
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document
photographed is "Missing Page(s)". If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of "sectioning" the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

University
MicKxilms

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

Order Number 1332237

Graphics terminal emulation on the PC

Noll, Noland LeRoy, M.S.

The University of Arizona, 1987

U-M-I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

GRAPHICS TERMINAL EMULATION ON THE PC

by

Noland LeRoy Noll

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

MASTER OF SCIENCE
WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

19 8 7

2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment
of requirements for an advanced degree at The University of
Arizona and is deposited in the University Library to be
made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without
special permission, provided that accurate acknowledgment of
source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole
or in part may be granted by the head of the major
department or the Dean of the Graduate College when in his
or her judgment the proposed use of the material is in the
interests of scholarship. In all other instances, however,
permission must be obtained from the author.

This thesis has been approved on the date shown below:

SIGNED

APPROVAL BY THESIS DIRECTOR

r7/?<ff>7r

T. L. Williams
Associate Professor of

Electrical and Computer Engineering

Date

ACKNOWLEDGMENT

3

I would like to thank Dr. D. L. Shirer and Dr. T. L.

Williams for being my project advisors. I would also like

to thank the faculty of the University of Arizona who have

taught the courses I have taken. I am thankful for the

suggestions offered by W. R. Stearns and I would like to

thank H. Yu for providing me with an example thesis and

loaning me his "C" compiler. I extend my gratitude to

Hughes Aircraft Company for their support through the Hughes

Masters Fellowship Program. I am also very grateful to my

supervision at Hughes for their understanding and patience

throughout the course of my graduate work and for allowing

me to use departmental computers. I give special thanks to

God for His help in getting me through this phase of my

life.

4

TABLE OF CONTENTS

PAGE

LIST OF ILLUSTRATIONS 6

LIST OF TABLES 7

ABSTRACT 8

1 INTRODUCTION 9

2 APPROACH 12

2.1 Introduction 12

2.2 Programming guidelines 12

2.3 Alternative I/O methods 13

2.4 Development 14

2.5 Debugging 17

2.6 Demonstration 19

5

TABLE OP CONTENTS CONTINUED

PAGE

3 IMPLEMENTATION 20

3.1 Introduction 20

3.2 Main control level 23

3.3 Command interpretation level 24

3.4 String processing level 25

3.5 High level I/O 27

3.6 Mid level I/O 28

3.7 Low level I/O 29

3.8 High level screen functions 33

3.9 Mid level screen functions 3 6

3.10 Low level screen functions 37

3.11 BIOS interface level 44

3.12 Header files 45

4 STARBASE DEMONSTRATION 47

5 SUMMARY 60

APPENDICES 61

A Users' Manual 61

B Programmers' Reference 68

LIST OF REFERENCES 77

6

LIST OF ILLUSTRATIONS

FIGURE PAGE

1 Plot Program Output 52

2 Picture Program Output 53

3 Interactive Program Output 54

4 Debug File Output for Interactive Program 55

7

LIST OF TABLES

TABLE PAGE

1 Organization of Modules 21

2 Header Files 22

3 Graphics Control Sequences 71

4 Display Control 72

5 Vector Drawing Mode 73

6 Plotting Commands 75

7 Graphics Status >..76

ABSTRACT

8

The HP2623 graphics terminal emulator is implemented on

the PC for use with the Starbase graphics package provided

on the departmental HP9000 series 500 computer system. This

paper discusses the development and implementation of this

emulator. A demonstration of its compatibility with

Starbase is also provided along with a users' manual and a

programmers• reference.

9

CHAPTER 1

INTRODUCTION

The ECE department has on hand a Hewlett-Packard HP9000

series 500 computer running an HP-UX Unix operating system

[1]. This system includes several graphics software packages

but there are no graphics terminals connected to it.

However, there are several IBM PCs and PC compatibles

(namely, the AT&T) available. The thought comes to mind

that it should be possible to connect a PC to the HP9000 and

emulate a graphics terminal on the PC under the DOS

operating system [2]. The thesis project culminating in this

paper develops an emulator to do just that. This paper

discusses the approach to the emulator development as well

as its implementation.

A preliminary investigation reveals three graphics

software packages available on the HP9000: Starbase [3], AGP

(Advanced Graphics Package) [4], and DGL (Device-independent

Graphics Library) [5]. These packages support both raster

devices and tty devices. The raster devices all require a

special interface card be plugged into the HP9000 backplane.

However, the tty devices can be emulated by interfacing an

HP9000 tty line to the serial port on the PC, a much simpler

approach. The only tty devices supported are the HP2623

Monochrome Graphics Terminal [6] and the HP2627 Color

10

Graphics Terminal [7], Since it is simpler to emulate a

monochrome device, the HP2623 is the initial target for

emulation. The capabilities of the emulator can later be

expanded to emulate the HP2627.

Hewlett-Packard sales engineer Larry Littlefield was

contacted for additional information. He indicated that

development around the Starbase graphics package is

preferable since the other two packages are being phased out

at HP. He also suggested a department at Hughes where the

reference manuals for the HP2623 [6] and the HP2627 [7]

could be borrowed. These manuals specify the control

sequences a graphics emulator must implement.

Larry also revealed the existence of third party

software written by Reflection which emulates graphics

terminals on the PC; one of these is probably for the

HP2623. Of course, purchasing this software would make the

thesis project trivial.

As an alternative to emulating the HP2623, Larry

mentioned that any graphics terminal could be implemented if

the appropriate Starbase terminal driver were written using

the Starbase Driver Development Guide [8]. This approach is

unappealing because of the additional effort required in

writing a new terminal driver, assuming the effort in

producing the alternative terminal emulator is comparable.

11

The next chapter discusses the approach used to develop

the HP2623 Emulator. This includes discussions on the

establishment of programming guidelines and on the use of

simplifying assumptions. Chapter 3 delves into the

implementation of the emulator, including organization and

module by module descriptions. The module descriptions

discuss the purpose and capabilities of each module,

including comments on the data structures involved, test

methods, and development histories. Chapter 4 deals with

demonstrating Starbase compatibility with the emulator. This

chapter includes several illustrations exhibiting Starbase

output as displayed by the emulator on the PC. Chapter 5

provides the summary and the appendix presents the users'

manual and the programmers' reference (a definition of all

the control sequences understood by the emulator).

12

CHAPTER 2

APPROACH

2.1 Introduction

This chapter presents the "recipe" for building a

graphics emulator. The programming guidelines and

alternative I/O methods are discussed followed by

discussions on the development, debug, and demonstration of

the emulator. As indicated in Chapter 1, the HP2623

Monochrome Graphics Terminal is the target for emulation on

an IBM PC or PC compatible. This emulator must perform

correctly when driven by a Starbase application program on

the HP9000 utilizing the HP2623 driver over a tty line.

2.2 Programming guidelines
i

The first consideration is establishing programming

guidelines and choosing a programming language. The "C"

programming language [9] is used because it is a high-level

structured language which allows low level bit-fiddling when

necessary. Bit-fiddling is required when accessing

individual pixels in display memory, for example. The

Datalight "C" Compiler [10] is used because it is readily

available and has a reputation for producing fast code.

The use of modularity is paramount in all program

development. All code concerning a single aspect of the

emulator is collected in a single module. The design effort

13

can then be focused on this one aspect, making the relevant

issues much clearer. Furthermore, the module can be tested

and debugged independently, eliminating the code from

suspicion when debugging other modules depending on this

one. Finally, when debugging the complete program, the type

of bug demonstrated will isolate suspicion to the module

handling the related aspect of the program.

Good documentation practices are also utilized. The

most important of these practices is starting each module

with a short description followed by a function by function

description. The function descriptions include descriptions

and types of the arguments and the return values. Good

documentation practices ensure effective integration of the

modules by minimizing duplication and time wasted in

deciphering what capabilities are offered by each module.

Program modification and debugging are also made much easier

by following these practices.

2.3 Alternative I/O methods

The next issue concerns the handling of I/O on the

serial line. Interrupt based I/O provides the most

throughput and the smoothest display. However, interrupt

based I/O must be implemented in assembly language and

depends on the PC never disabling interrupts for a time

longer than it takes to respond to consecutive characters

14

arriving at 9600 baud. Polled I/O wastes a lot of tine

checking the serial line, especially when verifying response

to XOFF. This leads to reduction of throughput and jerky

development of the display. However, polled I/O can be

implemented entirely in "C" and is not be subject to

interrupts being disabled. Considering that an assembler

for the PC is not readily available, that polled I/O is

usually much easier to implement and debug, and that disk

I/O (which is expected to be concurrent with the serial line

I/O for spooling and debugging purposes) could conceivably

disable the interrupts long enough for characters arriving

at 9600 baud to be missed, polled I/O is the better choice.

Polled I/O performance is acceptable for the target

installation since the time required to verify response to

XOFF, approximately the round trip time of a character, is

small for a PC directly connected to a tty line from the

HP9000. Performance degradation is more significant when a

modem and/or the SYTEK network is included in the

connection.

2.4 Development

Considering that the key to the success of the emulator

is the ability of its lowest level functions to perform,

these modules containing these functions are developed

first. These modules provide the keyboard interface, the

serial line interface, the ability to set the screen mode,

15

and the line drawing capability. The keyboard and serial

line modules can be linked together to produce a "dumb"

terminal, a device capable of sending typed characters and

displaying received characters on the screen. Testing this

dumb terminal provides a test for both modules. The first

step in designing these modules is to study the capabilities

of the Datalight "C" Library and the interface it provides

to DOS functions [11] and the BIOS routines [12].

Examination of the display memory layout as related to

screen modes described in the IBM Technical Reference [12]

is also required. Additionally, it is necessary to study

the DOS functions and the BIOS routines to determine which

ones are applicable. BIOS "INT 10" provides the video

interface while BIOS "INT 14" provides the serial line

interface. DOS functions 3 and 4 provide input and output

to and from the serial line and DOS function 44H (hex)

otherwise known as IOCTL can be used as a non-blocking check

to see if a character is present on the serial line. See

the appropriate implementation section for details.

The next phase of development is determining the set of

capabilities implemented by the emulator. This involves

comparing the capabilities of the HP2623 terminal and the

expectations of the Starbase HP2623 driver. This allows

elimination of unnecessary or redundant capabilities of the

16

HP2623 terminal from the emulator. For example, it is

possible to eliminate graphics character generation at the

emulator level since Starbase is capable of generating

characters in terms of plotting commands. Not only does

this save a lot of programming effort, but the characters

generated by Starbase do not have the size and orientation

limitations of the HP2623 terminal. Since user defined area

patterns are not supported by Starbase, these are also

eliminated. On the other hand, some HP2623 terminal

capabilities which are not Starbase supported are easily

implemented and significantly enhance the capabilities of

the emulator. These capabilities can be accessed from

Starbase by providing the necessary control sequence to the

"gescape" (graphics escape) function. Such capabilities

include drawing modes and line types in addition to those

normally supported by Starbase.

In addition to the emulator capabilities required to

support Starbase, the capabilities of the operator interface

must be determined. This includes a preliminary definition

of the function keys, a definition of the display screens,

cursor control, file spooling, and debug support. As will

be pointed out later, capabilities which facilitate testing

or circumvent deficiencies of the HP2623 driver are also

required. These capabilities are accessed through control

sequences not normally supported by the HP2623 terminal.

17

The screens to be implemented are the alpha screen, the

graphics screen, and the local screen. These screens must

be swapped since there is no hardware available to combine

them. The alpha screen is dedicated to displaying

alphanumeric input as a dumb terminal. The graphics screen,

however, displays the cumulative result of incoming graphics

sequences. Function key control of the graphics cursor and

display of the cursor position in HP2623 coordinates is also

provided. The local screen is reserved for emulator control

functions and error reporting. A function key is provided

for switching to the alpha or graphics screens.

Program completion now consists of the following steps.

First, the interpreter is pseudo coded to provide an overall

idea of how the program will fit together. Next, a library

of low level functions are developed for the interpreter to

draw upon. Related functions are contained in a single

module. The function key definitions are then finalized

with user friendliness being the major factor in their

implementation. Finally, the interpreter is implemented

based on these other functions.

2.5 Debugging

Debug support is provided by interspersing the incoming

control sequences with descriptions of the emulator

response. This output is saved in a file determined by the

18

operator. The control sequences must be presented In human

readable form; therefore, special visible characters are

substituted for escape characters, spaces, and unexpected

characters. The unexpected control characters are preceded

with »•". These debug files have proven extremely useful in

the final phase of program development.

A preliminary form of this debug support is an

individual program which converts Starbase output into the

readable form just described. This is instrumental in

determining the set of control sequences the emulatojr is

expected to handle without reporting any errors. It is

interesting to note that many HP2627 Color Terminal

sequences are included by the HP2623 Monochrome Terminal

driver. However, all these sequences produce null output if

actually given to an HP2627.

Test and debug are performed on two levels. The low

level tests consist of small driver programs which test the

low level library functions. These tests are implemented as

the modules are completed so that these modules are free of

bugs before other modules are based upon them. The high

level test tests the emulator as a whole by generating a

test file for spooled input by the emulator. This file

fully exercises the interpreter and tests any aspects of

library functions not tested by the low level tests. Both

debug file output and operator observations determine the

19

outcome of this test. The capabilities of interpreting pause

and wait control sequences are included in the emulator

since these capabilities expedite testing by adding delays

to allow observation of rapidly changing features.

2.6 Demonstration

The final step of the thesis project is to massage

Starbase demo programs until they perform with the emulator.

This demonstrates compatibility of the emulator with

Starbase. The major difficulty is that most of these

programs are intended for raster display color terminals

involving special circuit cards plugged into the HP9000

backplane. This difficulty is surmounted by implementing a

module on the HP9000 which, when linked to the starbase demo

program, produces meaningful output on the emulator. A

similar module would still have been required if using a

regular HP2623 terminal. To simulate color with a shading

technique, it is necessary to provide a capability to the

emulator which causes it to ignore changes in drawing mode

or line type commanded by Starbase. This capability can be

turned on and off via the control sequence supplied to the

Starbase "gescape" function. Refer to chapter 4 for more

details and sample output from these demonstration programs.

20

CHAPTER 3

IMPLEMENTATION

3.1 Introduction

This chapter describes the implementation of the HP2623

graphics emulator. First the modular organization is

presented followed by a module by module description. These

descriptions include the purpose and capabilities of the

module along with test methods and nontrivial histories. A

description of the header files follow. The configuration

files are described in conjunction with the comio.c module.

For capabilities of the emulator as a whole, refer to the

users' manual and the programmers' reference in the

appendix.

The twenty-five modules comprising the graphics

emulator can be divided into ten different categories. These

categories and modules are tabulated in Table 1. Eight

header files are also utilized by the emulator. These files

are presented in Table 2 along with the list of modules

which include them. Two configuration files, comio.con and

comio.wat, are used at run time by the comio.c module. The

descriptions follow the order presented in the tables.

TABLE 1

ORGANIZATION OF MODULES

PARAGRAPH CATEGORY

3.2 main control level

3.3 command interpretation level

3.4 string processing level

3.5 high level I/O

3.6 mid level I/O

3.7 low level I/O

3.8 high level screen functions

3.9 mid level screen functions

3.10 low level screen functions

3.11 BIOS interface level

MODULE

grafterm.c
init.c
reset.c

dispentl.c
fkey.c
modecmd.c
plot.c
status.c

format.c
interprt.c

monitor.c
pause.c

channel.c
error.c

comio.c
Jtbdio.c

cursor.c
pen.c
relative.c

clip_map.c
typemode.c

dispmem.c
linefill.c

comport.c
screen.c

TABLE 2

HEADER FILES

HEADER FILE MODULES INCLUDING IT

command.h dispcntl.c
modecmd.c

grafterm.c
status.c

coord.h clip_map.c
linefill.c

dispmem.c

grafctyp.h channel.c
grafterm.c
plot.c

format.c
interprt.c
status.c

grafstd.h channel.c
comport.c
dispcntl.c
grafterm.c
modecmd.c
pause.c
status.c

comio.c
cursor.c
format.c
interprt.c
monitor.c
plot.c
typemode.c

linebody.h linefill.c

linefill.h cursor.c
typemode.c

linefill.c

relative.h cursor.c
modecmd.c
plot.c

dispcntl.c
pen.c
typemode.c

typemode.h typemode.c

NOTE: See paragraph 3.12 for header file descriptions.

23

3.2 Main control level

The main control level is the highest level of the

emulator. Grafterm.c contains main and, after

initialization, performs the sorting of control sequences

from ordinary characters to be displayed on the alpha

screen. These control sequences are then sorted into the

types handled by the interpretation level modules. This

module is tested with the spooled input test on the

completed emulator. The development process is a

straightforward implementation of the upper level of the

pseudo-coded interpreter.

Init.c calls upon the initialization routines within

the various modules requiring them, namely clip_map.c and

linefill.c. The primary purpose of this module is to

provide a place to collect all the initialization calls.

Testing is also performed at the complete emulator level.

Reset.c handles two kinds of reset. The first reset

calls upon routines which reinstate the graphics default

conditions within the appropriate modules. The second reset

restores the emulator to start-up conditions. The first

reset is intended to be invoked by a standard HP2623 control

sequence while the second by a function key. These resets

simply call upon functions within the applicable modules.

These functions were woven in at the time reset.c was

implemented. Testing is performed at the complete emulator

24

level with spooled input as well as with the appropriate

function key.

3.3 Command interpretation level

Each module of the command interpretation level

interprets its own type of command. Three of the modules,

dispcntl.c (display control), modecmd.c (mode commands), and

status.c, are based on a template. This template consists

of processing a command character and its associated

parameter string. A switch is performed on the command

character and the appropriate screen function is called with

parameters which are derived from the parameter string. The

command character and parameter string are determined by

interprt.c. Status.c also performs the following I/O

function. The "wait for key press then return graphics

cursor position" command requires status.c to take over the

function of monitor.c (discussed later) until a keyboard

character is given, thus allowing the operator to position

the cursor while allowing the host computer to cancel the

request with a new control sequence. Testing of these

modules is conducted with spooled input.

Plot.c is different mainly because it has to execute

pen movement commands as soon as enough parameter characters

are received to represent a coordinate pair; therefore, the

function of interprt.c must be embedded inside the module.

25

The other difference is that none of the command characters

take parameters? all parameters are devoted to pen movement.

Control returns to the main control level when a termination

character is received. Testing is also conducted with

spooled input.

Fkey.c (function key) does not deal with control

sequences; instead, it provides a place to tie function keys

to the command functions they represent. Function keys are

numbered 1 to 10 and shifted function keys are numbered 11

to 20. Kbdio.c is responsible for converting the actual

character code generated by the key press into the

appropriate one of these numbers. Fkey.c also provides the

help screen which is primarily a listing of the function key

definitions. Testing is initially performed before control

sequence interpretation is added to the emulator. At this

level, the emulator is just an enhanced dumb terminal. The

reset key is not implemented until after the interpreter is

added, so final testing is performed on the complete

emulator in conjunction with the spooled input test. Refer

to the users1 manual for the definition and use of the

function keys.

3.4 String processing level

The string processing level provides parsing and format

conversion services. Format.c converts characters encoded

in binary format into integer lists and converts integers

26

represented in ASCII into integer lists. Basically, these

functions are implemented as state machines which are called

with one character at a time. When enough characters have

been received to fill the integer list, the function returns

true; otherwise, the function returns false. Another

function processes a whole string at once and returns true

if and only if the integer list was filled. The number of

integers in the list and the number of characters used in

the binary format to represent one integer are given as

parameters. Consult the programmers' reference for the

details of the character formats. Testing is conducted

independently on this module using keyboard input and

display of the results on the screen. Correct performance

of the emulator as a whole also verifies this module.

Interprt.c (interpret) interprets incoming characters

by catenating parameter characters to the parameter string,

ignoring control characters, and, when the command character

is received, calling the appropriate command interpretation

level function with the parameter string and the command

character. This parsing process is repeated until a

termination character is received. The address of the

appropriate command interpretation level function is passed

to interprt.c. Testing is performed with spooled input to

the complete emulator.

27

3.5 High level I/O

The high level I/O modules provide the primary link

between the I/O section and the interpretation section of

the emulator. Except when paused, inside a special status

function, or "ungetting" a character, all I/O is funneled

through monitor.c. Therefore, for each request for a

character by the interpreter section, the keyboard is

serviced. While no characters are available for returning

to the interpreter, the keyboard is continually checked for

characters to transmit. Graphic cursor blinking is also

commanded inside this loop. Testing is conducted at the

enhanced dumb terminal level before the interpreter is

added.

Pause.c is responsible for holding the emulator in a

paused state, only checking the keyboard so that function

key presses will be serviced. (No characters are

transmitted.) A function key press releases pause and

allows the emulator to continue character interpretation.

Pause.c will block only once so that the stack cannot

overflow. However, this forces the responsibility on

pause.c to return to the display screen (graphics, alpha, or

local) which was in use at the time of the blocking

invocation. Therefore, the screen to return to is passed as

a parameter so that the blocking invocation will return to

it. Testing is also initially conducted at the enhanced

28

dumb terminal level.

3.6 Mid level I/O

The mid level I/O modules deal with more than one

interface but are not overall I/O managers like the high

level I/O modules. Channel.c determines the input channel

for the emulator. Input can be taken from the serial line,

a file, or a string buffer, with the string buffer taking

the highest precedence and the serial line the lowest. An

end of file condition is returned when no characters are

currently available. Input can also be spooled to a file

for later input. Channel.c also provides the debug

facilities for the emulator. When this feature is

activated, input is visibly reproduced in the debug file

along with the debug comments generated elsewhere in the

emulator. These comments are usually generated by the

command interpretation level modules, by the main control

level modules, or by an error. Testing is conducted

independently of the other modules using stubs for the

interface to the comio.c module. Testing at the enhanced

dumb terminal level and at the complete level provides

further verification of the module. An example of debug

output is provided in figure 4. This output is generated

while producing figure 3.

Error.c provides a uniform error reporting mechanism.

29

The error is reported on local screen and interpretation is

paused. A debug comment is also generated. This allows the

operator the opportunity to examine the display screens and

then choose to continue or quit the emulator based on the

severity of the error. Before implementation of error.c,

error reporting was performed through print and abort

statements. Testing is conducted at the enhanced dumb

terminal level.

3.7 Low level I/O

The low level I/O modules are interface specific.

Comio.c (communication line I/O) provides the interface to

the serial communication line, otherwise known as the com

port. Functions equivalent to the standard "C" library

functions "getc", "ungetc", "putc", and "puts" are provided

to interface the serial line. The "getc" equivalent,

however, does not block but instead gives an end of file

indication if no characters are currently available.

Initialization routines are also provided. Two

configuration files are utilized. Comio.con contains the

baud rate and the number of the com port to be used.

Comio.wat contains a wait factor used to determine the width

of the window within which a character is accepted. The

existence of comio.con is mandatory but if comio.wat does

not exist, the wait factor is calculated and, at the

discretion of the operator, stored in a new comio.wat file.

30

The heart of comio.c is the polled I/O algorithm

employed to transmit and receive characters. The serial

line is maintained in XOFF whenever execution transpires

outside of comio.c. since sending a character is apparently

equivalent to sending XON, the main difference between

sending and receiving a character is that XON is sent for

receiving if a character is not already waiting in the

buffer. After sending XON or a character, the serial line

is continuously checked wait factor times for an incoming

character which is placed in the buffer on arrival. This

establishes the input window. While characters are received

and the buffer is not full, this process is repeated. When

full or if no characters arrive within the window, XOFF is

sent. While characters continue to arrive within the

window, they are stored in the reserve portion of the

buffer. From this discussion it is apparent that too small

a wait factor allows characters to be missed while too large

a wait factor unnecessarily slows down the emulator.

Calculation of the wait factor used in comio.c involves

several steps. First all incoming characters are thrown out

until the serial line is quiet for the duration of an

arbitrarily large window. Then a character is sent

immediately followed by XOFF. Next the response time of the

HP9000 to echo the character after an XON is sent is

31

measured in terms of the number of times required to check

the serial line before it arrives. This measurement is the

wait factor. Since the HP9000 ignores XOFF when requesting

a password, the carriage return character is used as the

test character and the response time to this character after

sending the XOFF and before the XON is also checked. This

response time is used instead as the wait factor if a

response occurs within an arbitrarily large window. Next

the wait factor is corrected with a safety margin and

finally the echoed character is discarded. If a response is

never obtained, the operator can either provide a wait

factor or cancel the connection process.

Unfortunately, this calculation procedure does not work

when the Sytek network is used to interface the PC running

the emulator to the HP9000 directly without a modem. It

appears the Sytek tries to build a block of characters

before transmitting them if the interval between characters

is small enough. If the last character received is XOFF then

the block is not transmitted until another character

arrives, regardless of the time delay. It seems that the

decision by Sytek to block is not only based on the

frequency of character arrival but on the length of the

character burst at that frequency. Since it appears to be

an intractable task to determine the algorithm to beat the

Sytek blocking system, a wait factor known to work when

32

interfacing Sytek through a modem using an 8MHz PC is

installed in the .comio.wat file for use in this application.

Development of comio.c has been the most difficult of

any module comprising the emulator. Originally, the BIOS

interface was included in the module and there was no

configuration file mechanism. The module in this form

together with kbdio.c made up the dumb terminal program

implemented to test serial line and keyboard functions as an

early phase of emulator development. Much experimentation

was required to determine the design of comio.c. Use of the

standard "C" library function getc(stdaux) was inappropriate

since it either waits indefinitely for a character or

produces a DOS error when it times out. Use of DOS function

3, serial line input, in conjunction with DOS IOCTL function

44H (hex), a non-blocking check for character presence,

proved inadequate since characters were missed at 9600 baud.

Finally, it was discovered that using BIOS "INT 14", the low

level serial interface, provided sufficient response time to

capture characters arriving at 9600 baud. After further

experimentation and critical thinking, the sending and

receiving algorithms were developed. The fact that

characters may still arrive after sending an XOFF in

response to no characters arriving in the input window was

not anticipated but was demonstrated by experimentation.

33

More experimentation led to the development of the wait

factor calculation algorithm. Fine tuning took place

throughout the development of the emulator, and the Sytek

problem was not discovered until after the emulator was

believed to be completely finished. From the preceding it

is apparent that testing is conducted at all test levels for

the emulator.

Kbdio.c (keyboard I/O) provides the interface to the

keyboard. Functions equivalent to the standard 11C" library

functions "getc" and "ungetc" are provided for this

interface. The "getc" equivalent, however, does not block

waiting for a carriage return but instead gives any

available characters or an end of file indication if no

characters are currently available. While the "getc"

equivalent function detects extended keys, such as function

keys or cursor movement keys, calls to the fkey.c or the

cursor.c module are made as appropriate, and then the next

character is returned if available. Testing is initially

performed at the dumb terminal level with the calls to

cursor.c and fkey.c stubbed in. Testing at the enhanced

dumb terminal level verifies the function key and cursor

movement key interface.

3.8 High level screen functions

The modules containing the high level screen functions

are each concerned with a specific location in HP2623

34

coordinate space, namely the graphics cursor location, the

pen location, and the relative origin. Cursor.c provides

functions for moving the cursor and displaying the cursor.

Display of the current cursor position is also provided by '

this module and is controlled with a print on/off function.

The cursor is drawn with lines which complement the

background so when it is redrawn, the cursor disappears and

the background is unaffected. This means that the blink

command blocks while the cursor is visible so that the

screen cannot be disturbed. The cursor is to be blinked

when commanded as long as the graphics screen is on, the

cursor is on, and the emulator is not in the middle of a

plotting sequence unless it is paused (eliminates jerky

plotting). The blink command is issued in monitor.c, in

pause.c, and in the status.c function which waits for the

operator to position the cursor and signal completion with a

key press. To implement this logic there is an on/off

function, an enable/disable function, and a suspend/resume

function. Additionally, a parameter to the blink command

can override the suspend function. The need for the

suspend/resume function became apparent when the interpreter

was implemented and so these functions were added at that

time. The cursor movement functions corresponding to the

cursor movement keys are also complicated. These functions

35

normally step by one but will step by ten if called

frequently, as when the key is held down. Testing of the

cursor.c module is initially conducted at the enhanced dumb

terminal level. Final testing is conducted with the spooled

input test on the complete emulator.

The pen.c module controls the position and state of the

logical pen, drawing lines from the saved pen position to

the new pen position given by the move pen function if the

pen is in the down state. The pen can also be moved

incrementally. Pen up/down functions are provided and an

implicit pen down is given for each pen movement. Testing

is performed at the enhanced dumb terminal level with calls

from a driver function.

The relative.c module controls the position of the

relative origin and, through the relative function, provides

a means for offsetting parameters to be provided to

functions in other modules by the relative origin. The

relative function accepts the address of the function along

with the four parameters representing the two coordinate

pairs to be offset with the relative origin. No harm

results if relative is called with only one coordinate pair

and the target function expects only one coordinate pair.

Testing is performed independently using dummy functions and

calls from a driver function.

36

3.9 Mid level screen functions

The modules containing mid level screen functions

interface the low level screen functions of the linefill.c

module to the rest of the emulator. Clip_map.c (clipping

and mapping) constrains lines and fill areas to screen

boundaries and then converts the resulting coordinates from

HP2623 coordinate space to PC coordinate space. The

appropriate linefill.c function whose address is passed as

an argument is then called with the converted coordinates if

the line or area exists on the screen. The coordinate

conversion is accomplished with a lookup table for speed.

For lines, the intersection of the line as defined by its

endpoints with the screen boundary replaces the endpoint

lying outside the boundary or both endpoints are so replaced

if there are two intersections. If the line lies entirely

outside the boundary then no action is performed. Fill

areas are defined by the endpoints of a diagonal line

between the lower left and the upper right corners of a

rectangle. The intersection of this rectangle with the

screen is used to define new endpoints. No action is taken

if there is no intersection. Testing is performed with

calls from a driver function when linked with the linefill.c

and the screen.c modules. The area fill clip and map

function was added when area fills were added to line.c to

make linefill.c.

37

Typemode.c (line types and drawing nodes) invokes the

proper line or fill function from linefill.c with the draw

or the fill function, respectively. The standard and the

user line types along with the current drawing node are also

managed with the typemode.c nodule. For the sake of speed,

the selection of the proper linefill.c function is

accomplished with a lookup table of function addresses

indexed by the current HP2623 drawing node in conjunction

with the class of line type currently in use. This address

along with the coordinates are passed on to the clip_map.c

nodule. Line types can be of either solid, normal, or dot

class where normal line types depend on the set line type

function of linefill.c for their implementation. For more

details on line type classes, refer to the discussion of

linefill.c below. Testing is accomplished with calls from a

driver function when linked with the screen.c, clip_map.c,

and linefill.c modules.

3.10 Low level screen functions

The modules containing the low level screen functions

directly access the screen nemory. The dispmem.c (display

menory) nodule deals with screen memory as a whole,

responsible for swapping the display between the graphics,

alpha, and local screens, for clearing the current screen,

and for setting and clearing all pixels of the graphics

38

screen. Functions are also provided to specify the current

screen and switch to the screen that was previously

specified. This enables the error function, for example, to

pause, allow the operator to switch screens with a function

key, then return to the screen in effect before the error.

The contents of the alpha display and the graphics display

are saved before switching from that respective screen.

Then the appropriate contents are copied back in to display

memory after the screen mode is changed via the screen.c

module. The local screen is always cleared so it never

needs to be saved. A separate save area is required for

both the alpha and the graphics screen because of the

existence of the local screen and because changing screen

mode clears display memory. Otherwise a simple swap between

display memory and a screen buffer could be employed to save

memory usage. Currently static memory i's used for storing

the alpha and graphics screens. If the screen resolution is

increased from the 640 X 200 mode to the 640 X 400 mode,

then allocated memory must be used since static memory would

be exhausted. Testing is conducted with calls from a driver

function when linked with the screen.c module. Originally,

the screen.c module was one with the dispmem.c module and

this combined module was known as screen.c, but the size and

capabilities of this module grew to the point where it

seemed more appropriate for the BIOS interface to be •

39

contained in its own module.

The linefill.c module contains all the line drawing and

rectangle filling algorithms for the emulator. Functions

are also provided for initializing lookup tables and setting

the line pattern. There is a line drawing function and a

rectangular fill function for each unique combination of

drawing mode and line type class. Drawing modes are clear,

set, complement, and jam. Clear, set, and complement modes

affect each pixel along the line being drawn corresponding

to bits which are set in the line pattern while the jam mode

sets pixels along the line corresponding to bits which are

set in the line pattern and clears the other bits along the

line. Rectangular fills are simply made up of successive

horizontal lines filling the rectangle with the

corresponding line pattern. The line type classes enable

simplifications to the line drawing algorithm to save time.

The solid class eliminates the check to see if the current

pixel is affected by the line pattern. The dot class simply

affects the endpoints of the line. Only the normal class

utilizes the line pattern.

The implementation of linefill.c essentially involves

solving two problems, where to draw dots and how to draw

dots. The "where" problem is independent of line type and

drawing mode and concerns itself with .approximating a line

40

on a raster display made up of pixels. The "where" problem

is simplified for rectangular fills since all the lines

involved are strictly horizontal. It is the "how" problem

that is directed toward drawing modes and line types. The

"how" problem is also concerned with locating the dots as

pixels in the display memory. Since the "how to draw dots"

algorithm is utilized at the innermost loop of the "where to

draw dots" algorithm, the "how" algorithm is implemented as

a macro called dot(x,y). This saves execution time by

eliminating the overhead of making function calls.

Unfortunately, implementing dot(x,y) as a macro forces

duplication of the "where" algorithm for each combination of

drawing mode and line type class. This would result in a

huge amount of source code to manage if this were all

contained within the module. Therefore, the body of the

"where" algorithm is formed into the linebody.h file and

simply included after every definition of dot(x,y) and

declaration of the particular mode and class of line drawing

function. The fill functions consist solely of two nested

"for" loops over dot(x,y), so the include facility is not

utilized for them.

A line is defined with its endpoints in an x,y

coordinate system made up of discrete points (pixels). At

first one might consider a line drawing algorithm that

places dots by selecting consecutive x values and using the

41

nearest discrete y value that lies on the given line

segment. Unfortunately, lines drawn in this way which are

more nearly vertical than horizontal have gaps. This

suggests using a different approach for such lines which

involves selecting consecutive y values instead. The

algorithm utilizing both approaches is based on the

following two equations:

next y = (next x - initial x) * delta y/delta x + initial y
next x = (next y - initial y) * delta x/delta y + initial x

The first equation uses consecutive x values while the

second uses consecutive y values. To be consistent with the

preceding analysis, it is assumed that delta y is less than

delta x in the first equation and vice versa for the second.

Since these equations are executed for every dot along

a line, using a more efficient algorithm should greatly

improve performance of the emulator. One way to improve

efficiency is to eliminate the integer division and

multiplication from the above equations. For the following

discussion assume delta y is less than delta x and that

consecutive x values are being taken as in the first

equation above. Keep a remainder which is initialized to

half of delta x. Each time x is incremented add delta y to

the remainder. Repeat until the remainder is larger than

delta x. At this time increment y and subtract delta x from

42

the remainder. Repeat this entire process for each x value

in the range of the line segment, drawing a dot each time x

is incremented. It should be apparent that this algorithm

generates the same x and y values as the first equation

above, except the y values are rounded by starting with half

of delta x instead of truncated by using integer division.

Timing tests reveal that eliminating integer division

results in a time savings of twenty-four percent! The "C"

representation of this algorithm is as follows:

for (x = xl, y = yl, rem = delx»l? x <= x2; x++) {
dot(x,y);
if ((rem += dely) > delx) (

rem -= delx;
y++;
>

}

In this representation, xl and yl are the initial x and y,

x2 is the final x, rem is the remainder, and delx and dely

are delta x and delta y. The loop in this representation

can only handle the forty-five degree sector above the

positive x axis. Seven other loops are required with a

different combination of x direction, y direction, and

whether the loop is taken over x or over y. If-then-else

constructs nested three deep choose the correct loop for the

given line segment.

The dot(x,y) macro utilizes a table lookup to locate

43

the correct byte of display memory and then a bitwise

logical assignment operator with a mask also obtained from a

lookup table. Bitwise AND is used for clear, inclusive OR

for set, and exclusive OR for complement. The line pattern

is implemented as a circularly linked list of boolean values

which determines which bitwise logical assignments are

executed. For example, the set mode, normal class

definition of dot(x,y) is as follows:

#define dot(x,y) ((lintyp[index = next[index]]) && \
(disp[col[x]+row[y]] |= bit[x]))

The jam mode utilizes the conditional expression operator to

select between the set or clear operation. The solid class

simply eliminates the conditional part of dot which

obviously reduces the execution time.

Earlier implementations of dot(x,y) utilized the BIOS

"INT 10" video interface. This proved to be about ten times

slower than using direct memory access. Using the peek and

poke functions provided in the "C" library proved to be

about three times slower. Use of peek and poke are

alternatives to using the large memory model in compiling

and linking the emulator. The large memory model is chosen

with a compiler option and with use of the large memory

model "C" library. According to the compiler manual [10],

the use of the large memory model reduces efficiency in

44

pointer arithmetic and array indexing; however, the three

times improvement in speed when drawing lines makes the use

of the large memory model, which allows pointers into

display memory, the logical choice.

Testing is conducted with calls from a driver function

when the module is linked to.screen.c. Tests are used to

verify performance and make decisions between the various

algorithms. Efficiency is paramount in development of this

module since the emulator is expected to spend most of its

time in drawing lines.

3.11 BIOS interface level

The BIOS interface level is the lowest level of the

emulator. Functions in these modules set up the pseudo

registers and utilize the "C" library function which loads

the real registers from these registers and performs a

software interrupt to access the BIOS routine. The

comport.c module utilizes the BIOS "INT 14" serial line

routines and the screen.c module utilizes the BIOS "INT 10"

video routines. The serial line routines perform

nonblocking input and output of a single character and also

provide a check for a character waiting for input. The

video routines initialize the alpha screen to color 80 mode

and the graphics screen to 640 X 200 pixel monochrome mode.

The foreground and background colors are also chosen by

these initialization routines. Other video routines save

45

and restore the alpha cursor. Originally, comport.c was one

with comio.c and screen.c was one with dispmem.c, which was

then known as screen.c. However, the capabilities and size

of these modules grew to a point where it seemed logical to

separate out the BIOS interface. Testing is conducted in

conjunction with the parent modules.

3.12 Header files

The header files provide a place to define global

constants, declare functions whose addresses are to be

passed as parameters, and define useful macros. They also

reduce duplication of code. The command.h file provides

declarations of command interpretation level functions for

use with the interprt.c module. The coord.h file defines

the dimensions of the HP2623 and the PC coordinate space as

well as the start of odd and even rows in display memory.

The grafctyp.h file expands the set of character type macros

given by the standard ctype.h file. The grafstd.h file

provides general purpose, frequently used macros and

definitions. The linebody.h file contains the body of the

line drawing algorithm utilized in the linefill.c module in

conjunction with each definition of the dot(x,y) macro. The

linefill.h file declares all the line drawing and

rectangular fill functions for inclusion in the lookup table

utilized in the typemode.c module. The relative.h file

declares all functions whose address can be passed to the

relative.c module. The typemode.h file defines constants

for all the drawing nodes and line types and defines the bit

patterns and scales representing the seven standard line

types.

47

CHAPTER 4

STARBASE DEMONSTRATION

This chapter discusses the demonstration of Starbase

compatibility with the HP2623 graphics emulator. There are

basically three types of applications for the HP2623:

generation of a two-axis plot of data complete with text

labels, drawing a picture, and conducting an interactive

session where the display represents the results of moving a

locator (the cursor) and using a selector (pressing an

alphanumeric key). Three Starbase programs developed on the

HP9000 demonstrate these applications, and sample output

from each of these is presented in Figures 1, 2, and 3.

These figures are first drawn on the screen then dumped to

the printer with the "Print Screen" key. The debug file

corresponding to Figure 3 is also provided in Figure 4 as a

further demonstration of the emulator.

The plot program was originally provided as a part of

the Starbase documentation. Modification of the program is

fairly straightforward; the major difficulty is properly

scaling the text size so that it becomes readable without

becoming so large^that it overlaps other features. This

demonstrates that utilizing the 400 line resolution mode

would greatly improve the emulator. This plot is depicted

in Figure 1.

48

The picture program was originally provided with the

Starbase demonstration software, and modification of this

program is much more difficult. This program, as most of

the Starbase demos, was designed for use with a raster

display color terminal involving a special circuit card

plugged into the back of the HP9000. Many errors are

generated when attempting to use this program with the

HP2623 driver, mainly because the HP2623 only has two legal

colors (black and white) and the picture program tries to

access other colors. The solution to this problem was first

attempted by implementing a new module, help2623.c, to link

with the picture program which translates these colors into

drawing modes and line types understood by both the HP2623

driver and the emulator. The "gescape" (graphics escape)

function of Starbase is utilized to communicate drawing

modes and line types not implemented by the HP2623 driver.

These drawing modes and line types approximate the following

shading function taken from the manual page for fill_color()

[3]:

Intensity = 0.30 * red + 0.59 * green + 0.11 * blue.

However, this version of help2623.c does not work;

somehow the colors are not represented on the screen.

Subsequent examination of the debug file reveals the

following problem. Every time the Starbase "fill" command

49

is executed, a drawing mode and a line type command is sent

to the emulator, canceling the previous drawing mode and

line type sent by the gescape function. The most

straightforward solution is to extend the capabilities of

the emulator to include a command which turns on and off the

ignoring of drawing mode and line type changes. The

help2623.c module was then phanged to use this command,
i

causing the emulator to ignore all drawing mode and line

type changes except those executed by the help2623.c module.

This command is simply embedded in the control sequence sent

by the gescape which issues the drawing mode and line type

commands. The resulting picture is presented in Figure 2.

Starbase provides three mechanisms for interactive

input from the HP2623. The event mechanism reads a device

as soon as input becomes available and stores the

information in a queue for retrieval at the convenience of

the application program. The request mechanism blocks the

application program while waiting for input. The sampling

mechanism simply returns whatever input is immediately

available, indicating input as invalid if none is available.

Except when sampling the cursor location, these mechanisms

utilize the HP2623 command which return cursor location and

key press when the operator presses a key.

Experimentation reveals that the event mechanism works

as expected when the device is opened for both input and

50

output on the same file descriptor, except the Starbase

disable event function leaves the emulator still waiting for

a key press. This last problem can be worked around by

opening a second file descriptor against the same device

then closing the first file descriptor followed by the

second. The request mechanism works well for obtaining a

key press or a cursor location, but to obtain the key press

corresponding to the one releasing the cursor location, one

must use the sample mechanism for the key press after using

the request mechanism for the cursor location. The sample

mechanism, however, does not perform for returning the

cursor location. Examination of the debug file for the

cause of this problem reveals that Starbase does not allow

sufficient time for the emulator to respond to the

nonblocking cursor return command.

Evaluation of the above results lead to the generation

of the interactive demonstration program, which utilizes the

request mechanism to obtain the cursor location and the

sample mechanism to obtain the key press. The key press

indicates whether a rectangle is drawn at the new position,

the pen is up and moved to the new position, the pen is down

and moved to the new position, or the program is terminated.

A sample of the output generated by this program is

presented in Figure 3 and the corresponding debug file is

listed in Figure 4. The debug file is provided to

illustrate the correlation of the display to the control

sequences generated by the Starbase program.

52

FIGURE 1

PLOT PROGRAM OUTPUT

LJ
(J

CE
l—i m
(T
>

LJ
e?
a:
!—
_l
O
>

i 1 1 1
S
©
ca

(3

in
iv
rv
t-i
d

I.JLl

Q nj

s.~

i • • • • i • » « »

m en dj > • —

53

FIGURE 2

PICTURE PROGRAM OUTPUT

%Itef

FIGURE 3

INTERACTIVE PROGRAM OUTPUT

FIGURE 4

DEBUG FILE OUTPUT FOR THE INTERACTIVE PROGRAM

NOTE: escape = "611
messages enclosed with " {}11

blank =
unexpected chars
enclosed with "[]1

m

yd

emo

rMHMn-M]

e*si~

2623A
[[* J]

e*dT

{out:

{out:

{out:

{out:

{out:

{out:

{out:

m}

y)

d}

e}

m}

o)

*M)

{string output: 2623A}

{out: *M}

{dispcntl: graphics text mode ended}

@*mln
{modecmd: graphics text control}

iq
{modecmd: graphics text control}

255,255,255,255,255,255r255,255d
{modecmd: define area pattern}

7X

{modecmd: hp2627 area pattern or pen
control}

§*da

C

FIGURE 4 CONTINUED

DEBUG FILE OUTPUT FOR THE INTERACTIVE PROGRAM

{dispcivtl: turn off all dots}

{dispcntl: graphic screen}

§*pA

®*m0,OJ

{plot: penup}

{modecmd: set relocatable origin to 0,0}

§*dl
{dispcntl: graph cursor off}

§*d0,0o
{dispcntl: move graph cursor to 0,0}

§*pi

a
{plot: binary absolute mode}

{plot: penup}

{plot: move pen to 0,0}

{plot: NOP}

§*s4

{string output: +00168,+00282,114}

{out: AM}
+00168,+00282,114[AM]["J]

@*mlm
{modecmd: graphics text control}

FIGURE 4 CONTINUED

DEBUG FILE OUTPUT FOR THE INTERACTIVE PROGRAM

0*mp

@*da

§*mlb

@*m2a

§*pi

s

{modecmd: graphics text control}

{dispcntl: turn off all dots}

{modecmd: set line type to 1}

{modecmd: set drawmode to 2}

{modecmd: NOP}

{plot: binary absolute mode}

{plot: hp2627 area fill starts}

G*ml63,277,173,287e
{modecmd: fill with xl = 163, yl = 277,
173, y2 = 287}

§*mlb

©*pi

a

%#(5

Z

{modecmd: set line type to 1}

{plot: binary absolute mode}

{plot: penup}

{plot: move pen to 163,277}

{plot: NOP}

FIGURE 4 CONTINUED

DEBUG FILE OUTPUT FOR THE INTERACTIVE PROGRAM

6*s4 *

{string output: +00042,+00186,109}

{out: AM}
+00042,+00186,109[~M][*J]

§*pi

a

!*%:

Z

0*s4

{plot: binary absolute mode}

{plot: penup}

{plot: move pen to 42,186}

{plot: NOP}

{string output: +00201,+00351,100}

{out: *M}
+00201,+00351,100[AM][AJ]

§*pi

&)*?

Z

@ * S 4

{plot: binary absolute mode}

{plot: move pen to 201,351}

{plot: NOP}

{string output: +00201,+00351,113}

{out: *M}
+00201,+00351,113[*M][*J]

§*pi
{plot: binary absolute mode}

FIGURE 4 CONTINUED

DEBUG FILE OUTPUT FOR THE INTERACTIVE PROGRAM

59

§*dl

§*d0,0o

@*pi

a

@*pi

Z

[n
34 []]
%

{dispcntl: graph cursor off)

{dispcntl: move graph cursor to 0,0}

{plot: binary absolute mode}

{plot: penup}

{plot: move pen to 0,0}

{plot: NOP}

{plot: binary absolute mode}

{plot: NOP}

60

CHAPTER 5

SUMMARY

The HP2623 graphics terminal emulator is implemented on

the PC. When a PC running the emulator is connected to the

HP9000 running various Starbase application programs,

meaningful Starbase output can be displayed by the emulator

on the screen. The screen can then be dumped to a printer

by pressing the "Print Screen" key. With the introduction

of this emulator, graphics can now be performed on the

HP9000, thereby increasing its usefulness. The "C" modules

comprising the emulator provide a platform for future

development with such enhancements as high resolution color

graphics. The interpreter could also be expanded to support

alpha control sequences so use with screen editors such as

"vi" could be supported. With the implementation of

interrupt based serial I/O and the enhancements just

described, the emulator becomes a nice commercial package.

61

APPENDIX A

USERS' MANUAL

This appendix discusses the installation and the

operation of the HP2623 graphics terminal emulator. The

name of the executable file containing the code for the

emulator is "grafterm.exe". This file along with the

configuration files comio.con (mandatory) and comio.wat

(optional) should be located together in a separate

directory on the IBM PC or compatible such as the AT&T.

This directory will be the default location of all debug and

spool files generated by the emulator. Connection to the

HP9000 is made by connecting one of the serial ports on the

PC to one of the standard terminal ports on the HP9000.

Any line in the configuration files beginning with a

"#" is a comment and is ignored. The comio.con file must be

present, and integers representing the serial port connected

to the HP9000 (1 or 2) and the baud rate (300, 1200, or

9600) are the first nonblank characters on the first two

non-comment lines, respectively. The comio.wat file, if

present, contains an integer wait factor as the first

nonblank characters on the first non-comment line. This

wait factor adjusts the width of the serial input window

during which characters are accepted. The emulator will

generate this file if it is not present? however, its

62

presence expedites start of communication. Note that the

emulator does not properly generate the wait factor in

installations involving the Sytek network when a modem is

not involved. In this case, the operator must provide the

comio.wat file and experimentally determine the wait factor

which is large enough such that no characters are missed but

small enough that the emulator is not slowed down

unnecessarily.

To run the emulator, simply switch to the directory

containing grafterm.exe then execute "grafterm". The first

screen displayed is the "help" screen which defines all the

function keys. The emulator is completely controlled

through the function keys and the arrow keys. A description

of the use of each of these keys is provided below. Use of

control-C or control-break is also permitted for emergency

termination but the mode command would probably be required

to return the screen to the normal state.

The other screens utilized by the emulator are the

error screen, the file input screen, the alpha screen, and

the graphics screen. The error screen displays any errors

that occur and the emulator is paused while this screen is

displayed. The file input screen is displayed while the

operator is providing the name of the debug, spool to, or

spool from files. The alpha screen provides the dumb

63

terminal interface to the HP9000 as well as a record of the

preceding activities on the PC. The graphics screen shows

the cumulative result of all the graphics control sequences

provided by the HP9000 as well as cursor movements provided

by the operator. Switching between alpha and graphics

screens is performed automatically depending on the nature

of the input being currently received. Except for the

graphics and the alpha screens, the "HP 2623 EMULATOR" label

is presented to indicate that the emulator is in "local"

mode. If the emulator is paused, a note to press the

CONTINUE key is also provided.

The rest of this appendix explains the use of the

function keys and the arrow keys. The keys are arranged

such that related functions are shift-unshift pairs.

HELP

This function key (Fl) causes the "help" screen to be

displayed and pauses the emulator.

CLEAR SCREEN

The shift-Fl key causes the current screen to be

cleared.

GRAPHICS

The F2 key causes the graphics screen to be displayed.

If further input is expected, use the PAUSE key so that

examination of the graphics screen will not be interrupted.

Be sure to press CONTINUE when ready for more input.

64

ALPHA

Shift-F2 displays the alpha screen.

CURSOR ON

Display of the graphics cursor is initiated with the F3

key. The cursor will not be seen if the graphics screen is

not on or if a control sequence explicitly turning off the

cursor is detected. The arrow keys can be used to position

the cursor.

CURSOR OFF

Display of the graphics cursor is terminated with the

shift-F3 key.

CURSOR REPORT ON

This function key (F4) causes the cursor position in

HP2623 coordinates to be displayed in the upper left hand

corner of the graphics screen while the cursor is displayed.

This report is updated whenever the cursor is moved. Any

graphics in the area of the cursor report are permanently

obliterated.

CURSOR REPORT OFF

This function key (shift-F4) stops further cursor

reporting and clears the area of the report.

READ SPOOL FILE

With the F5 key, the operator is prompted for the name

of the spool file which is to be taken as input. An invalid

65

file name causes re-prompt and a null file name aborts file

name input. This file will preempt the serial line until

its contents are exhausted or the STOP READING SPOOL FILE

key is pressed. If a spool file is already being read the

F5 key reports the name of that file and the emulator is

paused.

STOP READING SPOOL FILE

The shift-F5 key terminates the use of the spool file

as input.

START SPOOL OF INPUT

With the F6 key, the operator is prompted for the name

of the file in which to save a copy of all subsequent input

received by the emulator. An invalid file name causes re-

prompt and a null file name aborts file name input. This

file can later be taken as input with the READ SPOOL FILE

key. Until the STOP SPOOL OF INPUT key is pressed, any

subsequent presses of the F6 key will cause the name of this

file to be reported and pause the emulator.

STOP SPOOL OF INPUT

The shift-F6 key closes the spool file.

START DEBUG

With the F7 key, the operator is prompted for the name

of the debug file. An invalid file name causes re-prompt

and a null file name aborts file name input. This file

contains a listing of all subsequent input in human readable

66

form interspersed with the response of the emulator to each

control sequence as it is interpreted. Until the STOP DEBUG

key is pressed, any subsequent presses of the F7 key will

cause the name of this file to be reported and pause the

emulator.

STOP DEBUG

The shift-F7 key closes the debug file.

CONTINUE

The F8 key causes the emulator to continue processing

input and exit the paused state.

PAUSE

The shift-F8 key places the emulator in the paused

state and processing of input is suspended. The function

keys and the arrow keys are still functional, however.

START COM LINE

With the F9 key, connection to the serial line is

established through use of the configuration files. The

contents of these files are reported and the emulator is

paused. If the comio.wat file is not present then the wait

factor is calculated and the operator is given the option to

generate the comio.wat file. Any errors in configuration

are reported and cause the serial line to be disconnected.

Until the STOP COM LINE key is pressed, any subsequent

presses of F9 generate a message stating that the connection

67

has already been made and pause the emulator.

STOP COM LINE

The shift-F9 key breaks the connection to the serial

line.

QUIT

The FIO key closes all files and returns the operator

to the PC operating system.

RESET

The shift-FlO key returns the emulator to initial

conditions. All files except the debug file are closed, and

the serial line is disconnected. All internal parameters

are set to the graphics defaults as in receiving a control

sequence requesting a graphics reset.

GRAPHICS CURSOR MOVEMENT

The arrow keys move the cursor one unit in HP2623

coordinate space with each press. If the key is held down,

the cursor is moved rapidly across the screen. These keys

are functional even when the cursor is not currently

displayed.

68

APPENDIX B

PROGRAMMERS• REFERENCE

This appendix describes the contrdl sequences used to

drive the emulator and produce graphics output. Much of the

information in this appendix is taken directly from the

HP2623 reference manual [6]. All input is made up of seven

bit ASCII characters. Each graphic sequence is started with

a three character preamble consisting of the ESCAPE

character, and one of "d", "i", "p", or "s", depending

on the type of graphics sequence. This preamble is followed

by characters which are divided into four classes based on

the most significant two bits: control (00), parameter

(01) , command with sequence termination (10), and command

with sequence continuation (11). Control characters within

a control sequence are ignored excepting the ESCAPE

character, which terminates the sequence and introduces the

next sequence.

Parameters are usually provided as ASCII digits

delimited with commas and spaces. However, plotting

sequences can also use a binary format consisting of one,

two, or three consecutive parameter class characters per

parameter where the value is the integer word represented by

the catenation of the least significant five bits from the

characters involved with the first character received

69

providing the most significant five bits. The two character

format represents an unsigned ten bit quantity while the one

and three character formats represent signed, twos

complement five and fifteen bit quantities, respectively.

The binary format provides a much more compact

representation of parameters than the ASCII representation.

Each command character causes the emulator to execute a

command. Except for plotting sequences, parameters

associated with the command precede the command (postfix

notation). None of the commands in a plotting sequence are

associated with the parameters; instead, each pair of

parameters represent a point in HP2623 coordinate space to

which the logical pen is moved, drawing a line if the pen is

down. All commands which allow the sequence to continue are

lower case letters. All the upper case equivalents perform

the same command except the sequence is terminated and all

subsequent input is directed to the alpha screen.

There are four types of control sequences supported by

the emulator. The preambles introducing each type are listed

in Table 3. Tables 4, 5, 6, and 7 describe the display

control, mode control, plot control, and status request

control sequences, respectively. Any HP2623 or HP2627

commands or sequence types not supported by the emulator are

ignored, except graphics text is announced with an error and

70

redirected to the alpha screen marked as graphics text. Any

other commands or sequence types generate an error*

Specifically, none of the graphics text controls have been

implemented; generation of graphics text must be implemented

in terms of appropriate plotting sequences. Another HP2623

feature eliminated from the emulator is use of the user area

line type. Elimination of these features should not be a

problem, however, since Starbase can still produce

meaningful output without them.

TABLE 3

GRAPHICS CONTROL SEQUENCES

ESCAPE * ccontrol sequence>

CODE FUNCTION

d Display control

m Mode control

p Plot control

s Status

72

TABLE 4

DISPLAY CONTROL

ESCAPE * d <parameters>

CODE FUNCTION

a Clear graphics memory

b Set graphics memory

c Turn on graphics display

d Turn on alpha display

e Turn on alpha display

f Turn on graphics display

k Turn on graphics cursor

1 Turn off graphics cursor

<x,y> o Position the graphics cursor, absolute
(0,0 is initial location)

<x,y> p Position the graphics cursor, relocatable

<t> x Wait <t> centiseconds

y Pause with "press CONTINUE" prompt on
alpha screen

z NOP

Example: Clear the graphics display, position the cursor
at x=100, y=100, and turn the cursor on.

ESCAPE * d a 100,lOOo K

73

TABLE 5

VECTOR DRAWING MODE

ESCAPE * m <parameters>

CODE

<mode> a

dine type> b

<pattern> <scale> c

<xl,yl,x2,y2> e

<xl,yl,x2,y2> f

<x,y> j

k

r

s

FUNCTION

Select drawing mode (1-4 in
Note 1)

Select line type (1-11 in
Note 2)

Define line pattern
(set bit = on, scale is 1-16)

Fill area, absolute (lower left
and upper right coordinates)

Fill area, relocatable
(lower left and upper right
coordinates)

Select relocatable origin
(0,0 is initial location)

Set relocatable origin to
current pen position

Set relocatable origin to
graphics cursor position

Set graphics defaults (reset)

Start ignoring select drawing
node and line type commands

Stop ignoring select drawing
mode and line type commands

NOP

TABLE 5 CONTINUED

74

NOTE 1: 1 (clear), 2 (set), 3 (complement), 4 (jam)

NOTE 2: 1 (solid line) 5 (line #2) 9 (line #6)
2 (user line pattern) 6 (line #3) 10 (line #7)
3 (error — no support) 7 (line #4) 11 (point plot)
4 (line #1) 8 (line #5)

Example: Select the set drawing mode, user line type of
alternating sets of 3 dots, and fill an area
from 0,0 on lower left to 80,90 on upper right.

ESCAPE * m 2a 2b 85 3C 0,0 80,90E

75

CODE

a

b

c

d

e

f

g

h

x

j

k

1

z

<x,y>

Example:

ESCAPE *

TABLE 6

PLOTTING COMMANDS

ESCAPE * p <parameters>

FUNCTION

Lift the pen (initial state)

Lower the pen (implicit after each point)

Use graphics cursor as new point

Draw a point at the current pen position
and lift the pen

Set relocatable origin to the current pen
position

Data is ASCII absolute (default for each
sequence)

Data is ASCII incremental

Data is ASCII relocatable

Data is binary absolute (10 bit unsigned)

Data is binary short incremental (5 bit)

Data is binary incremental (15 bit)

Data is binary relocatable (15 bit)

NOP

Move pen to <x,y> and perform an implicit
pen down, drawing a line if pen is down
(initial location is 0,0)

Draw a box 25 units wide and 10 units
high, beginning at x=l00, y=50.

p a f 100 50 g 25,0 0,10 -25,0 0,-10Z

76

TABLE 7

GRAPHICS STATUS

ESCAPE * s <parameter> *

CODE FUNCTION

1 Read device ID (response ,l2623A\r")

2 Read pen position (response
11+xxxxx,+yyyyy,p\rM p = o/l for up/down)

3 Read graphics cursor position
(response "+xxxxx,+yyyyy\r")

4 Read cursor position, wait for decimal ASCII
key code (response "+xxxxx,+yyyyy,ddd\r")

5 Read display size (response "+00000,+00000,
+00511,+00389,00002.,00002*\r")

6 Read graphics capabilities (response
»3,l,0,0,l,0,0,l,l,l,l,2,0,0,0,0\r")

7 Read graphics text status
(response "+00007,+00010,l\r")

8 Read zoom status
(response "001.,0\r")

9 Read relocatable origin
(response "sxxxxx,syyyyy\r")

10 Read reset status (response
"b,0,0,0,0,0,0,0\r" b-1/0 for reset/no reset
since last check)

11 Read area shading
(response Ml,8r8\r")

12 Read dynamics
(response "l,l\r")

<any other> Any other parameter maps to 1

Example: Read text status.
ESCAPE * s 7 *

LIST OF REFERENCES

77

[1] The Hewlett-Packard Company in conjunction with The
Regents of the University of Colorado (a body
corporate), The Regents of the University of
California, and AT&T Technologies, "HP-UX Unix
Operating System for the HP9000 Series 500 Computer",
The Hewlett-Packard Company, 1985.

[2] Microsoft Company, "Disk Operating System, Version
2.1",International Business Machines Corp., 1983.

[3] The Hewlett-Packard Company, "Starbase graphics
package", as described by the following three manuals:
HP-UX Concepts and Tutorials Vol. 6: Graphics, Starbase
Device Drivers Library for HP9000 Series 500 Computers,
and Starbase Reference, The Hewlett-Packard Company,
1985.

[4] The Hewlett-Packard Company, "Advanced Graphics
Package", The Hewlett-Packard Company, 1985.

[5] The Hewlett-Packard Company, "Device-independent
Graphics Library", The Hewlett-Packard Company, 1985.

[6] The Hewlett-Packard Company, "2622A/2623A Display
Terminals Reference Manual", The Hewlett-Packard
Company, 1982.

[7] The Hewlett-Packard Company, "2627A Color Graphics
Terminal Reference Manual", The Hewlett-Packard
Company, 1982.

[8] The Hewlett-Packard Company, "Starbase Driver
Development Guide", The Hewlett-Packard Company, 1985.

[9] Kernighan, B. W. and D. M. Ritchie, "The C Programming
Language", Prentice-Hall, Englewood Cliffs, New Jersey,
1978.

[10] Bright, Walter, "Datalight C Compiler", Datalight
Company, Seattle, Washington, 1985.

[11] International Business Machines Corp., "Disk Operating
System Technical Reference, Version 3.00",
International Business Machines Corp., 1985.

78

LIST OF REFERENCES CONTINUED

[12] Microsoft Company, "Technical Reference, Personal
Computer XT, Version 2.02", International Business
Machines Corp., 1983.

