 3 

separate lines and the rest of the sequence subjected 15 pits in one 

line (See Figure 3-2). The simplest way of meeting the pit mining 

27 



28 

COAL & WASTE INFORMATION FOR PIT JK 

BENCH COAL WASTE CUMMULATIVE CUMMULATIVE RATIO OF 
NO. (TON) (BCM) COAL (TON) WASTE (BCM) W/C 

1 138 9287 138 9287 67.297 
2 25838 179744 25976 • 189031 7.277 
3 103916 270521 129892 459552 3.538 
4 108723 288936 238615 748488 3.137 
5 79989 325460 318604 1073948 3.371 
6 152280 432715 470884 1506663 3.200 
7 190980 196055 661864 1702718 2.573 
8 146086 66516 807950 1769234 2.190 
9 112414 11460 920364 1780694 1.935 
10 60943 22224 981312 1802918 1.837 

COAL 4 WASTE INFORMATION FOR PIT AB 

BENCH COAL WASTE CUMMULATIVE CUMMULATIVE RATIO OF 
NO. (TON) (BCM) COAL (TON) WASTE (BCM) W/C 

1 0 5556 0 5556 .000 
2 4720 58291 4720 63847 13.527 
3 64453 210121 69173 273968 3.961 
4 266909 78737 336082 352705 1.049 
5 117940 30513 454022 383218 .844 
6 81805 6638 535827 389856 .728 
7 1399 6905 537226 396761 .739 

Figure 3-1• Predicted Coal & Waste Data for Pit JK and AB 


