
INFORMATION TO USERS

This reproduction was made from a copy of a manuscript sent to us for publication
and microfilming. While the most advanced technology has been used to pho
tograph and reproduce this manuscript, the quality of the reproduction is heavily
dependent upon the quality of the material submitted. Pages in any manuscript
may have indistinct print. In all cases the best available copy has been filmed.

The following explanation of techniques is provided to help clarify notations which
may appear on this reproduction.

1. Manuscripts may not always be complete. When it is not possible to obtain
missing pages, a note appears to indicate this.

2. When copyrighted materials are removed from the manuscript, a note ap
pears to indicate this.

3. Oversize materials (maps, drawings, and charts) are photographed by sec
tioning the original, beginning at the upper left hand corner and continu
ing from left to right in equal sections with small overlaps. Each oversize
page is also filmed as one exposure and is available, for an additional
charge, as a standard 35mm slide or in black and white paper format.*

4. Most photographs reproduce acceptably on positive microfilm or micro
fiche but lack clarity on xerographic copies made from the microfilm. For
an additional charge, all photographs are available in black and white
standard 35mm slide format.*

•For more information about black and white slides or enlarged paper reproductions,
please contact the Dissertations Customer Services Department.

T TA/f.T Dissertation
U 1VA1 Information Service
University Microfilms International
A Bell & Howell Information Company
300 N. Zeeb Road, Ann Arbor, Michigan 48106

1328485

Chen, Daven

COMPARISON OF SCIRTSS EFFICIENCY WITH D-ALGORITHM APPLICATION
TO ITERATIVE NETWORKS

The University of Arizona M.S. 1986

University
Microfilms

International 300 N. Zeeb Road, Ann Arbor, Ml 48106

COMPARISON OF SCIRTSS EFFICIENCY WITH

D-ALGORITHM APPLICATION TO ITERATIVE NETWORKS

by

D a v e n C h e n

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
for the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN COMPUTER ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 8 6

STATEMENT BY AUTHOR

This thesis has been submitted in partial
fulfillment of requirements for an advanced degree at the
University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of
the Library.

Brief quotations from this thesis are allowable
without special permission, provided that accurate
acknowlegment of source is made. Requests for permission
for extended quotation from or reproduction of this
manuscript in whole or in part may be granted by the head
of the major department or Dean of the Graduate College
when in his or her judgment the proposed use of the
material is in the interests of scholarship. In all other
instances, however, permission must be obtained from the
author.

SIGNED:

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

FredricJjfJ. Hill
Professor of

Electrical and Computer Engineering

Datre

ACKNOWLEDGMENTS

Most of the credit for the research goes to

Professor Fredrick J. Hill to whom I am most indebted not

only for technical advice but also for his patience

throughout this research. I also would like to thank my

parents for their support and encouragement.

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS vi

LIST OF TABLES viii

ABSTRACT ix

CHAPTER

1. INTRODUCTION 1

1.1 Objectives 1
1.2 SCIRTSS 2
1.3 Sequential Circuits and

Iterative Networks 5

2. THE MODIFIED D-ALGORITHM FOR TASK 10

2.1 Roth's D-algorithm 10
2.2 The SCIRTSS D-algorithm 11
2.3 The Shell Program 12

3. ILLUSTRATION OF APPROACH .' 16

3.1 Equivalent Circuits for Sequential
Machine and Iterative Network 16

3.2 SCIRTSS GO-GET Mode 17
3.3 The D-algorithm on an Iterative Network . . 21
3.4 Approach 23

3.4.1 To Design Equivalent Circuits ... 24
3.4.2 To Match Analogous Faults 26
3.4.3 To Run SCIRTSS Freely 26
3.4.4 To Assign Initial Condition 27
3.4.5 To Run SCIRTSS GO-GET Mode 2 7
3.4.6 To Run the Shell Program 27
3.4.7 To Compare the Results 29

4. CASE STUDIES AND RESULTS 30

i v

V

TABLE OF CONTENTS—Continued

Page

4.1 SQl vs ITl 30
4.1.1 The Circuit SQl 30
4.1.2 The Circuit ITl 33
4.1.3 Comparison of Results 33

4.2 SQ2 vs IT2 37
4.2.1 The Circuit SQ2 37
4.2.2 The Circuit IT2 41
4.2.3 Comparison of Results 41

4.3 SQ3 vs IT3 45
4.3.1 The Circuit SQ3 (HWTEST) 45
4.3.2 The Circuit IT3 48
4.3.3 Comparison of Results 48

5. SUMMARY AND SUGGESTIONS FOR FURTHER WORK 56

5.1 Summary 56
5.1.1 The General Requirements for

Equivalent Circuits 56
5.1.2 The Specifications for

the Example Circuits 57
5.1.3 The Comparison of Efficiency 58
5.1.4 To Run Parallel Fault Simulator. . . 59

5.2 Suggestions for Further Work 59
5.2.1 The D-algorithm Software 62
5.2.2 The Nine-value Model 63
5.2.3 The Intelligent Algorithms 68

6. CONCLUSION 69

APPENDIX A: THE CIRCUIT WIRING DESCRIPTIONS 71

APPENDIX B: ANALOGOUS FAULTS OF SQl AND ITl 101

APPENDIX C: ANALOGOUS FAULTS OF SQ3 AND IT3 104

APPENDIX D: CACULUS OF NINE VALUES 109

REFERENCES 112

LIST OF ILLUSTRATIONS

Figure Page

1.1 SCIRTSS Block Diagram 3

1.2 General structure of an iterative network 8

1.3 Synchronous sequential circuit M 8

1.4 Corresponding iterative combinational
circuit of M 9

2.1 An example of running the shell program 15

3.1 SQ AHPL description 18

3.2 Circuit SQ 18

3.3 IT AHPL description 19

3.4 Circuit IT 20

3.5 D-Algorithm on IT 22

3.6a D flip-flop with conditional control 25

3.6b Corresponding pseudo D flip-flop 25

3.7 A parameter file for GO-GET mode 28

3.8 A command file for the shell program 28

4.1 Circuit SQ1 31

4.2 SQ1 AHPL description 32

4.3 Circuit IT1 34

4.4 IT1 AHPL description 35

4.5 Circuit SQ2 39

4.6 SQ2 AHPL description 40

4.7 IT2 AHPL description 42

v i

vii

LIST OF ILLUSTRATIONS—Continued

Figure Page

4.8 SQ3 AHPL description 46

4.9 Circuit SQ3 (HWTEST) 47

4.10 Circuit IT3 50

4.11 IT3 AHPL description 51

5.1 Example circuit 64

5.2 Test generation for fault d SAl 64

LIST OF TABLES

Table Page

4.1 Test 1 sampled faults and testing results 38

4.2 Test 2 sampled faults and testing results 44

4.3 Test 3 sampled faults and testing results 55

5.1 Statistics of comparison results (1) 60

5.2 Statistics of comparison results (2) 60

5.3 Statistics of comparison results (3) 61

5 . 4 a S t a t i s t i c s of. r u n n i n g t h e fa u l t s i m u l a t o r

f o r m o s t d i f f i c u l t d e t e c t e d f a u l t s 6 1

5 . 4 b S t a t i s t i c s o f r u n n i n g t h e fa u l t s i m u l a t o r

f o r e a s i e r d e t e c t e d f a u l t s 6 1

v i i i

ABSTRACT

This thesis describes the application of the

modified D-algorithm on the iterative network and compares

its efficiency against that of the intelligent Automatic

Sequential Circuit Test System, SCIRTSS.

The major objective of this research was to develop

a software architecture, which is a modified D-algorithm

software, adapted for iterative combinational logic

circuits. Secondarily, the performance of both

test-generation methods, SCIRTSS and the modified

D-algorithm, were compared by applying them to three pairs

of functionally equivalent sequential and iterative

circuits.

CHAPTER 1

INTRODUCTION

The goal of this research is to compare the

efficiency of the intelligent Automatic Sequential Circuit

Test System, SCIRTSS [10] , with application of the

D-algorithm on analogous Iterative Networks.

1.1 Objectives

Automatic test generation programs usually deal

with the digital sequential circuit itself. This thesis

presents another kind of approach for testing circuits. It

is proved that every sequential circuit has a logical

equivalent iterative combinational circuit. Thus, the

approach of this research is to apply a test-generation

algorithm to the iterative network and compare its

performance against that of SCIRTSS.

The results of this research will be : (1) a shell

program, which includes a modified D-algorithm software

architecture, adapted for iterative combinational logic

circuits. (2) three pairs of carefully designed logically

equivalent circuits for sequential circuit and iterative

network.

1

2

(3) comparison of the efficiency of the SCIRTSS GO-GET mode

on a sequential circuit with the shell program on iterative

network. The programming work of this research was done on

VAX-11/750 (VMS version 4.2) with FORTRAN.

1.2 SCIRTSS

The Sequential Circuit Test System, SCIRTSS, is an

automatic test generation system which accepts a functional

description of a digital sequential circuit described in a

Hardware Programming Language, AHPL [9]. AHPL is a clocked

mode, register transfer type language which can be used to

describe synchronous and asynchronous sequential circuits.

The AHPL sequences (or program) can be compiled into a

logic gate level description which is in the format for

interfacing with SCIRTSS. A simplified flow diagram of

SCIRTSS is shown in Figure 1.1.

The test vector generation of SCIRTSS is based on

the concatenation of an input sequence found by an

alternate application of two separate heuristic tree search

routines; sensitization and propagation searches. The

sensitization search finds an input sequence which will

cause a particular network fault to be driven (stored) into

a flip-flop or some network outputs. The propagation

search tries to find an input sequence which will propagate

A H P L D e s i g n

H o m i n g E x p e r i m e n t

S e l e c t F a u l t s

N o Y e s F a u l t s
St o r e d ?

D - A l g o r i t h m P r o p a g a t i o n S e a r c h

S e n s i t i z a t i o n S e a r c h

P a r a l l e l F a u l t S i m u l a t i o n

F a u l t L i s t R e d u c t i o n

A l l F a u l t s

D e t e c t e d ?
Y e s N o

•? E n d

F i g u r e 1 . 1 : S C I R T S S B l o c k D i a g r a m

4

a stored fault from its original position to a network

output. Immediatly following the sensitization search, the

parallel fault simulation is applied. Therefore, it is

possible that no untested fault will be stored at the end

of the fault simulation. On the other hand, some other

faults may be stored in a flip-flop after applying the

propagation search.

The other two major routines are a modified

D-algoritm and a parallel fault simulator. The modified

D-algorithm treats the sequential circuit as if it were

combinational by considering its behaviour for only one

clock period. The D-algorithm routine will generate a set

of test vectors if and only if a sensitization path exists;

otherwise it will return no test vector. Basically, the

D-algorithm will find a test vector. The parallel fault

simulator, fault-injection gate level simulator, simulates

all the faulty states of the circuit in parallel and is

thus able to find all faults detected by a particular input

sequence. The input sequences are given either by the user

as initial input sequences, generated randomly by SCIRTSS,

or generated by the two search routines.

SCIRTSS only considers stuck-at-failures and only a

single fault active at any time. To run SCIRTSS, the user

has to write a parameter file which consists of circuit

5

dependent information and heuristic weights for guiding the

searches. SCIRTSS will stop when the time limit, specified

by the user, is reached or some error occurs. The user can

run SCIRTSS several times and change parameters on each run

in order to find all the faults. The user can also save

the status of the circuit at end of each run and take the

stored status as the initial condition for the next run.

The output file produced by SCIRTSS contains the

information of the circuit during test. By analyzing this

information file, the user will know the behaviour of the

circuit well and make a good ajustment for the next run.

SCIRTSS has been successful in automatic generation

of sequences which detect 100% of the single faults in

several large complex sequential circuits. The limitations

for SCIRTSS are that only single logical faults are

considered and all circuits operate in the clock-mode.

1.3 Sequential Circuits and Iterative Networks

An iterative network is a parallel digital

structure which consists of a series of identical "cells"

or sub-networks. Each cell of iterative network may be a

sequential circuit, e.g. a counter or a shift register,

which consists of a number of flip-flops, or it may be a

combinational circuit. The iterative structure of a

6

network is an attractive feature for logic design as well

as for testing. Generally speaking, an iterative network

is easier to design, construct, and maintain. Also, the

iterative network has been proved to be "testable" with a

constant number of tests [4]. In this research, only

iterative combinational circuits are studied. A formal

design method for iterative networks was presented by E. J.

McCluskey in 1958 [12]; this was similar to those of

synchronous sequential circuits. Furthermore, it was shown

by Zvi Kohavi [11] that every finite output sequence that

can be produced "sequentially" by a sequential machine can

also be produced' "spatially" (or simultaneously) by a

combinational iterative network.

The general iterative network structure is shown in

Figure 1.2, where Xs are external inputs, Ys are intercell

carries, and Zs are external outputs. The inputs are

applied to all cells simultaneously, and the outputs are

assumed to be generated instaneously. To synthesize a

iterative network, if the same state assignment is selected

for both iterative network and sequential circuits, then

the structure of the i-th cell and the combinational logic

part of the sequential circuit are identical. For the

sequential case, information is fed back through

flip-flops. For the iterative network the entire operation

is executed instaneously by using many identical cells.

7

The behaviors of the i-th cell in a iterative network is

funtionally equivalent to that of a sequential circuit in

the i-th clock period. Figures 1.3 and 1.4 are examples of

analogous a sequential circuit and an iterative network.

8

x l l x l 2 xl n x 2 1 x 2 2 x2 n

t
» • »

i t

Cell 1 Cell 2 Cell 1 Cell 2
•

•

Cell 1
•

•

Cell 2 Cell 1 Cell 2

i '
• « •

» f \ * '

• • •

' 1

xil xi2 xin

•Y21

•Y22

yil

yi2

•Y2k yik

Cell i

-Yil

»Yi2

•Yik

zll zl2 zlm z21 z22 z2m

> > y

zil zi2 zim

Figure 1.2: General structure of an iterative network

clock

FF

Z

Figure 1.3: Synchronous sequential circuit M

x(l) x(2) x(p)

r ~

y(D 1(1) y(2) Y(2)^
F(l) F(2)

c(2) c(p) c(l)

z(l) z (2) z(p)

time frame 1 time frame 2 time frame p

Figure 1.4: Corresponding iterative combinational circuit of M

vO

CHAPTER 2

THE MODIFIED D-ALGORITHM FOR TASK

The D-algorithm will be discussed in this chapter.

The D-algorithm was introduced by Roth; it is a

test-generation method for purely combinatioal logic

circuits. The SCIRTSS D-algorithm is adapted from Roth to

handle sequential circuits with feedback loops cut. The

shell program is also a modified version of Roth's

D-algorithm which works on iterative network.

2.1 Roth's D-algorithm

The D-algorithm is the first method for

combinational test generation that was proved to be an

algorithm. The D-algorithm was formulated precisely by J.

Paul Roth [17, 18]. His formulation is in terms of a

mathematical formalism, the calculus of cabical complexes.

T h e k e y o f t h i s a l g o r i t h m m e t h o d i s t o s e n s i t i z e a l l

possible paths from the site of a failure to the circuit

outputs simultaneously.

The basic procedure of D-algorithm is as follows.

First, pick a test for the fault in terms of the inputs of

the failed gate. Next, generate all possible paths from

10

11

the site of failure to all circuit outputs at the same

time. At each step, check for cancellation caused by

reconvergent fanout, and abandon the cancelled paths if

this occurs (This is the forward-trace; Roth calls it the

d-drive.) Finally, try to construct a consistent primary

input vector which realizes all of the conditions generated

during d-drive (This is the backward-trace; Roth calls it

the consistency operation.)

2.2 The SCIRTSS D-algorithm

The original D-algorithm was designed for testing

combinational switching digital networks. The SCIRTSS

D-algorithm is adapted from Roth's D-algorithm. There are

two basic features that make SCIRTSS D-algorithm more

general than Roth's D-algorithm. First, it is capable of

handling combinational logic sub-circuits within sequential

circuits. Second, it is applied only to the sub-circuit

which is related to the fault at hand instead of simulating

the whole circuit.

The SCIRTSS D-algorithm treats the flip-flops like

pseudo input or output lines. When a fault effect (D or E)

reaches a flip-flop's input or circuit's output then the

SCIRTSS D-algorithm assumes that the fault was successfully

propagated (forward-traced). Once a fault propagation

12

input vector is determined, the D-algorithm tries to obtain

a sensitization input vector to sensitize the fault, i.e.,

set input to a value (1 or 0) which will make the faulty

line assume the opposite value of the stuck-at value of the

fault. As long as the sensitization vector is determined,

it is concatenated with the propagation input vector to

obtain a final test input vector. If the sensitization and

propagation input vector collide (need different value

assignments for same inputs), D-algorithm will try another

path for propagation and sensitization until it has

exhausted all possible paths or errors occur. The error

may be : (1) the time limit set by user is reached. (2)

the computer memory space is exceeded. The D-algorithm

will generate a set of test vectors if and only if

sensitization path exists, otherwise it will return no test

vector.

2.3 The Shell Program

The shell program is an implementation of the

D-algorithm taken from SCIRTSS with added control routine

to provide for treating iterative networks with replicated

faults. To impelement the shell program is one of the main

tasks of this research. It carries out the procedures for

applying the D-algorithm on iterative networks. As it was

stated in section 1.3, a iterative network is a series of

13

cascaded identical cells and the behaviours of each cell

represents that of its logically equivalent sequential

circuit in a correspondent clock interval. Thus, the

function of this shell program is to apply the D-algorithm

on a iterative network. For the reason of comparison, it

is perfectly fair for the shell program to invoke the same

D-algorithm software which is used by SCIRTSS.

The central mechanism of the shell program is as

follows. The D-algorithm is applied on the first cell to

find a test vector for the fault in concern. If it fails

to find a test vector, that is, there is no fault (D or E)

appears on any output terminal, then the shell program

applies the D-algorithm on the second cell for the same

fault, and repeats the same procedure until the test vector

is found or an error is reached. The error can be : (1)

incorrect AHPL description, (2) inappropriate circuit

design, (3) time limit is reached, (4) exceeding computer

memory space, (5) iterative cell array too short. Besides

the test vector, initial value conditions (1 or 0 or X) for

inputs must be matched to successfully complete this test

generation.

To run the shell program, the user must first

compile the AHPL sequence for iterative network through

STAGE01.EXE and ST3SCR.EXE to get a gate level wiring

14

description file. When running the shell program, the user

will be prompted to enter appropriate information regarding

the fault in concern and the circuit description file. An

example is given in Figure 2.1. All those transient

behaviours of the circuit during test generation and the

final result will be displayed on terminal and saved in a

file named NDALG.OUT for further analysis.

15

ENTER FILE NAME OF NETWORK DESCRIPTION : it3.dat

ARE YOU READY TO RUN D-ALGORITHM ? y

HOW MANY GATES IN ONE CELL ? 40

ENTER THE NUMBER OF GATE WITH FAULT : 12

ENTER THE NUMBER OF INPUT WITH FAULT : 2

ENTER THE TYPE OF FAULT (0/1) : 1

ENTER A NUMBER TO CHOOSE THE PRINT MODE :

0 NO PRINT

1 PRINT CIRCUIT MODE

2 DEBUGGING MODE 1

D-ALGORITHM 1 CELL.

DO YOU HAVE ANY MORE FAULTS TO BE TESTED ? n

FORTRAN STOP

Figure 2.1: An example of running the shell program

CHAPTER 3

ILLUSTRATION OF APPROACH

This chapter will present the details of how to

compare the efficiency of SCIRTSS GO-GET mode with the

shell program. SCIRTSS GO-GET mode finds a test vector for

a single fault within a sequential circuit. And the shell

program detects a single fault within an iterative network.

3.1 Equivalent Circuits for Sequential Machine and
Iterative Network

The first task of this research is that how to represents

the sequential circuit and analogous iterative network by

AHPL descriptions. A digital system described by AHPL is

broken into two parts, procedures and functions. The

procedure consists of memory, control sequence and

interconnection statements, moreover, it can also have

other procedures or functions. The function consists of

Combinational Logic Units (CLUNIT) only. The combinational

logic unit is an abbreviation replacement for the same

expressions which appear more than once and consists of a

single connection statement or a series of connection

statements.

16

17

The CLUNIT's syntax provides not only the nesting

constructions of IF-THEN and FOR-TO loop statements but

also accepting variable parameters. Thus, the CLUNIT is a

dynamic structures representation.

The replication feature, FOR-TO loop statement, of

the CLUNIT provides modeling the iterative network. The

sequential circuit can be modeled by AHPL procedure because

it supports memory and control sequence features. Figures

3.1 and 3.3 show the AHPL descriptions of a sequential

circuit the iterative network. Their logic circuit layouts

are also shown on Figures 3.2 and 3.4.

3.2 SCIRTSS GO-GET Mode

The SCIRTSS is usually run to find a test sequence

for all detected faults in a circuit. However, sometimes

only a particular gate failure is focused. The "GO GET"

mode will be used. It finds the test sequence for one gate

failure specified by the user.

The GO-GET mode takes the same proceures to

generate a test sequence as SCIRTSS deals with all other

faults. First, it applies a random input sequence, the

length of it is specified in the parameter file, and

invokes the parallel fault simulator to simulate the faulty

state of the circuit in parallel and try to detect the

18

MODULE : EX.
EXINPUTS : X; B; CLOCK.
EXOUTPUTS : Z.
MEMORY : Y.
PULSES : CLOCK.

BODY SEQUENCE : CLOCK.
1 => (1).

ENDSEOUENCE
CONTROLRESET(l):

Y <= C X & Y) + B;
Z = Y & X.

END.

Figure 3.1: SQ AHPL description

FF

Figure 3.2: Circuit SQ

MODULE IT

EXINPUTS XINC53; BINC53; CLOCK

EXOUTPUTS Z0UTC5U.

CLUNITS NETC53 <: ITERMf5}

PULSES CLOCK

BODY SEQUENCE CLOCK

1 = > (1)

ENDSEOUENCE

CONTROLRESET(l)?

ZOUT = NET(XIN; BIN; 1).

END.

CLU : ITERM(X; B; INITIAL)f1}.

INPUTS : XCID; BCIII; INITIAL.

OUTPUTS : ZCI3.

CTERMS : YCI3.

EODY

YC03 = (^XEOD&INITIAL) + ECOD;

ZC03 = XC03&INITIAL;

FOR N = 1 TO 1-1 CONSTRUCT

YCN3 = (AXCND&YCN-13) + BEND;

ZCN3 = XCNI1&YCN-1]

ROF

END

Figure 3.3: IT AHPL description

initial condition

z(l)

o

-0

A(l)

BCD

cell 1

A(2)

z(2)

B(2)

cell 2

z(3)

pO

Oi

3I

A(3)

B(3)

cell 3

Figure 3.4: Circuit IT

21

fault. Second, if the simulator fails to detecte the

fault, the D-algorithm software is invoked to generate test

vectors (or searching nodes) for the fault. Third,

sensitization searches are applied to store fault in

flip-flop or sensitize it to output termial. Finally,

propagation searches are called to propagate the stored

fault to output or other flip-flop. The GO-GET mode keeps

applying those procedures repeatedly, until succeddfully

detectes the fault or error occurs in any procedure.

3.3 The D-algorithm on an Iterative Network

The key idea of D-algorithm is to sensitize all

possible paths from the site of fault to all circuit

outputs simultaneously. Following the sensitzation

operation, it drives the consistency operation, the

backward-trace, try to generate a primary input vector.

The IT circuit is shown again in Figure 3.5 to illustrate

how sensitization and consistency operations work on

iterative network.

Before further discusstion, the notations [n i f]

and [a b c]->[d e f] are introduced. [n i f] means that

the i-th input of gate number n has value (or fault) f

appearing on it. If i=0 means the fault is on output

terminal. [a b c]->[d e f] means [a b c] implies [d e f].

X 0 D

-*-L_
SAO SAO

r>

T3-

cell 1

0

cell 2

X

cell 3

Figure 3.5: D-Algorithm on IT

23

In Figure 3.5, suppose the initial condition of gate 1,

input 2 is unknown, [1 2 X], and the fault of interest is

gate 2, input 2 stuck at zero or [2 2 0] of cell 1.

The sensitization operation starts at fault site of

cell 1 : [2 2 0]->[1 2 0], [110], [2 10]. The result

[1 2 0] conflicts the initial condition [1 2 X]. Thus, the

sensitization operation is moved to cell 2: [5 2 0]

->[5 1 0], [6 1 D], [6 2 0] -> [7 1 1], [7 2 D] -> [7 0 D];

the fault is successfully driven to output. Next, the

consistency operation is applied : [5 2 0] -> [3 0 1] ->

[3 1 X], [3 2 1] -> [2 0 X] -> [2 2 X] -> [1 2 X]. The

result is the same as the initial condition [1 2 X].

Therefore, the fault of interest can be successfully

detected by applying D-algorithm on cell 2; the test

vectors are A = X01, and B= 10X; the output vector is Z =

X0D. On the other hand, the analogous fault in its

equivalent sequential circuit can be detected within 3

clock periods.

3.4 Approach

The procedures for comparison the efficiency of two

fault detection methods are shown as follows.

1. Design equivalent circuits for both sequential and
iterative circuits.

2. Match analogous faults.

24

3. Run SCIRTSS freely.

4. Assign initial condition.

5. Run SCIRTSS GO-GET mode on sequential circuit.

6. Run shell program on iterative network.

7. Compare the results from above two runs.

3.4.1 To Design Equivalent Circuits

The first step is to design equivalent circuits for

sequential circuit and iterative network with AHPL

description. As it was mentioned on section 3.1, most of

the time, the sequential circuit is represented by

"procedures" in AHPL with the features of memory and

control sequences. On the other hand, combinational logic

unit in AHPL is used to model the iterative network because

of its replication feature. This part of task is totally

manual work, by the time of writing this this thesis, there

is no automatic translator at hand to perform this task.

To translate a sequential circuit into iterative network,

the circuit is broken from flip-flops and expanded it by

concatenating the same combinational part of circuit from

the broken points. See next chapter for examples.

In addition, a flip-flop equivalent model with

data, clock, and conditional control inputs is shown in

Figure 3.6. It will be discussed more detailed in the next

chapter.

25

clock

D Q D Q

condition

Figure 3.6a: D flip-flop with conditional control

D(n)

Q(n)

Q(n+1)

condition

Figure 3.6b: Corresponding pseudo D flip-flop

26

3.4.2 To Match Analogous Faults

The fault representation formats are different for

SCIRTSS and modified D-algorithm software. The fault

format for SCIRTSS is represented by one bit of a

thirty-two-bit memory word; so, to specify one fault

requires two parameters, namely, word number and bit

location. To name one fault in modified D-algorithm

software needs three parameters, namely, gate number, input

or output number, and fault type (stuck-at-zero or

stuck-at-one).

To get the listing of all faults of the sequential

circuit, the user must run SCIRTSS with a zero length input

sequence which is specified in the line number 9 of

parameter file. Similarly, the user can run the shell

program for modified D-algorithm software without supplying

any parameter to get the gate level listing. After getting

those two listing, the matching operation is carried out

manually again.

3.4.3 To Run SCIRTSS Freely

The purpose for running SCIRTSS freely is to get

the initial condition for all flip-flops. To run SCIRTSS

freely means that SCIRTSS just invokes the parallel fault

simulator with random input sequence. The user can take

27

the final status remained in flip-flops as the initial

condition for two comparison runs.

3.4.4 To Assign Initial Condition

For simplification the task, the initial condition

of every flip-flop is assigned before each comparison run.

The initial condition for sequential circuit can be

specified in a parameter file. For the iterative network,

initial conditions must be assigned to CLUNIT's arguments

in AHPL program before compilation.

3.4.5 To Run SCIRTSS GO-GET Mode

To run SCIRTSS the user must first compile the AHPL

program through stage 01 and stage 23 (i.e. to run

STAGE01.EXE and ST3SCR.EXE) and create a parameter file.

An example of parameter file for running GO-GET mode is

given in Figure 3.7.

3.4.6 To Run the Shell Program

The shell program was designed to interface with

AHPL compiler's gate listing output file. Therefore,

before running the shell program, the AHPL program for

iterative network also needs to be compiled by stage 01 and

stage 23. To run the shell program, the user can run a

28

EX2
GFFLAG---FAULT 100

SWITCH OFF OFF OFF OFF OFF ON

. 2 1.0 . 2 .2 .5

10 5 0 200 20 5 1

00

01

ABBREV 2 + 1 0 2 GO GET 1

2 3

RANDOM 0

000222

Figure 3.7: A parameter file for GO-GET mode

$MYD

IT3.DAT
Y

40

54

1
1
1
N

$TY NDALG.OUT

Figure 3.8: A command file for the shell program

29

command file to save some labor. One command file for

running the shell program is shown in Figure 3.8.

3.4.7 To Compare the Results

The problem of interest is two heuristic searches,

sensitization and propagation searches, not parallel fault

simulation. Thus, a zero length random input sequence is

assigned in parameter file The parallel fault simulation

will be suppressed when SCIRTSS is running, if a zero

length input sequence is assigned.

For fair comparison, only the time spent on two

heuristic searches, the D-algorithm, and necessary

calculations in the shell are counted. The way to do this

is to put system software timer in SCIRTSS and the shell

software architectures. All other overhead, e.g. text

input/output or parameters' initialization, is ignored.

CHAPTER 4

CASE STUDIES AND RESULTS

In this chapter, three pairs of sequential and

iterative circuits will be studied. The research results

are also shown in each section.

4.1 SQl vs IT1

SQl is a sequential circuit written in AHPL

description. IT2 is a iterative network represented by

combinational logic unit of AHPL. SQl and IT1 are

analogous circuits of each other.

4.1.1 The Circuit SQl

The circuit SQl, Figure 4.1, is a two flip-flops

sequential structure. The AHPL program for SQl is given in

Figure 4.2. The circuit wiring description is shown in

Appendex A, Table 1. It has totally seventeen gates but

that including one dummy control flip-flop and one dummy

output OR gate. Thus, the circuit actually has fifteen

gates.

30

11001

Figure 4.1: Circuit SQl

MODULE : SOI.

EXINPUTS : X; CLOCK.

EXOUTPUTS : Z.

MEMORY : YC23.

PULSES : CLOCK.

BODY SEQUENCE : CLOCK.

1 = > (1) .

ENDSEOUENCE

CONTROLRESET(1);

YCOD <= YCl] + AYEOD&X:

YC13 <= AYClDStX + AYC0D&"X + AYC03&*YC13

Z = YCOD&AX + YC0D&YC13 + ̂ YCOD&^YCIH&X.

END.

Figure 4.2: SQ1 AHPL description

33

4.1.2 The Circuit IT1

The circuit IT1, Figure 4.3, is an analogous

equivalence of SQl. The way to get IT1 in Figure 4.3 from

SQl in Figure 4.1 is to break circuit SQl from flip-flops

and expand SQl from the broken points by concatenating the

combinational part of circuit SQl. The AHPL sequence for

circuit IT1 is shown in Figure 4.4. Comparing this

diagram,notice that the FOR-TO loop part in combinational

logic unit of this AHPL sequence is identical to that of

Figure 4.2. There is slightly change between those two

AHPL programs; that is : (1) there is "CTERMs", not memory

elements in circuit IT1, (2) the initial condition is

assigned to this circuit through the first cell. The CTERM

is an intercell connection, is only known by CLUNIT itself.

The circuit wiring description of first two cell is

listed in Appendex A, Table 2. The first gate in this

circuit is a dummy control flip-flop; and every cell of

this iterative network has nineteen gates.

4.1.3 Comparison of Results

This comparison is done by running SCIRTSS GO-GET

mode and the shell program for the same faults. And only

the time taking by algorithm related calculation is

counted. To run the shell program in this case, the author

0/P 0/P

O O

o o

o

o

o

£3

o

o

o

o

I/p I/p

Figure 4.3: Circuit ITl

00

35

MODULE ITl

EXINPUTS XINC83: CLOCK

EXOUTPUTS Z0UTC83

CLUNITS NETC83 <: ITERMfB}.

PULSES CLOCK

BODY SEQUENCE CLOCK

1 = > (1)

ENDSEOUENCE

CONTROLRESET(1);

ZOUT = NET(XIN; 1,1).

END.

CLU : I TERM (X; INTHI}.

INPUTS : XCI3; INTC23.

OUTPUTS : ZCI3.

CTERMS : Y<2>III3.

BODY

Y<0>C03 = INTC13 + AINTC03&XC01;

Y< 1>C03 = AINTII13&XC0D + AINTC03& AX[I03 + ̂ INTCOH&^INTC 13;

ZC03 = INTC03&AXC03 + INTC03&INTE13 +

AINTC03Sc'-INTC13&XC03;

FOR N = 1 TO 1-1 CONSTRUCT

Y<0>CN3 = Y<1>CN-13 + AY<0>[IN-1D&XCN3;

Y< 1 > CN3 = AY<l>CN-13&Xi:N3 + AY<0>CN-13&AXCN3 +

Figure 4.4: ITl AHPL description

36

Ny<0>CN-13&AY<l>i:N-13f

ZCNU = Y<0>CN-13&AXCN3 + Y< 0 > CN-1II&Y< 1> CN-ID +

AY< 0>CN-13&AY< DCN-in&XCNU

ROF.

END.

Figure 4.4: (continued)

37

guess it will be faster if the computations are taken

starting from the second cell. Therefore, the time spent

on computations should be longer if the computation were

started from the very first cell The analogous faults of

SQ1 and IT1 are listed in Appendix B. The randomly sampled

faults and the testing results are shown in Table 4.1.

Table 4.1 shows that the shell program is faster than the

SCIRTSS GO-GET mode for all but one fault, [19 3 1].

4.2 SQ2 vs IT2

IT2 is a AHPL program with one control state and

one combinational logic unit which represents a iterative

network. SQ2 is also a AHPL program with four flip-flops

which constructs the main body of a sequential circuit.

SQ2 and IT2 are logically equivalent to each other.

4.2.1 The Circuit SQ2

The circuit SQ2, Figure 4.5, which has four data

flip-flops and one control state, is slightly complicated

than SQ1. The AHPL program for SQ2 is given in Figure 4.6.

The circuit wiring description is shown in Appendex A,

Table 3. It has nineteen gates which includes one dummy

control flip-flop and one dummy output OR gate. Therefor,

the circuit SQ2 consists of seventeen active gates.

Table 4.1: Test 1, Sampled faults and testing results

SCIRTSS SHELL PROGRAM

fault time (sec .) fault time

C2 53 1.56 COB n
la 13 0. 77

C 2 103 1.68 C04 0 03 0. 70

C2 183 1.58 C06 0 03 0.75

C3 33 1.49 C13 3 03 0.76

n

OJ

LJ

• 1.77 C13 0 03 1.19

E3 63 1.64 C15 1 13 0.25

C3 93 1.50 C15 0 03 0. 24

C3 103 1.51 C16 1 13 0. 26

C3 133 1. 33 C16 0 03 0.10

C3 163 1.63 C19 3 13 4. 07

C3 193 1.73 C20 1 03 0.47

L3 183 1.85 C19 0 03 0.46

C3 203 1. 39 C20 03 0. 11

C3 213 1 .65 C20 3 03 0. 23

0/P

Figure 4.5: Circuit SQ2
CO
vO

MODULE SQ2.

EXINPUTS X; B; CLOCK

EXOUTPUTS Z

MEMORY YC43.

PULSES CLOCK

EODY SEQUENCE CLOCK

1 = > (1)

ENDSEOUENCE

CONTROLRESET(1);

YCO] <= "YCOD0X + YCIU&B + YC23&AYC3D

Y L 1 1 < = YC2D;

Y L 2 1 < = " Y C 0 D & Y C 3 D ;

YC3U <= YC0D&YC13 + YC2H0X;

Z = YCODSB + YC13&YC23 + AYC03&YC3D.

END

Figure 4.6: SQ2 AHPL description

41

4.2.2 The Circuit IT2

The method to obtain circuit IT2 from SQ2 is the

same as IT1 does; breaks SQ2 from data flip-flops and

expand SQ2 from those broken points by concatenating the

combinational part of circuit SQ2.

The AHPL program is given in Figure 4.7. The

combinational logic unit still plays the main role as

representation of iterative network. By replacing all

flip-flops to CTERMS and assigning initial condition to the

first cell, the SQ2 can be changed to IT2. The circuit

wiring description of the first cell is listed in Appendex

A, Table 4. The first gate still a dummy control

flip-flop; and every cell contains sixteen gates.

4.2.3 Comparison of Results

Within the time limit and memory parameters many

single faults were not detected by one or the other or both

programs. To save computing time for running the shell

program, the computations were taken starting from the

third cell. The randomly selected faults and the testing

results are shown in Table 4.2. From Table 4.2, overall

speaking, it shows that the D-algorithm on iterative

network takes less time than SCIRTSS GO-GET mode on

sequential circuit. Comparing the data individually, three

42

MODULE : IT4.

EXINPUTS

EXOUTPUTS

CLUNITS

PULSES

BODY SEQUENCE

1 = > (1) .

ENDSEOUENCE

CONTROLRESET(1);

ZOUT = NETfXIN; BIN; 1,1,0,0).

END.

XINC10D; BINC10D: CLOCK.

ZOUTCIOD.

NETC103 <: ITERMflO}.

CLOCtC.

CLOCK.

CLU : ITERM(X; B; INT)f13.

INPUTS : XCI3; BCID; INTC4D.

OUTPUTS : ZEID.

CTERMS : Y<4>CID.

BODY

Y<0>C03 = ^INTCODQXCO] + INTC13&BC0D + INTC23& AINTC3];

Y<1>E0D = INTC23;

Y< 2 > C OH = AINTC0]&INTL3D;

Figure 4.7: IT2 AHPL description

Y<3>C0D = INTCOU&INTCID + INTC230XCO3;

ZHOU = INTCOD0BCOD + INTC1D&INTC2D + AINTC03&INTC3D

FOR N = 1 TO 1-1 CONSTRUCT

Y<0>CND = AY< 0>CN-130XCN3 + Y< 1>CN-IU&BCNII +

Y<2>CN-1D&^Y<3>CN-11;

Y<1> CN1 = Y<2>CN-13:

Y< 2 > END = *Y<0>EN-1I]&Y<3>CN-1I1:

Y< 3 > CNH = Y<0>CN-13&Y<1>CN-13 + Y<2>CN-1D@XCN3;

ZEND = Y<O>CN-130BCN] + Y<1>CN-1D&Y<2>CN-13 +

AY<0>CN-13&Y<3>CN-1D

ROF.

END.

Figure 4.7: (continued)

