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ABSTRACT 

A method for computing the per-unit-length capacitance matrix eind the induc

tance matrix for multiconductor transmission lines in a multi-dielectric mediimi 

is presented. The multi-dielectric medium consists of both planar ajid non-plcinax 

dielectric regions. The formulation is based on em integral equation method for the 

free charge distribution on conductor surfaces eind the polarization cheirge distri

bution on the non-plzmar dielectric-dielectric interfaces. The kernel of the integral 

equation is a space domain Green's function for a layered medium. The numerical 

solution is obtained by the method of moments. 
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CHAPTER 1 

Introduction 

There has recently been much effort in the calculation of parameters for 

multi-conductor transmission lines (MTL) embedded in a layered dielectric media. 

Previous efforts modeling MTL's in a plaiieir multilayered medium have ranged 

from the quasi-static cr quasi-TEM approximations to rigorous full-wave analysis 

[1-5]. The objective here is to extend the quasi-TEM analysis to MTL's in a more 

complicated multi-dielectric medium consisting of planar and non-planax dielectric 

interfaces. 

1.1 Transmission Line Models and the Characterization of VLSI inter

connections 

The study of electrical interconnections in electronic packaging is based on 

transmission line theory. Using transmission line theory, we may evaluate electrical 

performance of packages in terms of coupling noise, reflections, attenuation and 

propagation velocity. General transmission line models are completely described 

in terms of the per unit length (p.u.l.) parameters L, C, R and G. The lumped 

tr£msmission line model for a single line, valid for Az « A, is shown in Figure 1.1 

The expressions describing the voltage and current waveforms along zin 

MTL under time-harmonic excitation are given by 

^M-{W+Mil}W = o (1.1) 
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Figure 1.1: Lumped Transmission Line Model 

^ [ I ] - { [G \+MC]}[V]  =  0  (1.2) 

where [X] is the p.u.L inductance matrix, [C]  is the p.u.L capacitance matrix, 

[i?] is the p.u.L resistance matrix and [G\ is the p.u.L conductance matrix. The 

resistance and conductance matrices represent conductor and dielectric losses, re

spectively. [V] and [/] are the voltage and current vectors. 

Active Line 

^ 

Figure 1.2: Two conductor transmission lines 

Let us consider a two conductor interconnection in order to discuss the 

general characteristics of a MTL interconnection. In this system, one line is active 
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while the other is passive. The transmission line circuit for the pair is shown in Fig

ure 1.2. Using this two conductor model, we will review the following transmission 

line properties. 

1.1.1 Cross Talk 

Coupling noise, or cross talk, is caused by electromagnetic coupling of 

signal lines. In terms of our two line model, the ax:tive line is capacitively coupled 

to the passive line by Cu and inductively coupled by L12. The capacitive and 

inductive coupling coeflBcients are kc = C'12/C'ii and kz = Lx2lLi\, respectively. 

If kc > ki, then capacitive coupling dominates and if ki, > kc, then inductive 

coupling dominates. If kc = ki, there is little or no crosstalk. This may be seen 

by examining the expression for the forward traveling wave on the passive line at 

x=d [6]. This is 

U }D{ t )  =  Y^KC - kL)jVso{t - TD) (1.3) 

where Tb is the the delay time required for a wave to travel from the driver to the 

receiver and Vso(0 = = 0). From this expression, we see that Ujoii) = 0 

when kc  = k z -  However (1.3) is only an approximation, so there may still be some 

crosstalk even when kc = ki. Finally, a word about reflections. Reflections are 

due to impedance mismatches between the transmission line and its terminations. 

In certain cases, these reflections may increase the crosstalk between lines. 

1.1.2 Attenuation And Propagation Velocity 

The attenuation constants and propagation velocities of our line are de

termined by solving the following eigenvalue problem [6] 
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Det[iH - ZY] = 0 (1.4) 

where [l] is the identity matrix, Z = [^] + ju[L] eind Y = [G] + iw[C]. Solving 

the eigenvalue problem, we obteiin the eigenvalues 71 and 72 for the modes sup

ported by the MTL. These are complex eigenvalues where the real pairt represents 

the attenuation constant ajid the imaginary part is the propagation constant for 

each mode. From the propagation constcints, one may determine the propagation 

velocities for the N modes of an N-conductor MTL. 

1.2 Quasi-TEM Analysis 

In the quasi-TEM approximation of electromagnetic wave propagation in 

uniform MTL's, Maxwell's equations reduce to solving Poisson's equation in the 

zero frequency limit with the appropriate boundary conditions. Although confor

med mapping techniques may be used to obtain anailytical solutions of Poisson's 

equation for simple two dimensional transmission line configurations, complicated 

geometries including many conductors and dielectric-dielectric interfaces require 

numerical methods. Among these are the integral equation methods [1] [2], the 

variational method [4], the finite difference and the finite element methods [5]. 

The method used here is the integral equation method. In order to ac

commodate a medium consisting of both planar eind non-planax dielectrics, the 

kernel of the integral equation is the space domain Green's function for a layered 

medium [2]. With this formulation, the boundary conditions at the interfaces be

tween infinite parallel layers are built into the Green's function. Since we do not 

determine the polarization charge at these boundaries, the number of unknowns 

may be greatly reduced. Since this choice of Green's function is not consistent 

with boundary conditions at non-planar dielectric interfaces, the bound charge at 

these interfaces is introduced as an additional unknown. 
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The capacitance matrix is defined electrostatically by 

10) = \cm (1.5) 

where [Q] is the total charge vector, [C] is the capacitance matrix and [V] is the 

potential vector. Our integral equation is bcised on the formulation for the potential 

at r due to some system of charged conductors in a multi-dielectric medium. TaMng 

the equation of (1.5), we have 

where N in the number of conducting lines. From (1.6), we see that the capacitance 

matrix element Cy represents the total charge on the conductor due to the 

potential of 1 volt on the conductor while all other lines are grounded. By 

alternately setting one conductor to 1 volt and grounding all others, we use (1.5) 

to determine all elements of the capacitance matrix. The diagonal elements of 

the capacitance matrix represents the direct capacitance of an active line in the 

presence of a ground plane plus the mutual capacitajices between the active line 

and all other grounded lines [10]. 

N 
(1.6) 

i=i 
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CHAPTER 2 

The Integral Equation Method 

The calculation of the per unit length capacitance, inductance and con

ductance matrices for uniform multiconductor trcinsmission lines reqmres the p.u.l. 

surface electric charge distribution on the conductors embedded in a multi-dielectric 

medium. This charge distribution may be determined from the solution of the in-

tegrcJ equation for the electrostatic potential in terms of the chcirge distribution 

and an appropriate Green's function. 

2.1 Integral Equation Solution to Poisson's Equation 

Consider the general two dimensional electrostatic problem where we seek 

a solution for potential ^(r) corresponding to some distribution of charge p. The 

Poisson equation is 

We can obtain a solution for <f>{r) by solving the Green's function problem. 

This amounts to solving Poisson's equation for a point source located at r'. 

V • (e(r)V?i(r)) = -p(r) (2.1) 

V-(e(r)VG(r|r')) = -<5(r-r') (2.2) 

Thus the Green's function represents the potential at some observation 

point r due to a point source located at r'. The medium for which we will construct 
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the Green's function is a multi-layered dielectric region. The Green's function 

will satisfy the appropriate boundary conditions at the interfaces between infinite 

dielectric layers. Defining S as the area of the domain and C as the boundary of 

5, we apply Green's theorem for ^ cind G in a two dimensional sense to obtain 

I [?i(r)V • (e(r)VG(r|r')) - G(rlr')V • (e(r)V^i(r))] da 
J s 

= f (^(r)e(r)VG(rIr')-G(rlr')e(r)V^(r))-n<;/ (2.3) 
Jc 

For the dielectric geometries of interest, the right hand side term of (2.3) will 

reduce to zero. Consider the region of Figure (2.1). Here we have two dielectric 

regions Si and S2, where S = Si + S2- These regions are bounded by Ci = Fi -|-rf 

and C2 = Fj + r|°, respectively. For this region, we write 

f [<l>{r)V • (e(r)VG(r|r')) - G(r|r')V • (c(r)V^i(r))] da 
•f s 

= / (?^(r)eaVGi(r|r') - Gi(r|r')eiV<6(r)) • fiidl 
JCi 

+ / (?J(r)e2V(?2(r|r')-G2(rlr')e2V<5S(r)).M/ (2.4) 
JCi 

In the limit as —> 0, we have 

/ («i(r)eaVGi(r|r') - (?i(r|r')eiV«i(r)) • n^dl 
JVi 

+ [ {<i>{r)e2VG2ir\r')-G2{r\r')e2V<l>{r))-h2dl 
JT i  
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Figure 2.1: Integration Paths for the Two-Layered Dielectric Medium 



19 

= / {(9(r)eiVC?i(r|r') - C?i(rlr')eiV?i(r)) 
J—00 

- (?i(r)e2VG2(rlr') - G2(rlr')e2V?i(r))} • hrdl (2.5) 

where n = nj. At the interface y = d, we have continuity of the potential and the 

normal component of the electric flux. 

(2.6) 

a^(r) 
dn 

= £2 dM 

d- dn d+ 
(2.7) 

By forcing (2.5) to zero, we recover the following boundary conditions for the 

Green's function at a dielectric interfax:e. 

Gi\^ = G2\d (2.8) 

dGi 
dn 

= £2-dGi 
dn 

(2.9) 

Let us now evaluate the integral over Ff in the limit R —* oo. The 

boundary condition on the normal component of the electric flux as R oo is 

zero, hence 

lim f {<4(r)VGi(rlr') - Gi(rlr')V?i(r)} • hdl 
R-̂ oo jrj° 

= lim f (f>{T)^^dl 
R-^ooJrf ^ ' dn 

(2.10) 
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By forcing this expression to zero, we obtain the boundary conditions on Gi it 

infinity. If we apply the same analysis in region 2 for G2, we obtain the general 

boundary condition on the Green's function at infinity 

lim ^ = 0 (2.11) 
ii-oo dn 

Therefore, the integrals in (2.4) over C\ and C2 are zero «ind we axe left with the 

expression 

/ [«i(r)V • (e(r)VG(r|r')) - G(rlr')V • (£(r)V^i(r))] da = Q (2.12) 
Js 

or, in view of (2.1) and (2.2) 

^(r)<5(r — r')da = J p{T)G(T\T')da (2.13) 

Where the left hand side is simply <1^(1^). 

If we take advantage of reciprocity for the Green's function [8], that is 

G(r|r') = G(r'|r), we may interchcinge r and r' and obteiin the following integral 

equation. 

<f>{T) = J^p{r')G{T\r')da (2.14) 

Let us examine now the types of geometries we would like to consider. 

These are cross sections of multiconductor transmission lines contained in a multi-

dielectric medium with both planar and non-planar dielectric interfaces. This 

generalized geometry is shown in Figure 2.2. Here, Nc represents the total number 

of conductors present, of which Ni are active and N2 are grounded. If N is the 

total number of conductors and non-planar dielectric interfaces, then N — Nc is 
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the number of non-planair dielectric boundaries in the chosen geometry. There aie 

also Nd planar dielectric boundaries for which we will construct a space domain 

Green's function for each layer [2]. Non-plcinar dielectric interfaces will be treated 

using polarization charge as an additional unknown. 

Given a system of Nc charged conductors, where the charge distribution 

resides on the surface of each conductor, the integral equation becomes 

From this expression, the surface charge distribution will be determined for 

the j"' conductor raised to a potential of 1 volt while all others are grounded. Note 

however that the Green's function is determined only for a layered medium. When 

non-pleinar regions aire also included, the effects of these dielectric discontinuities 

on the conductor surface charge distribution must be accounted for. 

Before we construct our solution of the Green's function for the layered 

medium, we should note that the individual layers are considered infinite and 

uniform in the x-direction. In the next section, we will take advantage of this ajid 

construct a solution in the spectral domain. The green's function is then recovered 

by taking the inverse transform of the function in the spectral domain. 

2.2 Spectral Domain Green's Function for a Multi-Layered Medium 

The dielectric layers of the medium are considered uniform in the x-

direction. Therefore, the Green's functions x dependence will be the absolute 

value of the difference in the z components of the source and observation points. 

The Green's function will be assumed to correspond to the potenticil at the obser

vation point {x,y) due to a line source at (0,t/') [2]. For this reason, we may use 

the Fourier cosine transform to define a spectral domain Green's function G which 

(2.15) 
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Figure 2.2: Cross section of a MTL in an Arbitrary Dielectric Medium 
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is independent of x. Note that the cosine transform is used instead of other forms 

of the fourier transform for two reasons. First, it is even symmetric about x = x' 

so that the inverse Fourier transform provides a space domain Green's function for 

which the reciprocity theorem holds. Second, the interval of integration is [0, co], 

as opposed to [—00,00] for the standard form of the Fourier transform. This will 

simplify the numerical evciluation of the Green's function at the observation point 

r. 

G{kx,y\y') = — [ G(r|r')co5[A:x(x — x')]dx (2.16) 
TT JO 

where r locates the observation point, r' locates the source point, G(r|r') is the 

Green's function cind G{kx,y\y') represents the spectral domain Green's function 

which is independent of x. We can write our Green's function G(r|r') in terms of 

the inverse Fourier cosine transform of G{kx,y\y'). 

(?(r|r') = - r G{kx, y\y') cos[fc,(x - x')]dkx (2.17) 
77 JO 

If the above expression is to be useful, we must know the spectra] domain 

Green's function everywhere in the medium. Equation (2.2) can be rewritten as 

follows. 

V2G(rIr') = -8{x - x')8{y - y') (2.18) 

Substituting (2.17) into (2.18) for G(rlr'), we write 

V2(?(rlr') = ^J^V''{Gcos[kx{x-x')]}dkx 

~  ̂Jo {  ̂ j ̂  cos[fci(x - x')]dkx 
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= -6{x-x')Siy-y') (2.19) 

But the delta function 6{x — x') can be expressed in the form 

^(x - x') = - r cos[jtx(x - x')]dh (2.20) 
TT Jo 

Comparing (2.20) with (2.19), we write the one dimensional Green's function prob

lem as 

I ^^-kl\G=-S(y-y') (2.21) 

From which we shall solve for the spectral domain Green's function G. 

Now let us look at a single dielectric layer for an example of how the 

solution of the one-dimensionail Green's function problem is constructed. Figure 

2.3 shows a point source, located at y', embedded in a dielectric layer. 

y = du 

y-y' 

y-dL 

Figure 2.3: Source Point Embedded in a Single Dielectric Later 

The solution of the one-dimensional Green's function problem is of the form 

Gih,y\y') = 

Ae'"^ -t- y <y' 
(2.22) 

Ce*''"-I-y>y' 
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The coefScients A,B,C,D are found by applying boundeiry conditions at y = du 

and y = di,. Henceforth, we will assume the source is located on the boundary 

between two dielectric layers. This is considered general since if the source lies 

within a uniform layer, we divide the layer into two layers of the same dielectric. 

Thus for the i"' layer, the solution of G is 

Gi = Aie'"" + Bie-'"" (2.23) 

for i = 1,2,..., Nd. All A,-, Bi are determined by applying a jump condition at the 

source location y = y' and boundary conditions at all other interfaces. 

The domain in which we seek G is a simple layered dielectric medium. 

The possible cases include an infinite ground plane at y = 0, an additioned ground 

plane above ?/ = 0, and the case of ground at infinity. Figure 2.4 shows the layered 

dielectric structure without regard to how the first eind last layers cire terminated. 

Furthermore the eirbitrary location of the source is denoted as the boundary dk. 

Boundary conditions are now applied at the z"' interface, i ^ k. These 

conditions are continuity of the potential and of the normal electric displacement 

vector. Since G represents the potential due to a point source located a.t y = dk, 

these boundary conditions are written as 

Gi{kx,di\dk) = Gi+i{kx,di\dk) (2.24) 

C: 
dy 

— c«+i-
dG t+i 

y=di dy 
(2.25) 

y=di 

Inserting equation (2.23) into the above boundary conditions, we obtain 

(2.26) 
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Figure 2.4: General Layered Dielectric Medium 
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e„- = e„-+i (2.27) 

Multiplying (2.26) and (2.27) by e'^^' yields 

+ Bi = + 5.+1 (2.28) 

e„- - Bi] = e„+i - B.-+i] (2.29) 

Now if we multiply (2.28) by e^i and then both add and subtract the result 

with (2.29), we have 

Aie^'"'^- = + 6.B.+: (2.30) 

Bi = + UiBi+i (2.31) 

where 

(2-32) 
MCRI 

bi = !zl-^±tl (2.33) 
Z6r: 

Similarly, if we multiply (2.28) by £„•+!, then add and subtract the result 

with (2.29), we find 

A.-+1 = CiAi + hiBie-^""^^ (2.34) 
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Bi+i = + CiBi (2.35) 

where 

Ci = ^rt+l "i" ^ri 
2e Tt+l 

(2.36) 

f t . =  ^rx+l ^ri 
~Te r:+l 

(2.37) 

Finally, if we multiply the J4,+I terms of equations (2.30) and (2.31) and 

the 5,+i terms of equations (2.34) and (2.35) by = 1, we obtain 

the following matrix expressions. 

= Ui 
•Sj+i 

(2.38) 

1 

+
 

1 

= L. 
Ai 

1 

+
 

1 

= L. (2.39) 

where 

U.- = 
Q.g-2fc,(<i<+i-<fj) 

5.g-2fc,(<fi+:-<i.) 
(2.40) 

L.=  Ci ft,-

^^.g—2fci(di+J —di) Qg~2fci(di+i —(ii) 
(2.41) 
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Once the boundary conditions at do and d^d are known, one uses equations 

(2.38) and (2.39) in a top down or bottom up procedure to determine Bk+i in 

terms of Apfd, Bm and j4jt, Bk in terms of Ai,Bi. The coeflBcients A\^B\, Am and 

Bui are then solved for by applying continuity of the potential and the normal 

electric displacement vector jump condition at the interface y = dk where the 

source resides. These axe 

Gi(^kx 1 dk\dk) — Gi+i(^kx,dk\dk) (2.42) 

^t+i • 
dGi. «+i 

dy 
- e,-

y=dk dy 
(2.43) 

y=dk 

Or, more specifically 

Aks'"'^' + = Ai+i + Bk+i (2.44) 

[Ak+ie'^"" - (2.45) 

To demonstrate the calculation of these coefficients, let us consider the 

simple case where an infinite conducting ground plane is positioned at y = 0 and 

the uppermost layer extends to infinity. For this case, we begin by noting that 

from boundary conditions applied at y = 0 and y = oo, we have 

Ai = -5i (2.46) 

ANd = 0 (2.47) 

Using equation (2.38), we begin a top down procedure to obtain Ak+i,Bk+i in 

terms of Bj^d-
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i = Nd-l 

Bsd-i 

0 
= UNd-1 

Bsd 

i = Nd-2 

BNd-2 
= UNd-2 

Bfjd-i 
= UNd-2UNd-l 

0 

B^d 

i — fc -j- 1 

Bk+i 

Nd-\ 0 
= n Ui 

0 

i"=jt+i Bsd 
(2.48) 

which we can express in the more practical form 

Uii Ui2 0 

Bk+i U21 1 
<N BNd 

(2.49) 

where all Uij are known. 

Similarly, using equation (2.39),we can perform a bottom 

obtain Ak,Bk in terms of Ai. 

up procedure to 
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= Li 

i = 2 

•^1 

Az 

53e-2fc.d3 
= L2 

A2 
= L2L1 

^1 

i  =  k - l  

fc-i 
= n Lk-i 

1=1 

•^1 

which again can be expressed in the more practical form 

(2.50) 

Ak Lu LI2 Ai 

L21 L22 
(2.51) 

where all Lij are known. 

At this point, we would like to apply equations (2.44) and (2.45) to solve 

for Ai and Bi^d- Since this is a system of two equations and two unknowns, let us 

write these as 

aAi + bB^d = 0 (2.52) 
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cAi + dB/fd = 

Which we can express in the matrix form 

o—kxdk 

CqICj; 
(2.53) 

a b 

1
 

rH 

1
 

0 

c d Bsd _e-fci£it/£oA:j. 

(2.54) 

Expressions for the terms a, b, c and d will be obtained in the following analysis. 

Expanding (2.49) and (2.51) into their four equations, we obtain 

A;t = Ai(L„-Li2e-2^"^0 = 6Ai (2.55) 

(2.56) 

(2.57) 

Bk+l = U22BNd = ̂A^Nd (2.58) 

which defines ^2, ^3 and ^4. If we apply the above expressions to our boundeiry 

equations at y = we find that 

0  =  6 + 6  (2.59) 

(2.60) 
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c  =  6 - 6  (2.61) 

d = (2.62) 

Finally, solving (2.54), we obtain the following expressions for Ai ajid B^d-

" kMad - be) 

kMad-bc) 

Once Ai and are known, all remaining a,-, Bi are determined by re

peated use of equations (2.3S) and (2.39). 

2.3 Asymptotic Form of the Spectral Domain Green's Function 

The need for an asymptotic approximation of the spectral domain Green's 

function arises as we attempt to take the inverse Fourier transform to recover the 

space domain Green's function. Substituting (2.23) into (2.17), we have 

G(rlr') = - + B„,+ie-'='^) cos[fcx(x - x')]dh (2.65) 
IT JO 

However, we see right away that the integral of the growing exponential over [0, oo] 

will present problems. To illustrate this, consider a uniform medium above an 

infinite ground plane. The coefficients of the spectral domain Green's function axe 

easily determined ajialytically and the above integral may be determined in closed 

form. Numerically, we can only calculate these coefficients for a specific value of k^. 
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Te 
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y=0 

re 
kxV -kxV 

Figure 2.5: Single Dielectric Boundaxy Between the Source and Observation Points 

Evaluation of the integral in this manner is not practical. Instead, let us assume 

that for Icirge we have an asymptotic approximation Goo for G. Hence 

G(rlr') = ̂  I G C0s[fc3:(x — x')]dkx + Goo COs[/:3:(z — (2.66) 

Where kx is a value of kx sufficiently large that the approximation G{kT,y\y') ^ 

Goo{kT,y\y') is justified [2]. 

In order to construct the asymptotic approximation Goo, recall the follow

ing differential equation and corresponding boundary conditions in the spectral 

domain. 

d^G 
d^y 

-klG = 0 

Gi{di) = G{+i{di) 

dGi 
^T,i n oy 

_ dGi+i 
(2.67) 

di 

Consider an arbitrary dielectric boundary, located somewhere between the 

source and observation points, where an attenuated wave is incident. Since at this 
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point, we axe only interested in the transmission and reflection of the wave , we 

will place the boundciry at t/ = 0. Furthermore, let us take the incoming wave to 

have a magnitude of 1 and the reflected and transmitted waves to magnitudes of 

r and T, respectively. Applying boundary conditions at y = 0, we obtain 

r + 1 = r (2.68) 

-er.2r-er.i(r-l) = 0 (2.69) 

From which we obtain the following transmission and refliection coefficients. 

T =  — ( 2 . 7 0 )  
Cr.l + er,2 

r = ^^ (2.71) 
Cr,l + er,2 

For multiple dielectric boundaries between the source and observation 

points, the cascaded transmission line coefficient is 

" Of . 

r= n ^ i ; (2.72) 

This is exactly as expected since the differential equation (2.67) is of the same form 

as that for the voltage along a multi-section transmission line [12]. Therefore, the 

solution of G may be thought of cis the superposition of the direct wave and all 

multiply reflected waves. Each of these waves may be written as an amplitude 

multiplied by an attenuating factor e"'''', where I is the total distance traveled by 

the wave. 
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In our asymptotic approximation of the spectral domain Green's function, 

only the slowest decaying exponentials in will be retained. These correspond 

to those which travel the shortest distance I between the source and observation 

points. The four waves which will be retained in the asymptotic expression are 

shown in Figure 2.6. The accuracy and the necessity of the four wave approxima

tion will be discussed in the next section. 

Let us now develop an expression for the direct wave, which we will denote 

as First, we must determine the magnitude of the wave at the source location. 

For this, we will consider only outward directed waves at the boundary dk-

Applying boundary conditions, we write 

(2.73) 

— = --— (2-74) 
KxCo 

Substituting (2.73) into (2.74), we obtain the magnitude of the upper wave 

= T—f 1 (2-75) 
kx^o{^r,k + ̂r,k+l) 

Therefore, at the observation point y, the expression for the direct wave is 

Gg\k,,y\y') = TBi+ie-'-

= n e-*-'"-"'' (2.76) 
i-k Cr.i -r Cr.i+l 

Similarly, the three reflected waves may be written as an amplitude mul

tiplied by an attenuating factor These are 
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Figure 2.6: Four Slowest Decaying Attenuated Waves 
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B k+1 e 
-kxy 

£k+1 

£k 
y=dk 

A k e  
k x y  

Figure 2.7: Outward Directed waves Emanating from the Source at dk 

q{2) _ f I -r^ _-fc. 
\^r,fc *1" Cr.fc—1 / 2ix^0^T,fc ^T,t "I" ^T.t+l 

-fci {y—dk+2{di;-dic-i)) (2.77) 

<52'= ^r,m+l ^r,m+2 \ 1 
n ^r,m+l Cr,m+2 / ^T,i "i" 

(y—ii)t+2(<iTn+l —y)) (2.78) 

^(4) I ^T,k—1 j I ^r,nt+l ^r,m+2 j 1 ^^r,i 
\^T,K "i" ^T,K—1 J \Cr,m+L ^T,M+2) 2ix^0^r,FC Cr,T "i" ^r,I+L 

X g-*;x(y-<i*+2(<f*-</fc-i)2((im+i-y)) (2.79) 

Neglecting all other reflected waves, the asymptotic approximation Go 

may be written in the following compact form. 

<5" = EGS = Ef(2-80) 
.•=1 i=\ 

where 

1 If • 
^^ = 27^nH^ (2.81) 

^^O^T,k ^r,i T Cr,t+1 
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C2 
\eT,k + er,fc-l/ 

(2.82) 

= ci( (2.83) 
\ Cr,m+1 "1" ^r,ni+2 / 

= C2 ~ (2.84) 
\Cr,7n+l + Cr,m+2/ 

cind 

Yi = y-dk (2.85) 

y2 = yi + 2(4-4-i) (2.86) 

y3 = yi + 2(d^+i-y) (2.87) 

Y, = Y2 + 2{dm+i-y) (2.88) 

2.4 Numerical Comparison of the Spectral Domain Green's Functions 

In the previous section, we developed the asymptotic approximation for the 

spectral domain Green's function. This approximation was constructed in terms 

of four attenuated waves with precisely specified pathlengths. In this section, we 

will discuss the validity of this approximation. 

Consider the layered medium of Figure 2.8 for the purposes of comparing 

the two functions. This medium was selected because the asymptotic expression 
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g r  = 2  
d2 = 3 

obs. 

k=1 
er = 1 

777777777777777777777777777777777777777777 

Figure 2.8: Layered medium used in the comparison of the spectral domain Green's 
function and its aymptotic approximation 

at the observation point contains eJl four waves. We will compare the spectral 

domain Green's function to the asymptotic approximation and determine how the 

value of kx depends on the number of waves taken in the approximation. Also, we 

will be examining the problems encountered when the layered dielectric medium 

contains one or more layers which are much thinner than the other layers. 

The first comparison, shown in Figure 2.9, is of the spectral Green's func

tion and the asymptotic approximation containing all four waves. Note that the 

coefficients of G used to generate these plots were determined numerically using 

the matrix method previously discussed. Here, we see that the asyptotic expres

sion exactly corresponds to G after some value kr. If we choose KT as the value of 

kx at which the relative difference between G and Goo is less than 10"®, then for 

Figure 2.9, fcj- = 2.11. If the number of waves in Goo is reduced, the value of fcx 

increases. This can be seen in Figures 2.10-2.12 where the number of terms in Goo 

goes from three to one. In these examples, the values of kx are 3.15, 6.35 and 7.01, 

respectively. Since the value of M, the number of subintervals into which (0, kx) is 

subdivided, is determined depending on the value of kx, the computation time for 

integrating G over (0, kx) increases. It will become apparent in the next chapter 

that this integration, along with the procedure for computing the coefficients Am+i 
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Figure 2.9: Spectral domain Green's function compared with the four wave asyp-
totic approximation 
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and Bjn+i requires more computation time thzui any other aspect of the method. 

YXL(? 

110.00 

100.00 Analytic 
Aqmplotic 
3-waves 90.00 

80.00 

= 70.00 

60.00 

E 50.00 

S 40.00 

30.00 

20.00 

10.00 

0.00 

0.00 2.00 5.00 1.00 3.00 4.00 

Fourier Variable k x 

Figure 2.10: Spectral domain Green's function compared with the three wave 
asyptotic approximation 

Scaling of the (x,y) coordinates of the geometry also has a significant effect 

on the value of kx- To show this, again consider the layered dielectric geometry of 

Figure (2.8). If we multiply all coordinates by a factor of 10, the resulting plots 

of Figure 2.13 shows that much smaller value, kx = 0.21. However, if we divide 

all coordinated by the same factor of 10, we obtain the opposite result. Figure 

(2.14) shows that kj hcis increaised, to 21.1. this suggests that a scaling routine 

can significantly reduce kr and hence the computation time involved. 
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Figure 2.11: Spectral 
totic approximation 

domain Green's function compared with the two wave asyp-
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Figure 2.12: Spectral domain Green's function compaxed with a single wave asyp-
totic approximation 
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Figure 2.13: Effect of positive coordinate scaling on kr 
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Figure 2.14: Effect of negative coordinate scaling on kj 
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Figure 2.15: Layered medium with a thin layer between the source and observation 
points 

Let us now consider how the asyptotic approximation will suffer when very 

thin layers are included in the layered medium. For this, consider the medium of 

Figure 2.15. Here, a thin layer has been inserted into the previous meduim. In this 

case, the asymptotic approximation Goono longer contciins the attenuated waves 

with the shortest pathlengths. In fact, aside from the direct wave, the waves with 

the shortest pathlengths are those with multiple reflections within the thin layer. 

These are shown in figure 2.16. The comparison of the spectral domain Green's 

function and the two asymptotic approximations are shown in Figure 2.17. Here, 

it looks as if the standard asyptotic expression more closely and more quickly 

approximates the analytical expression compared with the modified asymptotic 

approximation. Actually, the modified asymptotic approximation produces a much 

lower value of kj than the standard approximation. The modified approximation 

yields kj = 12.75 compared to kj = 58.05 for the standard approximation. This 
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implies that the asymptotic approximation based on the four waves of Figure 2.6 

is not the best approximation to G when the multilayered medium contzdns layers 

that are much thinner than the others. In fact, since G essentially decays to 

zero at kx = 23.8, the four wave approximation of Figure 2.6 may be considered 

unnecessary in this case. 

er5=2 
d4=3 

obs=:2 

er4=l 

£r3=2 r\j rv\j 
er2=l 

do=1.6 

d2=1.5 

dk=1 
k = 1 

Not to scale 

Figure 2.16: Four attenuated waves with the shortest pathlengths 
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Figure 2.17: Comparison between asympototic approximations constructed from 
different attenuated waves 
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2.5 Space Domain Green's Function 

The space domain Green's function for the layered mediimi is obtained by 

taJdng the inverse Fourier cosine transform of the spectral domain Green's function. 

As stated in the previous section, the integration over [0, oo] is broken into two 

The constant kx is found by computation and compaxison for every c<ise as the 

vcJue of kx such that the relative difference between the spectral domain Green's 

function ajid its asymptotic approximation is less than 10~®. 

Evaluation of Gk^ at the observation point is performed numerically using 

Gaussian quadrature. The coefBcients and 5„i+i are determined by the 

matrix procedure previously outlined for a specific vcJue of k^. In solving for Gut, 

we simply break up the integral over [0, kx] into M subintervals. 

Finally, Gaussian quadrature is employed to evaluate the sum of integrals. 

In evaluating Goo, we must first recognize that the integral over [A:7,oo] 

has the following closed form solution, for Vi ^ 0 

parts. Let us now substitute G and Goo into equation (2.66). 

G(rlr') = i cos[kx{x - x')]dkx 

+ 

= Gkj- + Goo (2.89) 

1 ^ , 
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r cos[hix - x')]dh = Re {Ei{z)} 
Jkx kx 

(2.91) 

where z = kxYi + jkjix — x'), and Re{E\{z)} is the real part of the exponential 

integral function the numerical evaluation of which is well documented [14]. If we 

insert (2.91) into Go©, we obtain 

where Ci{hT\x — x'\) is the cosine integral function, which may also be evaluated 

numerically [14]. Both the exponential integral and cosine integral functions and 

there numerical approximations are discussed in Appendix A. Our solution for Goo 

for the case where >1=0 now becomes 

Finally, note that the cosine integral is singular at x = x'. When integrat

ing the Green's function over an element which includes the point x = x', a special 

quadrature formula is used. This formula places quadrature points more closely 

around the singuleurity, improving the accuracy of the numerical integration [11]. 

This quadrature formula is presented in Appendix B. 

G^ = -f^CiRe{E^{z)} (2.92) 

If now Yi = 0, equation (2.91) becomes 

(2.93) 

Geo = --Ci[kT\x - x'l) + -j^aRe {E,{z)} (2.94) 
'J" 
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CHAPTER 3 

Numericjd Solution of the Integral Equation 

In the previous chapter, the space domain Green's function was obtciined 

for the layered dielectric medium. Once the Green's function is known everywhere, 

we may proceed with the formulation of the integral equation for the total charge 

distribution on the surfaces of the conductors eind the non-planar dielectric boimd-

aries for given potential boundary conditions. The integral equation will be solved 

numerically using the method of moments [1-3]. 

3.1 Method of Moments solution for the Charge Distribution 

There are two types of interfaces to consider. These are conductor-

dielectric and non-planar dielectric-dielectric interfaces. The geometry, along with 

the discretized interfaces indicated by the dashed lines, is shown in Figure 3.1. 

We are interested in solving (2.8) for the case where the z"' conductor is set at a 

potential of 1 volt, while eJl others are grounded. The integral of the free charge 

density over the i"' conductor boundary due to the conductor charged to 1 volt 

then becomes the Ci: element of the capacitance matrix. 

The potential at a point r on the i"' interface due to the total charge on 

conductor surfaces and dielectric-dielectric interfaces is given by 



Figure 3.1: Cross Section of General Discretized Geometry 
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Figure 3.2: Unit Pulse Function 

^- = E ari(r')G(r|r')rf/' (3.1) 
i=i •'^1 

where o'rj(r') is the total surface chaxge density and N is the total number of in

terfaces, of which Nc are conductor-dielectric interfaces and N — Nc axe dielectric-

dielectric interfaces. The charge distribution on the y* interface may be approxi

mated in a piecewise constant manner as 

<'(r ')=E<'WM .  i  = (3.2) 
l=\ 

where iWj is the number of segments on the interface and P/''^(r') axe unit 

pulse functions defined to be 1 over the segment of the interface cind zero 

everywhere else. Since the unit pulse function is 1 over the entire segment, of 

represents a constant approximation of the charge density on the segment of 

the j"' interface. 

Substituting (3.2) into (3.1), we obtain 

,  [ M ,  1 
V'=T. L G(r|r')a' 

3=1 •'^1 1,/=1 J 
(3.3) 
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We can rewrite this as 

N Afj 
= EE"" L lf\r')G(Ty)df (3.4) 

i=l /=1 

However, P/"'^(r') is only nonzero over the Z"' segment of the j"' interface, ACp\ 

so 

N M] .  
K = EE<'l''/,,„G(r|r')<ii' (3.5) 

J=1 /=1 •'^^1 

Since G(rlr') is known, the integral over is also known. Assuming that r is 

the position vector for the midpoint of the segment of the z"' conductor, let us 

denote this integral as 

= Lj.. 

= /.^,.{G-.r(r|r') + G„(rlr')}<i/' (3.6) 

So that the potential may be written in the following convenient form 

N Mj 
K=EE''l''Zw, (3.7) 

i=l /=i 

The indices of Zkiij represent the value of the integral of the Green's function at 

the midpoint of the fc"' segment of the i"' interface due to the Z"' segment of the 

i''* conductor. 

Recall that the general problem consists of Nc conductor-dielectric inter

faces cind N — Nc dielectric-dielectric interfaces. Furthermore, the interface is 
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subdivided into Mi subinterveils. Equation (3.7) is employed for the point-matching 

procedure used in the method of moments for the numerical approximation of the 

integral equation. By enforcing (3.7) at the center of each segment of the conductor 

contours we obteiin a system of Mi equations for a total of unknowns. 

If there axe no non-planax dielectric regions present, N = Nc and the system is 

solvable. However when non-planar dielectric interfaces cire present, the system is 

underdetermined. In this case another set of J2^NC+I equations is required to 

determine the system. These equations axe associated with the polarization chaxge 

distribution along the dielectric-dielectric interfaces and are obtained by enforcing 

continuity of the potential and the normal component of the electric flux across 

these interfaces. 

The electric field E(r) is expressed in terms of the potential by 

E(r) = (3.8) 

Substituting (3.1) into the above expression, we have 

N 
E(r) = i CTiW)a(T\r')dr (3.9) 

i=i -"^3 

Bringing the V operator inside the integral, we have 

E(r) = -E/ cTTi(r ')VG(rlr ')dr (3-10) 
j=i 

So we must derive an expression for VG(rlr'). It is 

VG(r|0 = (4 + s|-)(;(r|r') 
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= X—^ f kxCf sm[kx{x — x')]dkx 
'JT Jo 

1 dG 
y~ I IT cos[A:i(x — x')]dkx (3.11) 

TT Jo ay 

At this point, we must justify talcing the derivative of the asymptotic ap

proximation in (3.11). For this, let us consider the simple layered medium of Figure 

3.3. For this case, we will compare the derivative of the asymptotic approximation 

with the derivative of the analytical approximation as functions of k^. Recall that 

comparisons of the Green's function and the asymptotic approximation were made 

previously in chapter 2. The comparative plot of the derivatives of G and Goo is 

shown in figure 3.4, respectively. 

gr  =2  
6o = 3 

obs. 

d ^ = 1  

k=1 
Er = 1 

777777777777777777777777777777777777777777 

Figure 3.3: Layered geometry for analytic and asymptotic spectral domain Green's 
function comparisons 

Substituting for the spectral domain Green's function G for a point r in 

the (m + 1)'^ interface into (3.11) yields 

VG(rlr') = - kx sm[kx{x - x')]dkx 



58 

Yx 1(? 

Z -15.00-

-25.00!-

Anaiytic 

Asymptotic 

0.00 ZOO 4.00 
Fourier variable k 

6.00 

Figure 3.4: Comparison of the derivatives for the analytic and asymptotic spectral 
domain Green's functions 
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— 55^ — / e sin[fci(x — 
TTt Jkr 

+ y~J^ kx (Am+ie''''^ - Bm+ie cos[kx{x - x')]dkx 

t=l •^''T 
(3.12) 

where the ^ sign of the fourth tenn is specifically — for £ = 1,2 and + for i = 3,4. 

This is due to the sign obtained from taking the derivative dYildy. Since in the 

first and third terms Am+i and Bm+i axe in genereJ only solvable numericedly for a 

specific value of k^, Gaussian quadrature is used to evaluate a sum of integrals over 

subsections of the interval (0, kx) where Am+i and Bm+i are taken to be constants 

calculated using the value of k^ at the quadrature points of each subinterval. On 

the other hand, the integrals over (T, oo) are solvable analytically and axe found 

in tables. Hence the final expression for VG(r|r') becomes 

X {yj  sin[fcr(2; — a:')] + (x — x') cos[A:r(z — x')]} 

+ 

. I f  (3.13) 

X {Vi cos[fcr(x — x')] — (x — x') sin[/:r(x — x')]} 
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Notice that the second and fourth terms are singular when both x = x' cind = 0. 

This will occur when the observation point lies at the center of the source interval 

over which we are integrating. To evaluate these integrals, we need to extract the 

singularity and calculate the integraJ in the Cauchy principle value sense [5]. 

To complete the set of equations, we apply boundary conditions at the 

dielectric-dielectric interfaces. First, the normal component of the electric flux 

must be continuous across the dielectric-dielectric interfaces. Consider cin arbitrary 

interface between two regions with dielectric constants ci and £2, with the normal 

vector n pointing into the region of At this boundary, we write 

By examining equations (3.10) ajid (3.11) we notice that in the limit as r r' E(r) 

involves the integration of VG along Cj, j = Nc-i-1, Nc 2,..., N, which includes 

the singular point r = r'. In order to extract this singulaurity, let us exajtnine the 

singular nature of the Green's function. In an arbitrary medium such eis ours, the 

Green's function may be written as the superposition of primary cind secondary 

contributions, where the primary term is defined to be the potential at r due to a 

line source at r' in the absence of any medium interfaces. 

Although the secondary term involves the effects of dielectric interfaces and ground 

planes on the potential, it does not contain any singularities. Therefore the primary 

term, which is simply the free space Green's function in two dimensions, is the one 

responsible for the singular nature of the Green's function 

eiEi(r) • h = e2E2(r) • n (3.14) 

G(rlr') = (?'(r|r') -f (9^(rlr') (3.15) 

G"'(r|r') = r-^ln|r-r ' |  (3.16) 
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X 

Figure 3.5: Arbitrary Dielectric Interface 

Thus, the singularity of VG(r|r') is solely due to VC, which is 

To extract the singularity, consider the dielectric interface of Figure 3.5. 

Substituting (3.15) into (3.10) yields 

E(r) = -V f aT{r'){GP'{r\T') + G'ir\r')}dl' 
Jc 

= EP(r) + E'(r) (3.18) 

where in the limit r —» r', only the primary term EP(r) involves integration over 

the singularity. Bringing the V operator inside the integral sign to the Green's 

function, we may write the primary electric field term in the following mainner. 
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E'W = ^Vjf,ri.(r')b|r-r'|<«' (3.19) 

= + X/r(r')Vto|r-r'K 

Only the integration over Ac involves the singular point r = r*. Let us write 

VG''(r|r') in terms of the unit normal eind unit tangent vectors on Ac. 

Vln|r-r ' |  = ^(Vln|r-r ' l)n + ^  (Vln [r -  r'j)  f  

51r-r ' l^ , 51r-r ' | .  
n + rr. 1 

dn | r-r ' |  

1——r [ncos0 + isin^l 
| r  —r'l  J 

dt 

(3.20) 

If we assume <T2-(r') and the unit vectors n and i are constcint over the interval Ac, 

we obtain 

lim 
Ac—O 

/ oT(r')Vln |r — rV' = lim crln / dl' + i f ,  ^  ,  dl'\ 
J AC Ac-o [  J  AC \T-R'L yAc|r-r ' |  j  

(3.21) 

The assumption that n and t are constant vectors over Ac is valid since we will 

be approximating «l11 interfaces in a piece-wise linear manner. To evaluate the two 

right hand side integrals of (3.21), let us consider the geometry of Figure 3.6. Here, 

for a small angle d<f>, we obtain the following geometric relationship 



Figure 3.6: Geometry relating Ac and the obsevation point P 
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dl' = d(j) (3.22) 
cos 6 

Thus the two right hand side integrals of (3.21) are 

/ = n 
J Ac |r — r'l 

(3.23) 

f sin 9 , ,, / •; = / tan <f>d(f> 
J Ac r — r' J<t,i 

1 1 
(3.24) 

COS <f)2 COS (f)i 

where Q. is the angle subtended by Ac as seen from the observation point P. In 

the limit as r —» r' and as Ac 0, the right hand side integrals of (3.21) become 

where the sign in (3.25) depends on whether we approach the boundary from the 

positive or negative side, respectively. Note that the positive side is defined to be 

the region into which n points. 

At this point, from (3.15) in view of (3.22) and (3.23), we may write the 

primary field at a point approaching the dielectric boundary as 

(3.25) 

(3.26) 

for r 6 C and where PrJ denotes the Cauchy principle value of the integral. 
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In general, for our system of conductors and dielectric-dielectric interfaces, 

the electric field at point r on one of the dielectric-dielectric interfaces becomes 

= Prf <JT{v')WG{T\vyi' ± 
i=i •'cj 

(3.28) 

for r 6 Cj, i  =  N g  +  l ,  N c  +  2 , N ,  and where Ci represents the dielectric constant 

of the planar region in which a given non-planax region of £2 resides. 

Let us now apply continuity of the normal component of the electric flux 

at the non-planar dielectric interfaces. Substituting (3.28) into (3.14), we have 

^  r  
-eiYl P"" t^Tir')VGiT\r') • ndl' 

j=i 

gT(rO 
2 

0T(r')e2 
= -€2^ Prf <Tr(r')VG(rlr') • ntf/' 

j=l •'cj 

Simplifying,we have 

(3.29) 

0T(r')VC?(r|r') • hdl' = 0 (3.30) 

Substituting the approximations of <Tr(r) and <7T(r') into the above expression 

yields the second set of equations. 

t N . 
Pr/^^„,VG(r|r' ) .M' = 0 (3,31) 

This represents our second set of equations which completes the matrix approxi

mation of the problem. 
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The full matrix formulation may be written in the convenient form of 

N MJ 

i=l 1=1 

Vi i = 1,2,...,Nc 

0 i  = Nc^l, . . . ,N 
(3.32) 

where 

G(r|r')^fr 

Zkiij  = -

2^)- PrS^c^:^VG{T\r ') .ndl '  

i = 1,2,..., A'c 

i = iVc + Ij —5 ^ 

k ^ I OT i ̂  j (3.33) 

i = Nc + 1,..., N 

k = I and i = j 

This system of equations may be written matrix form as 

[Zn] [Z12] 

[Z21] [Z22] 

[ZI N ]  ' ki] ' " [^l] ' 

[Z2 N ]  [C^2] 
= 

[V2] 

[Znn] WN] [0] 

(3.34) 

where the individual Zij  matrices are of dimension M,- x Mj, the a-j are Mj x 1 

vectors and the Vi axe M,- x 1 vectors. 

To simplify the implementation of (3.34), a global numbering system is 

useful. Again, we have N interfaces, of which i = 1,2,..., A'c represent conductor 
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surfaces and i = Nc + 1, Nc + 2,N represent the dielectric-dielectric interfaces. 

Each of these interfaces has Mi subsections. Hence a global system Z<r = V may 

replace the previous 

Z\1 Zi2 • • • Zi^ntot 

Z2I Z22 • • • Z2,ntot 
• • • • 
• • • • 

<72 
= 

V2 

• • • • 

Zntot,\ Z-nXot,2 ' ' " Zntot,ntot ^ntot 0 

where ntot denotes the total number of subsections on all interfaces. In 

(3.35), every subinterval is individually numbered. Notice that cr is the total charge 

density on all subintervcds due to one conductor charged to 1 volt while all others 

are grounded. This process must be repeated for every conductor being alone 1 

volt in order to obtain the capacitance matrix. Although the system Za = V 

must be solved Nc times, the Z matrix is always the same, thus it need only be 

constructed once. 

3.2 Calculation of the Per Unit Length Capacitance, Inductance and 

Conductance Matrices 

Losses in dielectric material result in a complex permittivity, e. 

€ = e'- je" (3.36) 

The effect of a lossy medium appears in the space domain Green's function, where 

a complex permittivity gives rise to complex coefficients Ai and Bi. For a MTL in 

a lossy medium, the resulting Z will be complex, consequently the a matrices are 

also complex 
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[<T] = [c7ii]+j[o-/] (3.37) 

Let us now introduce a complex Nc x Nc matrix [C]. In the lossless case, 

the p.u.l capacitcince is related to the p.u.l charge matrix by the electrostatic 

expression 

(Q1 = [C] W (3-38) 

However, since [Q] and thus [C] axe complex, [C] does not represent the p.u.l ca

pacitance matrix with which we axe familiar. Let us rewrite the above electrostatic 

expression as 

[Q] = [C][F] (3.39) 

The individual C{j elements may be thought of as the total complex capacity of 

the conductor due to the conductor being charged to 1 volt. In terms of the 

complex charge density components cf, the elements of the C matrix are 

= E (3.40) 
k=l ^ 

Now that [C] is known, we may write our admittance matrix in the fol

lowing form [13]. 

Y = juC 
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= —uCj + juCr 

= G + juC (3.41) 

Therefore, our p.u.l. capacitance and conductance matrices axe given by 

C = CR (3.42) 

G = -uCi (3.43) 

For lossless lines, we can express the p.u.l. inductance matrix in terms 

of the free space capacitance matrix, that is the capacitance matrix obtained by 

replacing the multi-dielectric medium with free space [1]. 

i = 5IC0I-' (3.44) 



70 

CHAPTER 4 

Numerical Results 

A Fortran program was written to calculate transmission line parameters 

using the previously described method. The input data consists of the locations 

of ground plajoes cind dielectric layers, a pointwise representation of conductor-

dielectric and dielectric-dielectric interfaces, and the diielectric constaints and loss 

tangents at the frequency of interest. The program provides the p.u.l. capaci

tance, inductance and conductance matrices. In the following sections, a number 

of examples are presented to illustrate the accuracy and the ability of the method 

to handle complicated dielectric structures. 

4.1 MTL in a Uniform Layered Medium 

In this example, we have three conducting lines in a three layered dielectric 

medium. Two of the lines have rectangular cross-section while the third has a cir

cular cross-section. Each of the rectangular lines is discretized into 12 subintervals 

while the circular line is approximated by a 12 sided polygon. This configuration 

is shown in Figure 4.1. The numerical results are given in Table 4.1. 

The number of subintervals per conductor for this example were chosen 

in order to compare with the cited references. For rectangular conductor cross 

sections, three subintervals per side is usually sufficient for accurate results. More 

subintervals may be used, but the slight increase in accuracy may not warrant 

the increased computation time. The exception to this is the case where one 
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(1,0.1) 

(1.1,0.3) 

m 
8r = l 

0.9 

(-0.1,0.7) 

WA 

(-0.3,0.6) S r = 4 . 5  

0.5 
(0,0.4) 

(0,0.1) Sr-6.8 

77777777777777777777777777777777777777777777777 0 

Figure 4.1: Three Conducting Lines in a Three Layered Medium 
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RESULTS REFERENCE [1] REFERENCE [2] UNITS 

Cii 3.457 3.410 3.523 pF/cm 
C\2 -0.691 -0.696 -0.683 
Ci3 -0.071 -0.072 -0.072 
C22 1.267 1.259 1.244 
C23 -0.136 -0.131 -0.130 
C33 0.348 0.341 0.338 

Lii 2.370 2.299 2.331 nH/cm 
Zfl2 1.198 1.175 1.183 

Lis 0.785 0.768 0.773 

Z-22 4.918 4.919 4.965 
L73 1.985 1.989 1.996 

L33 5.962 6.128 6.163 

Table 4.1: Results for the MTL in a Uniform Layered Medium Example. 

conductor lies dierectly above another, thus shielding the upper conductor from 

the ground plane. In this case, it has been found necessary to increase the number 

of subintervals on the horizontal sides of the conductor. For this type of problem, 

six to eight subinterveds on the horizontal sections of the conductor surfaces will 

produce accurate results. 

4.2 Dielectric Coated Wires 

Consider the two-wire ribbon configuration of Figure 4.2. This ribbon con

sists of two identical wires coated with a dielectric. Each of the circular interfaces 

is approximated by a twelve-sided polygon. For the conductor-dielectric interfaces, 

only one subsection per side is used. For the dielectric-dielectric interfaces, three 

subintervals per side are used. In calculating the capacity of the ribbon, one of the 

wires is assumed active while the other is grounded. 
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3s, 
a = 1.0 
b = 2.0 

Figure 4.2: Two-wire Ribbon 

RESULTS REFERENCE [7] UNITS 
CAPACITANCE 
Without dielectric 

0.223S 0.225 pF/cm 

CAPACITANCE 
with dielectric 

0.4012 0.400 pF/cm 

Table 4.2: Results for Two-wire Ribbon with and without the dielectric coating 
present 
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4.3 Dielectric Coated Microstrip Line 

Consider the microstrip structure of Figure 4.3. This microstrip is thinly coated 

with a dielectric material. The conductor surface is discretized into twelve subsec

tions. The dielectric coating is actually modeled as a thin layer intersecting the 

conductor, on which we add a small hump over the top of the line. The dielectric-

dielectric interface between the hump and air is a piecewise linear approximation 

of 12 subsections. The calculated capacitance of this line, with and without the 

dielectric coating, is given in Table 4.3. 

£^= 6.8 
77777777777777777777777777777777777777777777 0 

Figure 4.3: Dielectric Coated Microstrip Line 

RESULTS Units 
w/o coating w/ coating 

Capacitance 2.487 2.565 pF/cm 
Inductance 2.013 2.011 nH/cm 

Table 4.3: Results for the Microstrip Line with and without the dielectric coating 

4.4 Differential Lines in the Presence of a Vertical Dielectric Literface 

Consider a pair of differential lines in the multi-dielectric medium of Figure 4.4. 

Here, we axe concerned with the variation in the self and coupling capacitances 

of the lines when the vertical dielectric interface between dielectrics 1 and 2 is 
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Dielectric 1 

8r = 5.0 

- y=600 

Dielectric 2 

£r = 3.5 

y=500 
-100 , 450) 400,450) 

8r = 3.9 
(100.350) (-400 , 350) y=300 

Sr = 11.9 

NOT TO SCALE 
777777777777777777777777777777777777777777777777777777 y=0 

Figure 4.4: Differential lines in the presence of a vertical dielectric interface 

introduced. Each conductor is discretized into 20 subintervals while the dielectric-

dielectric interface is divided into 36 subintervals. The results with and without 

the vertical dielectric interface are given in Table 4.4. 
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RESULTS UNITS 
w/o DieL2 w/ Diel.2 

On 1.92S9 1.8741 pF/cm 
Ci2 -0.3544 -0.3538 
C22 1.9289 1.9147 
Lu 3.5816 3.5816 nH/cm 
L\2 0.8751 0.8751 
L22 3.5816 3.5816 

Table 4.4: Results for the Differential Lines with and without DIELECTRIC 2 
present 
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CHAPTER 5 

Computation Time 

The time required to calculate the p.u.l. capacitance and inductance matrices 

vciries depending on whether the kernel of the integral equation is the free space 

Green's fimction or the layered medium Green's function. Given the same num

ber of unknowns, the free space method is much faster than the layered medium 

method. However, as dielectric layers zire added, the number of unknowns required 

for the free space method increase. For the layered medium method, the number 

of unknowns remain the same as the number of dielectric layers increases. 

5.1 CPU time Comparison Between Methods 

Consider the single conductor line of Figure 5.1. The single conductor is discretized 

intol2 subsections. For the free space method, each dielectric layer interface ex

tends from -8.0 to 8.0 in the x-direction and is subdivided into 20 subsections. As 

the number of layers is increased, Figure 5.2 shows how the number of unknowns 

diifer between methods. As the number of unknowns N increases, the number of 

elements of the matrix increases at the rate iV^. Consequently, the time required 

to construct and invert the matrix is eJso increased. Figure 5.3 compares the CPU 

time between the methods as the number of layers is increased. Beyond three 

layers, the CPU time required for the free space method exceeds that required for 

the layered medium method for out one conductor problem. For many conductor 

problems however, the free space method will generally result in lower CPU times. 
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Figure 5.1: Single Conducting Line in a Multilayered Medium 
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Figure 5.2: Comparison of number of unknowns between methods 
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Figure 5.3: Comparison of CPU time between methods 
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CHAPTER 6 

Conclusions cind Future Directions 

In this thesis, a method for computing the p.u.l. capacitance [C], conduc

tance [G], and inductance [L] matrices for multiconductor lines in a multi-dielectric 

medium was presented. The formulation is quasi-TEM based on an integral equa

tion solution of Poisson's equation for the electrostatic potential. The kernel of the 

integral is the Green's function for a layered dielectric medium from a paper by 

W. Delbare, et al. The integral equation was solved numerically using the method 

of moments while applying potential boundary conditions at conductor surfaces 

euid continuity of the normal electric flux at non-planar dielectric interfaces. The 

solution of the system weis in terms of the free charge distribution on the conductor 

surfaces and the polarization charge distribution on the non-planar dielectric inter

faces. The direct result is the capacitance matrix where the element C,j represents 

the sum of all the free charge on the i''' conductor surface while the j"' conductor 

is active and cill others are grounded. When lossy dielectrics are included, the 

conductance matrix for the multiconductor transmission line is obtained in terms 

of the imaginary paxt of the capacitcince calculation. The inductaince matrix is 

then determined using a TEM expression in terms of the free space capacitance 

matrix. 

The multi-dielectric medium that we can handle consists of both planar 

and non-planar dielectric regions. Therefore, this method may be useful in the 

eifects of thin dielectric layers and other irregular shaped dielectric interfaces on 

transmission line parameters and properties such as cross-talk and characteristic 

impedance. A Fortran program was written and several examples were considered. 
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The first two examples are used to show that the treinsmission line paxcimeters 

calculated using this method are consistent with examples found in the literature. 

Later examples are used to show the variety of problems which may be considered 

using the program. Comparisons of the CPU time of the program with methods 

using the free space Green's function as the kernel of the integral equation were 

made. Here, it was shown that as the number of dielectric layers was increased, 

the number of unknowns differ greatly between the methods and at some point the 

CPU time required to calculate the matrices using the free space Green's function 

method exceeds this program. 

Finally, it appears the methods described here could easily be extended to 

three dimensional structures in a medium of uniform dielectric layers and irregular 

dielectric boundaries. The spectral domain Green's function could be applied to 

the uniform layered medium and hence the Green's function in three dimensions 

would be the double inverse transform of the spectral domain Green's function. 
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APPENDIX A 

The Exponential Integral 

The complex Exponential Integral function E\{z) is defined as 

Ei{z)=I^ —dt, |argzl<x (A.l) 

where z = x + iy .  Here, we assume that the path of integration does not include 

the origin and does not cross the negative real axis. For numerical computations, 

the following series expansion is used. 

Eiiz)  =  -7- Inz  -  ̂  ̂ ,  | a rg2 |<r  (A.2)  
n=i 

where 7 = 0.5772156649 is Euler's constant. The symmetry relation for the Expo

nential Integral is 

Ei{z) = Eiiz)  (A.3) 

From a practical staindpoint, (A.2) is not useful for large complex argu

ments since the rate of convergence is much slower. For |z| > 10 or |y| > 10, it is 

convenient to use the following approximation [15]. 

0.711093 0.278518 0.010389 ,, 
^ z + 0.415775 ^2-1-  2 .29428 2  -1-  6 .2900 <3x10 

(A.4) 
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APPENDIX B 

The Cosine Integral 

The complex Cosine Integral function is defined as 

roo cos t 
Ci{z) = -J — i a r g 2 < 5 r |  ( B . l )  

where z = x + iy.  Again, the path of integration is assumed to exclude the origin 

and does not cross the negative real axis. The real Cosine Integral function, which 

for the recison just stated is vcilid only for positive real arguments, is 

TOO ros i 

Ci{x) = -  / dt ,  X > 0 (B.2) 
Jx t 

The series expansion of the real cosine integral function is given by 

«(x) = . + l„x + i;(^ (B.3) 

For large arguments, it is more practical to write the cosine integral in terms of 

the auxiliary functions f(x),g(x). 

Cz(x) = f(x)sinx + ff(x)cosx (B-4) 

The auxiliary functions themselves are defined in term of the sine and cosine in

tegral functions, however for numerical purposes, we may use rational approxima

tions of f(x) and ^(a:). For /(x), we have 
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f ( x )  =  - ( +  +  +  +  .  
^ X Vx8 +61x6 +62a:''+ 63x2 

-7 |e(x)| < 5 X 10 

ci = 38.027264 61 = 40.021433 

02 = 265.187033 h = 322.624911 

03 = 335.677320 63 = 570.236280 

04 = 38.102495 64 = 157.105423 

For ^(x), we have 

1 < X < c» 

(B.5) 

, , 1 f+ aix^ + a2x'^ + asx^ + a4\ . , , 
= ? 1 z' + + isx' + iJ + 

|e(x)| < 3 X 10"'' 

ci = 42.242855 h = 48.196927 

a2 = 302.757865 62 = 482.485984 

03 = 352.018498 63 = 1114.978885 

04 = 21.821899 64 = 449.690326 

(B.6) 
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APPENDIX C 

NumericeJ Evaluation of Singular IntegrzJs 

Consider the integral 

/ = 
Li 

(C.l) 

where the function /(rj) is singular at a point f j  in the interval of integration. 

A non-lineax transformation is available which places quadrature points closely 

around the singularity, thus providing a more accurate numerical integration than 

standard Gaussian quadrature [11]. 

Let us consider a third order non-linear transformation of the form 

Vil)  = + cy + d (C.2) 

for which we impose the following constraints 

(C.3) 

(C.4) 

7/(1) = 1 (C.5) 
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7?(-l) = -1 (C.6) 

Condition (C.3) implies an extrema at f j  while (C.4) implies that the Jacobian of the 

transformation has an extrema at f}. The resulting solution of the transformation 

is 

(7 - 7)^ + 7(7^ + 3) . 

(C.8) 

where 7 is the value of 7 for which 77(7)  =  f j .  This may be determined by 

15' - 111"' + If -f- If - 1|)"' + V (C.9) 

Once this transformation if performed, standard Gaussian quadrature is used to 

evaluate the integral. Note that the integral of (C.l) has already been transformed 

to the interval [-1,1]. This must be done in order to apply the non-linear transform 

discussed in this section. 
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