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ABSTRACT

A method for computing the per-unit-length capacitance matrix and the induc-
tance matrix for multiconductor transmission lines in a multi-dielectric medium
is presented. The multi-dielectric medium consists of both planar and non-planar
dielectric regions. The formulation is based on an integral equation method for the
free charge distribution on conductor surfaces and the polarization charge distri-
bution on the non-planar dielectric-dielectric interfaces. The kernel of the integral
equation is a space domain Green’s function for a layered medium. The numerical

solution is obtained by the method of moments.
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CHAPTER 1

Introduction

There has recently been much effort in the calculation of parameters for
multi-conductor transmission lines (MTL) embedded in a layered dielectric media.
Previous efforts modeling MTL’s in a planar multilayered medium have ranged
from the quasi-static cr quasi-TEM approximations to rigorous full-wave analysis
[1-5]. The objective here is to extend the quasi-TEM analysis to MTL’s in a more
complicated multi-dielectric medium consisting of planar and non-planar dielectric

interfaces.

1.1 Transmission Line Models and the Characterization of VLSI inter-

connections

The study of electrical interconnections in electronic packaging is based on
transmission line theory. Using transmission line theory, we may evaluate electrical
performance of packages in terms of coupling noise, reflections, attenuation and
propagation velocity. General transmission line models are completely described
in terms of the per unit length (p.u.l.) parameters L, C, R and G. The lumped

transmission line model for a single line, valid for Az << ), is shown in Figure 1.1

The expressions describing the voltage and current waveforms along an

MTL under time-harmonic excitation are given by

V- (R +ieltin =0 1)
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Figure 1.1: Lumped Transmission Line Model

2 1~ {161+ wlC} V] = 0 (12)

where [L] is the p.u.l. inductance matrix, [C] is the p.u.l. capacitance matrix,
[R] is the p.u.l. resistance matrix and [G] is the p.u.l. conductance matrix. The
resistance and conductance matrices represent conductor and dielectric losses, re-

spectively. [V] and [I] are the voltage and current vectors.

Active Lins

>

Passive Line
R ) § Zo
Vv R Zo

Figure 1.2: Two conductor transmission lines

Let us consider a two conductor interconnection in order to discuss the

general characteristics of a MTL interconnection. In this system, one line is active
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while the other is passive. The transmission line circuit for the pair is shown in Fig-
ure 1.2. Using this two conductor model, we will review the following transmission

line properties.

1.1.1 Cross Talk

Coupling noise, or cross talk, is caused by electromagnetic coupling of
signal lines. In terms of our two line model, the active line is capacitively coupled
to the passive line by C;2 and inductively coupled by L;2. The capacitive and
inductive coupling coefficients are k¢ = Cy2/C11 and kr = L;2/L;;, respectively.
If k¢ > ki then capacitive coupling dominates and if & > k¢, then inductive
coupling dominates. If kc = ki, there is little or no crosstalk. This may be seen

by examining the expression for the forward traveling wave on the passive line at

x=d [6]. This is

Usp(t) = g—D(kc - kL)%Vso(t —Tp) (1.3)

where Tp is the the delay time required for a wave to travel from the driver to the
receiver and Vso(t) = Vi(t,z = 0). From this expression, we see that Usp(t) = 0
when k¢ = kr. However (1.3) is only an approximation, so there may still be some
crosstalk even when k¢ = kz. Finally, a word about reflections. Reflections are
due to impedance mismatches between the transmission line and its terminations.

In certain cases, these reflections may increase the crosstalk between lines.

1.1.2 Attenuation And Propagation Velocity

The attenuation constants and propagation velocities of our line are de-

termined by solving the following eigenvalue problem [6]
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Det[y*1 —ZY] =0 (1.4)

where [1] is the identity matrix, Z = [R] + jw[L] and Y = [G] + jw|[C]. Solving
the eigenvalue problem, we obtain the eigenvalues 4; and <, for the modes sup-
ported by the MTL. These are complex eigenvalues where the real part represents
the attenuation constant and the imaginary part is the propagation constant for
each mode. From the propagation constants, one may determine the propagation

velocities for the N modes of an N-conductor MTL.

1.2 Quasi-TEM Analysis

In the quasi-TEM approximation of electromagnetic wave propagation in
uniform MTL’s, Maxwell’s equations reduce to solving Poisson’s equation in the
zero frequency limit with the appropriate boundary conditions. Although confor-
mal mapping techniques may be used to obtain analytical solutions of Poisson’s
equation for simple two dimensional transmission line configurations, complicated
geometries including many conductors and dielectric-dielectric interfaces require
numerical methods. Among these are the integral equation methods {1} [2], the

variational method [4], the finite difference and the finite element methods [5].

The method used here is the integral equation method. In order to ac-
commodate a medium consisting of both planar and non-planar dielectrics, the
kernel of the integral equation is the space domain Green’s function for a layered
medium {2]. With this formulation, the boundary conditions at the interfaces be-
tween infinite parallel layers are built into the Green’s function. Since we do not
determine the polarization charge at these boundaries, the number of unknowns
may be greatly reduced. Since this choice of Green’s function is not consistent
with boundary conditions at non-planar dielectric interfaces, the bound charge at

these interfaces is introduced as an additional unknown.
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The capacitance matrix is defined electrostatically by

(@ =[C][V] (1.5)

where [Q)] is the total charge vector, [C] is the capacitance matrix and [V] is the
potential vector. Our integral equation is based on the formulation for the potential
at r due to some system of charged conductors in a multi-dielectric medium. Taking

the 7** equation of (1.5), we have

N
Q= Z Ci;V;, t=1,...,N (1.6)

i=1
where NN in the number of conducting lines. From (1.6), we see that the capacitance
matrix element C;; represents the total charge on the i** conductor due to the
potential of 1 volt on the j** conductor while all other lines are grounded. By
alternately setting one conductor to 1 volt and grounding all others, we use (1.5)
to determine all elements of the capacitance matrix. The diagonal elements of
the capacitance matrix represents the direct capacitance of an active line in the
presence of a ground plane plus the mutual capacitances between the active line

and all other grounded lines [10].
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CHAPTER 2

The Integral Equation Method

The calculation of the per unit length capacitance, inductance and con-
ductance matrices for uniform multiconductor transmission lines requires the p.u.l.
surface electric charge distribution on the conductors embedded in a multi-dielectric
medium. This charge distribution may be determined from the solution of the in-
tegral equation for the electrostatic potential in terms of the charge distribution

and an appropriate Green’s function.

2.1 Integral Equation Solution to Poisson’s Equation

Consider the general two dimensional electrostatic problem where we seek
a solution for potential ¢(r) corresponding to some distribution of charge p. The

Poisson equation is

V- (e(r)Ve(r)) = —p(r) (2.1)

We can obtain a solution for ¢(r) by solving the Green’s function problem.

This amounts to solving Poisson’s equation for a point source located at r'.

V- (e(r)VG(r|r)) = =6(r - 1) (2.2)

Thus the Green’s function represents the potential at some observation

point r due to a point source located at r’. The medium for which we will construct
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the Green’s function is a multi-layered dielectric region. The Green’s function
will satisfy the appropriate boundary conditions at the interfaces between infinite
dielectric layers. Defining S as the area of the domain and C as the boundary of

S, we apply Green’s theorem for ¢ and G in a two dimensional sense to obtain

/s [$(x)V - ((r)VG(r|r)) — G(xr')V - (e(r) V(r))] da

= /C (8(r)e(r) VG(r|r') — G(rlr")e(r)V(r)) - Rl (23)

For the dielectric geometries of interest, the right hand side term of (2.3) will
reduce to zero. Consider the region of Figure (2.1). Here we have two dielectric
regions S; and S,, where S = S;+5,. These regions are bounded by C; = I'1 +T§°

and C; = T'2 + TP, respectively. For this region, we write

J @V - () VC(E) - GrIr)V - (e(r)Vo(x))] de
= [ e0aVGi(zle) - Gilrl)aVé(r)) - indl

+ /C ()Y Ga(rle') = Galrlr)ea V() - ol (2.4)

In the limit as éy — 0, we have

[, GE)aVGi(xlr) ~ Golel)a Vo(r)) -l

+ [ (B6)aVG(rl) = Galels)ez V() - odl
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Figure 2.1: Integration Paths for the Two-Layered Dielectric Medium
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- /.Z {(#(r)eaVGi(r|r') — Gi(r]r)ea V(r))

— (¢(r)e2VGo(r|r') — Ga(r|r')e2Vé(r))} - Rydl (2.5)

where 72 = ;. At the interface y = d, we have continuity of the potential and the

normal component of the electric flux.

é(d*) = ¢(d") (2-6)
oo _  96(x)
Q5. . =& " (2.7

By forcing (2.5) to zero, we recover the following boundary conditions for the

Green’s function at a dielectric interface.

Gily = G2]d (2.8)
aG,| _ 9G,
Qa5 o €25 , (2.9)

Let us now evaluate the integral over I'{® in the limit R — oco. The
boundary condition on the normal component of the electric flux as R — oo is

zero, hence

Jm [ ASEVGrl) = Galele) Vo))

. 3G,
= Jim [ )5 (2.10)
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By forcing this expression to zero, we obtain the boundary conditions on G; it
infinity. If we apply the same analysis in region 2 for G, we obtain the general

boundary condition on the Green’s function at infinity

lim == =0 (2.11)

Therefore, the integrals in (2.4) over C; and C; are zero and we are left with the

expression

/S [¢(r)V - (e(r)VG(r|r')) — G(r|r')V - (e(r)V(r))] da = 0 (2.12)

or, in view of (2.1) and (2.2)

[5 $(r)8(r — r')da = /S p(t)G(rlr")da (2.13)
Where the left hand side is simply ¢(r').

If we take advantage of reciprocity for the Green’s function [§], that is
G(r|r') = G(r'|r), we may interchange r and r' and obtain the following integral

equation.

#(x) = [ p(")G(rlr)da (2.14)

Let us examine now the types of geometries we would like to consider.
These are cross sections of multiconductor transmission lines contained in a multi-
dielectric medium with both planar and non-planar dielectric interfaces. This
generalized geometry is shown in Figure 2.2. Here, N, represents the total number
of conductors present, of which N; are active and N, are grounded. If N is the

total number of conductors and non-planar dielectric interfaces, then N — N, is
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the number of non-planar dielectric boundaries in the chosen geometry. There are
also Ny planar dielectric boundaries for which we will construct a space domain
Green’s function for each layer [2]. Non-planar dielectric interfaces will be treated

using polarization charge as an additional unknown.

Given a system of N, charged conductors, where the charge distribution

resides on the surface of each conductor, the integral equation becomes

Ne
4r) =3 / o) Glelx)dr (2.15)

=1

From this expression, the surface charge distribution will be determined for
the j** conductor raised to a potential of 1 volt while all others are grounded. Note
however that the Green’s function is determined only for a layered medium. When
non-planar regions are also included, the effects of these dielectric discontinuities

on the conductor surface charge distribution must be accounted for.

Before we construct our solution of the Green’s function for the layered
medium, we should note that the individual layers are considered infinite and
uniform in the x-direction. In the next section, we will take advantage of this and
construct a solution in the spectral domain. The green’s function is then recovered

by taking the inverse transform of the function in the spectral domain.

2.2 Spectral Domain Green’s Function for a Multi-Layered Medium

The dielectric layers of the medium are considered uniform in the z-
direction. Therefore, the Green’s functions z dependence will be the absolute
value of the difference in the z components of the source and observation points.
The Green’s function will be assumed to correspond to the potential at the obser-
vation point (z,y) due to a line source at (0,y’) [2]. For this reason, we may use

the Fourier cosine transform to define a spectral domain Green’s function G which
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Figure 2.2: Cross section of a MTL in an Arbitrary Dielectric Medium
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is independent of z. Note that the cosine transform is used instead of other forms
of the fourier transform for two reasons. First, it is even symmetric about z =/
so that the inverse Fourier transform provides a space domain Green’s function for
which the reciprocity theorem holds. Second, the interval of integration is [0, co],
as opposed to [—00, oo} for the standard form of the Fourier transform. This will
simplify the numerical evaluation of the Green’s function at the observation point

r.

Glkeryly) = = [ Gleleeoslhu(e — 2)ds (2.16)

where r locates the observation point, r’ locates the source point, G(r|r’) is the
Green’s function and G(k.,y|y’) represents the spectral domain Green’s function
which is independent of z. We can write our Green’s function G(r|r’) in terms of

the inverse Fourier cosine transform of G(kz, yly’).

G(r|r) ! / " G ke, yly') cos[ka(z — z')]dks (2.17)

wJo

If the above expression is to be useful, we must know the spectral domain
Green’s function everywhere in the medium. Equation (2.2) can be rewritten as

follows.

V2G(rlr') = =§(z — 2')8(y — ') (2.18)

Substituting (2.17) into (2.18) for G(r|r"), we write

ViG(rlr') = %/Ow v? {é cos[kz(z — z’)]} dk;

1 R 32 2 - / A
= ;-/; {8—3/2 - Lx} G coslk.(z — z')]|dk;
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= =z 7)oy -7y (2.19)

But the delta function §(z — z') can be expressed in the form

§(z—2') = % [J - cos[kz(z — z')|dk; (2.20)

Comparing (2.20) with (2.19), we write the one dimensional Green’s function prob-

lem as

From which we shall solve for the spectral domain Green’s function G.

Now let us look at a single dielectric layer for an example of how the
solution of the one-dimensional Green’s function problem is constructed. Figure

2.3 shows a point source, located at 3’, embedded in a dielectric layer.

y=duy

y=dp

Figure 2.3: Source Point Embedded in a Single Dielectric Later

The solution of the one-dimensional Green’s function problem is of the form

- Aek=¥ 4 Be~Fsv y <y
G(kz,yly') = (2.22)
Ce*s¥ 4+ De~*v y > ¢
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The coefficients A,B,C,D are found by applying boundary conditions at y = dy
and y = dr. Henceforth, we will assume the source is located on the boundary
between two dielectric layers. This is considered general since if the source lies
within a uniform layer, we divide the layer into two layers of the same dielectric.
Thus for the i** layer, the solution of G is

é,’ = A;ek’y + B,'e—k’y (2.23)

for z = 1,2,..., Na. All A;, B; are determined by applying a jump condition at the

source location y = y’ and boundary conditions at all other interfaces.

The domain in which we seek G is a simple layered dielectric medium.
The possible cases include an infinite ground plane at y = 0, an additional ground
plane above y = 0, and the case of ground at infinity. Figure 2.4 shows the layered
dielectric structure without regard to how the first and last layers are terminated.

Furthermore the arbitrary location of the source is denoted as the boundary d.

Boundary conditions are now applied at the z** interface, ¢ # k. These
conditions are continuity of the potential and of the normal electric displacement
vector. Since G represents the potential due to a point source located at y = d,

these boundary conditions are written as

Gilks,dildi) = Giga(kz, dild) (2.24)
3@ 3@;.;.1

= =€ 2.25

) 33,! y=d; . 9 y=d; ( )

Inserting equation (2.23) into the above boundary conditions, we obtain

Aiehs% 4 Bie75 % = Ay eFe% 4 BieRed (2.26)
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€ri [A.'ek‘d‘ - Bie"k‘d‘] = €rit1 [A£+1ek‘d‘ - i+16_k‘d‘] (2.27)

Multiplying (2.26) and (2.27) by e**% yields

Aiezk:di + B;' = Ai.i.lezk:di <+ Bi+1 (2.28)

€ri [Aiezk’d‘ - Bi] = €rig1 [A£+162k’di - i+1] (2.29)

Now if we multiply (2.28) by ¢,; and then both add and subtract the result

with (2.29), we have

A%t = g A; €% £ b;Biyy (2.30)
B; = bjA;p16%*% + a;B; s (2.31)
where
a = e——'_,:—“ (2.32)
b = %1- (2.33)

Similarly, if we multiply (2.28) by €,:41, then add and subtract the result
with (2.29), we find

Aip1 = GA; + h; Bie %= (2.34)



Biy1 = hie?=% A; + ¢;B;

where

_ Erit1 T &

2€ri+1

ki - €rit+1 — €p;
2¢€ri41
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(2.35)

(2.36)

(2.37)

Finally, if we multiply the A;y; terms of equations (2.30) and (2.31) and

the B;4; terms of equations (2.34) and (2.35) by e?f=di+1e~2k=di+1 = 1  we obtain

the following matrix expressions.

Ai e2k,d.‘ A:_+1 52kzdi+1 ) )
=TU; 1# ]
B; By,
Ain Ai .
=L; i F ]
Bi-i-l e‘2kzdi+1 Bie-”‘zd-

where

a;e‘z"‘("‘“ -d;) b;

bie=2keldivi=di) g

G h;

hie—2k;(d,‘+1 —d;) C;6_2k‘(d‘+1 -d;)

(2.38)

(2.39)

(2.40)

(2.41)
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Once the boundary conditions at dp and dy4 are known, one uses equations
(2.38) and (2.39) in a top down or bottom up procedure to determine Ag41, Bi+1 in
terms of Ayng, Bng and Ag, By in terms of A;, B;. The coefficients A,;, By, Ayg and
Bpng are then solved for by applying continuity of the potential and the normal
electric displacement vector jump condition at the interface y = di where the

source resides. These are

Gi(ks, dildi) = Giga (K, di|di) (2.42)
€41 ag"“ - e,-%G—" =-1 (2.43)
y=di Y ly=dx
Or, more specifically
Arefs® 4 Bre~k=d = A; 5% 4 By iR (2.44)

1
€o k,;

€r ki1 [Ak+1ek‘d" — Brna e-k’d“] — €k [Akek’d“ - Bke-k’-d"] = - (2.45)

To demonstrate the calculation of these coefficients, let us consider the
simple case where an infinite conducting ground plane is positioned at y = 0 and
the uppermost layer extends to infinity. For this case, we begin by noting that

from boundary conditions applied at y = 0 and y = oo, we have

A =-B (2.46)

ANna=0 (2.47)

Using equation (2.38), we begin a top down procedure to obtain Ajyi,Bis1 in

terms of Bngy.
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t=Nd-1
A Nd-1 e2kzd1vd-1 0
= UNg-1
Bny_ Bngd
t=Nd—2
An d_262k:dmz_2 AN d_le"’"’d”d-l 0
= Ung-2 = UNd-2UnNa-1
Bni-2 Bng-y Bna
i=k+1
Ak BZk:dk+l Nd-1 0
* =1 U (2.48)
By i=k+1 Bxg

which we can express in the more practical form

Ak+1 eZk:dk-H _ Un U12 0 (2.49)

Bis Ua Uz Bng

where all U;; are known.

Similarly, using equation (2.39),we can perform a bottom up procedure to

obtain A, By in terms of A;.

~.
il
{—y




31

A A
2 _L 1
B, e-2k=d2 — Aje-kss
i=2
A A A
3 _L, 2 LI, 1
Bae~2k=ds Bpe~2ksda — Aye—k=ds
1=k—1
Ay k=1 A,
= H Ly; (2.50)
Bke"'Zkzdk =1 _Ale-Zk:dl

which again can be expressed in the more practical form

A L11 L12 A

(2.51)
Bke-—2kxdk Ly Lo —Ale'2k‘d’

where all L;; are known.

At this point, we would like to apply equations (2.44) and (2.45) to solve
for A; and Bpgy. Since this is a system of two equations and two unknowns, let us

write these as

Ay + bByg =0 (2.52)
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e-—kzdk
cAy +dBng = — ok (2.53)
Which we can express in the matrix form
a b Al 0
= (2.54)
c d Bng —e~k=dk /Cok_.,

Expressions for the terms a,b,c and d will be obtained in the following analysis.

Expanding (2.49) and (2.51) into their four equations, we obtain

Ar = Ai(L1y — Lppe™29) = £ A; (2.55)
Bre =% = A1(Ly — Lype™ %) = £,4, (2.56)
Appe?Fed+ = U Bng = E3Bng (2.57)
Biy1 = U2 Bng = €4Bng (2.58)

which defines &;, &, &3 and &. If we apply the above expressions to our boundary

equations at y = dj, we find that

a=6+6& (2.59)

b= —(Ege~ ekt 4 gyemak) (2.60)
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c= {2 - fl (261)

d = gz et _ g emPhed (2.62)

Finally, solving (2.54), we obtain the following expressions for 4, and Bna.

be-kzdk

Al = m (2.63)

ae~k=dx

By, = _kzeo(ad — be)

(2.64)

Once A; and By, are known, all remaining a;, B; are determined by re-

peated use of equations (2.38) and (2.39).

2.3 Asymptotic Form of the Spectral Domain Green’s Function

The need for an asymptotic approximation of the spectral domain Green’s
function arises as we attempt to take the inverse Fourier transform to recover the

space domain Green’s function. Substituting (2.23) into (2.17), we have

1 0
Glrlr) = = /0 (Ams16"Y + Bpyre™*¥) coslka(z — 2')]dks (2.65)
However, we see right away that the integral of the growing exponential over [0, o]
will present problems. To illustrate this, consider a uniform medium above an
infinite ground plane. The coefficients of the spectral domain Green’s function are
easily determined analytically and the above integral may be determined in closed

form. Numerically, we can only calculate these coefficients for a specific value of k..
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Figure 2.5: Single Dielectric Boundary Between the Source and Observation Points

y=0

Evaluation of the integral in this manner is not practical. Instead, let us assume

that for large k., we have an asymptotic approximation Go, for G. Hence

G(rlr) = ;1; { /0 T G coslko(z — 2'))dk: + /k ‘: G, coslkz(z — x')]dk,} (2.66)

Where kr is a value of k, sufficiently large that the approximation G(kr,yly’) =
Goo(kr, yly') is justified [2].

In order to construct the asymptotic approximation G, recall the follow-
ing differential equation and corresponding boundary conditions in the spectral
domain.

G

G’;(d,-) = éi+1(di)

3G; 3Gin
i = € 2.67
i Dy . 3y |, (2-67)

Consider an arbitrary dielectric boundary, located somewhere between the

source and observation points, where an attenuated wave is incident. Since at this



35

point, we are only interested in the transmission and reflection of the wave , we
will place the boundary at y = 0. Furthermore, let us take the incoming wave to
have a magnitude of 1 and the reflected and transmitted waves to magnitudes of

I’ and T, respectively. Applying boundary conditions at y = 0, we obtain

T+1=T (2.68)

- C,-'QT — €71 (F - 1) =0 (2.69)

From which we obtain the following transmission and reflection coefficients.

261'.1

T=——— 2.70
€r1 + €r2 ( )

[=5ni"%2 (2.71)
€1+ €2

For multiple dielectric boundaries between the source and observation

points, the cascaded transmission line coefficient is

hid 2¢,;
T= ] —xi 2.72)

This is exactly as expected since the differential equation (2.67) is of the same form
as that for the voltage along a multi-section transmission line [12]. Therefore, the
solution of G may be thought of as the superposition of the direct wave and all
multiply reflected waves. Each of these waves may be written as an amplitude

—-kz

multiplied by an attenuating factor e~*=!, where [ is the total distance traveled by

the wave.
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In our asymptotic approximation of the spectral domain Green’s function,
only the slowest decaying exponentials in k. will be retained. These correspond
to those which travel the shortest distarce [ between the source and observation
points. The four waves which will be retained in the asymptotic expression are
shown in Figure 2.6. The accuracy and the necessity of the four wave approxima-

tion will be discussed in the next section.

Let us now develop an expression for the direct wave, which we will denote
as GU). First, we must determine the magnitude of the wave at the source location.

For this, we will consider only outward directed waves at the boundary d;.

Applying boundary conditions, we write

Aref=dk = By e k=% (2.73)

—kzd ksd 1
— €r k41 Brp1e” " — €, L Are™ N = — (2.74)
kxfo

Substituting (2.73) into (2.74), we obtain the magnitude of the upper wave

1
Bri1 = ek=dx 2.75
ke szO(er,k + er,k+1) ( )

Therefore, at the observation point y, the expression for the direct wave is

ég)(k:,y]yl) = TBk+1e—k‘y

1 hic 267-{ -k —-d,
= II e hely=di) (2.76)
?'kxeoer,k i=k €ri -+ €rit+l

Similarly, the three reflected waves may be written as an amplitude mul-

~kz

tiplied by an attenuating factor e~*!. These are
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Figure 2.6: Four Slowest Decaying Attenuated Waves
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Ek+1

€k

Figure 2.7: Outward Directed waves Emanating from the Source at dj

GO = (vak "ok} 1 fp % ckGedcdeaa) (977
€rk + €rk—1) 2kz€o€rk f €riF Ergpr

m

6o = [ fomir = €r.m+2) 1 2¢ri ek (y-dx+2(dm+1-9)) (2.78)
s €rm41 + €rm+2 2k::6057.k i=k €ri + €ritl

m
é(4) _ [ €rk — Erk-1 €rm+1 — Er,m+2 1 H 2¢,;
o =
€rk T €r k-1 €rm+1 T €rm+2 kaéoér,k i=k Crii + €ri+1

x e—k:(y—dk+2(dk—dk—1)2(dm+1 -y)) (279)

Neglecting all other reflected waves, the asymptotic approximation Goo

may be written in the following compact form.

4 4
Go=3 G0 =3 ZekXi (2.80)
=1 =1 k-“-'
where
G 1 Zer (2.81)

26061-,k i=k Cri + €41



€rk — Erk-1
=g | —
€rk + €r k-1

_ €rm+1 — €rm+2

G=g|(——m"m—
(Cr,m+1 + 5r.m+2)

€r,m+1 — €rm+2
= | —m—m—m
€r.m+1 + €r.m+2

and

Yi=y—dk
Yo =Y; + 2(dx — di—y)
Y=Y +2(dns1 — )

Yi=Y2+2(dn+1 —y)

39

(2.82)

(2.83)

(2.84)

(2.85)

(2.86)

(2.87)

(2.88)

2.4 Numerical Comparison of the Spectral Domain Green’s Functions

In the previous section, we developed the asymptotic approximation for the

spectral domain Green’s function. This approximation was constructed in terms

of four attenuated waves with precisely specified pathlengths. In this section, we

will discuss the validity of this approximation.

Consider the layered medium of Figure 2.8 for the purposes of comparing

the two functions. This medium was selected because the asymptotic expression
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Figure 2.8: Layered medium used in the comparison of the spectral domain Green’s
function and its aymptotic approximation

at the observation point contains all four waves. We will compare the spectral
domain Green’s function to the asymptotic approximation and determine how the
value of k7 depends on the number of waves taken in the approximation. Also, we
will be examining the problems encountered when the layered dielectric medium

contains one or more layers which are much thinner than the other layers.

The first comparison, shown in Figure 2.9, is of the spectral Green’s func-
tion and the asymptotic approximation containing all four waves. Note that the
coefficients of G used to generate these plots were determined numerically using
the matrix method previously discussed. Here, we see that the asyptotic expres-
sion exactly corresponds to G after some value kr. If we choose Kt as the value of
k. at which the relative difference between G and G is less than 10-%, then for
Figure 2.9, kr = 2.11. If the number of waves in G, is reduced, the value of kr
increases. This can be seen in Figures 2.10-2.12 where the number of terms in Geo
goes from three to one. In these examples, the values of kr are 3.15, 6.35 and 7.01,
respectively. Since the value of M, the number of subintervals into which (0, k7) is
subdivided, is determined depending on the value of k7, the computation time for
integrating G over (0, kr) increases. It will become apparent in the next chapter

that this integration, along with the procedure for computing the coefficients A, 43
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Figure 2.9: Spectral domain Green’s function compared with the four wave asyp-
totic approximation
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and B, requires more computation time than any other aspect of the method.

Yxl(?

110.00
100.00
Asymptotic
90.00 3 - waves —
80.00
70.00
60.00

50.00

40.00

Spectral Domaln Green's Functions

30.00

20.00

10.00

0.00

0.00 1.00 2.00 3.00 4.00 5.00

Fourier Variable k »

Figure 2.10: Spectral domain Green’s function compared with the three wave
asyptotic approximation

Scaling of the (x,y) coordinates of the geometry also has a significant effect
on the value of kr. To show this, again consider the layered dielectric geometry of
Figure (2.8). If we multiply all coordinates by a factor of 10, the resulting plots
of Figure 2.13 shows that much smaller value, kr = 0.21. However, if we divide
all coordinated by the same factor of 10, we obtain the opposite result. Figure
(2.14) shows that kr has increased, to 21.1. this suggests that a scaling routine

can significantly reduce kr and hence the computation time involved.



43

Yx 109

110.00;

100.00

Spectral Domain Green's Functlons
3
3

S
3

S
8

10.00

0.00

1 | | [ l |
0.00 1.00 2.00 3.00 4.00 5.00

Fourier Variable k

Figure 2.11: Spectral domain Green’s function compared with the two wave asyp-
totic approximation
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Figure 2.12: Spectral domain Green’s function compared with a single wave asyp-
totic approximation
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Figure 2.13: Effect of positive coordinate scaling on kr
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Figure 2.15: Layered medium with a thin layer between the source and observation
points

Let us now consider how the asyptotic approximation will suffer when very
thin layers are included in the layered medium. For this, consider the medium of
Figure 2.15. Here, a thin layer has been inserted into the previous meduim. In this
case, the asymptotic approximation Geno longer contains the attenuated waves
with the shortest pathlengths. In fact, aside from the direct wave, the waves with
the shortest pathlengths are those with multiple reflections within the thin layer.
These are shown in figure 2.16. The comparison of the spectral domain Green’s
function and the two asymptotic approximations are shown in Figure 2.17. Here,
it looks as if the standard asyptotic expression more closely and more quickly
approximates the analytical expression compared with the modified asymptotic
approximation. Actually, the modified asymptotic approximation produces a much
lower value of kr than the standard approximation. The modified approximation

yields kr = 12.75 compared to kr = 58.05 for the standard approximation. This
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implies that the asymptotic approximation based on the four waves of Figure 2.6
is not the best approximation to G when the multilayered medium contains layers
that are much thinner than the others. In fact, since G essentially decays to
zero at kr = 23.8, the four wave approximation of Figure 2.6 may be considered

unnecessary in this case.

ly
=2
Ers d4=3
¥ ¥ ¥ fobs=2
1 2 3 4
fra” | | | dg=16
SR AVIAVAVARAVAVAVIRS
€.9=1 2
dk=1
k=1
£.,=1

Not to scale

Figure 2.16: Four attenuated waves with the shortest pathlengths
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Figure 2.17: Comparison between asympototic approximations constructed from
different attenuated waves
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2.5 Space Domain Green’s Function

The space domain Green’s function for the layered medium is obtained by
taking the inverse Fourier cosine transform of the spectral domain Green’s function.
As stated in the previous section, the integration over [0, 0] is broken into two

parts. Let us now substitute G and G, into equation (2.66).

k
Gelr) = - { /0 " (Amsre™? + Br1e7%) coslk.(z ~ z')]dk.

T

+ Zc,f e e~*Y cos[k.(z — z')]dk= }

=1

= Gy +Gos (2.89)

The constant k7 is found by computation and comparison for every case as the
value of k; such that the relative difference between the spectral domain Green’s

function and its asymptotic approximation is less than 107.

Evaluation of Gi, at the observation point is performed numerically using
Gaussian quadrature. The coefficients Apmyy and Bpyy are determined by the
matrix procedure previously outlined for a specific value of &;. In solving for Gk,

we simply break up the integral over [0, k7] into M subintervals.

kM

Gkr (kx: yly’) Z /

ks k. -
7 (J-I)kT/M m+1€7Y + Bnyie y) coslk-(z—2)|dk, (2.90)

Finally, Gaussian quadrature is employed to evaluate the sum of integrals.

In evaluating Go,, we must first recognize that the integral over [kr, o0]

has the following closed form solution, for ¥; # 0
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I8 e~k coslly(z ~ )] dk. = Re {Ex(2)) (2.91)

where 2z = krY; + jkr(z — 2'), and Re{E;(z)} is the real part of the exponential
integral function the numerical evaluation of which is well documented [14]. If we

insert (2.91) into G, we obtain

Geo

i
L )

S eRe {E:(2)) (29
i=1

If now Y; =0, equation (2.91) becomes

/kmkicos[k:(z—z')ldkx = —Ci(kr|z - 2')) (2.93)

where Ci(kr|z — z'|) is the cosine integral function, which may also be evaluated
numerically [14]. Both the exponential integral and cosine integral functions and
there numerical approximations are discussed in Appendix A. Qur solution for G

for the case where Y; = 0 now becomes

1. 14
Goo = —;:—Cz(k;r]:r -2|)+ - Y ciRe{Ey(z)} (2.94)
=2
Finally, note that the cosine integral is singular at z = z'. When integrat-
ing the Green’s function over an element which includes the point z = 7/, a special
quadrature formula is used. This formula places quadrature points more closely
around the singularity, improving the accuracy of the numerical integration [11].

This quadrature formula is presented in Appendix B.
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CHAPTER 3

Numerical Solution of the Integral Equation

In the previous chapter, the space domain Green’s function was obtained
for the layered dielectric medium. Once the Green’s function is known everywhere,
we may proceed with the formulation of the integral equation for the total charge
distribution on the surfaces of the conductors and the non-planar dielectric bound-
aries for given potential boundary conditions. The integral equation will be solved

numerically using the method of moments [1-3].

3.1 Method of Moments solution for the Charge Distribution

There are two types of interfaces to consider. These are conductor-
dielectric and non-planar dielectric-dielectric interfaces. The geometry, along with
the discretized interfaces indicated by the dashed lines, is shown in Figure 3.1.
We are interested in solving (2.8) for the case where the :** conductor is set at a
potential of 1 volt, while all others are grounded. The integral of the free charge
density over the ** conductor boundary due to the j** conductor charged to 1 volt

then becomes the C;; element of the capacitance matrix.

The potential at 2 point r on the i** interface due to the total charge on

conductor surfaces and dielectric-dielectric interfaces is given by
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Figure 3.1: Cross Section of General Discretized Geometry
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Figure 3.2: Unit Pulse Function

N
Vi=Y [ ori(e)Glrlr)ar (31)

5=17C;
where or;(r') is the total surface charge density and N is the total number of in-
terfaces, of which N, are conductor-dielectric interfaces and NV — N, are dielectric-
dielectric interfaces. The charge distribution on the j** interface may be approxi-

mated in a piecewise constant manner as

M, .
o) =S PP , i=1,2,..,Nc (3.2)

=1

where M; is the number of segments on the j** interface and P (r') are unit
7 gm J 1

Ith

pulse functions defined to be 1 over the I** segment of the j** interface and zero

everywhere else. Since the unit pulse function is 1 over the entire segment, o’,7

ltlz

represents a constant approximation of the charge density on the I** segment of

the j** interface.

Substituting (3.2) into (3.1), we obtain

M;
Vi= f /C J {ga}"’ﬂ""(r')} G(x|r')dl (3.3)
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We can rewrite this as

N M;

V=YX of? [ POE)G(I)ar (34)

Jj=1ll=1

However, P,(j )(r' ) is only nonzero over the I** segment of the j** interface, AC,(j ),

SO

N M;
V=33 of /A i G (3.5)

j=1l=1

Since G(r|r') is known, the integral over AC,(j) is also known. Assuming that r is
the position vector for the midpoint of the £ segment of the i** conductor, let us

denote this integral as

Zu, = [, oo GGl

= [ 1Gur(¥IF) + Gun(rlr)} dF (3.6)

So that the potential may be written in the following convenient form

N M
Vi=$S 69z, (3.7)

i=1l=1

The indices of Z,; represent the value of the integral of the Green’s function at
the midpoint of the k* segment of the :** interface due to the I** segment of the

7t* conductor.

Recall that the general problem consists of N¢ conductor-dielectric inter-

faces and N — N¢ dielectric-dielectric interfaces. Furthermore, the #** interface is
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subdivided into M; subintervals. Equation (3.7) is employed for the point-matching
procedure used in the method of moments for the numerical approximation of the
integral equation. By enforcing (3.7) at the center of each segment of the conductor
contours we obtain a system of 3¢, M; equations for a total of >N, M; unknowns.
If there are no non-planar dielectric regions present, N = N¢ and the system is
solvable. However when non-planar dielectric interfaces are present, the system is
underdetermined. In this case another set of =% Ne+1 M: equations is required to
determine the system. These equations are associated with the polarization charge
distribution along the dielectric-dielectric interfaces and are obtained by enforcing
continuity of the potential and the normal component of the electric flux across

these interfaces.

The electric field E(r) is expressed in terms of the potential by

E(r) = -V4(r) (3.8)

Substituting (3.1) into the above expression, we have

E(r) = Zv / or;(t')G(r|r')dl’ (3.9)

=1

Bringing the V operator inside the integral, we have

E(r) = Z / o7 (r)VG(x|r)dV (3.10)

i=1

So we must derive an expression for VG(rir'). It is

VG(rlr) = (éa% + ga%) G(rlr))
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.—1 b = . ’
= 1= /O k.G sin[k(z — o')]|dk.

vz [ %gl' coslko(z — )| dk. . @1)

At this point, we must justify taking the derivative of the asymptotic ap-
proximation in (3.11). For this, let us consider the simple layered medium of Figure
3.3. For this case, we will compare the derivative of the asymptotic approximation
with the derivative of the analytical approximation as functions of k.. Recall that
comparisons of the Green’s function and the asymptotic approximation were made
previously in chapter 2. The comparative plot of the derivatives of G and G is

shown in figure 3.4, respectively.

€& =2 d2=3
obs.

€r =1 . dp =1

k=1

= 1
75;}77777777777777777777777777777777777777

Figure 3.3: Layered geometry for analytic and asymptotic spectral domain Green’s
function comparisons

Substituting for the spectral domain Green’s function G for a point r in

the (m + 1)** interface into (3.11) yields

’ L1 ke - : !
VG(rjr)= - z;/o kz (Am+1ek‘y + Bm1€ k“’) sinfkz(z — 2')]dk;
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Figure 3.4: Comparison of the derivatives for the analytic and asymptotic spectral
domain Green’s functions
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- —k=Yi -
27 _/’; i sin[kz(z — 2')]dk;
+ = / i k (A ey — B e"""’) coslk-(z — z')]dk
Y xJo z \ Am+1 m+1 T z

+ quZ— / 5% cos[ky(z — 2')|dks (3.12)
i=1

where the F sign of the fourth term is specifically — for : = 1,2 and + for i = 3,4.
This is due to the sign obtained from taking the derivative dY;/dy. Since in the
first and third terms Am+1 and Bp,41 are in general only solvable numerically for a
specific value of k;, Gaussian quadrature is used to evaluate a sum of integrals over
subsections of the interval (0, k;) where A,,4; and Bp,4; are taken to be constants
calculated using the value of k, at the quadrature points of each subinterval. On
the other hand, the integrals over (T, o) are solvable analytically and are found

in tables. Hence the final expression for VG(r|r') becomes

k:
VG(rlr)= - :e% [7 ke (Amsr€? + Bsse™=9) sinlha(z — 2 ))dk
e—krYi
- s ;(3-3,)2+Y2

x {Y;:sin[kr(z — 2')] + (z — 2') cos[kr(z — z')]}

- 1 fhr kz —kz A 7
+ y;/o k. (Am.He Y — Bryi€ y) coslk.(z — z')]dk.
4 e—krYi
+ 2 ——,)2—_*_—},3 (3.13)

x {Y; cos[kr(z — z')] — (z — z) sin[kr(z — 2)]}
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Notice that the second and fourth terms are singular when both z = z’ and ¥; = 0.
This will occur when the observation point lies at the center of the source interval
over which we are integrating. To evaluate these integrals, we need to extract the

singularity and calculate the integral in the Cauchy principle value sense [5].

To complete the set of equations, we apply boundary conditions at the
dielectric-dielectric interfaces. First, the normal component of the electric flux
must be continuous across the dielectric-dielectric interfaces. Consider an arbitrary
interface between two regions with dielectric constants €; and €z, with the normal

vector 7 pointing into the region of ;. At this boundary, we write

aEi(r) -7 = Es(r)- 7 (3.14)

By examining equations (3.10) and (3.11) we notice that in the limit as r — r’ E(r)
involves the integration of VG along C;, 7 = N.+ 1, N, + 2, ..., N, which includes
the singular point r = r’. In order to extract this singularity, let us examine the
singular nature of the Green’s function. In an arbitrary medium such as ours, the
Green’s function may be written as the superposition of primary and secondary
contributions, where the primary term is defined to be the potential at r due to a

line source at r’ in the absence of any medium interfaces.

G(r|r') = G?(r|r') + G*(r|r) (3.15)

Although the secondary term involves the effects of dielectric interfaces and ground
planes on the potential, it does not contain any singularities. Therefore the primary
term, which is simply the free space Green’s function in two dimensions, is the one

responsible for the singular nature of the Green’s function

GP(r|r') = g_ﬂ_—i; Injr—r| (3.16)
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Figure 3.5: Arbitrary Dielectric Interface

Thus, the singularity of VG(r|r') is solely due to VGP?, which is

-1 r-r
27eo |r —r'f?

VGP(r|r') = (3.17)

To extract the singularity, consider the dielectric interface of Figure 3.5.

Substituting (3.15) into (3.10) yields

EF) = -V [ or@){C7(x") + G*(xlr)} ar

E?(r) + E*(r) (3.18)

where in the limit r — r’, only the primary term EP(r) involves integration over
the singularity. Bringing the V operator inside the integral sign to the Green’s

function, we may write the primary electric field term in the following manner.
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) = e V/ or()In|r - r'jal (3.19)
- i ’ ! "I
- -21r_eoz§1c-r-r.lo [/C_Ac T(r)l ‘ﬂ +/ or(r)Vin|r — r]dl]

Only the integration over Ac involves the singular point r = r/. Let us write

VG?(r|r’) in terms of the unit normal and unit tangent vectors on Ac.

Vinr-r| = (%(Vlnlr—r’[)ﬁ + %(Vlnlr—r'l)f

_ 1 alr—r']ﬁ + alr—r'li.
= T=| o 5t
= ]r—lr’l [ficost + #sind] (3.20)

If we assume o7(r’) and the unit vectors # and £ are constant over the interval Ac,

we obtain
lim [ or(t)Vialr—rldl = lim or ﬁ/ cosd ar + i sin 6 dr
Ac—0 JAc Ac—0 ac|r—r/| ac |r— 1|
(3.21)

The assumption that 7 and { are constant vectors over Ac is valid since we will
be approximating all interfaces in a piece-wise linear manner. To evaluate the two
right hand side integrals of (3.21), let us consider the geometry of Figure 3.6. Here,

for a small angle d¢, we obtain the following geometric relationship



T
D>
o

K3

Figure 3.6: Geometry relating Ac and the obsevation point P
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’ Il"—l"]

di cosf

d¢ (3.22)

Thus the two right hand side integrals of (3.21) are

cosf .,
/A e = 0 (3.23)

sinf , 42
/Ac Rl /¢ tan ¢de

1 1
T cosds cosé; (3.24)

where  is the angle subtended by Ac as seen from the observation point P. In

the limit as r — r’ and as Ac — 0, the right hand side integrals of (3.21) become

cosf
. . 7 = 9
dim, {Alirfo /A F— r'[dl } £7 (3.25)
lim { lim / sind il = o (3.26)
r—r' | Ac=0JAc |r—r’| -

where the sign in (3.25) depends on whether we approach the boundary from the
positive or negative side, respectively. Note that the positive side is defined to be

the region into which 7 points.

At this point, from (3.15) in view of (3.22) and (3.23), we may write the

primary field at a point approaching the dielectric boundary as

1 r—r .or(r)
PEin) — _ ’ —_—
EP=(r) = Sres PT/CUT[I‘—T'IZ dl £ a 2e (3.27)

for r € C and where Prf denotes the Cauchy principle value of the integral.
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In general, for our system of conductors and dielectric-dielectric interfaces,

the electric field at point r on one of the dielectric-dielectric interfaces becomes

E*@):-f Pr/ or(<)VG(rlt)dl' ﬁi;-g‘i) (3.28)

i=1

forre Ci,t = N.+1,N.+2,...,N, and where ¢; represents the dielectric constant

of the planar region in which a given non-planar region of ¢, resides.

Let us now apply continuity of the normal component of the electric flux

at the non-planar dielectric interfaces. Substituting (3.28) into (3.14), we have

N J
—a ), PT/_UT(r')VG’(rIr') cadll + oz(r')

=1 2
A ’ Nnooa 0’7’(!")62

=—e) Pr/ or()VG(elr) - adl — ZE= (3.29)
=1 )

Simplifying,we have
_ate | (r)—i Pr/ or(r)\VG() - adll = 0 (3.30)
2a(ei—€2) - = e T - '

Substituting the approximations of or(r) and o7(r') into the above expression

yields the second set of equations.

M;
€ + € N & ) N oa gy
———0o7(r) - oy Pr| VG(rlr)-ndl' = 0 3.31
Bt =) ") T & Pl VOU) 531

This represents our second set of equations which completes the matrix approxi-

mation of the problem.
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The full matrix formulation may be written in the convenieat form of

NY 5 V. i=1,2,.., N,
XX 0" 2y, = (3.32)
i=1l=1 0 2= Nc + 1, vey N
where
fAc‘(J) G(rlr )dl = 1,2, eeoy Nc
i=N,+1,.,N

—~ [actn VG(r|r') - 2dll

Zigt; = | ‘ k#lori#j (3.33)

t=N.+1,...,.N
—ate PrfAC(’) VG(I‘II") -ndl’

2g(a—-2)

k=landi=j

\

This system of equations may be written matrix form as

[ (Za] (2] - (2] | [l ] 1]

[z.m] [%22] [Zfzv] lle _ [‘fﬁ] (3.34)

| [Zw1] [Zn2] -+ [Gnn) | [ lon] | | O]

where the individual Z;; matrices are of dimension M; x M;, the o; are M; x 1

vectors and the V; are M; x 1 vectors.

To simplify the implementation of (3.34), a global numbering system is

useful. Again, we have N interfaces, of which ¢ = 1,2,..., N, represent conductor
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surfaces and ¢ = N, + 1, N, + 2, ..., N represent the dielectric-dielectric interfaces.
Each of these interfaces has M; subsections. Hence a global system Zo = V may

replace the previous

Zn 2z -e- Zl,ntot (251 Vi
Zn Zp2 s Z2.ntot g2 V2
= (3.35)
| Zntot.l Zntot,2 e anoz.nzot 1L Tntot i | 0 i

where ntot denotes the total number of subsections on all interfaces. In
(3.35), every subinterval is individually numbered. Notice that o is the total charge
density on all subintervals due to one conductor charged to 1 volt while all others
are grounded. This process must be repeated for every conductor being alone 1
volt in order to obtain the capacitance matrix. Although the system Zo = V
must be solved N, times, the Z matrix is always the same, thus it need only be

constructed once.

3.2 Calculation of the Per Unit Length Capacitance, Inductance and

Conductance Matrices

Losses in dielectric material result in a complex permittivity, e,

e=¢ —j¢' (3.36)

The effect of a lossy medium appears in the space domain Green’s function, where
a complex permittivity gives rise to complex coefficients A; and B;. For a MTL in
a lossy medium, the resulting Z will be complex, consequently the o matrices are

also complex



68

[o] = [or] +jloi] (3.37)

Let us now introduce a complex N, x N, matrix [C]. In the lossless case,
the p.u.l capacitance is related to the p.u.l charge matrix by the electrostatic

expression

QI =IClV] (3.38)

However, since [Q] and thus [C] are complex, [C] does not represent the p.u.l ca-
pacitance matrix with which we are familiar. Let us rewrite the above electrostatic

expression as

a

[Q] = [C1IV] (3-39)

The individual é;_,- elements may be thought of as the total complex capacity of
the :** conductor due to the j** conductor being charged to 1 volt. In terms of the

complex charge density components o¥, the elements of the C matrix are

Cy=% @a{wﬁ' (3.40)

Now that [C] is known, we may write our admittance matrix in the fol-

lowing form [13].

= Jjw [éR + jéz]
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= —wCr+ jwCr

= G+jwC | (3.41)

Therefore, our p.u.l. capacitance and conductance matrices are given by

C =Cr (3.42)

G = —wC] (3.43)

For lossless lines, we can express the p.u.l. inductance matrix in terms
of the free space capacitance matrix, that is the capacitance matrix obtained by

replacing the multi-dielectric medium with free space [1].

1 -1
L=5(Cd (3.44)
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CHAPTER 4

Numerical Results

A Fortran program was written to calculate transmission line parameters
using the previously described method. The input data consists of the locations
of ground planes and dielectric layers, a pointwise representation of conductor-
dielectric and dielectric-dielectric interfaces, and the dielectric constants and loss
tangents at the frequency of interest. The program provides the p.u.l. capaci-
tance, inductance and conductance matrices. In the following sections, 2 number
of examples are presented to illustrate the accuracy and the ability of the method

to handle complicated dielectric structures.

4.1 MTL in a Uniform Layered Medium

In this example, we have three conducting lines in a three layered dielectric
medium. Two of the lines have rectangular cross-section while the third has a cir-
cular cross-section. Each of the rectangular lines is discretized into 12 subintervals
while the circular line is approximated by a 12 sided polygon. This configuration

is shown in Figure 4.1. The numerical results are given in Table 4.1.

The number of subintervals per conductor for this example were chosen
in order to compare with the cited references. For rectangular conductor cross
sections, three subintervals per side is usually sufficient for accurate results. More
subintervals may be used, but the slight increase in accuracy may not warrant

the increased computation time. The exception to this is the case where one



0.0.4)

i)

B o



72

RESULTS | REFERENCE [1] | REFERENCE [2] | UNITS
Cn | 3.457 3410 3.523 pF/cm
Cn |l -0.691 -0.696 -0.683
Ci || -0.071 -0.072 -0.072
Cn | 1.267 1.259 1.244
Cw || -0.136 -0.131 -0.130
Css || 0.348 0.341 0.338
Lu || 2.370 2.299 2.331 nH/cm
Ly || 1198 1.175 1.183
Ls | 0785 0.768 0.773
Lp || 4918 4.919 4.965
Ly || 1.985 1.989 1.996
Lss || 5.962 6.128 6.163

Table 4.1: Results for the MTL in a Uniform Layered Medium Example.

conductor lies dierectly above another, thus shielding the upper conductor from
the ground plane. In this case, it has been found necessary to increase the number
of subintervals on the horizontal sides of the conductor. For this type of problem,
six to eight subintervals on the horizontal sections of the conductor surfaces will

produce accurate results.

4.2 Dielectric Coated Wires

Consider the two-wire ribbon configuration of Figure 4.2. This ribbon con-
sists of two identical wires coated with a dielectric. Each of the circular interfaces
is approximated by a twelve-sided polygon. For the conductor-dielectric interfaces,
only one subsection per side is used. For the dielectric-dielectric interfaces, three
subintervals per side are used. In calculating the capacity of the ribbon, one of the

wires is assumed active while the other is grounded.



a=1.0
b=20
Figure 4.2: Two-wire Ribbon
RESULTS | REFERENCE [7] | UNITS
CAPACITANCE 0.2238 0.225 pF/cm
Without dielectric
CAPACITANCE 0.4012 0.400 pF/cm
with dieleciric
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Table 4.2: Results for Two-wire Ribbon with and without the dielectric coating

present
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4.3 Dielectric Coated Microstrip Line

Consider the microstrip structure of Figure 4.3. This microstrip is thinly coated
with a dielectric material. The conductor surface is discretized into twelve subsec-
tions. The dielectric coating is actually modeled as a thin layer intersecting the
conductor, on which we add a small hump over the top of the line. The dielectric-
dielectric interface between the hump and air is a piecewise linear approximation
of 12 subsections. The calculated capacitance of this line, with and without the

dielectric coating, is given in Table 4.3.

TTT77777 7777 77Tl 77 7 O

Figure 4.3: Dielectric Coated Microstrip Line

RESULTS Units

w/o coating | w/ coating
Capacitance 2.487 2.565 pF/cm
Inductance 2.013 2.011 nH/cm

Table 4.3: Results for the Microstrip Line with and without the dielectric coating

4.4 Differential Lines in the Presence of a Vertical Dielectric Interface

Consider a pair of differential lines in the multi-dielectric medium of Figure 4.4.
Here, we are concerned with the variation in the self and coupling capacitances

of the lines when the vertical dielectric interface between dielectrics 1 and 2 is



75
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Dielectric 1

€, =50
Dielectric 2
€ =35
é_loo 450) 2400.450) y=500
€ =39
(=400,350) (100.350) y=300
g = 119

NOT TO SCALE
TTTT77777777777777777777777777777777777777777777777777 Y=0

Figure 4.4: Differential lines in the presence of a vertical dielectric interface
introduced. Each conductor is discretized into 20 subintervals while the dielectric-

dielectric interface is divided into 36 subintervals. The results with and without

the vertical dielectric interface are given in Table 4.4.
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RESULTS UNITS
w/o Dzel.2 | w/ Diel.2
Cn 1.9289 1.8741 pF/cm
Cr2 -0.3544 -0.3538
Ca 1.9289 1.9147
L 3.5816 3.5816 | nH/cm
Ly, 0.8751 | 0.8751
L, 3.5816 3.5816

Table 4.4: Results for the Differential Lines with and without DIELECTRIC 2
present
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CHAPTER 5

Computation Time

The time required to calculate the p.u.l. capacitance and inductance matrices
varies depending on whether the kernel of the integral equation is the free space
Greer’s function or the layered medium Green’s function. Given the same num-
ber of unknowns, the free space method is much faster than the layered medium
method. However, as dielectric layers are added, the number of unknowns required
for the free space method increase. For the layered medium method, the number

of unknowns remain the same as the number of dielectric layers increases.

5.1 CPU time Comparison Between Methods

Consider the single conductor line of Figure 5.1. The single conductor is discretized
intol2 subsections. For the free space method, each dielectric layer interface ex-
tends from -8.0 to 8.0 in the x-direction and is subdivided into 20 subsections. As
the number of layers is increased, Figure 5.2 shows how the number of unknowns
differ between methods. As the number of unknowns N increases, the number of
elements of the matrix increases at the rate N%. Consequently, the time required
to construct and invert the matrix is also increased. Figure 5.3 compares the CPU
time between the methods as the number of layers is increased. Beyond three
layers, the CPU time required for the free space method exceeds that required for
the layered medium method for out one conductor problem. For many conductor

problems however, the free space method will generally result in lower CPU times.
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Figure 5.1: Single Conducting Line in a Multilayered Medium
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Figure 5.2: Comparison of number of unknowns between methods



CPU Time (seconds)

25.00

20.00

15.00

10.00

5.00

0.00

! | | l I

1.00 2.00 3.00 4.00 5.00
Number of Layers

Figure 5.3: Comparison of CPU time between methods
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CHAPTER 6

Conclusions and Future Directions

In this thesis, a method for computing the p.u.l. capacitance [C], conduc-
tance [G], and inductance [L] matrices for multiconductor lines in a multi-dielectric
medium was presented. The formulation is quasi-TEM based on an integral equa-
tion solution of Poisson’s equation for the electrostatic potential. The kernel of the
integral is the Green’s function for a layered dielectric medium from a paper by
W. Delbare, et al. The integral equation was solved numerically using the method
of moments while applying potential boundary conditions at conductor surfaces
and continuity of the normal electric flux at non-planar dielectric interfaces. The
solution of the system was in terms of the free charge distribution on the conductor
surfaces and the polarization charge distribution on the non-planar dielectric inter-
faces. The direct result is the capacitance matrix where the element C;; represents
the sum of all the free charge on the i** conductor surface while the j** conductor
is active and all others are grounded. When lossy dielectrics are included, the
conductance matrix for the multiconductor transmission line is obtained in terms
of the imaginary part of the capacitance calculation. The inductance matrix is
then determined using a TEM expression in terms of the free space capacitance

matrix.

The multi-dielectric medium that we can handle consists of both planar
and non-planar dielectric regions. Therefore, this method may be useful in the
effects of thin dielectric layers and other irregular shaped dielectric interfaces on
transmission line parameters and properties such as cross-talk and characteristic

impedance. A Fortran program was written and several examples were considered.
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The first two examples are used to show that the transmission line parameters
calculated using this method are consistent with examples found in the literature.
Later examples are used to show the variety of problems which may be considered
using the program. Comparisons of the CPU time of the program with methods
using the free space Green’s function as the kernel of the integral equation were
made. Here, it was shown that as the number of dielectric layers was increased,
the number of unknowns differ greatly between the methods and at some point the
CPU time required to calculate the matrices using the free space Green’s function

method exceeds this program.

Finally, it appears the methods described here could easily be extended to
three dimensional structures in a medium of uniform dielectric layers and irregular
dielectric boundaries. The spectral domain Green’s function could be applied to
the uniform layered medium and hence the Green’s function in three dimensions

would be the double inverse transform of the spectral domain Green’s function.
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APPENDIX A

The Exponential Integral

The complex Exponential Integral function E;(z) is defined as

Ei(z) = /oo -et:dt, largz] <7 (A.1)

z

where z = z + iy. Here, we assume that the path of integration does not include
the origin and does not cross the negative real axis. For numerical computations,

the following series expansion is used.

® (—_1)zm
E1(z)=—-y—lnz—z( 7)1'2

n=1 n

, largz| < = (A2)

where v = 0.5772156649 is Euler’s constant. The symmetry relation for the Expo-

nential Integral is

E(2) = E_(z_) (A3)

From a practical standpoint, (A.2) is not useful for large complex argu-
ments since the rate of convergence is much slower. For |z| > 10 or |y| > 10, it is

convenient to use the following approximation [13].

0.711093 0.278518 0.010389

€Bi(2) = 0415775 T 1220998 T 1 6.2900 T

€(z) <3x10°°
(A4)
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APPENDIX B

The Cosine Integral

The complex Cosine Integral function is defined as

< cost

Ci(z) = — / SZdt,  Jargz < (B.1)

z

where z = z + 7y. Again, the path of integration is assumed to exclude the origin
and does not cross the negative real axis. The real Cosine Integral function, which

for the reason just stated is valid only for positive real arguments, is

% cost

Ci(z) = — / =—dt, 2>0 (B.2)

P-4
The series expansion of the real cosine integral function is given by
o) (—1)" 2:2"

Ci(z)=v+Inz+ 5n(on)]

n=1

(B.3)
For large arguments, it is more practical to write the cosine integral in terms of
the auxiliary functions f(z),g(z).

Ci(z) = f(z)sinz + g(z) cosz (B.4)

The auxiliary functions themselves are defined in term of the sine and cosine in-
tegral functions, however for numerical purposes, we may use rational approxima-
tions of f(z) and g(z). For f(z), we have



1 (28401254 a22% + azz?+a
f(:l')=— 8 - 6 > 4 32 : +6($),
T \ 28+ 5126 + bozt + b3z? + by

le(z)| < 5 x 1077

a; = 38.027264 b, = 40.021433

az = 265.187033 &, = 322.624911
az = 335.677320 b3 = 570.236280
aq = 38.102495 by = 157.105423

For g(z), we have

1 (:c8 + a;2% + ayz? + azz? + a4
be s

g(z) == Yy blze T b2$4 n 63272 n b4 ) + 6(3)7
le(z)] < 3 x 1077

a; = 42.242855 by = 48.196927
az = 302.757865 b, = 482.485984
a3z = 352.018498 b3 = 1114.978885
aq = 21.821899 by = 449.690326
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1<z<

(B.5)

1<z<

(B.6)
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APPENDIX C

Numerical Evaluation of Singular Integrals

Consider the integral

I= /_ 11 f(n)dn (C.1)

where the function f(n) is singular at a point 7 in the interval of integration.
A non-linear transformation is available which places quadrature points closely
around the singularity, thus providing a more accurate numerical integration than

standard Gaussian quadrature [11].

Let us consider a third order non-linear transformation of the form

n(7) =a’+ b +ev+d (C.2)

for which we impose the following constraints

dn

& ls=0 (C3)

dp,
Ty ls=0 (C.4)

(1) =1 (C.5)
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7(-1) = -1 (C.6)

Condition (C.3) implies an extrema at 77 while (C.4) implies that the Jacobian of the
transformation has an extrema at 7. The resulting solution of the transformation

is

_ (-9 +3(3*+3)

N
1+35%2 (CT)
_3(v+79)?
where ¥ is the value of 4 for which 7(¥) = 7. This may be determined by
= -7+ 1P+ =7 = 7 - 1P+ 7 (C.9)

Once this transformation if performed, standard Gaussian quadrature is used to
evaluate the integral. Note that the integral of (C.1) has already been transformed
to the interval [-1,1]. This must be done in order to apply the non-linear transform

discussed in this section.
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