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ABSTRACT

During the study of Grigg River Mine long term mine production
scheduling problen, it is realized that there are large amount of
sequential requirements (SR) or precedence requirements (PR) among
benches in a pit. An alternative Zero-One linear integer programing
(0-1 programaing) PR formulation is developed to handle the SR more
efficiently.

The development of the new approach is based on special
feature of the 0-1 programning and search technique, specifically,
Balas' implicit enumeration method.

The Grigg River Mine long term mine production scheduling is
formulated and solved by applying the new 0-1 programmuing SR
formulation,

The computer execution time comparison between the new SR
formulation and the customary SR formulation is perforued. The results
show that enormous computer time can be saved by applying the new SR
approach.

Experiences of this study are also discussed.

ix



CHAPTER I

INTRODUCTION

I.1 General Introduction

Today's wodern mining industry is characterized by automation,
mechanization in production operation and computerization in management
and planning. Large scale is an important feature of today's mining
industry. It is not uncommon for an open pit mine to excavate several
hundred thousand tons of ore and waste daily. For example, the Bingham
Canyon Mine of Kennecott Copper, a major open pit mine in Utah,
excavates 300,000 tpd of ore and waste (Given, 1973).

To handle the problems and questions arising from daily mining
activities which could be unpredictably complex, some kind of scientific
decision-making techniques must be adopted. Operation Research is sucn
a scientific decision-making technique which can pe readily adopted.

Operation Research, often abbreviated as OR, may not be quite
unfamiliar to everyone. " With the aid of the electronic computer,
Operation Research has had an increasingly great iwmpact on business and
industrial activities in recent years. In fact, with the exception of
the advent of the electronic computer, the extent of this impact seems
to be unrivaled by that of any other recent developments" (Hillier,
Lieberman, 1980).

This thesis is a study and application of one of the OR



techniques, specifically a study of how zero-one programning can be
applied to solve wine production scheduling problems.

Needless to say that there are many algorithms and computer
programs available for OR applications today. However, practical
problems often require more than straight application of existing
algorithms and computer codings for their solutions. In fact, this
study is devoted to the weans by whicn the practical approach should pe
adopted to apply available zero-one programning algorithn to an actual

production scneduling proolei.

1.2 Problem Statement

Today's mining operations are still generally classified into
two main categories, i.e., underground or open pit operations. Altnough
these two kinds of mining operations may differ from each other in
actual management and production implementation, botii need production
scneduling before actual production operation starts.

"Production scheduling is a timed plan for production wh! :h
can be either short-range or long-range, depending on the time-interval
and factors selected" (Mahvla, Venkataramani, 1973).

Since production scheduling is the actual layout and
implementation of long-range or short-range wmine plan, production
scneduling is undoutedly the foundation of mine planning. The absence
of a feasible production schedule would bring chaos to the mining
operation while an absence of an optimal production scheduling plan

would incur the opportunity cost., For various reasons, production



scheduling is a more demanding task to achieve. However, compared to
the current computer usage in long=-range and short-range mine planning,
very little computer usage is being made in production scheduling to
date, although many production scheduling problems have been begging for
solutions during the past decade (Kim, 1979).

Among the production scheduling problems begging for
solutions, the one which has physical sequential constraints will be the
main concern of this thesis.

In mine production scheduling, one must not forget an
important aspect of mine reserves. This is the fact that the mine
reserves are strictly predefined by nature, The shape, the grade and
their locations are all predefined by nature. What we can do before
mining operation starts is to gain the knowledge about the reserve. The
best scenario of mine plan can be worked out based only on the full
understanding of the reserves.

Physical sequential requirement is a kind of problem which is
brought to us by nature. This problem has been one of the more
difficult ones in production scheduling. The production scheduling
involves determining among vast alternative mining sections, which
section should be mined in what sequence in order to satisfy certain
objectives. An example of physical sequential requirement is that, in
an open pit mine, one cannot mine the 5th bench without removing the
ISt, 2nd, 3rd and 4th benches which cover the 5th bench. Similar
situations can be found in an underground mine., A "“typical™ mine

production scheduling problem of this type includes 8o called 'quality



control' problems such as coal blending, grades balancing and so forth.
Throughout the discussions of this thesis, we shall refer PSR to
physical sequential requirements and SR to sequential requirements.

Since there seems to be no systematic approach to optimal mine
production scheduling under a large amount of’physical sequential
constraints to date, the main thrust of this study is to present an
alternative 0-1 programning approach to solve the production scheduling
problem under a large amount of PSR. The study will be based on the
problem of the Grigg River Mine in Canada.

The Grigg River Mine problem which has been simplified can be
stated as follows:

Based on the company's long term mine plan, there will be 18
potential open pits during various periods in the Grigg River Mine.
Since the coal quality parameters do not vary too much, only the
production target to achieve a certain amount of coal tonnage and waste
BCM during each scheduling period is the primary consideration of the
mine plan.

The management wishes to achieve a coal and waste target
listed in table 1-1 and also to follow, if possible, approximately a pit
mining sequence specified in table 1-2, The detailed coal tonnage and

waste BCM figures for each bench and each pit are given in appendix A,



TABLE 1 - 1. PRODUCTION TARGET DURING EACH PERIOD

Period Working Coal Tonnage Waste tonnage Duration
No. Pits (tons) (BCMs) (hours)
1 3 2,784,000 9,000,000 8,100
2 3 2,934,000 13,000,000 8,100
3 2 2,934,000 16,500,000 8,100
4 5 2,934,000 14,500,000 8,100
5 5 2,934,000 15,900,000 8, 100
TABLE 1 - 2. PREFERRED PIT MINING SEQUENCE
Sequence No. Pit Name Sequence No. Pit Name
1 cD 10 JME
2 PQ1 n cD2
3 M 12 HIW
4 PQ2 13 HI4
5 LM2 14 CD3
) PQ3 15 HIE
7 KK FREE AB
8 JMW FREE NO
9 HI3 FREE JK




I.3 Scope of Study and Solution Technigue

The task for this study is to arrive at a proper schedule
which tells where and how many benches should be mined during each
period to fulfill the management requirement.

The following reasons favor the use of zero-one progranning
for the mine production scheduling problem under study:

a. We are selecting some elements from a large population
which has a vast number of elements to choose from, i.e., we are to
answer yes or no questions to each element.

b, Given the exception of SR, the decisions with regards to
the objective value are independent, i.e., the effects of a decision to
choose one specific mining section on the objective function value will
have notning to do with the decision to choose other sections in the
future.

c. Zero-one programming is a proven technique; i.e., wmany
production planning problems in various fields have been formulated and
solved,

d. Some cowmputer codes for solving general zero-one
programing problems are available on hands.

An exposition of the mechanics of zero-one programming will be

discussed in tne subsequent chapter.



CHAPTER 1II

ZERO-ONE PROGRAMMING AND SR
CONSTRAINT MODEL PRESENTATION

I1.1 Zero-One Programming

We all frequently face decisions where only two choices are
available, yes or no. For exanple, should we mine this block? Should
we locate this facility at this particular site? wnhat are the effects
of these decisions toward our objective value?

Witn just two choices, these kinds of decisions can be
represented by decision variables that are restricted to just two
values, i.e., zero or one and these types of problems are often solved
by zero-one integer linear programning technique.

Zero-one integer linear programning is a special case of
integer linear programming when the decision variables of the latter can
only achieve two possible values, i.e., zero and one., Mathematically,
the standard general zero-one integer linear programming problem can be
stated in the following form:

n

Minimize C:iXs
J°J

Subject to: (2.1)




Where cJ-'s are the coefficients in the objective function,

X j's are the decision variables of the problem, and py's are the right-
hand side elements. The aij's are the coefficients of all the linear
inequalities, A feasible solution is a vector X = (x1,x2,...,xn) which
satisfies (2.1); here xy , X3 yeeey X, Will be either zero or one. An
optimum solution is the feasible solution which minimizes the objective

function.

To solve (2.1), we usually rearrange it into the following

form:
n
Minimize cjxj
j=1 n
Subject to: -p; + Z aijxj 20 (2.2)
j=1
Xj = 0,1 Jj=1,2,3, seen



II.2 Solution Techniques for 0-1 Programming Probleus

All the solution techniques for the integer programing
problems are applicable to the 0-1 programning problemns by adding the
constraint that all variables must oe less than or equal to 1.

The solution techniques for solving 0-1 programming problens
can be classified into two categories; i.e., (1) cutting plane method
and (2) searci methods. The two wost commonly used search methods are
"oranch and bound" and "implicit enumeration". This study will rely on
the implicit enumeration technique to obtain the solution, The principle

of these techniques are briefly discussed next.

Cutting Plane Method:

In this wmethod, Gomory's method is the wmost widely accepted
one, The cutting plane method starts by relaxing the integer
requirement for all variables and solving the resulting linear
programing problem. The method is then modified by adding constraints
until its continuous optimumn extreme point satisfies the integer
conditions., If X is an optimum solution of the resulting linear
programming problem without the integer constraints, a cutting plane is
defined as a hyperplane that separates X from the set of integer
feasiole solutions, with X on one side of it and the integer feasible
solution of the problem on it or on the other side of it. The cutting
plane method proceeds as follows:

(i) Solve the current problem via simplex technique after relaxing

the integer requirement. If the current problem is infeasible, the
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original integer problem is also infeasible. If the optimum solution
satisfies the integer requirement, the solution is the optimum solution
to original integer problem, therefore stop, otherwise go to next step.
(ii) Use a cut generation method to obtain a cutting plane. Add

the cutting plane to the constraints of the éurrent problen and go to
(i) above.

The optimum solution of the integer programming problem, if
there is one, is achieved by repeating the above two steps.

Cutting algorithms are well described by Gomory (1960), Glover
(1965), and Balas (1371).

Branch and Bound Method:

The basic idea of the branch-and-bound technique is as
follows. Suppose that the objective function is to be minimized.
Assume that an upper bound on the optimal value of the objective
function is available. (This usually is the value of the objective
function for the best feasible solution identified thus far.) The first
step is to partition the set of all feasible solutions into several
subsets. For each subset, a lower bound is obtained for the value of
the objective function of the solution within that subset. Those
subsets whose lower bounds exceed the current upper bound on the
objective function value are then excluded from further consideration.
One of the remaining subsets, say, the one with the smallest lower
bound, is then partitioned further into several subsets. Their lower

bounds are obtained in turn and used as before to exclude some of these
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subsets from further consideration. From all the remaining subsets,
another one is selected for further partitioning and so on. This
process is repeated again and again until it is certain that no feasible
solution exists or a feasible solution is found such that the
corresponding value of the objective function is no greater than the
lower bound for any subset. Such a feasible solution must be optimal
since none of the subsets can contain a better solution.

If the objective function is to be maximized, the approach
will be tne samne except that the subset with the largest higher bound
will be further considered.

The branch-and-bound algorithm is discussed by Lawler & Wood

(1966), Mitten (1970) and McMillan,Jdr. (1975).

Implicit Enumeration Method :

Implicit enumeration method is also known as Balas' additive
implicit enumeration algorithm. The principle employed in implicit
enumeration method is the following., For a n-variable 0,1 programming
problem, there will be 2" possible solutions, most of which may be
infeasible. By employing a certain strategy for selecting a few
solutions to be enumerated explicitly, most of the 27 solutions could be
enumerated implicitly. The computations could thus be reduced
enormously.

The implicit enumeration method is essentially a tree search
algorithm that uses information generated in the search to exclude

portions of the tree for further considerations. An optimal solution,
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if the solution exists, is obtained by following some branches of the
tree rather than the whole tree. A solution network for a 4 variable 0-

1 programning problem is shown in figure 2-1.

1,2,3,4

FIGURE 2 - 1. SOLUTION NETWORK FOR 4 VARIABLE
0-1 PROBLEMS

In figure 2-1, each node denotes a solution and each node in
the solution network, except the one which has all the variables raised

to 1 already, can be viewed as an origin node and considered to be a
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partial solution. All the descendant nodes derived from the origin node
are considered to be the completions of the origin node or the
completions of the partial solution.

The implicit enumeration method proceeds as follows.

Starting with node O, meaning no variable has been raised to 1
yet, the implicit enumeration method checks at the origin nodes to see
if the descendant nodes can be reached, i.e., if the completions of
these partial solutions are feasible. Sets of descending solutions are
ignored, as the enumeration proceeds, when,

(1) "Completions" of partial solutions are found to be
infeasible, or

(2) "Completions" of partial solutions are found to be less
attractive due to a feasible solution being found.

This is accomplished by backtracking with some provisions to avoid
duplicating the previously examined branches and provisions to exclude
all the descendant branches from further consideration.

When the enumeration process can not go any further, the
solution enumeration process is finished and all the 2" solutions have
been enumerated either explicitly or implicitly.

The last feasible solution enumerated is always the optimum solution for
(2.1) since each successive feasible solution sets a new lower bound for
the objective function value during the solution process.

The implicit enumeration algorithms is discussed by Balas

(1965), Plane & McMillan,Jr. (1971) and McMillan,Jr. (1975).
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II.3 Remarks on Balas' ILwplicit Enumeration Algorithm

The following are the theoretical foundations of Balas'
additive algorithm:

(1) An objective function is to be minimized while subject to
the constraints that; 1) algebraic sums of all left side items in each
constraint must be non-negative, 2) all decision variables can only
achieve either 0 or 1.

(2) Tne lesser the decision variables involved in a solution
are raised to 1, the better the objective value will be. Hence, tne
algorithn starts the enumeration process with all xj's set to 0 and
raises to 1 only those decision variables which are absolutely necessary
to meet the constraint requirements.

(3) Only those variables naving positive coefficients in a
constraint could be helpful to make the algebraic sum of all left nand
items of that constraint become non-negative. Thus, the coefficient sum
of one variaple (aij's) may reflect the "helpfulness" to bring about
feasibility. This is one way to determine which variable will be
introduced into a partial solution.

(4) The last enumerated feasible solution sets up a new upper
bound for objective function coefficients, This guarantees tnat the
objective value is always being improved and that the last feasible
solution fathoumed is optimal.

(5) For a n-variable 0-1 linear integer programming probleim,
there are a total of 2" possible solutions. No matter how large the

number of possible solutions could be, the number is finite. Therefore,
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the solution enumeration process of Balas' additive algorithm would come
to an end after a finite number of iterations. Since most of tne
solutions will be enumerated implicitly and only very small portion of
the solutions will be enumerated explicitly, the solution enumeration
process should terminate after a reasonable number of iterations. It

- should be noted here, however, that this 'reasonable nuaber' still could
be too large to be cost-effective if there are too many variables
involved.

(6) The solution enumeration process is a process of
examination, meaning that when the process is finished, all thne
solutions (not necessarily feasible) nave been examined either
explicitly or implicitly. This, naturally, does not guarantee a
feasible solution for sure. When Balas' additive algorithm is applied
to solve a zero-one programning problem and no feasipole solution is
found at the end of the enumeration process, then there is no feasible

solution from the problem itself rather than from the algorithm!

II.4 Customary Precedent Constraint Formulation

As we shall see later in chapter III, to provide a solution to
the Grigg River Mine problem stated in chapter I, we must face a large
amount of SR among benches from the same pits due to the definition of
one bencih as one decision variable.

To accomplish the coal tonnage and waste BCHM requirewents, we
are to determine, for each period, wnich bencnh from which pit ought to

be mined. If the benches of 3 pits are to be considered in one period
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and each pit has 15 benches on average, we would nave 3 x 15; i.e., 45
SR to consider.

In 0-1 programning, the SR, or precedent constraints, are
customarily formulated in this way (Plane, McMillan,dr, 1971) :

If x; must precede X §» then x5 > xJ For example, if xq must
precede x,, we set xq > Xy, One SR will basically need one constraint
inequality.

For 45 SR, 45 inequalities would be needed. The more SR is
involved, the more SR constraints will be needed. Five aspects have
stimulated a search for a more efficient SR formulation with an attempt
to reduce the number of SR constraints and the computer execution time.
These five aspects are listed as follows:

1) During a solution process, a solution must be examined by
every problem constraint at a given iteration.

2) The time spent on a constraint computation has little to do
with the number of variables in that constraint, i.e., the time spent on
the SR constraints is almost the same as the time spent on the basic
problem constraint.

3) The more constraints are involved in a problem formulation,
the more time is needed to examine them at a given iteration.

4) The more iterations are involved to solve a problem, the
more time will be spent on the SR constraints.

5) The computer execution time for the 0-1 programming problem
is too long to be cost-effective when the number of decision variables

is large (above 40 - 50).
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It has been found tnat it is possible to reduce the number of
SR constraints and the computer execution time enormously when the SR
awmong the 0-1 decision variables possess a special feature (See Appendix
E). This special feature is that the SR can be groupéd into several Sg
sets and the number of SR sets is much simaller than the total number of
SR. Also, each SR set should consist of successive decision variables
linked together like a chain. For example, x12x22x3 is one SR set of
which the variables are linked together like a chain. x52x62x7 forms
anotner set (chain). But, these two chains cannot be linked together as
one chain because X, is missing. Therefore, they must be viewed as two
SR sets. |

The SR involved in the Grigg River Mine problem possesses this
special feature because the benches from one pit form one SR chain and
the nuwaber of pits is much less than the number of benches.

SR constraint formmulation involving such a special feature is

developed next.

II.5 Development of a Formulation
In dealing with a 0-1 programming problem, suppose there are n
decision variables labeled X19X25X3yeesXp with a priority segquence from
the highest to the lowest. If Xq has the highest priority and X, the
lowest, a feasible solution (in terms of completed partial solutions)
would be X11X2yX3yeeeX g, where 1 < g < n.
Based on the fact that the decision variables in a 0-1

programing problem can achieve only values of either O or 1 and pased
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on the implicit enumeration principle, a SR constraint formulation can

be developed this way:

First, for one set of SR, a discrete function B(q) is defined

as given by equation (2.3).

q
B(g) = Z aj for 1 <q<&n (2.3)
J=1
where n = total number of decision variables in a 0-1 problem;
q = maximum subscript value of decision variables in
completions of a partial solution at a given
iteration;
aj = convenient constant values assigned by user at
problem formulation stage; and
aj >0 for xJ-'s subject to SR,

aj = 0 otherwise.

Next, we define another discrete function S(gq) as given in
equation (2.4) below.

q

Z ajxj =38(g) for 1<q<n (2.4)
=]

Gt

where in (2.4), except X5 all elements have been defined as
in (2.3). XJ-'S are decision variables of the 0-1 problem under study.
Finally, we combine (2.3) with (2.4) and get (2.5):
q q
ajXj :Z ay for 1<q<n (2.5)
j=1 j=1
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To apply (2.5) as single SR constraint set, one assumption is
necessary. This assumption is that one knows in advance which decision
variables are subject to SR and which are not.

The assumption tells whicn specific a j should be assigned zero
and which specific aj should be assigned a convenient positive, non-zero
value. Since we have already known that q < n, the assumption will help
us to quantify B(q) and aj's in the above equations.

It should oe noted here that since q is defined as the maximum
subscript value of decision variables in the current solution under
examination, q will vary according to the maximum subscript values of
solutions at different iterations during the solution enumeration
process. It should also be noted that the equation (2.5) assumes a
priority sequence from the highest to the lowest for x J-'s when j
achieves a sequence values of 1,2,3, ..., 0.

During the solution enumeration process, suppose we are in kth
iteration. Every element in (2,5) is known. The value of g will
determine how many aj's are involved. Since we have assigned zero
values to aJ-'s of those variables which are not subjected to SR, (2.5)
has no effect on the x J-'s which are not subject to SR. Also, since
equation (2.5) can be satisfied only when all xj's are 1's corresponding
to all aj's > 0 and since this implies that specified SR is being met,
(2.5) can effectively serve as single composite SR constraint for a SR
chain.

Often, there exists more than one set of SR chains among

decision variables of zero-one programming problens, as is the case with
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our problem. The benches from one pit constitutes one SR chain. We can
handle the situation by letting one constraint equation to represent
each set of the SR chain, following the same rule as we did for (2.5).
Therefore, if g represents the maximun subscript value of x j's of a
solution under examination at a given iteration, we develop the k-th set

of SR constraint formulation as follows:

q

q
Z Ay j (2.6)

j=1 j=1

1£q9<n

1<k<s
where in (2.6),
n = total nunber of decision variables of 0-1 problen;
q = the maximumn subscript value of decision variables in a

solution under examnination;

k = subscript for a given SR chain;

agj = convenient constant values assigned oy user at problem
formulation stage for the k-th set of SR chain; and
agj > 0 for xj's subject to SR;
agj = 0 otherwise,

Now, we have generalized (2.5) to (2.0), namnely, from taking

care of only one set of SR to multi-set of SR.

I1.6 Proof of the New Formulation

There are five aspects that require proof in equation (2.5)



and (2.6). Since (2.6) is derived from (2.5), the proof of equation
(2.5) will be sufficient for both of the equations. The first is that
one q value corresponds to one unique SR only. The second is that the
value of q which represents the maximun subscript value of x j's in a
partial solution under examination is completely traceable during
solution enumeration process. The third is that combining (2.5) with
the customary zero-one programning formulation (2.1) will not result in
the solution enumeration process to become divergent. The fourth is
that the equality in equation (2.5) can be relaxed to greater than or
equal type. And finally, the fifth is that a substitution of Xj with (1
- Yj ) will only affect (2.5) when q is greater than or equal to j.

Proof of the first aspect :

From the definition of discrete function B(q), we know that
the coefficients of the a J-'s are all non-negative constants. Therefore,
B(q) is an increasing function; i.e., for any gy 2 qy, B(qp) 2 B(qy).

Since the g's and aq's correspond to X,'s on a one to one basis, a

q
change in the maximum subscript value will change the pattern of aq's
and the value of q as well. A change in the value of q will result in a
change in the value of B(q). Therefore, corresponding to a unique value
of q, there exists a unique value of B(q) so that we get a unique
pattern of xq's (q = 1,2, ... , n) through (2.5).

Proof of the second aspect :

To introduce (2.5) into the zero-one programning formulation,

we must trace the value of q at each iteration of solution enumeration

process of Balas' implicit enumeration algorithm so that we can



22

calculate tne value of B(q) at each step as a right hand side value,
Fortunately, if we recall the solution enumeration process of Balas'
implicit enumeration algorithm, the maximum subscript value of Xq in a
partial solution is always known to us at a given iteration. Therefore,
the value of q is traceable and B(q) can be calculated at each step of
the solution enumeration process. This is important because this means
that (2.5) can be treated the same way as the usual zero-one programning
constraints,

Proof of the third aspect :

Since the value of B(q) keeps changing at each step of the
solution enumeration process, one may question if the solution
enumeration process will ever end. The answer is yes. From (2.5), the
possible values of B(q) are merely the sum of all possible combinations
among the left hand side coefficients to insure that all feasible
solutions will satisfy the SR. Also, one value of B(q) correponds to a
unique pattern of the Afs. Since Balas' additive algorithm is
essentially a solution enumeration process for all possible 2" solutions
and since the solutions which can satisfy constraint (2.5) are all
within the possible solution list, the solutions which satisfy equation
(2.5) should all be enumerated during the solution enumeration process.

In Balas' implicit enumeration algorithm, a constraint only
serves to determine whether or not a solution is feasible. If, during
enumeration process, any one of constraints is violated, the current
‘partial solution is nevertheless enumerated. A new partial solution is

next formed and the enumeration process continpes. Once all possible
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solutions are enumerated explicitly or implicitly, the enumeration
process is terminated. If we do not obtain any feasible solutions at
the end of the solution enumeration, this fact only mmeans that the
problem under study has no feasible solution. Therefore, the
incorporation of (2.5) into the general zero-one programming formulation
will not cause the enumeration process to diverge.

Proof of the fourth aspect:

The equality constraint of equation (2.5) can be relaxed to
greater than or equal type and the greater than or equal constraint has
the same effect as the equality of (2.5) in meeting the SR. To prove
this, we need only to prove that the left hand side sum value will never
become greater than the RHS value in (2.5). Since xj's can only achieve
values of either 0 or 1 and all other elements in (2.5) are identical on
a one to one basis, the left hand side value will always be less than or
equal to the RHS value in (2.5). Therefore, the equal type constraint
in (2.5) is identical to the greater than or equal type constraint in
terms of specifying the SR constraint. Since we need to formulate one
equality constraint into two inequality constraints in standard 0-1
problem formulation, the above proof serves to eliminate the other half
constraints and shows that the remaining half SR constraints are still
sufficient for our purposes.

Proof of the fifth aspect:

A substitution of x; with (1 - Yj) will only affect the B(qQ)'s
when q is greater than or equal to j. To view this more clearly, we

extend equation (2.5) as follows:
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g=1: ajixy

a1
g=2: ajXq + axxp = aq + ap
q=3: aqXq + apXy + azxz = a1 + ap + ag
g=n: a@Xq + agXp + ... @pXpy T 87 + @y + ...+ ay
From above, we can see that there is one relationship which
holds to be true for every j on the right hand side, i.e., B(j) = B(j=1)
+ aj. There is a similar relationship for the left hand side of the
equation. It can be seen that a substitution of X3 with (1 - y3) will
affect all but the first two of thne above equations since there is no X3
in the first two equations. It is not difficult to reason that there is
a similiar general rule for all substitutions on the Xs's, i.e., a
substitution of X with (1 - yj) will only affect the B(q)'s when q is
greater than or equal to j. This proof prevents us froam simply
suostracting aj's value from all the right hand side elements when we
maKke the substitution,
Wwith the discussions so far, we are ready to combine (2.0)

with the customary zero-one programaing formulation defined by (2.1) to

get a generalized zero-one programming formulation,

II.7 Generalization of Standard Zero-One Programming Formulation

By combining the customary zero-one programming formulation of

(2.1) with the formulation of (2.6) developed specifically for sets of
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SR chains, we get a generalized zero-one progranming formulation tnat
can accommodate sets of SR chains among decision variables:

n

Miniwize: Z cjxj

Subject to: j=1 n

q q
Z aijj _)_ Z akJ (2.7)

where :

n = total number of decision variables in problem formulation;

m = number of basic problem constraints excluding SR;

s = total number of SR constraint sets;

q = the maximun subscript value of decision variables in a
solution under examination,

cj = non-negative coefficient of objective function;

pj = customary RHS value for the basic problem formulation;

ajj = coefficient of basic problem constraint,
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agj = coefficient whose value are assigned by user at

problem formulation stage; and
a > 0 for decision variables subject to SR;
'akj = 0 otherwise.

In the above generalized formulation of zero-one programmning,
the objective function and the first m constraint inequalities are the
customary zero-one programming formulation. Only those s constraints
are added for SR, If there is no SR at all in a 0-1 problem, the
additional constraints specifically for SR will be automatically dropped
from the problem formulation, thereby, reducing (2.7) to the customary

zero-one programming formulation.



CHAPTER III

FORMULATION OF THE GRIGu RIVER MINE PROSLEY

III.1 Analysis of the Problem

The Grigg River Mine problem has three requirements. These
are: 1) to obtain a certain amount of coal tonnage and waste BCH
during each planning period; 2) to follow approximately certain pit
mining sequence; and 3) to control the total number of pits working
during each planning period. For illustration purposes, the coal
tonnage and waste BCM information for pits J{ and AB are shown in figure
3-1, where the coal tonnage and waste BCiM inforination are given by
benches. Tnerefore, the smallest mining section for planning purposes
is one bench.

To accomplisn the coal tonnage and waste BCM requirements for
a period, we need to select benches from each pit under consideration
and to calculate tne compined coal tonnage and waste BCHM from the
benches selected.

The pit mining sequence and the number of pits working can be
met by supjective judgement since no clear cut objective exists, Tne pit
mining sequence specified in table 1-2 (Page 5) actually sorts all the
18 pits into 4 pit lines, with sequence free pits NO,JK and AB in 3
separate lines and the rest of the sequence subjected 15 pits in one

line (See Figure 3-2). The simplest way of meeting the pit mining
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