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ABSTRACT 

This thesis describes the application of the 

modified D-algorithm on the iterative network and compares 

its efficiency against that of the intelligent Automatic 

Sequential Circuit Test System, SCIRTSS. 

The major objective of this research was to develop 

a software architecture, which is a modified D-algorithm 

software, adapted for iterative combinational logic 

circuits. Secondarily, the performance of both 

test-generation methods, SCIRTSS and the modified 

D-algorithm, were compared by applying them to three pairs 

of functionally equivalent sequential and iterative 

circuits. 



CHAPTER 1 

INTRODUCTION 

The goal of this research is to compare the 

efficiency of the intelligent Automatic Sequential Circuit 

Test System, SCIRTSS [10] , with application of the 

D-algorithm on analogous Iterative Networks. 

1.1 Objectives 

Automatic test generation programs usually deal 

with the digital sequential circuit itself. This thesis 

presents another kind of approach for testing circuits. It 

is proved that every sequential circuit has a logical 

equivalent iterative combinational circuit. Thus, the 

approach of this research is to apply a test-generation 

algorithm to the iterative network and compare its 

performance against that of SCIRTSS. 

The results of this research will be : (1) a shell 

program, which includes a modified D-algorithm software 

architecture, adapted for iterative combinational logic 

circuits. (2) three pairs of carefully designed logically 

equivalent circuits for sequential circuit and iterative 

network. 
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(3) comparison of the efficiency of the SCIRTSS GO-GET mode 

on a sequential circuit with the shell program on iterative 

network. The programming work of this research was done on 

VAX-11/750 (VMS version 4.2) with FORTRAN. 

1.2 SCIRTSS 

The Sequential Circuit Test System, SCIRTSS, is an 

automatic test generation system which accepts a functional 

description of a digital sequential circuit described in a 

Hardware Programming Language, AHPL [9]. AHPL is a clocked 

mode, register transfer type language which can be used to 

describe synchronous and asynchronous sequential circuits. 

The AHPL sequences (or program) can be compiled into a 

logic gate level description which is in the format for 

interfacing with SCIRTSS. A simplified flow diagram of 

SCIRTSS is shown in Figure 1.1. 

The test vector generation of SCIRTSS is based on 

the concatenation of an input sequence found by an 

alternate application of two separate heuristic tree search 

routines; sensitization and propagation searches. The 

sensitization search finds an input sequence which will 

cause a particular network fault to be driven (stored) into 

a flip-flop or some network outputs. The propagation 

search tries to find an input sequence which will propagate 
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a stored fault from its original position to a network 

output. Immediatly following the sensitization search, the 

parallel fault simulation is applied. Therefore, it is 

possible that no untested fault will be stored at the end 

of the fault simulation. On the other hand, some other 

faults may be stored in a flip-flop after applying the 

propagation search. 

The other two major routines are a modified 

D-algoritm and a parallel fault simulator. The modified 

D-algorithm treats the sequential circuit as if it were 

combinational by considering its behaviour for only one 

clock period. The D-algorithm routine will generate a set 

of test vectors if and only if a sensitization path exists; 

otherwise it will return no test vector. Basically, the 

D-algorithm will find a test vector. The parallel fault 

simulator, fault-injection gate level simulator, simulates 

all the faulty states of the circuit in parallel and is 

thus able to find all faults detected by a particular input 

sequence. The input sequences are given either by the user 

as initial input sequences, generated randomly by SCIRTSS, 

or generated by the two search routines. 

SCIRTSS only considers stuck-at-failures and only a 

single fault active at any time. To run SCIRTSS, the user 

has to write a parameter file which consists of circuit 
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dependent information and heuristic weights for guiding the 

searches. SCIRTSS will stop when the time limit, specified 

by the user, is reached or some error occurs. The user can 

run SCIRTSS several times and change parameters on each run 

in order to find all the faults. The user can also save 

the status of the circuit at end of each run and take the 

stored status as the initial condition for the next run. 

The output file produced by SCIRTSS contains the 

information of the circuit during test. By analyzing this 

information file, the user will know the behaviour of the 

circuit well and make a good ajustment for the next run. 

SCIRTSS has been successful in automatic generation 

of sequences which detect 100% of the single faults in 

several large complex sequential circuits. The limitations 

for SCIRTSS are that only single logical faults are 

considered and all circuits operate in the clock-mode. 

1.3 Sequential Circuits and Iterative Networks 

An iterative network is a parallel digital 

structure which consists of a series of identical "cells" 

or sub-networks. Each cell of iterative network may be a 

sequential circuit, e.g. a counter or a shift register, 

which consists of a number of flip-flops, or it may be a 

combinational circuit. The iterative structure of a 
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network is an attractive feature for logic design as well 

as for testing. Generally speaking, an iterative network 

is easier to design, construct, and maintain. Also, the 

iterative network has been proved to be "testable" with a 

constant number of tests [4]. In this research, only 

iterative combinational circuits are studied. A formal 

design method for iterative networks was presented by E. J. 

McCluskey in 1958 [12]; this was similar to those of 

synchronous sequential circuits. Furthermore, it was shown 

by Zvi Kohavi [11] that every finite output sequence that 

can be produced "sequentially" by a sequential machine can 

also be produced' "spatially" (or simultaneously) by a 

combinational iterative network. 

The general iterative network structure is shown in 

Figure 1.2, where Xs are external inputs, Ys are intercell 

carries, and Zs are external outputs. The inputs are 

applied to all cells simultaneously, and the outputs are 

assumed to be generated instaneously. To synthesize a 

iterative network, if the same state assignment is selected 

for both iterative network and sequential circuits, then 

the structure of the i-th cell and the combinational logic 

part of the sequential circuit are identical. For the 

sequential case, information is fed back through 

flip-flops. For the iterative network the entire operation 

is executed instaneously by using many identical cells. 
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The behaviors of the i-th cell in a iterative network is 

funtionally equivalent to that of a sequential circuit in 

the i-th clock period. Figures 1.3 and 1.4 are examples of 

analogous a sequential circuit and an iterative network. 
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CHAPTER 2 

THE MODIFIED D-ALGORITHM FOR TASK 

The D-algorithm will be discussed in this chapter. 

The D-algorithm was introduced by Roth; it is a 

test-generation method for purely combinatioal logic 

circuits. The SCIRTSS D-algorithm is adapted from Roth to 

handle sequential circuits with feedback loops cut. The 

shell program is also a modified version of Roth's 

D-algorithm which works on iterative network. 

2.1 Roth's D-algorithm 

The D-algorithm is the first method for 

combinational test generation that was proved to be an 

algorithm. The D-algorithm was formulated precisely by J. 

Paul Roth [17, 18]. His formulation is in terms of a 

mathematical formalism, the calculus of cabical complexes. 

T h e  k e y  o f  t h i s  a l g o r i t h m  m e t h o d  i s  t o  s e n s i t i z e  a l l  

possible paths from the site of a failure to the circuit 

outputs simultaneously. 

The basic procedure of D-algorithm is as follows. 

First, pick a test for the fault in terms of the inputs of 

the failed gate. Next, generate all possible paths from 

10 
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the site of failure to all circuit outputs at the same 

time. At each step, check for cancellation caused by 

reconvergent fanout, and abandon the cancelled paths if 

this occurs (This is the forward-trace; Roth calls it the 

d-drive.) Finally, try to construct a consistent primary 

input vector which realizes all of the conditions generated 

during d-drive (This is the backward-trace; Roth calls it 

the consistency operation.) 

2.2 The SCIRTSS D-algorithm 

The original D-algorithm was designed for testing 

combinational switching digital networks. The SCIRTSS 

D-algorithm is adapted from Roth's D-algorithm. There are 

two basic features that make SCIRTSS D-algorithm more 

general than Roth's D-algorithm. First, it is capable of 

handling combinational logic sub-circuits within sequential 

circuits. Second, it is applied only to the sub-circuit 

which is related to the fault at hand instead of simulating 

the whole circuit. 

The SCIRTSS D-algorithm treats the flip-flops like 

pseudo input or output lines. When a fault effect (D or E) 

reaches a flip-flop's input or circuit's output then the 

SCIRTSS D-algorithm assumes that the fault was successfully 

propagated (forward-traced). Once a fault propagation 
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input vector is determined, the D-algorithm tries to obtain 

a sensitization input vector to sensitize the fault, i.e., 

set input to a value (1 or 0) which will make the faulty 

line assume the opposite value of the stuck-at value of the 

fault. As long as the sensitization vector is determined, 

it is concatenated with the propagation input vector to 

obtain a final test input vector. If the sensitization and 

propagation input vector collide (need different value 

assignments for same inputs), D-algorithm will try another 

path for propagation and sensitization until it has 

exhausted all possible paths or errors occur. The error 

may be : (1) the time limit set by user is reached. (2) 

the computer memory space is exceeded. The D-algorithm 

will generate a set of test vectors if and only if 

sensitization path exists, otherwise it will return no test 

vector. 

2.3 The Shell Program 

The shell program is an implementation of the 

D-algorithm taken from SCIRTSS with added control routine 

to provide for treating iterative networks with replicated 

faults. To impelement the shell program is one of the main 

tasks of this research. It carries out the procedures for 

applying the D-algorithm on iterative networks. As it was 

stated in section 1.3, a iterative network is a series of 
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cascaded identical cells and the behaviours of each cell 

represents that of its logically equivalent sequential 

circuit in a correspondent clock interval. Thus, the 

function of this shell program is to apply the D-algorithm 

on a iterative network. For the reason of comparison, it 

is perfectly fair for the shell program to invoke the same 

D-algorithm software which is used by SCIRTSS. 

The central mechanism of the shell program is as 

follows. The D-algorithm is applied on the first cell to 

find a test vector for the fault in concern. If it fails 

to find a test vector, that is, there is no fault (D or E) 

appears on any output terminal, then the shell program 

applies the D-algorithm on the second cell for the same 

fault, and repeats the same procedure until the test vector 

is found or an error is reached. The error can be : (1) 

incorrect AHPL description, (2) inappropriate circuit 

design, (3) time limit is reached, (4) exceeding computer 

memory space, (5) iterative cell array too short. Besides 

the test vector, initial value conditions (1 or 0 or X) for 

inputs must be matched to successfully complete this test 

generation. 

To run the shell program, the user must first 

compile the AHPL sequence for iterative network through 

STAGE01.EXE and ST3SCR.EXE to get a gate level wiring 
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description file. When running the shell program, the user 

will be prompted to enter appropriate information regarding 

the fault in concern and the circuit description file. An 

example is given in Figure 2.1. All those transient 

behaviours of the circuit during test generation and the 

final result will be displayed on terminal and saved in a 

file named NDALG.OUT for further analysis. 
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ENTER FILE NAME OF NETWORK DESCRIPTION : it3.dat 

ARE YOU READY TO RUN D-ALGORITHM ? y 

HOW MANY GATES IN ONE CELL ? 40 

ENTER THE NUMBER OF GATE WITH FAULT : 12 

ENTER THE NUMBER OF INPUT WITH FAULT : 2 

ENTER THE TYPE OF FAULT (0/1) : 1 

ENTER A NUMBER TO CHOOSE THE PRINT MODE : 

0 NO PRINT 

1 PRINT CIRCUIT MODE 

2 DEBUGGING MODE 1 

D-ALGORITHM 1 CELL. 

DO YOU HAVE ANY MORE FAULTS TO BE TESTED ? n 

FORTRAN STOP 

Figure 2.1: An example of running the shell program 



CHAPTER 3 

ILLUSTRATION OF APPROACH 

This chapter will present the details of how to 

compare the efficiency of SCIRTSS GO-GET mode with the 

shell program. SCIRTSS GO-GET mode finds a test vector for 

a single fault within a sequential circuit. And the shell 

program detects a single fault within an iterative network. 

3.1 Equivalent Circuits for Sequential Machine and 
Iterative Network 

The first task of this research is that how to represents 

the sequential circuit and analogous iterative network by 

AHPL descriptions. A digital system described by AHPL is 

broken into two parts, procedures and functions. The 

procedure consists of memory, control sequence and 

interconnection statements, moreover, it can also have 

other procedures or functions. The function consists of 

Combinational Logic Units (CLUNIT) only. The combinational 

logic unit is an abbreviation replacement for the same 

expressions which appear more than once and consists of a 

single connection statement or a series of connection 

statements. 

16 
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The CLUNIT's syntax provides not only the nesting 

constructions of IF-THEN and FOR-TO loop statements but 

also accepting variable parameters. Thus, the CLUNIT is a 

dynamic structures representation. 

The replication feature, FOR-TO loop statement, of 

the CLUNIT provides modeling the iterative network. The 

sequential circuit can be modeled by AHPL procedure because 

it supports memory and control sequence features. Figures 

3.1 and 3.3 show the AHPL descriptions of a sequential 

circuit the iterative network. Their logic circuit layouts 

are also shown on Figures 3.2 and 3.4. 

3.2 SCIRTSS GO-GET Mode 

The SCIRTSS is usually run to find a test sequence 

for all detected faults in a circuit. However, sometimes 

only a particular gate failure is focused. The "GO GET" 

mode will be used. It finds the test sequence for one gate 

failure specified by the user. 

The GO-GET mode takes the same proceures to 

generate a test sequence as SCIRTSS deals with all other 

faults. First, it applies a random input sequence, the 

length of it is specified in the parameter file, and 

invokes the parallel fault simulator to simulate the faulty 

state of the circuit in parallel and try to detect the 



18 

MODULE : EX. 
EXINPUTS : X; B; CLOCK. 
EXOUTPUTS : Z. 
MEMORY : Y. 
PULSES : CLOCK. 

BODY SEQUENCE : CLOCK. 
1 => (1). 

ENDSEOUENCE 
CONTROLRESET(l): 

Y <= C X & Y) + B; 
Z = Y & X. 

END. 

Figure 3.1: SQ AHPL description 

FF 

Figure 3.2: Circuit SQ 



MODULE IT 

EXINPUTS XINC53; BINC53; CLOCK 

EXOUTPUTS Z0UTC5U. 

CLUNITS NETC53 <: ITERMf5} 

PULSES CLOCK 

BODY SEQUENCE CLOCK 

1 =  > ( 1 )  

ENDSEOUENCE 

CONTROLRESET(l)? 

ZOUT = NET(XIN; BIN; 1). 

END. 

CLU : ITERM(X; B; INITIAL)f1}. 

INPUTS : XCID; BCIII; INITIAL. 

OUTPUTS : ZCI3. 

CTERMS : YCI3. 

EODY 

YC03 = (^XEOD&INITIAL) + ECOD; 

ZC03 = XC03&INITIAL; 

FOR N = 1 TO 1-1 CONSTRUCT 

YCN3 = (AXCND&YCN-13) + BEND; 

ZCN3 = XCNI1&YCN-1] 

ROF 

END 

Figure 3.3: IT AHPL description 
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fault. Second, if the simulator fails to detecte the 

fault, the D-algorithm software is invoked to generate test 

vectors (or searching nodes) for the fault. Third, 

sensitization searches are applied to store fault in 

flip-flop or sensitize it to output termial. Finally, 

propagation searches are called to propagate the stored 

fault to output or other flip-flop. The GO-GET mode keeps 

applying those procedures repeatedly, until succeddfully 

detectes the fault or error occurs in any procedure. 

3.3 The D-algorithm on an Iterative Network 

The key idea of D-algorithm is to sensitize all 

possible paths from the site of fault to all circuit 

outputs simultaneously. Following the sensitzation 

operation, it drives the consistency operation, the 

backward-trace, try to generate a primary input vector. 

The IT circuit is shown again in Figure 3.5 to illustrate 

how sensitization and consistency operations work on 

iterative network. 

Before further discusstion, the notations [n i f] 

and [a b c]->[d e f] are introduced. [n i f] means that 

the i-th input of gate number n has value (or fault) f 

appearing on it. If i=0 means the fault is on output 

terminal. [a b c]->[d e f] means [a b c] implies [d e f]. 
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Figure 3.5: D-Algorithm on IT 
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In Figure 3.5, suppose the initial condition of gate 1, 

input 2 is unknown, [1 2 X], and the fault of interest is 

gate 2, input 2 stuck at zero or [2 2 0] of cell 1. 

The sensitization operation starts at fault site of 

cell 1 : [2 2 0]->[1 2 0], [110], [2 10]. The result 

[1 2 0] conflicts the initial condition [1 2 X]. Thus, the 

sensitization operation is moved to cell 2: [5 2 0] 

->[5 1 0], [6 1 D], [6 2 0] -> [7 1 1], [7 2 D] -> [7 0 D]; 

the fault is successfully driven to output. Next, the 

consistency operation is applied : [5 2 0] -> [3 0 1] -> 

[3 1 X], [3 2 1] -> [2 0 X] -> [2 2 X] -> [1 2 X]. The 

result is the same as the initial condition [1 2 X]. 

Therefore, the fault of interest can be successfully 

detected by applying D-algorithm on cell 2; the test 

vectors are A = X01, and B= 10X; the output vector is Z = 

X0D. On the other hand, the analogous fault in its 

equivalent sequential circuit can be detected within 3 

clock periods. 

3.4 Approach 

The procedures for comparison the efficiency of two 

fault detection methods are shown as follows. 

1. Design equivalent circuits for both sequential and 
iterative circuits. 

2. Match analogous faults. 
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3. Run SCIRTSS freely. 

4. Assign initial condition. 

5. Run SCIRTSS GO-GET mode on sequential circuit. 

6. Run shell program on iterative network. 

7. Compare the results from above two runs. 

3.4.1 To Design Equivalent Circuits 

The first step is to design equivalent circuits for 

sequential circuit and iterative network with AHPL 

description. As it was mentioned on section 3.1, most of 

the time, the sequential circuit is represented by 

"procedures" in AHPL with the features of memory and 

control sequences. On the other hand, combinational logic 

unit in AHPL is used to model the iterative network because 

of its replication feature. This part of task is totally 

manual work, by the time of writing this this thesis, there 

is no automatic translator at hand to perform this task. 

To translate a sequential circuit into iterative network, 

the circuit is broken from flip-flops and expanded it by 

concatenating the same combinational part of circuit from 

the broken points. See next chapter for examples. 

In addition, a flip-flop equivalent model with 

data, clock, and conditional control inputs is shown in 

Figure 3.6. It will be discussed more detailed in the next 

chapter. 
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clock 

D Q D Q 

condition 

Figure 3.6a: D flip-flop with conditional control 

D(n) 

Q(n) 

Q(n+1) 

condition 

Figure 3.6b: Corresponding pseudo D flip-flop 
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3.4.2 To Match Analogous Faults 

The fault representation formats are different for 

SCIRTSS and modified D-algorithm software. The fault 

format for SCIRTSS is represented by one bit of a 

thirty-two-bit memory word; so, to specify one fault 

requires two parameters, namely, word number and bit 

location. To name one fault in modified D-algorithm 

software needs three parameters, namely, gate number, input 

or output number, and fault type (stuck-at-zero or 

stuck-at-one). 

To get the listing of all faults of the sequential 

circuit, the user must run SCIRTSS with a zero length input 

sequence which is specified in the line number 9 of 

parameter file. Similarly, the user can run the shell 

program for modified D-algorithm software without supplying 

any parameter to get the gate level listing. After getting 

those two listing, the matching operation is carried out 

manually again. 

3.4.3 To Run SCIRTSS Freely 

The purpose for running SCIRTSS freely is to get 

the initial condition for all flip-flops. To run SCIRTSS 

freely means that SCIRTSS just invokes the parallel fault 

simulator with random input sequence. The user can take 
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the final status remained in flip-flops as the initial 

condition for two comparison runs. 

3.4.4 To Assign Initial Condition 

For simplification the task, the initial condition 

of every flip-flop is assigned before each comparison run. 

The initial condition for sequential circuit can be 

specified in a parameter file. For the iterative network, 

initial conditions must be assigned to CLUNIT's arguments 

in AHPL program before compilation. 

3.4.5 To Run SCIRTSS GO-GET Mode 

To run SCIRTSS the user must first compile the AHPL 

program through stage 01 and stage 23 (i.e. to run 

STAGE01.EXE and ST3SCR.EXE) and create a parameter file. 

An example of parameter file for running GO-GET mode is 

given in Figure 3.7. 

3.4.6 To Run the Shell Program 

The shell program was designed to interface with 

AHPL compiler's gate listing output file. Therefore, 

before running the shell program, the AHPL program for 

iterative network also needs to be compiled by stage 01 and 

stage 23. To run the shell program, the user can run a 
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EX2 
GFFLAG---FAULT 100 

SWITCH OFF OFF OFF OFF OFF ON 

. 2 1.0 . 2 .2 .5 

10 5 0 200 20 5 1 

00 

01 

ABBREV 2 + 1 0 2 GO GET 1 

2 3 

RANDOM 0 

000222 

Figure 3.7: A parameter file for GO-GET mode 

$MYD 

IT3.DAT 
Y 

40 

54 

1 
1 
1 
N 

$TY NDALG.OUT 

Figure 3.8: A command file for the shell program 



29 

command file to save some labor. One command file for 

running the shell program is shown in Figure 3.8. 

3.4.7 To Compare the Results 

The problem of interest is two heuristic searches, 

sensitization and propagation searches, not parallel fault 

simulation. Thus, a zero length random input sequence is 

assigned in parameter file The parallel fault simulation 

will be suppressed when SCIRTSS is running, if a zero 

length input sequence is assigned. 

For fair comparison, only the time spent on two 

heuristic searches, the D-algorithm, and necessary 

calculations in the shell are counted. The way to do this 

is to put system software timer in SCIRTSS and the shell 

software architectures. All other overhead, e.g. text 

input/output or parameters' initialization, is ignored. 



CHAPTER 4 

CASE STUDIES AND RESULTS 

In this chapter, three pairs of sequential and 

iterative circuits will be studied. The research results 

are also shown in each section. 

4.1 SQl vs IT1 

SQl is a sequential circuit written in AHPL 

description. IT2 is a iterative network represented by 

combinational logic unit of AHPL. SQl and IT1 are 

analogous circuits of each other. 

4.1.1 The Circuit SQl 

The circuit SQl, Figure 4.1, is a two flip-flops 

sequential structure. The AHPL program for SQl is given in 

Figure 4.2. The circuit wiring description is shown in 

Appendex A, Table 1. It has totally seventeen gates but 

that including one dummy control flip-flop and one dummy 

output OR gate. Thus, the circuit actually has fifteen 

gates. 
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11001 

Figure 4.1: Circuit SQl 



MODULE : SOI. 

EXINPUTS : X; CLOCK. 

EXOUTPUTS : Z. 

MEMORY : YC23. 

PULSES : CLOCK. 

BODY SEQUENCE : CLOCK. 

1  = >  ( 1 ) .  

ENDSEOUENCE 

CONTROLRESET(1); 

YCOD <= YCl] + AYEOD&X: 

YC13 <= AYClDStX + AYC0D&"X + AYC03&*YC13 

Z = YCOD&AX + YC0D&YC13 + ̂ YCOD&^YCIH&X. 

END. 

Figure 4.2: SQ1 AHPL description 
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4.1.2 The Circuit IT1 

The circuit IT1, Figure 4.3, is an analogous 

equivalence of SQl. The way to get IT1 in Figure 4.3 from 

SQl in Figure 4.1 is to break circuit SQl from flip-flops 

and expand SQl from the broken points by concatenating the 

combinational part of circuit SQl. The AHPL sequence for 

circuit IT1 is shown in Figure 4.4. Comparing this 

diagram,notice that the FOR-TO loop part in combinational 

logic unit of this AHPL sequence is identical to that of 

Figure 4.2. There is slightly change between those two 

AHPL programs; that is : (1) there is "CTERMs", not memory 

elements in circuit IT1, (2) the initial condition is 

assigned to this circuit through the first cell. The CTERM 

is an intercell connection, is only known by CLUNIT itself. 

The circuit wiring description of first two cell is 

listed in Appendex A, Table 2. The first gate in this 

circuit is a dummy control flip-flop; and every cell of 

this iterative network has nineteen gates. 

4.1.3 Comparison of Results 

This comparison is done by running SCIRTSS GO-GET 

mode and the shell program for the same faults. And only 

the time taking by algorithm related calculation is 

counted. To run the shell program in this case, the author 
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Figure 4.3: Circuit ITl 

00 



35 

MODULE ITl 

EXINPUTS XINC83: CLOCK 

EXOUTPUTS Z0UTC83 

CLUNITS NETC83 <: ITERMfB}. 

PULSES CLOCK 

BODY SEQUENCE CLOCK 

1 = > (1) 

ENDSEOUENCE 

CONTROLRESET(1); 

ZOUT = NET(XIN; 1,1). 

END. 

CLU : I TERM (X; INTHI}. 

INPUTS : XCI3; INTC23. 

OUTPUTS : ZCI3. 

CTERMS : Y<2>III3. 

BODY 

Y<0>C03 = INTC13 + AINTC03&XC01; 

Y< 1>C03 = AINTII13&XC0D + AINTC03& AX[I03 +  ̂ INTCOH&^INTC 13; 

ZC03 = INTC03&AXC03 + INTC03&INTE13 + 

AINTC03Sc'-INTC13&XC03; 

FOR N = 1 TO 1-1 CONSTRUCT 

Y<0>CN3 = Y<1>CN-13 + AY<0>[IN-1D&XCN3; 

Y< 1 > CN3 = AY<l>CN-13&Xi:N3 + AY<0>CN-13&AXCN3 + 

Figure 4.4: ITl AHPL description 
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Ny<0>CN-13&AY<l>i:N-13f 

ZCNU = Y<0>CN-13&AXCN3 + Y< 0 > CN-1II&Y< 1> CN-ID + 

AY< 0>CN-13&AY< DCN-in&XCNU 

ROF. 

END. 

Figure 4.4: (continued) 
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guess it will be faster if the computations are taken 

starting from the second cell. Therefore, the time spent 

on computations should be longer if the computation were 

started from the very first cell The analogous faults of 

SQ1 and IT1 are listed in Appendix B. The randomly sampled 

faults and the testing results are shown in Table 4.1. 

Table 4.1 shows that the shell program is faster than the 

SCIRTSS GO-GET mode for all but one fault, [19 3 1]. 

4.2 SQ2 vs IT2 

IT2 is a AHPL program with one control state and 

one combinational logic unit which represents a iterative 

network. SQ2 is also a AHPL program with four flip-flops 

which constructs the main body of a sequential circuit. 

SQ2 and IT2 are logically equivalent to each other. 

4.2.1 The Circuit SQ2 

The circuit SQ2, Figure 4.5, which has four data 

flip-flops and one control state, is slightly complicated 

than SQ1. The AHPL program for SQ2 is given in Figure 4.6. 

The circuit wiring description is shown in Appendex A, 

Table 3. It has nineteen gates which includes one dummy 

control flip-flop and one dummy output OR gate. Therefor, 

the circuit SQ2 consists of seventeen active gates. 



Table 4.1: Test 1, Sampled faults and testing results 

SCIRTSS SHELL PROGRAM 

fault time (sec . ) fault time 

C2 53 1.56 COB n 
la 13 0. 77 

C 2 103 1.68 C04 0 03 0. 70 

C2 183 1.58 C06 0 03 0.75 

C3 33 1.49 C13 3 03 0.76 

n
 

OJ
 

LJ
 

• 1.77 C13 0 03 1.19 

E3 63 1.64 C15 1 13 0.25 

C3 93 1.50 C15 0 03 0. 24 

C3 103 1.51 C16 1 13 0. 26 

C3 133 1. 33 C16 0 03 0.10 

C3 163 1.63 C19 3 13 4. 07 

C3 193 1.73 C20 1 03 0.47 

L3 183 1.85 C19 0 03 0.46 

C3 203 1. 39 C20 03 0. 11 

C3 213 1 .65 C20 3 03 0. 23 
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Figure 4.5: Circuit SQ2 
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MODULE SQ2. 

EXINPUTS X; B; CLOCK 

EXOUTPUTS Z 

MEMORY YC43. 

PULSES CLOCK 

EODY SEQUENCE CLOCK 

1 = > (1) 

ENDSEOUENCE 

CONTROLRESET(1); 

YCO] <= "YCOD0X + YCIU&B + YC23&AYC3D 

Y L 1 1  < =  YC2D; 

Y L 2 1  < =  " Y C 0 D & Y C 3 D ;  

YC3U <= YC0D&YC13 + YC2H0X; 

Z = YCODSB + YC13&YC23 + AYC03&YC3D. 

END 

Figure 4.6: SQ2 AHPL description 
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4.2.2 The Circuit IT2 

The method to obtain circuit IT2 from SQ2 is the 

same as IT1 does; breaks SQ2 from data flip-flops and 

expand SQ2 from those broken points by concatenating the 

combinational part of circuit SQ2. 

The AHPL program is given in Figure 4.7. The 

combinational logic unit still plays the main role as 

representation of iterative network. By replacing all 

flip-flops to CTERMS and assigning initial condition to the 

first cell, the SQ2 can be changed to IT2. The circuit 

wiring description of the first cell is listed in Appendex 

A, Table 4. The first gate still a dummy control 

flip-flop; and every cell contains sixteen gates. 

4.2.3 Comparison of Results 

Within the time limit and memory parameters many 

single faults were not detected by one or the other or both 

programs. To save computing time for running the shell 

program, the computations were taken starting from the 

third cell. The randomly selected faults and the testing 

results are shown in Table 4.2. From Table 4.2, overall 

speaking, it shows that the D-algorithm on iterative 

network takes less time than SCIRTSS GO-GET mode on 

sequential circuit. Comparing the data individually, three 
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MODULE : IT4. 

EXINPUTS 

EXOUTPUTS 

CLUNITS 

PULSES 

BODY SEQUENCE 

1 = > (1) . 

ENDSEOUENCE 

CONTROLRESET(1); 

ZOUT = NETfXIN; BIN; 1,1,0,0). 

END. 

XINC10D; BINC10D: CLOCK. 

ZOUTCIOD. 

NETC103 <: ITERMflO}. 

CLOCtC. 

CLOCK. 

CLU : ITERM(X; B; INT)f13. 

INPUTS : XCI3; BCID; INTC4D. 

OUTPUTS : ZEID. 

CTERMS : Y<4>CID. 

BODY 

Y<0>C03 = ^INTCODQXCO] + INTC13&BC0D + INTC23& AINTC3]; 

Y<1>E0D = INTC23; 

Y< 2 > C OH = AINTC0]&INTL3D; 

Figure 4.7: IT2 AHPL description 



Y<3>C0D = INTCOU&INTCID + INTC230XCO3; 

ZHOU = INTCOD0BCOD + INTC1D&INTC2D + AINTC03&INTC3D 

FOR N = 1 TO 1-1 CONSTRUCT 

Y<0>CND = AY< 0>CN-130XCN3 + Y< 1>CN-IU&BCNII + 

Y<2>CN-1D&^Y<3>CN-11; 

Y<1> CN1 = Y<2>CN-13: 

Y< 2 > END = *Y<0>EN-1I]&Y<3>CN-1I1: 

Y< 3 > CNH = Y<0>CN-13&Y<1>CN-13 + Y<2>CN-1D@XCN3; 

ZEND = Y<O>CN-130BCN] + Y<1>CN-1D&Y<2>CN-13 + 

AY<0>CN-13&Y<3>CN-1D 

ROF. 

END. 

Figure 4.7: (continued) 


