
INFORMATION TO USERS 

This reproduction was made from a copy of a document sent to us for microfilming. 
While the most advanced technology has been used to photograph and reproduce 
this document, the quality of the reproduction is heavily dependent upon the 
quality of the material submitted. 

The following explanation of techniques is provided to help clarify markings or 
notations which may appear on this reproduction. 

1. The sign or "target" for pages apparently lacking from the document 
photographed is "Missing Page(s)". If it was possible to obtain the missing 
page(s) or section, they are spliced into the film along with adjacent pages. This 
may have necessitated cutting through an image and duplicating adjacent pages 
to assure complete continuity. 

2. When an image on the film is obliterated with a round black mark, it is an 
indication of either blurred copy because of movement during exposure, 
duplicate copy, or copyrighted materials that should not have been filmed. For 
blurred pages, a good image of the page can be found in the adjacent frame. If 
copyrighted materials were deleted, a target note will appear listing the pages in 
the adjacent frame. 

3. When a map, drawing or chart, etc., is part of the material being photographed, 
a definite method of "sectioning" the material has been followed. It is 
customary to begin filming at the upper left hand corner of a large sheet and to 
continue from left to right in equal sections with small overlaps. If necessary, 
sectioning is continued again—beginning below the first row and continuing on 
until complete. 

4. For illustrations that cannot be satisfactorily reproduced by xerographic 
means, photographic prints can be purchased at additional cost and inserted 
into your xerographic copy. These prints are available upon request from the 
Dissertations Customer Services Department. 

5. Some pages in any document may have indistinct print. In all cases the best 
available copy has been filmed. 

University 
MicKxilms 

International 
300 N. Zeeb Road 
Ann Arbor, Ml 48106 





Order Number 1332237 

Graphics terminal emulation on the PC 

Noll, Noland LeRoy, M.S. 

The University of Arizona, 1987 

U-M-I 
300 N. Zeeb Rd. 
Ann Arbor, MI 48106 





GRAPHICS TERMINAL EMULATION ON THE PC 

by 

Noland LeRoy Noll 

A Thesis Submitted to the Faculty of the 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

In Partial Fulfillment of the Requirements 
For the Degree of 

MASTER OF SCIENCE 
WITH A MAJOR IN ELECTRICAL ENGINEERING 

In the Graduate College 

THE UNIVERSITY OF ARIZONA 

19 8 7 



2 

STATEMENT BY AUTHOR 

This thesis has been submitted in partial fulfillment 
of requirements for an advanced degree at The University of 
Arizona and is deposited in the University Library to be 
made available to borrowers under rules of the Library. 

Brief quotations from this thesis are allowable without 
special permission, provided that accurate acknowledgment of 
source is made. Requests for permission for extended 
quotation from or reproduction of this manuscript in whole 
or in part may be granted by the head of the major 
department or the Dean of the Graduate College when in his 
or her judgment the proposed use of the material is in the 
interests of scholarship. In all other instances, however, 
permission must be obtained from the author. 

This thesis has been approved on the date shown below: 

SIGNED 

APPROVAL BY THESIS DIRECTOR 

r7/?<ff>7r 

T. L. Williams 
Associate Professor of 

Electrical and Computer Engineering 

Date 



ACKNOWLEDGMENT 

3 

I would like to thank Dr. D. L. Shirer and Dr. T. L. 

Williams for being my project advisors. I would also like 

to thank the faculty of the University of Arizona who have 

taught the courses I have taken. I am thankful for the 

suggestions offered by W. R. Stearns and I would like to 

thank H. Yu for providing me with an example thesis and 

loaning me his "C" compiler. I extend my gratitude to 

Hughes Aircraft Company for their support through the Hughes 

Masters Fellowship Program. I am also very grateful to my 

supervision at Hughes for their understanding and patience 

throughout the course of my graduate work and for allowing 

me to use departmental computers. I give special thanks to 

God for His help in getting me through this phase of my 

life. 



4 

TABLE OF CONTENTS 

PAGE 

LIST OF ILLUSTRATIONS 6 

LIST OF TABLES 7 

ABSTRACT 8 

1 INTRODUCTION 9 

2 APPROACH 12 

2.1 Introduction 12 

2.2 Programming guidelines 12 

2.3 Alternative I/O methods 13 

2.4 Development 14 

2.5 Debugging 17 

2.6 Demonstration 19 



5 

TABLE OP CONTENTS CONTINUED 

PAGE 

3 IMPLEMENTATION 20 

3.1 Introduction 20 

3.2 Main control level 23 

3.3 Command interpretation level 24 

3.4 String processing level 25 

3.5 High level I/O 27 

3.6 Mid level I/O 28 

3.7 Low level I/O 29 

3.8 High level screen functions 33 

3.9 Mid level screen functions 3 6 

3.10 Low level screen functions 37 

3.11 BIOS interface level 44 

3.12 Header files 45 

4 STARBASE DEMONSTRATION 47 

5 SUMMARY 60 

APPENDICES 61 

A Users' Manual 61 

B Programmers' Reference 68 

LIST OF REFERENCES 77 



6 

LIST OF ILLUSTRATIONS 

FIGURE PAGE 

1 Plot Program Output 52 

2 Picture Program Output 53 

3 Interactive Program Output 54 

4 Debug File Output for Interactive Program 55 



7 

LIST OF TABLES 

TABLE PAGE 

1 Organization of Modules 21 

2 Header Files 22 

3 Graphics Control Sequences 71 

4 Display Control 72 

5 Vector Drawing Mode 73 

6 Plotting Commands 75 

7 Graphics Status >..76 



ABSTRACT 

8 

The HP2623 graphics terminal emulator is implemented on 

the PC for use with the Starbase graphics package provided 

on the departmental HP9000 series 500 computer system. This 

paper discusses the development and implementation of this 

emulator. A demonstration of its compatibility with 

Starbase is also provided along with a users' manual and a 

programmers• reference. 



9 

CHAPTER 1 

INTRODUCTION 

The ECE department has on hand a Hewlett-Packard HP9000 

series 500 computer running an HP-UX Unix operating system 

[1]. This system includes several graphics software packages 

but there are no graphics terminals connected to it. 

However, there are several IBM PCs and PC compatibles 

(namely, the AT&T) available. The thought comes to mind 

that it should be possible to connect a PC to the HP9000 and 

emulate a graphics terminal on the PC under the DOS 

operating system [2]. The thesis project culminating in this 

paper develops an emulator to do just that. This paper 

discusses the approach to the emulator development as well 

as its implementation. 

A preliminary investigation reveals three graphics 

software packages available on the HP9000: Starbase [3], AGP 

(Advanced Graphics Package) [4], and DGL (Device-independent 

Graphics Library) [5]. These packages support both raster 

devices and tty devices. The raster devices all require a 

special interface card be plugged into the HP9000 backplane. 

However, the tty devices can be emulated by interfacing an 

HP9000 tty line to the serial port on the PC, a much simpler 

approach. The only tty devices supported are the HP2623 

Monochrome Graphics Terminal [6] and the HP2627 Color 



10 

Graphics Terminal [7], Since it is simpler to emulate a 

monochrome device, the HP2623 is the initial target for 

emulation. The capabilities of the emulator can later be 

expanded to emulate the HP2627. 

Hewlett-Packard sales engineer Larry Littlefield was 

contacted for additional information. He indicated that 

development around the Starbase graphics package is 

preferable since the other two packages are being phased out 

at HP. He also suggested a department at Hughes where the 

reference manuals for the HP2623 [6] and the HP2627 [7] 

could be borrowed. These manuals specify the control 

sequences a graphics emulator must implement. 

Larry also revealed the existence of third party 

software written by Reflection which emulates graphics 

terminals on the PC; one of these is probably for the 

HP2623. Of course, purchasing this software would make the 

thesis project trivial. 

As an alternative to emulating the HP2623, Larry 

mentioned that any graphics terminal could be implemented if 

the appropriate Starbase terminal driver were written using 

the Starbase Driver Development Guide [8]. This approach is 

unappealing because of the additional effort required in 

writing a new terminal driver, assuming the effort in 

producing the alternative terminal emulator is comparable. 



11 

The next chapter discusses the approach used to develop 

the HP2623 Emulator. This includes discussions on the 

establishment of programming guidelines and on the use of 

simplifying assumptions. Chapter 3 delves into the 

implementation of the emulator, including organization and 

module by module descriptions. The module descriptions 

discuss the purpose and capabilities of each module, 

including comments on the data structures involved, test 

methods, and development histories. Chapter 4 deals with 

demonstrating Starbase compatibility with the emulator. This 

chapter includes several illustrations exhibiting Starbase 

output as displayed by the emulator on the PC. Chapter 5 

provides the summary and the appendix presents the users' 

manual and the programmers' reference (a definition of all 

the control sequences understood by the emulator). 



12 

CHAPTER 2 

APPROACH 

2.1 Introduction 

This chapter presents the "recipe" for building a 

graphics emulator. The programming guidelines and 

alternative I/O methods are discussed followed by 

discussions on the development, debug, and demonstration of 

the emulator. As indicated in Chapter 1, the HP2623 

Monochrome Graphics Terminal is the target for emulation on 

an IBM PC or PC compatible. This emulator must perform 

correctly when driven by a Starbase application program on 

the HP9000 utilizing the HP2623 driver over a tty line. 

2.2 Programming guidelines 
i 

The first consideration is establishing programming 

guidelines and choosing a programming language. The "C" 

programming language [9] is used because it is a high-level 

structured language which allows low level bit-fiddling when 

necessary. Bit-fiddling is required when accessing 

individual pixels in display memory, for example. The 

Datalight "C" Compiler [10] is used because it is readily 

available and has a reputation for producing fast code. 

The use of modularity is paramount in all program 

development. All code concerning a single aspect of the 

emulator is collected in a single module. The design effort 



13 

can then be focused on this one aspect, making the relevant 

issues much clearer. Furthermore, the module can be tested 

and debugged independently, eliminating the code from 

suspicion when debugging other modules depending on this 

one. Finally, when debugging the complete program, the type 

of bug demonstrated will isolate suspicion to the module 

handling the related aspect of the program. 

Good documentation practices are also utilized. The 

most important of these practices is starting each module 

with a short description followed by a function by function 

description. The function descriptions include descriptions 

and types of the arguments and the return values. Good 

documentation practices ensure effective integration of the 

modules by minimizing duplication and time wasted in 

deciphering what capabilities are offered by each module. 

Program modification and debugging are also made much easier 

by following these practices. 

2.3 Alternative I/O methods 

The next issue concerns the handling of I/O on the 

serial line. Interrupt based I/O provides the most 

throughput and the smoothest display. However, interrupt 

based I/O must be implemented in assembly language and 

depends on the PC never disabling interrupts for a time 

longer than it takes to respond to consecutive characters 



14 

arriving at 9600 baud. Polled I/O wastes a lot of tine 

checking the serial line, especially when verifying response 

to XOFF. This leads to reduction of throughput and jerky 

development of the display. However, polled I/O can be 

implemented entirely in "C" and is not be subject to 

interrupts being disabled. Considering that an assembler 

for the PC is not readily available, that polled I/O is 

usually much easier to implement and debug, and that disk 

I/O (which is expected to be concurrent with the serial line 

I/O for spooling and debugging purposes) could conceivably 

disable the interrupts long enough for characters arriving 

at 9600 baud to be missed, polled I/O is the better choice. 

Polled I/O performance is acceptable for the target 

installation since the time required to verify response to 

XOFF, approximately the round trip time of a character, is 

small for a PC directly connected to a tty line from the 

HP9000. Performance degradation is more significant when a 

modem and/or the SYTEK network is included in the 

connection. 

2.4 Development 

Considering that the key to the success of the emulator 

is the ability of its lowest level functions to perform, 

these modules containing these functions are developed 

first. These modules provide the keyboard interface, the 

serial line interface, the ability to set the screen mode, 



15 

and the line drawing capability. The keyboard and serial 

line modules can be linked together to produce a "dumb" 

terminal, a device capable of sending typed characters and 

displaying received characters on the screen. Testing this 

dumb terminal provides a test for both modules. The first 

step in designing these modules is to study the capabilities 

of the Datalight "C" Library and the interface it provides 

to DOS functions [11] and the BIOS routines [12]. 

Examination of the display memory layout as related to 

screen modes described in the IBM Technical Reference [12] 

is also required. Additionally, it is necessary to study 

the DOS functions and the BIOS routines to determine which 

ones are applicable. BIOS "INT 10" provides the video 

interface while BIOS "INT 14" provides the serial line 

interface. DOS functions 3 and 4 provide input and output 

to and from the serial line and DOS function 44H (hex) 

otherwise known as IOCTL can be used as a non-blocking check 

to see if a character is present on the serial line. See 

the appropriate implementation section for details. 

The next phase of development is determining the set of 

capabilities implemented by the emulator. This involves 

comparing the capabilities of the HP2623 terminal and the 

expectations of the Starbase HP2623 driver. This allows 

elimination of unnecessary or redundant capabilities of the 



16 

HP2623 terminal from the emulator. For example, it is 

possible to eliminate graphics character generation at the 

emulator level since Starbase is capable of generating 

characters in terms of plotting commands. Not only does 

this save a lot of programming effort, but the characters 

generated by Starbase do not have the size and orientation 

limitations of the HP2623 terminal. Since user defined area 

patterns are not supported by Starbase, these are also 

eliminated. On the other hand, some HP2623 terminal 

capabilities which are not Starbase supported are easily 

implemented and significantly enhance the capabilities of 

the emulator. These capabilities can be accessed from 

Starbase by providing the necessary control sequence to the 

"gescape" (graphics escape) function. Such capabilities 

include drawing modes and line types in addition to those 

normally supported by Starbase. 

In addition to the emulator capabilities required to 

support Starbase, the capabilities of the operator interface 

must be determined. This includes a preliminary definition 

of the function keys, a definition of the display screens, 

cursor control, file spooling, and debug support. As will 

be pointed out later, capabilities which facilitate testing 

or circumvent deficiencies of the HP2623 driver are also 

required. These capabilities are accessed through control 

sequences not normally supported by the HP2623 terminal. 



17 

The screens to be implemented are the alpha screen, the 

graphics screen, and the local screen. These screens must 

be swapped since there is no hardware available to combine 

them. The alpha screen is dedicated to displaying 

alphanumeric input as a dumb terminal. The graphics screen, 

however, displays the cumulative result of incoming graphics 

sequences. Function key control of the graphics cursor and 

display of the cursor position in HP2623 coordinates is also 

provided. The local screen is reserved for emulator control 

functions and error reporting. A function key is provided 

for switching to the alpha or graphics screens. 

Program completion now consists of the following steps. 

First, the interpreter is pseudo coded to provide an overall 

idea of how the program will fit together. Next, a library 

of low level functions are developed for the interpreter to 

draw upon. Related functions are contained in a single 

module. The function key definitions are then finalized 

with user friendliness being the major factor in their 

implementation. Finally, the interpreter is implemented 

based on these other functions. 

2.5 Debugging 

Debug support is provided by interspersing the incoming 

control sequences with descriptions of the emulator 

response. This output is saved in a file determined by the 



18 

operator. The control sequences must be presented In human 

readable form; therefore, special visible characters are 

substituted for escape characters, spaces, and unexpected 

characters. The unexpected control characters are preceded 

with »•". These debug files have proven extremely useful in 

the final phase of program development. 

A preliminary form of this debug support is an 

individual program which converts Starbase output into the 

readable form just described. This is instrumental in 

determining the set of control sequences the emulatojr is 

expected to handle without reporting any errors. It is 

interesting to note that many HP2627 Color Terminal 

sequences are included by the HP2623 Monochrome Terminal 

driver. However, all these sequences produce null output if 

actually given to an HP2627. 

Test and debug are performed on two levels. The low 

level tests consist of small driver programs which test the 

low level library functions. These tests are implemented as 

the modules are completed so that these modules are free of 

bugs before other modules are based upon them. The high 

level test tests the emulator as a whole by generating a 

test file for spooled input by the emulator. This file 

fully exercises the interpreter and tests any aspects of 

library functions not tested by the low level tests. Both 

debug file output and operator observations determine the 



19 

outcome of this test. The capabilities of interpreting pause 

and wait control sequences are included in the emulator 

since these capabilities expedite testing by adding delays 

to allow observation of rapidly changing features. 

2.6 Demonstration 

The final step of the thesis project is to massage 

Starbase demo programs until they perform with the emulator. 

This demonstrates compatibility of the emulator with 

Starbase. The major difficulty is that most of these 

programs are intended for raster display color terminals 

involving special circuit cards plugged into the HP9000 

backplane. This difficulty is surmounted by implementing a 

module on the HP9000 which, when linked to the starbase demo 

program, produces meaningful output on the emulator. A 

similar module would still have been required if using a 

regular HP2623 terminal. To simulate color with a shading 

technique, it is necessary to provide a capability to the 

emulator which causes it to ignore changes in drawing mode 

or line type commanded by Starbase. This capability can be 

turned on and off via the control sequence supplied to the 

Starbase "gescape" function. Refer to chapter 4 for more 

details and sample output from these demonstration programs. 



20 

CHAPTER 3 

IMPLEMENTATION 

3.1 Introduction 

This chapter describes the implementation of the HP2623 

graphics emulator. First the modular organization is 

presented followed by a module by module description. These 

descriptions include the purpose and capabilities of the 

module along with test methods and nontrivial histories. A 

description of the header files follow. The configuration 

files are described in conjunction with the comio.c module. 

For capabilities of the emulator as a whole, refer to the 

users' manual and the programmers' reference in the 

appendix. 

The twenty-five modules comprising the graphics 

emulator can be divided into ten different categories. These 

categories and modules are tabulated in Table 1. Eight 

header files are also utilized by the emulator. These files 

are presented in Table 2 along with the list of modules 

which include them. Two configuration files, comio.con and 

comio.wat, are used at run time by the comio.c module. The 

descriptions follow the order presented in the tables. 



TABLE 1 

ORGANIZATION OF MODULES 

PARAGRAPH CATEGORY 

3.2 main control level 

3.3 command interpretation level 

3.4 string processing level 

3.5 high level I/O 

3.6 mid level I/O 

3.7 low level I/O 

3.8 high level screen functions 

3.9 mid level screen functions 

3.10 low level screen functions 

3.11 BIOS interface level 

MODULE 

grafterm.c 
init.c 
reset.c 

dispentl.c 
fkey.c 
modecmd.c 
plot.c 
status.c 

format.c 
interprt.c 

monitor.c 
pause.c 

channel.c 
error.c 

comio.c 
Jtbdio.c 

cursor.c 
pen.c 
relative.c 

clip_map.c 
typemode.c 

dispmem.c 
linefill.c 

comport.c 
screen.c 



TABLE 2 

HEADER FILES 

HEADER FILE MODULES INCLUDING IT 

command.h dispcntl.c 
modecmd.c 

grafterm.c 
status.c 

coord.h clip_map.c 
linefill.c 

dispmem.c 

grafctyp.h channel.c 
grafterm.c 
plot.c 

format.c 
interprt.c 
status.c 

grafstd.h channel.c 
comport.c 
dispcntl.c 
grafterm.c 
modecmd.c 
pause.c 
status.c 

comio.c 
cursor.c 
format.c 
interprt.c 
monitor.c 
plot.c 
typemode.c 

linebody.h linefill.c 

linefill.h cursor.c 
typemode.c 

linefill.c 

relative.h cursor.c 
modecmd.c 
plot.c 

dispcntl.c 
pen.c 
typemode.c 

typemode.h typemode.c 

NOTE: See paragraph 3.12 for header file descriptions. 



23 

3.2 Main control level 

The main control level is the highest level of the 

emulator. Grafterm.c contains main and, after 

initialization, performs the sorting of control sequences 

from ordinary characters to be displayed on the alpha 

screen. These control sequences are then sorted into the 

types handled by the interpretation level modules. This 

module is tested with the spooled input test on the 

completed emulator. The development process is a 

straightforward implementation of the upper level of the 

pseudo-coded interpreter. 

Init.c calls upon the initialization routines within 

the various modules requiring them, namely clip_map.c and 

linefill.c. The primary purpose of this module is to 

provide a place to collect all the initialization calls. 

Testing is also performed at the complete emulator level. 

Reset.c handles two kinds of reset. The first reset 

calls upon routines which reinstate the graphics default 

conditions within the appropriate modules. The second reset 

restores the emulator to start-up conditions. The first 

reset is intended to be invoked by a standard HP2623 control 

sequence while the second by a function key. These resets 

simply call upon functions within the applicable modules. 

These functions were woven in at the time reset.c was 

implemented. Testing is performed at the complete emulator 



24 

level with spooled input as well as with the appropriate 

function key. 

3.3 Command interpretation level 

Each module of the command interpretation level 

interprets its own type of command. Three of the modules, 

dispcntl.c (display control), modecmd.c (mode commands), and 

status.c, are based on a template. This template consists 

of processing a command character and its associated 

parameter string. A switch is performed on the command 

character and the appropriate screen function is called with 

parameters which are derived from the parameter string. The 

command character and parameter string are determined by 

interprt.c. Status.c also performs the following I/O 

function. The "wait for key press then return graphics 

cursor position" command requires status.c to take over the 

function of monitor.c (discussed later) until a keyboard 

character is given, thus allowing the operator to position 

the cursor while allowing the host computer to cancel the 

request with a new control sequence. Testing of these 

modules is conducted with spooled input. 

Plot.c is different mainly because it has to execute 

pen movement commands as soon as enough parameter characters 

are received to represent a coordinate pair; therefore, the 

function of interprt.c must be embedded inside the module. 



25 

The other difference is that none of the command characters 

take parameters? all parameters are devoted to pen movement. 

Control returns to the main control level when a termination 

character is received. Testing is also conducted with 

spooled input. 

Fkey.c (function key) does not deal with control 

sequences; instead, it provides a place to tie function keys 

to the command functions they represent. Function keys are 

numbered 1 to 10 and shifted function keys are numbered 11 

to 20. Kbdio.c is responsible for converting the actual 

character code generated by the key press into the 

appropriate one of these numbers. Fkey.c also provides the 

help screen which is primarily a listing of the function key 

definitions. Testing is initially performed before control 

sequence interpretation is added to the emulator. At this 

level, the emulator is just an enhanced dumb terminal. The 

reset key is not implemented until after the interpreter is 

added, so final testing is performed on the complete 

emulator in conjunction with the spooled input test. Refer 

to the users1 manual for the definition and use of the 

function keys. 

3.4 String processing level 

The string processing level provides parsing and format 

conversion services. Format.c converts characters encoded 

in binary format into integer lists and converts integers 



26 

represented in ASCII into integer lists. Basically, these 

functions are implemented as state machines which are called 

with one character at a time. When enough characters have 

been received to fill the integer list, the function returns 

true; otherwise, the function returns false. Another 

function processes a whole string at once and returns true 

if and only if the integer list was filled. The number of 

integers in the list and the number of characters used in 

the binary format to represent one integer are given as 

parameters. Consult the programmers' reference for the 

details of the character formats. Testing is conducted 

independently on this module using keyboard input and 

display of the results on the screen. Correct performance 

of the emulator as a whole also verifies this module. 

Interprt.c (interpret) interprets incoming characters 

by catenating parameter characters to the parameter string, 

ignoring control characters, and, when the command character 

is received, calling the appropriate command interpretation 

level function with the parameter string and the command 

character. This parsing process is repeated until a 

termination character is received. The address of the 

appropriate command interpretation level function is passed 

to interprt.c. Testing is performed with spooled input to 

the complete emulator. 



27 

3.5 High level I/O 

The high level I/O modules provide the primary link 

between the I/O section and the interpretation section of 

the emulator. Except when paused, inside a special status 

function, or "ungetting" a character, all I/O is funneled 

through monitor.c. Therefore, for each request for a 

character by the interpreter section, the keyboard is 

serviced. While no characters are available for returning 

to the interpreter, the keyboard is continually checked for 

characters to transmit. Graphic cursor blinking is also 

commanded inside this loop. Testing is conducted at the 

enhanced dumb terminal level before the interpreter is 

added. 

Pause.c is responsible for holding the emulator in a 

paused state, only checking the keyboard so that function 

key presses will be serviced. (No characters are 

transmitted.) A function key press releases pause and 

allows the emulator to continue character interpretation. 

Pause.c will block only once so that the stack cannot 

overflow. However, this forces the responsibility on 

pause.c to return to the display screen (graphics, alpha, or 

local) which was in use at the time of the blocking 

invocation. Therefore, the screen to return to is passed as 

a parameter so that the blocking invocation will return to 

it. Testing is also initially conducted at the enhanced 



28 

dumb terminal level. 

3.6 Mid level I/O 

The mid level I/O modules deal with more than one 

interface but are not overall I/O managers like the high 

level I/O modules. Channel.c determines the input channel 

for the emulator. Input can be taken from the serial line, 

a file, or a string buffer, with the string buffer taking 

the highest precedence and the serial line the lowest. An 

end of file condition is returned when no characters are 

currently available. Input can also be spooled to a file 

for later input. Channel.c also provides the debug 

facilities for the emulator. When this feature is 

activated, input is visibly reproduced in the debug file 

along with the debug comments generated elsewhere in the 

emulator. These comments are usually generated by the 

command interpretation level modules, by the main control 

level modules, or by an error. Testing is conducted 

independently of the other modules using stubs for the 

interface to the comio.c module. Testing at the enhanced 

dumb terminal level and at the complete level provides 

further verification of the module. An example of debug 

output is provided in figure 4. This output is generated 

while producing figure 3. 

Error.c provides a uniform error reporting mechanism. 



29 

The error is reported on local screen and interpretation is 

paused. A debug comment is also generated. This allows the 

operator the opportunity to examine the display screens and 

then choose to continue or quit the emulator based on the 

severity of the error. Before implementation of error.c, 

error reporting was performed through print and abort 

statements. Testing is conducted at the enhanced dumb 

terminal level. 

3.7 Low level I/O 

The low level I/O modules are interface specific. 

Comio.c (communication line I/O) provides the interface to 

the serial communication line, otherwise known as the com 

port. Functions equivalent to the standard "C" library 

functions "getc", "ungetc", "putc", and "puts" are provided 

to interface the serial line. The "getc" equivalent, 

however, does not block but instead gives an end of file 

indication if no characters are currently available. 

Initialization routines are also provided. Two 

configuration files are utilized. Comio.con contains the 

baud rate and the number of the com port to be used. 

Comio.wat contains a wait factor used to determine the width 

of the window within which a character is accepted. The 

existence of comio.con is mandatory but if comio.wat does 

not exist, the wait factor is calculated and, at the 

discretion of the operator, stored in a new comio.wat file. 



30 

The heart of comio.c is the polled I/O algorithm 

employed to transmit and receive characters. The serial 

line is maintained in XOFF whenever execution transpires 

outside of comio.c. since sending a character is apparently 

equivalent to sending XON, the main difference between 

sending and receiving a character is that XON is sent for 

receiving if a character is not already waiting in the 

buffer. After sending XON or a character, the serial line 

is continuously checked wait factor times for an incoming 

character which is placed in the buffer on arrival. This 

establishes the input window. While characters are received 

and the buffer is not full, this process is repeated. When 

full or if no characters arrive within the window, XOFF is 

sent. While characters continue to arrive within the 

window, they are stored in the reserve portion of the 

buffer. From this discussion it is apparent that too small 

a wait factor allows characters to be missed while too large 

a wait factor unnecessarily slows down the emulator. 

Calculation of the wait factor used in comio.c involves 

several steps. First all incoming characters are thrown out 

until the serial line is quiet for the duration of an 

arbitrarily large window. Then a character is sent 

immediately followed by XOFF. Next the response time of the 

HP9000 to echo the character after an XON is sent is 



31 

measured in terms of the number of times required to check 

the serial line before it arrives. This measurement is the 

wait factor. Since the HP9000 ignores XOFF when requesting 

a password, the carriage return character is used as the 

test character and the response time to this character after 

sending the XOFF and before the XON is also checked. This 

response time is used instead as the wait factor if a 

response occurs within an arbitrarily large window. Next 

the wait factor is corrected with a safety margin and 

finally the echoed character is discarded. If a response is 

never obtained, the operator can either provide a wait 

factor or cancel the connection process. 

Unfortunately, this calculation procedure does not work 

when the Sytek network is used to interface the PC running 

the emulator to the HP9000 directly without a modem. It 

appears the Sytek tries to build a block of characters 

before transmitting them if the interval between characters 

is small enough. If the last character received is XOFF then 

the block is not transmitted until another character 

arrives, regardless of the time delay. It seems that the 

decision by Sytek to block is not only based on the 

frequency of character arrival but on the length of the 

character burst at that frequency. Since it appears to be 

an intractable task to determine the algorithm to beat the 

Sytek blocking system, a wait factor known to work when 



32 

interfacing Sytek through a modem using an 8MHz PC is 

installed in the .comio.wat file for use in this application. 

Development of comio.c has been the most difficult of 

any module comprising the emulator. Originally, the BIOS 

interface was included in the module and there was no 

configuration file mechanism. The module in this form 

together with kbdio.c made up the dumb terminal program 

implemented to test serial line and keyboard functions as an 

early phase of emulator development. Much experimentation 

was required to determine the design of comio.c. Use of the 

standard "C" library function getc(stdaux) was inappropriate 

since it either waits indefinitely for a character or 

produces a DOS error when it times out. Use of DOS function 

3, serial line input, in conjunction with DOS IOCTL function 

44H (hex), a non-blocking check for character presence, 

proved inadequate since characters were missed at 9600 baud. 

Finally, it was discovered that using BIOS "INT 14", the low 

level serial interface, provided sufficient response time to 

capture characters arriving at 9600 baud. After further 

experimentation and critical thinking, the sending and 

receiving algorithms were developed. The fact that 

characters may still arrive after sending an XOFF in 

response to no characters arriving in the input window was 

not anticipated but was demonstrated by experimentation. 



33 

More experimentation led to the development of the wait 

factor calculation algorithm. Fine tuning took place 

throughout the development of the emulator, and the Sytek 

problem was not discovered until after the emulator was 

believed to be completely finished. From the preceding it 

is apparent that testing is conducted at all test levels for 

the emulator. 

Kbdio.c (keyboard I/O) provides the interface to the 

keyboard. Functions equivalent to the standard 11C" library 

functions "getc" and "ungetc" are provided for this 

interface. The "getc" equivalent, however, does not block 

waiting for a carriage return but instead gives any 

available characters or an end of file indication if no 

characters are currently available. While the "getc" 

equivalent function detects extended keys, such as function 

keys or cursor movement keys, calls to the fkey.c or the 

cursor.c module are made as appropriate, and then the next 

character is returned if available. Testing is initially 

performed at the dumb terminal level with the calls to 

cursor.c and fkey.c stubbed in. Testing at the enhanced 

dumb terminal level verifies the function key and cursor 

movement key interface. 

3.8 High level screen functions 

The modules containing the high level screen functions 

are each concerned with a specific location in HP2623 


