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ABSTRACT 

The effect of linear absorption on TEq nonlinear guided waves and the effect 

of linear absorption, input-beam misalignment and nonlinear saturation on soliton 

emission from a nonlinear waveguide have been numerically investigated using the 

beam propagation method. In the first case the distribution of the absorption is 

found to have a dramatic effect on the propagation of the nonlinear guided waves. 

In the second case results reminiscent of the lossless case are found to survive in the 

presence of these complications. 
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I INTRODUCTION 

The phenomenon of light waves guided by thin dielectric films bounded by 

media of less refractive index has been theoretically studied and observed 

experimentally [1, 2]. Generally these waveguides, often called planar or slab 

waveguides, consist of three layered media, with the outer two much thicker than the 

inner film. The first studies assumed that the refractive indices of these media were 

independent of the local field intensity. Such waveguides can be considered linear 

waveguides. Later dielectric media whose refractive index depends on the local field 

intensity were introduced into these studies [3-14]. A waveguide containing one or 

more of this type of media is called a nonlinear waveguide. An exciting aspect of 

nonlinear waveguides is that the properties of guided waves, i.e. the field profiles 

and effective indices, can become flux dependent. Nonlinear waveguides have 

received a great deal of attention as they display many interesting characteristics. 

By assuming a lossless structure exact solutions to the nonlinear wave 

equation for transverse electric ( i t) waves can be found for a nonlinear waveguide 

displaying a Kerr-type nonlinearity [15, 16]. For media of the Kerr-type the 

refractive index is proportional to the local field intensity. Using a formalism 

developed by Langbein et. al. [20, 21] and applied by Stegeman et. al. [22, 23] it is 

possible to deal with arbitrary local nonlinearities for the lossless case. From this 

formalism a dispersion curve between the guided wave flux S and the effective index 

j3 can be found [4]. An intriguing phenomenon occurs when in some cases the 

dispersion curve becomes highly distorted such that more than one guided wave 

solution, or corresponding /3 value, is possible for a given flux. Furthermore, on 
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some curves there is a maximum flux value above which a guided wave cannot exist. 

These features of the distorted dispersion curve suggest applications in nonlinear 

coupling and optical limiting. 

From the formalism mentioned above we can choose a flux and effective 

index combination that lies on the dispersion curve and construct the transverse field 

profile of the corresponding nonlinear guided wave, a nonlinear guided wave being a 

wave which propagates down the guide unchanged in amplitude and phase in the 

transverse direction. The propagation of nonlinear guided waves is an important 

factor neglected in the early studies. Several nonlinear optical devices were proposed 

on the basis of the dispersion curves alone [24], Using the beam propagation method 

[25], Moloney et. al. [26] studied the stability of the nonlinear guided waves under 

propagation. With the same method Wright et. al. [27] showed that a nonlinear 

guided wave can be excited using an appropriately chosen Gaussian beam. The 

propagation characteristics of nonlinear waveguides are of particular interest for 

applications to real devices. 

In the ideal case a nonlinear guided wave propagates unchanged down the 

guide. One of the requirements for the ideal case is that the system be lossless. 

However, it is of interest to know what happens to the beam profile under 

propagation when the system is not lossless, in the presence of absorption. In this 

thesis we look at the effect of absorption on TEq nonlinear guided wave excitation 

and propagation. 

It is necessary to test the stability of these guided wave solutions under 

propagation and, indeed, they have been tested using numerical techniques [26, 28, 

29]. During the earlier work on stability of the nonlinear guided waves an 

interesting phenomena was noted for some of the unstable waves. As expected, some 
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of these waves displayed their instability by oscillating back and forth in the guide, 

however in other cases a portion of the beam actually broke off into the bounding 

media and propagated away from the guide. These solitary wave-packets are solitons 

and possess a property such that two identical waves traveling at a slight angle to 

each other pass through each other with only a change in phase. This soliton 

emission phenomenon attracted new research interest and many studies have been 

performed solely on these solitons. These solitons propagate unchanged under ideal 

conditions but what happens to them in nonperfect conditions? The latter part of 

this thesis discusses the effect that input beam misalignment, absorption and 

saturation have on this soliton emission. 

In the next section we first derive the nonlinear wave equation that applies to 

our waveguide. Secondly, we discuss the waveguide used and the resulting nonlinear 

guided waves and dispersion curves. We also look at the previous work on the 

stability of these waves and their excitation by Gaussian beams. The third section 

contains the analysis of the effects of absorption on the propagation and excitation of 

nonlinear guided waves; while the fourth one the effects of nonideal conditions on 

soliton emission. The final section of this thesis contains a brief summary of the 

research and a few conclusions made from the results. 
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II TRANSVERSE ELECTRIC WAVE EQUATION AND GUIDED WAVES 

II. 1 General Transverse Electric Wave Equation 

We begin our treatment of guided waves by discussing the properties of 

electromagnetic waves. The fields of any electromagnetic wave must satisfy 

Maxwell's equations which are [1, 2] 

V • D - 0 .  

V  •  B - 0 ,  

V x E . - f .  

in the absence of free current or charge density, where B - /i0 H for a nonmagnetic 

medium. -If we take the curl of Eq. 2.3 and employ 2.4 we find: 

V x (V x E) - V (V • E) - V2E - - ft0 (2.5) 

We consider an isotropic medium thus the displacement vector is given by 

D - e0 n2(r) E, where n(r) is the refractive index distribution of the medium and e„ is 

the permitivity of free space. In addition, we choose z to be the direction of 

propagation and the medium to be homogeneous in the y direction so that 

n(r) - n(x,z). We restrict our discussion to monochromatic transverse electric (TE) 

waves of frequency o>, the electric field can then be written [1, 2] 

(2.1) 

(2.2) 

(2.3) 

(2.4) 
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E(r,t) - i j (E(x,z)e-iwt + c.c.) (2.6) 

where j is the unit vector in the y direction. Transverse magnetic waves could also 

be studied, however their analysis is more complicated than necessary for our 

purposes. The simplicity of TE waves will become apparent shortly. From the form 

of the solution in Eq. 2.6 we see that V • E • 0. This greatly simplifies Eq. 2.5 as 

. now we can rewrite this equation solely in terms of E, 

If we substitute our solution Eq. 2.6 into Eq. 2.7, it can be simplified to give: 

where k0
2 - w2/i0e0 is the square of the free-space wavenumber. For a wave 

propagating predominantly in the z direction with a mean effective index /3 we can 

write 

V2E - e0n2(rK fjT " °- (2.7) 

V2E(x,z) + k„2n2(x,z)E(x,z) - 0 (2.8) 

E(x,z) - c?(x,z)ei/3koZ (2.9) 

By expanding the Laplacian in equation 2.8 and using 2.9 we obtain 

<?(x,z) + 2iko/3 + k0
2(n2(x,z) - /32)c?(x,z) - 0 . (2.10) 

Here we have used the slowly varying envelope approximation, that is the electric 
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field envelope <?(x,z) varies slowly with respect to the plane-wave exponential factor, 

|32t?/9z2| « |dc?/dz|/3k0 « |<?|/32k0
2. In this approximation we neglect |32<?/9z2|. 

Equation 2.10 is the basic wave equation for studying TE waves in waveguides. 

II.2 Linear Guided Waves 

In general a planar or slab waveguide consists of three homogeneous media. 

One medium is a thin film we choose to have a thickness 2d and to be unbounded in 

the y direction. The other two media bound this film on either side with the 

interfaces perpendicular to the x axis. These two media bounding the film are 

referred to as the cladding and substrate. Figure 2.1 displays this basic configuration 

with the coordinate system chosen. Recall that previously we chose z to be the 

propagation direction of the light. 

In the linear case the refractive index distribution n(r) is independent of the 

field intensity and is solely dependent on the transverse coordinate x perpendicular to 

the direction of propagation, n(r) - n(x). The linear guided wave solutions are easily 

found. They must satisfy the boundary conditions that the tangential components of 

the electric and magnetic vector fields be continuous across any interface. As we 

. have chosen TE waves it can be shown that the continuity condition of the magnetic 

field is synonymous with requiring the continuity of the derivative of the electric 

field with respect to the transverse (x) axis. We see from the form of our electric 

field, Eq. 2.9, that our condition that E and dE/dx are continuous requires <5 and 

d<3/dx be continuous across the interfaces. For a stationary wave <?(x,z) is 

independent of z, <?(x,z) - <?(x), and our wave equation becomes 
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n? + ac E 
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nf n 

Fig. 2.1. Nonlinear waveguide geometry, a linear thin film of thickness 2d, 
bounded by a linear substrate and a nonlinear cladding. 



^ <?i(x) + k0
2(n;2 - p2)<st(x) -  0 
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(2.11) 

where i - 1, 2, 3 stands for the cladding, film and substrate, respectively. Given a 

film of thickness of 2d with interfaces at x • +d and x - -d we can impose the above 

boundary conditions along with the condition that the electric field must decay to 

zero as x goes to ±oo for physical solutions. A guided mode is a solution of the wave 

equation 2.11 that propagates down the guide unchanged in amplitude and phase if 

we assume ideal conditions. A solution that satisfies these boundary conditions 

requires that n2 > 0 > max(n1, n^, the fields in regions 1 and 3 be exponential, and 

that in region 2 should be sinusoidal [1, 2]. It has the form: 

c?!(x) - exp{ (x + d)k0 qt } (2.12) 

" <S2(x) - cos[ (x + d)k0q2 ] + A sin[ (x + d) k0q2 ] (2.13) 

<?3(x) - ( cos[ 2dk0q2 ] + A sin[ 2dk0q2 ] )exp{ -{x - d)k0q3 } (2.14) 

where qj2 - |/32 - nj2| and A - qi/q2. Note that this form of the solution ensures that 

<S(x) is continuous. This is the basic solution to the linear, stationary, TE wave 

equation. From these three equations we can obtain relationships between various 

parameters that give us information about linear waveguides. One relation of interest 

is that between the product 2dk0 and the effective index 0. By equating the 

transverse derivative of the electric field across the x - +d boundary (i.e. the film-

substrate boundary) we obtain the relationship: 

tan( 2k0dq2 ) 1 + Si 
q3 

Q2 Qi 
Q3 Q2 

(2.15) 
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We can solve this equation for the product 2k„d in terms of the effective index 0. A 

plot of this relation for both the TEq and TEt solutions appears in figure 2.2, where 

1 . 5 7 0  

1 . 5 6 5  

J }  1 . 5 6 0  

1 . 5 5 5  

1 . 5 5 0  

2d 

Fig. 2.2. Effective index /S versus film thickness 2d for n, - n3 - 1.55, n2 - 1.57 and 
X - 1/tm. The curve on the left is the TEq mode and the other is the TE, mode. 

we chose the refractive index of the cladding and substrate to be the same. By 

definition for a TEm wave there are m zero crossings in the electric field profile. 

We see that as the film thickness 2d increases from zero the effective index increases 

from nla the refractive index of the cladding, up to n2, the refractive index of the 

film. When the effective index /? is near n2 we have a tightly bound profile in the 

guide and as /3 goes down to nx the profile flattens out. For TEq waves at cutoff, 

/3 as nj and we have essentially a plane wave profile. 

After choosing a suitable k0, 2d and /? combination that satisfy Eq. 2.15 we 
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can graph the three equations 2.12 - 2.14 for x < -d, -d < x < d and x > d 

respectively, to obtain a field profile of our guided wave. This field profile can 

provide visual information such as where the peak energy lies, the general size of the 

beam width, etc. Note that we have chosen to use TEq guided waves and henceforth 

our discussion will deal solely with this type of solution. The solutions to the wave 

equation for the linear case are exact solutions and upon propagation they remain 

unchanged in phase and amplitude. They are useful in understanding the basic 

phenomena of guided waves but do not provide information about propagation 

effects. 

II.3 Nonlinear Guided Waves 

II.3.a Introduction to Nonlinear Guided Waves 

Using the same basic waveguide structure as discussed in the previous section 

only slightly modified we can study a completely different set of solutions to the 

wave equation. When one or more of the media chosen for the waveguide possesses 

a refractive index which depends on the field intensity we call the waveguide a 

nonlinear waveguide. In our study, we use a refractive index of the Kerr-type. For 

this type of media the refractive index depends on the modulus squared of the field 

amplitude (i.e. the field intensity) and we write 

n2(x,z) - n2(x, |<?(x,z)|2) 
nx

2 + a!|<?(x,z)|2 x < - d 
n2

2 + ot2|(?(x,z)|2 -d<x<d (2.16) 
n3

2 + a3|<?(x,z)|2 x > d 

where a, is the nonlinear coefficient of the ith medium [3]. This coefficient can be 

positive or negative; when a is greater than zero the nonlinearity is a self-focussing 
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nonlinearity and when it is negative we have a self-defocusing nonlinearity [17]. 

This intensity dependence of the refractive index must be included in the wave 

equation 2.10. We then obtain a nonlinear TE wave equation which has the form 

+ 2iM H + k0
2(n2(x) - P2)S + k0

2ot(x)|c?(x,z)|2c? - 0. (2.17) 

Using this nonlinear wave equation we can study the characteristics of a chosen 

nonlinear waveguide. 

First we can obtain the stationary wave equation for TE guided waves by 

realizing that for stationary waves the field amplitude <?(x,z) does not change under 

propagation, <?(x,z) - <S(x). In this approach we see that d<S/dz - 0 and we are left 

with a stationary wave equation of the form: 

«?i(x) + k0
2(ni2 + otj |c?;(x)|2 - fi2)<5,(x) - 0. (2.18) 

From this wave equation we can find exact solutions for nonlinear stationary waves 

by imposing the same boundary conditions on the field as for the linear case. 

For our nonlinear waveguide model we use the same structure as in the linear 

case, however we choose the cladding to exhibit a Kerr-type nonlinearity, while the 

film and substrate are taken as linear, a2 " a3 m 0- We could choose a symmetric 

guide with both cladding and substrate nonlinear, however this would merely 

complicate our solutions and for our study the simple case above is quite sufficient. 

Results for the symmetric case can be found in Seaton et. al. [17]. 

We impose the previously discussed boundary conditions on the electric field 

to solve equation 2.18 and obtain the guided modes. Recall that for TE waves the 
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electric field and its transverse derivative are continuous across any interface. Our 

second boundary condition calls for limits on the electric field, that is for the wave 

to be physical <?i(-o°) - 0 and <S3(oo) - 0. 

The exact solutions for the stationary TE waves with nonlinear cladding are 

<?i(x) - ^ 

for > 0 (self-focusing case) or 

<S i(x) - -

for a, < 0 (self-defocusing case). 

Qi 
<*1 cosh[k0q!(x + d - x0)] 

2 Qi 
R sinh[k0qi(x + d - x0)] 

(2.19a) 

<?2(x) - <?,(-d) 

<?2(x) - ^(-d) 

q. 
cos(k0c|2(x + d)) + — tanhJ(k0q,x0) sinftoq^x + d)) 

q2 

q. 
cosh(k0q2(x + d)) + — tanh-i (k^Xo) sinh(k0q2(x + d)) 

qz 
(2.19b) 

for /?2 < n2
2 and /J2 > n2

2, respectively, where j - ±1 is the sign of the nonlinearity, 

and 

<?3(x) - <S2 (d) exp[-k0q3(x - d)]. (2.19c) 

Here q{
2 - |/32 - nj2| as before and x0 is a constant which should be determined from 

the boundary conditions. This form of the nonlinear solution ensures that <?(x) is 

continuous. 

From these solutions we can find relationships between various parameters as 

before. By matching <S and d<S/dx at each interface we can find a relation between 

the effective index /3 and the product 2k„d. This relation was found to be: 
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tan(2k0q2<i) 

tanh(2k0q2<i) 

1 + tanhJ (k0qiX0) / 
Qs 

1 + tanhJ (koq^o) / 
qs 

S2 _ Si 
q s "  q2 

S2 Qi 
Qs " q2 

tanhi (k0q2x0) (2.20) 

for §r < n2
2 and /32 > n2

2, respectively. The parameter x0 can be found from 0, x„ -

x0(/3). 

Of greater interest is the dispersion relation between the effective index 0 and 

the input guided wave flux S. This energy flux can be calculated by integrating the 

Poyriting vector over the transverse dimension x [4], 

00 

If we define 

then the normalized flux is 

S'- gH |<?(x)|2 dx 
J-oo 

o* cd 
0 " 44*! I 

s - J h T s r J "  v J—oo 

(2.21) 

(2.22) 

(2.23) 

Equation 2.23 gives the normalized energy flux per unit y dimension. This equation 

can be used to obtain the dispersion relation between /3 and S. The TEq dispersion 

curve for several thicknesses is shown in figure 2.3 for a self-focusing nonlinearity, 

cti > 0. This configuration with a nonlinear self-focusing cladding will be used 

exclusively throughout this thesis. From figure 2.3 we see that for any thickness a 

wave can be guided (TEq is always above cutoff) and we also see for large enough 

thicknesses a local maximum in the guided wave power occurs. This happens 
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1.56 1.58 1.60 

Fig. 2.3. TEq guided wave power versus effective index 0 for iij =» n3 » 1.55, 
n2 » 1.57 and a2 - 10"9 m2/W for three different film thicknesses, 2d • 0.5 fim 
(dotted line), 2d - 1.0 fim (dashed line), 2d - 2.0 fim (solid line). 

because for thick films we can imagine two types of solutions for a given guided 

wave flux [17]. Basically, one is essentially a linear guided wave, and the other 

resembles a self-focused wave peaked in the nonlinear cladding. For very thick 

films the second solution barely sees the substrate and thus acts like a surface wave 

[28]. 

From the dispersion curve we see that depending on the flux the guided wave 

will have different /3 values and for some values of the input flux there are three 

different /3 values possible. Questions begin to arise about these solutions. The first 
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question that comes to mind is are all three possible nonlinear guided wave solutions 

stable under propagation? Secondly, can we excite these solutions using a Gaussian 

profile beam? 

II.3.b Stability of Nonlinear Guided Waves 

The stability analysis turns out to be quite complicated because equation 2.17 

cannot be solved analytically. Instead the procedure used is to solve the wave 

equation for a steady state solution E(x) corresponding to one point on the dispersion 

curve and propagate this field down the guide using the split-step fast fourier 

transform method. After a reasonable propagation distance we compare the final 

field profile to the initial one. If this profile has not changed in shape or amplitude 

we call the solution a stable one. In using this method for determining stability it 

was found that the dispersion curve can be divided into three branches: two with 

positive slope (dP/d/3 > 0) and one with negative as shown in figure 2.4. A guided 

wave with initial profile obtained from the positively sloped branches of the 

dispersion curve was stable under propagation whereas a field from the negative 

branch was unstable. The two stable field profiles are also depicted in fig. 2.4 next 

to their respective branches. 

Field evolution profiles for each of the three cases are displayed in figure 2.S. 

On branch I the field is centered in the guide and propagates unchanged acting 

essentially like a linear guided wave. In contrast, on branch II the field is localized 

in the nonlinear cladding and propagates unchanged like a surface polariton [17, 26]. 

However on the negatively sloped branch instability causes a wave-packet to break 

off and propagate into the nonlinear medium away from the guide. This wave 

packet propagates in the form of a self-focused spatial soliton. A soliton is a solitary 



22 

0.250 

Sc 

CO 

=j 0.125 

U-

^.55 1.60 1.65 

P 
Fig. 2.4. Guided wave flux S versus effective index 0 for nj - n3 - 1.55, n2 - 1.57, 
a2 - 10~2 and 2d - 8. The solid and dashed lines indicate stable and unstable regions 
respectively, and the insets show the general nature of the nonlinear guided waves on 
the stable branches. Sc is the critical flux. 

wave, i.e. a solution to the nonlinear wave equation that propagates unchanged in 

phase and amplitude, that is also stable [30, 31]. If both cladding and substrate are 

nonlinear the instability does not cause soliton emission but causes the profile peak to 

bounce back and forth in the guide. Soliton emission only occurred on this 

negatively sloped branch. We answered our first question by finding branches I and 

II stable but the intermediate one unstable. 

I XL 
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1 5 0  

90 
3 0 0  

6 0  
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3 0 0  

(b) 
6 0  
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6 0 

- 2 0 0  
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Fig. 2.5. Evolution of the field profiles in a nonlinear waveguide with the same 
parameters as in fig. 2.4, except 2d -12 fim, for (a) a branch I solution, (b) a branch 
II solution, (c) an unstable (negatively sloped) branch solution,. In this and all similar 
figures the vertical lines indicate the waveguide boundaries and the propagation 
coordinate is in units of free space wavelengths. 
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II.3.C Excitation of Nonlinear Guided Waves 

In the first stability work the initial profile was always taken from the 

dispersion curve as a stationary solution to the wave equation and then propagated 

using the split step fast fourier transform routine [26, 28, 29]. Of interest though is 

how these nonlinear guided can waves be excited. One proposal was to see if they 

could be excited using a Gaussian beam. It was found by Wright et. al. that indeed 

either of the two stable solutions, branch I or branch II, could be excited using a 

Gaussian beam shaped similarly to the steady state solution and of reasonable input 

flux value [27]. By placing a beam of appropriate shape in the center of the guide a 

branch I solution was excited and by placing the beam near the cladding-film 

boundary the branch II solution could be excited. A solution on the negatively 

sloped branch cannot be excited which is understandable because it is an unstable 

branch. This Gaussian beam excitation work further supported the stability work. 

It showed that branches I and II are so stable that even a beam that was not exactly 

a steady state solution but similar could excite either of these two nonlinear guided 

waves. 

Further work by Wright [32] explored the effect of fixing the profile to be 

that of a steady state linear solution but increasing the input flux above the critical 

flux Sc, the local maximum flux on the dispersion curve. Figure 2.6 shows the 

trapped flux after a reasonable propagation distance versus the input flux for a 

branch I solution. It was discovered that the discontinuities in this graph represent 

soliton emission from the guide. This thresholding behavior causes one or more 

soliton to be emitted when S > Sc, where the number of solitons emitted is 

approximately the integer part of S/Sc. In figure 2.7 we can observe this multi-

soliton emission for various input flux values. After the appropriate number of 
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solitons are emitted a branch I solution is left in the guide. Theoretically, any input 

flux tailored and centered like a branch I solution will eventually result in excitation 

of a branch I solution with trapped flux between zero and the critical flux. 

II.3.d More Questions About Nonlinear Guided Waves 

In the stability and Gaussian beam excitation analysis of nonlinear guided 

waves the answers to our initial questions were found. Only positively sloped 

branches of the dispersion curve, dP/d/3 > 0, were found stable. These stable 

solutions can be excited using appropriately shaped and placed Gaussian beams. 

More importantly new questions arose about these nonlinear guided waves. We 

assumed ideal conditions above. What happens to nonlinear guided waves if the 

system is not lossless? 

In my thesis work I first studied the effect absorption has on nonlinear 

guided waves. Secondly, I studied the phenomenon of soliton emission and how it is 

affected by nonideal conditions. 
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III EFFECTS OF ABSORPTION ON NONLINEAR GUIDED WAVES 

III.l Absorption in the Nonlinear Wave Equation 

In the previous section our analysis using the wave equation to obtain 

stationary guided wave solutions applied only to the lossless case and did not take 

into account the absorption that is present in waveguides. However some absorption 

is present in all waveguides and can be significant for nonlinear media [33]. Using 

the beam propagation method we investigated the effects of linear absorption on the 

TEo nonlinear guided waves. We found that the distribution of this absorption in the 

waveguide had profound effects on the propagation of the nonlinear guided waves 

obtained from the lossless case. 

The linear absorption varies transversely across the guide due to the different 

media it is composed of. If we characterize this absorption profile using T(x) - T; 

where, as before, i - 1, 2, 3 for the cladding, film and substrate, we rewrite the 

nonlinear wave equation 2.17 as 

gf- + 2iM ^ + k0
2(n2(x)+a(x)|c?(x,z)|2-/3V + iko/SIW - 0 (3.1) 

Here is an absorption coefficient. This new nonlinear wave equation can be used 

as before to study the effect absorption has on the propagation and the excitation of 

nonlinear guided waves [34], With the split step fast fourier transform method of 

propagation we can determine the electric field profile of the nonlinear guided waves 

at various points of its propagation. By comparing the lossless profiles to those 

where absorption is included we can investigate how absorption affects nonlinear 
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guided waves. 

III.2 Effects of Absorption on the Propagation of Nonlinear Guided Waves 

Two different cases of absorption profiles were of interest to us, namely, 

lower absorption in the film than in the bounding media and vice-versa. The wave 

section, for simplicity we chose the absorption in the cladding and substrate to be the 

same, r, - r3. We used large but not unrealistic absorption coefficients to display 

clearly the differences between the two cases. Similar results would be obtained for 

lower values but require larger propagation lengths. The propagation lengths used 

were chosen to be a couple of absorption lengths for the larger of T, or r2. 

For the first case we chose the absorption in the cladding and substrate to be 

greater than that in the film, Tj - r3 > r2. Specifically we used IcqI*! - 10-2 and 

k0r2 - 10"3. We were interested in two parameters, the normalized guided wave flux 

S(z) and the effective absorption that the guided wave sees Te(z). Note that both 

these quantities depend on the propagation distance and can be given by 

Using the propagation routine with our new wave equation 3.1 and the above 

guide has the same configuration as before with only the cladding nonlinear. In this 

(3.2) 

(3.3) 

where 
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relations we can calculate the normalized flux and the effective index of the guided 

wave as it evolves. 

We chose three different stationary solutions to propagate in our study. The 

first and second solutions are from branches I and II of the dispersion curve, fig. 2.5, 

respectively, both having a normalized input flux of S - 0.13. The third solution is 

one from branch II with an input flux of S - 0.5. In figure 3.1(a) the evolution of 

the flux versus propagation distance is displayed for the above three cases and figure 

3.1(b) shows the effective absorption versus flux for these cases. 

In these two figures we notice several details. Curve I in figure 3.1(a) 

displays the least absorption. This is natural because as a branch I solution it is 

concentrated mainly in the film [17] where the least absorption is. As evidenced in 

curve I of figure 3.1(b) where Te is essentially constant, this field profile propagates 

almost unchanged but decays in height exponentially as exp(~r2z). Curves II and III 

obtained for the branch II solutions are more drastic than curve I as is expected 

because they are localized in the nonlinear cladding where the absorption is greatest. 

In figure 3.1(a) the flux decays more strongly for the branch II solutions with curve 

III showing stronger decay than II because the higher flux guided wave is localized 

further into the cladding than the lower one [17]. Figure 3.1(b) shows similar 

structure for curves II and III. Both curves have a high effective absorption initially 

and decrease as the solution propagates (note that the solution evolves from high flux 

to low flux as it propagates). Of interest is that the curve III solution actually starts 

at Te — rt; this is because it is localized almost entirely in the cladding. As both of 

these branch II solutions propagate the self-focused peak evolves toward the film and 

eventually penetrates into it. The effective absorption decreases with the propagation 

because more of the profile is inside the film. The small oscillation in fig. 3.1(b) 
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Fig. 3.1. (a) Wave flux S versus propagation distance z and (b) effective absorption 
k0re versus flux S, for - k„r3 - 10-2, k„r2 - 10-3 and three different initial 
nonlinear guided waves from fig. 2.4. Curves I and II correspond to branch I and II 
type solutions, respectively, of the same initial flux S - 0.13. Curve III corresponds 
to a branch II solution of initial flux S - 0.5. Figs, (c) and (d) are the same as (a) 
and (b) except k0r1 - k„r3 - 10"3 and k0r2 - 10-2. 

occurs because after the peak penetrates into the film the inertia of the wave causes 

it to be temporarily drawn back toward the cladding. After this oscillation the wave 

evolves toward a branch I solution and, as we see from figure 3.1(b), re, the 

effective absorption, decreases toward the constant r2, the absorption of the film. 

Figure 3.2 displays the evolution profiles of these three cases. Note how in 

fig. 3.2(a) the branch I profile decays but does not move around in the guide. In fig. 
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3.2(b) the curve II profile moves into the film and decays. As evidenced between the 

sixth and seventh profiles, the peak, moves back toward the cladding causing the 

small oscillation we mentioned in fig. 3.1(b). The last evolution plot, fig. 3.2(c), is 

for the higher flux branch II solution. We observe how quickly the flux is 

dissipated (note the change of scale for the propagation distance). This quick loss of 

energy can also be seen in fig. 3.1(a), curve III. 

For curves II and III, figs. 3.2(b,c), we see that the self-focussed peak is 

attracted toward the film which is the region of lower absorption. We can say that 

the absorptive profile actually possesses focusing properties. If we consider an input 

field with its peak located in the film we realize that this field is absorbed least in 

the film and more strongly in the bounding media. Thus, our configuration produces 

a focusing of the local field in the film. It is this absorptive focusing that attracts 

the field toward the film in the branch II cases. 

One final detail to recognize is that in fig. 3.1(b) curves II and III show 

similar features however they do not overlap. If propagation effects were ignored 

and the field distribution assumed to adiabatically evolve along the dispersion curve 

these two curves would be coincident. We realize from their difference that 

propagation cannot be ignored in the present problem [35]. 

Our second study for this section uses higher absorption in the film than in 

the cladding and substrate, k„r2 - 10~2 and k^ - kor3 »10"3. Using the same three 

stationary solutions as above for this new guide configuration we obtain drastically 

different results. Figures 3.1(c,d) correspond to 3.1(a,b) for our new absorption 

profile. We see from fig. 3.1(c) that the curve III solution suffers least from 

absorption, whereas the curve I solution suffers most. This again is understandable 

in that the branch II solution of higher flux is localized furthest into the cladding 
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where the absorption is lowest but the branch I solution is in the film where the 

absorption is greatest. Using the focusing argument from above we would expect 

the film being of higher absorption to repel the field and the cladding and substrate 

to attract it. In this case it is the curve III solution in fig. 3.1(d) for which the 

effective absorption fe stays constant and equal to IY The evolution of the field 

200 

1 2 0  

1 

X 

Fig. 3.3. Evolution of the field profile for results corresponding to figs. 3.1(c,d) 
curve III. 

profile versus propagation distance is shown in fig. 3.3 for this solution. The initial 

field is far enough away from the film that it can break away from the waveguide 

and move further into the cladding. As it evolves away from the film it decays and 

broadens. 

The initial field profiles and the profiles after seventy-five wavelengths 
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Fig. 3.4. (a) and (c) are input waves used to generate curves I and II of figs. 3.1(c,d), 
respectively, (b) and (d) are their respective field profiles after 75 wavelengths 
propagation. 

propagation are shown in figs. 3.4(a-d) for the solutions of curves I and II of figs. 

3.1(c,d). We see in both cases the field being attracted to the cladding and substrate. 

For curve II the field initially moves toward the film and so its effective absorption 

increases, fig. 3.1(d). As it propagates further the field evolves into the cladding and 

substrate in the form of side-waves which propagate away from the film and the 

. effective absorption begins to decrease with decreasing flux (or increasing 

propagation distance). These side-waves can be seen in fig. 3.4(d). In the case of 

curve I of fig. 3.1(d) the branch I solution is localized mainly in the film where the 
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greatest absorption is. It therefore encounters a high effective absorption, Te ss r2, at 

the beginning of its propagation. Eventually the field radiates out into the cladding 

and substrate, fig. 3.4(b), leading to the decrease in FE of fig. 3.1(d). 

This study's results demonstrate that the effect of absorption on TEq nonlinear 

guided waves depends strongly on the absorption profile. The field is always 

attracted to regions of lower absorption and it decays under propagation. Again the 

absorption coefficients used were large but not unrealistic and for smaller absorption 

coefficients the effects are similar but not so strong for the same propagation 

distance. 

III.3 Effects of Absorption on the Excitation of Nonlinear Guided Waves 

In the previous section we employed absorption in all three media, the 

cladding, film and substrate. In realistic waveguides with a nonlinear cladding and 

linear film and substrate it is reasonable that only the cladding will exhibit 

significant absorption [33]. In fact, it is absorption that is responsible for the 

nonlinear refractive index. The resonant interaction between the field and the 

nonlinear media requires absorption. We will approximate it as linear absorption. 

On the other hand, the field interacts nonresonantly with linear media and thus the 

absorption is low for this media. Irregularities in the waveguide give rise to 

unavoidable scattering losses but they are small compared to the absorption due to the 

nonlinearity and so we will neglect them in this section. 

We discussed in section II.3.C how a Gaussian beam appropriately tailored 

and placed can be used to excite any stable TEq nonlinear guided wave in the lossless 

case. It is of interest to know if this is still true in the presence of absorption. We 

chose a waveguide where the cladding was nonlinear and displayed absorption, but 
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the film and substrate were linear and lossless. It is important to recognize that real 

nonlinear guided waves do not exist in the presence of absorption but it was hoped 

that fields resembling these waves would survive the presence of absorption and be 

excited in the nonlinear waveguide. 

To investigate the excitation of these waves in the presence of absorption we 

solved eq. 3.1 with initial data corresponding to a collimated Gaussian input beam. 

Ein(x.O) - A (3.4) 

Here A is used to adjust the input beam flux, x„ is the displacement of the input 

beam center from the guide center and oi0 is the Gaussian spot size. As explained by 

Wright [27], the above procedure corresponds to end-firing a Gaussian beam onto the 

nonlinear guided wave. We were interested in exciting a branch II solution at the 

cladding-film boundary and so we chose an input flux of Sin - 0.155, a displacement 

of x0 - -10.6 and a spot size of w0 - 4.0. Using these parameters in eq. 3.4 to solve 

eq. 3.1 in our propagation routine, we found branch II nonlinear guided waves could 

successfully be excited in the presence of absorption. The input wave was taken as 

the nonlinear guided wave in the absence of absorption. We chose a propagation 

distance of 300 wavelengths and investigated three different absorption coefficients, 

kor, - 10"s, 10-4, 10"3. Plotted in fig. 3.5 is the flux as a function of propagation 

distance for these three coefficients. In figs. 3.6(a-c) we display the evolution of the 

field profiles. We can see in figs. 3.6(a,b) that a wave resembling the nonlinear 

guided wave does indeed survive the absorption for kor, - 10~s and k^ - 10-4. 

However for kol^ = 10"3 the absorption is too great for this to occur and the field 

evolves toward and eventually settles into the film. This phenomena is evident in 
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Fig. 3.5. Evolution of the wave flux S versus propagation distance z for the same 
input wave and k„ri - (a) 10_s, (b) 1(H, (c) 10-3. The input wave is a displaced 
Gaussian. 

fig. 3.5(c) where the flux falls off rapidly at first and once the field moves inside the 

film the slope of the curve 3.5(c) flattens out. 

Again we have shown that absorption in a nonlinear waveguide reduces the 

efficiency or limits the useful device length of the guide. If the absorption is low 

enough the results obtained resemble the lossless case, but for higher absorption 

coefficients the loss needs to be taken into account when designing the device. 



39 

300 

300 
120 

240 

180 

300 
-50 

120 

6 r 180 

-50 
120 

Fig. 3.6. Evolution of the field profiles corresponding to figs. 3.5(a, b, c), 
respectively. 



40 

IV SOLITON EMISSION UNDER NONIDEAL CONDITIONS 

IV. 1 Soliton Emission from a Nonlinear Waveguide 

In section II.3.C we discussed briefly the ability to excite a nonlinear guided 

wave using a suitable Gaussian input beam. We also mentioned that multi-soliton 

emission can occur when the input flux of a linear guided wave solution exceeds the 

critical flux of that guide's dispersion curve. Here we will use a collimated Gaussian 

input beam of flux greater than the critical flux to produce soliton emission. The 

previous work on multi-soliton emission by Wright [32] assumed ideal conditions, i.e. 

the guide was lossless, the input beam was exactly aligned, the nonlinearity was 

unsaturable. (See figs. 2.7 and 2.8). It is important to know how nonideal 

conditions affect the occurrence of soliton emission. 

In this study we looked at several complications to the ideal case to determine 

whether the phenomenon of soliton emission is resilient enough to be searched for 

seriously in a laboratory experiment. We performed a numerical study of the effects 

of linear absorption, input beam misalignments and nonlinear saturation on soliton 

emission from a nonlinear guided wave [36]. Again we must note that in the 

presence of absorption no true soliton solutions of the nonlinear wave equation exist, 

but it is hoped that results reminiscent of the lossless case will survive. 

We solved the nonlinear wave equation that included the absorption 

coefficient, eq. 3.1, with initial data corresponding'to a Gaussian input beam of the 

form 

E(x,0) - A exp{*[Q(x - x„)2/2 + KX]} (4.1) 
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Here, as before, A is used to adjust the input beam flux, x0 is the displacement of the 

input beam peak from the guide center and «0 is the Gaussian spot size, k - sind 

accounts for the fact that the input beam may travel at an angle 9 with respect to the 

z axis. For |d| « 1, k as 0. Q is the input complex beam parameter given by 

Q - 5" + #T. (4.2) ^ R k0
2w0 

where R is the input beam radius of curvature. 

By using eq. 4.1 as the input beam and adjusting the appropriate parameters 

we studied the effect of the various complications on the nonlinear guided wave. In 

order to fully understand how the various complications affect the wave we decided 

to apply each one independently to the same basic configuration. To do so we held 

several of the parameter values fixed throughout this study and varied only one 

parameter in each case. Our fixed parameters were nt - ns - 1.55, n2 - 1.57, 

- 0.01, a2 - a3 - 0.0. As before the film and substrate are assumed lossless. The 

input beam Gaussian spot size was set at k0w0 - 10. The following sections discuss 

separately the effects of absorption, input beam misalignment, and nonlinear 

saturation on soliton emission. 

IV.2 Effects of Linear Absorption on Soliton Emission 

In this section we discuss the effects of linear absorption on soliton emission. 

Again no true soliton exists in the presence of absorption so we looked for results 

reminiscent of the lossless case. The absorption in the nonlinear media is in general 

much greater than that in the linear therefore, in this study, we chose to include only 

this nonlinear absorption. Figure 4.1 displays the results of this absorption study. 
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We used an input flux of Sin - 0.22, which gave us single-soliton emission in the 

lossless case, and varied the absorption coefficient in the cladding, IV We see that 

for k^ - 10*4 in fig. 4.1(a) the effects of linear absorption are small over the 

propagation distance considered. The soliton that is emitted propagates visibly 

unchanged. For - 10~3 in fig. 4.1(b) the effect of absorption is more drastic. 

Although the localized wave-packet is emitted it decays and broadens as it evolves 

away from the cladding-film interface. Though not visibly apparent, this wave-

packet's velocity away from the interface decreases. Finally, for kol^ - 10-2 in fig. 

4.1(c) no wave-packet is emitted. The absorption here immediately reduces the 

energy of the guided wave before a soliton can be emitted and it continues to drain 

the energy from the guided wave. 

We realize that localized wave-packet emission still occurs if the absorption is 

small, tyit this absorption limits the useful device length and if the absorption is large 

no emission occurs. Similar results are obtained for input flux levels that produce 

multi-soliton emission in the lossless case. There also, increasing the absorption 

reduces the number of waves emitted and eventually prohibits emission altogether. 

IV.3 Effects of Input Beam Misalignment on Soliton Emission 

In this section we study the effects of input beam misalignment on soliton 

emission. In particular, we looked at three types of misalignment, noncollimated 

beam, transverse displacement and angular displacement. All three complications are 

tolerated so that soliton emission still occurs however, in general, they do produce 

significant amounts of radiation. In contrast, radiation in the ideal case is negligible 

[32]. We will mention only briefly the results of the test with a noncollimated beam 

as they were uninteresting compared to the other misalignments. On the other hand. 



43 

300 

240 

180 300 

120 240 

180 300 

120 240 -200 -50 100 

180 

120 
-50 -200 100 

-50 

Fig. 4.1. Soliton emission in the presence of absorption. The input flux in all cases 
is Sin = 0.22 and the absorption coefficient kol^ = (a) 10-4, (b) 10-3, (c) 10"2. 
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we will present results and figures for the cases of transverse and angular 

displacements. The former example illustrates how resilient soliton emission is to 

input beam misalignment, and the latter illustrates how a misalignment need not 

produce a significant amount of radiation. 

In the case of transverse displacement we again considered an input beam of 

flux Sin - 0.22, but displaced the center of the beam by eight units. Figures 4.2(a,b) 

show the initial beam profile displaced into the substrate and the beam profile after 

propagation of 100 free space wavelengths, respectively. We see that soliton emission 

still occurs, however a significant radiation component is clearly present. At first it 

seems unusual that soliton emission can occur when the beam is displaced so far 

away from the nonlinear media, but if we think of the guide as a focusing medium 

drawing the input toward the film we can understand what happens. Once the 

motion has commenced the field moves not only into the film but also closer to the 

cladding, the nonlinear media. When close enough to the cladding, soliton emission 

can occur just as it does when the field is initially in the film. From this transverse 

displacement example we discover that soliton emission is highly resilient against 

input beam misalignments. 

Now we consider the effect of angular displacement on soliton emission. We 

investigated the possibility that the input beam does not enter the guide at normal 

incidence but at a slight angle 6. The effects of angular displacement are depicted in 

fig. 4.3 where again we used S;n - 0.22. From fig. 4.3(a) where the input beam was 

directed up into the nonlinear cladding we see that soliton emission occurs with 

negligible radiation. In contrast fig. 4.3(b) shows a frame from the evolution plot 

where the input beam was directed down into the linear substrate. We see here that 

although soliton emission still occurs significant amounts of radiation are produced. 
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Fig. 4.2. Soliton emission in the presence of a transverse displacement x0 « 8 for an 
input flux Sin - 0.22; (a) the input profile, (b) the field after 100 wavelengths 
propagation. 

Here also it may seem unusual that soliton emission can occur, but again if we think 

of the film as an attractive potential we see that it can confine the field and produce 
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Fig. 4.3. Soliton emission in the presence of an angular displacement for an input 
flux Sin - 0.22 and (a) 9 - -0.1. (b) B - +0.1. 
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a soliton. However, if the angular displacement is large enough to overcome the 

confinement the wave can escape into the linear substrate. 

Here we realize that soliton emission can occur when the input beam is 

misaligned but is usually accompanied by large amounts of radiation. For some 

misalignments though negligible radiation is produced. Whether the soliton could be 

detected depends, in part, on the amount of radiation produced. 

IV.4 Effects of Nonlinear Saturation on Soliton Emission 

To investigate the effect of saturation on soliton emission we must include a 

saturation parameter SC in our nonlinear refractive index. The refractive index 

profile can now be written [36] 

- "i* + I Jx\fl,z)\' • (4'3) 

Note that in the limit SC - 0 we get back the previously used Kerr-type nonlinearity, 

eq. 2.16. The saturation parameter takes care of the fact that the nonlinearity cannot 

increase indefinitely as the input power goes up. 

Figures 4.4(a-d) display the wave emission for four different values of the 

saturation parameter including the ideal case where SC - 0. We used an input beam 

flux of Sin - 0.6 which was shown in fig. 2.8(a) to produce three solitons in the ideal 

case. As 90 increases from 0.0 to 0.5 we see a successive decrease in the number of 

waves emitted. We can explain this by noting that Sc, the critical flux, is an 

increasing function of SC. As we discussed in section II.3.C, Wave emission does not 

occur for S < Sc and now because Sc increases with SC, so does the threshold for 

wave emission. Saturation therefore distorts the dispersion curve causing the local 
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maximum at Sc to increase. 

An important fact to keep in mind is that in the presence of absorption 

solitons are not emitted, but solitary waves are. We must be careful to replace 

soliton emission with wave emission in our discussion as we did above. The 

solitary-wave nature of the emitted waves was established by colliding these waves 

with copies of themselves. Contrary to the soliton case, the two colliding waves do 

not simply pass through each other with only a phase shift, but they leave behind a 

stationary residue. Figure 4.5 shows this collision and the resulting residue. It is 

not surprising that the waves are not solitons but it is reassuring that waves do 

continue to be emitted in the presence of saturation. 
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input flux Sin - 0.6 and (a) X « 0, (b) 9G =* 0.02, (c) 90 - 0.05, (d) 9C = 0.5. 



50 

600 

480 

360 

<240 

120 

160 -160 
X 

Fig. 4.5. Solitary-wave collision. The solitary-wave component from the final frame 
in Fig. 4.4(c) has been collided with a copy of itself in the nonlinear medium with 
the waveguide removed. 
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IV CONCLUSION 

For my thesis I theoretically studied the effects of various complications on 

the excitation and propagation of nonlinear guided waves. By correctly modeling the 

complication in the nonlinear wave equation and then using the beam propagation 

method we studied these effects. We found that the absorptive profile of a nonlinear 

waveguide has a dramatic effect on the propagation of TEq nonlinear guided waves. 

For stability, it is preferable that the film exhibit lower absorption than the cladding 

and substrate. Also for successful excitation of branch II nonlinear guided waves 

the above preference is observed and if the absorption is not too strong results 

reminiscent of the lossless case can be achieved. Fortunately, this preference is, in 

general, realized by the choice we have made of nonlinear cladding, because the 

largest absorption coefficient is that associated with the nonlinear refractive effect. 

The effect of various complications on soliton emission was also studied. 

Linear absorption, input beam misalignments and nonlinear saturation were modeled 

in the nonlinear wave equation and the beam propagation method was employed to 

propagate an input Gaussian beam. We found again that for small absorption 

coefficients results reminiscent of the lossless case do survive although we no longer 

have a true soliton. For larger absorption coefficients the emitted wave packet dies 

quickly and for even larger coefficients no packet is emitted. When the input 

Gaussian beam is drastically misaligned soliton emission still persists although sizable 

amounts of radiation are produced along with the soliton and guided wave 

components. In the case of nonlinear saturation we found that solitary waves and 

not solitons are produced and by increasing the saturation parameter 9C we can 
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decrease the number of solitary waves produced to zero. 

Furthermore, we found it encouraging that although the basic phenomena of 

nonlinear guided waves and soliton emission may change form slightly, in general, 

they are resilient enough to survive small amounts of those various complications. It 

should be especially encouraging to those who wish to eventually observe soliton 

emission in an experimental situation. Also useful is the information obtained on the 

various limitations of the optical devices, i.e. if we know the largest saturation 

parameter tolerable we can chose materials with one less than this limit. In 

conclusion, the most important accomplishment of this theoretical study is the proof 

that results similar to the lossless case are achieved if the complications are not too 

large. 
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