
INFORMATION TO USERS

The most advanced technology has been used to photograph and

reproduce this manuscript from the microfihn master. UMI films the

text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any

type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand corner and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in

reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly

to order.

University Microfilms International
A Bell & Howell Information Company

300 Nortfi Zeeb Road, Ann Arbor, Ivll 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1341484

Demonstration of a generic gateway for Ethernet connectivity:
A Sytek to Ethernet IP router

Charette, Paul Gerard, M.S.

The University of Arizona, 1990

U M I
SOON.ZeebRd.
Ann Arbor, MI 48106

DEMONSTRATION OF A GENERIC GATEWAY

FOR ETHERNET CONNECTIVITY:

A SYTEK TO ETHERNET IP ROUTER

by

Paul Gerard Charette

A Thesis Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

in Partial Fulfillment of the Requirements

For the Degree of

MASTER OF SCIENCE

WITH A MAJOR IN ELECTRICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

19 9 0

2

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment
of requirements for an advanced degree at The University of
Arizona and is deposited in the University Library to be
made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without
special permission, provided that accurate acknowledgement
of source is made. Requests for permission for extended
quotation from or reproduction of this manuscript in whole
or in part may be granted by the head of the major
department or the Dean of the Graduate College when in his
or her judgement the proposed use of the material is in the
interests of scholarship. In all other instances, however,
permission must be obtained from the author.

This thesis has been approved on the date shown below:

SIGNED:

APPROVAL BY THESIS DIRECTOR

3

ACKNOWLEDGEMENTS

I would like to thank Dr. Ralph Martinez for making
this research possible, and also for providing guidance and
assistance throughout. Thanks also goes to Drs. Max Liu and
William Sanders for their technical review of this work. I
would also like to express my gratitude to Jianyi Tao for
his technical assistance and insight. Finally I would like
to thank Yasser A1 Safadi for his support and encouragement.

4

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS 7

ABSTRACT 9

1 INTRODUCTION 10
1.1 Background 10

1.1.1 Statement of the Problem 11
1.1.2 Thesis Objective 11
1.1.3 University of Arizona Sytek Network —. 12
1.1.4 Sytek Network Services and Operation ... 14
1.1.5 University of Arizona Ethernet LAN

Connectivity 18
1.1.6 TCP/IP Overview 21

1.2 Approach 28
1.2.1 Gateway Design Issues 28
1.2.2 IP-level Gateway 33
1.2.3 Design Methodology 38
1.2.4 Three Phase Development 40
1.2.5 Selection of KA9Q NOS 44
1.2.6 The UA Sytek Network's Relationship

to The Internet 47

2 GATEWAY SYSTEM DESIGN 51
2.1 Overall Architecture 51

2.1.1 Hardware Structure 51
2.1.2 An Overview of SLIP (Serial Line

Interface Protocol) 56

2.1.3 Protocol Structure 57
2.1.3.1 An Overview of the Sytek

Driver 60
2.1.3.2 Sytek Frame Format 62
2.1.3.3 Sytek_Main Module 65
2.1.3.4 SLIP' Module 68
2.1.3.5 Channel Handler Module 71
2.1.3.6 Unit Discovery Module 73

2.2 Software Design 75
2.2.1 Data Structures 75
2.2.2 Sytek Driver Code 83

2.2.2.1 Sytek_Main Module 83
2.2.2.2 Connection Handler Module 88

5

TABLE OF CONTENTS—Continued

Page

2.2.2.3 Unit Discovery Module 97
2.2.2.4 SLIP' Module 105
2.2.2.5 Non-Protocol Support

Modules 107
2.2.3 Documentation 117

3 GATEWAY TESTING AND USE SCENARIOS 119
3.1 Gateway Tests 119

3.1.1 Phase I (TCP/IP Over Ethernet) Tests .. 119
3.1.2 Phase II (TCP/IP Over Sytek Network)

Tests 120
3.1.3 Phase III (Sytek to Ethernet Gateway)

Tests 128
3.2 Gateway Usage 129

4 SUMMARY & CONCLUSIONS 133
4.1 Current Constraints 134

4.1.1 Problems with KA9Q 134
4.1.2 Centralized Unit Discovery 136
4.1.3 Single Session Limitation 138

4.2 Future Work 140
4.2.1 Improvements to Current Architecture .. 140

4.2.1.1 Putting Gateway Into
Production 141

4.2.1.2 Improving Throughput 144
4.2.1.3 Improvements to Unit

Discovery 148
4.2.1.4 General Improvements 151

4.2.2 Expanding to Multiple Sessions 152
4.2.3 Porting Gateway to a High Performance

Platform 156
4.2.4 Extension to Other LANs 158

APPENDIX A; USER MANUAL 161
A.l For the Sytek User 161

A. 1.1 Getting Started 161
A. 1.2 Console Mode 164
A. 1.3 KA9Q Command Reference 165
A. 1.4 Example Configuration File 179

A.2 For the Prototype Gateway Administrator 180

6

TABLE OF CONTENTS—Continued

Page

APPENDIX B; ADVICE TO DEVELOPERS 184
B.l Internet Resources 184
B.2 Overview of the NOS KA9Q Software

Architecture 188
B.2.1 Network Operating System (NOS)

Overview 188
B.2.2 KA9Q Memory Management 191
B.2.3 Significant KA9Q Data Structures 192

LIST OF REFERENCES 197

7

LIST OF ILLUSTRATIONS

Figure Page

1.1 Sytek to Ethernet Gateway 13

1.2 Sytek Protocol Stack 16

1.3a The UA Campus Internet 19

1.3b The UA Campus Internet (cont.) 20

1.4 Internet Protocol Stack 23

1.5 Internet Protocol Architecture 25

1.6 A Typical Internet 29

1.7 Gateway Types 32

1.8 Data Encapsulation With an IP Router 35

1.9 Development System I 42

1.10 Development System II 43

1.11 Development System III 45

2.1 Sample PCU Status Output 54

2.2 SLIP send_packet() Function 58

2.3 SLIP recv_packet() Function 59

2.4 Sytek Protocol Stack 61

2.5 Sytek Frame Format 64

2.6 sytek_send() Function 85

2.7 sytek_raw() Function 86

2.8 sytek_recv() Function 87

2.9 sych_conn_request0 Function 89

8

2.10 sych_conn_report() Function 91

2.11 connect_daeinon() Function 92

2.12 pcu_connect() Function 93

2.13 connection_timeout0 Function 95

2.14 sych_disc_request() Function 96

2.15 pcu_disconnect0 Function 98

2.16 sych_disc_report0 Function 99

2.17 pcu_pass_daemon() Function 100

2.18 syud_resolve() Function 102

2.19 syud_request_handler0 Function 103

2.20 syud_response_handler() Function 104

2.21 asy_rx() Function 106

2.22a pcu_init() Function 110

2.22b pcu_init() Function (cont.) Ill

2.23 pcu_restore() Function 112

2.24 pcu_coinin_daemon() Function 114

2.25 pcu_coininand_execute() Function 115

3.1 UD Test Plan 125

3.2 Generic Gateway Usage 130

9

ABSTRACT

The University of Arizona Campus Internet consists of

numerous Local Area Networks (LANs) attached to an

Ethernet backbone. Any campus LAN which cannot

interconnect with this backbone is effectively isolated.

The generic gateway project was conceived to research and

develop gateway systems which will help incorporate new

LANs into the campus internet.

The work presented here is the design, development,

implementation and testing of a gateway for a selected

campus LAN. The candidate LAN which was selected was the

University of Arizona Sytek broadband network, which

includes the Sytek LocalNet 20 and System 2000 networks.

10

CHAPTER 1

INTRODUCTION

1.1 Background

Over the past few years, many University of Arizona

departments and laboratories have implemented Local Area

Networks (LANs) to interconnect their various computer

systems. Each of these selected a LAN which best served its

own needs, in terms of speed, throughput, flexibility and

cost. The diversity of networking requirements among these

University entities inevitably lead some to implement

different LANs than others. This has resulted in a

multiplicity of dissimilar LANs on the UA campus. This is

unfortunate, as many of these entities now wish to exchange

information.

In an attempt to alleviate the problem somewhat, an

Ethernet backbone was installed at the UA campus. This

helped campus connectivity significantly, since most of the

campus LANs are Ethernets and could be directly connected

to the backbone. The TCP/IP protocol suite was chosen as

the protocol "spoken" on the Ethernet backbone. This

allowed the UA network to become part of The Internet,

giving the UA community access to information on a global

11

scale.

1.1.1 St&tement of the Problem

As for the remainder of the campus LANs, the problem

became how to internetwork with the Ethernet backbone, and

thereby effectively become a part of the UA campus internet.

Generally speaking, a network manager can facilitate

communication betv/een two different networks by using a

gateway, A gateway is a computer system connected to two

or more networks, appearing to each of these networks as a

connected host. But instead of being the ultimate source

or destination of data packets, it forwards them from one

network to another [44]. Managers wishing to attach their

LAN to campus-wide network must acquire a gateway which will

connect their LAN to the Ethernet backbone.

1.1.2 Thesis Objective

In order to achieve campus-wide connectivity, each

non-Ethernet LAN on campus requires a gateway. These

gateways must convert between the non-Ethernet LAN's proto

col and the TCP/IP-over-Ethernet protocol found on the UA

backbone.

12

The focus of this research is to develop a "Generic

Gateway" architecture which could be adapted to the design

of other gateways which would incorporate currently isolated

LANs into the Campus Internet. Towards this end, a

particular non-Ethernet LAN was chosen for which a prototype

generic gateway would be developed. After much

consideration, it was decided that the LAN to be connected

to the Ethernet backbone via the prototype gateway would be

a Sytek Network (a Localnet 20 and System 2000 Network).

This thesis is concerned with the design, development,

implementation and testing of this Sytek-to-Ethernet generic

gateway prototype, shown in Figure 1.1.

1.1.3 University of Arizona Sytek Network

The University of Arizona Sytek Network is a

connection-oriented broadband local area network consisting

of approximately 500 nodes. The nodes are widely distri

buted in over fifty campus buildings through a coaxial cable

plant. The Broadband cable plant contains four broadband

networks and two video channels [43]. Each node on the

Broadband cable plant represents a user device attached to

the network via an intelligent interface device called a

Packet Communication Unit (PCU). Each PCU has two serial

Sytek
LAN

Sytek
Workstation

PCU PCU PCU PCU

Sytek/Etliernet
Gateway

Ettiernet
LAN

[ilii

Ether Ether
tcvr tcvr

Printer Ethernet
Workstation

Figure 1.1 - Sytek to Ethernet Gateway U

14

ports, allowing two user devices to be attached to the

network by one PCU.

1.1.4 Sytek Network Services and Operation

The essential service provided to user devices by Sytek

Network PCUs is the full-duplex transport of data between

correspondent user devices over Sytek sessions. A PCU

interfaces to user devices via ports that provide access

points to a virtual terminal service provided by each PCU.

Connection-oriented sessions provide the communication

medium between ports.

The PCU provides the means for user devices to initiate

sessions to other devices attached to the same or a

different PCU. A source PCU, once a session has been

initiated, takes data provided by a transmitting user

device, formats that data into packets and uses the Sytek

Network internal data communication protocols to route that

packet to the destination PCU. The destination PCU removes

the data from the received packets and transmits the data

to the receiving user device. Data transmission is full

duplex so that both correspondent user devices can be

simultaneously transmitting and receiving. The manner in

which data is presented to the PCU, and by the PCU to it's

15

attached devices, is under the control of the device.

The PCU is an intelligent network interface unit for a

Sytek Network which has networking layers defined up to the

session layer. The complete PCU protocol stack is given in

Figure 1.2. The interface seen by the PCU user is the

Session Management Protocol (SMP), which provides the

network and session management functions to the PCU user.

The next lower layer is the Sytek Network's transport layer,

implementing the Reliable Stream Protocol (RSP). RSP

provides reliable end-to-end data transport. The next lower

layer is the Packet Transfer Protocol (PTP) , Sytek's Network

Layer protocol, which provides unacknowledged packet

transfer service between PCUs on a Sytek Network. The next

lower layer is Sytek Network's Link Access Protocol (LAP),

which facilitates transfer of PTP packets using data link

layer functions.

Each PCU provides a range of communication services to

it's attached devices. These services include:

PCU Management - Overall management of the PCU,
including specifying its identity, location, and
protection attributes.

Session Management - Management of individual
sessions, including session initialization,
termination, and control.

Data Handling - Handling and processing of user data
through sessions, including flow-and-error control.

Transfer Units Protocol Layer

Sessions BMP Session

Connections RSP Transport

Pacl<ets FTP Networl<

Frames LAP Data Link

Signals | Broadband Coaxial Cable) PhySiCal

Figure 1.2 - Sytek Protocol Stack

17

Signaling - Out-of-band signaling across session
boundaries. Allows the sending of an interrupt
control signal without affecting buffered data
packets.

Maintenance - Facilities provided for network
diagnostics and maintenance, particularly local PCU
diagnostics.

These PCU features are controlled by a set of

attributes. These attributes are set via PCU commands from

the user device. Attributes are divided into two

categories: those maintained for the entire PCU, and those

maintained for each PCU port. Sessions can individually

control their per-port attributes.

Each PCU is identified on the network by a 16-bit

address, called the PCU's unit ID. This allows over 65,000

PCUs to be configured onto a single Sytek Network.

Individual ports on each PCU are identified by a port ID

which can be either a 0 or a 1 for the standard 20/100 PCU.

A complete Sytek Network node address then would specify

both a unit and port ID, i.e. E905,0.

A PCU responds to both local and remote requests to

initiate sessions. A local session initiation request takes

the form of a call command from a user device attached to

a local PCU. If a PCU has been enabled to receive an incom

ing session and a local session is available , then it will

accept a remotely requested session.

18

The PCU supports termination of sessions through the use

of the done command. Both remote and local users may

terminate a session in this way.

For more complete information concerning the Services

and Operation of PCU's, the reader is referred to the

"LocalNet 20 Reference and Installation Guide" [38].

1.1.5 University of Arizona Ethernet LAN Connectivity

The University of Arizona has a large Ethernet Local

Area Network, encompassing most of the campus. All of the

hosts on campus with network connectivity implement the

TCP/IP protocol suite over this Ethernet LAN. The

University of Arizona Campus Internet is shown in Figure

1.3.

As shown in Figure 1.3, the UA Campus Internet has been

assigned a Class B IP address (by the Network Information

Center, NIC), specifically 128.196.xxx.xxx. The campus

subnet mask has been defined as 255.255.255.0, so that any

locally assigned subnetwork address will be Class C. Note

that the same connectivity could be accomplished by having

each subnet using a NIC-assigned Class C address. However,

due to the size of the Internet, the Network Information

Center (NIC) has adopted the philosophy of granting a large

StE-nal 128.108.138

BloWnt
imoon.ia
128.198.129.210

Sfiik Bratdbvd

CXX1£CE0FBPA

t2at9a.12&t1B

PHYSICS OEPT

Mamimocs uea

TutquoMJnadi
i2a.t9a.i2ai 12

tiunlumpnyws
I2ats8.i2a2a8

AIR FORCE WEAPONS UB

o gatcwBjr v. J brtdge

Addrma: t za 19d Subnsi mask 255.255.255.0
Primarir Namasafvsn: artzona.e<lu (12ai96.l2a.233)

csLanconaedu (12ai96Ltzai18)

F/gure 1.3a - The UA Campus Internet

STEWAflO 0BSH3VATCHY OPTCAL SCtfCcS
12&.t96.t78

LUfUa S PLA^ETAflY LAS SMITWSONIAW IflST.
I2ai9&e4 SAO-N6T

19233.140

NATIOMAL
opncAL

astcnomcal
OBSEnvATORlES

19131 18S

u«^mir>4>« 128.196.128

caf"^
antf^ J lokxmlrtrcn*

T*lQomVAX
d»t«

ia.i9B.ia.2i3

CClTVa»Ckister»

A$U UlAH

AM£ IPC 12B.196 144

Figure 1.3b - The UA Campus Internet

Cacisnxeca
128.1S6.123.12

Nooftintafm
128.19a 23at22

C3lUna.cp(-V3
I2aj9&233

W4(et Channel LjO

21

address space to an institution, which is delegated the

authority of defining subnetworks within this address space.

This subnet strategy is discussed in RFC950, "Internet

Standard Subnetting Procedure", [18].

UA is connected to the Internet primarily via a T1 link

to University of Utah (shown in the figure as the link to

UTAH from WESTGATE) . This connects us to WestNet, and

thereby the rest of the Internet. The connection from NSI-

Gate to the NASA Science Internet is also used for Internet

connectivity, but only as a backup link, when the WestNet

link is down. This connectivity was subject to immediate

change at the time of writing, so the interested reader

should consult the UA Telecommunications Department for more

information.

The astute reader may note the presence of a "Sytek

Bridge" which connects the Sytek Broadband to the Campus

Internet. This should not be misconstrued as an already

existing Sytek-to-Ethernet gateway. What is being done here

is that a channel of the Sytek Broadband frequency spectrum

has been allocated as an Ethernet channel. Certain campus

Ethernets use Chipcom Ethernet RF modems to run the Ethernet

protocol over this RF channel.

22

1.1.6 TCP/IP Overview

This section is provided as a brief overview of the

Transmission Control Protocol and Internet Protocol (TCP/IP)

suite and it's function in an internetworking environment.

Readers interested in a more detailed description are

encouraged to first consult the eminently readable

"Introduction to the Internet Protocols", [32], before

attempting to read the specific Internet protocol

specifications themselves.

TCP/IP is a set of protocols developed to allow

cooperating computers to share resources across a packet

switching network. It was developed by a community of

researchers centered around the ARPAnet for the Department

of Defense. ARPAnet was originally part of the Defense Data

Network (DDN). Incidentally, the most accurate name for the

set of protocols being described is the "Internet protocol

suite". Because TCP and IP are the two best known protocols

in this suite, it has become common to refer to the whole

family as "TCP/IP" [32].

TCP/IP protocol software is organized into four con

ceptual layers that builds on a fifth layer of hardware.

Figure 1.4 shows the conceptual layers as well as the form

of data that passes between them.

23

Transfer Units

Byte Stream

Sessions

Datagrams

Frames

(net specific)

Protocol

FTP, Telnet, SMTP

TCP

IP

(net specific)

(net specific)

Layer

Application

Transport

Networl<

Data Linl<

Pliysical

Figure 1.4 - Internet Protocol Stack

24

Application Layer - At the highest level, users
invoke application programs that interact with the
transport layer to transfer data over the network.

Transport Laver - The primary duty of the transport
layer is to provide error-free end-to-end
communication from one application program to
another, even if they reside on hosts in different
networks.

Internet Laver - The internet layer handles
machine-to-machine communication. It accepts a
request to send a packet from the transport layer
along with an identification of the machine to which
the packet should be sent. In an internetwork, it
is responsible for routing a packet destined for
another network to the appropriate gateway.

Network Interface Laver - This layer is responsible
for accepting datagrams and transmitting them over
a specific network to a certain host.

The more popular TCP/IP protocols and their relationship

to this five layer conceptual model are given in Figure 1.5

(which was derived from the figure on page 9 of the

"Transmission Control Protocol - DARPA Internet Program

Protocol Specification," RFC 793) . There are more protocols

than these, but this is the "basic set" thcit are most

commonly implemented on an internet host.

The applications shown are Telnet. FTP and SMTP. Telnet

is a network virtual terminal facility allowing users

bidirectional, byte-oriented communications with remote

hosts. It is most often used to facilitate remote logins.

FTP (File Transfer Protocol) provides its users with the

IP & ICMP

FTP SMTP Telnet

local network protocol

TCP

Application Layer

Transport Layer

Internetworld Layer

Network Layer

Figure 1.5- Internet Protocol Architecture

26

capability to transfer complete files of data between

distant hosts. SMTP (Simple Mail Transfer Protocol) is used

to transfer electronic mail reliably and efficiently. These

applications rest on top of TCP.

TCP (Transmission Control Protocol) is a connection-

oriented, end-to-end reliable data transfer protocol. It

is designed to provide communication between pairs of

processes in host computers attached to distinct but

interconnected networks. TCP assumes it can obtain a

simple, potentially unreliable datagram service from the

internet layer. Specifically, TCP expects an internet layer

which may lose, duplicate, or damage datagrams which may be

delivered out of order. To provide securable logical

connection service between pairs of processes, TCP employs

a complex scheme of windows, timers, sequence numbers, and

acknowledgements which is beyond the scope of this thesis.

The interested reader should consult the TCP Protocol

Specification [27] and Chapter 12 of Internetworking with

TCP/IP", [8].

IP (Internet Protocol) provides basic connectionless

datagram service to a transport user (i.e., TCP). It

encapsulates a segment of data in a datagram and attempts

to deliver it. TCP only knows the segment's ultimate

27

destination; IP examines this and routes the datagram

accordingly. If the destination is on a directly connected

network, IP passes the datagram to the appropriate network

interface for delivery. Otherwise, IP makes a routing

decision as to what gateway this datagram should go to next

and sends it on it's way. IP also provides for

fragmentation and reassembly of long datagrams, if

necessary, for transmission through "small packet" networks.

Within any single LAN, the IP is transparent and is

dispensable, but it is critical for data transport among

various multiple networks [42]. For a more exhaustive

discussion of IP, consult the IP Protocol Specification [25]

and Chapters 7-9 of Internetworking with TCP/IP", [8].

Occasionally a gateway or destination host will

communicate with a source host to report an error in

datagram processing. To accomplish this, ICMP (Internet

Control Message Protocol) is used. ICMP is considered an

integral part of IP, although it is architecturally layered

upon IP. ICMP provides error reporting, flow control and

first hop gateway redirection [29].

Below the internet layer is the network layer, which

varies between implementations. It accepts IP datagrams

from the internet layer and encapsulates them in network

28

specific frames for transfer to the appropriate host or

gateway on their specific network. It also ensures that

incoming frames destined for the local IP layer get there.

A network interface may consist of a device driver, when the

network is a local area network to which the machine

attaches directly, or a complex subsystem that vises its own

data link protocol, when the network consists of packet

switches that communicate with hosts using HDLC [8].

1.2 Approach

The following section discusses the approach used in

this research. It should be pointed out that at the time

of writing, the area of gateway design has seen a great deal

research. A reader interested in a general overview of

recent developments in gateway design are directed to

references [20], [35], and [37].

1.2.1 Gateway Design Issues

An interconnected set of networks is referred to as an

internet. illustrated in Figure 1.6. Each constituent

network supports communication among a number of attached

devices. In addition, networks are connected by devices

that are referred to generically as aatewavs. Gateways

Local
nenroric

Locai
network

Long-haul
network

Local
network

H = host
G=» gateway

Figure 1.6-A Typical Internet

30

provide a communication path so that data can be exchanged

between networks [34].

Internet gateways, regardless of their implementation,

must perform a variety of functions in order to make data

communications between different networks compatible. These

functions are (from [43]):

Medium Transformation and Media Access - A gateway
must translate messages between different
transmission media, such as LAN RF baseband digital
signals and a serial interface bit stream.

Address Translation - Network addressing schemes are
different on each network, so that address
translation must be done by the gateway.

Protocol Transformation - The network protocols of
each network must be transformed through
encapsulation and decapsulation of datagrams in
network frames.

Message Buffering and Flow Control - The gateway
must be able to buffer messages from each network
and flow control the network interfaces when the
buffers are full.

Error Connection Management - The gateway must
provide an error-free link between two end users on
the networks by adhering to the error control and
retransmission mechanisms in the network protocols.

Fault detection and Reporting - In establishing and
maintaining a connection between two end-users, the
gateway must be able to detect connection status
and report to the users the condition of the link,
if a problem should occur.

While providing this functionality, an internet gateway

must meet the following requirements:

a. Provide advance routing and forwarding

31

algorithms.

b. Be implemented on a reliable system with a high
degree of availability.

c. Provide advance network and gateway operations
and management features.

d. Be implemented on a dedicated high-performance
system.

To provide this functionality and meet these require

ments for the generic gateway, it will be necessary to

address the following design issues:

a. Addressing
b. Routing
c. Datagram Lifetime
d. Fragmentation and Reassembly
e. Error Control
f. Flow Control

Basically, there are two approaches to internet gateway

design (Figure 1.7). First are the upper layer gateways,

generally implemented as "application layer gateways".

These have complete protocol stacks for each network

interface, and transport data between them at high level of

abstraction (i.e., an application-layer gateway facilitating

a file transfer would transfer the entire file into local

memory from the source user using his/her network's file

transfer protocol, and then transfer it's copy of the file

to the destination user using his/her network's protocol).

Application layer gateways are fairly simple to

Network A GATEWAY TYPE Network B

Application Application

Gateway

Application Application

Presentation Presentation
Gateway

Presentation Presentation

Session Session

Gateway
Session Session

Transport Transport

Gateway

Transport Transport

Network Network Router Network Network

Data Link Data Link
Bridge

Data Link Data Link

Physical Physical

Bridge
Physical Physical

MedxTom-A Medixitn B

Figure 1.7 - Gateway Types

to

33

implement on multi-tasking computer systems by having a set

of tasks operating as a user on each network with another

task facilitating data transfer between them via shared

memory buffers. However, application layer gateways have

been shown to have very limited performance.

The second type of internet gateway are those

implemented in the lower layers, generally at the network

layer. These gateways are commonly referred to as routers,

as they route independent packets of data without regard to

connections. Performanpe of routers is better than that of

application layer gateways because each unit of data

requires less gateway processing. An internet connected by

routers is also more robust, since a gateway crash only

loses a few datagrams; with proper routing algorithms, a new

path for datagrams associated with each connection will be

found. However, routers are more complex to implement since

you must have access to both network data link protocol and

an internet protocol which will interface to each of them.

Also, they depend upon similar upper layers in all

communicating hosts.

1.2.2 IP-level Gateway

34

The primary objective in the design of the generic

gateway prototype was to yield a gateway with a high degree

of flexibility (e.g., "generic-ness"), so that the developed

architecture could be used to implement gateways for other

subnetworks on campus. It was decided to design the proto

type gateway as a router, since this would yield the highest

degree of flexibility. The fact that such a gateway would

also yield higher performance also influenced this decision.

Since the gateway would be receiving Ethernet frames

which encapsulate IP datagrams on one interface, it needed

to implement an IP layer on top of an Ethernet network

layer. By designing a network layer which would allow IP

datagrams to be transmitted over Sytek Network, the

prototype gateway could be implemented as an IP-router,

which is the most common way to gateway between LANs in the

Internet. Such a configuration is shown in Figure 1.8.

The "Sytek Network driver" would interface IP at one

side, and the RS-232C hardware (to which a PCU is attached)

on the other. The PCU provides the Sytek protocol suite to

its user, defined up to the session layer (SMP).

At first glance, it may seem a bit strange to layer IP,

a connectionless, unreliable datagram service, on top of

SMP, a reliable, connection oriented byte-stream service.

Host A Host B

User User

TCP TCP IP-router

Network
Driver-1

Network
Driver-1

Network
Driver-2

Network
Driver-2 LAN-1 LAN-2

Figure 1.8- Data Encapsulation With an IP Router

co
U1

36

Indeed it is not the most suitable use of the Sytek

Network's bandwidth. Ideally, we would like to be able to

layer IP on top of the Packet Transfer Protocol (PTP), which

would put our IP datagrams right out onto the coaxial cable

for connectionless delivery. Unfortunately the protocol

software of the PCU box is proprietary, and therefore

unattainable. For this reason, the Sytek driver must layer

IP on top of SMP.

The Sytek protocol suite is only defined up to the

Session layer; There are no true Sytek application protocols

to provide file transfer, electronic mail, and the like

(Technically there is one application protocol - the

"virtual terminal" protocol which provides transparent user

access transparent access to SMP). Since the prototype

gateway development will yield an IP driver for the Sytek

Network, it makes sense to use TCP/IP and the standard

TCP/IP applications in the Sytek hosts. This is will not

only give Sytek Network users "Internet application access"

(i.e., FTP, Telnet, and SMTP access to the Internet), but

it will also allow them to use these applications between

hosts on the Sytek Network.

Before we go on to discuss the design methodology used,

let us summarize the steps taken by each IP module for a

37

standard internet data transfer including a gateway. This

should clarify how an IP router fits into the standard

internet architecture. To begin, the IP entity in the

sending host receives a packet of data from it's user (quite

likely this 'user' will be TCP) and performs the following

steps:

1. Constructs an IP datagram for the packet base
upon the service specified by the IP user.

2. Performs a checksum calculation and adds the
result to the datagram header.

3. Makes a routing decision. Either the destination
host is attached to the same network or a gateway
must be selected for the first hop.

4. Passes the IP datagram down to the network access
protocol for transmission over the network.

For each datagram that passes through a gateway, the

gateway performs the following functions:

1. Performs a checksum calculation. If there's an
error, datagram is discarded.

2. Decrements the time-to-live parameter. If this
datagram's time has expired, discard.

3. Makes a routing decision.

4. Fragments the datagram, if necessary.

5. Rebuilds the IP header, including new
time-to-live, fragmentation, and checksum fields.

6. Passes the IP datagram or datagrams down to the
network access protocol for transmission over the
network.

38

Finally, when a datagram is received by the IP entity

in the destination host, the following functions are

performed:

1. Performs a checksum calculation. If there's an
error, datagram is discarded.

2. If this is a fragment, buffers until the complete
datagram is reassembled.

3. Passes data and parameters from the header to the
user.

1.2.3 Design Methodology

There are a variety of computer systems which could have

been used as development platforms for the prototype

gateway. Ideally, the development systems would have multi

tasking capability, could be dedicated solely to the

project, and yet would be relatively inexpensive. Based on

these criteria, 386-class IBM PC AT clones were selected.

Normally these systems operate under MS-DOS, which is a

single-task operating system. The hardware of these system

does provide for multi-tasking, however and MS-DOS is not

the only operating system which can be used on these

systems.

There exist a number of public domain software packages

which implement the TCP/IP protocol suite on 386-class IBM-

PC clone systems. Rather than attempt to develop a TCP/IP

39

software package from scratch, it was decided that the best

approach would be to acquire the public domain TCP/IP

package best suited for development and integration of a new

driver. This allowed concentration on the design,

development, implementation and testing of the Sytek driver

into this package.

By choosing to integrate the driver into a carefully

selected, pre-existing package, a gateway can be implemented

which already meets the requirements and performs the

unctions mentioned in Section 1.2.1, provided the driver

does not critically degrade the performance of the TCP/IP

software.

It was determined that the candidate TCP/IP software

package must be capable of multi-tasking (to exhibit the

highly responsive nature needed for a LAN gateway), as well

as be "developer-friendly" (easily extensible to include a

new driver). It also must implement a "complete" TCP/IP

protocol stack with all the "standard" applications and all

the support protocols necessary for an internet gateway

(e.g., ICMP, RIP, N D S) .

In designing the actual Sytek driver, the following

methodology was used: First the driver was designed as a

protocol module specifying its handling of IP sends and

40

receives. It's functionality was partitioned into sub-

protocol modules and these were defined in terms of services

provided. The "user interfaces" (where the "user" may be

another protocol or sub-protocol module) of each of these

sub-protocol modules were then defined in terms of "C"

functions and their passed parameters (i.e., from a "top-

down" view). Then the actual code for these functions was

designed (using flowcharts) and written. Each function was

tested as it was developed (unit-level testing), and then

they were synthesized into sub-protocol layers. Testing was

performed to verify the functionality of these sub-protocol

layers (sub-system level testing), and then they were

synthesized into the Sytek driver, which was tested (system-

level testing). Finally, complete gateway system level

tests were performed.

It should be noted that this design-development-

integration-testing cycle was performed in an iterative way

(i.e., if a flaw was discovered in a function, it be

corrected, and then that function would be tested, and then

sub-protocol dependant on it would be re-tested).

1.2.4 Three Phase Development

41

The development of the prototype gateway occurred in

three phases:

Phase I - TCP/IP Over Ethernet - During this phase, we

wished to implement TCP/IP over Ethernet on a PC. The

development system used is shown in Figure 1.9. Because of

the popularity of Ethernet, finding a Public Domain TCP/IP

with software support for the Etherlink card we are using

was not difficult. The work during this phase involved

deciding on which PD TCP/IP best suited our needs and then

configuring it on our PCs such that it would run as

expected. It was also confirmed that the package chosen

could be compiled from it's sources.

Phase II - TCP/IP Over Svtek - During this phase, we wished

to implement TCP/IP over Sytek on a PC. The development

system used is shown in Figure 1.10. The protocol stack in

each PC differs from Phase I only in the Network Interface

Layer, "Sytek Driver". This layer facilitates IP

communication over the Sytek Network. It's design and

development was the main thrust of this research.

This development phase was broken down into five tasks:

1. Implement TCP/IP on two PCs communicating over a null-
modem cable which connects to their serial ports. Such a
configuration is logically similar to two PCs connected to
PCUs who have a Sytek session established between them.

2. Connect the PCs to PCUs, and run TCP/IP over a Sytek
session which has been established before runtime. The

Ethernet WS Ethernet WS
FTP, TELNET, SMTP FTP, TELNET, SMTP

TCP TCP
IP (+ICMP) IP (+ICMP)

Ether Driver Ether Driver
Etherhnk Card Etherlink Card

f Eth ern et \
LAN

Figure 1.9- Development System I
to

Sytek WS Sytek WS
FTP, TELNET, SMTP FTP, TELNET, SMTP

TCP TCP
IP (+ICMP) IP (+ICMP)

Sytek Driver
RS—232 port RS-232 port

PCU PCU

PTP

LAP

Sytek

LAN

Figure 1.10- Development System II
*-
u

44

network driver must ensure that the PCU command mode escape
sequence never appears in the data stream.

3. Extend drivers to ensure proper PCU parameter
configuration before establishing a "hard-wired" session
between the two participating PCUs, and run TCP/IP over it.

4. Modify the drivers to resolve IP addresses into Sytek
hardware addresses via table lookup. Also, add session
management; drivers must issue the appropriate calls and
dones to establish and terminate Sytek sessions for IP
datagram delivery. Such sessions should be terminated if
left idle for too long.

5. Design and implement a Sytek Network address resolution
protocol to allow resolution of IP addresses not found in
our local tables.

Phase III - Svtek to Ethernet Gateway - During this phase,

we wished connect a PC to both networks and configure it

such that it would act as a gateway between them. The

development system used is shown in Figure 1.11. The two

workstations are identical to their counterparts in the

first two phases. The gateway system implements the drivers

developed in the first two phases on one PC under one IP

layer. Above this is are the standard gateway management

and control protocols, such as RIP and DNS.

1.2.5 Selection of KA9Q NOS

After careful examination of the available public domain

TCP/IP software packages, the NOS version of the KA9Q

Internet Software Package (hereafter referred to as NOS

Sytek WS
FTP. TELNET. SMTP

TCP
IP (+ICMP)

Sytek Driver
RS--232 port

PCU

Sytek

Sytek/Ethernet GW

LAN

12B.196.6B.XXX

Ethernet WS

GW Control (RIP,DNS)

IP (+ICMP)
Sytek Driver Ether Driver
RS-232 port Etherlink Card

FTP, TELNET, SMTP

TCP
IP (+ICMP)

Ether Driver
Etherlink Card

Ethernet
LAN

128.196.28.XXX

Figure 1.11 - Development System III

oi

46

KA9Q) was chosen as the foundation for the prototype

gateway. NOS KA9Q was originally developed for TCP/IP over

packet radio, but it was designed to be flexible enough for

further development. According to the KA9Q users' manual:

"KA9Q was designed to be a robust platform on which to
build real networks. To this end, the core protocols have
been extensively tested and verified. In addition, great
emphasis has been placed on increasing the portability of
the software, supporting more and more hardware interfaces,
and making it possible to use as many networking
technologies as possible." [10]

It should be noted that there exist two distinct

versions of the KA9Q package: the earlier, non-NOS version,

and the newer, NOS version. The differences between these

are primarily architectural, and should only concern

developers (who may read Appendix B for further

information). Unfortunately, the only available

documentation is for the older version of KA9Q. The NOS

version is undergoing constant revision, so it has yet to

be documented. This made KA9Q seem, at first, to be less

desirable, but in the end it was selected for many reasons:

The code itself is verv well written and internally

documented, it is highly modular, and it has a wide base of

users and developers in the Internet community.

NOS is an acronym for "Network Operating System". It

is an OS kernel which KA9Q layers on top of MS-DOS during

47

run time, which gives programs access to the multi-tasking

hardware in the 386-class PC. It is the vehicle whereby

KA9Q exhibits multi-tasking while running on top of MS-DOS.

Further details can be found in Appendix B.

KA9Q provides support for the IP, ICMP, TCP, UDP, FTP,

SMTP, and Telnet protocols from the basic Arpanet set. In

addition, the ARP protocol is available for address

resolution on Ethernet interfaces. Support is also provided

for SLIP (Serial Line Interface Protocol), which allows IP

transmission over an asychronous serial line (which is

similar to a Sytek session in data mode) . KA9Q also

implements RIP (Routing Information Protocol), the interior

routing protocol made popular by Berkeley Unix, which is

being used as the Interior Gateway Protocol (IGP) at UA.

All gateways must participate in the IGP in order to

maintain accurate routing tables [29]. In accordance with

the latest Internet requirements, a Domain Name Service

(DNS) client is available to consult nameservers for

resolution of fully qualified hostnames (i.e.,

athens.ece.arizona.edu).

1.2.6 The UA Sytek Network's Relationship to The Internet

48

In preparation for the integration of the Sytek Network

subnetwork into the Campus Internet it was necessary to

obtain a subnetwork address space. Sytek hardware addresses

are up to 20 bits long (i.e., the PCU unit ID is 16 bits and

the port ID can be one bit (for 20/100s) or four bits (for

20/200S)). However, subnetworking on campus is done with

Class C subnetwork addresses, which reserve only eight bits

for the host-id. This means we cannot create a one-to-one

mapping between all possible Sytek hardware addresses and

a UA subnetwork address space. A very similar problem

occurs with Ethernet subnetworks (Ethernet hardware

addresses are 48 bits in length). Ethernet solves this

problem via the Address Resolution Protocol (ARP) (c.f. RFC

826, "An Ethernet Address Resolution Protocol", [24]). As

we shall see, the Sytek driver must implement a similar

protocol to resolve IP addresses into Sytek hardware

addresses. The class C subnetwork address space assigned

to the UA Campus Sytek Network is 128.196.68.xxx.

The previous explains where the Sytek subnetwork fits

in to the campus network architecture in terms of IP

addressability. In terms of physical connectivity, the

prototype gateway will attach to the ece-net (shown in

Figure 1.3) - (domain name: ece.arizona.edu, subnet address

49

space: 128.196.28.xxx) with hostname "gengw.ece.arizona.edu"

and IP address of 128.96.68.26. Of course, the gateway will

be a multi-homed host, having an IP address on the Sytek

subnetwork as well (128.196.68.2). The Sytek domain has

been assigned the name "ece-sytek.arizona.edu", thus a host

on the Sytek Network called "dino" would have the Internet

hostname "dino.ece-sytek.arizona.edu".

The Internet is structured under the connectionless

network paradigm. This means that each datagram traverses

the internet independently, providing the more robust

communication necessary for a large network. Networks

participating in the Internet must conform to this paradigm.

The Sytek Network (at least from our vantage point atop SMP)

is connection-oriented. Thus we must "hide" the Sytek

sessions used for IP datagram transmission. What is meant

by this is that upon receiving an IP datagram, our Sytek

driver must establish the proper session for it's delivery.

Datagrams received for IP by a network driver from the

same user in a short period of time are often destined for

the same host. Thus, it was decided that Sytek sessions

should not be established on a per-datagram basis; The

overhead from repeated establishment and termination of a

session between the same two hosts should be avoided.

50

Instead, sessions established for an IP transmission are

kept active for future datagrams. If a session is idle for

too long, a timer will expire and cause that session to be

terminated.

It bears repeating that establishing the Sytek Network

as a subnetwork of the UA Campus Internet also makes it a

real part of The Internet. Put simply, Sytek users will be

able to FTP, or Telnet anywhere in The Internet (and vice

versa^; the prototype gateway gives Sytek users access to

information on a global scale.

CHAPTER 2

51

GATEWAY SYSTEM DESIGN

This chapter discusses the prototype gateway's design.

The overall architecture is discussed in Section 2.1 in

terms of hardware used, protocols designed, and software

designed and developed. The software design is discussed

in greater detail in Section 2.2, where the functions used

to implement the protocols are actually discussed.

2.1 Overall Architecture

2.1.1 Hardware Structure

The hardware for the prototype gateway is made up

entirely of off-the-shelf components; no custom hardware

design was necessary to implement the gateway system.

Instead, the gateway's functional requirements were examined

and appropriate existing hardware was selected and

configured to meet these requirements.

As previously mentioned, the prototype gateway was

developed for a 386-class PC AT clone. The gateway needs

interfaces to both constituent LANs, so hardware to

interface each is required. Specifically, to connect to the

Sytek Network the gateway must have an available serial

52

port, a LocalNet 20/100 PCU and a serial cable to connect

them. To interface the Ethernet LAN, the gateway has a 3Com

3C503 Etherlink Card, transceiver cabling and a TCL card

(this card, made by TCL Inc., allows the concentration of

many Ethernet transceiver cables into one shared Ethernet

transceiver; for our purposes it is the same as if the

gateway had it's own transceiver tap into the Ethernet).

The gateway also has a printer card and an Epson FX-850 dot-

matrix printer.

Another 386-class PC AT clone was purchased for this

research, to act as the workstations shown in Figures 1.9

and 1.10 (c.f. Section 1.2.4). This system needed to act

alternately as a Sytek and Etherne':: workstation, so it

required the same hardware used by the gateway to interface

both LANs.

The NOS KA9Q package comes with support (via a "packet

driver", c.f. Section 4.2.1.4) for the 3C503 Etherlink card.

For a detailed description of this card, the reader should

consult the "EtherLink II Adapter Guide", [1].

A more detailed description of the LocalNet 20/100 PCU

is available in the "LocalNet 20 Reference and Installation

Guide", [38]. As it is the hardware upon which our network

driver rests, an overview of some of the PCU's important

53

features is given here.

There are four PCU commands of immediate interest to us:

CALL, DONE, STATUS, and HELP. The CALL command initiates

a session to the designated PCU port. Establishment of a

session elicits the following response:

CALL COMPLETED TO <Sytek Network Address>

The format is "CALL <unitld>[,portId]" where

"unitid,portid" is a fully qualified address and "unitid"

is a rotary address (c.f. Section 4.2.2 and the "LocalNet

20 Reference and Installation Guide", [38]).

The DONE command causes the PCU to terminate the

specified session. When closure is successful, the PCU

generates the message:

SESSION <X> CLOSED TO <Sytek Network Address>

The format is "DONE [sessionNo]", where "sessionNo"

specifies the session to close, or "DONE<CR><CR>" which

closes the current session.

The STATUS command displays the current values of the

port attributes and the status of any established sessions.

Figure 2.1 represents the output from a status display.

The first four digits of the unit number give the unitid of

the PCU. The next number gives the portid of the PCU port

whose status is being reported.

54

LOCALNET 20/100 ODOO 0000 16 V2.2.5+

UNIT E905,0 BAUD 19200 IDLE 5
GROUP A PARITY NONE EOM COUNT 0
CHANSP 300 STOPS 1 EOM CHARACTER NONE
LOCATION 12,238 AUTOBAUD OFF NEWLINE OD
COMMAND IB, IB DCD CONTROL OFF EXPAND NONE
LISTEN ON DSR CONTROL OFF XON 11
PRIVILEGE ON DTR CONTROL OFF XOFF 13
MAXSESSION 1 ECHO OFF FLOW NONE
PCALL OFF QUIET OFF TIMEOUT 0
PUNIT 0000,0

SESSIONS - NONE

Figure 2.1 Sample PCU Status Output

55

If a PCU user wishes to change a parameter setting,

he/she simply types the parameter name followed by the

desired setting. For example, if we wished to change the

baudrate of a PCU to 1200, we would simply type "BAUD

1200<CR>" at the PCU prompt; Any parameter may be set by

using the command which shares it's name.

The HELP command displays a list of enabled commands.

The list does not include currently disabled commands.

There is no indication of the parameters which the displayed

commands may require.

Commands which are not required may be selectively

disabled at a PCU, preventing their use by the PCU's user.

Privileged PCUs (those with PRIVILEGE set to "ON") may

override this disablement [38]. Commands are enabled by

using the ENABLE command (i.e., to enable the CALL command,

a user would type "ENABLE CALL" at the PCU prompt).

There are a few PCU parameters which need to be set to

appropriate values for the Sytek driver. If they are not,

the Sytek driver will properly initialize the PCU (and

restore it's original state when finished). The parameters

of interest are given here with their desired settings;

"COMMAND IB,IB", "LISTEN ON", "MAXSESSION 1", "PRIVILEGE

OFF", "ECHO OFF", "QUIET OFF", "FLOW NONE".

56

2.1.2 An Overview of SLIP (Serial Line Interface Protocol)

Sytek sessions act in a manner which is very similar to

point-to-point serial links. Generally, TCP/IP

implementations transfer IP datagrams via a serial

connection using SLIP, the Serial Line Interface Protocol.

Our Sytek driver is architecturally founded on SLIP, so a

brief overview is provided here. For a slightly less brief

overview, the reader is referred to RFC 1055, "A Non

standard for Transmission of IP Datagrams Over Serial Lines;

SLIP", [31].

Quite simply, SLIP is a packet framing protocol: SLIP

defines a sequence of characters that frame IP packets on

a serial line, and nothing more. The SLIP protocol defines

four special characters: FR_END (Frame End), FR_ESC (Frame

Escape), T_FR_END (Transposed Frame End), and T_FR_ESC

(Transposed Frame Escape). They are defined as hexadecimal

CO, C3, C4 and C5 respectively. Notice that these have

their high bit set; they are not ASCII characters.

To send a packet, a SLIP host sends an FR_END, and then

starts sending the data in the packet. If a data byte is

the same code as the FR_END character, a two byte sequence

of FR ESC and T FR END is sent instead. If it the same as

57

an FR_ESC character, an two byte sequence of FR_ESC and

T_FR_ESC is sent instead. When the last byte in the packet

has been sent, an FR_END character is then transmitted.

The first FR_END is sent to flush any erroneous bytes

which have been caused by line noise. In the normal case,

the receiver will simply see two back-to-back FR_END

characters, which will generate a bad IP packet. If the

SLIP implementation does not throw away the zero-length IP

packet, the IP implementation certainly will. If there was

line noise, the data received due to it will be discarded

without affecting the following packet.

A flowchart of a SLIP packet send is given in Figure

2.2. A SLIP packet receive is given in Figure 2.3. Note

that they depend on two functions, send_char() and

recv_char(), which send and receive a single character over

the serial line.

2.1.3 Protocol Structure

During the second development phase (c.f. 1.2.4), the

Sytek driver' s (c.f. Figure 1.10) sub-protocol structure was

developed. Specifically, the functions needed in the driver

were analyzed and a rough sub-protocol scheme was designed.

Throughout this phase, the sub-protocol structure was

58

jacket (p.ten)^

send_char (FR_END);

send_char(p)

=p+l
en=len-1

send_char (FR_END):

send char(FR_ESC)
send_char(T_FR_END)

send_char (FR_ESC)
send_char (T_FR_ESC)

•(Retur^

Figure 2.2 - SUP send_pacl<et() Function

59

index > 0 c=FR END

return (index) c=FR ESC

/ Is c= \
T FR END

/ Is c= \
T FR ESC return -1;

index =0

c = recv_char ()

c = recv_char ()

p(ind6x) = c
index=index+1

c = FR ESC

c = FR END

Figure 2.3 - SLIP recv_packet() Function

60

revised and refined until it reached it's final form, shown

in Figure 2.4.

2.1.3.1 An Overview of the Sytek Driver

The heart of the Sytek driver is the module labelled

"Sytek_Main". This module provides an interface to IP,

facilitating the sending and receiving of datagrams. To

achieve the first task of the second development phase (c.f.

1.2.4), Sytek_Main provided a transparent interface to SLIP.

This configuration is sufficient for the transfer of

datagrams over a serial connection.

The second task requirements were met by simply insuring

that the PCU command character (ASCII Escape) never appeared

in the data stream. This was done by using a modified SLIP

module (hereafter referred to as SLIP') that would perform

additional character stuffing for the PCU command character

for Svtek interfaces onlv; datagrams for genuine SLIP

interfaces will use standard SLIP encapsulation.

To achieve the third task, routines to initialize and

restore the PCU state were written. These routines are

outside of the concept of protocol layering, to which this

section is devoted. They are discussed in more detail in

Section 2.2.2.5.

61

IP

Sytek_Main

UD

CH SLIP'

RS-232
Driver

RS-232
Port

Sytek
Driver

J

Figure 2.4 - Sytek Protocol Stack

62

The fourth task required a simple module to perform IP

address resolution via table lookup. This is the skeleton

of the "Unit Discovery" module ("UD" in Figure 2.4), which

was completed in the fifth task. The principal work for

this task, however, involved adding the ability in the

driver to manage Sytek sessions for the transport of IP

datagrams. This functionality was provided by the "Channel

Handler" module ("CH" in Figure 2.4).

Finally, during the fifth task a more sophisticated

Sytek address resolution protocol was designed and

developed. This protocol is shown in Figure 2.4 as "UD",

the Unit Discovery module. The UD module can be queried by

Sytek_Main to resolve an IP address into a Sytek hardware

address.

The module labelled "RS-232 Driver" in Figure 2.4 simply

provides single character I/O for SLIP' (i.e. send_char()

and recv_char() in Figures 2.2 & 2.3) and the Connection

Handler (i.e., commands and their responses).

2.1.3.2 Sytek Frame Format

Unlike SLIP interfaces, which only transfer data frames,

Sytek interfaces must send and receive many different kinds

of frames (e.g., data frames, UD request and response

63

frames). As part of the Sytek Protocol specification, it

was necessary to define a "Sytek Header" which would allow

the demultiplexion of different data streams in the Sytek

driver. Please note that this header and any frame data

will be SLIP' encapsulated before it appears "on the wire",

but we define the frame format here in terms of its pre-

encapsulation appearance; After SLIP' encapsulation, the

frame format is contents-specific. The Sytek Frame Format

is shown in Figure 2.5.

The first 34 bytes comprise the Sytek frame header. It

was decided that for simplicity, there would be only one

type of frame header, with all the fields necessary to be

used for any specific frame type. For instance, data frames

carrying IP datagrams would not have a significant value in

the udhwa field. This method is intended as an intermediate

approach only; later development should include multiple

Sytek frame formats to decrease wasted bandwidth.

After the header (from byte 35 on) there may be data

(assumedly an IP datagram). There is no set limit on how

large this data field can be; SLIP' encapsulation delimits

the beginning and ending of the Sytek frame for us, so the

frame recipient can easily determine the data field's

length.

64

Byte

0

8

16

24

32

40

ft shwa - source hardware address

sipa - source ip address dhwa - destination

t.
hardware address dipa - dest ip address ud_hwa

- UD hardware address udipa - UD

IP address udserv user data, if any

user data, if any...

field bytes

1 0

35'

field name

frame type

value

0

1

2

3

4

2 1 -7 source hardware addr -

3 8 - 1 1 source IP addr -

4 1 2 - 1 8 dest hardware addr -

5 1 9 - 2 2 dest IP addr -

6 2 3 - 2 9 UD hardware addr -

7 3 0 - 3 3 UD target IP addr -

8 34 UD server indicator flag 0

User Data (optional field)

1
2

meaning

SYTEK_DATA_FRAME

SYTEK_UD_REQUEST

SYTEK_UD_RESPONSE

SYTEK_CONNECT
SYTEK DISCONNECT

UD_SERVER

UD_NONSERVER

UD SERVER MAYBE

Figure 2.5 - Sytek Frame Format

65

The second, fourth and sixth fields hold Sytek hardware

addresses. Each reserves seven bytes, with each digit of

the Sytek address getting a byte. This was done for

simplicity and debugging purposes. Future research directed

towards a production quality driver should consider reducing

these. Fields 1 through 5 are self-explanatory. The last

three fields in the header are for use by the Unit Discovery

module to facilitate address resolution. A quick outline

of the five frame types follows:

1. SYTEK DATA FRAME - These carry IP datagrams in their data
field (byte 35 on). They do not have significant values in
any header fields, except for "ft".

2. SYTEK UD REQUEST - These are frames sent by a general
Sytek host to a "UD" server. It contains the IP address (in
the "udipa" field) of a "target system" for which the
requestor needs a Sytek hardware address.

3. SYTEK UD RESPONSE - These are frames sent by a "UD"
server to a Sytek host. It contains the Sytek address (in
"udipa") which corresponds to the "target system" (specified
by the IP address in "udhwa") . The server also fills in the
"ud_serv" field which identifies the target system as a UD
server or non-server (or "UD_SERVER_MAYBE" if it doesn't
know).

4. SYTEK CONNECT - These are frames sent by a system which
is establishing a connection with the recipient. They may
contain IP datagrams in their data field.

5. SYTEK DISCONNECT - These are frames sent by a system to
a currently connected neighbor announcing it's intention to
close the current Sytek session between them.

2.1.3.3 Sytek_Main Module

66

This section provides the functional description of the

user interface to the Sytek_Main module. The Sytek_Main

module implements the following three functions:

syte]c_send (buf, if ace, gateway, prec, del, tput, rel)

buf = buffer pointer
iface = driver interface
gateway = IP address of destination system
prec = precedence
del = delay
tput = throughput
rel = reliability

This function sends an IP datagram over a Sytek

interface to a remote Sytek system. The data to be sent is

indicated by "buf", the interface to be used by "iface", and

the IP address of the next-hop destination by "gateway".

The last four parameters (prec, del, tput and rel) indicate

the transport ^characteristics desired by the user.

Currently they are ignored, but they have been included here

for future expansion (and compatibility with KA9Q).

In order to send the datagram, sytek_send resolves the

IP address (indicated by "gateway") into a Sytek hardware

address by a call to the UD module. If UD indicates no

immediate resolution is possible, the datagram is dropped

(it is assumed that if UD can resolve the address via remote

consultation, future re-transmissions of this datagram will

succeed) . If UD was able to immediately resolve the

67

address, a Sytek frame header is constructed for this

datagram. The Sytek data frame is then delivered by a call

to sytek_raw.

sytek_raw (sy_hdr, datagram, iface)

sy_hdr = Sytek frame header
datagram = datagram to be framed and transmitted
iface = driver interface

This function prepends the Sytek frame header to the

datagram, yielding a Sytek frame. It then consults the CH

module to establish the appropriate session (if it isn't

already existent) to the destination system, using the given

interface. The Sytek frame is then encapsulated SLIP'-wise,

and delivered.

sytek_recv (iface, buf)

iface = driver interface
buf = buffer pointer

This function is used to process incoming frames

(indicated by buf) from a Sytek interface. The Sytek header

is stripped off and the frame type is examined. Based upon

the frame's type, it is sent to the appropriate module;

sytek_recv's main function is the demultiplexion of incoming

Sytek frames.

Frames with type SYTEK_DATA_FRAME hold IP datagrams,

which are sent to the IP module for routing. Unit Discovery

frames (type SYTEK_UD_REQUEST or SYTEK_UD_RESPONSE) are sent

68

to the UD module for further processing. Frames with type

SYTEK_CONNECT cause sytek_recv to notify the CH module of

the new connection. Frames with type SYTEK_DISCONNECT cause

sytek_recv to notify the CH module of the disconnection.

2.1.3.4 SLIP' Module

This section provides the functional description of the

user interface to the SLIP' module. The functions described

here are part of the KA9Q package. The have been slightly

modified for use with the Sytek driver. The SLIP' module

implements the following four functions:

slip_send (buf, iface, gateway, prec, del, tput, rel)

buf = buffer pointer
iface = driver interface
gateway = IP address of destination system
prec = precedence
del = delay
tput = throughput
rel = reliability

This function sends an IP datagram over a SLIP interface

to a remote system. The data to be sent is indicated by

"buf", the interface to be used by "iface", and the IP

address of the next-hop destination by "gateway". The last

four parameters (prec, del, tput and rel) indicate the

transport characteristics desired by the user. Currently

they are ignored.

69

Due to the simplicity of it's "subnet" (i.e., a point-

to-point link) SLIP has no link-level headers or any such

protocols which must be layered on top of a "raw" SLIP

transmission. For this reason, slip_send is essentially

nothing more than a transparent call to slip_raw.

slip_raw (iface, buf)

iface = driver interface
buf = buffer pointer

This function encapsulates the frame specified by "buf"

SLIP-wise (with a call to slip_encode) . The resulting data

is then transmitted over the SLIP interface specified by

"iface".

slip_encode (buf, dev)

buf = buffer pointer
dev = asynchronous device ID

This function encapsulates the data specified by "buf"

for point-to-point transmission, "dev" is used to determine

if this data is destined for a SLIP or Sytek interface.

SLIP data is encapsulated SLIP-wise, Sytek data is

encapsulated SLIP'-wise.

"SLIP-wise encapsulation" means the data encapsulated

in the standard way according to the SLIP protocol

specification (c.f. Section 2.1.2). "SLIP'-wise

encapsulation" is basically the same, except it stuffs two

70

more bytes: ASCII Escape (OxlB) and it's eight-bit

"equivalent" (0x9B).

The reason for this is that the PCU command escape

sequence is two ASCII Escapes. If this were to occur in the

data stream by chance, the PCU would go into command mode

in the middle of a frame transfer, corrupting the frame and

causing the PCU to go into a non-deterministic state from

which the interface software could not easily recover.

The reason we prohibit anv ASCII Escapes in our frames

(instead of just pairs of Escapes) is that under heavy load,

if the PCU is asked to transfer an Escape followed by some

other character, it often delivers these characters out of

order. Finally, the reason we must stuff the eight-bit

Escape equivalent is that ASCII characters are seven bits

in length; the PCU hardware which searches for the command

escape characters ignores each bytes' high bit. Thus, a

pair of 0x9B's will also put the PCU in command mode.

slip_decode (buf, dev)

buf = buffer pointer
dev = asynchronous device ID

This function decapsulates the data specified by "buf".

It is the analog to slip_encode. "dev" is used to determine

if this data is from a SLIP or Sytek interface. SLIP data

is decapsulated SLIP-wise, Sytek data is encapsulated SLIP'-

71

wise.

asy__rx (dev)

dev = asynchronous device ID

This function is the code run by the byte-oriented

asynchronous receive process. Each character received is

processed according to the current state of the PCU. If the

PCU is passive (in command mode, but no local commands have

been issued), data we receive is processed appropriately

(i.e., we must listen for remotely initiated connections).

If we're awaiting the response to a PCU command, data is put

in a command response shared memory buffer. If the PCU is

in data mode, then bytes are assumed to be part of a SLIP'-

encapsulated frame. When a FR_END is received, the buffered

data is sent to either sytek_recv or slip_recv for

processing, depending on the associated interface type.

2.1.3.5 Channel Handler Module

This section provides the functional description of the

user interface to the Channel Handler module. The Channel

Handler module implements the following four functions;

sych_conn_request (src_hwa, dest_hwa, iface, buf)

src_hwa = source hardware address
dest_hwa = destination hardware address
iface = driver interface
buf = buffer pointer

72

A user calling this function wants to deliver a Sytek

frame ("buf") to a Sytek destination ("dest_hwa") using a

specified interface ("iface"). If the requested connection

exists, "sych_conn_request" returns TRUE. Otherwise, it

returns FALSE, indicating that the caller should abort it's

delivery attempt. "sych_conn_request" attempts to establish

the appropriate connection and deliver the frame when it is

established.

sych_conn__report (src_hwa, dest_hwa, iface, state)

src_hwa = source hardware address
dest_hwa = destination hardware address
state = connection state

This function is used to "report" a connection to the

CH module. Creates an entry in the Channel Handler

database, and starts the timeout timer for this session.

This function can be used to record both locally and

remotely initiated connections.

sych_disc_request (dev, iface, entry)

dev = asynchronous device ID
iface = driver interface
entry = connection table entry

This function is called to request a connection

termination. It sends a disconnect frame to the other side,

issues the done command to the PCU and removes the

connection from the CH database using sych_disc_report.

73

sych_disc_report (iface)

iface = driver interface

This function removes a connection from the CH database.

2.1.3.6 Unit Discovery Module

UD implements an address resolution protocol inspired

by ARP, the address resolution protocol used by Ethernet.

Because Sytek is connection-oriented, ARP (a broadcast-

oriented protocol) could not be used. Instead, UD was

designed to consult UD servers (systems which keep complete

Sytek Domain tables) when an IP address needs resolving.

This approach is certainly less robust than ARP, but Sytek's

connection-oriented nature makes it unavoidable.

This section provides the functional description of the

user interface to the Unit Discovery module. The Unit

Discovery module implements the following three functions:

syud_resolve (ipaddr, iface)

ipaddr = IP address to be resolved
iface = driver interface

This function is called to resolve an IP address into

a Sytek hardware address. If the IP address is in our local

UD database, the associated hardware address is returned.

If local lookup fails, a syTEK_UD_REQUEST frame is assembled

and sent to a known UD server. This a NULL is returned.

74

indicating to the caller that we are attempting to resolve

the address (or we can't if we have no known servers). The

caller should drop its frame.

syud_request_handler (sy_hdr, iface)

sy_hdr = Sytek frame header
iface = driver interface

This function is called by sytek_recv when a UD_REQUEST

frame is received. The header is scanned for the IP address

which we have been asked to resolve. If it is in our

tables, we fill in the header's hardware address and

"ud_serv" fields (which indicates if the resolved host is

a UD server or not). If we can't resolve the IP address,

the header's hardware address field is set to NULL. The

header's frame type is reset to UD_RESPONSE, and the new

header is prepended to a NULL length buffer and sent back

out the specified interface, to the user requesting UD

resolution.

SYUd_response_handler (sy_hdr, iface)

sy_hdr = Sytek frame header
iface = driver interface

This function is called by sytek_recv when a UD_RESPONSE

frame is received. This frame is generally in response to

a UD request we've issued, but that need not be the case

(i.e., a Sytek host may "tell" another it's UD information

75

by sending an "unsolicited response"). Regardless, the UD

information in the frame is used to update our UD database

accordingly. If this is a failed response to a request

we've issued, and there are more UD servers that we may

consult, this routine attempts to resolve the address by

sending out another UD request frame.

It should be noted that the UD functions have been

designed such that multiple UD servers may exist (indeed,

all hosts have the code necessary to be a UD server). This

gives rise to the possibility of backup servers.

2.2 Software Design

This section discusses the Sytek driver software in

detail. The actual functions designed to adhere to the

protocol specification presented in Section 2.1.3 are given

in flowchart form and any anonomolies are discussed. Data

Structures necessary to these functions are also presented.

This section does not discuss the KA9Q software in any

detail. Interested readers should consult Appendix B.

2.2.1 Data Structures

As part of the Sytek driver design, a few essential data

structures have been developed. This section identifies

76

these structures, what files they can be found in, and gives

brief descriptions of each. The Sytek Driver was written

in C; the data structures presented here are taken directly

from the C source code of the driver.

The "sychud.h" include file contains definitions used

by the CH and UD sub-protocol modules. In particular it

defines the structure for internal representation of Sytek

frame headers, as follows:

char *src_hwa;
int32 sipa;
char *dest_hwa;
int32 dipa;
char *ud_hwa;
int32 ud_ipa;
char ud_server;

#define UD_SERVER 0
#define UD_NONSERVER 1
#define UD_SERVER_MAYBE 2

The fields in this structure correspond to the like-

named fields shown in Figure 2.5 and discussed in Section

2.1.3.2. The fields "frame_type" and "ud_server" are

struct sy_header {
char frame_type;

#define SYTEK_DATA_FRAME
#define SYTEK_UD_REQUEST
Idefine SYTEK_UD_RESPONSE
#define SYTEK_CONNECT

0
1
2
3
4 #define SYTEK_DISCONNECT

};

77

followed by "define" statements which enumerate their

possible values. It should be noted that this is an

internal representation only - Headers are converted

between this format and the actual byte-oriented format

prepended to datagrams by the "ntohsytek" and "htonsytek"

functions (c.f. 2.2.2.5).

The "sychud.h" include file also defines the CH

database as follows:

struct ch_entry {
struct ch_entry *next;
char *src_hwa;
char *dest_hwa;
struct iface *iface;
int state;

#define CH_ATTEMPTING 0
#define CH_CONNECT_MADE 1
#define CH_CONNECT_HEARD 2
#define CH_SAY_GOODBYE 3
#define CH_DISCONNECTING 4

In

struct ch_entry *CH_List;

The "ch_entry" structure defines the format for an

element in the CH linked list, which is defined as

"CH_List". The "next" field points to the next element in

the linked list. The session initiator's Sytek address is

given in "src_hwa", and the session recipient's is given in

"dest_hwa". "iface" is the network interface associated

with this connection and "state" identifies the current

78

state of this "connection".

The reason for five states is that the CH database

doesn't have to just record any connections we have

(CH_CONNECT_MADE and CH_CONNECT_HEARD) , but also

connections we are attempting to establish (CH_ATTEMPTING),

as well as those we are in the process of terminating

(CH_SAY_GOODBYE and CH_DISCONNECTING).

One may ask how our connections need only five states,

while TCP sessions can have eleven. Very simply, this is

because TCP must render reliable service to it's user using

IP, an unreliable datagram service. Thus TCP needs extra

states to ensure that IP datagrams which bear TCP session

establishment and termination information aren't "delayed

duplicates" carrying outdated information. The SMP layer

in the PCU provides accurate session management

information, so CH needn't be as complex as TCP.

The "sychud.h" include file also defines the UD

database as follows:

struct ud_entry {
struct ud_entry *next;
int32 ip_addr;
char *sy_hwa;
char ud_server;
int state;

#define UD_PENDING 0
#define UD_VALID 1
In

struct ud_entry *UD_List;

79

The "ud_entrY" structure defines the format for an

element in the UD linked list, which is defined as

"UD_List". The "next" field points to the next element in

the linked list. The IP/Sytek address pair for each entry

are held in "ip_addr" and "sy_hwa". The "ud_server" field

identifies whether or not this element is a "UD server",

and uses the same constants defined in sy_header. The

"state" of each entry can be valid, or pending resolution.

The other major include file, "syuser.h", contains many

definitions used to chronicle the condition of the network

interface. In particular it defines the structure for

internal representation of the PCU's current status, as

follows;

struct PCU_STATUS {
char model [8];
char reset_no [4];
char reset_type [4];
char reset_addr [4];
char buffers [4];
char unit [4];
char port [4];
char group [6];
char chansp [4];
char channel [4];
char lap [4];
char command [6];
char listen [4];
char privilege [4];
char maxsession [4];
char pcall [4];
char punit [12];
char baud [6];
char parity [4];

80

char stops [4];
char autobaud [4];
char dcd [4];
char dsr [4];
char dtr [4];
char echo [4];
char quiet [4];
char idle [4];
char eom_count [4];
char eoin_character [8];
char newline [4];
char expand [4];
char xon [4];
char xoff [4];
char flow [4];
char timeout [4];
char software [6];
char helplist [340];

Each field of this structure corresponds to the PCU

parameter of the same name. When the Sytek interface is

first attached, the PCU's status is divined, and the

results are stored in an occurrence of this structure.

The "syuser.h" include file also defines the following

structure, PCU_STATE, which is basically the a Sytek

interface control block:

struct PCU_STATE {
char *command;
int cominand_l ength;
char *response;
int expected_rl;
int actual_rl;
int mode;

#define SLIP_MODE 0
#define SYTEK_DATA_MODE 1
#define SYTEK_ACTIVE_1_M0DE 2
#define SYTEK_ACTIVE_2_M0DE 3
#define SYTEK PASSIVE MODE 4

81

#define PBSIZE 80

struct proc *pass_daemon;
char pass_buff[PBSIZE];
int pass_index;
int ready;

#define PCU_INITIALIZING 0
#define PCU_READY 1
#define PCU_RESTORING 2

struct PCU_STATUS *status;
struct stringll *restore_coinins ;
struct proc *coinin_daeiiion;
struct timer conn_timeout;

#define CONNECTION_TIMEOUT 60

);

The first five fields declare the shared memories used

to pass commands and their responses between a process

wishing to issue a PCU command and the process designated

to execute these commands (called the "PCU Command Daemon",

c.f. Section 2.2.2.5 for more details).

The next field, "mode", identifies this interface's

current transfer mode. SLIP interfaces will always be in

"SLIP_MODE"; the remaining four states are for Sytek

interfaces. When the PCU has no sessions (i.e., it's at

the command prompt), the interface is in

"SYTEK_PASSIVE_MODE". When there is an established session

which is being used for data transfer, the interface is in

"SYTEK DATA MODE". When a command has been issued and we

82

are awaiting a response, the interface is in

"SYTEK_ACTIVE_1_M0DE", unless that command was a done

command, in which case the interface is in

"syTEK_ACTIVE_2_M0DE". The first mode searches for a

carriage return to signal the end of the command response.

Done command responses have two carriage returns, so the

second mode was necessary.

The next field, "pass_daemon" is a pointer to the

"Passive Listener Daemon" process control block. This

process runs in the background, listening for remotely

initiated sessions when we are in "SYTEK_PASSIVE_MODE".

The low-level I/O routines store passive data in the

"pass_buff", using "pass_index" as an index. This is a

shared memory buffer between the low-level I/O routines and

the "Passive Listener Daemon".

The next field, "ready", identifies the PCU as either

being ready for use, in the process of being initialized,

or in the process of being restored. After this is the

"status" field, which is a pointer to an occurrence of a

"PCU_STATUS" structure, previously discussed.

"restore_comms" is a linked list holding the commands

necessary to return this PCU it's original state (i.e.,

before we intialized it for our purposes). "conn_daemon"

83

points to the process control block of the "PCU Command

Daemon" process associated with this interface (c.f.

Section 2.2.2.5 for more details). Finally, "conn_timeout"

points to the timer structure associated with this

interface's connection timeout timer.

The "syuser.h" include file defines an array of these

"PCU_STATE" structures, one for each Sytek interface, as

follows;

struct PCU_STATE pcu_state[ASY_MAX];

This array is dimensioned to the maximum number of

possible asychronous network interfaces.

2.2.2 Sytek Driver Code

This section gives a detailed overview of the functions

used to implement the Sytek driver. All major functions

are described using flowcharts and any peculiar details are

discussed. In particular, the functions specific to the

four sub-protocol modules (Sytek_Main, CH, UD and SLIP')

are presented in Sections 2.2.2.1 through 2.2.2.4. Section

2.2.2.5 describes the modules necessary to the Sytek

driver's operation which are beyond the protocol

specification.

84

2.2.2.1 Sytek_Main Module

The three main functions of the "Sytek_Main" module are

sytek_send, sytek_raw, sytek_recv. The source code for

these is in "sytek.c".

Figure 2.6 describes the sytek_send function. Note

that if the gateway address is not locally resolvable, the

datagram is discarded. It is assumed that syud_resolve is

attempting to consult a remote seirver. Future

transmissions (i.e., TCP retransmissions) should succeed if

remote resolution succeeds.

Figure 2.7 describes the sytek_raw function. Note that

if sych_conn_request indicates a failure, we return

immediately. This happens if the requested connection

isn't already established. "sych_conn_request" takes the

frame to be delivered as a parameter, and will attempt to

deliver it as soon as it can establish the proper

connection. If it cannot, it will drop the frame itself.

In any case, if it cannot immediately provide a connection

to it's caller, it returns a "failure'® status and forks a

process to continue it's work, thus avoiding blocking it's

caller.

Figure 2.8 describes the sytek_recv function. In the

KA9Q architecture, it is "called" by being the source code

sytek_send

(buf, iface, gateway)

return sytek_raw
(hdr, buf, iface)

Local >
Resolution
Successful

Deallocate
buf

Assemble hdr,
a Data Header
for this frame

Resolve "gateway"
into a Sytek

Hardware Address
using syud_resolve

Figure 2.6 - sytei<_send() Function

• sytek_raw
(sy_hdr, datagram, iface)

Connect
Request
Succeed

return -1

'Dump' ttiis frame

Reset this
connection's
timeout timer

Encapsulate this
frame using
slip_encode

Request a connection
(sych_conn_request)

Prepend 'sy_hdr'
to 'datagram', making

a 'sytekjrame'

Enqueue the
"slipped" sytek
frame for asynch
xmit on iface

Figure 2.7 - sytef<_raw() Function

Csytek_recv^\
(i f a c e , b u f j ^

87

Pull header (head)
off of sytek frame (buf)

Is

''frame_type^

UD_RESP^

?

N

Pass datagram
to IP for routing

Reset this
connection's
timeout timer

syud request_handler
(Fead, iface)

Y syud_response_handler
(head, iface) Return:

Report this connection
to the CH database
(sych_conn_report)

Stop this
connection's
timeout timer

Report this disconnect
to the CH database
(sych_diso_report)

N

return;^

Figure 2.8 - sytek_recv() Function

88

for a new process which is created for each incoming frame

on the associated Sytek interface. It is basically

responsible for demultiplexing incoming frames to their

appropriate modules according to each frame's type.

2.2.2.2 Connection Handler Module

The four main functions of the CH module are

sych_conn_request, sych_disc_request, sych_disc_report,

sych_conn_report. In addition to these, it was necessary

to design some functions which these routines call, and one

other, special function. This function, pcu_pass_daemon,

is the source code for the "Passive Listener Daemon"

process. The source code for all these is in "sytekch.c".

Figure 2.9 describes the sych_conn_request function.

It is called by sytek_raw to determine if a useful session

is available, and if not, to establish one. Note that if

a connection is found in the CH database, but it isn't

"valid", the frame is dropped, and a failure status is

returned. This is to stop from informing sytek_raw we have

a connection which may, in fact, be in the process of being

attempted or terminated. If a the requested connection

needs to be established, this routine makes a template

entry in the CH database, and then forks a process to

89

sych_conn_request
(src, dest, iface, frame)

Lookup
Failure return 0;

return -1

return -1;

connection

from DB
\ valid y

Drop frame

Lookup this connection
in the CH database

Fork a process
to run
connect daemon

Create an entry in
the CH database for
this connection using
sych_conn_report

Figure 2.9 - sych_conn_request() Function

90

continue the session establishment, thus avoiding blocking

sytek_raw.

Figure 2.10 describes the sych_conn_report function.

This function is called by sych_conn_request (with state =

CH_ATTEMPTING), and sytek_recv (with state =

CH_CONNECT_HEARD) . The '•add_chlist_entry" routine

mentioned in the last step is a simple function which adds

an entry to the CH_List.

Figure 2.11 describes the connect_daemon function.

This routine is the source code for the short-lived

processes forked by sych_conn-request to create a new Sytek

session. The "pcu_connect" routine mentioned here (and

discussed below) issues the appropriate call command to

attempt session establishment. "'Dump' this frame" means

to dump the contents of this frame to the screen, if the

user has enabled packet tracing on this interface.

Figure 2.12 describes the pcu_connect function. As

previously mentioned, this routine interacts with the PCU

(via the pcu_command_execute function, discussed in

2.2.2.5) to attempt a session establishment. The "pwait"

function used here (and elsewhere) allows a process to wait

at a given rendezvous point for another process, which will

issue a "psignal", giving up the CPU while it waits. If no

''sych_conn_report
(src, dest, iface, state)

state \
.TTEMPTING

Start connection
timeout timer

Put interface in
SY DATA mode

Add "entry" to
CH_List using
add_chlist_entry

Create a a new "ch_entry'
structure called "entry"

Fillin entry's src_hwa, dest_hwa,
iface, and state according to
passed parameters

Figure 2.10- sycli_conn__report() Function

connect_daemon
[connection, frame)

return:

/SessionN
Estabiistied Free

frame

'Dump' this frame

Start connection
timeout timer

Put interface in
SY DATA mode

Remove entry in
CH database

Encapsulate this
frame using
slip_encode

Enque the
"slipped" sytek
frame for asych
xmit on iface

Change connection
state in database
to 'CONNECT MADE'

Attempt session establishment

using pcu_connect

Figure 2.11 - connect_daemon() Function

pcu_connect
(dest_hwa. dev)

TCU in
passive
vmode.

'pwait (NULL);\

Send the appropriate
'CALL' command using
pcu_command_execute

return -1;

Search response
string for "CALL
COMPLETED"

/Was \
the string
vfound y

Put PCU in
data mode

return:

Figure 2.12 - pcu_connect() Function

94

rendezvous point is specified, as is the case here (i.e.,

"pwait (NULL);"), this process simply puts itself at the

end of the list of active processes waiting to use the CPU.

Figure 2.13 describes the connection_timeout function.

This function is called when a connection's idle timer

expires. It checks to make sure that the specified

connection is not already being disconnected because it is

possible that after the timer has expired, but before this

process gets a chance to run, the user may have manually

initiated this connection's termination (e.g., exiting the

program or detaching the interface associated with this

connection). It sets the connection's state to

DISCONNECTING, thus marking it as unusable for any

processes that manage to sneak in before the forked

sych_disc_request process can run. This separate process

is forked out of necessity, since NOS does not allow a

timer Interrupt Service Routine (ISR) to issue pwaits,

which sych_disc_request does.

Figure 2.14 describes the sych_disc_request function.

It can be run in it's own process, such as when scheduled

by connection_timeout, or by direct call, such as when the

interface associated with the connection is detached

(possible during program exit - see "pcu_restore".

connectionjimeout
^ (entry)

Set entry's state to
DISCONNECTING

return

X entry's \
/ StStB — Nv
DISCONNECTING

Stop this connection's
timeout timer

Forl< a process to do
tlie disconnect request
using sycii_disc_request

Figure 2.13- connectionJtimeoutQ Function

96

sych_disc_request
(dev, iface, CH_entry)

/ this ^
due to a
Jimeout,

connection's
timeout timer

Close this session
using pcu_disconnect

Set connection
state to
DISCONNECTING

Send a disconnect
frame to the remote user

Remove this connection
from the CH database
using sych_disc_report

Figure 2.14 - sych_disc_request() Function

97

discussed in Section 2.2.2.5). It uses the

"pcu_disconnect" and "sych_disc_report" functions, which

are discussed below.

Figure 2.15 describes the pcu_disconnect function. It

"escapes" the PCU out of data mode, into command mode.

Then it issues the done command to terminate the session,

using pcu_command_execute (c.f. 2.2.2.5).

Figure 2.16 describes the sych_disc_report function.

It is called by sytek_recv when a disconnect frame is

received, and also by sych_disc_request.

Figure 2.17 describes the pcu_pass_daemon function.

This function is the source code for the "Passive Listener

Daemon" process. It waits at a rendezvous point for a

signal from the "asy_rx" process (c.f. 2.1.3.4) indicating

that the PCU has sent an unrequested, carriage-return-

terminated string from the PCU. Typically this will be

notification of a remotely initiated session. This process

updates the CH database accordingly, using

sych_conn_report.

2.2.2.3 Unit Discovery Module

The three main functions of the UD module are

syud_resolve, syud_request_handler, &

98

PCU in
data
vmode.

'^PCU in\ N
passive y—
vmodeX

Send tlie command
escape sequence
to the PCU

return;

Send a 'DONE'
command to the PCU

return:

Figure 2.15- pcu_disconnect() Function

99

Put interface in
SY PASSIVE mode

Remove the appropriate
entry from CH_List using
remove_chlist_entry

Figure 2.16- sych_disc_report() Function

100

(^uj3ass_daemon
V^^dev. iface)

Wait for

^"Passive Receive"
signal from asy_rx

Search "pass_buff"
for 'RECEIVED'

Stnng \n

ound?

Parse pass_buff for
caller's hardware
address

Repon this connection
to the CH database
(sych_conn_report)

Reset pass_buff

Figure 2.17- pcu jDass_daemon() Function

101

syud_response_handler. The source code for these is in

"sytekud.c".

Figure 2.18 describes the syud_resolve function. It is

called by sytek_send to resolve an IP address into a Sytek

hardware address. If the IP address isn't in our local

database, a UD_REQUEST frame is sent to the first server in

our UD_List.

Figure 2.19 describes the syud_request_handler

function. It is called by sytek_recv to process a received

UD_REQUEST frame. This routine mutates the frame header

into a UD_RESPONSE. If the unresolved IP address is in the

local UD database, it fills in the frame header

accordingly. If it isn't, it fills in the frame header

with NULL. This header is then bounced back to the

requesting host over the connection it was received on. It

is assumed that the remote system will terminate the

connection, so we remove the CH entry with

sych_disc_report, and stop this connection's idle timer.

Figure 2.20 describes the syud_response_handler

function. It is called by sytek_recv to process a received

UD_RESPONSE frame. If there is not template entry in the

CH database, this is an "unsolicited" UD response, for

which a new entry is simply added. If the frame carries a

102

syud_resolve
(ipaddr. iface)

the
en^
valid

Server
found

/y^re we>
resolving
a "new"

entry

return NULL;

-return NULL;

Return the Sytek
hardware address
for this entry

Search UD database for
the first UD server

Search UD database for
an entry with 'ipaddr*

Create a Sytek frame
header, hdr, for a
UD_REQUEST frame

Create a UD_List entry
to correspond to this ioaddr
with a state of UD PENDING

Pass hdr and a 0-iength
'datagram' to sytek_raw
for xmit to first UD server

Figure 2.18 - syud__resolve() Function

103

syud_request_handler
s.,l^y_hdr, iface) ^

/ Wait for iface >
to finish transmission return:

Lool<up
Jailed y

Tan source

Fillin sy_hdr's "UD hardware
address field with NULL

Lookup the IP addr in need
of resolution in our UD list

sy_hdr frame type
K UD RESPONSE

Remove connection
from CH_List and stop
this connection's timer

Add a UD entry
using the information
learned from this
frame's source info

Fillin sy_hdr's "UD hardware
address" and "UD server" fields
according to UD list entry found

Send a UD response frame out iface
by passing the modified sy_hdr and a
0 length "datagram" to sytek_raw

Figure 2.19- syud_request_handler() Function

104

/'^^d_response_handler^
v.^^(sy_hdr, iface)

Terminate the connection
associated with this incoming
UD response frame

Search the UD_List for an entry
with the give IP address

Add a UD_List entry
using the information
learned from this
frame's source info

SearchX Y
allure?

Is
sy_hdr's

ud hwa field
NULL
9

Search UD_List for
the next server

Search^ Y
failure?

Remove 'PENDING"
UD_List entry

Fillin 'ud_entry'
using the information
learned from this
frame's source info

Construct a new frame header
for a UD_REQUEST to the 'next
server'

Pass hdr and a 0-length
'datagram' to sytek_raw
for xmit to the 'next server'

return:

Figure 2.20 - syudjresponse_handler() Function

105

valid IP/Sytek address pair, the UD database is updated

accordingly. If the header's "ud_hwa" field is NULL, the

remote server couldn't resolve the IP address. In this

case, syud_response_handler will and attempt to consult the

next server listed in our UD_List, if one exists.

2.2.2.4 SLIP' Module

The five main functions of the SLIP' module are

slip_send, slip_raw, slip_encode, slip_decode, and asy_rx.

The source code for these is in "slip.c".

As mentioned previously, slip_send is practically just

a transparent call to slip_raw. "slip_raw" does nothing

more than encapsulate the frame SLIP'-wise using

slip_encode and then enqueue the resulting data for

asynchronous transmission. "slip_encode" and "slip_decode"

simply perform the encapsulate discussed in Section

2.1.3.4. These routines are rather straight-forward, thus

they were not flowcharted.

Figure 2.21 describes the asy_rx function. This

routine is the source code for the "asyncronous receive"

process. It's main function is to demultiplex incoming

bytes according to the current state of the interface. The

"Hopper queue" which complete frames are put into is the

106

/ dev'a N
interface in
;LIP_MODE

dev's
interface in
SY_DATA

dev's
interface in
SY_ACT1

' dev's
interface in
SY ACT2

dev's ^
interface in
SY_PASS

asy_rx(dev)

cinan
^R7

char<

^ frame ̂
complete

char ^
tha 2nd

CR haara

Signal
Passive
Receive

Signal
Response
Complete

Signal
Response
Complete

Put frame
in Hopoer
Queue

Get a character

Put character
in response
buffer

Put character
in response
buffer

SLIP*
decapsulation

Put character
in passive
reponse buffer

char
tha 2nd

C R I

Figure2.21 - asy_rx() Function

107

data structure KA9Q uses to pass all packets to their

interface "receiving" routines. For instance, a frame

which asy_rx enqueues in the Hopper that arrived on a Sytek

interface will be dispatched to sytek_recv by the "network"

process (whose main task is to distribute incoming frames).

This architecture is part of the original KA9Q package and

is discussed in more detail in Section B.2.

2.2.2.5 Non-Protocol Support Modules

This section is devoted to functions that were not

discussed in Section 2.1.3, because they are not actually

part of the Sytek driver protocol specification, but rather

software-specific functions, although the line between

these is very fuzzy.

First, we must mention that the UD module, in software,

has two other important functions not yet discussed. They

are used to load/save the UD database from/to a diskfile.

When the first Sytek interface is attached, chud_init is

called to initialize the UD database. This routine also

initializes the CH_List pointer to NULL, thus the name

chud init. Then, every ten minutes (an arbitrary and

easily modified value), syud_save is called to maintain the

UD domain diskfile, \NET\SYDOMAIN.TXT. This periodic

108

saving is done to minimize loss of domain knowledge due to

unexpected system crashes. When a Sytek interface is

detached (usually during program exit), syud_save is again

called to save the UD database. Both of these functions

are in sytekud.c and are briefly described below:

chud_init ()

no parameters

This function initialized CH_List to point to NULL and

also reads known Sytek Domain into UD_List from the file

\NET\SYDOMAIN.TXT. It also starts the SDF ("Sytek Domain

File") Periodic Update timer with an initial value of 600

seconds (ten minutes).

syud_save ()

no parameters

This function checks to see if the UD_List has been

modified since it was last saved to disk. If it has, then

the \NET\SYDOMAIN.TXT file is overwritten with a current

version. Because this function uses DOS I/O calls to

access the disk, it is horribly slow. To avoid blocking

people, it gives up the CPU periodically, placing itself at

the end of the active process list by using a "pwait(NULL)"

NOS call (c.f. Appendix B.2).

109

The reason these functions were not discussed in

Section 2.1.3 is that functions specific to software

startup and shutdown are beyond the network layering

paradigm. There are two other significant functions that

fall into this category: pcu_init and pcu_restore.

Figures 2.22a and 2.22b describe the pcu_init function.

It is called when a new Sytek interface is attached. It is

responsible for initializing the PCU parameters to the

expected state discussed in Section 2.1.1. Boxes in the

flowchart which have only guoted strings inside indicate

that the quoted string is sent to the PCU as a command. If

this function changes any parameters, a command which would

restore the parameter to it's original setting is added to

the "restore_comms" linked list of the appropriate

"pcu_state" structure (c.f. Section 2.2.1).

Figure 2.23 describes the pcu_restore function. It is

called when a Sytek interface is detached, generally during

program exit. It is responsible for restoring the PCU's

original parameter settings. As the last user of this

interfaces command and passive listener daemons, it also

has the responsibility of killing there processes.

"HELP"

110

Initialize CM & UD by
acailtociiud init

Copy comnaand response
into this dev's 'helpiist'

"STATUS

Copy command response
into this dev's status structure
using pcu_statusjillin

Is
PCU's

COMMAND
arameter

oi<?

Is
PGU's
FLOW
arameter

ok?

COMMAND
Add the appropriate
command to the
restore command list

"FLOW
NONE"

Add the appropriate
command to the
restore command list

(continued)

Figure 2.22a - pcuJnitQ Function

Ill

(from Fig 2.22a)

return;

/PCU's \
PRIVILEGE
jaarameter /
\ok? /

PCU's ^
LISTEN
larameter
vok? /

PCU's ^
ECHO

larameter
vok? /

/PCU's \
maxsession
jjarameter.
\ok? /

"ECHO
• OFF"

'LISTEN
ON"

•PRIVILEGE
OFF"

MAXSESSION

Add the appropriate
command to tlie
restore command list

Add tlie appropriate
command to ttie
restore command list

Add ttie appropriate
command to the
restore command list

Add the appropriate
command to the
restore command list

Figure 2.22b - pcuJnitQ Function (cont.)

112

return

-^PCU ^
mode

5Y DATA

/ this \
/ iface's \
'restore_comms'
\linked list /

\?NULL X

pcu_restore
^iface)

PCU'
mode
SLIP.

Disconnect using
sych_disc_request

Delete 'restore_comms'
first entry

Kill this iface's
command and passive
listener daemons

Send the first command
In 'restore_comms'
to iface's PCU

Figure 2.23 - pcu_restore() Function

113

As previously mentioned, some routines (c.f. pcu_init,

pcu_restore, pcu_connect and pcu_disconnect) issue PCU

commands and read the associated responses. It was decided

that a separate process to interact with the PCU via the

lower-level I/O routines would be appropriate, along with

a general "command execute" function to provide a simple

user interface to this process (and thereby, the PCU). The

process was named the "PCU Command Daemon" and it's source

code is the function pcu_comm_daemon. The user interface

function is pcu__command_execute. These are in sycmd.c.

Figure 2.24 describes the pcu_comm_daemon function. It

loops "forever" (until it's process is terminated)

processing commands. It interacts with it's user

(pcu_command_execute) via the interface's command and

response shared memory buffers (c.f. 2.2.1) and three

rendezvous points (PCU_COMM_EXECUTE, PCU_COMM_INDICATE, and

PCU_COMM_DONE).

Figure 2.25 describes the pcu_command execute function.

It allows it's caller to specify a command to be sent to

the PCU, along with an "expected response length" and a

time limit on how long a response should be waited for.

The caller also passes a pointer to a buffer which the

command response should be returned in. This function

114

pcu_comm_daemon

(dev) .

/ Wait for \

/PCU Command

Execute Signal

/ Wait for \
' Response >
omplete Signal

/Wait for \
/ the "User
Done" signal

Send command
to PCU

Signal the user

Resoonse Comolete

Initialize command
& response shared

memory buffers

Figure 2.24 - pcu_comm_daemon() Function

115

return 0:

return 1:

Wait for PCU
command daemon
to signal a response

return
response

lenath

Wait for the
PCU command
daemon to reset

^Did
timer
expire

expected_rl
V = 0 ? y

'^cu_command_6xecut8
(command, dev. resoonse.
sexpected_rl, time_wait)

Set command
timeout to
time wait sees

Signal the PCU
command daemon
that we're done

Copy 'commana' to
shared memor/ buffer

Signal the PCU
command daemon
to beain execution

Copy command
response to 'response'
buffer from shared memory

Figure 2.25 - pcu_command_execute() Function

116

returns the response string's length (or 0 if the "response

wait" timer expires).

These two functions interact to provide a user with a

generic command interface to the PCU. When

pcu_command_execute is called, it copies the passed command

into the proper shared memory buffer, and then signals the

daemon on PCU_COMM_EXECUTE and waits for a rendezvous on

PCU_COMM_INDICATE. The daemon issues the command to the

PCU and waits for a "Response Complete" signal from the

underlying network I/O routine, asy_rx. It the signals on

PCU_COMM_INDICATE, waking the process which is running

pcu_command_execute and waits for a rendezvous on

PCU_COMM_DONE. The executing process wakes up, copies the

response string into the caller-specified response buffer,

and signals on PCU_COMM_DONE, which wakes the daemon. The

executing process then puts itself at the end of the active

process list, giving up the PCU to insure that the daemon

gets a chance to reset before another command is issued.

The three rendezvous points mentioned here are declared in

sycmd.h.

In Section 2.2.1, a data structure for the internal

representation of a Sytek header is given. It is a

structure with fields of many different variable types.

117

For transfer over a Sytek session, this structure must be

converted into a stream of bytes. This is done by the

"htonsytek" routine. Of course, there is an analogous

routine to convert from the network-specific format (a byte

stream), back into an internal header representation; this

routine is called "ntohsytek". These functions are fairly

straightforward and are in "sytekhdr.c".

A KA9Q user has the option of tracing all the packets

on an interface (c.f. Appendix A). This is a useful

feature for debugging puirposes. It required that a

function be written and integrated into the KA9Q package

which would ' dump' a Sytek header to the screen in a

readable format. This is accomplished by the "sydump"

function which is in sydump.c.

2.2.3 Documentation

Every module and function in my code has been carefully

documented. This includes header comments explaining how

each function is called, and parameters that must be passed

to it, the value returned, and it's meaning. Comment lines

are also included in-line in the program where necessary to

clarify the actions taking place. The KA9Q source code is

organized and commented very well.

118

Appendix A of this thesis provides a user's manual for

the KA9Q package. It was intended to be useful to both

beginning users and network experts. Appendix B provides

some advice to future implementors and developers of KA9Q-

based network software packages.

119

CHAPTER 3

GATEWAY TESTING AND USE SCENARIOS

This chapter discusses the testing performed to verify

the functionality of the prototype gateway. In particular,

testing was performed during each development phase at many

levels of the design, from the unit code testing of each

function, to the subsystem testing of each sub-protocol

module, to the testing of the complete Sytek driver, and

finally the testing of the complete gateway system. This

is discussed in Section 3.1. This chapter also discusses

the possible use scenarios for the prototype gateway in

Section 3.2.

3.1 Gateway Tests

Recall that the gateway development was broken down

into three phases in Section 1.2.4. These were "TCP/IP

Over Ethernet", "TCP/IP Over Sytek", and "Sytek to Ethernet

Gateway". The systems developed in each of these phases

were extensively tested to verify their functionality. The

tests used are discussed in this section.

120

3.1.1 Phase I (TCP/IP Over Ethernet) Tests

The first phase, "TCP/IP Over Ethernet", involved

acquisition of an appropriate public domain software

package. The package chosen, KA9Q, has been extensively

tested by it's author and a large user community. For this

reason no formal testing of the KA9Q software was

performed. Verification of KA9Q's functionality was

accomplished by running the software as both a server and

a client for the three main applications (FTP, Telnet, and

SMTP). The configuration in Figure 1.9 was also used to

verify that KA9Q's Address Resolution Protocol (ARP)

routines worked as expected over Ethernet, as well as it's

Routing Information Protocol (RIP) routines.

3.1.2 Phase II (TCP/IP Over Sytek Network) Tests

The second development phase, "TCP/IP Over Sytek", was

broken down into five main tasks (c.f. 1.2.4). Unit level

testing was performed on each C function which was

developed during these tasks. This was done using the

Turbo Debugger to observe the function's execution and

verify that function's operation according to the software

specification in Chapter 2. Any pre-existing KA9Q routines

which had to be modified for the integration of the Sytek

121

Network driver were also tested at the unit level.

The first task (TCP/IP over a null-modem cable)

involved nothing more than implementing a Sytek driver

which was a transparent interface to KA9Q's SLIP driver.

The code development here involved integrating a new driver

class into the KA9Q package. This fairly straightforward

scenario was tested by simple "pings", FTP file transfers,

and Telnet connections between the two PCs.

The second task (TCP/IP over a pre-established Sytek

session) comprised extending the SLIP module to include

character stuffing for the PCU command escape character

(discussed in Section 2.1.3.4). Testing to verify this

scenario was done by doing an FTP file transfer of a text

file containing the following text string:

"<ESC><ESC>DONE<CR><CR>"

which would cause premature session termination if the

stuffing failed.

The third task (adding PCU initialization /

restoration) involved development of the PCU command daemon

and it's user access function (pcu_command_execute)

discussed in Section 2.2.2.5. Extensive testing was done

to insure that this PCU command scheme worked properly.

The routines were tested by dummy calls to

122

pcu_coininand_execute which attempted a variety of PCU

commands and printed out the response strings for

verification. Once this functionality was verified, the

pcu_init and pcu_restore functions were developed and

tested.

Testing pcu_init and restore involved using the Turbo

Debugger to step through the routines and insure that the

given commands had the anticipated effect. The program

would be aborted after a PCU command was sent, to examine

the PCU's status (using Kermit, a terminal emulation

program) and verify that it was as expected. Code tracing

was also done to insure that the proper restorative

commands were saved by pcu_init and carried out by

pcu_restore. A final test of these routines involved

setting a PCU's parameters of interest to all be wrong,

running the KA9Q package over this PCU, using this PCU to

do the tests for the second task, and then exiting the

program (which restores the PCU). The PCU was returned to

it's original state after being used, as we would expect.

We then ran KA9Q using this PCU again, aborting the program

after initialization. The PCU's state was observed to be

as we would expect after initialization, but before

restoration.

123

The fourth task involved developing the software

modules for the Connection Handler (described in Section

2.2.2.2) as well as adding a rudimentary Unit Discovery by

table lookup module.

First the passive listener daemon code was developed

and tested along with the connection timeout timer. This

was done by having a terminal connected to one PCU

(actually a PC running Kermit) and the test system running

KA9Q connected to another PCU on the Sytek Network. Calls

were issued from the terminal to the test system's PCU.

The code printed out a report that a connection had been

heard and entered into the CH database. After the

connection timer expired, the test system would terminate

the session, as observing the dummy terminal would show (it

would receive a "SESSION CLOSED" message) and remove the CH

database entry.

Then the remainder of the CH module was developed and

tested. Explicit connection and disconnection requests

were shown to work as expected, with one PC initiating and

another "hearing" the connection. Then the UD by table

lookup was added and it was shown that an IP datagram

addressed to a remote Sytek Network host which was in our

SYDOMAIN.TXT file would cause the initiation of the

124

appropriate Sytek session, while one that was not in our

database would simply be dropped.

The fifth task involved developing and testing the more

complicated Unit Discovery scheme discussed in Section

2.2.2.3. This UD was the most complex module of the Sytek

driver to test, because it deals with a distributed system

of hosts and UD servers. The participating machines

performed "packet tracing", dumping the contents of packets

traversing their network interfaces. This was used to

verify that hosts were sending the expected network frames.

The internal state of each system was verified having the

software report significant events using printf statements.

The UD module test plan is shown in Figure 3.1. It

supposes three systems, Fred, Barney and Wilma, which are

hosts on the Sytek campus subnetwork (128.196.68.xxx).

Each has it's own Sytek address ("E221,0", "E905,0" and

"E432,l" respectively). Barney has been designated as this

network's UD server. At the outset, the UD databases in

Fred and Wilma reflect knowledge of Barney's role as UD

server. Barney has no knowledge of either Fred or Wilma.

The four successive tests shown were carried out and the

activity shown was verified to have occurred.

Hostname
IP address
Sytek address

Fred
128.196.68.1

E221,0

Barney
128.196.68.2

E905,0

125

Wilma
128.196.68.3

E432,1

initial Sytek
UD database

128.196.68.2 E905,OS (empty) 128.196.68.2 E905,OS

Knows Barney Knows Barney

Test A

ping Barney

sytek data frame

(ping fails)

^an't resolve Fred's
IP address
to respond

Test B

ping Wilma
ud_req(x.x.x.3)

(ping fails)

ud_req failed

Mearnsx.x.x.1's hwa
128.196.68.1 E221,0S!
,^ud_resp(NULL)

Knows Barney

ping Barney - ok
Knows Fred

ping Fred - ok

Knows Barney

Teste learns x.x.x.3's hwa-*

128.196.68.3 E432,l Si

ud_resp(E221,0,..) ̂

ping Fred

^ud_req(x.x.x.1)

(ping fails)

••Jearns x.x.x.Vs hwa
128.196.68.1 E221.0 S?

Knows Barney

ping Barney - ok
Knows Fred, Wilma

ping Fred, Wilma - ok
Knows Fred, Barney

ping Barney - ok

TestD
ping Wilma

ud_req(x.x.x.3) —-

(ping fails)

learns x.x.x.3's hwa-*
128.196.68.3 £432,1 S?

^d_resp(E432,1...)

Knows Barney, Wilma

ping Barney,Wilma - ok
Knows Fred, Wilma

ping Fred, Wilma - ok
Knows Fred, Barney

ping Fred, Barney - ok

Figure 3.1 -UD Test Plan

126

Incidentally, "ping" is a simple program which sends a

"ping request" in IP datagram to remote system. The remote

system should immediately send a "ping response" datagram

back. This is used to establish reachability in the

Internet. We use it here to do the same.

In Test A, Fred attempts to ping Barney. Since Fred

knows Barney (i.e., Barney is in Fred's UD database), he

doesn't have to initiate any remote UD resolution in order

to get a frame delivered to Barney. Barney receives the

ping request and will attempt to send a data frame

containing the ping response to Fred. Unfortunately,

Barney's Sytek driver will fail to resolve Fred's IP

address immediately (i.e., he doesn't know Fred). Since

there are no UD servers in his database, Barney drops the

response datagram and Fred's ping fails. In order for a

ping to succeed, both participants must know each other.

In Test B, Fred attempts to ping Wilma. Wilma is not

in Fred's UD database, so he must consult Barney. Fred

drops the ping datagram and sends a UD request frame to

Barney, asking for resolution of "128.196.68.3", Wilma's IP

address. Barney receives the UD request and learns Fred's

IP/Sytek address pair from it. Unfortunately, Barney

cannot resolve Wilma's IP address, so he sends Fred a UD

127

response frame indicating failure. Fred has no other

servers in his UD database, so he cannot resolve Wilma.

But, Barney has learned about Fred. This means Fred and

Barney could then ping each other.

In Test C, it is first verified that Fred and Barney

can now ping each other. Then Wilma attempts to ping Fred.

Fred is not in Wilma's UD database, so she must consult

Barney. Wilma drops the ping datagram and sends a UD

request frame to Barney, asking for resolution of

"128.196.68.1", Fred's IP address. Barney receives the UD

request and learns Wilma's IP/Sytek address pair from it.

Since Barney knows Fred's address pair, he can send Wilma

a UD response frame with this information. Thus Wilma

learns Fred's address pair and Barney learns Wilma's

address pair. Now Barney and Wilma should be able to ping

each other. But Wilma and Fred still can't ping each other

because Fred doesn't know Wilma yet.

In Test D, it is first verified that Barney and Wilma

can now ping each other. Then Fred attempts to ping Wilma.

Wilma is still not in Fred's UD database, so he must again

consult Barney via UD request frame. Now, however, Barney

knows Wilma's address pair, so the UD response frame he

sends to Fred contains a useful information. Thus Fred

128

finally learns Wilma's address pair. Fred and Wilma should

now be able to ping each other. In fact each system should

be able to ping all the others (this was verified to be

true).

Once the five tasks had been completed, and all the

driver's subsystems (i.e., CH, UD) were tested, testing of

the Sytek driver as a unit was performed. This merely

involved configuring the second development system (Figure

1.10) and running KA9Q over the Sytek drivers as both a

server and a client for the three main applications (FTP,

Telnet, and SMTP). During these tests, the UD modules in

the workstations were observed to do the expected remote

consultations to resolve IP addresses. The Connection

Handler was also implicitly tested, including observing

dynamic establishment and termination of Sytek sessions to

transfer IP datagrams.

3.1.3 Phase III (Sytek to Ethernet Gateway) Tests

The last phase, "Sytek to Ethernet Gateway", involved

insuring that the Sytek driver would work as part of a

KA9Q-based gateway. Tests were performed to verify this

functionality, but a successful completion of the second

phase was a clear indicator that these tests should

129

succeed.

Two main tests were done at the gateway system level.

First, the gateway's functionality was verified by

configuring the third development system (Figure 1.11) and

establishing TCP sessions between the Sytek workstation and

the Ethernet workstation, through the prototype gateway.

This was done with both workstations as application program

clients and servers.

Then the gateway was tested to insure that it could

sustain continuous usage by establishing an FTP session

through it and transferring many large files between the

two workstations.

3.2 Gatewav Usage

This section provides a brief synopsis of the usage

scenarios resulting from incorporation of the UA Sytek

Network into the Campus Internet. For details on how to

use the KA9Q package on a Sytek workstation, consult the

user manual in Appendix A.

Figure 3.2 shows how implementation of Generic Gateways

could affect the UA Campus Internet's connectivity. This

example shows the Sytek Network connected to the Ethernet

backbone via the prototype gateway developed in this thesis

Sytek
WS

Sytek
Localiiet 20 Ethernet

Host

Internet
Gateway

The
Internet

Token Ring
LAN

Generic
Gateway
(Token

Ring)

IIosl.

Sytek
WS

Token
Ring
WS

Generic
Gateway
(Sytek)

Sytek Host

Ethernet
Workstation

Token I?ing HosL

Figure 3.2 - Generic Gateway Usage

131

research. It also shows a generic gateway connecting a

Token Ring LAN to the Ethernet backbone. Such an

implementation does not yet exist, but may quite easily be

accomplished using KA9Q, which already has support for

Token Ring networks (c.f. 4.2.4).

Also connected to the backbone are an Ethernet

workstation, an Ethernet host, and the Ethernet/Internet

gateway. This picture does not fully reflect the campus

backbone's physical connectivity (c.f., Figure 1.3), but

provides an accurate model of it's logical structure.

From this diagram, we can see that the prototype

gateway allows Sytek hosts access to all other hosts on the

UA Campus Internet. This access is via the TCP/IP

application layer protocols. That is, any participating

Sytek user could act as client or server in FTP, Telnet or

SMTP sessions with any other host on the UA Campus

Internet. Since the UA Campus Internet is also part of The

Internet, Sytek users have similar access to Internet

hosts.

If another generic gateway were implemented, the Token

Ring gateway shown here for example, it would afford the

Token Ring users similar access to the UA Campus Sytek

Network, the Campus Internet, and The Internet. Actually

132

the Sytek Network is part of the UA Campus Internet, which

in turn is part of The Internet, so one could simply say

the connected subnet users get complete Internet access.

It should also be noted that this research provided

TCP/IP interconnectivity among the Sytek Network hosts

themselves. That is, Sytek hosts can access each other

using FTP, Telnet and SMTP. Previous to this research,

Sytek users only had virtual serial connectivity to each

other.

CHAPTER 4

133

SUMMARY & CONCLUSIONS

The focus of the "Generic Gateway" research project is

to bring about greater inter-connectivity among the campus

networks. Since UA already has a substantial TCP/IP

internet with an Ethernet backbone, it makes sense to

approach full campus interconnectivity by incorporating

detached campus networks into this UA Campus Internet. It

was determined that the best approach for assimilating

detached networks is through the use of IP-level routers.

In this thesis, the UA Sytek Network was selected as a

candidate network to be added to the UA Campus Internet.

This research involved the design, development and testing

of a gateway (IP-router) to interconnect Sytek and

Ethernet. The current gateway architecture was intended as

a prototype only; it demonstrates the viability of a

TCP/IP Sytek Network which is a Class C subnetwork of the

UA Campus Internet (and thereby part of The Internet).

Section 4. l discusses some of the constraints of the

prototype gateway, and Section 4.2 proposes some possible

solutions to these constraints, as well as discussing

directions for future research. In light of the

134

constraints discussed in Section 4.1, it is not recommended

that the prototype gateway be used to support an "active"

Sytek subnetwork with multiple gateway users.

4.1 Current Constraints

4.1.1 Problems with KA9Q

The KA9Q Internet Software Package has proven to be an

invaluable resource for this research. Nevertheless, it

does have it's limitations. KA9Q was designed to be a

robust platform, with an emphasis on portability and the

support of myriad network interfaces. This made it an

ideal choice for the generic gateway research. The down

side is that the user interface can at best be described as

•terse'.

This is not to say that the KA9Q applications are

unusable. They are just not as user-friendly as some other

public domain PC TCP/IP packages. For instance, the KA9Q's

Telnet client provides virtual terminal service, as

required by the Telnet protocol specification. This

service, however, is that of a dummy terminal; NCSA Telnet

(another popular public domain PC TCP/IP software package)

has VTIOO and TK4014 terminal emulation over it's Telnet.

135

KA9Q was selected for it's "developer-friendliness",

unfortunately at the expense of end-user friendliness.

This tradeoff was necessary, since many of the user-

friendly packages were not suited for use as a gateway.

KA9Q is quite usable, indeed it has hundreds (perhaps

thousands) of users worldwide. It's user interface is just

not entirely state-of-the-art. The good news is that KA9Q

is undergoing constant development and the user interface

is improving. Besides, Sytek users interested in Internet

connectivity should be glad to have any connectivity, bells

and whistles aside.

Another limitation of KA9Q that was realized in the

course of this research is that it does not implement the

FTP commands mput and mqet. These are commonly employed by

FTP users to transfer whole groups of files using only one

command (i.e., mget *.* will get every file in the current

remote directory). KA9Q users wishing to transfer a large

groups of files must mget/mput each separately. From a

user's perspective, particularly one who has used other

FTPS, this is an unfortunate attribute of KA9Q. This

limitation has been indicated to Phil Karn (KA9Q's author)

and is included in his list of features of future KA9Q

releases.

136

Another problem with KA9Q is it's conspicuous lack of

good documentation. The user documentation is somewhat

dated, but basically accurate; those who refer to "The

KA9Q Internet Software Package", [10] and Appendix A of

this thesis should have little trouble using KA9Q. The

real shortcoming lies with the developer's documentation:

there is none. All that can be said to mollify future

developer's fears is that the code has proven to be self-

documenting, to some degree.

Appendix B gives a partial overview of the KA9Q

architecture, from a developer's perspective. It is not

intended to be an exhaustive developer's manual (indeed,

such a document would be quite an undertaking, particularly

for a KA9Q neophyte), but it will give future developers a

running start, at least until the long-awaited and often-

promised "new" KA9Q documentation materializes.

4.1.2 Centralized Unit Discovery

The Unit Discovery (UD) protocol was designed to

resolve IP addresses into their Sytek equivalents, much in

the way the Address Resolution Protocol (ARP) is used on

Ethernet LANs. One big difference between these two

networks is that Ethernet is inherently connectionless.

137

while Sytek, from our network driver's perspective, is

connection-oriented.

ARP was designed to take advantage of Ethernet's

broadcast capability, implementing a distributed address

resolution algorithm (c.f., RFC 826, "An Ethernet Address

Resolution Protocol', [24]) which is highly robust. Due to

Sytek*s lack of any true broadcast capability, the UD

design is considerably more centralized, and necessarily

less robust.

More precisely, the UD server(s) are single points of

failure. If all the UD servers on one Sytek Network are

down, local hosts are limited to communications using

previously known Sytek addresses. In fact, this limitation

isn't imposed just when all the servers are actually down,

but merely when they are all without available Sytek

connections (i.e., when they're each "talking" to someone

else).

For a scenario where there are very few Sytek Network

TCP/IP users, these limitations are not critical. As

number of these users increases, however, these

restrictions become unacceptable. Recommended improvements

to the Unit Discovery protocol are given in Section

4.2.1.3.

138

4.1.3 Single Session Limitation

Perhaps the most serious limitation which prevents the

prototype gateway from being a final solution to the

incorporation of the UA Sytek Network into the Campus

Internet is it's inability to handle multiple simultaneous

sessions. The prototype gateway could be used as a partial

solution to this problem, until a more robust gatewaying

scheme can be devised.

It should be noted that under the current architecture,

there is no association between TCP virtual sessions and

Sytek sessions. Sytek sessions are dynamically created to

deliver IP datagrams, but if they remain idle for some

predetermined period of time, they are automatically

terminated.

At first, it was thought that careful tuning of this

timeout parameter might yield a gateway with a crude multi-

session capability. Assume a Sytek user establishes a TCP

session through the gateway, and then remains idle long

enough for his gateway connection to timeout. Now if

another Sytek user wishes, he/she may establish a second

TCP session through the gateway into The Internet. Now

there are two TCP sessions virtually "going through" the

139

gateway. If these two users happen to interleaf their I/O

(i.e., if each only sends IP datagrams when the other has

been idle), each will see no degradation in the gateway's

performance.

If, however, both users attempt to transfer IP packets

concurrently, the first to establish a Sytek session with

the gateway will succeed. The second user's Sytek driver

will fail to establish ̂a connection with the gateway and

drop the IP datagram. Of course, some time later, the

second user's TCP will timeout and instruct IP to attempt

re-transmission. If the first user's session with the

gateway has timed out, the second may now transfer his IP

datagram.

This might seem at first to allow for multiple sessions

at the cost of degraded performance, thanks to the vehicle

of TCP retransmission. The flaw with this arrangement is

best indicated by the following scenario; Assume user A

has FTP'd to an Internet host using the gateway and user B

has managed to establish a concurrent Telnet session to

another Internet host. If both are idle, and then the FTP

user begins a very large file transfer, the Telnet user

will be effectively disconnected until the file transfer

completes.

140

This scenario argues for setting the connection timeout

("CONNECTION_TIMEOUT" in syuser.h) to a large value. If

this is done, however, a single user could monopolize the

gateway with a fairly inactive session. Thus, it is

proposed that a "production-quality" Sytek-to-Ethernet

gateway must have multiple Sytek session capability.

Section 4.2.2 analyzes the possibilities for expanding to

multiple sessions.

4.2 Future Work

In the previous section, we examined some of the

constraints on the current gateway architecture. This

section attempts to address these limitations with the

intention of proposing some possible solutions to the

problems caused.

4.2.1 Improvements to Current Architecture

As previously indicated, the prototype gateway is not

robust enough to provide production-quality support to even

a small group of Sytek users. It does, however, provide

some connectivity to the Sytek Network user community. It

is assumed, therefore, that while strides are being made to

develop a gateway capable of fully integrating the Sytek

141

Network into the UA Campus Internet, the prototype may be

pressed into service. The purpose of this section is to

discuss enhancements to the prototype gateway which will

improve it's performance should it be used as a temporary

solution.

4.2.1.1 Putting Gateway Into Production

The prototype gateway has been extensively tested in

the Computer Engineering Research Laboratory (CERL), and

it's functionality has been verified. Nevertheless, some

work (mostly administrative) should be done if it is to be

put into production (i.e., made available for general use).

One of the most popular traditional TCP/IP

"applications" is electronic mail. Numerous Internet

"gurus" maintain that electronic mail is primarily

responsible for the explosive growth of the Internet. In

any case, few can doubt the usefulness of a global mail

system which delivers messages in a matter of minutes

instead of days.

One of the by-products of the prototype gateway

development has been a TCP/IP protocol suite for Sytek

users. This includes the Simple Mail Transfer Protocol

(SMTP). Thus, putting the prototype gateway into

142

production effectively creates the potential for a whole

new community of email users.

Of course, SMTP is not a "mailer" per se. It doesn't

help users send and receive mail; It is simply a mail

delivery protocol to allows hosts to send and receive mail.

There is a mailer, called "bm", designed for use with KA9Q.

It is in the public domain, and is available via FTP

access. See Appendix B for details.

One final note about Sytek mail: Most Sytek hosts will

be most likely be PCs. SMTP was designed for use with

"always connected hosts" (i.e., always connected to the

network unless the system is down). PCs often are not

running the networking software and thus are effectively

disconnected; PCs are not "always connected hosts". The

solution is to have "post office" systems which agree to

receive mail for hosts which are not always connected, and

which will forward the mail to that host upon request.

"Post office" systems run some kind of "Post-Office

Protocol" (POP). Interested readers may consult RFC1083,

"Post Office Protocol", for more details.

The remainder of this section deals with administrative

details necessary for a smooth integration of the Sytek

Network into the UA Campus Internet.

143

First and foremost, Sytek Network users should be

apprised of the limited and temporary nature of the

prototype gateway.

As is generally required for any new subnetwork, there

must be an administrator responsible for that network, a

Sytek Network manager. This person's duties would include

managing the Sytek Network's address space (128.96.68.xxx)

and domain namespace (xxxxx.ece-sytek.arizona.edu); he/she

must assign IP addresses and proper domain names to hosts

which participate in the Sytek subnetwork.

There must also be a host acting as a nameserver for

the "ece-sytek.arizona.edu" domain. It should be noted that

this system need not be a part of the Sytek subnetwork; a

host on another network can act as the proxy nameserver for

the "ece-sytek.arizona.edu" domain. It should be noted

that the latest KA9Q release only implements a DNS client,

but there is a KA9Q DNS server, available from a third

party, which is in the public domain. For more

information, requests should be sent to the "pcip0udel.edu"

internet newsgroup.

Finally, it is the recommendation of the Sytek driver's

author that the Sytek Driver be put in the public domain at

some time in the future. In the course of this research.

144

I have been an active member of the "pcip@udel.edu"

internet newsgroup; at least two other members of that

group have expressed interest in implementing TCP/IP over

their own Sytek networks.

KA9Q is a public domain software package without which

this research would have been much more difficult. It is

through sharing of resources such as these that a greater

global connectivity is achieved.

4.2.1.2 Improving Throughput

Real-time responsiveness is of first importance for a

gateway running in a LAN environment, where the data

traffic is highly bursty, but has a low average volume. It

should be clear, however, that achieving acceptable real

time responsiveness does not increase gateway throughput;

high throughput is achieved through eliminating system

overhead. [44]

In this section we discuss some improvements to the

Sytek driver which should increase the prototype gateway's

throughput. It should be noted that the speed of the

gateway's Ethernet interface is much greater than that of

the Sytek interface, thus it can easily be assumed that

improving the throughput of the Sytek Driver will

mailto:pcip@udel.edu

145

proportionately improve the throughput of the gateway.

Recall that each layer of the protocol stack prepends

it's own header to the actual data to be transferred. It

can be shown that decreasing the header-to-data ratio in

each network frame will result in better utilization of the

network bandwidth, and thereby, greater throughput. This

can be accomplished in two ways; 1) by decreasing the

actual size of a protocol layer's header, and 2) by header

compression.

As for the first approach, we can only revise the way

the Sytek driver frames IP datagrams. Obviously, we cannot

redefine IP or any of the other standard TCP/IP protocols.

Specifically, we can modify our Sytek Header design.

Currently there is only one header format which is used for

all flavors of Sytek frames (i.e., data frames, UD

requests, UD responses, disconnect frames). This was the

easiest scheme to implement and debug, but it impairs our

throughput. By designing Sytek headers specific to each of

the 5 types of frames, such that only necessary fields are

included in each (i.e., data frames wouldn't have UD-

specific fields), we will increase the throughput of our

driver.

146

Even more wasted bandwidth can be sc[ueezed out of the

Sytek header format when one considers the current

representation of Sytek addresses "on the wire". Recall

that a Sytek address is a 16-bit unit ID and a 4-bit port

ID. Currently, they appear in Sytek headers using seven

bytes. By encoding the 20-bits of each Sytek address into

3 bytes, we will save four bytes of header per Sytek

address in that frame. Doing this to the current, single-

header format (which has three Sytek addresses) would

decrease the Sytek header size by 12 bytes, which is 35%.

The second way to decrease the header-to-data ratio

mentioned above, header compression, has recently been the

subject of much research in the Internet community. For a

detailed overview of this technique, the reader should

consult RFC1144, "Compressing TCP/IP Headers for Low-Speed

Serial Links".

Another major throughput bottlenecks in the Sytek

driver design is due to the character stuffing added to

SLIP. This was done to avoid having the PCU command escape

character inadvertently appear in the data stream. It is

necessary if we wish to operate the PCU in "data mode" for

PCU connections. Fortunately, there is another mode for

Sytek sessions, called "transparent mode", which passes all

147

data without looking for command escape characters. When

the PCU user wishes to return to command mode, he/she sends

a BREAK signal to the PCU.

To increase throughput, a developer could remove the

extra character stuffing in SLIP, and use the PCU in

transparent mode. Of course, the Connection Handler would

have to be modified to send a BREAK signal instead of the

command escape characters when terminating a session.

Preliminary analysis has indicated that a throughput

increase of approximately 10% could be realized from this

modification. For more information on the PCU "transparent

mode", see the "LocalNet 20 Reference and Installation

Guide", [38].

Finally, under heavy workload, a Sytek session may drop

an occasional character or two (i.e. - Sytek does not

insure an error-free connection). Fortunately, this does

not cause total failure, since IP will perform a checksum

validation on the datagram, and if it fails the datagram is

discarded. This fact does, however, influence our

performance. For instance, on an error-free link, we could

set the TCP Maximum Segment Size (TCP MSS) to a very large

value, and thereby approach ideal throughput (since this

decreases the header:data ratio). If TCP must occasionally

148

re-transmit a datagram, however, there is a point at which

increasing TCP MSS will actually decrease throughput. It

is proposed that testing be done to find the ideal TCP MSS

value for the current architecture. It is also suggested

that addition of an error correction and detection checksum

(such as the 16-bit CRC-CCITT) to the Sytek header be

considered. Even though this would be increasing the

header size, it would allow TCP MSS to be increased, and

the resultant gain in throughput may be substantial.

4.2.1.3 Improvements to Unit Discovery

As previously mentioned, the Unit Discovery protocol's

primary weakness is that it is inherently centralized.

Problems arise when the UD server(s) become unavailable due

to system crashes, or simply because they are busy with

other users. The current UD design, however, is most

likely sufficient for a small user base. This section

deals with extensions and improvements to UD which will

make it suitable for a larger user base.

Currently the UD database is a simple linked list with

the server(s) in front. As the number of Sytek users

increases, the number of UD entries in the gateway's

database will increase. It is recommended that if the

149

Sytek user base becomes fairly large, the UD database be

migrated to a hash table, which will allow for faster UD

table lookups.

Another shortcoming of the current UD design is that

information in the database is always assumed to be valid.

If we manage to get an incorrect IP/Sytek address pair in

our database, we're basically stuck with it. The only way

to eradicate it is by receiving a UD_RESPONSE from the

named Sytek address, with a new IP address which UD will

use to correct the erroneous entry. To keep consistency in

the UD database, it is therefore recommended that the UD

protocol be modified to remove any UD entries which have

not been used for some period of time, or to which repeated

connection attempts have failed.

Another possible way to keep the UD databases up-to-

date, at least in the UD server(s), is to have hosts send

unsolicited UD_RESPONSE frames to the UD Server(s) upon

connecting to the Network.

As we have said, UD in it's current incarnation is

fairly centralized. By making the UD algorithm more

distributed, we can hope to combat this somewhat. The

easiest way to do this is by implementing multiple UD

servers. The functionality for this already exists in the

150

software; all that need be done is to administratively

assign the UD server task to a number of hosts which have

a high degree of availability, and make the proper entries

in the UD databases. Future developers may decide to

augment this scheme somewhat by modifying the server types

to create two classes of servers, primary and secondary.

This is left to the consideration of future developers.

Currently in the CERL, the prototype gateway is

configured to also act as the UD server. This is a

distinctly bad arrangement, since the gateway is single-

session only. For example, if a Sytek user has established

a session through the gateway, no other Sytek user can

resolve an IP address. This may stop Sytek user A from

communicating with Sytek user B (n.b., except for UD they

wouldn't need the gateway) if Sytek user C has a gateway

session established.

It is recommended that if the prototype gateway is put

into operation, the UD server be implemented on some other

"always connected" host (if one is available). If a future

gateway had multi-session capability (as is anticipated)

the UD server function could be migrated back into the

gateway. Recall that each Sytek host will have the

capability to be a UD server. In fact, the software is

151

written such that each host has no idea if it is a server

or not, each simply answers any UD request frames it

receives. UD servers are identified in the databases of

other systems.

4.2.1.4 General Improvements

This section is provided to briefly discuss some other

possibilities for improving the prototype gateway. The

refinements presented here are nonessential to proper

operation of the gateway, but may be considered as possible

development projects.

Currently the Connection Handler database is a simple

linked list. As the Sytek session capacity of the gateway

increases, the number of entries in the CH database will

increase. It may be prudent to migrate the CH database to

a faster access-time data structure such as a hash table.

As previously mentioned, KA9Q's strengths lie in it's

usefulness for development systems and non-end-user systems

such as gateways. Another possible development project

would be to migrate the protocol stack in the Sytek

workstations into another public domain TCP/IP software

package. If a package such as NCSA Telnet were selected,

users could get all the fancy user features absent from a

152

KA9Q workstation, such as a VTIOO emulator. As another

approach, future developers may consider making

improvements to the KA9Q user interface.

It should be mentioned that the whole protocol stack

could not be easily implemented with NCSA Telnet, since it

was designed to be an "end system", not an "open system"

(i.e., it has no routing code).

Finally, the following simplification is proposed:

Eliminate the "Passive Listener Daemon" entirely and have

asy_rx discard data heard during passive mode, until a

FR_END. Any messages from the PCU (e.g., "CALL RECEIVED

FROM E905,0") will not have FR_END's and will be discarded.

The first frame sent on a new connection should be of type

SYTEK_CONNECT_FRAME (which the "connect_daemon" routine,

should be modified to do). Additional handling of UD

frames would be necessary (i.e., a UD request frame is

implicitly a SyTEK_CONNECT_FRAME).

4.2.2 Expanding to Multiple Sessions

In Section 4.1.3 we concluded that a "production-

quality" Sytek-to-Ethernet gateway must have multiple Sytek

session capability. It is assumed that making the Sytek

Network a viable subnetwork of the UA Campus Internet would

153

require the connectivity of such a "production-quality"

gateway.

The multiple session capability we need can be achieved

in three ways:

Implementing Multiple Single-Session Gatewavs

This approach will give the desired multiple Sytek

session capability, but it has definite drawbacks.

Firstly, it is very expensive; Each additional Sytek

session "costs" a PC, an Etherlink card and a PCU box.

Secondly, it is not the "plug-and-play" solution it

might seem to be. Generally when two networks are

connected by two or more gateways, they are present to help

avoid congestion. That is, a user trying to use heavily

loaded gateway A might be instructed by A to re-direct his

route to gateway B (via an ICMP re-direct message). This

is impossible for our prototype gateways, since they have

two states (from a host's perspective): idle or

unreachable; A prototype gateway which is being used

cannot send ICMP re-direct messages to subsequent users.

It would take some fairly complex extensions to the current

driver to give hosts the ability to make intelligent

routing decisions based on the state of the gateways.

154

For these reasons, this technique is not recommended

for a solution to this problem.

Increase Sessions Per Gateway PCU

Another possible solution is to increase the number of

sessions for the prototype gateway's single PCU port.

Sytek PCU's have the capability to manage several

simultaneous sessions [38], and we could re-design our

Sytek driver to utilize this, giving the gateway multi-

session capability.

Unfortunately, this approach does has some serious

drawbacks. For instance, the modifications to the Sytek

driver would be many. It would require a major re-write.

The resulting architecture would have to ensure fair

treatment of all sessions. Also, this solution sets an

upper bound on the number of sessions the gateway can have.

A LocalNet 20/100 PCU has the capability for managing four

simultaneous Sytek sessions. A LocalNet 20/200 PCU is

better, allowing 16 sessions, but this still represents an

absolute upper bound on this approach.

For these reasons, this technique is also not

recommended.

155

Increase Number of Gateway PCUs

The third approach to giving the gateway multi-session

capability is to add many serial ports and PCUs to the

gateway machine. The Sytek driver software could then be

extended to manage these. The proposed software

architecture would be to layer a "generic interface" on top

of the multiple "physical interfaces" associated with each

single-session PCU box. These physical interfaces would

implementations of the current driver.

From the standpoint of IP addressability, the gateway

would have one IP address on the Sytek subnetwork,

associated with the generic interface. From the standpoint

of Sytek addressability, the group of PCUs associated with

the gateway's generic interface could be formed into a

"rotary group", which permits it's participating PCUs to

share the same Sytek address. A call to the address of

this "rotary group" would establish a session with the

gateway through any of its PCU which had a session

available. See p.3-5 of the "LocalNet 20 Reference and

Installation Guide", [38], for more details concerning the

Sytek rotary dialing scheme.

It should be noted that just such an architecture was

developed for the KA9Q package to implement a "NET/ROM"

156

generic interface over multiple "AX25" packet radio

physical interfaces. The details of this design may be

found in the original KA9Q code (the code specific to

packet radio networks was removed during the course of this

research to save memory).

Incidentally, it is not recommended that TCP sessions

be mapped to Sytek sessions; This is a dangerous violation

of the layering paradigm. Rather, future versions continue

to allow idle Sytek sessions to timeout. This is more

economical (idle TCP sessions will not waste valuable Sytek

sessions) . Such an arrangement might very well lead to

sporadically active TCP sessions which "float" among the

gateway's physical interfaces, but such an arrangement,

while seemingly bizarre, shouldn't present a problem.

The approach presented in this section is recommended

to expand the gateway to multiple sessions. It should

require the least software development, and it has no

absolute upper bound on the number of sessions which can be

added to the gateway.

4.2.3 Porting Gateway to a High Performance Platform

The prototype gateway software, KA9Q, includes it's own

operating system kernel, the Network Operating System. NOS

157

itself is small, fast and efficient. Unfortunately, under

the current implementation it is layered on top of MS-DOS,

which is large, slow and inefficient. This seriously

hampers the gateway's performance.

A production-quality gateway should have as little OS

overhead as possible. Under the current architecture, this

overhead is tremendous. Fortunately KA9Q was designed to

be highly portable. In particular, it has been ported to

numerous flavors of Unix with a great deal of success.

There is even a coordinator for Unix ports of the KA9Q

code. Bob Hoffman at Pittsburgh University. He is

a v a i l a b l e v i a e l e c t r o n i c m a i l a s

<hoffman@vax.cs.Pittsburgh.edu>.

A Unix environment for the gateway software is

preferable for a number of reasons. Unix is small, fast,

and efficient. It was designed to be a multi-tasking OS,

whereas MS-DOS was not (and NOS had to implement multi

tasking primitives on top of it). Since KA9Q has already

been ported to it, the transition from the current platform

to a Unix-based one should be relatively painless.

It would be possible to purchase a Unix OS kernel for

the current gateway machine (a 386-class PC AT), but this

is not recommended for two reasons: It has a fairly

mailto:hoffman@vax.cs.Pittsburgh.edu

158

limited multiple-session capability (expandability to three

serial ports, at most), and it may very well be unable to

handle the heavy throughput which will be demanded of the

production gateway.

Rather, it is recommended that while porting the

gateway software to a Unix environment, it also be moved to

a more robust platform, such as a 25 MIPS Unix Workstation,

like the ones made by Sun and DEC.

4.2.4 Extension to Other LANs

The end goal of the generic gateway research project is

to approach comprehensive campus interconnectivity. Such

a scheme would involve designating each campus LAN as a

subnetwork of the UA Campus Internet and providing an IP-

router between that LAN and a participating campus

Ethernet. KA9Q provides a robust platform for the

development of the new network drivers which would be

necessary to implement these IP-routers.

Incidentally, KA9Q may provide more interconnectivity

than just Sytek-to-Ethernet. KA9Q provides support for a

generic network hardware interface called a "packet

driver". The "packet driver" concept was inspired by KA9Q,

and developed by FTP Software, Inc. A "packet driver" is

159

a specific network interface driver which can be installed

in memory by running a TSR (Terminate and Stay Resident)

program. It's interface to the networking software is

defined in terms of non-subnet specific primitives. Thus

the networking software sees only the generic packet driver

interface, with no understanding of the particular sxibnet

needed.

A library of packet drivers for myriad hardware network

interfaces has been developed. The packet driver library

in the public domain includes drivers for numerous Ethernet

cards, the IBM Token Ring Adapter card and the various

flavors of AT&T's StarLAN. What this translates to in

terms of UA campus connectivity is that the KA9Q package

may be used to implement additional IP-routers, such as one

between an Ethernet LAN and a Token Ring LAN, as shown in

Figure 3.2.

To implement an IP-router between Ethernet and any

candidate network for which there is a public domain packet

driver, no hardware or software design would be necessary.

It would simply be a matter of configuring the KA9Q

software to include packet driver interfaces for the

candidate network and Ethernet, and specifying the

gateway's routing tables properly.

160

To implement an IP-router between Ethernet and any

other LAN, a developer should implement a packet driver for

this network interface which meets the "PC/TCP Version 1.08

Packet Driver Specification", by FTP Software, Inc. This

specification is reproduced in Section 8.4 of "The KA9Q

Internet Software Package", [10]. To implement the desired

router, it would then be a matter of configuring the KA9Q

software to include packet driver interfaces for the

candidate network and Ethernet, and specifying the

gateway's routing tables properly.

161

APPENDIX A

USER MANUAL

This Appendix is provided as a user manual for the KA9Q

software package which has been extended for use as a

TCP/IP implementation on a Sytek Network. There are

sections for the new Internet users on the Sytek Network,

and the prototype gateway administrator.

A.l For the Svtek User

This section is provided for a Sytek user of the KA9Q

Internet Software Package. The original (non-NOS) KA9Q

package was documented in "The KA9Q Internet Software

Package", [10]. The user interface was not changed very

much for the newer NOS version, so a newer KA9Q user's

manual has never been written.

As part of this research, the packet radio code was

removed from KA9Q to conserve memory. Also, a new network

interface driver class was added - the "sytek" driver.

These changes have been incorporated into the text

presented here, which borrows heavily from "The KA9Q

Internet Software Package", [10].

162

A. 1.1 Getting Started

In order for a Sytek Network User to use the KA9Q

Internet Software package, he/she must have an IBM PC

compatible microcomputer running MS-DOS Version 3.3 or

higher, 512 KBytes of main memory, an RS-232C serial port

and one Sytek LocalNet 20/100 PCU. KA9Q can be run from a

floppy disk or a hard disk. In either case, all the

relevant files should be in the \NET subdirectory of the

current drive.

There are five files of interest in this software

package. Each are discussed below:

NET.EXE - This is the executable file for the KA9Q
package. It includes all the code for the TCP/IP
protocol stack and any non-packet driver network
interfaces.

AUTOEXEC.NET - When NET.EXE is executed without
arguments, it attempts to open the file
"AUTOEXEC.NET". If it exists, it is read and
executed as though its contents were typed on the
console as commands. This feature is useful for
setting the local IP address and host name,
initializing the IP routing table, and starting the
various Internet services. If NET.EXE is invoked
with an argument, it is taken to be the name of an
alternate startup file; it is read instead of
AUTOEXEC.NET. An example of an AUTOEXEC.NET file
that a Sytek user might use is discussed in A.1.4.

FTPUSERS - Since MS-DOS was designed as a
single-user operating system, it provides no access
control; all files can be read, written or deleted
by the local user. It is usually undesirable to
give such open access to a system to remote network
users. The KA9Q FTP server therefore provides its
own access control mechanism. The file

163

"\net\ftpusers" is used to control remote FTP
access. The default is NO access; if this file does
not exist, the FTP server will be unusable. A
remote user must first "log in" to the system,
giving a valid name and password listed in
\net\ftpusers, before he or she can transfer files.

Each entry in \net\ftpusers consists of a single
line of the form:

username password pathl permissionsl

SYD0MAIN.TXT - This file is the Sytek domain
database used by UD. It contains the seed entries
for the UD address resolution database read in at
startup. When "net" is exited, the most current UD
database is written to this file. The entries in
this text file are of the following format;

<ip-address> <Sytek-address> [<serv-indicator>]

where the first two parameters denote an IP/Sytek
address pair, and the optional third parameter is
a string denoting entries which are servers. UD
Servers will have the string "SERVER" as the third
field.

DOMAIN. TXT - This file is the local domain cache for
the domain name resolver of KA9Q. It is used by the
resolver alone - it's contents is not necessarily
the same as you would put in a server database.

The only file recmired at startup is NET.EXE. FTPUSERS

is necessary only if you wish to act as an FTP server. UD

will build a SYDOMAIN.TXT file, if necessary. The domain

resolver will likewise build DOMAIN.TXT. And AUTOEXEC.NET

is not required, but highly recommended if you don't like

typing.

164

When running KA9Q, the command line accepts several

arguments that are best illustrated by example:

net /m300 /s40 /d\net \net\autoexec.net /t60

In this case, net is told to grab 30OK of memory from

MS-DOS for the heap, to allow a maximum of 40 active

sockets, to make the directory prefix for all files (e.g.

ftpusers, domain.txt) "\net", and set the Sytek session idle

timeout timer to 60 seconds. These particular values all

happen to be the defaults for their

corresponding parameters, so of course you'd get the same

effect by just typing "net".

A.1.2 Console Mode

The console may be in one of two modes: command mode and

converse mode. In command mode, the prompt "net>" is

displayed and any of the commands described in the next

section may be entered. In converse mode, keyboard input

is rocessed according to the "current session", which may

be either a Telnet, or FTP connection. In a telnet session,

keyboard input is sent to the remote system and any output

from the remote system is displayed on the console. In an

FTP session, keyboard input is first examined to see if it

is a known local command,* if so it is executed locally. If

165

not, it is "passed through" to the remote FTP server.

The keyboard also has "cooked" and "raw" states. In

cooked state, input is line-at-a-time; the user may use the

line editing characters "U, "R and backspace to erase the

line, redisplay the line and erase the last character,

respectively. Hitting either return or line feed passes the

complete line up to the application. In raw mode, each

character is immediately passed to the application as it is

typed. The keyboard is always in cooked state in command

mode. It is also cooked in converse mode on an AX25 or FTP

session. In a Telnet session it depends on whether the

remote end has issued (and the local end has accepted) the

Telnet "WILL ECHO" option.

On the IBM-PC, the user may escape back to command mode

by hitting the FIO key.

A.1.3 KA9Q Command Reference
This section describes each of the commands recognized

while in command mode. Note that certain FTP subcommands,
(e.g., put, get, dir) are recognized only in converse mode
with the appropriate FTP session; they are not recognized
while in command mode. The notation "<hostid>" denotes a
host or gateway, which may be specified in one of two ways:
as a symbolic name which is an ARPA-style domain name (e.g.,
london.ece.arizona.edu), or as a numeric IP address in
dotted decimal notation enclosed by brackets, e.g.,
[128.196.28.12].

<cr> - Entering a carriage return (empty line) while in
command mode puts you in converse mode with the current
session. If there is no current session, net remains in

166

command mode.

1 - An alias for the "shell" command.

1 - Commands starting with the hash mark (#) are ignored.
This is mainly useful for comments in the AUTOEXEC.NET file.

arp - With no arguments, displays the Address Resolution
Protocol table that maps IP addresses to their subnet (link)
addresses on subnetworks capable of broadcasting. For each
IP address entry the subnet type (e.g., Ethernet), subnet
address and time to expiration is shown. If the link
address is currently unknown, the number of IP datagrams
awaiting resolution is also shown.

arp add <hostid> ether <ether addr> - The add subcommand
allows manual addition of address resolution entries into
the table. This is useful for "hard-wiring" paths that are
not directly resolvable.

arp drop <hostid> ether - The drop subcommand allows removal
of entries from the table.

arp flush - Removes all entries from our ARP tables.

arp publish <hostid> ether <ether addr> - The publish
subcommand allows you to respond to arp queries for some
other host. This is commonly referred to as "proxy arp",
and is considered a fairly dangerous tool. The basic idea
is that if you have two machines, one of which is on an
Ethernet, and the second one of which is connected to the
first with a slip link, you might want the first machine to
publish it's own Ethernet address as the right answer for
arp queries addressing the second machine. This way, the
rest of the world doesn't know the second machine isn't
really directly connected. Use arp publish with caution.

asvstat - Gives a brief status summary of all asynchronous
network interfaces (slip and sytek).

attach asv <address> <vector> slip|svtek <label>
<snd bufsiz> <rcv bufsiz> <speed> r<ip addr>1 - Configure
and attach an asynchronous hardware interface to the system.
There are two types: SLIP and Sytek, selectable by the third
parameter. <address> is the base address of the control
registers for the device. <vector> is the interrupt vector
number. Both the address and the vector must be in

167

hexadecimal. (You may put "Ox" in front of these two values
if you wish, but note that they will be interpreted in hex
even if you don't use it). <label> gives the name by which
the interface will be known to the various commands, such
as "route" and "trace". <snd_bufsi2> and <rcv_bufsiz>
specify the size of the ring buffers in bytes to be
statically allocated to the sender and receiver,
respectively; incoming bursts larger than this may (but not
necessarily) cause data to be lost. <speed> indicates the
baud rate to which the controller should be initialized.
<ip_addr> is an optional parameter which can be used to
assign this interface an ip address different than that
specified in a previous "ip addr" command.

attach packet <int#> <label> <buffers> <mtu> r<ip addr>1 -
Configure and attach an interface for a "packet driver"

to the system. <int#> is the software interrupt number
which the packet driver has been installed to use. <label>
gives the name by which the interface will be known to the
various commands, such as "route" and "trace". For an
Ethernet packet driver (the most common type), <buffers>
specifies how many PACKETS may be queued on the receive
queue at one time; if this limit is exceeded, further
received packets will be discarded. This is useful to
prevent the system from running out of memory should another
node suddenly develop a case of diarrhea. <mtu> is the
Maximxim Transmission Unit size, in bytes. Datagrams larger
than this limit will be fragmented at the IP layer into
smaller pieces. <ip_addr> is an optional parameter which
can be used to assign this interface an ip address different
than that specified in a previous "ip addr" command.

cd r<dirname>1 - Changes directory on the local machine.

close r<session #>1 - On a FTP or Telnet session, this
command sends a FIN (i.e., initiates a close) on the
session's TCP connection. This is an alternative to asking
the remote server to initiate a close ("QUIT" to FTP, or the
logout command appropriate for the remote system in the case
of Telnet) . When either FTP or Telnet sees the incoming
half of a TCP connection close, it automatically responds
by closing the outgoing half of the connection. Close is
more graceful than the "reset" command, in that it is less
likely to leave the remote TCP in a "half-open" state.

dir r<dirname>1 - List the contents of the specified
directory on the console. If no argument is given, the

168

current directory is listed.

disconnect r<session #>1 - An alias for the "close" command.
delete r<filename>1 - Deletes a file from the current local
directory.

detach r<interface>1 - Detaches a network interface. This
command is the opposite of the attach command (c.f.).

domain addserver r<ip address>1 - Adds a domain nameserver
to our list, specified by it's IP address.

domain dropserver r<ip address>1 - Drops the indicated
domain nameserver from our list.

domain listservers - Displays the list of domain servers
along with various statistics measured for each.

echo r accept|refuse! - Displays or changes the flag
controlling client Telnet's response to a remote WILL ECHO
offer.

The Telnet presentation protocol specifies that in the
absence of a negotiated agreement to the contrary, neither
end echoes data received from the other. In this mode, a
Telnet client session echoes keyboard input locally and
nothing is actually sent until a carriage return is typed.
Local line editing is also performed: backspace deletes the
last character typed, while control-U deletes the entire
line.

Many timesharing systems (e.g., UNIX) prefer to do their
own echoing of typed input. (This makes screen editors work
right, among other things). Such systems send a Telnet WILL
ECHO offer immediately upon receiving an incoming Telnet
connection request. If "echo accept" is in effect, a client
Telnet session will automatically return a DO ECHO response.
In this mode, local echoing and editing is turned off and
each key stroke is sent immediately (subject to the Nagle
tinygram algorithm in TCP). While this mode is just fine
across an Ethernet, it is clearly inefficient and painful
across slow paths like SLIP links. Specifying "echo refuse"
causes an incoming WILL ECHO offer to be answered with a
DONT ECHO; the client Telnet session remains in the local
echo mode. Sessions already in the remote echo mode are
unaffected. (Note: Berkeley Unix has a bug in that it will
still echo input even after the client has refused the WILL
ECHO offer. To get around this problem, enter the "stty
-echo" command to the shell once you have logged in.)

169

eol rUnixI standard1 - Displays or changes Telnet's
end-of-line behavior when in remote echo mode. In standard
mode, each key is sent as-is. In unix mode, carriage
returns are translated to line feeds. This command is not
necessary with all UNIX systems; use it only when you find
that a particular system responds to line feeds but not
carriage returns. Only Sun UNIX release 3.2 seems to
exhibit this behavior; later releases are fixed.

exit - Exit the "net" program and return to MS-DOS.

finger r <user> 1 ei<hostid> - Issues a finger query to the
remote finger daemon at <hostid>. The data returned by that
daemon is printed. If <user> is specified, the remote
daemon returns only information specific to this user.
Otherwise, information about all logged in users at that
host are returned.

ftp <hostid> - Open an FTP control channel to the specified
remote host and enter converse mode on the new session.

When in converse mode with an FTP server, everything
typed on the console is first examined to see if it is a
locally-known command. If not, the line is passed intact
to the remote server on the control channel. If it is one
of the following commands, however, it is executed locally.
(Note that this generally involves other commands being sent
to the remote server on the control channel.) When actively
transferring a file, the only acceptable command is "abort";
all other commands will result in an error message.
Responses from the remote server are displayed directly on
the screen.

ftp abort - Aborts a get, put or dir operation in progress.
When receiving a file, abort simply resets the data
connection; the next incoming data packet will generate a
TCP RST (reset) in response which will clear the remote
server. When sending a file, abort sends a premature
end-of-file. Note that in both cases abort will leave a
partial copy of the file on the destination machine, which
must be removed manually if it is unwanted. Abort is valid
only when a transfer is in progress.

ftp dir r<file>I<directorv> r<localfile>11 - Without
arguments, "dir" requests that a full directory listing of
the remote server's current directory be sent to the
terminal. If one argument is given, this is passed along

170

in the LIST command; this can be a specific file or sub
directory that is meaningful to the remote file system. If
two arguments are given, the second is taken as the local
file into which the directory listing should be put (instead
of being sent to the console). The PORT command is used
before the LIST command is sent.

ftp get <remote file> r<local file>1 - Asks the remote
server to send the file specified in the first argument.
The second argument, if given, will be the name of the file
on the local machine; otherwise it will have the same name
as on the remote machine. The PORT and RETR commands are
sent on the control* channel.

ftp Is r<file>|<directorv> r<localfile>n - Is is identical
to the "dir" command except that the "NLST" command is sent
to the server instead of the "LIST" command. This results
in an abbreviated directory listing, i.e., one showing only
the file names themselves without any other information.

ftp mkdir <remotedirectorv> - Creates a directory on the
remote machine.

ftp put <local file> r<remote file>1 - Asks the remote
server to accept data, creating the file named in the first
argument. The secoiad argument, if given, will be the name
of the file on the remote machine; otherwise it will have
the same name as on the local machine. The PORT and STOR
commands are sent on the control channel.

ftp rmdir <remote_directorv> - Deletes a directory on the
remote machine.

ftp type ra I i I l<bvtesize> 1 - Tells both the local client and
remote server the type of file that is to be transferred.
The default is 'a', which means ASCII (i.e., a text file).
Type length lines of text in ASCII separated by cr/lf
sequences; in IMAGE mode, files are sent exactly as they
appear in the file system. ASCII mode should be used
whenever transferring text between dissimilar systems (e.g.,
UNIX and MS-DOS) because of their different end-of-line
and/or end-of-file conventions. When exchanging text files
between machines of the same type, either mode will work but
IMAGE mode may be somewhat faster. Naturally, when
exchanging raw binary files (e.g., executables) IMAGE mode
must be used. Type '1' (logical byte size) is used when
exchanging binary files with remote servers having oddball

171

word sizes (e.g., DECSYSTEM-lOs and 20s). Locally it works
exactly like IMAGE, except that it notifies the remote
system how large the byte size is. <bytesize> is typically
8. The type command sets the local transfer mode and
generates the TYPE command on the control channel.

help - Display a brief summary of top-level commands.

hostname r<name>l - Displays or sets the local host's name
(an ASCII string such as "fred0ece-sytek.ece.arizona.edu",
NOT an IP address). Currently this is used only in the
greeting messages from the SMTP (mail) and FTP (file
transfer) servers.

icmp echo ron|off1 - Sets the local ICMP's "echo response"
flag according to the parameter. If none is given, this
flag's current value is reported.

icmp status - Prints out a summary of ICMP messages sent and
received by the local ICMP.

icmp trace ronjoffl - Turns ICMP tracing on and off. If no
parameter is given, the current trace setting is reported.

ifconfia r<iface>1 - Lists the interface specified by
<iface> along with its parameters (e.g., IP address, send
and receive packet counts). If no parameter is provided,
this command lists all the interfaces on the system.

ifconfia <iface> ipaddr r<ip addr>1 - Changes the IP address
for the interface specified in <iface> to the value
specified by <ip addr>.

ip address r<hostid>1 - Displays or sets the local IP
address.

jp rtimer r<val>1 - Displays or sets the default rtimer
parameter for this IP implementation.

jp status - Displays Internet Protocol (IP) statistics, such
as total packet counts and error counters of various types.
Also displays statistics about the Internet Control Message
Protocol (ICMP), including the number of ICMP messages of
each type sent or received.

jp ttl r<val>1 - Displays or sets the default time-to-live
value placed in each outgoing IP datagram. This limits the

172

number of switch hops the datagram will be allowed to take.
The idea is to bound the lifetime of the packet should it
become caught in a routing loop, so make the value somewhat
larger than the diameter of the network.

log rstop|<file>1 - Without arguments, indicates whether
server sessions are being logged. If "stop" is given as
the argument, logging is terminated (the servers themselves
are unaffected). If a file name is given as an argument,
server session log entries will be appended to it.

memstat - Displays the internal free memory list in the
storage allocator.

more <file> - Browse or page through a text file, similar
to the Unix "more" command.

param <irterface> Fparaml - Param invokes a device-specific
control routine. On a SLIP or Sytek interface, the param
conunand allows the baud rate to be read (without arguments)
or set. The implementation of this command for the various
interface drivers is incomplete and subject to change.

ping <hostid> - Sends an ICMP echo request packet to the
specified host. Pings are used to establish reachability.

ps - Displays the status of current NOS processes.

pwd r<dirname>1 - An alias for the cd command.

record r<filename>|off1 - Opens <filename> and appends to
it all data received on the current session. Data sent on
the current session is also written into the file except for
Telnet sessions in remote echo mode. The command "record
off" stops recording and closes the file. This command is
not supported for FTP sessions.

rename <filel> <file2> - Renames a local file from <filel>
to <file2>.

reset r<session>1 - If an argument is given, force a local
reset (deletion) of the TCP Control Block (TCB) belonging
to the specified session. The argument is first checked for
validity. If no argument is given, the current session, if
any, is used. This command should be used with caution
since it does not inform the remote end that the connection
no longer exists. A reset (RST) message will be

173

automatically generated should the remote TCP send anything
after a local reset has been done. This is used to get rid
of a lingering half-open connection after a remote system
has crashed.

rip - These commands support RIP, the interior routing
protocol made popular by Berkeley UNIX. To enable the
reception of RIP broadcasts, merely say "start rip" (this
starts the RIP "server"; c.f. "start").

If you're not acting as a gateway to anyone, this is all
you need do — your system will begin to passively monitor
its interfaces for broadcast routing packets and it will
automatically add routes to the routing table. It may take
up to 30 seconds on an ethernet for the table to be built
(this assumes a broadcast rate of 30 seconds, which is
standard on Ethernet). If you want to get started faster,
you can give an optional IP address to the command: "start
rip <ip addr>". This sends a RIP "request" packet to <ip
addr> which triggers that gateway (or gateways if a
broadcast ip address is given) to send you its routing
tables.

rip accept <hostid> - Used for RIP filtering, see "rip
refuse" below.

rip add <hostid> <interval> <flaa> - This command generates
periodic "unsolicited RIP responses". It means "send your
routing tables once every <interval> seconds to <hostid>".
The last parameter, <flag>, is the sum of the following
possible flag values:

1 - Include a host-specific route to yourself in
each update. (Not needed if you're already
advertising a route to the network you're on.)

2 - Use split horizon updating; that is, omit all
routing entries that point to the interface being
used for the broadcast. (This reduces the chances
of routing loops forming).

4 - Generate triggered updates as necessary on this
interface, i.e., whenever a metric changes in the
routing table, immediately generate a broadcast on
this interface with the changed entries. If split
hori2on (bit 2) is also set, use "poisoned reverse",
i.e., for any routing table entries that point to
this interface, include them with an infinite metric

174

(RIP defines 16 to be infinity) instead of leaving
them out as happens during a normal routing
broadcast when split horizon is set. Triggered
updates helps spread the word faster when links
fail, reducing the chances of a temporary loop
forming.

rip drop <hostid> - Removes a RIP periodic update list
entry. This command counteracts a "rip add".

rip merge Tonjoffl - Enables/Disables route merging. If you
say "rip merge on", then an incoming route that is more
specific than one you already have in your table is ignored
if they both point to the same gateway. For example, if you
already have a default route that points to gateway
"foobar", then any route that arrives from gateway foobar
will be ignored because to put it in the table would not
cause any change in the routing of packets — they'd still
go to foobar anyway. Properly used, this should save a lot
of routing table space.

rip refuse <hostid> - If you want to ignore routing
broadcasts from a certain gateway (e.g., because it can't
hear you), use this command, where <hostid> identifies the
offending gateway. To reverse this, use the "rip accept"
command.

rip recmest <hostid> - This sends a RIP "request" packet to
<ip addr> which triggers that gateway (or gateways if a
broadcast ip address is given) to send you its routing
tables.

rip status - Generates a summary of RIP traffic sent and
received locally.

rip trace r 011 [21 - You can trace the automatic routing
messages and controls by the "rip trace" command; it takes
a numeric parameter, "rip trace 0" disables tracing, "rip
trace 1" generates messages only when routes change, and
"rip trace 2" shows you everything, even when things are
stable.

route - Displays the IP routing table.

route add <dest hostid>r/bits1 [default <interface> r<aatewav
hostid> r<metric>11 - Adds an entry to the routing table.
This command requires at least two more arguments, the host

175

id of the target destination and the local name of the
interface to which its packets should be sent. If the
destination is not local, the gateway's host id should also
be specified. (If the interface is a point-to-point link,
then <gateway hostid> may be omitted even if the target is
non-local because this field is only used to determine the
gateway's link level address, if any. If the destination
is directly reachable, <gateway hostid> is also unnecessary
since the destination address is used to determine the
interface link address).

The optional "/bits" suffix to the destination host id
specifies how many leading bits in the host id are to be
considered significant in the routing comparisons. If not
specified, 32 bits (i.e., full significance) is assumed.
With this option, a single routing table entry may refer to
many hosts all sharing a common bit string prefix in their
IP addresses. For example, ARPA Class A, B and C networks
would use suffixes of /8, /16 and /24 respectively; the
command "route add [44]/8 slO [44.64.0.2]" causes any IP
addresses beginning with "44" in the first 8 bits to be
routed to [44.64.0.2]; the remaining 24 bits are
"don't-cares".

When an IP address to be routed matches more than one
entry in the routing table, the entry with largest "bits"
parameter (i.e., the "best" match) is used. This allows
individual hosts or blocks of hosts to be exceptions to a
more general rule for a larger block of hosts.

The special destination "default" is used to route
datagrams to addresses not in the routing table; it is
equivalent to specifying a /bits suffix of /O to any
destination hostid. Care must be taken with default entries
since two nodes with default entries pointing at each other
will route packets to unknown addresses back and forth in
a loop until their time-to-live (TTL) fields expire.
(Routing loops for specific addresses can also be created,
but this is less likely to occur accidentally).

route addprivate - Same as "route add" except the IP routing
table entry created is marked as "private". "Private"
routing table entries are not included in RIP responses.

route drop <hostid> - Deletes an existing entry from the IP
routing table.

route flush - Deletes all entries from the IP routing table.

route lookup <hostid> - Displays the entry in the IP routing

176

table which would be used for traffic to the specified host.

session r<session #>1 - Without arguments, displays the list
of current sessions, including session number, remote TCP
address and the address of the TCP control block. An
asterisk (*) is shown next to the "current" session;
entering <cr> at this point will put you in converse mode
with that session. Entering a session number as an argument
to the session command will put you in converse mode with
that session.

shell - Suspends "net" and executes a "command processor"
shell under MS-DOS). When the sub-shell exits, net resumes.
Note that background activity, such as an FTP server, is
also suspended while the sub-shell executes.

smtp gateway r<hostid>1 - Displays or sets the host to be
used as a "smart" mail relay. Any mail sent to a hostid not
in the host table will instead be sent to the gateway for
forwarding.

smtp kick - Run through the outgoing mail queue and attempt
to deliver any pending mail. This command is periodically
invoked by a timer whenever net is running; this command
allows the user to "kick" the mail system manually.

smtp maxclients r<val>1 - Displays or sets the maximum
number of simultaneous outgoing SMTP sessions that will be
allowed. The default is 10; reduce it if network congestion
is a problem.

smtp timer r<va 1 > 1 - Displays or sets the interval, in
seconds, between scans of the outbound mail queue. For
example, "smtp timer 600" will cause the system to check for
outgoing mail every 10 minutes and attempt to deliver
anything it finds, subject of course to the "maxclients"
limit. Setting a value of zero disables queue scanning
altogether, note that this is the default! This value is
recommended for stand alone IP gateways that never handle
mail, since it saves wear and tear on the disk drive.

smtp trace r<val>1 - Displays or sets the trace flag in the
SMTP client, allowing you to watch SMTP's conversations as
it delivers mail. Zero (the default) disables tracing.

socket r<socket #>1 - With no parameter, this command
displays a summary of the current TCP sockets. If a

177

particular socket is specified by it's socket number, a more
detailed summary of that socket and it's usage is displayed.

start ~ Starts the specified Internet server, allowing
remote connection requests. A "start ?" command will list
the servers currently available.

stop - Stops the specified Internet server, rejecting any
further remote connect requests. Existing connections are
allow to complete normally. A "stop ?" command will list
the servers currently available.

tcp irtt r<val>1 - Display or set the initial round trip
time estimate, in seconds, to be used for new TCP
connections until they can measure and adapt to the actual
value. The default is 5 seconds. Increasing this when
operating over slow channels will avoid the flurry of
retransmissions that would otherwise occur as the smoothed
estimate settles down at the correct value. Note that this
command should be given before servers are started in order
for it to have effect on incoming connections.

tcp kick <tcp addr> - If there is data on the send queue of
the specified tcb, this command forces an immediate
retransmission.

tcp mss r<size>1 - Display or set the TCP Maximum Segment
Size in bytes that will be sent on all outgoing TCP connect
request (SYN segments). This tells the remote end the size
of the largest segment (packet) it may send. Changing MSS
affects only future connections; existing connections are
unaffected.

tcp reset <tcb addr> - Deletes the TCP control block at the
specified address.

tcp rtt <tcp addr> <rtval> - Replaces the automatically
computed round trip time in the specified tcb with the
rttval in milliseconds. This command is useful to speed up
recovery from a series of lost packets since it provides a
manual bypass around the normal backoff retransmission
timing mechanisms.

tcp status r<tcb addr>1 - Without arguments, displays
several TCP-level statistics, plus a summary of all existing
TCP connections, including TCB address, send and receive
queue sizes, local and remote sockets, and connection state.

178

If <tcb_addr> is specified, a more detailed dump of the
specified TCB is generated, including send and receive
sequence numbers and timer information.

tcp window r<val>1 - Displays or sets the default receive
window size in bytes to be used by TCP when creating new
connections. Existing connections are unaffected.

telnet <hostid> - Creates a Telnet session to the specified
host and enters converse mode.

trace r<interface> r<flaas>1|allmode|cmdmodel - Controls
packet tracing by the interface drivers. Specific bits
enable tracing of the various interfaces and the amount of
information produced. Tracing is controlled on a per
interface basis; without arguments, trace gives a list of
all defined interfaces and their tracing status. Output can
be limited to a single interface by specifying it, and the
control flags can be change by specifying them as well. The
flags are given as a hexadecimal number which is interpreted
as follows:

TIO
Enable tracing of output packets if 1, 0=disable
Enable tracing of input packets if 1, 0=disable
Controls type of tracing:

0 - Protocol headers are decoded, data is not
displayed.

1 - Protocol headers are decoded, and data (but not the
headers themselves) are displayed as ASCII
characters, 64 characters/line. Unprintable
characters are displayed as periods.

2 - Protocol headers are decoded, and the entire packet
(headers AND data) is also displayed in
hexadecimal and ASCII, 16 characters per line.

There is an additional option for tracing, that allows
you to select whether traced packets are always displayed,
or only displayed when you are in command mode. Having
tracing only happen in command mode sometimes provides the
right mix between "knowing what's going on", and "keeping
the garbage off the screen" while you're typing. To select
tracing all the time (the default mode), use "trace
allmode". To restrict tracing to command mode, use "trace
cmdmode".

179

udp status - Displays the status of all UDP receive queues.

upload r<filenaine>1 - Opens <filename> and sends it on the
current session as though it were typed on the terminal.
Valid only on Telnet sessions.

2 - Same as the "help" command.

A.1.4 Example Configuration File

The following is an example configuration file for a

Sytek PC running KA9Q:

Line Text
1 hostname Coventry.ece-sytek.arizona.edu
2 ip address [128.196.68.1]
3 attach asy 0x3f8 4 sytek syO 2048 2048 19200
4 route add [128.196.68]/24 syO
5 route add default syO [128.196.68.2]
6 domain addserver [128.196.28.12]
7 ip ttl 32
8 tcp mss 576
9 tcp window 432
10 log \net\net.log
11 start discard
12 start echo
13 start finger
14 start ftp
15 start ttylink

The first line defines our hostname for greeting

messages from the SMTP and FTP servers. The second line

defines our IP address. The third line attaches a Sytek

interface called "syO". This interface allocates send and

receive buffers of 2 Kbytes. The associated asynchronous

controller chip (probably an 8250) is identified as having

an I/O address of 3F8, uses hardware interrupt #4, and runs

180

at 19200 baud.

Lines 4 and 5 define our routing tables. Quite simply,

we direct any traffic for the [128.196.68] class C

subnetwork to the syO interface, with no gateway necessary.

The "syO" interface knows how to deliver "locally". Any

other traffic is routed by our default entry to the syO

interface, with a gateway of identified as [128.196.68.2].

Line 6 adds a nameserver to our list. Any unresolved

domain-type hostnames will be resolved via consultation to

this system.

Lines 7-9 define some TCP/IP parameter values. Line 10

indicates a logfile for server session log entries to be

appended to. Lines 11-15 start the various Internet servers

this host implements.

Note that this file has no comment lines (those

beginning with '#'). This was done here for brevity, but

most configuration files will have comments.

A.2 For the Prototvpe Gatewav Administrator

This section is provided as further information for the

administrator of the Sytek-to-Ethernet gateway. This

administrator must manage the Sytek Network namespace and

IP address space, insuring that users are not assigned

181

conflicting names or IP addresses. He/she must also

designate the address of the gateway system and UD server

(if different) and let these be know to all Sytek users.

Finally, he/she must configure the gateway system

appropriately.

As an example of how the gateway might be configured,

the configuration file from the prototype gateway test

system is given below and discussed. The gateway was

between an Ethernet class C subnetwork (128.196.28.0) and

the Sytek class C subnetwork (128.196.68.0). It IP

addresses were 128.196.28.25 and 128.196.68.2 respectively.

The AUTOEXEC.NET file used;

Line Text
1 hostname gengw.ece.arizona.edu
2 ip address [128.196.28.26]
3 attach packet 0x60 ethO 5 1500
4 route addprivate [128.196.28]/24 ethO
5 attach asy 0x3f8 4 sytek syO 2048 2048 19200
6 route add [128.196.68]/24 syO
7 ifconfig syO ipaddr [128.196.68.2]
8 route addprivate default ethO [128.196.28.1]
9 domain addserver [128.196.28.12]
10 rip merge on
11 start rip
12 rip request [128.196.28.1]
13 arp add [128.196.28.0] ether ff:ff:ff:ff:ffiff
14 rip add [128.196.28.0] 30 6
15 ip ttl 32
16 tcp mss 576
17 tcp window 432
18 tcp irtt 1000
19 log \net\net.log
20 start discard
21 start echo
22 start finger

182

23 start ftp
24 start ttylink

The first line defines our hostname for greeting

messages from the SMTP and FTP servers. The second line

defines our IP address. The third line attaches a "packet

driver" network interface which is assumed to be for an

Ethernet card. The forth line adds a routing table entry

for the Ethernet subnetwork. It is private because we don't

want to announce ourselves (via RIP) as a gateway to this

system (we will not use RIP on the Sytek side). The fifth

line attaches a Sytek interface called "syO". This

interface allocates send and receive buffers of 2 Kbytes.

The associated asynchronous controller chip (probably an

8250) is identified as having an I/O address of 3F8, uses

hardware interrupt #4, and runs at 19200 baud. Line 6 adds

the routing table entry for the Sytek subnetwork. It is not

private, because we do wish to advertise ourselves as a

gateway to the network (via RIP broadcasts on the Ethernet).

At the time of their attachment, both interfaces are

given the IP address assigned in line 2. Actually, the

"syO" interface should have an address on the Sytek

subnetwork, since the gateway is a "multi-homed" host. Line

7 accomplishes this.

Line 8 adds our default route, with is to the Ethernet

183

using [128.196.28.1] as a gateway to the rest of the

Internet. Line 9 identifies our DNS nameserver.

Lines 10-14 setup RIP for our gateway system. Line 10

enables RIP merging, to keep our routing tables small. Line

11 starts the RIP server. Line 12 sends an immediate RIP

request to [128.196.28.1]. Line 13 sets up the

[128.196.28.0] IP address as an Ethernet broadcast address,

for use in line 14. Line 14 schedules the RIP broadcasting

characteristics for the gateway itself (to notify external

systems that it is the gateway to the Sytek subnetwork).

It means "broadcast your routing tables every 30 seconds on

the interface named "ethO", using IP destination address

128.96.160.0 (broadcast). Generate triggered updates as

necessary, and use the split horizon method."

Lines 15-18 define some TCP/IP parameter values. Line

19 indicates a logfile for server session log entries to be

appended to. Lines 20-24 start the various Internet servers

the gateway implements.

184

APPENDIX B

ADVICE TO DEVELOPERS

This appendix is provided to assist with future

development using the KA9Q code and the Sytek driver

presented in this thesis. It attempts to disclose pertinent

details which were learned in the course of this research,

so as to save future developers from "re-inventing the

wheel". There is a section outlining the Internet resources

that may be of interest to a developer. There is also a

brief overview of the NOS KA9Q Software architecture.

Finally, the problems encountered in this research project

are discussed.

B.l Internet Resources

Most of the written information about the Internet,

including it's architecture, protocols, and history, can be

found in a series of reports known as Recmest For Comments

or RFCs. An informal, loosely coordinated set of notes,

RFCs are unusually rich in information and color [8]. Many

RFCs were used as primary references for this thesis.

Developers of TCP/IP software should be intimately familiar

with those RFCs which pertain, however slightly, to their

185

work. This point cannot be over-stressed. For an excellent

guide to the RFCs, consult "Internetworking with TCP/IP",

[8], Appendix 3.

In the Internet community there are also many fomims of

discussion on a variety of topics. In Internet parlance,

these are called "interest groups" (they are called

"newsgroups" in the USENET world). An "interest group" is

an association of Internet users who wish to discuss a

particular topic. In order to do so, they subscribe to a

mailing list, and any mail sent to the group is forwarded

to them (and anyone else on the mailing list). The master

list of Internet interest groups is available via FTP access

to NIC.DDN.MIL as NETINFO;INTEREST-GROUPS.TXT.

In the course of this research, two applicable interest

groups were of invaluable assistance. Their entries from

the interest groups master list are reproduced below;

PCIP@UDEL.EDU

Discussion group for the various sets of TCP/IP
implementations for personal computers. Bugs are reported
here and help bringing up a new environment may be
forthcoming from members of this list. In the past,
discussions have included the MIT package, the Stanford TCP
modifications and work at Wisconsin and Maryland.

Archives are available via an electronic mail server.
Details about its use can be obtained by sending a request
to PCIP-REQUEST@UDEL.EDU.

All requests to be added to or deleted from this list,
problems, questions, etc., should be sent to

mailto:PCIP-REQUEST@UDEL.EDU

186

PCIP-REQUEST@UDEL.EDU.

List Maintainer; James Galvin <galvin0UDEL.EDU>

TCP-IP@NIC.DDN.MIL

The NIC has taken over the responsibility for the
periodic update of the TCP-IP implementations (the latest
update can be obtained via FTP by ANONYMOUS login from
SRI-NIC file NETINFO:VENDORS-GUIDE.DOC). We are
particularly interested in the addition and expansion of TCP
services. In addition to this function, it is hoped that
this distribution list can aid in the following areas:
To act as an on-line exchange among TCP developers and
maintainers, and to announce new and expanded services in
a timely manner.

Archives are kept on SRI-NIC in files:
TS:<TCP-IP>TCP-IP.*

where the is a wild-card character.

All requests to be added to or deleted from this list,
problems, questions, etc., should be sent to
TCP-IP-REQUEST@NIC.DDN.MIL. Please do not send such
requests to TCP-IP@NIC.DDN.MIL, as this address is self
forwarding to the entire list membership.

Coordinator; Vivian Neou <Vivian@NIC.DDN.MIL>

There are also two people who should realistically fall

into the category of "Internet Resources", at least where

KA9Q is concerned. They are:

Phil Karn, <karn@ka9q.bellcore.edu>, and

Bob Hoffman, <hoffman@vax.cs.Pittsburgh.edu>

Phil is the primary author of the KA9Q package, without

whom this research would have been, at the very best.

mailto:PCIP-REQUEST@UDEL.EDU
mailto:TCP-IP-REQUEST@NIC.DDN.MIL
mailto:TCP-IP@NIC.DDN.MIL
mailto:Vivian@NIC.DDN.MIL
mailto:karn@ka9q.bellcore.edu
mailto:hoffman@vax.cs.Pittsburgh.edu

187

difficult. He is the ultimate repository of KA9Q knowledge,

and, thankfully, he answers his e-mail promptly. Any

significant bugs in or major difficulties with KA9Q should

be forwarded to him.

Bob is the official coordinator of Unix ports of the

KA9Q code. If the prototype gateway design is migrated to

a Unix-based workstation, contact with him will be very

beneficial.

Finally, it should be related where the various software

mentioned in this thesis is available. The latest (and

ever-changing) version of nos KA9Q is available via

anonymous FTP to flash.bellcore.com in the /pub/ka9q

directory. The source code is in src.arc, the executable

is in net.exe, the relevant documentation is in userman.arc

and nosdoc.txt, and the BM Mailer (a SMTP mailer system for

use with KA9Q) is in bm_src.arc and bmdist.arc.

The NCSA Telnet code can be FTP'd anonymously from

omnigate.clarkson.edu in the /pub/ncsa2.2tn subdirectory.

The latest collection of public domain packet drivers, all

of which should be usable with KA9Q, is available via

anonymous FTP from the /pub/ka9q directory of

sun.soe.clarkson.edu. There are two files of interest,

drivers.arc (just the executables) and driverss.arc

188

(executables + source code).

B.2 Overview of the NOS KA90 Software Architecture

Conventionally, protocols have been implemented as

processes. This approach returns good protocol modularity,

but it results in high system overhead and poor system

responsiveness [44]. We need responsiveness to bursty,

real-time events (frame arrivals), and protocol modularity

in a gateway. KA9Q uses processes to implement protocol

layers, with hardware interrupts to allow priority

processing of real-time events (i.e., frame arrivals).

The NOS version of KA9Q implements it's own operating

system kernel "on top of" MS-DOS. NOS (Network Operating

System) is discussed further in B.1.2.

The version used for this research was modified in that

the code used for packet radio interfaces was removed. This

was done to reduce the amount of memory necessary to run

KA9Q. Even with this, the resulting package contains more

than 850 KBytes of source code. This appendix is not

intended as a complete architectural overview of this

package. It merely tries to indicate some of what was

learned in the development of the Sytek driver.

189

B.2.1 Network Operating System (NOS) Overview

NOS is a very small multi-processing operating system

kernel that was designed for use with network software

applications in mind. It is extremely simple: it is non-

pre-emptive and all processes have equal priority. It does,

however, allow for dynamic process creation and termination

(i.e., processes can fork off other processes). It also

allows shared memory structures and provides a crude

rendezvous mechanism, but no explicit inter-process

communication primitives.

The basic NOS kernel user routines are in the "kernel.c"

file. Each are outlined below;

mainproc (name)
name = pointer to a character string

Create a process descriptor for the main function. Must be

actually called from the main f j.nction! Returns a pointer

to the process' control block.

newproc (name,stksize,pc,iarg,pargl,parg2)
name = pointer to a character string
stksize = size of new process' stack
pc = Initial execution address (pointer to function)
iarg = Integer argument to pc (argc)
pargl = Generic pointer argument #1 (argv)
parg2 = Generic pointer argument #2 (session ptr)

Create a new, ready process and return pointer to

description. The general registers are not initialized, but

optional args are pushed on the stack so they can be seen

190

by a C function. Returns a pointer to the process' control

block.

killproo (pp)
pp = pointer to the process' control block.

Free resources allocated to specified process. If a process

wants to kill itself, the reaper is called to do the dirty

work. This avoids some messy situations that would

otherwise occur, like freeing your own stack. No return

value.

killself 0
no parameters

Terminate current process by sending a request to the killer

process. Automatically called when a process function

returns. Does not return. No return value.

suspend (pp)
pp = pointer to the process' control block.

Inhibit a process from irunning. No return value.

resume (pp)
pp = pointer to the process' control block.

Restart suspended process. No return value.

alert (pp,val)
pp = pointer to the process' control block.*-
val = integer

Wakeup waiting process, regardless of event it's waiting

for. The process will see a return value of "val" from its

pwait() call. No return value.

pwait (event)

191

event = Generic pointer for rendezvous location

Post a wait on a specified event and give up the CPU until

it happens. The null event is special: it means "l don't

want to block on an event, but let somebody else run for a

while". It can also mean that the present process is

terminating; in this case the wait never returns. Pwait()

returns 0 if the event was signaled; otherwise it returns

the arg in an alert() call. Pwait must not be called from

interrupt level. Returns an int.

psignal (event,n)
event = Generic pointer for rendezvous location
n = integer

Make ready the first 'n' processes waiting for a given

event. The ready processes will see a return value of 0

from pwait0 . Note that they don't actually get control

until we explicitly give up the CPU ourselves through a

pwait(). Psignal may be called from interrupt level. It

returns the number of processes that were woken up. Returns

an int.

chnzune (pp, newname)
pp = pointer to the process' control block.
newname = pointer to a character string

Rename a process. No return value.

B.2.2 KA9Q Memory Management

192

One of the most notable peculiarities of KA9Q is that

it defines it's own memory management subsystem (see

"alloc.c" for the code). These memory allocation routines

are adapted from the malloc and free routines in Kernighan

and Ritchie, with memory statistics and interrupt protection

added for use with net package. These routines are

functionally equivalent to the standard Turbo-C library

routines, but must be used instead because the latter check

for stack/heap collisions. This causes erroneous failures

because NOS process stacks are allocated off the heap.

This can lead to some rather odd behavior, since

malloc's allocate memory from a NOS-declared heap (who's

size in KBytes is configured by the value of HEAPSIZE in

"config.h"). Special care should be taken to insure that

you have a sufficiently large heap. During this research,

the heapsize had to be increase to 300K, from the 200K which

the original net used, to accommodate the memory allocated

by the Sytek driver. If you configure HEAPSIZE too large,

KA9Q will simply "grab what it can" at startup, but this

will leave no memory for other applications (i.e., a DOS

subshell).

B.2.3 Significant KA9Q Data Stnactures

193

The KA9Q package was written to be highly

reconfigurable, depending upon an individual application's

needs. A slew of option flags are in the "config.h" file.

There are parameters there to allow or inhibit the inclusion

of chunks of code (e.g., TCP servers, packet tracing code,

RIP, individual drivers) in net during compilation. You can

also set such parameters as the memory subsystem heapsize

(c.f. B.2.2), the number of available TCP sockets, the

number of interactive clients and others. A KA9Q developer

should familiarize himself/herself with these parameters.

The various modules of KA9Q pass data in chained

structures called mbufs, with the following format:

/* Basic message buffer structure */
struct mbuf {

struct mbuf *next;
struct mbuf *anext;
intl6 size;
int refcnt;
struct mbuf *dup;
char *data;
intl6 cnt?

) ;

"next" links mbufs belonging to the a single packet,

"anext" links packets on queues, "size" is the size of

associated data buffer, "refcnt" is the reference count for

this mbuf, "dup" is a pointer to duplication of this mbuf

if any, "data" points to the actual data buffer for this

mbuf, and "cnt" is the number of bytes in this buffer.

194

Although somewhat cumbersome to work with, mbufs make

it possible to avoid memory-to-memory copies that limit

performance. For example, when user data is transmitted it

must first traverse several protocol layers before reaching

the transmitter hardware. With mbufs, each layer adds its

protocol header by allocating an mbuf and linking it to the

head of the mbuf "chain" given it by the higher layer, thus

avoiding several copy operations. When the linked list

reaches the device driver, the driver can copy it into

contiguous storage for transmission.

A number of primitives operating on mbufs are available

in "mbuf.c". The user may create, fill, empty and free

mbufs himself with the alloc_mbuf and free_mbuf primitives,

or at the cost of a single memory-to-memory copy he/she may

use the more convenient qdata() and dqdata() primitives.

TCP and IP require timers. A timer package is included,

in "timer.c" and "timer.h". Future developers should

familiarize themselves with the "timer" structure in

timer.h, given here:

struct timer {
struct timer *next;
struct timer *prev;
int32 start;
int32 count;
void (*func) ARCS((void *));
void *arg;
char state;

#define TIMER STOP 0

195

#define TIMER_RUN 1
#define TIMER_EXPIRE 2
);

"next" and "prev" are pointers for a Doubly-linked-list

used to store the timers, "start" is the period of this

counter (load value), "count" ticks to go until expiration

of this timer, "func" is the function to call at expiration

of this timer, "arg" is the argument to pass to this

function, "state" is the timer's current state (stopped,

running or expired).

There are a timer primitive routines available to the

user in "timer.c", include those to start, stop, pause and

read timers. KA9Q developers (particularly those working

at the transport level and below) should be very familiar

with this timer package.

The heart of KA9Q packet routing is the "network"

process, whose source code is the function "network" in

"config.c". This process handles all packets that pass

through the system via a packet queue called "Hopper".

"Hopper" is nothing more than a pointer to an mbuf. If a

network interface receives a packet, it pre-pends an

internal packet header to it and enqueues it in the Hopper.

The internal packet header is defined by "phdr" structure

in "iface.h". It identifies the interface this packet

196

arrived on.

The network process infinitely loops, processing any

packets that appear in the Hopper Queue. It is responsible

for passing them to the appropriate network interface send

and receive routines. For more information about this

architecture, aspiring developers should peruse the code.

197

LIST OF REFERENCES

[1] 3Coin, "EtherLink II Adapter Guide", 3Com Corporation,
1989.

[2] Bauerfeld, W., "A Tutorial on Network Gateways and
Internetworking of LANs and WANs", Computer Networks
and ISDN Systems, Volume 13, 1987.

[3] Borland, "Turbo C User's Guide - Version 2.0", Borland
International Inc., 1988.

[4] Borland, "Turbo C Reference Guide - Version 2.0",
Borland International Inc., 1988.

[5] Borland, "Turbo Debugger User's Guide - Version 2.0",
Borland International Inc., 1988.

[6] Chay, J.K, Seltzer, J., and Siddique, N., "A Simple
Gateway for ODD Networks", Computer Design (USA),
Vol. 23 #2, February 1984.

[7] Clarkson, "NCSA Telnet for the PC - Version 2.2TN and
Version ;2.2D", Clarkson University, July 1988.

[8] Comer, D., "Internetworking with TCP/IP", Prentice
Hall, 1988.

[9] Frank, D.M., "Transmission of IP Datagrams over NET/ROM
Networks", Proceedings from the 7th ARRL Computer
Networking Conference, 1988.

[10] Garbee, B., "The KA9Q Internet Software Package -
Updated for the 890421.1 Revision", May 8, 1989.

[11] Hedrick, C., "Routing Information Protocol", RFC 1058,
DARPA Network Working Group, June 1988.

[12] Hinden, R. and Sheltzer, A., "The DARPA Internet
Gateway", RFC 823, Bolt Beranek and Newman Inc.,
September 1982.

198

[13] Kernighan, B.W. and Ritchie, D.M., "The C Programming
Language Second Edition, Prentice Hall, 1988.

[14] Kirton, P., "EGP Gateway Under Berkeley Unix 4.2",
RFC 911, use/Information Sciences Institute, August
1984.

[15] Martinez, R., et. al., "Interconnection of Sytek
LOCALNET 20 Networks Through the Defense Data Network
Using IP Gateways", IEEE International Phoenix
Conference on Computers and Communications, 1987
Conference Proceedings, 1987.

[16] Martinez, R., "Proposal: Generic Gateway Development
for the University of Arizona Campus", Computer
Engineering Research Laboratory, University of Arizona,
July 1989.

[17] Mills, D.L., "Exterior Gateway Protocol Formal
Specification", RFC 904, DARPA Network Working Group,
April 1984.

[18] Mogul, J. and Postel, J., "Internet Standard Subnetting
Procedure", RFC 950, August 1985.

[19] Mohamed, S.A., "Automated Document Distribution with
Signature Release Authority Using AI-Based Workstation
and Knowledge Base Servers", Computer Engineering
Research Laboratory, University of Arizona, December
1988.

[20] Narten, T., "Internet Routing", Computer Communication
Review, September 1989.

[21] Nelson, R., "User Documentation for the Packet Driver
Collection", Clarkson University, August 1989.

[22] Padlipsky, M.A., "Gateways, Architectures, and
Heffalumps", RFC 874, The MITRE Corporation, September
1982.

[23] Perkins, D., "The Point-to-Point Protocol; A Proposal
for Multi-Protocol Transmission of Datagrams Over
Point-to-Point Links", RFC 1134, November 1989.

199

[24] Plummer, D.C., "An Ethernet Address Resolution
Protocol", RFC 826, November 1982.

[25] Postel, J., "Internet Protocol - DARPA Internet Program
Protocol Specification," RFC 791, USC/Information
Sciences Institute, September 1981.

[26] Postel, J., "Internet Control Message Protocol - DARPA
Internet Program Protocol Specification," RFC 792,
USC/Information Sciences Institute, September 1981.

[27] Postel, J., "Transmission Control Protocol - DARPA
Internet Program Protocol Specification," RFC 793,
USC/Information Sciences Institute, September 1981.

[28] Postel, J., "Multi-LAN Address Resolution", RFC 925,
USC/Information Sciences Institute, October 1984.

[29] Postel, J., " Requirements for Internet Gateways",
RFC 1009, USC/Information Sciences Institute, June
1987.

[30] Reynolds, J. and Postel, J., "Assigned Numbers",
RFC 1010, May 1987.

[31] Romkey, J., "A Non-standard For Transmission of IP
Datagrams Over Serial Lines: SLIP", RFC 1055, June
1988.

[32] Rutgers. "Introduction to the Internet Protocols",
Computer Science Facilities Group, Rutgers University,
July 1987.

[33] Son, C.W., "Functional Description and Formal
Specification of a Generic Gateway", Computer
Engineering Research Laboratory, University of Arizona,
August 1988.

[34] Stallings, W., "Handbook of Computer Communications
Standards - Volume 2: Department of Defense Protocol
Standards", Howard W. Sams & Company, 1987.

[35] Stix, G., "Technology 90; data communications", IEEE
Spectrum, January 1990

200

[36] Stuck, B.W., "Gateways: Marketing Trends and Design
Considerations," LOCALNET '85 Conference Proceedings,
1985.

[37] Sunshine, C., "Network Interconnection and Gateways",
IEEE Journal on Selected Areas in Communications,
January 1990.

[38] Sytek, "LocalNet 20,Reference and Installation Guide",
June 1 1984.

[39] Tanenbaum, A., "Computer Networks", Second Edition,
Prentice Hall, 1988.

[40] Tao, J. and Martinez, R., "Internetworking ISDN with
LANs", Ninth Annual International Phoenix Conference
on Computers and Communications, 1990 Conference
Proceedings, 1990,

[41] Turner, K.J., "Gateways for Networking in the Framework
of Open Systems Interconnection", Proceedings of the
Seventh International Conference on Computer
Communication, The New World of the Information
Society, 1985.

[42] Von Taube, E., "Gateways Link Assorted Networks",
Computer Design (USA), Vol. 24 #2, February 1985.

[43] Wilcox, R.M. and Martinez, R., " An Interactive
PC-Based Network Management and Control Package Using
a Database Management System", University of Arizona,
December 1988.

[44] Zhang, L., "How to Build a Gateway: C-Gateway, An
Example", IEEE International Conference on Computers
and Applications (Beijing), 1987.

Notes:

References 7 and 21 can be acquired via FTP access
to omnigate.clarkson.edu

Reference 9 can be acquired via anonymous FTP
access to louie.udel.edu

Reference 10 can be acquired via anonymous FTP
access to flash.bellcore.edu

References 11, 1 2 , 14, 17, 18, and 22-31 can be
acquired via anonymous FTP access to sri-nic.arpa

Reference 32 can be acquired via anonymous FTP
access to topaz.rutgers.edu

