
INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order. 

UMI 
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600 





EROSION PARAMETER IDENTIFICATION IN OVERLAND FLOW AREAS: 

APPLICATION OF A GLOBAL AND LOCAL SEARCH ALGORITHM 

by 

Vicky Lynn Freedman 

A Thesis Submitted to the Faculty of the 

SCHOOL OF RENEWABLE NATURAL RESOURCES 

In Partial Fulfillment of the Requirements 

For the Degree of 

MASTER OF SCIENCE 
WITH A MAJOR IN WATERSHED MANAGEMENT 

In the Graduate College 

THE UNIVERSITY OF ARIZONA 

1 9 9 6  



UMI Number: 1378991 

UMI Microform 1378991 
Copyright 1996, by UMI Company. All rights reserved. 

This microform edition is protected against unauthorized 
copying under Title 17, United States Code. 

UMI 
300 North Zeeb Road 
Ann Arbor, MI 48103 



2 

STATEMENT BY AUTHOR 

This thesis has been submitted in partial fulfillment of requirements for an 
advanced degree at The University of Arizona and is deposited in the University Library to 
be made available to borrowers under rules of the Library. 

Brief quotations from this thesis are allowable without special permission, 
provided that accurate acknowledgment of source is made. Requests for permission for 
extended quotation from or reproduction of this manuscript in whole or in part may be 
granted by the head of the major department or the Dean of the Graduate College when in 
his or her judgment the proposed use of the material is in the interests of scholarship. In 
all other instances, however, permission must be obtained from the author. 

APPROVAL BY THESIS DIRECTORS 

This thesis has been approved on the date shown below: 

' Dr. Mariano Hernandez 
Cooperating Scientist, USDA-ARS 

Ha Cn—V 
Dr. D. I^hillip Guertin 

Associate Professor of Watershed Management 

Dr. Richard H. Hawkins 
Professor of Watershed Management 

Date 



3 

ACKNOWLEDGMENTS 

I would like to express my gratitude to those who contributed to the completion of 
this work. My sincerest thanks to my major advisor, Dr. Vicente L. Lopes, who provided 
both guidance and economic support throughout the duration of this work and my 
academic career at the U of A, and contributed to my understanding of hydrology, 
hydraulics and erosion mechanics. I am grateful and indebted to Dr. Mariano Hernandez, 
who volunteered his time as my thesis director while Dr. Lopes was on sabbatical, and 
guided me through optimization theory and the modeling of hydrological processes. I 
would also like to express my gratitude to Dr. D. Phillip Guertin, who served as my major 
advisor and editor of this manuscript in Dr. Lopes absence, and to Dr. Richard H. 
Hawkins, whose valuable comments contributed to my understanding of modeling 
hydrological processes and the completion of this manuscript. 

I would also like to thank Mary Kidwell at the USDA-ARS for providing me with 
rainfall simulator plot data, Nick Mokhotu for providing Kendall watershed data, and 
Carolyn Audilet of the Bio-Sciences East Computer Lab for allowing me access to 
computers even when the lab was closed Finally, many thanks to all the friends and 
family members who supported me throughout this research, but in particular, my 
sincerest gratitude to my husband, Mario, without whose love, support and sacrifice, this 
work would have not been possible. 



for my husband, Mario 



5 

TABLE OF CONTENTS 

ABSTRACT 13 

INTRODUCTION 14 

Problem Statement 16 

Objectives 17 

Approach 17 

Benefits 19 

LITERATURE REVIEW 21 

Models of Soil Erosion 21 

Rainfall Simulators and Rainfall Simulator Plots in Soil Erosion Research 23 

Erosion Processes 23 

Erosion Induced by Raindrop Impact 25 

Flow-Induced Erosion 26 

Hydraulic Roughness 28 

Soil Erodibility 29 

Erosion Parameters 30 

Automated Techniques 31 

Objective Function 32 

SIMPLE LEAST SQUARES ESTIMATOR 32 

MAXIMUM LIKELIHOOD ESTIMATION 33 



6 

HETEROSCEDASTIC MAXIMUM LIKELIHOOD ESTIMATOR 34 

Parameter Optimization 37 

THE SIMPLEX ALGORITHM 38 

Global Optimization 40 

THE SHUFFLED COMPLEX EVOLUTION -

UNIVERSITY OF ARIZONA ALGORITHM 40 

Difficulties In Parameter Optimization 42 

INTERDEPENDENCE BETWEEN MODEL PARAMETERS 43 

INDIFFERENCE OF THE OBJECTIVE FUNCTION 

TO VALUES OF INACTIVE PARAMETERS 43 

DISCONTINUITIES IN THE RESPONSE SURFACE 44 

PRESENCE OF LOCAL OPTIMA DUE TO THE 

NON-CONVEXITY OF RESPONSE SURFACE 44 

Data Calibration 44 

METHODS 47 

The Model 47 

The Hydrologic Component 47 

The Infiltration Component 49 

The Erosion Component 50 

Entrainment by Raindrop Impact 51 

Entrainment by Flow 52 



7 

Sediment Deposition 54 

The Data 54 

Determining Values of Hydraulic Parameters 57 

True Parameter Values 58 

Treatment of Systematic Error 60 

Parameter Identification 61 

Convergence Criteria 62 

Methodology Used for Comparison 63 

RESULTS AND DISCUSSION 64 

Synthetic Data Case 64 

RESPONSE SURFACES 65 

THE ERROR-FREE DATA CASE: 

THE TWO-PARAMETER PROBLEM 70 

THE ERROR-FREE DATA CASE: 

THE THREE-PARAMETER PROBLEM 74 

Analysis of the Results of the Synthetic Data Case 75 

ESTIMATION OF ACTIVE AND INACTIVE PARAMETERS 77 

EFFECT OF ALGORITHM AND OBJECTIVE FUNCTION ON 

ACTIVE AND INACTIVE PARAMETERS 80 

EFFECT OF ALGORITHM AND OBJECTIVE FUNCTION 

ON FLOW-INDUCED EROSION EQUATIONS 86 



8 

OBJECTIVE FUNCTION 87 

BEST VALUE OF OBJECTIVE FUNCTION 

AND AVOIDANCE OF LOCAL MINIMA 88 

DATA SET VARIABILITY 94 

EVALUATION OF FLOW-INDUCED EROSION EQUATIONS 100 

OPTIMIZATION PROBLEM SELECTED FOR 

NATURAL DATA STUDIES 101 

Analysis of Plot Data 102 

ESTIMATION OF HYDRAULIC PARAMETERS 103 

TRUE VALUES, INITIAL VALUES 

AND PARAMETER BOUNDS 103 

SEDIMENT GRAPHS FOR RAINFALL SIMULATOR PLOTS 106 

PROCESSES OF DEPOSITION AND ENTRAINMENT 118 

ACTIVATION OF EROSION BY HYDRAULIC SHEAR 119 

Analysis of Watershed Events 120 

PARAMETER ESTIMATES 120 

CONCLUSIONS AND FUTURE RESEARCH 123 

Summary and Conclusions 123 

Recommendations for Future Research 126 

APPENDIX A 128 

LITERATURE CITED 165 



LIST OF FIGURES 

9 

Figure 4.1. Kf -Tc Contour Plots for Equation 1 67 

Figure 4.2. Kf -Tc Contour Plots for Equation 2 68 

Figure 4.3. Kf -TC Contour Plots for Equation 3 69 

Figure 4.4 Kj - Kf Contour Plots for Equation 1 71 

Figure 4.5. Ki - Kf Contour Plots for Equation 2 72 

Figure 4.6. Kj - Kf Contour Plots for Equation 3 73 

Figure 4.7. Optimization procedures associated with the highest estimation error 
for each parameter. Results from 3-parameter problem and 2-parameter 
(Krt) optimization problems 83 

Figure 4.8. Optimization procedures associated with the highest estimation error 
for each parameter. Results from 2-parameter problems (Kj-Kf) shown 
above for tc= 0.502 and xc= 0.0 84 

Figure 4.9. Comparison of response surfaces for HMLE and SLS criteria 
(Equation 2, dry run, 15% slope, p = 0.50) 89 

Figure 4.10. Comparison of response surfaces for HMLE and SLS criteria 
(Equation 2, wet run, 10% slope, p = 0.25) 90 

Figure 4.11. Comparison of response surfaces for SCE-UA and Simplex algorithms. 
(Equation 2, dry run, 10% slope, HMLE, p = 0.50) 91 

Figure 4.12. Comparison of response surfaces for SCE-UA and Simplex algorithms. 
(Equation 2, dry run, 10% slope, SLS, p = 0.25) 92 

Figure 4.13. Number of best estimates associated with each initial moisture condition 
according to average percent estimation error for all four optimization 
procedures 99 

Figure 4.14. Hydrographs and sediment graphs for plot number 31 108 

Figure 4.15. Hydrographs and sediment graphs for plot number 34 109 



10 

Figure 4.16. Hydrographs and sediment graphs for plot number 56 110 

Figure 4.17. Hydrographs and sediment graphs for plot number 59 Ill 

Figure 4.18. Hydrographs and sediment graphs for plot number 63 112 

Figure 4.19. Hydrographs and sediment graphs for plot number 66 113 

Figure 4.20. Hydrographs and sediment graphs for plot number 102 114 

Figure 4.21. Hydrographs and sediment graphs for plot number 105 115 

Figure 4.22. Hydrographs and sediment graphs for plot number 120 116 

Figure 4.23. Hydrographs and sediment graphs for plot number 121 117 



11 

LIST OF TABLES 

Table 3.1. Soil Characteristics for Rainfall Simulator Plots and 
Kendall Watershed 56 

Table 4.1. Hydraulic Parameter and Soil and Plot Characteristics 

for the Synthetic Data Set 65 

Table 4.2. Parameter Bounds and Starting Values for Synthetic Data Set 66 

Table 4.3. Error Statistic s for 2-parameter problem (Kj-Kf) 78 

Table 4.4. Error statistics for 2-parameter Problem (Krxc) 79 

Table 4.5. Error Statistics for 3-parameter problem 79 

Table 4.6. Optimization procedures associated with highest estimation 
error for 3-parameter optimization problem (Kj-Krxc) 81 

Table 4.7. Optimization procedures associated with highest estimation error 
for 2-parameter optimization problem (Kf-xc) 81 

Table 4.8. Optimization procedures associated with highest estimation error 
for 2-parameter optimization problem (Kj-Kf; tc = 0.502) 82 

Table 4.9. Optimization procedures associated with highest estimation error 
for 2-parameter optimization problem (Kj-Kf; xc = 0.0) 82 

Table 4.10. Average estimation error for different initial moisture conditions 
for 3-parameter optimization problem 95 

Table 4.11. Average estimation error for different initial moisture conditions 
for 2-parameter optimization problem (Krtc) 96 

Table 4.12. Average estimation error for different initial moisture conditions 
for 2-parameter optimization problem (Kj-Kf; xc = 0.502) 97 

Table 4.13. Average estimation error for different initial moisture conditions 
for 2-parameter optimization problem (Kj-Kf; xc = 0.0) 98 



12 

Table 4.14. Optimized hydraulic parameters for the rainfall simulator plots 104 

Table 4.15. Parameter bounds and starting values for rainfall simulator plots 105 

Table 4.16. Erosion parameter estimates for rainfall simulator plots 107 

Table 4.17. Hydraulic parameters for selected Kendall Watershed events 122 

Table 4.1B. Parameter bounds and starting values 
for selected Kendall Watershed events 122 

Table 4.17. Erosion parameter estimates 
for selected Kendall Watershed events 122 

Tables A1 - A3 6. Parameter Optimization Results for Synthetic Data Study 129-164 



13 

ABSTRACT 

Two optimization algorithms and two objective functions were applied to 

determine erosion parameters for a physically-based, event-oriented model designed to 

simulate the processes of sedimentation for small watersheds. Three different flow-

induced erosion equations were also tested with the four optimization procedures to 

examine the predictive capabilities of the equations. Synthetic error-free data as well as 

data contaminated with correlated and random error provided the means for determining 

the effectiveness of the four optimization procedures studied. After selecting the most 

effective optimization procedure and flow-induced erosion equation, the model was tested 

using sediment data from rainfall simulator plots and a small experimental watershed. 

The results from the rainfall simulator studies indicated that a structural problem may exist 

within the model. The agreement between simulated and observed responses for the 

watershed events studied indicated that the model was capable of describing sedimentation 

processes when they occurred on a larger scale. 
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INTRODUCTION 

Soil erosion is one of the major hazards threatening land productivity. The loss of 

sediment and associated nutrients through runoff and soil erosion can reduce productivity 

and lead to vegetation losses and further increases in the rates of soil erosion (Gifford and 

Busby, 1973). The transport of sediment from hillslopes into adjacent water bodies can 

also negatively impact reservoir capacities, water-based outdoor recreation, and fisheries. 

Thus, the ability to predict soil erosion under current and alternate land-use conditions is 

important in managing land and water quality. 

Physically-based erosion models are potentially capable of providing information 

on the amount, timing and sources of sediment production. However, a major problem in 

the application of physically-based models is in parameter identification (Lopes, 1987, 

Blau et al., 1988; Page, 1988). Parameters, which can be defined as coefficients, are 

usually represented in an erosion model as the soil's ability to withstand erosion and are 

termed soil erodibility parameters. Considerable research has been conducted to relate 

measurable physical and chemical properties to soil erodibility parameters (Romkens et al., 

1977; Meyer and Harmon, 1984; Musaed, 1994). However, parameter evaluation is often 

accomplished by some manual or automated calibration procedure Although a manual 

procedure is subjective and may not generate an optimum parameter set, it usually 

produces parameter values that can be related to some physical properties of the 

watershed. Automated calibrated procedures, although more objective, have experienced 

problems such as convergence to local minima and producing parameter values that 
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effectively minimize the objective function but conceptually have no meaning 

(Hendrickson et al., 1988). 

Despite the inability of automated optimization algorithms to find an unique 

optimal parameter set, their use is widespread in conceptual rainfall-runoff modeling 

(Dawdy and O'Donnell, 1965; Johnston and Pilgrim, 1976; Pickup, 1977; Sorooshian and 

Gupta, 1983; Gupta and Sorooshian, 1985, Hendrickson et al., 1988). As physically-

based erosion models replace the empirically-based Universal Soil Loss Equation (USLE) 

(Wischmeier and Smith, 1978), the use of automated techniques in erosion modeling has 

increased (Lopes, 1987; Page, 1988; Blau et al., 1988, Luce and Cundy, 1994). However, 

although physically-based models are conceptually superior to empirical models, as with 

empirical models, their accuracy is still dependent on the accuracy of their input 

parameters. Unless the best set of parameter values associated with a given calibration 

data set can be found, a reasonable degree of confidence cannot be placed in the accuracy 

of model predictions. 

Different reasons have been cited for the inability of automated optimization 

algorithms to find unique optimal parameter values including parameter interaction 

(Lopes, 1987), parameter insensitivity (Blau et al., 1988) and optimization procedures that 

are not powerful enough to do the job (Duan et al., 1992). The problem may lie in either 

the model structure, selected objective function, optimization method used, or some 

combination of these factors (Duan et al., 1992). 
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Problem Statement 

Improved estimates of soil erosion are needed in order to address concerns about 

nonpoint pollution and land productivity. For example, long term estimates generated by 

the Universal Soil Loss Equation are inadequate for making erosion predictions under 

alternate land uses or on an event basis Subsequent advances in erosion technology have 

led to the development of physically-based models that conceptually divide erosion into 

two separate processes: 1) erosion caused by raindrop impact and 2) erosion induced by 

overland flow However, in order to apply such models, parameters that describe the 

soil's susceptibility to erosion must be identified. 

The accuracy of model predictions is dependent on the sensitivity and accuracy of 

its input parameters The ability of an automated optimization procedure to determine 

input parameters is dependent on model structure, selected objective function, and 

optimization algorithm employed. This study compared optimal parameter values 

determined by two different optimization procedures and two different objective functions 

for three flow-induced erosion models. An assessment of the optimization algorithms' 

capacity to determine the erosion parameters for each of the models established the 

appropriateness of both the model and optimization procedure for use in erosion 

prediction when using the Watershed Erosion and Sediment Yield Program (WESP) 

(Lopes, 1987). 
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Objectives 

The goal of this study was to determine the adequacy of optimization algorithms 

and objective functions in identifying unique, optimal parameter values. The specific 

objectives of this study were: 

1. Determine the sensitivity of the estimation procedure to calibration data variability 

(dry, wet and very wet runs), and whether or not the selected objective function 

could reduce this sensitivity. 

2. Assess both the algorithm's and model's sensitivity to variable and steady-state 

rainfall intensities 

3. Evaluate the capabilities of the selected flow-induced models to predict erosion 

under fully dynamic conditions. 

4. Assess the ability of the selected flow-induced erosion equation in reproducing 

sediment graphs with physically, realistic parameter values. 

5. Identify problems in model structure that inhibited the identification of unique 

parameter values. 

Approach 

In order to study the behavior of WESP in conjunction with the different 

optimization procedures and flow-induced erosion models, synthetic sediment 

concentration data, which were generated utilizing soil and rainfall characteristics based on 

rainfall simulator plot data, were utilized so that true values of parameters were known. 
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Error-free data were used to verify that algorithms and objective functions were capable of 

finding true parameter values when no error was present. Since correlated error may be 

common in sediment concentration data, two levels of correlated error were introduced 

into the synthetic data set utilizing a first order Markov chain model. 

With the synthetic data, two and three parameter problems were posed with the 

objective of finding the best parameter sets to reproduce a given sediment graph. By 

fixing the value of one of the three parameters, parameter sensitivities and interactions 

were better evaluated when compared to a three parameter optimization problem. Slope 

gradient effects and variable antecedent moisture conditions were also identified. Given 

that WESP is a fully dynamic simulation model, the parameters identified from events with 

a single rainfall intensity were compared to parameters identified from events with variable 

rainfall intensity rates. 

This study utilized three data types; 1) synthetic data as previously described, 2) 

rainfall simulator sediment concentration data from the United State Department of 

Agriculture - Agricultural Research Service (USDA-ARS) Water Erosion Prediction 

Project (WEPP) field experiments, and 3) sediment yield data collected from the USDA-

ARS Kendall Watershed at Walnut Gulch. Three different equations were proposed to 

describe flow-induced erosion. Two optimization algorithms, one based on a local search 

procedure (Simplex method) and one specifically designed to find a global minimum 

(SCE-UA), were used for parameter identification. Two objective functions, the sum of 

the least square (SLS) and heteroscedastic maximum likelihood estimator (HMLE), were 
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used to find the minimum error. Utilizing results from the synthetic data study, the most 

successful flow-induced erosion equation, optimization algorithm and objective function 

were used for identifying erosion parameters for the plot and watershed studies. 

An analysis of parameter estimation error for both active and inactive parameters 

provided a criterion for identifying the optimal optimization procedure and flow-induced 

erosion model under different hydrological conditions. Other considerations included 

relative efficiency in avoiding local optima, continuity and shape of the response surface 

configurations, and algorithm's ability to attain the best value of the objective function. 

Benefits 

Parameter identification is of paramount importance in hydrological and erosion 

modeling. Without accurate parameter estimation methods, confidence cannot be placed 

in model predictions. Many contributions have been made to parameter identification 

within a conceptual rainfall-runoff framework. However, research is only recently 

emerging into the use of automated techniques of parameter estimation for physically-

based erosion models. The major benefits of this research are increased insight into 

parameter identification and the further development of the WESP model. Other models 

may also benefit by incorporating automated optimization techniques into the 

parameterization process. 

The derivation of an optimum parameter set in erosion modeling may depend 

heavily upon the calibration procedure utilized. This study contributes to an 
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understanding of the limitations and benefits obtained from the selection of objective 

functions and search algorithms. An assessment of the sensitivity of the procedure (and/or 

the model) to variable and steady-state rainfall intensities also contributes to experimental 

design of future soil erosion studies utilizing rainfall simulators. 
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LITERATURE REVIEW 

Decisions on how to control erosion and remediate erosion damage demand a 

knowledge of erosion risk under existing and alternative land management practices. 

Physically-based erosion models are potentially capable of providing this information 

provided that they can be properly parameterized for any given watershed. The first 

section of this literature review presents a brief history of important contributions to 

erosion modeling research. The controlling variables and parameters in erosion modeling 

are then described. In the final section, techniques of parameter optimization are 

presented within both an erosion and conceptual rainfall-runoff modeling framework. 

Models of Soil Erosion 

Many models used in soil erosion studies are empirical and based on defining the 

most important factors controlling the soil erosion process through the use of observation, 

measurement, experiment and statistical techniques Zingg (1940) was the first to develop 

an equation that related erosion to slope steepness and length. Later developments 

included the addition of a climactic factor (Musgrave, 1947), and a crop factor that took 

into account the protective nature of different crops (Smith, 1958). This factor approach 

was later incorporated into the Universal Soil Loss Equation (Wischmeier and Smith, 

1978), where the factors affecting the soil erosion process (rainfall erosivity, soil 

erodibility, topography and land use and management) were quantified. Although 

empirical models such as the USLE have been widely used to predict soil erosion, the 
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factors are unique to the experimental conditions from which they were derived and 

should not be used under different conditions. 

Empirical models deal with erosion prediction and parameter identification 

differently than physically-based erosion models. Based on physical laws and theoretical 

principles, physically-based erosion models attempt to represent the processes of erosion 

by mathematical equations that represent the erosion processes of soil particle detachment, 

transport and deposition (Lopes and Ffolliott, 1994). Two different approaches have been 

used in physically-based erosion modeling. The first approach assumes steady state 

conditions even though the processes of sediment detachment and transport are known to 

be unsteady (Meyer and Wischmeier, 1969; Foster and Meyer, 1972; Komura, 1976; 

Meyer et al. 1983, Rose, 1985). The second approach models the processes of erosion 

without steady-state assumptions. A kinematic-wave approximation to the dynamic flow 

equations is commonly used to model the hydraulics of the erosion processes, even though 

simplifying assumptions are required, such as constant and uniform rates of rainfall 

intensity and infiltration. The erosion processes are generally modeled using the continuity 

equation for sediment transport and empirical relationships for detachment by raindrop 

impact and hydraulic shear (Bennett, 1974; Singh, 1983; Lopes, 1987) 
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Rainfall Simulators and Rainfall Simulator Plots in Soil Erosion Research 

Rainfall simulators have been used for soil erosion research and are designed to 

simulate precipitation occurring from a natural rainstorm over small areas. The use of 

rainfall simulators and rainfall simulator plots is advantageous because hydrological and 

soil erosion characteristics can be measured in a controlled environment. Researchers can 

also make measurements and observations during a simulated storm that may be difficult 

or impossible during a natural rainstorm (Meyer, 1994). 

Rainfall simulator plots are designed to represent a micro-watershed. Like a 

watershed, the rainfall simulator plot can be represented by more than one element, where 

an element can be defined as either a plane or channel. Each element may represent 

changes in soil characteristics, hillslope characteristics or variations in land use. Channel 

elements can receive sediment inflows from upstream and lateral planes and channels. 

Rainfall simulator plots can also be modeled as a single plane, assuming that erosion by 

hydraulic shear is driven by the hydraulics of broad shallow overland flow. 

Erosion Processes 

The erosion processes involve the detachment, transport and deposition of soil 

particles by the erosive forces of raindrops and surface flow. Conceptually, hillslope 

erosion has been traditionally divided into two phases based on the characteristics of 

overland flow: interrill and rill erosion. Interrill erosion is the result of detachment 

induced by raindrop impact and transport by broad shallow surface flow. As the surface 
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flow moves downslope, its flow depth increases and concentrates in rills. Soil detachment 

occurs in rills when the hydraulic shear of the flowing water is sufficient to overcome the 

binding forces between individual soil particles. These concentrated flow areas transport 

the detached sediment from both rill and interrill areas. 

An alternative approach to modeling erosion on a hillslope is to assume that 

concentrated flow areas do not develop when an area is small. In this case, it is assumed 

that sediment entrainment is induced by two processes: raindrop impact and hydraulic 

shear of broad shallow overland flow. 

Many physically-based erosion models conceptualize the erosion process as one of 

entrainment of soil particles and the detachment or deposition of sediment as a function of 

the flow's ability to carry the sediment load (Foster and Meyer, 1972). This is known as 

transport-capacity approach and basically describes a balance between entrainment and 

deposition rates of the sediment in flow (Nearing et al ., 1994). When the transport 

capacity of the flow is exceeded, deposition will occur. If the transport capacity is not 

reached, then entrainment of detached particles will occur given the available sediment 

supply. 

Another approach to erosion modeling is simultaneous sediment exchange. It is 

based on a concept of a continuous exchange of particles between the flow and soil 

surface and does not consider the capacity of the flow to entrain soil particles. Lopes 

(1987) developed a model that calculated rates of detachment and entrainment of sediment 

by flow, detachment and entrainment of soil by raindrop impact, and the deposition of 
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sediment. In this model, net entrainment and detachment occur when the rates of 

entrainment and detachment exceed the rates of deposition. 

Erosion Induced by Raindrop Impact 

Generally, the hydrologic variables driving the soil erosion processes in areas 

where entrainment by raindrop impact predominates are obtained by applying overland 

flow equations Young and Wiersma (1973) found that the detachment capacity of 

overland flow was negligible compared to that of raindrop splash, due to the low 

magnitude of the shear stresses caused by thin sheet flow. Kirkby (1980) found that when 

rates of erosion are high, soil loss from areas where entrainment caused by raindrop 

impact is usually low compared to losses from erosion caused by hydraulic shear. 

However, erosion induced by raindrop impact can dominate in rangelands or where slope 

angles are low and slope lengths are short (Nearing et al., 1989). 

A common model for entrainment by raindrop impact describes the rate of 

sediment transport as a non-linear function of rainfall intensity. Other models describe 

detachment by raindrop impact as a linear function of the rainfall excess rate and rainfall 

intensity. Such relationships are usually developed based upon extensive rainfall 

simulation studies on a variety of different soils (Nearing et al., 1989). 
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Flow-Induced Erosion 

Entrainment induced by broad shallow overland flow occurs when hydraulic forces 

overcome the resistance threshold for the soil. The balance between the erosive power of 

the flow and erosion resistance of the soil determines the entrainment rate. The hydraulic 

variables driving the soil erosion process are often obtained by equations developed from 

observations in large channels 

When employing the hydraulics of channels Hernandez (1992) found that 

parameter identification was a problem in rainfall simulator plots where well-defined 

drainage patterns did not exist. This implies that erosion caused by hydraulic shear may 

occur even in the absence of a well-defined rill or channel. Govers (1992) suggested that 

the hydraulics of overland flow are different from those of channel flow. In areas where 

broad shallow overland flow predominates, the hydraulics can be obtained from overland 

flow equations. 

Flow-induced detachment is often described as a linear function of flow shear 

stress. The positive intercept on the shear stress axis is called the critical shear stress of 

the soil. Although many models describe flow-induced detachment as a linear function of 

hydraulic shear, flume studies have shown this relationship to be non-linear (Nearing et al., 

1994). In the Water Erosion Prediction Project (WEPP) model by Lane and Nearing 

(1989), the critical shear stress is described as a mathematical entity that results from the 

linearization of the model. Nearing et al. (1994) warns that it should not be physically 

interpreted as a threshold level of shear stress. However, mathematically, threshold 
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parameters can be difficult to optimize due to parameter insensitivity (Johnston and 

Pilgrim, 1976). A misrepresentation of the physical processes in the model can cause 

problems in parameter identification. 

Many flow-induced models incorporate existing transport formulas that were 

developed based on experimental work in channels. The bedload formula of Yalin (1963) 

has been frequently used (Dillahah and Beasley, 1983; Kahnbilvardi et al., 1983; Park et 

al., 1982). Yalin's formula is of the excess-shear type, and is based on the theoretical 

assumption that bed-load discharge rate is a function of the range of particles in saltation 

rather than their number. Foster and Meyer (1972) first proposed the use of the Yalin 

equation for overland flow areas and Alonso et al. (1981) confirmed its ability for 

predicting erosion in shallow flow areas. The Water Erosion Prediction Project (WEPP) 

incorporates the Yalin formula into the erosion component of the model (Foster et al., 

1989). 

The total load formula of Yang (1973) based on the theory of stream power has 

been frequently used. Bagnold (1966) first proposed the concept of stream power, which 

is based on a balance of energy rather than a balance of forces, to determine the 

entrainment rate Bagnold defined stream power as the product of bed shear stress and 

mean flow velocity. Sediment discharge, however, is not usually a sole function of shear 

stress. Consequently, Yang (1973) introduced the concept of unit stream power, which is 

the amount of energy dissipated per unit time and per unit weight of the flow and is equal 

to the product of slope and mean velocity. The total sediment concentration (not 
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sediment discharge) is therefore directly related to unit stream power. Moore and Burch 

(1986) and Loch et al. (1989) have since demonstrated that the Yang formula is a good 

predictor of flow's transport capacity in overland flow areas. 

Even though such formulas are based on physical principles, they have been 

calibrated utilizing experimental data. Model predictions may be erratic when these 

formulas are used to describe the transport capacity of flow in overland flow areas. This is 

due to the fact that these areas are very shallow and slopes may be much greater than 

those encountered in channels (Govers, 1992) where sediment transport formulas such as 

Yalin (1963) and Yang (1973) have been developed. However, Govers (1992) found that 

equations based on shear stress, unit stream power and effective stream power could be 

used in some cases to effectively predict the sediment transport capacity of overland flow. 

Hydraulic Roughness 

The identification of the magnitude of the hydraulic roughness coefficient is 

pertinent to modeling flow-induced erosion. Laminar flow over rough surfaces is usually 

characterized by a high friction factor due to turbulent friction losses around protrusions 

causing roughness (Phelps, 1975). In general, the resistance coefficient depends on the 

Reynolds number (Re) of the flow. The Darcy-Weisbach friction factor is most commonly 

used in hydrologic modeling, but Manning's and Chezy's coefficients may be used as well. 
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Soil Erodibility 

Soil erodibility is defined as the resistance of the soil to both detachment and 

transport (Morgan, 1986). Soil erodibility, along with rainfall characteristics, topography, 

cover and management, is a major determinant of soil erosion and is a function of the 

chemical and physical properties of a soil. Particle size, aggregate stability, shear strength, 

infiltration capacity, organic matter and chemical content are widely accepted as the soil 

variables most strongly influencing a soil's erodibility. 

Physically-based soil erosion models incorporate soil erodibility parameters into 

that part of the model dealing with soil entrainment and transport (Romkens et al., 1977; 

Meyer and Harmon, 1984; Musaed, 1994). Before the advent of physically-based erosion 

models, several researchers have related measurable physical and chemical properties to 

indices of soil erodibility for agricultural soils (Bennet, 1939, Barnett and Rogers, 1966; 

Wischmeier and Mannering, 1969; Wischmeier et al., 1971) However, the regression 

relationships developed require data that are not readily available for rangeland soils. 

Simpler relationships based on texture, organic matter and volumetric water content have 

been developed to evaluate soil erodibilities for physically-based models (Alberts et al., 

1989; Flanagan, 1991) 

Qualitatively, texture can be used as index of erodibility. In general, fine-textured 

soils are usually cohesive and difficult to detach. The small particles of fine textured soils 

are easy to transport unless the aggregates are large. Coarse-textured soils easily detach, 

but the large particles are difficult to transport. Medium-textured soils are both easily 
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detached and transported and are thus classified as highly erodible soils (Wischmeier and 

Mannering, 1969). 

Erosion modeling, however, requires a quantification of soil erodibility. Since the 

mechanisms differ for flow-induced and raindrop induced entrainment, erodibility 

parameters for each process are distinct. Considerable research has been dedicated to 

studying the separate processes of erosion and soil erodibility parameter identification 

(Meyer et al., 1975, Young and Onstad, 1978; Hussein and Laflen, 1982, Van Liew and 

Saxton, 1983, Bradford et al., 1987). A wide range of single parameters and 

combinations of parameters have been identified with varying degrees of success. When 

regression relationships are inappropriate, soil erodibilities can be identified by 

optimization. 

Erosion Parameters 

In order to model soil erosion by water, it is important to understand the 

controlling variables and parameters in the soil erosion process. Generally, physically-

based erosion models are structurally defined with a set of equations based on the physical 

laws representing the governing processes. In order to apply an erosion model to any 

given watershed, the relationships have to be made specific for that watershed Numerical 

values are defined for the equation's parameters that control the model's operation so that 

predicted sediment yields match observed sediment yields. This procedure is called model 

calibration. Model calibration for erosion modeling is made even more difficult by the fact 
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that erosion components are driven by hydrological models that contain their own 

parameters that also have to be identified. 

Two different approaches have been used to determine parameter values in 

physically-based erosion models. The first approach assigns parameter values based on an 

assumption that the model parameters have a physical meaning. Values are determined 

based on a knowledge of the erosion processes or on measurable properties in the 

watershed. The second approach utilizes an automated optimization algorithm where 

parameter values are determined based upon a comparison between observed and 

simulated sediment yields in terms of an objective function. Computers are generally used 

because the number of iterations involved in solving the optimization problem. Although 

parameters identified by automated optimization algorithms are more objective and 

reproducible than estimates made based on the subjective judgment of a hydrologist, 

automated techniques may generate unrealistic parameter values that minimize the 

differences between simulated and observed sediment yields, but conceptually have no 

meaning (Hendrickson et al., 1988). 

Automated Techniques 

Parameter estimation from data and prior information is an important area of 

research. With the advent of the digital computer, research into the use of automated 

techniques for hydrological modeling has increased The automated optimization 

technique is comprised of three parts; 1) the objective function, 2) the optimization 
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algorithm, and 3) the calibration data. The following presents a discussion of each of 

these elements. 

For any method of optimization, there exists some objective measure; i.e. objective 

function, as to how closely the sediment yield data simulated by the model compares with 

the actual measured values (Gottfried and Weisman, 1973). The selected objective 

function will affect the values of the fitted parameters because each criterion of best fit 

places a different emphasis on the differences between measured and calculated values 

(Sorooshian and Dracup, 1980; Sorooshian et al., 1983). 

SIMPLE LEAST SQUARES ESTIMATOR 

When automatically calibrating an erosion model for a particular watershed, a 

nonlinear programming algorithm is used to minimize the objective function, F: 

where 0n = model parameters. The most frequently used objective function is the simple 

least squares (SLS) criterion 

Objective Function 

F = f(e,,e2,03,., e„) (2.1) 

(2.2) 
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where Ct,aim is the simulated sediment concentration at time t ,  c^s is the observed sediment 

concentration at time t, and n is the total number of data points.. The simple least squares 

criterion assumes that model residuals are uncorrelated and homoscedastic. 

MAXIMUM LIKELIHOOD ESTIMATION 

Objective functions based on maximum likelihood (ML) theory have been 

demonstrated to provide more reliable estimates of parameter values than the SLS 

criterion (Sorooshian and Dracup, 1980; Sorooshian and Gupta, 1983; Sorooshian et al. 

1983). This phenomena is due to the fact that if the objective function accounts for 

stochastic properties of the model errors, then it is easier for the optimization method to 

search for the best parameter values (Sorooshian and Gupta, 1983). 

The selection of the objective function has been somewhat arbitrary in the erosion 

literature (Lopes, 1987; Page, 1988; Blau et al., 1988). The simple least squares criterion 

is usually employed and implies that model residuals are assumed to be uncorrelated and 

homoscedastic. However, violations in the aforementioned assumptions often occur in 

erosion modeling, where residuals are heteroscedastic and autocorrelated. If the 

stochastic nature of the residuals is not considered, then unsatisfactory parameter 

estimation can result. Biased parameter estimates will lead to unsatisfactory model 

predictions 

The accuracy of the maximum likelihood procedure can be highly dependent on the 

available information. If the data set is of sufficient length and well represents the 



34 

variability, then it will be expected to produce good parameter estimates. However, if the 

representability of the data is questionable, then the ML approach may not produce good 

estimates of the parameters. To minimize such effects, Sorooshian (1981) updated the 

procedure so that the lack of information can be expressed through the use ofBayes' 

theorem. Accordingly, Bayesian theory, can be used to update the parameters using newly 

acquired data, if available. 

HETEROSCEDASTIC MAXIMUM LIKELIHOOD ESTIMATOR (HMLE) 

Stream discharge measurements are usually affected by non-homogenous variance 

(Aitken, 1973; Sorooshian and Dracup, 1980). This means that with increasing sediment 

concentrations and yields, an increase in error variance can also be expected. Sorooshian 

and Dracup (1980) proposed the use of the Hetereoscedastic Maximum Likelihood Error 

estimator (HMLE) for the case where errors are assumed to be uncorrelated and 

heteroscedastic (non-homogeneous variance). 

The HMLE estimator is the maximum likelihood, minimum variance, 

asymptotically unbiased estimator when the variance of errors in the observed data is 

assumed to be related to the magnitude of the data (Sorooshian, 1981; Sorooshian and 

Dracup, 1980). The errors in the data are assumed to be Gaussian with a zero mean. The 

HMLE estimator is defined as: 
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min HMLE (2.3) 

f l w .  
t = l 

where w, is the weight assigned to time t and is computed as: 

(2 4) 

where/t is the expected true sediment concentration at time t  and X is the unknown 

transformation parameter that stabilizes the variance. The expected true sediment 

concentration can be approximated by either Ct,Sim or Ct,0bs (Sorooshian et al., 1983) but it is 

currently recommended that measured sediment concentration values be utilized since it is 

a more stable estimator (Sorooshian et al., 1993). However, Gupta (1984) warns that 

u t i l i z ing  measu red  va lues  may  c rea t e  b i a s  i n  t he  e s t ima te  o f  X.  

Sorooshian (1981) proposed a two-stage method for non-linear models. In the 

first stage, given a set of model parameters, the residuals of the model are obtained. In the 

second stage, values of {©} obtained in the first stage are used to compute the most 

probable value of X. This procedure is repeated until a satisfactory value of X has been 

found. The optimal value of X is one that satisfies the following equation: 

where X must be solved for iteratively. Once the value for X is obtained, it is used to solve 

Equations (2.3) and (2.4) to compute the HMLE objective function. 
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Duan (1991) developed an equivalent and more stable procedure for estimating X 

by rearranging Equation (2.5) to give the following; 

R  =  ̂ - l  ( 2 . 6 )  
Ra 

where 

n j 
Rd =ZW.(Ct.obS-C.,sim) (2.7) 

i=l 

R„ = iw,(c,obs - ct sim)2at (2.8) 
i=l 

(2.9) 
ad 

where aj = the logarithmic average of the observed sediment concentration and the HMLE 

function is computed as: 

1 Rd 
HMLE = rr^ r—r (2.10) 

exp[(2^ - l)ad] 

where A, = 1 is used an initial value. An iterative procedure is then used to estimate X such 

that R = 0 in Equation (2.6). 
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Parameter Optimization 

When an automated technique is employed, the algorithm will attempt to minimize 

the objective function by varying the parameter values. If the objective function is 

minimized, it is considered to be a successful trial, and those values are usually retained. 

To track values retained during the optimization procedure, contour plots can be 

generated where coordinate axes correspond to parameter values. Contours represent 

equal values of the objective function on the response surface. If a two-parameter model 

is used, the procedure can be generalized by the following. Search methods begin by 

defining a straight line that passes through a point representing starting values for the 

parameters The objective function is then evaluated at different points along that line. 

When an optimum value is encountered, a new search direction is defined and the process 

is repeated until a minimum value is found. The manner in which the search directions are 

defined and how each line is searched depends on the method of optimization. The 

minimum or optimum value of the objective function corresponds to optimized values of 

the parameters (Ibbitt and O'Donnell, 1971). 

Direct search methods have been used to identify parameters in erosion models. 

Lopes (1987) and Blau et al. (1988) utilized the Simplex method for parameter 

identification, a direct search method developed by Nelder and Mead (1965). 

Convergence problems were encountered by Lopes (1987) due to parameter interaction in 

the Water Erosion Simulation Project (WESP) model used in this study. Parameter 

insensitivity was identified as a difficulty by Blau et al. (1988) for a transport capacity 
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model developed by Shirley and Lane (1978). Although the problems identified in these 

studies were not directly related to the constraints of the Simplex method, such a 

procedure is not designed to handle the presence of multilocal optima (Gottfried and 

Weisman, 1973) which are commonly encountered in the calibration of erosion and 

hydrological models. 

THE SIMPLEX ALGORITHM 

The Simplex method belongs to a group of techniques that are defined as hill 

climbing methods. They determine a path toward an optimum by evaluating the objective 

function at several points rather than by calculating derivatives (Gottfried and Weisman, 

1973). These iterative search techniques (which also includes Rosenbrock's (1960) 

technique and Hooke and Jeeves' (1961) pattern search method) have been found to be 

superior to gradient techniques in hydrologic modeling. This is because values of the 

derivatives of the model equations with respect to its parameters cannot be explicitly 

obtained due to the presence of threshold-type parameters in the model (Johnston and 

Pilgrim, 1976; Moore and Clark, 1981). Johnston and Pilgrim maintained that the 

response surface would have discontinuous derivatives and that these would cause the 

optimization algorithm to prematurely terminate. Gupta and Sorooshian (1985) compared 

the Simplex method to the derivative based Newton method and found the Simplex 

method to be more efficient. 
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In the Simplex method, an essential role is played by the geometric figure called a 

simplex that is defined as a set of n + 1 points in //-dimensional space. In the case of n = 

2, the corresponding figure is an equilateral triangle; when n = 3, it is a tetrahedron. The 

method can be viewed as the moving, shrinking, and expanding of the simplex toward a 

minimum. To find the minimum error value, the Simplex method searches the parameter 

space using an initial simplex, using n corners of the eight corner points in the space of 

reasonable values. The function is evaluated at each of the vertices. The point with the 

highest errors is replaced by a point with lower error to form a new simplex To 

determine the location of this new point, the worst point is reflected through the centroid 

of the other two points. If the function evaluated at the new point does not reduce the 

error, then the new point is generated by contraction toward the centroid. If neither of 

these approaches finds a point with lower error, then the entire simplex is contracted 

towards the point having the lowest error. This iterative process is continued until 

convergence to a minimum is found. The stopping criterion suggest by Nelder and Mead 

(1965) is: 

where f (xj) = function of the observed data, f(xo) = function of the simulated data, and e is 

some small preset number (Kowalik and Osborne, 1968). 

(2.11) 
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Global Optimization 

Parameter identification for hydrologic and erosion modeling can be formulated as 

a global optimization problem where the objective function is concave and possesses many 

local minima in the region of interest Global optimization methods, however, will 

normally use some local procedure, which limits their ability to converge to a global 

minimum. Duan et al. (1992) suggests that automatic calibration procedures in current 

use for hydrological models are incapable of finding the globally optimal parameter 

estimates due to problems such as parameter interaction, non-convexity of the response 

surface, discontinuous derivatives and presence of multilocal optima. 

THE SHUFFLED COMPLEX EVOLUTION -

UNIVERSITY OF ARIZONA (SCE-UA) ALGORITHM 

Duan et al. (1992) developed a new global optimization procedure called Shuffled 

Complex Evolution - University of Arizona (SCE-UA). The SCE-UA algorithm searches 

through the parameter space using the simplex geometrical shape. However, the points 

are periodically shuffled to avoid a convergence to a local minimum. The algorithm begins 

by randomly selecting s number of points where s=pxm and p = the number of 

complexes and m = the number of points in each complex. After computing the function 

value at each point, the points are sorted in order of increasing function value and are 

stored in an array that is partitioned into a number of communities (complexes) selected by 
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the user. By randomly choosing n + 1 points from each complex, a simplex is formed 

according to a trapezoidal probability distribution defined as: 

p = 2 0 ^ 1 - i )  ( 3  2 5 )  

m(m +1) 

where the point with the highest probability is pi = 2/m +1 and the point with the lowest 

probability is pm = 2/m(m+l). 

New points replace points with the greatest error using two iterations of the 

Simplex method described earlier and the generation of random points within the feasible 

space. After evolving each simplex 2n + 1 times, the simplex is then dissolved and the 

updated points are returned to the complex where new «+l points are randomly selected 

to form a new simplex in the same manner as previously described. After a certain number 

of generations, new complexes are formed with the updated points by shuffling, a non-

random action. In this way, the sharing of information about the search space is 

accomplished. This entire process is repeated until a minimum is reached (Duan et al., 

1992). 

Duan et al. (1992) tested the performance of the SCE-UA along with three other 

global search procedures on the model SIXPAR; the adaptive random search (ARS) 

method, a combined ARS/simplex method and a multistart simplex (MSX) method. 

Results show that both the MSX and SCE-UA methods were effective in finding the 

globally optimal parameters. However, the SCE-UA method was found to be three times 

more efficient. The efficiency of the SCE-UA method was confirmed for the Sacramento 
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Soil Moisture Accounting model (SAC-SMA) (Sorooshian et al., 1993). In this study, the 

SCE-UA achieved a 100% success rate in locating the global minimum while the MSX 

method had little success with more than twice the number of iterations. 

Luce and Cundy (1994) compared parameter values found by the SCE-UA 

procedure and the (local search) Simplex method utilizing a physically-based model for 

studying runoff and erosion from forest roads. The authors report that both methods were 

successful in converging to unique optimal parameter sets for infiltration and overland 

flow parameters. In only three out of the 84 cases were the hydrographs improved by 

using parameter values estimated with the SCE-UA algorithm. These were cases where 

the error surface was flat and the Simplex method terminated prematurely. 

Difficulties in Parameter Optimization 

Despite using a systematic approach, different sets of observed data can produce 

very different parameter sets (Johnston and Pilgrim, 1976). Different initial parameter 

values can also generate distinct sets of optimum parameter values (Page, 1988). Since 

the accuracy of measurements is never perfect, it cannot be expected that parameter values 

be identical to their true values. Inevitably, random errors occur It is desirable, however, 

that they be close to their true values. Although each series of measurement will obtain 

different values for the parameters, it is desirable that these estimators fluctuate around 

their mean values and that they do not vary extremely from one series of measurements to 

another (Schmidt, 1982). 
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Several factors can contribute to large fluctuations in parameter estimates, some of 

which have been reported in the erosion modeling literature (Lopes, 1987, Page, 1988; 

Page et. al, 1989; Blau et al., 1988). Ibbitt and O'Donnell (1971) and Johnston and 

Pilgrim (1976) have outlined the following reasons for the inability to obtain unique and 

conceptually realistic parameter sets for conceptual rainfall-runoff models which also play 

a major role in erosion modeling. 

INTERDEPENDENCE BETWEEN MODEL PARAMETERS 

When model parameters interact, the change in the value of one parameter can be 

compensated by changes by in one or more of the other parameters. For a two-parameter 

model, a long flat-bottomed valley in the response surface results and optimization 

methods will make little or no progress along the floor of a valley toward its lowest point. 

INDIFFERENCE OF OBJECTIVE FUNCTION 

TO VALUES OF INACTIVE PARAMETERS 

The objective function (and thus the simulated model output) is not affected by the 

changes in the value of a parameter This may be caused by parameter redundancy or it is 

not activated by the calibration data set When this occurs, zero gradients occur in some 

areas of the response surface and optimization methods make no progress towards a 

minimum. 
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DISCONTINUITIES IN THE RESPONSE SURFACE 

Local-type direct search methods for are not designed to handle the presence of 

discontinuous derivatives. In such cases, the optimization method may terminate before 

encountering the true optimum 

PRESENCE OF LOCAL OPTIMA DUE TO 

NON-CONVEXITY OF THE RESPONSE SURFACE 

Local optima are defined as points on the response surface that have lower values 

of the objective function than any surrounding points, but have greater values than another 

point in another region of the response surface. The optimization method may therefore 

terminate at a point that is not the global minimum 

Furthermore, even the most complex models may not completely represent the 

physical processes of erosion. Therefore, it is possible that some of the difficulties in 

identifying a unique set of parameter values may be due to model structure. 

Data Calibration 

The selection of trial model parameters is made during calibration. Data used in 

the calibration of an erosion model should be representative of the factors influencing the 

erosion processes. However, calibration is rarely straight-forward. Data come from 

various sources with different degrees of accuracy and levels of representativeness. 



45 

Some researchers have attempted to use longer periods of data for calibration to 

account for a wide variety of conditions in the watershed. Sorooshian et al (1983) argue 

that it is not the length of record that is most important, but the information contained 

within it. They propose that the most important aspect of the calibration phase is 

considering the stochastic properties of the data, which relates to the appropriate selection 

of the objective function. Parameter estimation developed within a framework of 

maximum likelihood theory can aid in the selection of the appropriate objective function, 

which can smooth the response surface and make it more concentric. This improved 

concentricity increased the chances for convergence to the true parameter set (Sorooshian 

andDracup, 1980). 

Sorooshian et al. (1983) compared the performance of the HMLE and SLS 

criterion in the calibration of a soil moisture accounting model of the U.S. National 

Weather Service River Forecasting System (SMA-NWSRFS). The model was calibrated 

using daily records of variable length and then tested for a 6 year period They found that 

SLS technique was better able to provide the closest reproduction of the observed 

hydrograph for the calibration period. However, the HMLE estimator was found to 

provide the best model performance for the forecasting period. 

The likelihood function plays a critical role in both classical and Bayesian theories 

of inference. In classical theory, it is used to construct maximum likelihood estimators 

(MLEs) which have desirable asymptotic properties. In Bayesian theory, it is used to 

update the prior distribution using newly acquired data. Wilson and Haan (1991) 
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developed a calibration procedure that combines site measurements of erodibility with 

those parameters already identified in the Water Erosion Prediction Project (WEPP) 

database. Assuming a normal distribution of interrill erodibility and a log-normal 

distribution of rill erodibility, theoretical relationships were derived to estimate parameters 

using Bayesian estimation theory. When tested, results showed that the technique worked 

well in combining site-specific information with prior information represented by 

regression equations (Wilson et al., 1991). 
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METHODS 

The Model 

The Water Erosion Simulation Program (WESP) (Lopes, 1987) was used in this 

study. The erosion component of the model was modified to incorporate three different 

flow-induced erosion equations for overland flow which were coupled with the 

hydrological component of the WESP model. 

The Hydrological Component 

Woolhiser and Ligget (1967) described the movement of water over a plane using 

a kinematic approximation of the spatially-varied, unsteady and one-dimensional flow 

equations: 

where h = depth of flow [L], q = the discharge per unit width [L2T'!], r = the rainfall 

excess rate [LT1], x = the distance downslope [L], t = time [T], and a and m are 

parameters related to the slope and roughness of the flow. For normal flow conditions, 

Manning's equation yields m = 5/3 and a = (1/n) S0'2 where n = Manning's roughness 

coefficient and S0 = the slope of the plane [L/L] By substituting Equation (3 .2) into 

Equation (3.1): 

dh dq — + — = r 
3t Sx 

(3.1) 

q = ahm (3.2) 

— + amhm" 
dt 

oh 

3x 
= r (3.3) 
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In order to solve the kinematic wave equations, the depth at the upstream 

boundary must be defined. For an uppermost plane, the boundary conditions are: 

h(0,t) = 0 for t > 0 (3.4) 

For planes where runoff is being contributed by other planes, the boundary conditions are 

(Woolhiser et al., 1990): 

a u M L u > t ) m i , w u  h(0,t) = 
aw 

(3.5) 

where Lu = the length of the contributing plane, hu(Lu,t) = the depth at the lower boundary 

of the contributing plane at time t, w„ = the width of the contributing plane, au = the slope 

roughness parameter for the contributing plane, mu = the exponent for the contributing 

plane, and a, m and w refer to the receiving plane. The initial conditions are: 

h(x,0) = 0 for x > 0 (3.6) 

In the kinematic approximation, the friction slope is assumed to be equal to the 

plane slope (Sf = SQ). This translates into an assumption of the water surface slope being 

equal to the plane slope (Lighthill and Whitham, 1955, Henderson, 1963; Woolhiser and 

Ligget, 1967). If the kinematic flow number is greater than 10, then solutions to the 

kinematic wave equations provide good approximations to the shallow water equations. 

The kinematic wave equations are solved numerically by a four-point implicit finite 

difference method: 
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(3.7) 

where 0 and co and are weighting factors for space and time respectively. 

The Infiltration Component 

The rainfall excess rate (r) is calculated in WESP by subtracting the difference 

between rainfall intensity and infiltration rates. When rainfall begins on an infiltrating soil, 

there is always an initial period where the infiltration rate (f) is equal to the rainfall rate (i) 

and the rainfall excess (r) is zero. The maximum infiltration rate (fc) is described as a 

function (f) of the initial water content (0;) and the amount of water already infiltrated in 

the soil: 

The Green and Ampt (1911) infiltration equation is used in the WESP model. 

Two parameters are important to the infiltration model; the saturated hydraulic 

conductivity (Ks) and the net capillary drive (Ns): 

where <|> = soil porosity, Smax = 0s/<|> = maximum relative saturation, 0S = saturated water 

content [L'VL3], Sj = 0/4) = initial relative saturation, and <p = the soil matric potential [L], 

(3.8) 

(3.9) 

Ns = <p(S_-S,)<|> (3.10) 
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The Erosion Component 

WESP calculates the sediment concentration in broad shallow flow areas by 

applying the sediment continuity equation in combination with the overland flow 

equations. Because the hydraulic conditions of overland flow are often totally different 

from those of channels and it is assumed that in small watersheds well-defined rills do not 

develop, the overland flow equations were also used to solve the sediment continuity 

equation for flow-induced detachment and transport in this study. The sediment continuity 

equation normally used for one-dimensional flow on hillslopes is (Bennett, 1974) 

M + * S L e , + e i  p . , , )  
dt dK ' 1 

where c = the sediment concentration [ML3], ei = the input sediment flux to the flow 

[ML"2T"'] by raindrop impact, ef = the flow-induced input sediment flux to the flow 

[ML"2T"'], and dispersion terms have been neglected. The first term in the continuity 

equation represents the rate of storage of sediment within the flow depth. The second 

term represents the change in sediment load with distance. 

The WESP model (Lopes, 1987) utilizes a simultaneous sediment exchange 

approach. WESP represents the erosion/deposition process on hillslopes as two separate 

processes of sediment entrainment and deposition. For broad shallow flow areas, 

sediment entrainment is carried out by raindrop impact and hydraulic shear. Entrainment 

and deposition can occur simultaneously at different rates and the resultant sediment 

concentration is determined by the relative magnitude of these two processes. Thus, 
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<|>(x, t) = ef - d + ej (3.12) 

where <i> = sediment flux to the flow [ML"2!"1], ef = flow-induced sediment entrainment 

[ML"2T"'], d = rate of sediment deposition [ML"2!'1] and e, = rate of sediment entrainment 

by raindrop impact [ML"2!""1]. 

One raindrop-induced entrainment equation was selected for use in this study. 

Notwithstanding the successes of other raindrop-induced erosion equations, the equation 

selected has been proven to be effective over a wide range of conditions and is currently 

used in the Water Erosion Prediction Project (WEPP) (Lane and Shirley, 1982). Ulman 

(1994) also demonstrated its success in describing rain-drop induced erosion on forest 

roads. 

If hydraulic shear is considered to be negligible in raindrop-induced entrainment 

areas and uniform rainfall intensity is assumed in the area of interest, then (Lane and 

Shirley, 1982): 

where Kj = raindrop induced erodibility parameter [MTL"4], i = rainfall intensity [LT"1], 

and r = rainfall excess rate [LT1] This expression relates soil particle entrainment to 

rainfall erosivity and the erodibility of the soil The transport in broad shallow flow areas 

is related to the ratio of the rainfall excess rate to the rate of rainfall intensity, which can 

Entrainment by Raindrop Impact 

(3.13) 
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be interpreted as a normalized runoff intensity for sediment transport by broad shallow 

flow (Lopes and Lane, 1988). 

Entrainment by Flow 

Three different equations describing erosion by hydraulic shear were evaluated in 

this study. All of the equations have been presented in Govers (1992), but have only been 

evaluated under steady state conditions. Since WESP is both time variant and spatially 

varied, the equations were implemented as fully dynamic equations. Each of the equations 

can be represented by the generic form of: 

e f = K f p ( x ) b  ( 3 . 1 4 )  

where Kf = a flow-induced erodibility parameter [dimensions equation dependent], p = an 

index used to distinguish between coefficients for each equation, x = a variable specific to 

the equation, and b is an exponent with a value =1.5 (Lopes, 1987; Hernandez, 1992). 

The first equation relates entrainment by flow to excess effective stream power: 

e f l = K f l(ne) ,J  (3.15) 

where Oe = excess effective stream power. Bagnold (1980) defined the concept of excess 

effective stream power as: 

n c = n - n <  ( 3 . 1 6 )  

where Q = the effective stream power and Qc = the critical stream power. These have 

been defined as: 
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(3.17) 

(3.18) 

where x = yhS = the hydraulic shear [ML"'T2], y = the fluid specific weight [ML"2T"2], h 

= the flow depth [L], u = the mean flow velocity [LT"1], Tc = pu,2t = critical hydraulic 

shear [ML"1!"2], p = fluid density [ML"3], and U.t = mean critical shear velocity [LT'1]. 

The second equation used in this study relates entrainment by flow to the shear 

stress of the flow: 

The third equation presented includes the effect of particle size on the transport 

capacity of the flow: 

v l> /J ' 

where D = the effective particle diameter [L], The effective particle diameter was 

determined by: 

where mi = the weight percentage of sand, silt and clay, d; = the geometric mean of sand, 

silt and clay, and <? and In represent the exponential and natural logarithm operators. 

e f 2  —  K f 2 ( x  t c )  (3.19) 

(3.20) 

D  _  ' n d j  (3.21) 
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Sediment Deposition 

The rate of sediment deposition (d) in WESP is determined by a relationship 

defined by Mehta (1983), which states that deposition is a linear function of the sediment 

concentration and the effective particle fall velocity: 

d = P TwVsc (3.22) 

where P = a constant [dimensionless], Tw = the top width of the flow [L], Vs= the 

effective particle fall velocity [LT1], and c = the sediment concentration [ML"3]. For 

deposition in overland flow areas, P was assumed to equal 0.50 (Davis, 1978). 

The Data 

Three sets of data were used in this study . 1) synthetic data 2) data that were 

collected from rainfall simulator plots set up by the USDA-ARS WEPP team at different 

sites across the western United States and 3) Kendall watershed at the Walnut Gulch 

Experimental Watershed. 

The synthetic data used was generated based on the experimental procedures and 

soil characteristics of the rainfall simulator plots. Three different slopes (5, 10 and 15%) 

were incorporated into the data set so that the effect of slope on the ability of the 

optimization procedure to find an optimal parameter set could be evaluated. 

For the rainfall simulator plots, three rainfall simulation treatments using a V-Jet 

80100 nozzle were applied to 3 .05 x 10.5 m plots. When the initial conditions were dry, 

rainfall was applied at a rate of 60 mm/hr for 60 minutes. The wet antecedent moisture 
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treatment was applied twenty-four hours after the dry treatment, at a rainfall rate of 60 

mm/hr for 30 minutes. The very wet antecedent moisture treatment was applied when no 

surface water was evident on the plot by visual inspection, approximately 30 minutes after 

the wet treatment, at intensities of 60 mm/hr and 130 mm/hr during a 30 minute period 

(Simanton et al., 1985). The synthetic data were assumed to have a similar treatment. 

Ten rainfall simulator plots from four different areas in the Western United States 

were selected for this analysis, based on a criterion of a minimum slope of 7% so that the 

parameters would be sufficiently activated. For both the synthetic and rainfall simulator 

data, sediment graphs were used to compare measured and simulated data. Characteristics 

of each rainfall simulator plot are given in Table 3 .1. 
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Table 3.1. Soil Characteristics for Rainfall Simulator Plots and Kendall Watershed 

Plot No. Effective 
& Particle Slope 

Watershed % Sand % Silt % Clay Soil Type Diameter (mm) (%) 

31 16.7 14.2 69.1 Gravely 
Sandy Loam 

1.209E-01 10.2 

34 16.7 14.2 69.1 Gravely 
Sandy Loam 

1.209E-01 10.0 

56 

59 

63 

5.0 25.5 

5.0 25.5 

7.8 28.7 

69.5 Very Gravely 
Fine Sandy 
Loam 

69.5 Very Gravely 
Fine Sandy 
Loam 

63.5 Fine Sandy 
Loam 

1.0175E-04 8.1 

1.0175E-04 7.5 

7.9060E-05 8.6 

66 7.8 28.7 63.5 Fine Sandy 
Loam 

7.9060E-05 8.8 

102 15.1 36.0 48.9 Loam 1.0810E-04 11.2 

105 15.1 36.0 48.9 Loam 1.0810E-04 9.8 

120 44.2 33.4 22.4 Clay 1.0643E-05 11.2 

121 44.2 33.4 22.4 Clay 1.0643E-05 11.6 

Kendall 62.7 23.0 14.2 Sandy Clay 8.1047e-06 9.4 
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Kendall Watershed is located in the eastern part of the Walnut Gulch Experimental 

Watershed. The watershed has gentle hillslopes covered by grasses, an average slope of 

9.4%, and is dominated by soils of a sandy clay texture (see Table 3 .1). Because the 

runoff is small in relation to its rainfall depth due to its gentle slope, sandy soils and grass 

stands, Kendall Watershed has not developed a well-defined channel. Thus Kendall 

Watershed was selected for this study because it can be modeled as a single plane. 

Three rainfall-runoff events from the years 1975-1977 were selected for this study. 

The events were chosen based on their maximum rainfall duration that produced 

measurable amount of runoff and sediment. Because the sediment graphs were 

unavailable for these events, parameters for the erosion equation were optimized based on 

the total sediment yield for each event. 

Determining Values Of Hydraulic Parameters 

For the natural data studies, values of the hydraulic parameters had to be 

determined before optimizing for the erosion parameters. The SCE-UA algorithm and the 

SLS objective function were used to determine the values for hydraulic roughness 

(Manning's n), net capillary drive (Ns), and saturated hydraulic conductivity (Ks). The 

Nash-Sutcliffe coefficient (r2) was used as a measure of goodness-of-fit between simulated 

and observed of both the runoff rate and sediment concentration values: 
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Z(x.,,B-xMto) 
r2 = 1 - (3.23) 

Z(x,ob5 - x)2 

where Xtobs = the measured value, Xt,sim = the simulated value, X= the average observed 

value, and n = the number of observations. When the simulated and observed correspond 

well, the values of the coefficient will lie between 0.5 and 1.0, where 1.0 represents a 

perfect comparison (Nash and Sutcliffe, 1970). 

True Parameter Values 

Soil parameter values that were determined for the Water Erosion Prediction 

Project (WEPP) model resulting from the rainfall simulator plots at Walnut Gulch 

provided a basis for determining the true parameter values of the synthetic data set. Since 

both WEPP and WESP describe entrainment by raindrop impact with the same equation, 

the raindrop-induced soil erodibility parameter (K;) was assumed to be have the same 

value. The value for critical shear stress (xc) was also assumed to equivalent between the 

synthetic and rainfall simulator data sets. However, the values of the flow-induced 

erodibility parameter (Kf) had to be altered to fit each of the equations describing 

entrainment by hydraulic shear. 

WEPP describes detachment by hydraulic shear on bare soil as (Foster et al., 

1989): 
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Dr = Kf(x-xc) 1-- (3.24) 
v V 

where Dr = the flow detachment rate [ML'2!"1], G = the sediment load [ML"2!'1] and Tc = 

the transport capacity of the flow [ML"2T'']. This equation is similar to Equation 2 of this 

study with the exception of the value of the exponent and the relationship describing 

detachment utilizing the transport capacity approach. To determine the true parameter 

value of Kn for the synthetic data, the WEPP Kr value [TL1] was multiplied by the length 

of the plot to evaluate Kn [T] for b = 1. To fully activate the Kf parameter, the WESP 

model was run using the synthetic data developed for the very wet run with a 15% slope 

for b = 1. The Kf for each equation was adjusted so that the sediment yield at b = 1.5 was 

equal to the sediment yield at b = 1 for Equation 2. 

For both the rainfall simulator plot studies and the watershed events, the true 

values of Kfp were equation dependent whose true values were not known. The optimized 

values of xc, however, were compared to true values of the critical shear stress as 

determined by the Shields diagram For the rainfall simulator plot studies, the optimized 

values of K; assumed the value that was determined in the WEPP field experiments in the 

rainfall simulator studies. For the watershed events, a value of Ki could be determined by 

a regression equation developed by WEPP. However, because WESP does not 

incorporate adjustments in soil entrainment and transport due to plant and rock cover, Kj 

was manually calibrated for the selected events. 
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Treatment of Systematic Error 

The error model used to synthetically generate observed sediment concentration 

data was a first-order autoregressive model known as a Markov model (Lipschutz, 1968). 

This model assumes that the additive errors are autocorrelated to a lag-one by a simple 

linear relationship given by: 

e = pe,_1+iit (3.25) 

where st = additive errors at time /, p = the first-lag autocorrelation coefficient that 

measures the degree of systematic error (-1 <p< 1), and r)t = the purely random 

component of measurement error, which is assumed to have a Gaussian distribution with a 

zero mean, constant variance, and is independently and identically distributed for all t. The 

variance of the independent variables a2 is defined as. 

a2 = 1 - p2 (3.26) 

where the standard deviation of the errors was set equal to 20% of the standard deviation 

of error-free sediment concentration values. This error exceeded the error generally 

encountered in hydrologic data series according to Sorooshian (1980). Two different 

levels of correlated error were created by fixing the value of p, the serial correlation 

coefficient, at 0.25 and 0.50. This error model was chosen based upon the high 

probability of correlated error in sediment concentration data that is also known to be 

present in streamflow measurements (Sorooshian and Dracup, 1980) 
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Parameter Identification 

Erosion parameters were fitted to produce an optimal parameter set that 

corresponded to the actual sediment concentration graphs of both the natural and synthetic 

data. Search and optimization algorithms were used to find the best values of the 

parameters Kj, Kfpand xc. For the synthetic data, both two and three parameter problems 

were posed with data that was error free, as well as with data with two levels of correlated 

error. In the first case, the value of Kj was fixed, and KfP and xc were determined by 

optimization. In the second case, Ki and Kfp were optimized with xc = 0 and xc ^ 0. In 

the third case, all three erosion parameters were determined by optimization. 

Sum of the least squares of the error (SLS) (Equation 2 .2) and the heteroscedastic 

maximum likelihood estimator (HMLE) (Equations 2.6-2.10) were used as the objective 

functions. The Simplex algorithm (Nelder and Mead, 1965) was used to find the optimal 

values of the parameters with a single start. This method is quick, but can terminate 

prematurely if the error surface is flat or pitted The Shuffled Complex Evolution (SCE-

UA) (Duan et al., 1992) was also used for parameter identification. The SCE-UA was 

designed to find the global minimum for error surfaces with multiple local optima Both 

methods required a range of reasonable parameter values. 

A two-parameter optimization problem (Krxc) was posed for the natural data sets, 

which included the rainfall simulator plots and Kendall Watershed rainfall-runoff events. 

Only the most successful combination of flow-induced erosion equation, optimization 
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algorithm and objective function in the synthetic data study were used for parameter 

identification in the natural data sets. 

WESP was run to find the optimal parameter set. To this end, the search routines 

submitted parameter values to WESP, which then ran the model on an event basis. 

Simulated and measured sediment concentrations were compared in the objective function 

(SLS and HMLE) If the stopping criteria were not met, the search routine submitted new 

parameter values to the model and the process repeated itself until acceptable values with 

minimal error were found. 

Convergence Criteria 

For the Simplex algorithm, the optimization process will terminate if one of the 

following stopping criteria is met; the prespecified tolerance limit for minimum change in 

the values of the objective function has been satisfied (function convergence), the 

coordinates of the simplex have changed by less than the specified amount (parameter 

convergence), or the maximum number of iterations has been reached. Since the SCE-UA 

algorithm is based on an extension of the Simplex local-search algorithm, the stopping 

criteria are the same However, the SCE-UA algorithm allows the user to specify the 

number of shuffling loops in which the criterion value must change by the prespecified 

tolerance for function convergence. The SCE-UA algorithm will also terminate if the 

population of points converges into a sufficiently small space that will not allow the spread 

of the population in each parameter direction to exceed more than one thousandth of the 
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corresponding feasible parameter range. Any further search would not result in significant 

improvement of the parameter estimates. 

For both the Simplex and SCE-UA methods, the objective function tolerances 

were set at 0.001. For the SCE-UA method in the two-parameter case, 4 complexes of 

points were selected. For the three parameter case, 6 complexes were used. The 

minimum number of shuffling loops in which the criterion value must change by the pre-

specified tolerance for function convergence was set to 10. 

Methodology Used for Comparison 

The comparison of the two search algorithms and the two objective functions was 

carried out by maintaining the same initial conditions, parameter bounds and starting 

parameter values. For the synthetic data, a comparison of the three different flow-induced 

erosion equations was performed by evaluating how successful the optimization algorithm 

and objective function were in arriving at the true parameter values under different 

antecedent moisture conditions. 

To evaluate the performance of the search algorithms and objective functions, the 

following criteria were used: 

1) the relative efficiency with which inactive and active parameters were estimated, 

2) the relative efficiency in avoiding local optima, 

3) the continuity and shape of the response surface configurations, and 

4) the ability to attain the best value of the objective function. 
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RESULTS & DISCUSSION 

Synthetic Data Case 

The results for the synthetic data study were for a case where precipitation 

intensities and duration were based on rainfall simulator experiments at Walnut Gulch 

Experimental Watershed. As described earlier, soil and hydraulic variables were based on 

the soil description for Plots 31 and 34 (see Table 4.1). Then, for a specified set of 

hypothetically true parameter values, sediment concentration values were generated by the 

WESP model for three different values of slope (5, 10 and 15%). These data were then 

input as observed values for optimization. Because preliminary investigations of the 

rainfall simulator plots indicated that the value of critical shear stress (tc) approached zero, 

two sets of synthetic data were generated where tc = 0.0 and tc = 0.502. 

In order to study parameter interactions and any uncertainties in the processes of 

erosion, four different parameter optimization problems were posed as described in the 

METHODS section of this thesis These parameter optimization problems were studied 

when no error was present in the data and when the data were contaminated with 

correlated and random error. To this end, the sediment concentration values were 

contaminated with error according to the error model outlined earlier. The same initial 

conditions were used throughout to assure identical response surface configurations. 
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Table 4.1. Hydraulic Parameter and Soil and Plot Characteristics for the Synthetic 
Data Set. 

Parameter/V ariable Value Units 

Effective Particle Diameter 0.1209 mm 

Porosity 0.437 (dimensionless) 

Saturated Hydraulic Conductivity (Ks) 5.98 mm/hr 

Maximum Soil Saturation (Smax) 0.92 (dimensionless) 

Initial Soil Moisture Content (Si dry) 0.31 (dimensionless) 

Initial Soil Moisture Content (Si wet) 0.61 (dimensionless) 

Initial Soil Moisture Content (Si very wet) 0.87 (dimensionless) 

Soil Moisture Tension Parameter (v|/ dry) 70 mm 

Soil Moisture Tension Parameter (\|/ wet) 25 mm 

Soil Moisture Tension Parameter (y very wet) 15 mm 

Plot Length 10.7 m 

Plot Width 3.05 m 

Hydraulic Roughness Coefficient (Manning's n) 0.04 m 

RESPONSE SURFACES 

To determine the boundaries and starting values of the parameters, the response 

surfaces for each of the three flow-induced erosion equations were generated. To this 

end, incremented parameter values were submitted to WESP (without the aid of the 

optimization algorithms) and the values of the objective function were calculated for very 

wet runs on plots of 15% slope where it was assumed that the parameters would be most 

activated. Separate response surfaces were generated for the SLS and HMLE objective 

functions. Figures 4.1-4.6 show the resulting response surface configurations. Upper and 
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lower parameter bounds were determined by identifying "regions of attraction." Starting 

values for the parameters were defined as the midpoint between the upper and lower 

bounds. The true parameter values, starting values and lower and upper parameter 

bounds used are given in Table 4.2. 

Table 4.2. Parameter Bounds and Starting Values for Synthetic Data Set 

True Lower Upper Starting 

Parameter Units Values Bound Bound Value 

Kn M/L2T 1 7188E-04 5.00E-05 4.00E-04 2.25E-04 

Kn t2/l°-5m°-5 3.7365E-03 1.00E-03 1.00E-02 4.25E-03 

Kfi T2/L0005M0'5 3.9685E-05 2.50E-05 1.50E-04 9.00E-05 

Tc M/LT2 0.502 0.3 2.0 1.15 

The response surface configurations depicting the relationship between Kf and xc 

(Figures 4.1 - 4.3) show two difficulties that are related to the structure of the model. The 

first difficulty is that of parameter insensitivity that is identified by the shape of the 

response function. xc is less sensitive than Kf as noted by the relative sensitivity of 

function value in the two parameter directions Along the Kf axis, the response surface 

wall is steeper than in the tc (inactive parameter) direction. A second difficulty is due to 

interactions that exist within the model. This effect is noted in the valley that has formed 

on the response surface that is inclined along the Kf axis. 
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The response surface configurations for Ki and Kf (Figures 4.4-4.6) also 

demonstrate differences in the relative sensitivities of the two parameters. Very small 

changes in Kf could produce very large changes in the value of Kj. This observation leads 

to a more serious difficulty associated with the relationship between K,-Kr. The vertical, 

elongated contours that are especially dominant in the contour plot of Equation 2 indicate 

that for any one value of Kf, an infinite number of values for Ki are possible. Another 

difficulty present in the contour plots of Equations 1 and 3 is the discontinuous response 

surface associated with extreme values of both Ki and Kf. 

The response surfaces also demonstrate that the values of the SLS objective 

function are higher than those of the HMLE criterion for the same parameter values. This 

result means that the value of the SLS criterion for the same initial conditions will be 

higher than that of the HMLE objective function, and a direct comparison of their values 

cannot be made. 

THE ERROR-FREE DATA CASE: THE TWO-PARAMETER PROBLEM 

For the error-free data case, parameter estimates were considered to be a success 

if the they were not more than 1% in error of its true value. Based on this criterion, for all 

three cases of the two-parameter optimization problem, the synthetic error-free data study 

demonstrated a 100% success rate for both the Simplex and SCE-UA algorithms and for 

both objective functions in finding the true parameter values for plots with slopes of 10% 

and 15% for all three flow-induced erosion equations. However, no successful trials 
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resulted for plots with a 5% slope. This could be attributed to the assignment of a 

constant value for the deposition parameter (P) in broad shallow overland flow areas, 

which may have resulted in too much deposition occurring in areas of lower slope values. 

To eliminate this problem, the value of the dimensionless constant |3 in Equation 3 .22 may 

have to be optimized for events where the slope is less than 10%. Because of the inability 

of the optimization procedure to estimate the parameter values of the error-free data for 

slopes of 5%, plots with these values were eliminated from the analysis. 

THE ERROR-FREE DATA CASE: THE THREE-PARAMETER PROBLEM 

For the three-parameter, error-free synthetic data case, only the SCE-UA 

algorithm with both criteria demonstrated a 100% success rate in estimating the true 

values of Ki, Kf, and xc The Simplex in combination with the SLS criterion was entirely 

successful for both Equations 1 and 2, but for Equation 3, demonstrated only at 50% rate 

of success in cases where the parameters were most activated. Equation 1 demonstrated 

success with the Simplex and HMLE criterion on the very wet run with a 15% slope. 

Equation 2 demonstrated the same success on the very wet run on slopes of 10 and 15%. 

No successful HMLE events resulted with Equation 3. 

The success of the Simplex and HMLE for the very wet runs may indicate a 

sensitivity of the optimization procedure to a variable rate of rainfall intensity However, 

it is more likely that Simplex was more sensitive to the degree of activation of the 

parameters. On the 15% slope, the parameters would be more active than on a 10% 
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slope, which is why Equation 1 found success with only one of the variable intensity 

rainfall runs. 

The KrTc contour plots (see Figures 4.1-4.3) reveal that the SLS criterion has a 

smoother, more elliptical response surface than that of the HMLE. This may explain why 

in part, for the three-parameter optimization problem, the Simplex in conjunction with the 

HMLE criterion is unable to estimate the true values of the parameters However, the 

uncertainty involved in the estimation of K; seems to be more pertinent to the estimation 

problem. For the Simplex and HMLE optimization procedure, with the exception of 

Equation 3, a higher estimation error is associated with runs on a 10% slope. More error 

is also associated with the wet runs than on the dry runs, presumably due to the fact that 

the dry runs are of a longer duration and better activate the threshold parameter, Tc. If tc 

is not fully activated, then any uncertainty in the erosion processes are then incorporated 

into the parameter K, when using the HMLE criterion. 

Analysis of The Results for the Synthetic Data Case 

The parameter values estimated in the synthetic data study have been tabulated in 

Tables A1-A36. The following discussion is limited to the cases where error is present in 

the data, given the success of the error-free data case for the two-parameter optimization 

problems. For the analysis of the three-parameter problem when error is present, the 

error-free data case will be considered since the nonsuccesses under ideal conditions will 
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provide a basis for understanding the parameter estimation error when noise is 

incorporated into the data set. 

A tally of the highest error associated with each of the four optimization 

procedures (Simplex and SLS, SCE-UA and SLS, Simplex and HMLE and SCE-UA and 

HMLE) was performed to evaluate the optimization procedures. The highest error 

determination considered only the absolute differences in percent error, regardless of the 

magnitude of difference. If more than one procedure was associated with the highest error, 

then each procedure was counted as having the highest error. This procedure implies that 

a small difference in the percent error in the synthetic data would translate into a 

significant difference in error when working with observed data in the field. Such a 

pattern was noted between the error-free data sets and the correlated error cases. 

Equation 1 in the 2-parameter cases, for example, demonstrated the highest error of 

estimation when no error was present in the data. This error was magnified when 

estimating the parameter values for the correlated error events 

The HMLE was compared to the SLS criterion only with the algorithm with which 

it was associated For example, the parameter estimation error of the Simplex and HMLE 

was only compared to the Simplex and SLS, and differences in error between the SCE-UA 

and HMLE and the SCE-UA and SLS were also considered separately. However, a direct 

comparison of the highest estimation error associated with each of the four procedures 

was performed without any special consideration given to the algorithm that employed the 

selected objective function. 
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The relative amount of estimation error with respect to each flow-induced erosion 

equation is considered when selecting the best equation for use in the natural data studies. 

The selection of the best optimization procedure considered the four evaluation criteria 

outlined in the methodology presented in this thesis, where the two-parameter cases are 

evaluated separately from that of three-parameters since there were estimation problems 

associated with two of the four procedures in the error-free data case. 

ESTIMATION OF ACTIVE & INACTIVE PARAMETERS 

By incorporating error into synthetic data, uncertainties in the processes modeling 

erosion are created. Such uncertainties are manifested in the estimation of the parameters 

that are used to describe these processes. Whereas Kj is related to the erodibility of the 

soil by raindrop impact; Kf and xc are related to detachment and transport by hydraulic 

shear. Kf describes the transport capacity of the flow and xQ refers to the critical shear that 

the flow must exceed in order for detachment to occur. 

Clearly, all four of the parameter optimization problems posed demonstrated that 

the greatest uncertainty is incorporated into the estimates of Kj (see Tables A1-A36). 

Not only were large errors present in the estimates of Ki for all of the correlated error 

cases, but with the three-parameter, error-free data set as well Excluding the errors in 

estimation for the error-free, three parameter problem, the average percent error for K; at 

both levels of correlated error was 92.13% (93 .77% and 90.48% for Kj-Kf and K,-Krtc 

respectively). This value was much greater than the average estimation error for xc 



78 

(19.32% and 21.27% for Krxc and Ki-Krtc respectively) and Kf (10.37% and 4.27% for 

Kf-Tc and Kj-Kf respectively) (see Tables 4.3-4.5). 

Table 4.3. Error Statistics for 2-parameter problem (Kj-Kf). 

Eq. p Fixed Value of Avg. % Error % Error SD Avg. % Error % Error SD 
No. Tc Kf Kf Ki Ki 

1 0.25 0.502 3.43 2.05 88.33 41.27 
0.50 3.66 3.07 94.99 56.16 

0.25 0.0 2.19 2.00 96.13 43.43 
0.50 3.94 3.04 91.59 50.58 

2 0.25 0.502 8.82 1 07 78.70 48.33 
0.50 2.04 1.77 88.73 43.61 

0.25 0.0 4.14 9.01 117.22 43.14 
0.50 1.92 1.90 60.57 37.09 

3 0.25 0.502 2.25 1 44 101.32 48.16 
0.50 3.04 1.90 92.83 51.53 

0.25 0.0 7.92 13.33 86.72 47.13 
0.50 7.90 13.36 128.14 40.33 

AVG 4.27 4.50 93.77 45.90 

Two factors contributed to the large error found in the estimate of Ki. For the Ki-

Kf estimation problem, the value of xc was fixed. Because the critical shear stress is a 

threshold parameter and Kf is related to the transport capacity of the flow, then 

detachment by hydraulic shear cannot vary by a large measure. Therefore any 

uncertainties or changes to be accounted for in detachment, were noted in the parameter 

value for Kj The nearly vertical line relationship demonstrated in the response surface 

configuration of the K;-Kf plots is another contributing factor (see Figures 4.3-4.6). Kf is 
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more sensitive to changes in the objective function than K;, and presumably for any given 

value of Kf, there is more than one possible value of K;. 

Table 4.4. Error Statistics for 2-parameter Problem (KrXc) 

Eq. 

No. 
P Avg. % Error 

Kf 

% Error SD 

Kf 

Avg. % Error 

Tc 

% Error SD 

Tc 

1 0.25 10.65 10.41 25.83 14.78 
0.50 18.96 24.60 37.55 31.43 

2 0.25 5.70 5.92 9.54 8.09 
0.50 8.44 6.26 14.52 8.42 

3 0.25 6.15 8.93 6.46 8.84 
0.50 12.29 5.65 22.03 11.80 

AVG 10.37 10.30 19.32 13.89 

Table 4.5. Error statistics for 3-parameter problem. 

Eq. p Avg. % Error % Error SD Avg. % Error % Error SD Avg. % Error % Error SD 

No. Kj Ki Kf Kf Tc 

1 0.25 89.44 48.54 14.11 14.57 31.69 17.44 
0.50 94.71 57.01 20.21 23.54 38.97 31.78 

2 0.25 96.74 50.45 8.33 11.59 12.38 14.43 
0.50 91.02 51.06 8.08 4.40 16.86 10.87 

3 0.25 84.03 59.16 6.21 6.75 6.89 6.59 
0.50 86.94 59.70 11.32 6.77 20.82 12.26 

AVG 90.48 54.32 11.38 11.27 21.27 15.56 
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The parameter estimates resulting from the 3-parameter problem were consistent 

with those of the 2-parameter cases; the estimate of Ki contained the highest error and the 

average percent errors for both Kf and xc were nearly the same between the Krxc and 

Ki-Kf -xc problems (see Tables 4.3 - 4.5). In general, the error associated with the 

estimates of Ki was slightly higher in the 2-parameter case than in the 3-parameter 

problem, while the converse was true for both Kf and xc. This outcome meets the 

theoretical expectation since most of the uncertainty is incorporated in K; when xc is fixed, 

whereas the uncertainty in the 3-parameter problem is incorporated into all of the 

parameter estimates. 

The average estimation error, however, can be misleading. The abilities of each of 

the flow-induced erosion models to produce parameters close to their true values need to 

be evaluated separately. The generalizations stated above, therefore, are for describing 

the tendencies and uncertainties present in the different parameter optimization problems 

posed in this study. 

EFFECT OF ALGORITHM & OBJECTIVE FUNCTION 

ON ACTIVE AND INACTIVE PARAMETERS 

Tables 4 .6 - 4 .9 and Figures 4 7 - 4 .8 show that in all of the two-parameter cases 

studied, the Simplex algorithm, in general, provided parameter estimates closer to the true 

values for both the active (Kf and Ki) and inactive (xc) parameters. There were only two 

exceptions to this rule that occurred in the Krxc optimization problem, where the estimate 



Table 4.6. Optimization procedures associated with highest estimation 
error for 3-parameter optimization problem (Ki-Krtc). 

Simplex SCE-UA Simplex SCE-UA 
and and and and 

Parameter p SLS SLS HMLE HMLE 

Ki 0.25 5 4 1 9 
Kf 4 1 6 8 

Tc 3 1 6 9 

Ki 0.50 2 7 2 8 
Kf 4 7 6 2 

Tc 2 8 4 4 

Table 4.7. Optimization procedures associated with highest estimation 
error for 2-parameter optimization problem (Kpxc). 

Simplex SCE-UA Simplex SCE-UA 
and and and and 

Parameter p SLS SLS HMLE HMLE 

Kf 0.25 3 0 8 7 

Xc 2 3 8 6 

Kf 0.50 6 5 4 3 
Tc 6 7 2 4 



Table 4.8. Optimization procedures associated with highest estimation 
error for 2-parameter optimization problem (Ki-Kf; xc = 0.502). 

Simplex SCE-UA Simplex SCE-UA 
and and and and 

Parameter p SLS SLS HMLE HMLE 

Ki 0.25 1 6 5 8 

Kf 1 8 1 9 

K; 0.50 3 3 3 9 

Kf 2 7 1 11 

Table 4.9. Optimization procedures associated with highest estimation 
error for 2-parameter optimization problem (Kj-Kf, xc = 

Simplex SCE-UA Simplex SCE-UA 
and and and and 

Parameter P SLS SLS HMLE HMLE 

Ki 0.25 2 2 4 10 

Kf 1 8 1 9 

Ki 0.50 6 6 3 7 

Kf 2 11 2 6 
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Optimization Procedures Associated 
with Highest Estimation Error 

(Ki-Kf-tc) 

Ki (0.25) Kf (0.25) tau-c Ki (0.50) Kf(0.50) tau-c 
(0.25) (0.50) 

• SCE-UA+HMLE 

• Simplex+HMLE 

• SCE-UA+SLS 

jDSimplex+SLS 

Optimization Procedures Associated 
with Highest Estimation Error 

(Kf-tc) 
100% 

80% 

60% 

40% 

20% m I 
Kf (0.25) tau-c (0.25) Kf (0.50) tau-c (0.50) 

• SCE-UA+HMLE 

• Simplex+HMLE 

• SCE-UA+SLS 

• Simplex+SLS 

Figure 4.7. Optimization procedures associated with the highest estimation error 
for each parameter. Results from 3-parameter problem and 2-parameter 
(Kric) optimization problems. 
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Optimization Procedures Associated 
with Highest Estimation Error 

(Ki-Kf; TC = 0.502) 
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Optimization Procedures Associated 
with Highest Estimation Error 

(Ki-Kf; tc = 0.0) 
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Ki (0.25) Kf (0.25) Ki (0.50) Kf (0.50) 

• SCE-UA+HMLE 

• Simplex+HMLE 

• SCE-UA+SLS 

• Simplex+SLS 

• SCE-UA+HMLE 

• Simplex+HMLE 

• SCE-UA+SLS 

• Simplex+SLS 

Figure 4.8. Optimization procedures associated with the highest estimation error for each 
parameter. Results from 2-parameter problems (Ki-Kf) shown above for Tc = 
0.502 and TC= 0.0. 
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of Kf was improved by use of the SCE-UA algorithm in both error cases. For the 

correlated error case p= 0.25, the SLS criterion outperformed the HMLE estimator. For 

the case where p = 0.50, the HMLE criterion provided better overall estimates for all of 

the parameters. 

Gauging the success of the optimization procedures employed for the 3-parameter 

problem posed difficulties since it is known that sediment entrainment by raindrop 

impact has a behavior similar to that of entrainment by hydraulic shear, and that unique 

parameter identification may not be possible unless the value of Ki is determined 

separately (Lopes, 1987). However, few patterns of success were noted. The estimates 

of Kf were consistent with those of the 2-parameter problems, where the SCE-UA 

algorithm outperformed the Simplex, and the SLS criterion was the best estimator with 

lower levels of error. The behavior of zc with respect to the algorithm and objective 

function employed was less consistent; the SLS criterion provided better estimates in both 

error cases while the SCE-UA algorithm was most successful for p = 0.25, while the 

Simplex was more successful for p = 0.50. The Simplex and HMLE procedure was a 

notable example of success since it was the most unsuccessful procedure in the error-free 

data case. It better estimated the value of Kj in both error cases and provided better 

overall estimates for all three parameters in Equation 3 for p = 0.25. 
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EFFECT OF ALGORITHM & OBJECTIVE FUNCTION 

ON FLOW-INDUCED EROSION EQUATIONS 

The effect of the algorithm and objective function employed on each of the flow-

induced erosion equations showed similar trends to those previously stated (see Figures 

4.7 and 4.8). For example, for p= 0.25 in the Krxc, and K.i-Kf (xc = 0.502) parameter 

optimization problems, the HMLE estimator was consistently associated with higher error 

than that of the SLS criterion. The reverse was true for p = 0.50 case; that is, these same 

optimization problems were associated with higher error when employing the SLS 

criterion. 

The 2-parameter optimization problem for K,-Kf (xc = 0.0) did not show the same 

trends. In fact, for both p = 0 25 and p = 0.50 the HMLE criterion performed slightly 

better than the SLS estimator overall. This outcome supports the hypothesis that as the 

error quantity was increased, the HMLE criterion provided better estimates of the 

parameters by reducing the number of local optima on the response surface. In the case 

where the value of xc was fixed at zero, greater error in the estimate of Kj would be 

expected since the structure of the equation is exponential. Less error would be expected 

for the case where xc was fixed at a value of 0.502, since this expression of excess shear 

stress represented a process of decay. 

For the K,-Kf optimization problems, the Simplex algorithm performed slightly 

better overall for all three flow-induced equations. For the Krxc case, the SCE-UA 

performed slightly better than the Simplex in estimating Kf. However, the differences in 
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the highest error associated with each of the algorithms did not usually differ by more than 

unity, and thus were not considered to be significant differences in the abilities of the 

algorithms to estimate the Kf for each of the flow-induced erosion equations. 

OBJECTIVE FUNCTION 

The selection of the objective function plays a major role in forming the shape of 

the response surface The more elliptical in shape the response surface is, the easier it is 

for the optimization method to search for the best parameter values The response surface 

configurations for the SLS criterion for all three equations are more elliptical than those of 

the HMLE criterion for the Kr-xc case. For this reason, it may be that when the error is 

low, the SLS criterion provided better parameter estimates than when the HMLE 

objective function was used Because the HMLE stabilizes a non-stationary variance, it 

would not necessarily follow that the HMLE criterion have a significant effect on a data 

set where correlated error was present However, as previously noted, the HMLE 

provided better parameter estimates at higher levels of correlated error. 

No significant differences in the shapes of the response surface configurations were 

noted between the two estimators for the relationship between Ki-Kf. However, 

differences between the flow-induced equations did exist. Equations 1 and 3 

demonstrated more than one "region of attraction" as well as several discontinuities in 

their response surface configurations. The contour plot for Equation 2, although 
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smoother and continuous, demonstrated a long, narrow valley that could cause difficulties 

in parameter identification. 

The success of the HMLE criterion at a higher level of error suggests that the 

local minima were reduced as the degree of correlation in errors was increased. Results 

from parameter optimization for KrXc and Equation 2 is a notable example: for p = 0.50, 

the HMLE criterion resulted in better estimates of Kf, 8 out of 12 times and for tc, 10 out 

of 12 times. Figure 4.9 shows that for Equation 2, the SLS response surface configuration 

is flatter and has more local minimum than that of the HMLE criterion. By contrast, 

Figure 4.10 demonstrates that for p = 0.25, the SLS response surface is steeper than the 

HMLE estimator. 

BEST VALUE OF OBJECTIVE FUNCTION 

AND AVOIDANCE OF LOCAL MINIMA 

An examination of Tables A1-A36 demonstrates that in all of the parameter 

optimization problems posed when error was present, the SCE-UA algorithm consistently 

resulted in a smaller value of the objective function, except for those cases in which the 

comparison resulted in a tie. This observation suggests that local optima do indeed exist 

on the response surface. One explanation for the Simplex's lack of convergence to the 

global optima may be that it is located in a small crater-shaped region that lies in a 

relatively flat area on the response surface. Figures 4.11 and 4.12 demonstrate that the 



HMLE 
Criterion 

SLS 
Criterion 

Figure 4.9. Comparison of response surfaces for HMLE and SLS criteria 
(Equation 2, dry run, 15% slope, p = 0.50). 
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Figure 4.10. Comparison of response surfaces for HMLE and SLS criteria 
(Equation 2, wet run, 10% slope, p = 0.25). 
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Simplex 
Surface 

mww> 

SCE-UA 
Surface 

Figure 4.11. Comparison of response surfaces for SCE-UA and Simplex algorithms. 
(Equation 2, diy run, 10% slope, HMLE, p = 0.50). 
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Figure 4.12. Comparison of response surfaces for SCE-UA and Simplex algorithms. 
(Equation 2, dry run, 10% slope, SLS, p = 0.25). 
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minimum lies in a relatively flat area for the Simplex algorithm, whereas the SCE-UA 

response surface is steeper. 

However, contrary to the theoretical expectation, Simplex usually obtained better 

estimates for the parameters in the 2-parameter problems even though SCE-UA was better 

able to converge to the global minimum. One theory that may explain this result is that 

when error was introduced into the sediment concentration data, the error affected the 

values of the hydraulic parameters as well. Fixing the values of the hydraulic parameters 

may have impacted the analysis in such a way that the lowest value of the objective 

function did not necessarily correspond to the best estimates of the erosion parameters. 

Another theory that might explain why the lowest value of the objective function 

did not correspond to the best estimates of the parameters is the use of the four-point 

implicit method to numerically solve the kinematic wave equations Although very 

conservative estimates of the change in time were used in this analysis, an analytical 

solution may perhaps lessen the uncertainty in the model processes when error is present. 

In the 3-parameter problem posed, the success of the algorithms and objective 

functions was independent of the algorithms' abilities to locate the global minimum on the 

response surface. This is more than likely due to the similar behavior of the two 

entrainment terms (Lopes, 1987) as few patterns of success arose from this estimation 

problem. The success of the Simplex and HMLE procedure when error was present 

(given its failure with the error-free data set) supports the result that an early termination 

of the Simplex algorithm was likely to result in better estimates of the parameters. 
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In the case of the error-free data, the SCE-UA algorithm generally did not succeed 

in finding a lower value of the objective function for the 2-parameter problems. This was 

a result of the SCE-UA algorithm terminating due to the population of points converging 

into a sufficiently small space such that any further search would not result in a significant 

improvement of the parameter estimates. This was indeed the case since very small 

differences in parameter estimates resulted between the use of the two algorithms. This 

again suggests that a small crater-shaped region exists in a relatively flat area of the 

response surfaces. 

DATA SET VARIABILITY 

All three parameters demonstrated different sensitivities to the three antecedent 

moisture conditions tested, without any effects due to the level of correlated error. Even 

though the estimation procedures were sensitive to the calibration data variability, no 

trends were noted in the selected objective function's ability to reduce this sensitivity. 

According to averages in the percent error of estimation calculated for the three 

antecedent moisture conditions (see Tables 4.10-4.13 and Figure 4.13), the dry runs 

provided the best estimates for the parameter xc, 4 out of 6 times, for the 3-parameter 

problem and, 5 out of 6 times, for the 2-parameter problems. This result may be related to 

the length and variability of the data which are crucial factors in the activation of a 

threshold parameter. Data from dry runs contained more information on varying soil 
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Table 4.10. Average estimation error for different initial moisture conditions 
for 3-parameter optimization problem. 

Parameter p Equation Avg. % Avg. % Avg. % 
No. Error Error Error 

Dry Wet Very Wet 

Ki 0.25 1 99.99 68.78 99.56 
2 119.16 97.93 73.15 
3 94.40 78.00 79.68 

Kf 1 3.20 30.33 8.81 
2 5.36 18.52 2.63 
3 2.18 10.57 5.46 

Tc 1 11.39 44.84 38.85 
2 5.23 27.28 4.66 
3 3.68 10.59 6.41 

Kf 0.50 1 94.86 83.96 105.31 
2 77.60 75.93 119.52 
3 84.64 96.09 80.11 

Kf 1 8.14 45.20 7.31 
2 7.96 6.07 10.19 
3 10.41 16.54 7.01 

Tc 1 20.67 66.97 29.25 
2 12.95 11.86 25.76 
3 11.24 23.39 27.80 
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Table 4.11. Average estimation error for different initial moisture conditions 
for 2-parameter optimization problem (Krzc) 

Parameter p Equation Avg. % Avg. % Avg. % 
No. Error Error Error 

Dry Wet Very Wet 

Kf 0.25 1 3.10 22.97 6.02 
2 4.32 10.35 2.41 
3 3.17 12,88 2.41 

Tc 1 6.17 33.12 38.21 
2 6.67 18.34 3.60 
3 2.40 13.20 3.78 

Kf 0.50 1 7.31 44.34 5.16 
2 11.45 6.45 7.41 
3 11.35 16.20 9.31 

xc 1 18.52 63.64 30.49 
2 9.33 12.78 21.31 
3 11.46 25.26 29.38 
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Table 4.12. Average estimation error for different initial moisture conditions 
for 2-parameter optimization problem (K.-Kj f; To = 0.502 

Parameter p Equation Avg. % Avg. % Avg. % 
No. Error Error Error 

Dry Wet Very Wet 

Ki 0.25 1 91.93 63.08 109.99 
2 133.70 54.03 48.34 
3 122.77 104.40 76.80 

Kf 1 3.55 31.42 2.82 
2 1.56 1.48 2.42 
3 1.50 1.82 3.43 

Ki 0.50 1 110.68 51.29 123.00 
2 95.59 114.29 56.12 
3 55.87 118.05 104.55 

Kf 1 3.31 1.94 5.75 
2 4.04 0.59 1.48 
3 2.33 2.11 37.38 
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Table 4.13. Average estimation error for different initial moisture conditions 
for 2-parameter optimization problem (Kj-Kf; xc = 0.0) 

Parameter p Equation Avg. % Avg. % Avg. % 
No. Error Error Error 

Dry Wet Very Wet 

Kj 0.25 1 108.20 76.11 104.09 

2 124.01 149.73 77.93 

3 101.55 96.83 61.84 

K r  1 1.60 1.26 3.73 

2 9.05 1.26 2.10 

3 2.03 18.67 101.55 

K 0.50 1 100.04 97.12 77.63 

2 78.64 38.44 64.65 

3 145.72 103.91 134.79 

Kf 1 2.53 3.33 5.98 

2 1.05 1.60 3.12 

3 1.47 18.98 3.25 
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moisture contents. Moreover, dry run simulations were twice the duration of the wet and 

very wet runs. 

Wet antecedent moisture conditions provided the best estimates for the parameter 

Ki, 11 out of 18 times for all four parameter optimization problems, followed by very wet 

runs providing the best estimates, 7 out of 18 times. The dry runs were not associated 

with the best estimates for the estimates ofKj. This result also may be related to the 

length of the data record. Given that entrainment by raindrop impact is similar to 

entrainment by hydraulic shear, the model cannot separate the two processes when 

optimizing for the appropriate parameters. The longer the simulation, the less clear the 

distinction becomes between the two processes of entrainment. The higher degree of 

success with the very wet simulations may be related to a higher rainfall intensity rate. 

Effect of Initial Moisture Conditions 
on Parameter Estimates 

• very Wet 

tau-c 

Parameter 

Figure 4.13. Number of best estimates associated with each initial moisture condition 
according to average percent estimation error for all four optimization 
procedures. 
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The effect of antecedent moisture was not as evident with respect to the parameter 

estimate of Kf. Each antecedent moisture condition provided the best estimates 8 out of 

24 times for all of the parameter optimization problems posed. However, all estimation 

errors for Kf greater than 15% occurred in the wet runs. This result was not due to the 

effect of random error since all three flow-induced equations generated the same result, 

but due to the very low sediment concentration values associated with these runs. A 

higher flow rate would make it easier for the estimation procedure to determine the 

transport capacity of the flow. 

EVALUATION OF FLOW-INDUCED EROSION EQUATIONS 

A very high level of error was associated with Equation 1, which relates sediment 

entrainment to the stream power of the flow (Bagnold, 1966). Even when no error was 

present in the data, the error of estimation for the dry and wet runs was usually twice that 

of the other two erosion equations. This may have been due to an inability of Equation 1 

to predict erosion under fully dynamic conditions. 

In general, Equations 2 and 3 were associated with lowest estimation error for all 

three parameters In the Kric estimation problem, Equation 3 generated the best 

estimates of xc when p = 0.25 (6.46% vs. 9.54% ) whereas Equation 2 performed best for 

the case where p = 0.50 (14.52% vs. 22.03%). Equation 2 was chosen for use in further 

studies because the results indicate that it would perform well regardless of the level of 
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error. By contrast, greater inaccuracies in the estimate of xc may exist unless the level of 

error is known to be low. 

Another factor considered in the selection of the best flow-induced erosion 

equation was the shape of the response surface for K,-Kf Equation 2 was the only one of 

the three that was unaffected by discontinuities in the response surface. Moreover, the 

Simplex and SLS procedure only demonstrated a 50% success rate for the error-free data 

case. These factors showed that Equation 2 was more robust than the other two 

equations. 

OPTIMIZATION PROBLEM SELECTED FOR NATURAL DATA STUDIES 

Four different parameter optimization problems were posed with the primary 

objective of studying the behavior of the erosion parameters with respect to the 

optimization algorithm and objective function employed. The inclusion of Ki in the 

optimization problem clearly resulted in a significant amount of uncertainty in the analysis. 

For this reason, K, is often determined by measuring sediment yields from small plot 

studies. In very small areas, it is assumed that all of the erosion is induced by raindrop 

impact, since the area is too small to experience erosion by hydraulic shear. In the absence 

of plot studies, regression equations that relate soil properties to K; have been used to 

determine its value. 

Once the value of K; has been estimated, it can be fixed so that the values of the 

parameters relating erosion by hydraulic shear can be determined. Other soil erosion 
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studies have also indicated this to be the best approach for estimating parameter values 

(Lopes, 1987; Page, 1988). 

The Simplex algorithm was selected for use in the rainfall simulator plot and 

watershed studies because it was more successful in estimating the true values of the 

parameters. The only relevant exception to this rule was in the Krtc optimization problem 

where Kf was better estimated by SCE-UA. Because tc is a threshold parameter and is 

more difficult to estimate than Kf, it was considered best to choose the algorithm that 

could better estimate the inactive parameter. Inaccurate estimates of Tc would also have a 

greater impact on model predictions than any differences in the parameter estimates for Kf 

generated by Simplex or SCE-UA. 

The selection of the objective function for use in the natural data studies depended 

on the amount of error assumed to be present in the data. The synthetic data study clearly 

demonstrated that higher levels of error in the sediment concentration data would be 

better served by the HMLE estimator. However, it was assumed that the amount of 

correlated error present in the natural data would not warrant the use of the HMLE 

criterion. 

Analysis of Plot Data 

To test the selected flow-induced erosion equation, data from WEPP rainfall 

simulator plots located in the Western United States were used. A 2-parameter 
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optimization problem was posed by fixing the value of Kj. The value of Ki had already 

been determined experimentally using small plot studies by the USDA-ARS WEPP team. 

ESTIMATION OF HYDRAULIC PARAMETERS 

Values of the hydraulic parameters and the Nash-Sutcliffe coefficient appear in 

Tables 4.14 and 4.15 and their corresponding hydrographs are in Figures 4.14-4.23. With 

the exception of the dry run for plot 105, all of the simulations generated hydrographs fit 

the measured data well. This is important because the hydrology drives the erosion 

component of the model. If the hydraulic parameters are not well estimated, then it may 

not be possible to obtain good estimates of the erosion parameters. 

TRUE VALUES, INITIAL VALUES AND PARAMETER BOUNDS 

Because preliminary investigations of the rainfall simulator plots indicated that the 

value of critical shear stress (xc) approached zero, and that in general, most values of tc for 

rangeland soils did not exceed a value of 6.0 (Foster et al., 1989), these values were 

designated the minimum and maximum values of the parameter for all simulations. The 

range of values for the parameter Kf changed from site to site, and were determined by 

trial and error (see Table 4.16). 

Since the value of Kf is model dependent, it's true value was unknown. Therefore, 

Tc was the only parameter that could be compared to its true value as determined by the 

critical conditions for incipient motion to occur. After obtaining values of the Reynolds 



Table 4.14. Optimized hydraulic parameters for the rainfall simulator plots. 

Plot Antecedent Re Manning's n Ns Ks Objective Nash-Sutcliffe 
No. Moisture Function Coefficient 

31 Dry 57.9 2.90280e-02 4.41380e-01 5.54130e-08 240.22 0.96 
Wet 53.5 2.81550e-02 5.33810e-02 403.34 0.95 
Very Wet 53.0 3.7089e-02 5.52800e-02 410.53 0.97 

34 Dry 35.1 6.32860e-02 5.38480e-02 2.96770e-07 848.78 0.88 
Wet 52.5 2.70770e-02 3.80480e-02 429.16 0.93 
Very Wet 57.6 2.70040e-02 1.01360e-02 421.81 0.98 

56 Dry 30.3 3.84050e-02 3.42550e-03 3.34560e-06 174.16 0.98 
Very Wet 36.2 4.00000e-02 1 66690e-02 303.92 0.78 

59 Dry 55.8 3.82490e-02 1.50470e-01 1.73860e-07 81.84 0.99 
Very Wet 40.2 4.74690e-02 1.1394e+00 1426.10 0.65 

63 Dry 53.6 3.21660e-02 4.21110e-02 3.93120e-08 248.59 0.96 
Very Wet 51.6 4.90720e-02 9.11000e-01 205.43 0.92 

66 Dry 47.0 4.07300e-02 2.52970e-02 9.92950e-08 231.16 0.98 
Very Wet 7.0 4.07330e-02 3.01810e-01 455.05 0.84 

102 Dry 15.2 2.81580e-02 5.18280e-01 3.60950e-07 90.188 0.77 
Wet 42.9 5.99740e-02 1.27120e-01 1358.2 0.71 
Very Wet 42.0 5.99220e-02 3.39010e-02 690.77 0.92 

105 Dry 55.0 5.12160e-02 1.72610e-01 1.72180e-07 3291.8 -0.39 
Wet 36.2 3.70150e-02 1.77970e-01 856.17 0.74 
Very Wet 38.3 5.99220e-02 6.46050e-02 936.53 0.92 

120 Dry 58.3 5.89490e-02 1.04820e+00 7.51070e-08 703.61 0.83 
Wet 56.2 5.77280e-02 1.43670e-01 232.21 0.95 
Very Wet 59.1 5.52580e-02 8.01780e-02 213.07 0.97 

121 Dry 48.7 3.73930e-02 1.75689e+00 4.73970e-08 857.57 0.66 
Wet 58.8 5.9990 le-02 4.28810e-01 355.68 0.94 
Very Wet 49.4 6.67600e-02 5.04840e-02 837.64 0.92 

o 



Table 4.15. Parameter bounds and starting values for rainfall simulator plots 

tc Kr 

[M/LT2] [T2/L05M05] 

Plot Nos. Lower Bound Upper Bound Starting Value Lower Bound Upper Bound Starting Value 

31,34 0.0 6.0 1.150 5.0e-02 1.0e+00 4.25e-01 

56,59,63,66 0.0 6.0 0.100 1.0e-04 2.5e-01 1.25e-01 

102, 105 0.0 6.0 0.875 5.0e-02 1.0e+00 1.0e-01 

120, 121 0.0 6.0 0.875 5.0e-02 2.0e-02 1.0e-04 
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number from the overland flow at steady-state, the Shield's diagram was used to identify 

the value of xc. 

SEDIMENT GRAPHS FOR RAINFALL SIMULATOR PLOTS 

In only 4 of the 24 simulations did the Nash-Sutcliffe coefficient indicate a good fit 

between the measured and the simulated sediment graphs (see Table 4.16 and Figures 

4.14 - 4.23). It was in these cases that some of the largest errors in estimation occurred 

for the critical shear stress parameter. Conversely, when the error of estimation was low, 

the Nash-Sutcliffe coefficient indicated a poor fit between the simulated and measured 

data. 

Plots 31 and 34 are a case in point, as the synthetic data were generated based on 

the soil properties at these sites. The only simulation (plot 31, Wet Run) to produce a 

sediment graph that matched the measured data (Nash-Sutcliffe Coefficient = 0.77) was 

also associated with the highest estimation error for xc for all six runs. Two simulations 

generated good estimates of tc, (less than 11 % error), however, the results showed 

virtually no match between the measured and simulated sediment graphs. 

Because WESP generated hydrographs that provided a good fit to the measured 

data, these anomalies may be linked to a structural problem in the erosion component of 

the WESP model. The analysis of the synthetic data identified a problem early on with the 

interactions of the deposition parameter occurring at very low slopes. WESP assumed 

that entrainment and deposition occurred simultaneously. If too much deposition 



Table 4.16. Erosion parameter estimates for rainfall simulator plots. 

Parameter Estimates 

Plot Antecedent % Fixed Value a b % Error of Value of Nash-SutclifTe No. of 

No. Moisture Slope K, Kr xt Value of TC True Value r. Obj. Ftn Coefficient Iterations 

31 I>ry 10.2 285,000 1.6899F.-01 4.8227E-0I 5.4042E-01 (10.76015%) 1.8823E+03 4.50E-01 71 

Wet 5.6370E-02 5.7948E-04 5.4042E-01 (99.89277%) 3 1588E+02 7.70E-01 156 

Very Wet 5.0001E-02 3.7531E-01 5.4042E-01 (30.55216%) 9.6677E<02 1.60E-01 100 

34 IDry 10 6.0261E-02 3.0237E-01 4.7452E-01 (36.27877%) 2.2344E^03 4.10E-01 100 

Wet 5.0171E-02 5.6329E-01 5.2724E-01 (6.83749%) 5.3285E+03 -1.37E+00 101 

Very Wet 5.9516E-02 6 8658E-04 5.2724E-01 (99.86978%) 2.2295E+03 -8.20F.-03 93 

56 Dry 8.5 222.855 9.4761E-02 1.8051E-03 5.6473E-01 (99.68036%) 6.7520E + 02 1.30E-01 48 

Very Wet 1.0115E-01 2.5757E-04 5.8086E-01 (99.95566%) 6.6359E < 02 7.30E-01 59 

59 Dry 7.1 3.4933E-02 2.5573E-02 6.4540E-01 (96.03765%) 3.9634E<02 -6.50E-01 59 

Very Wet 8.2727E-02 4.3905E-04 5.8086E-01 (99.92441%) 2.5003E -02 8.00E-01 63 

63 Dry 8.6 186.445 1.5110E-02 5.9127E-05 5.0149E-01 (99.98821%) 8.1605E+01 3.90E-01 92 

Very Wet 2.1566E-02 3.6865E-04 5.0149E-01 (99.92649%) 1.1197E+01 9.50F--01 91 

66 Dry 8.0 1.9131E-02 3.1051E-03 4.7641E-01 (99.34823%) 1.0836E^02 3.10E-0! 60 

Very Wet 2.7595E-02 1.5909E-04 4.3880E-01 (99.96374%) 6.8785E+02 5.90E-02 77 

102 Dry 11.2 315,178 1.0976E-01 2.3611E-03 5.6570E-01 (99.58262%) 4.7677E+02 -3.80E-01 64 

Wet 5.0007E-02 3.3085E-01 6.3427E-01 (47.83767%) 8.5356E+02 -7.20E-01 57 

Very Wet 5.0027E-02 7.9432E-01 6.5140E-01 (21.94044° b) 6.7471E'02 -2.60E-01 65 

105 Dry . 9.8 5.0063E-02 6.3875E-01 6.8569E-01 (6.84566%) 3.5213Ei02 1.70E-01 67 

Wet 6.4687E-02 2.0695E-03 6 1712E-01 (99.66465%) 7.4228F.t02 2.90E-01 62 

Yei\ Wet 5.0036E-02 5.3836E-01 6.I712E-0I (12.76251%) 3.8301F.f02 I.20E-01 64 

120 Dry 11.2 947,294 3.3447E-04 6.4087E-04 6.7510E-02 (99.05070%) 1.5280E'03 -2.20E-01 45 

Wet 1.8990E-04 6.1951E-03 6.7510E-02 (90.82343%) 3.5753E^02 1.30E-01 39 

Very Wet 7.1875E-04 3.5684E<00 6.7510E-02 (5185.73545%) 2.9100E<02 -3.10E+00 20 

121 Dry 11.6 9.I398E-04 8.7357E-03 6.5820E-02 (86.72789° o) 3.7593E+03 -1.02E + 00 74 

Wet 3.8742E-04 3.5665E-03 6.7510E-02 (94.71708%) 2.3602E+03 -1.70E-01 55 

Very Wet 3.1719E-04 3.4180E-03 6.7510E-02 (94.93705%) 7.5927E*02 2.20E-01 39 

a True value of Kr is unknown b True value of ic was determined using Shield's diagram 
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Figure 4.14. Hydrographs and sediment graphs for plot number 31. 
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Figure 4.15. Hydrographs and sediment graphs for plot number 34. 
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Figure 4.16. Hydrographs and sediment graphs for plot number 56. 
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Figure 4.17. Hydrographs and sediment graphs for plot number 59. 
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Figure 4.18. Hydrographs and sediment graphs for plot number 63. 
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Figure 4.19. Hydrographs and sediment graphs for plot number 66. 
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Figure 4.20. Hydrographs and sediment graphs for plot number 102. 
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Figure 4.21. Hydrographs and sediment graphs for plot number 105. 
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Figure 4.22. Hydrographs and sediment graphs for plot number 120. 



Dry Run 

10 15 20 

Time (min) 

- 30 

Very Wet Run 
105 x 

90 -
- 40 

75 

- 30 60 -

20 15 25 0 10 5 

Time (min) 

-•— Observed Runoff • Simulated Runoff 

— Observed Sed Cone • Simulated Sed Cone 

Figure 4.23. Hydrographs and sediment graphs for plot number 121. 
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occurred in the simulated event, then simulated sediment concentrations would have been 

too low. This was in fact the case where the simulated sediment concentrations were 

severely underestimated on the rising limb of nearly all of the sediment graphs and 

overestimated on the falling limb. 

PROCESSES OF DEPOSITION & ENTRAINMENT 

To ascertain the effects that different values of the deposition parameter would 

have on parameter estimates, P was assigned a value of 0.25 and 0.75. Very small 

changes in the value of the objective function and estimates of tc were noted, while the 

estimates of Kf showed the greatest fluctuation. Since lower values of P reflect turbulent 

flow conditions, the transport capacity of the flow (Kf) was increased. For higher values 

of P, estimates of Kf were decreased 

This outcome indicates that the equation describing the downward sediment flux 

may be inappropriate for the WESP model However, there may be other confounding 

factors. For example, all of the successful sediment graphs estimated the critical shear 

stress parameter at a value close to zero. Such a low value for critical shear stress is not 

realistic. Sediment particles are entrained by flow whenever the magnitude of 

instantaneous fluid force acting on the sediment particle exceeds the resistance force for 

the particle to be moved. A greater force will be needed to initially detach a sediment 

particle from the soil matrix than one that will be required to re-entrain that same particle 
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once it has been deposited on the soil surface. Presently, WESP cannot account for any 

processes of re-entrainment, which may explain the very low estimates of the critical shear 

stress parameter. Moreover, the true effective particle diameter is unknown and small 

errors in its estimate may adversely effect the parameter estimation procedure. 

ACTIVATION OF EROSION BY HYDRAULIC SHEAR 

Equation 2 was selected as the best model of the three tested for describing flow-

induced erosion. However, the synthetic data used in this analysis were also generated by 

the same flow-induced erosion model, and may not be appropriate for describing 

entrainment by hydraulic shear in broad-shallow overland flow areas under natural 

conditions. All of the equations tested in this analysis incorporated existing transport 

formulas that were developed based on experimental work in channels. Equation 2, for 

example, incorporated the bedload formula of Yalin (1963). Although it was assumed that 

the hydraulics of overland flow were different than those of a channel in this analysis, it 

may be that different equations and parameters are necessary for describing erosion by 

hydraulic shear. 

It is also not known if entrainment by hydraulic shear actually occurred on the 

rainfall simulator plots studies. Bare soil conditions do not normally occur in rangeland 

environment, and had to be artificially created to conduct these plot studies (Simanton et 

al., 1985). Below ground biomass was left undisturbed, while all of the vegetation was 

clipped and rocks were removed from the soil surface Under these circumstances, 
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infiltration was enhanced, thereby reducing runoff and entrainment than what might have 

normally occurred under natural bare soil conditions. If erosion by hydraulic shear did not 

occur, then this would have also accounted for very low values in the estimates of TC. 

Analysis of Watershed Events 

To test the effect of scale on the selected flow-induced erosion equation, data were 

used from a small experimental watershed located in the USDA-ARS Walnut Gulch 

Experimental Watershed near Tombstone, Arizona. A 2-parameter optimization problem 

was posed by fixing the value of Ki Because the WESP model does not currently 

incorporate any adjustment factors for the erosion parameters when cover is present, the 

value of Ki was adjusted so that the detachment by raindrop impacted accounted for 

approximately 80% of the total sediment yield This value was arbitrarily selected in 

accordance with erosion studies that have shown that sediment entrainment by raindrop 

impact predominates in rangeland environments (Nearing et al., 1989). 

PARAMETER ESTIMATES 

Before optimizing for the erosion parameters, the values of the hydraulic 

parameters were determined for each event (see Table 4.17). Parameter bounds and 

starting values for the watershed events are shown in Table 4.18. The agreement between 

the simulated and the observed watershed responses for both runoff and sediment yield 

indicate that WESP satisfactorily described the sedimentation processes occurring in 
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Kendall Watershed (see Table 4.19). Estimates of the critical shear stress parameter 

confirmed this result in at least 2 of the 3 events studies. Even the highest estimation error 

(138%) associated with tc accurately estimated the sediment yield for that event. 

Moreover, this estimate was at least on the same order of magnitude as to its true value, a 

result that was contrary to the successful sediment graphs generated by the rainfall 

simulator events. 

The difficulty of calibration was eased for the watershed events inasmuch as the 

sediment yield instead of sediment concentration values was used as a basis for comparing 

simulated to measured data. Typically with the rainfall simulator plots, simulated sediment 

concentrations were under predicted on the rising limb of the sediment graph, and over 

predicted on the falling limb due to the problems previously discussed. This imbalance 

may have been equilibrated by the comparison of a single value in the objective function. 

However, WESP may be better able to describe the processes of sedimentation when they 

occur on a larger scale. 



Table 4.17. Hydraulic parameters for selected Kendall Watershed events. 

Event Date Re Manning's n Ns Ks Objective Nash-Sutcliffe 
Function Coefficient 

13-Sep-75 

28-Jul-76 

5-Sep-76 

24.2 

18.6 

16.8 

4.46700e-02 

2.50060e-02 

4.63320e-02 

1.36050e-01 

1.05400e-01 

5.23160e-03 

1.06300e-06 

165350e-06 

2.94730e-06 

194.03 

7.403 

547.88 

0.90 

0.99 

0.71 

Table 4.18. Parameter bounds and starting values for selected Kendall Watershed events. 

Event Date Lower Bound 

[M/LT2) 

Upper Bound Starting Value Lower Bound 

Kn 

1Tj/L05M°-5] 

Upper Bound Starting Value 

13-Sep-75 

28-Jul-76 

S-Sep-76 

0.0 

0.0 

0.0 

6.0 

6.0 

6.0 

1.150 

0.100 

0.875 

.00e-13 

.00e-13 

.00e-13 

1 00e-06 

1.00e-06 

1.00e-06 

1.00e-08 

1.00e-08 

1.00e-08 

Table 4.19 Erosion parameter estimates for selected Kendall Watershed events. 

Fixed Value a b % Error of Value of the No. of 
Event Date ofKi Kf Tc Value of Tc True Value of Tc Objective Function iterations 

13-Sep-75 105000 6.131 le-07 0.03856 0.04241 (9.08041%) 1.3805e-12 108 

28-Jul-76 4.5648e-06 0.03099 0.04113 (24.64381%) 2.0354e-16 116 

5-Sep-76 2.0037e-07 0.09504 0.03984 (138.55924%) 2.9381e-13 98 

' True value of Kf is unknown b True value of tt was determined using Shield's diagram 
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CONCLUSIONS AND FUTURE RESEARCH 

Summary and Conclusions 

The primary goal of this study was to determine the adequacy of the optimization 

procedures in identifying unique, optimal parameter values. In the first phase of this 

study, synthetic error-free data, as well as data contaminated with correlated and random 

error, provided the means for determining the effectiveness of the four optimization 

procedures evaluated Four different optimization problems were posed so that the 

behavior the erosion parameters could be fully studied. Using a fully-dynamic process-

based approach, three sediment transport equations describing flow-induced erosion were 

compared. 

Based on the synthetic data analysis, the most successful optimization procedure 

and flow-induced erosion equation were selected for use in the second phase of the study. 

Ten rainfall simulator events from four different areas in the Western United States were 

selected for analysis. Three rainfall-runoff events for a small watershed were also 

examined. 

From the evaluation of the synthetic and natural data studies, the following 

conclusions can be made: 

(1) The Simplex algorithm was more successful than the SCE-UA in estimating the 

parameters. This result was contrary to the theoretical expectation since the 

SCE-UA algorithm achieved a 100% success rate in finding a lower value of 

the objective function. Although the outcome may be attributed to the fact 
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that the hydraulic parameters were fixed even after error was introduced into 

the analysis or to the use of the finite difference scheme, it was assumed that 

the behavior of the model was such that the global minimum on the response 

surface was located in areas that produced more extreme values of the 

parameters. 

(2) The SLS criterion generated the best estimates of the parameter when the error 

level was low, whereas the HMLE estimator performed better when a higher 

level of correlated error was present in the data. 

(3) Of the three flow-induced erosion equations studied, Equation 1, which was 

related to the stream power of the flow (Bagnold, 1966), was the only 

equation that was consistently associated with a high amount of estimation 

error. This may be due to an inability to predict erosion under fully dynamic 

conditions. 

(4) Equation 2 was determined to be the best model describing flow-induced 

erosion. Although Equation 3 generated better estimates of the parameters at 

a lower level of error, the difference in performance between the two equations 

was small. Moreover, at a higher level of error, the performance of Equation 2 

surpassed that of Equation 3. 

(5) All four of the estimation procedures demonstrated the same sensitivities to 

calibration data variability. The parameter for critical shear stress (xc) was 

better estimated for dry runs. Ki, which describes entrainment by raindrop 
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impact, was better estimated in the wet and very wet runs. The parameter 

related to the transport capacity of the flow, Kf, was unaffected by calibration 

data variability. 

(6) The selected flow-induced erosion equation did not succeed in reproducing 

sediment graphs with physically, realistic parameter values for the rainfall 

simulator plots studied. This outcome may have been the result of an 

inappropriate equation used to describe deposition, an inactivation of the 

process of entrainment by hydraulic shear and/or the use of a flow-induced 

erosion equation that was developed from observations in channels and was 

not appropriate for describing erosion in broad-shallow overland flow areas. 

(7) The agreement between the simulated and the observed hydrographs and 

sediment yields indicate that the WESP model is able to describe the 

sedimentation processes occurring in small watersheds However, because 

only one value for total sediment yield is used for comparison in the objective 

function, problems in under and over prediction at different points on the 

sediment graph are not at issue. 

(8) Although the Simplex and HMLE optimization procedure was found to be 

more sensitive to very wet runs in the 3-parameter problem, it was determined 

that this sensitivity was more likely the result of a greater degree of parameter 

activation rather than a sensitivity to a variable rainfall rate. 
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Recommendations for Future Research 

The verification of the processes in an erosion model is a critical step in developing 

a valid erosion prediction tool. In the WESP model, a detailed evaluation of the process 

of deposition is needed so that the model can accurately represent the physical system it 

simulates. In the synthetic data analysis, it became clear that the equation used to describe 

deposition was problematic, whereas in the natural data analysis, the effects of deposition 

were more obscured. This uncertainty must be resolved before confidence can be placed 

in the predictive capabilities of the WESP model. 

Research into deriving flow-induced erosion equations is also needed. The 

equations studied in this analysis were developed from observations in channels and 

therefore their use outside the domain from which they were developed could lead to 

erroneous results. If the equation were applied to a channel, the parameter Kf could be 

related to entrainment by way of shear stress acting at the fluid/soil interface, headcutting 

and sidewall sloughing. The latter two of these mechanisms are clearly not appropriate for 

broad-shallow overland flow. A need exists for the development and verification of 

universal, fundamentally derived equations for relating erosion by hydraulic shear in 

broad-shallow overland flow areas. 

Research into the effects of using a numerical technique to solve the continuity 

equation for sediment transport is necessary to determine if the noise introduced is 

negatively impacting parameter identification. The reason for the global minimum to be 

consistently located in an area that corresponded to poorer estimates of the parameters 



127 

still remains unresolved. This result may have been related to the use of the implicit, four-

point finite difference scheme, or even possibly to errors in the formulation of the basic 

equations that were discussed above. 

To date, no erosion tests have been performed to relate the soil and cover 

properties to erodibility using statistical regression techniques for the WESP model. This 

approach can be problematic since the results are questionable for applications outside the 

range for which they were derived However, the current methodology requires that a 

large number of varied data sets be evaluated to decide how the parameters are affected by 

a wide variety of soil and cover characteristics. 

The study presented herein was confined to an analysis of erosion in overland flow 

areas. A similar investigation into the methods of parameter identification in areas of 

channel flow is necessary to the development of the WESP model. Results of such a study 

might indicate where the problems of parameter identification exist in broad-shallow 

overland flow areas. 



APPENDIX A 

Tables A1 - A36 

Results of Parameter Optimization for Synthetic Data 



Table A1. Results of K; -Kf-Tc parameter optimization problem with error-free data, Equation 1. 

Parameter Estimates (°'o of Error from True Values) 

Q Antecedent o- Search Objective b c d Value of No. 

P Moisture Slope Algorithm Function Ki Kf tauc Obj. Ftn. Iterations 

0 Dry 10 Simplex SLS 28.575 (0.26316%) 1.7190F.-04 (0.01164°o) .50225 (0.04980%) 5.9059E-08 186 

SCE-UA 28.500 (0.00000%) 1.7194E-04 (0.03491® o) .50232 (0.063759b) 5.8872E-08 1554 

Simplex HM1.F. 65.817 (130.93684%) 1.7349E-04 (0.93670%) .57411 (14.364549 b) 3.2616E-09 162 

SCF.-UA 28.588 (0.30877%) 1.7192E-04 (0.02327^b) .50235 (0.06972%) 9.3542E-10 1720 

15 Simplex SLS 28.635 (0.47368%) I.7186E-04 (0.01164%) .50202 (0.00398%) 6.7305E-08 165 

SCE-UA 28 618 (0.41404%) 1.7187E-04 (0.00582°b) .50203 (0.00598°o) 6.7219E-08 1393 

Simplex 11MI.E 36.003 (26.32632%) 1.7195E-04 (0.04073%) .50968 (1.52988%) 1.5863E-09 128 

SCH-l'A 28.637 (0.48070%) 1.7187E-04 (0.00582%) .50204 (0.00797° b) 1.0825E-06 1681 

Wet 10 Simplex SI.S 28.403 (0.340359b) 1.7189E-04 (0.00582%) .50183 (0.03386%) 2.0331E-08 268 

SCF.-UA 28.397 (0.36140%) 1.7189E-04 (0.00582%) 50184 (0.03187%) 2.6321F.-08 1536 

Simplex IIMLE 57.573 (102.01053%) 1.7361E-04 (1.00652%) .56037 (11.62749%) 6.5I69E-09 114 

SCH-l'A 28.405 (0.33333%) 1.7191 E-04 (0.01745° b) 50194 (0.0119590) 6.8692E-10 1961 

15 Simplex SLS 69.022 (142.18246%) 1.7559E-04 (2.15848%) .56785 (13.11753%) 1.7373E-04 150 

SCE-UA 28.538 (0.13333%) 1.7191E-04 (0.01745%) .50230 (0.05976%) 2.1479E-08 1411 

Simplex HMI.E 74.563 (161.62456%) 1.7240E-04 (0.30254%) .54353 (8.272919 b) 1.1334E-08 231 

SCE-UA 28.502 (0.00702%) 1.7190E-04 (0.01164° o) .50213 (0.02590%) 5.5804F.-10 1706 

Very Wet 10 Simplex SLS 28.517 (0.05965%) 1.7183E-04 (0.029099 b) .50199 (0.001999o) 2.2875E-08 225 

SCE-UA 28.518 (0.06316%) 1.7187E-04 (0.005829o) .50200 (0.00000%) 2.2925E-08 1303 

Simplex HMLE 44.378 (55.71228%) 2.5956E-04 (51.012339b) .80276 (59.91235%) 3.2388E-04 98 

SCE-UA 28.531 (0.10877%) 1.7187E-04 (0.00582%) .50200 (0.000009b) 7.6016F.-10 1354 

15 Simplex SLS 28.483 (0.05965%) 1.7I88E-04 (0.00000%) .50199 (0.00199%) 2.3046E-08 233 

SCE-UA 28.483 (0.05965%) 1.7188E-04 (0.000009 b) .50200 (0.000009'o) 2.3018E-08 1406 

Simplex HMLE 28.481 (0.06667%) 1.7188E-04 (0.000009b) .50200 (0.0000094) 7.6715E-09 217 

SCE-UA 28.477 (0.08070%) 1.7188E-04 (0.00000° b) .50200 (0.00000%) 7.9847E-10 1269 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value ofl.7188E-04 and starting value of 2.25E-04 

c True value of 28.5 and starting value of 42.5 d True value of 0.502 and starting value of 1.15 

* Values of Ki are multiplied by 10,000 



Table A2. Results of K; -Kf-xc parameter optimization problem with error-free data, Equation 2. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c d Value of No. 

P Moisture Slope Algorithm Function Ki KI tauc Obj. Ftn. Iterations 

0 Drv 10 Simplex SLS 28.560 (0.21053%) 3.7366E-03 (0.00268%) .50204 (0.00797%) 4.7347E-08 273 

SCE-UA 28.536 (0.12632%) 3.7366E-03 (0.00268%) .50203 (0.00598%) 4.7447E-08 1472 

Simplex HMI.E 14.235 (50.05263%) 3.7565E-03 (0.53526%) .49892 (0.61355%) 2.3846E-09 172 

SCE-UA 28.563 (0.22105%) 3.7366E-03 (0.00268%) .50204 (0.00797%) 7.1169E-10 1632 

15 Simplex SLS 29.055 (1.94737%) 3.7362E-03 (0.00803%) .50210 (0.01992%) 6.7749E-08 165 

SCE-UA 28.618 (0.41404%) 3.7364E-03 (0.00268%) .50202 (0.00398%) 6.0946E-08 1515 

Simplex HM1J- 39.562 (38.81404%) 3.7272E-03 (0.24890%) .50353 (0.30478%) 2.0538E-09 191 

SCE-UA 28.723 (0.78246%) 3 7364E-03 (0.00268%) .50206 (0.01195%) 9.2029E-10 1694 

Wet 10 Simplex SLS 28.450 (0.17544%) 3.7359E-03 (0.01606%) .50189 (0.02191%) 1.5559E-08 370 

SCE-UA 28.536 (0.12632%) 3.7366E-03 (0.00268%) .50203 (0.00598%) 4.7447E-08 1472 

Simplex HMLE 61 108 (114.41404%) 3.7015E-03 (0.93671%) .51029 (1.65139%) 9.6494E-09 244 

SCE-l'A 28.406 (0.32982%) 3.7356E-03 (0.02409%) .50181 (0.03785%) 4.3201E-10 1606 

15 Simplex SLS 28.541 (0.14386%) 3.7363E-03 (0.00535%) .50197 (0.00598%) 2.0133E-08 255 

SCE-UA 28.527 (0.09474%) 3.7363E-03 (0.00535%) .50196 (0.00797%) 2.0130E-08 1652 

Simplex HMLE 45.423 (59.37895%) 3.7231E-03 (0.35862%) .50459 (0.51594%) 3.9103E-09 195 

SCE-UA 28.504 (0.01404%) 3.7362E-03 (0.00803%) .50194 (0.01195%; 4.4843E-10 1734 

Very Wet 10 Simplex SI.S 28.531 (0.10877%) 3.7363E-03 (0.00535%) .50198 (0.00398%) 1.9403E-08 230 

SCE-UA 28.539 (0.13684%) 3.7362E-03 (0.00803%) .50198 (0.00398%) 1.9763E-08 1335 

Simplex HMLE 28.534 (0.11930%) 3.7363E-03 (0.00535%) .50198 (0.00398%) 6.4762F.-10 216 

SCE-UA 28.531 (0.10877%) 3.7363E-03 (0.00535%) .50199 (0.00199%) 6.4908E-10 1493 

15 Simplex SLS 28.500 (0.00000%) 3.7365E-03 (0.00000%) .50199 (0.00199%) 2.8262E-08 188 

SCE-UA 28.497 (0.01053%) 3.7365E-03 (0.00000%) .50199 (0.00199%) 2.8308E-08 1461 

Simplex HMLE 28.561 (0.21404%) 3.7362E-03 (0.00803%) .50196 (0.00797%) 1.3702E-09 154 

SCE-UA 28.503 (0.01053%) 3.7365E-03 (0.00000%) .50199 (0,00199%) 9.4509E-10 1481 

Correlation coefficient of sediment concentration; for p = 0, no random error b ' True value of3.7365E-03 and starting value of 4.25E-03 

True value of 28.5 and starting value of 42.5 d True value of0.502 and starting value of 1.15 

Values of Ki are multiplied by 10,000 



Table A3. Results of Kj -Kf-tc parameter optimization problem with error-free data, Equation 3. 

Parameter Estimates (% of Error from True Values) 

a Antecedent 0 0 Seardi Objective b c d Value of No. 

P Moisture Slope Algorithm Function Ki Kf tauc Obj. I tii. Iterations 

0 Dry 10 Simplex SLS 35.153 (23.34386%) 3.9630E-05 (0.13859%) .50393 (0.38446%) 3.3798E-06 137 

SCE-UA 28.558 (0.20351%) 3.9684E-05 (0.00252%) .50201 (0.00199%) 5.5114E-08 1329 

Simplex HMI.E 74.996 (163.143869b) 4.2010E-05 (5.85864%) .55255 (10.06972%) 1.4855E-05 168 

SCF.-IA 28.564 (0.22456%) 3.9686E-05 (0.00252%) .50204 (0.00797%) 8.2215E-10 1980 

15 Simplex SLS 50.489 (77.15439%) 3.9561E-05 (0.31246%) .50656 (0.90837%) 2.2236E-05 153 

SCE-UA 28.652 (0.53333%) 3.9683E-05 (0.00504%) .50200 (0.00000%) 6.2682E-08 1549 

Simplex HMLE 74.970 (163.05263%) 5.5614E-05 (40.13859%) .77582 (54.54582%) 1.2I97E-03 161 

SCE-UA 28.646 (0.51228%) 3.9684E-05 (0.00252%) .50202 (0.00398%) 9.9707E-10 1775 

Wei 10 Simplex SLS 74.982 (163.09474%) 4.0136E-05 (1.13645%) .52847 (5.27291%) 2.3237E-04 261 

SCE-UA 28.469 (0.10877%) 3.9679E-05 (0.01512%) .50191 (0.01793%) 1.9111E-08 1569 

Simplex HMLE 36.335 (27.49123%) 3.9598E-05 (0.21923%) .50402 (0.40239%) 1.9291E-09 346 

SCE-UA 28.418 (0.28772%) 3.9677E-05 (0.02016%) .50185 (0.02988%) 5.6308E-10 2130 

15 Simplex SLS 28.492 (0.02807%) 3.9684E-05 (0.00252%) .50196 (0.00797%) 2.4085E-08 268 

SCE-UA 28.531 (0.10877%) 3.9684F.-05 (0.00252%) .50199 (0.00199%) 2.4316E-08 1415 

Simplex HMLE 32.149 (12.80351%) 3.9684E-05 (0.00252%) .50259 (0.11753%) 2.1964E-09 220 

SCE-UA 28.506 (0.02105%) 3.9685E-05 (0.00000%) .50199 (0.00199%) 6.0122E-10 1907 

Very Wet 10 Simplex SLS 28.516 (0.05614%) 3.9684E-05 (0.00252%) .50198 (0.00398%) 2.5454E-08 218 

SCE-UA 28.509 (0.03158%) 3.9684F.-05 (0.00252%) .50198 (0.00398%) 2.6064E-08 1260 

Simplex HMLE 64.342 (125.76140%) 3.7152E-05 (6.38276%) .47459 (5.46016%) 4.0288E-05 99 

SCE-UA 28.531 (0.10877%) 3.9682E-05 (0.00756%) .50197 (0.00598%) 8.6428E-10 1327 

15 Simplex SI.S 28.514 (0.04912%) 3.9685E-05 (0.00000%) .50201 (0.00199%) 1.6427E-08 208 

SCE-UA 28.504 (0.01404%) 3.9686E-05 (0.00252%) .50204 (0.00797%) 1.8361E-08 1246 

Simplex HMLE 11.336 (60.22456%) 3.9469E-05 (0.54429%) .49057 (2.27689%) 2.6470E-06 255 

SCE-UA 28.512 (0.04211%) 3.9685E-05 (0.00000%) .50202 (0.00398%) 5.3448E-10 1347 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.9685E-05 and starting value of 9.00E-05 

c True value of 28.5 and starting value of 42.5 d Truevalueof0.502andstartingvaIueofl.lS 

* Values of Ki are multiplied by 10,000 



Table A4. Results of K;-KrTc parameter optimization problem for p = 0.25, Equation 1. 

Parameter Estimates (?b of Error from True Values) 

a /Snteccdent °0 Search Objective b c d Value of No. 

p Moisture Slope Algorithm Function Ki Kf tauc Obj. Pin. Iterations 

0.25 Dry 10 Simplex SLS 60.937 (113.81404%) 1.8566E-04 (8.01722%) .61311 (22.13347%) 4.7627E-03 91 

SCE-UA 10.002 (64.90526%) 1.7941E-04 (4.38096%) .50537 (0.67131%) 4.4972E-03 1388 

Simplex HMIJi 58.039 (103.64561%) 1.7899E-04 (4.13661%) .58397 (16.32869%) 7.1661E-05 108 

SCE-UA 10.004 (64.89825%) 1.7515E-04 (1.90249%) .48659 (3.06972%) 7.0619E-05 1603 

15 Simplex SI.S 47.796 (67.70526%) 1.7J41E-04 (0.27345%) .53373 (6.32072%) 9.9575E-02 72 

SCE-UA 74.977 (163.07719%) 1.7287E-04 (0.57598%) .56058 (11.66932%) 9.9374E-02 1408 

Simplex HMLE 45.179 (58.52281%) 1.7673E-04 (2.82174%) .56263 (12.07769%) 1.5306F.-03 62 

SCE-UA 75.060 (163.36842%) 1.7783E-04 (3.46172%) .59672 (18.86853%) I.4992E-03 1458 

Wet 10 Simplex SLS 50.659 (77.75088%) 2.5003E-04 (45.46777%) .76312 (52.01594%) 3.8926E-03 59 

SCE-UA 37.793 (32.60702%) 2.3265E-04 (35.35606%) .70999 (41.43227%) 3.8126E-03 1289 

Simplex HMLE 51 190 (79.61404%) 2.4887E-04 (44.79288° o) .76182 (51.75697%) 1.1590E-04 59 

SCE-UA 61.271 (114 98596%) 2.4239E-04 (41.02281%) .76293 (51.97809%) 1.0592E-04 1707 

15 Simplex SLS 36.781 (29.05614%) 1.8989E-04 (10.47824%) .62453 (24.40837%) 3.5515E-02 109 

SCE-UA 29.947 (5.07719%) 1.9192E-04 (11.65930%) .63025 (25.54781%) 3.5482E-02 1220 

Simplex HMLE 42.200 (48.07018%) 2.0716F.-04 (20.52595%) .72402 (44.22709%) 1.1088E-03 106 

SCE-UA 74.999 (163.15439%) 2.2927E-04 (33.38957%) .83997 (67.32470%) 1.0505E-03 1491 

Yen Wet 10 Simplex SLS 45.608 (60.02807%) 1.5670E-04 (8.83174%) .30055 (40.12948° o) 4.8371E-01 86 

SCE-UA 74.978 (163.08070%) 1.4814E-04 (13.81196%) .30002 (40.23506%) 4.8118E-01 1200 

Simplex HMIJ£ 71.419 (150.59298%) 1.4907E-04 (13.27089%) .30222 (39.79681%) 1.5834E-02 84 

SCE-UA 74.995 (163.14035%) 1.4759E-04 (14.13195%) .30001 (40.23705%) 1.5818E-02 1112 

15 Simplex SLS 10.001 (64.90877%) 1.6375E-04 (4.73004%) .33326 (33.613559b) 1.6943E+00 219 

SCE-UA 10.003 (64.90175%) 1.6320E-04 (5.05003%) .31964 (36.32669%) 1.6942E+00 1223 

Simplex HMLE 10.002 (64.90526%) 1.6264E-04 (5,37584%) .30002 (40.23506%) 5.5249E-02 213 

SCE-UA 10.003 (64.90175%) 1.6278E-04 (5.29439%) .30002 (40.23506%) 5.5244E-02 1287 

a Conflation coefficient of sediment concentration; for p = 0, no random error b True value of 1.7188E-04 and starting value of 2.25E-04 

c True value of 28.5 and starting value of 42,5 d True value of0.502 and starting value of 1.15 

* Values of Ki are multiplied by 10,000 



Table A5. Results of Kj-KrTc parameter optimization problem for p = 0.25, Equation 2. 

Parameter Estimates (% of Error from True Values) 

a Antecedent °-o Search Objective b c d Value of No. 

p Moisture Slope Algorithm Function Ki Kf tauc Obj. Ftn. Iterations 

0.25 Drv 10 Simplex SI.S 35.497 (24.55088%) 3.4363E-03 (8.03426%) .45495 (9.37251%) 1.0394E-01 137 

SCF.-UA 74.999 (163.15439%) 3.3964E-03 (9.10210%) .46583 (7.20518%) 1 0347E-01 1348 

Simplex HMLE 27.869 (2.21404%) 3.3736E-03 (9.71230%) .44273 (11.80677%) 1.5771E-03 143 

SCE-UA 74.994 (163.13684%) 3.3006E-03 (11.66600%) .45167 (10.02590%) 1.5164E-03 1586 

15 Simplex SLS 72.722 (155.16491%) 3.7037E-03 (0.87783%) .50037 (0.32470%) 2.0055E-01 101 

SCE-UA 74.988 (163.11579%) 3.6908E-03 (1.22307%) .49801 (0.79482%) 2.0049E-01 1516 

Simplex HMLE 62.357 (118.79649%) 3.6907E-03 (1.22575%) .49338 (1.71713%) 3.2153E-03 104 

SCE-UA 74.988 (163.11579%) 3.6985E-03 (1.01699%) .49921 (0.55578%) 3.2125E-03 1512 

Vet 10 Simplex SI.S 69.897 (145.25263%) 3.8553E-03 (3.17945%) .55796 (11.14741%) 2.1080E-02 171 

SCE-UA 10.000 (64.91228%) 3.8081E-03 (1.91623%) .52588 (4.75697%) 2.0206E-02 1618 

Simplex HMLE 74.996 (163.14386%) 5.4826E-03 (46.73090° i.) .73766 (46.94422%) 1.0374E-03 153 

SCE-UA 46.711 (63.89825%) 4.0727E-03 (8.99773%) .57978 (15.49402%) 3.3806E-04 2029 

15 Simplex SLS 74.590 (161.71930%) 4.4796E-03 (19.88760%) .69323 (38.09363%) 7.6516E-02 104 

SCE-UA 45.125 (58.33333%) 4.4796E-03 (19.88760%) .66232 (31.93625%) 7.6150E-02 1380 

Simplex HMLE 10.553 (62.97193%) 5.0611E-03 (35.45029%) .74669 (48.74303%) 2.6174E-03 125 

SCE-UA 10.485 (63.21053%) 4.1902E-03 (12.14238%) .60827 (21.16932%) 1.7600E-03 2276 

Vers' Wet 10 Simplex SLS 54.938 (92.76491%) 3.6448E-03 (2.45417%) .49106 (2.17928%) 6.6409E-0I 75 

SCE-UA 10.002 (64.90526%) 3.9508E-03 (5.73531%) .52373 (4.32869%) 6.5411E-01 1268 

Simplex HMLE 47.453 (66.50175%) 3.7700E-03 (0.89656%) .51987 (3.55976%) 2.1922E-02 72 

SCF.-UA 10.086 (64.61053%) 3.9809E-03 (6.54088%) .53416 (6.40637%) 2.1644E-02 1258 

15 Simplex SLS 57.506 (101.77544%) 3.5576E-03 (4.78790%) .50869 (1.33267%) 1.7104E+00 83 

SCE-UA 10.001 (64.90877%) 3.7312E-03 (0.14184%) .53455 (6.48406%) 1.6546E+00 1308 

Simplex HMLE 10.039 (64.77544%) 3.7244E-03 (0.32383%) .53323 (6.22112%) 5.5101E-02 138 

SCE-UA 10.001 (64.90877%) 3.7290E-03 (0.20072%) .53590 (6.75299%) 5.5096E-02 1369 

Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.7365e-03 and starting value of4.25E-03 

True value of 28.5 and starting value of 42.5 d True value of 0.502 and starting value of 1.15 

Values of Ki are multiplied by 10,000 



Table A6. Results of Ki-Kric parameter optimization problem for p = 0.25, Equation 3. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c d Value of No. 

p Moisture Slope Algorithm Function Ki Kf tauc Obj. Ftn. Iterations 

0.25 Drv 10 Simplex SLS 31.092 (9.09474%) 4.1063E-05 (3.47234%) .51556 (2.70120%) 7.9436E-02 81 

SCK-UA 74.998 (163.15088%) 4.0594E-05 (2.29054%) .52733 (5.04582%) 7.8138E-02 1467 

Simplex HMLE 23.292 (18.27368%) 4.1287E-05 (4.03679%) .51558 (2.70518%) 1.2600E-03 94 

SCE-UA 74.999 (163.15439%) 4.0580E-05 (2.25526%) .52716 (5.01195%) 1.2403E-03 1404 

15 Simplex SLS 73.601 (158.24912%) 4.0532E-05 (2.13431%) .53039 (5.65538%) 1.8504E-01 116 

SCK-UA 40.223 (41.13333%) 4.0230E-05 (1.37331%) .51416 (2.42231%) 1.8481E-01 1355 

Simplex HMLE 39.608 (38,97544%) 4.0101E-05 (1.04826%) .51133 (1.85857%) 2.9492E-03 130 

SCE-UA 74.996 (163.14386%) 4.0013E-05 (0.82651%) .52225 (4.03386%) 2.935IE-03 1336 

Wet 10 Simplex SLS 24.160 (15.22807%) 4.7698E-05 (20.19151%) .60646 (20 80876%) 2.9156E-02 149 

SCE-UA 18.774 (34.12632%) 4.7589E-05 (19.91685%) .60307 (20.13347%) 2.9151E-02 1353 

Simplex* HMLE 14.743 (48.27018%) 4.6577E-05 (17.36676%) .59533 (18.59163 %) 7.8505E-O4 136 

SCE-UA 10.009 (64.88070%) 4.8566E-05 (22.37873%) .59140 (17.80876%) 7.2810E-04 1912 

15 Simplex SI.S 61.138 (114.51930%) 3.8821F.-05 (2.17715%) .50383 (0.36454%) 1.0137E-01 123 

SCE-UA 74.999 (163.15439%) 3.9097E-05 (1.48167%) .51510 (2.60956%) 1.0098E-01 1432 

Simplex HMIJ£ 34.524 (21.13684%) 3.9262E-05 (1.06589%) .50565 (0.72709%) 3.2838E-03 139 

SCE-UA 74.885 (162.75439%) 3.8314E-05 (3.45471%) .52038 (3.66135%) 3.2105E-03 1677 

Very Wet 10 Simplex SLS 35.337 (23.98947%) 3.9368E-05 (0.79879° o) .51416 (2.42231%) 5.4046E-01 63 

SCE-UA 74.999 (163.15439%) 3.6758E-05 (7.37558%) .48835 (2.71912%) 5.3129E-01 1218 

Simplex HMLE 54.903 (92.64211%) 3.7409E-05 (5.73516%) .47179 (6.01793%) 1.5363E-02 69 

SCE-UA 66.811 (134.42456%) 3.6758E-05 (7.37558%) .46069 (8.22908%) 1.5356E-02 1286 

15 Simplex SLS 39.021 (36.91579%) 4.0147E-05 (1.16417%) .49691 (1.01394%) 1.5987E+00 68 

SCE-UA 10.012 (64.87018%) 4.1630E-05 (4.90110%) .52394 (4.37052%) 1.5719E+00 1237 

Simplex HMLE 12.381 (56.55789%) 4.3333E-05 (9.19239%) .57851 (15.24104%) 5.1405E-02 116 

SCE-UA 10.005 (64.89474%) 4.2518E-05 (7.13872%) .55854 (11.26295%) 5.0967E-02 1281 

Correlation coefficient of sediment concentration; for p = 0,no random en-or b True value of 3.9685E-05 and starting value of 9.00E-05 

True value of 28.5 and starting value of 42.5 d True value of0.502 and starting value of 1.15 

Values of Ki are multiplied by 10,000 



Table A7. Results of Kj-Kf-Tc parameter optimization problem for p = 0.50, Equation 1. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Seardi Objective b c d Value of No. 

p Moisture Slope Algorithm Function Ki Kf Lauc Obj. Pin. Iterations 

0.50 Do- 10 Simplex SLS 36.745 (28.92982%) 1.6179E-04 (5.87037%) .51077 (1.74701%) 6.2797E-03 104 

SCK-l'A 63.052 (121.23509%) 1.6685E-04 (2.92646°o) .55765 (11.08566%) 6.2419E-03 1357 

Simplex HMLE 42.576 (49.38947%) 1.6450E-04 (4.29369%) .51166 (1.92430%) 9.7054E-05 84 

SCE-UA 35.562 (24.77895%) 1.6385E-04 (4.67186%) .49498 (1.39841%) 9.6933E-05 1437 

15 Simplex SLS 41.434 (45.38246%) 1.5342E-04 (10.74005%) .30160 (39.92032%) 1.9481E-01 86 

SCE-UA 75.000 (163.15789%) 1.5221E-04 (11.44403%) .33260 (33.74502%) 1.3373E-01 1387 

Simplex HMLE 74.921 (162.88070%) 1.4967E-04 (12.92181%) .30503 (39.23705%) 2.1424E-03 94 

SCE-UA 74.997 (163.14737%) 1.5086E-04 (12.22946%) .31943 (36.36853%) 2.I455E-03 1354 

Wel 10 Simplex SLS 44.297 (55.42807%) 2.1841E-04 (27.07121%) .70960 (41.35458%) 2.2242E-03 93 

SCE-UA 40.169 (40.94386%) 2.1106E-04 (22.79497%) .68467 (36.38845%) 2.2161E-03 1529 

Simplex IIMI.F. 53.102 (86.32281%) 2.1689E-04 (26.18687%) .71786 (43.00000%) 7.2536E-03 83 

SCE-UA 17.710 (37.85965%) 1 5625E-04 (9.09355%) .44403 (11.54781%) 3.3113E-05 1971 

15 Simplex SLS 46.299 (62.45263%) 2.7685E-04 (61.07168%) .96980 (93.18725%) 3.0411F.-02 52 

SCE-UA 74.990 (163.12281%) 3.0821E-04 (79.31697%) 1.05510 (110.17928%) 3.0821E-04 1519 

Simplex HMLE 46.282 (62.39298%) 2.7651E-04 (60.87387%) .96824 (92.87649%) 9.7577E-04 60 

SCE-UA 74.998 (163.15088%) 3.0I15E-04 (75.20945%) 1.04020 (107.21116%) 9.2587E-04 1569 

Very Wet 10 Simplex SLS 16.344 (42.65263%) 1.8867E-04 (9.76844%) .54230 (8.02789%) 3.2846E-01 63 

SCE-UA 10.003 (64.90175%) 1.9231E-04 (11.88620%) .55606 (10.76892%) 3.2768E-01 1156 

Simplex HMLE 35.566 (24.79298%) 1.6765E-04 (2.46102%) .34081 (32.10956%) 9.3066E-03 74 

SCE-UA 10.005 (64.89474%) 1.7539E-04 (2.04212%) .34261 (31.75100%) 9.2673E-03 1304 

15 Simplex SLS 74.939 (162.94386%) 1.5794E-04 (8.11031%) .30992 (38.26295%) 2.3084E+00 83 

SCE-UA 74.995 (163.14035%) 1.5744E-04 (8.40121%) .30006 (40.22709%) 2.3072E-f00 1192 

Simplex HMLE 72.959 (155.99649%) 1.5924E-04 (7.35397%) .33820 (32.62948%) 7.7294E-02 108 

SCE-UA 74.999 (163.15439%) 1.5739E-04 (8.43030%) .30009 (40.22112%) 7.6895E-02 1183 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 1.7188E-04 and starting value of 2.25E-04 

c True value of 28.5 and starting value of 42.5 d TruevalueofO. 502 and starting value of 1.15 

* Values of Ki are multiplied by 10.000 



Table A8. Results of Kj-Kr-tc parameter optimization problem for p = 0.50, Equation 2. 

Parameter Estimates (°o of Error from True Values) 

a •Antecedent % Search Objective h c d Value of No. 

P Moisture Slope • Ugonthm Function Ki Kf tauc Obj. Ftn. Iterations 

0 Dry 10 Simplex SLS 36.908 (29.50175°b) 3.3446E-03 (10.48842%) .45871 (8.62351%) 6.3853E-02 127 

SCE-UA 10.002 (64.90526° o) 3.3502E-03 (10.33855%) .44389 (11.57570%) 6.3434E-02 1479 

Simplex HMLE 31.694 (I 1.20702%) 3.3280E-03 (10.93269%) .44927 (10.50398%) 1.0105E-03 148 

SCK-l'A 10.000 (64.91228%) 3.3494E-03 (10.35996%) .44378 (11.59761%) 1.0068E-03 1479 

15 Simplex SLS 45.408 (59.32632%) 3.8384E-03 (2.72715%) .5581 1 (11.17729%) 2.5694E-01 117 

SCE-UA 74.994 (163.13684%) 3.8403E-03 (2.77800%) .56736 (13.01992%) 2.5648E-01 1408 

Simplex HMLE 10.087 (64.60702%) 4.2688E-03 (14.24595%) .62982 (25.46215%) 4.2773E-03 121 

SCE-UA 74.998 (163.15088%) 3.8058E-03 (1.854689b) .56052 (11.65737%) 4.1112E-03 1544 

Wet 10 Simplex SIS 45.021 (57.96842%) 3.6158E-03 (3.23030%) .47828 (4.72510%) 4.7657E-02 127 

SCE-UA 10.000 (64.91228%) 3.5362E-03 (5.36063%) .44970 (10.41833%) 4.7355E-02 1400 

Simplex HMLE 44.595 (56.47368%) 3.6822E-03 (1.45323%) .49336 (1.72112%) 1.4739E-03 196 

SCE-UA 11.437 (59.87018%) 3.6173E-03 (3.19015%) .46928 (6.51793%) 1.4525E-03 1977 

15 Simplex SLS 72.806 (155.45965%) 3.4363E-03 (8.03426%) .43091 (14.16135%) 8.0968E-02 130 

SCE-UA 10.046 (64.75088%) 3.3587E-03 (10.11107%) .38628 (23.05179%) 8.0036E-02 1419 

Simplex HMLK 52.210 (83.19298%) 3.4258E-03 (8.31527%) .42601 (15.13745%) 1.6654E-03 165 

SCE-UA 10.004 (64.89825%) 3.4043E-03 (8.89067%) .40582 (19.15936%) 1.6151E-03 1832 

Verv Wet 10 Simplex SLS 56.776 (99.21404%) 3.3675E-03 (9.87555%) .41126 (18.07570%) 4.7238E-01 88 

SCE-UA 62.240 (118.38596%) 3.3301E-03 (10.87649%) .40890 (18.54582%) 4.7215E-01 1309 

Simplex HMLE 21.058 (26.11228%) 3.5798E-03 (4.19376° b) .43650 (13.04781%) 1.5423E-02 83 

SCE-UA 11.437 (59.87018%) 3.6173E-03 (3.19015%) .46929 (6.51594%) 1.4525E-03 1377 

15 Simplex SLS 74.999 (163 15439%) 3.1849E-03 (14.76248%) .31173 (37.90239%) 1.2809E+00 244 

SCE-UA 74.999 (163 15439%) 3.1845E-03 (14.77318%) .31147 (37.95418%) 1.2809E + 00 1244 

Simplex HMLE 74.994 (163.13684%) 3.3909E-03 (9.24930%) .31717 (36.81873%) 4.2692E-02 216 

SCE-UA 74.993 (163.13333%) 3.1903E-03 (14.61796°. b) .31503 (37.24502%) 4.2691E-02 1232 

a Correlation coefficient of sediment concentration; for p - 0, no random error b True value of 3.7365E-03 and starting value of 4.25E-03 

c True value of28.5 and startingvalue of42.5 d Truevalueof0.502andsUitingvaIueofl.15 

* Values of Ki are multiplied by 10,000 



Table A9. Results of K;-Krtc parameter optimization problem for p = 0.50, Equation 3. 

Parameter Estimates (% of EiTor from True Values) 

a Antecedent % Search Objective b e d Value of No. 

p Moisture Slope Algorithm Function Ki Kf tauc Obj. I'til. Iterations 

0.25 [>>• 10 Simplex SLS 25.534 (10.40702%) 4.5I60E-05 (13.79614%) .56664 (12.87649%) 6.0723E-02 86 

SCE-UA 74.993 (163.13333%) 4.5004E-05 (13.40305%) .58289 (16.11355%) 5.9338E-02 1394 

Simplex HMLF. 25.534 (10.40702%) 4.5160E-05 (13.79614° o) .56664 (12.87649%) 9.6386E-04 86 

SCE-UA 74.998 (163.15088%) 4.5072E-05 (13.57440%) .58379 (16.29283%) 9.4023E-04 1564 

15 Simplex SI.S 16.426 (42.36491%) 4.2973E-05 (8.28525%) .54620 (8.80478%) 1.8502E-01 142 

SCE-UA 10.000 (64.91228%) 4.3I26E-05 (8.67078%) .54622 (8.80876%) 1.8489E-01 1488 

Simplex HMLF. 11.403 (59.98947%) 4.2252F.-05 (6.46844%) .53260 (6.09562%) 2.9236E-03 143 

SCE-UA 74.886 (162.75789%) 4.1781E-05 (5.28159%) .54249 (8.06574%) 2.920 5E-03 1477 

Wet 10 Simplex SLS 35.053 (22.99298° o) 3.0956E-05 (21.99572%) .33811 (32.64741%) 4.8774E-02 170 

SCE-UA 74.985 (163.10526%) 3.0445E-05 (23.28336%) .34677 (30.92231%) 4.7281E-02 1491 

Simplex HMLE 51.563 (80.92281%) 3.0285E-05 (23.68653%) .33131 (34.001999o) 1.5490E-03 164 

SCE-UA 74.999 (163.15439%) 3.0409E-05 (23.37407%) .34601 (31.07371%) 1.5252E-03 1976 

15 Simplex SLS 63.033 (121.16842%) 3.7196E-05 (6.27189%) .46856 (6.66135%) 6.4836E-02 139 

SCE-UA 74.986 (163.10877%) 3.7256E-05 (6.12070° b) .47486 (5.40637%) 6.4745E-02 1555 

Simplex HMLF 38.351 (34.56491%) 3.5078E-05 (11.60892° o) .40717 (18.89044%) 1.6669E-03 181 

SCE-UA 34.107 (19.67368%) 3.3341E-05 (15.98589%) .36372 (27.54582%) 6.5782E-04 1896 

Very Wet 10 Simplex SLS 36.040 (26.45614%) 4.1786E-05 (5.29419%) .58684 (16.90040%) 4.8326E-01 67 

SCF.-UA 47.750 (67.54386%) 4.1099E-05 (3.56306%) .58399 (16.33267%) 4.8301E-01 1119 

Simplex HMLE 69.993 (145.58947%) 3.9500E-05 (0.46617° b) .57358 (14.25896%) 1.5843E-02 71 

SCE-UA 74.999 (163.15439%) 3.9330E-05 (0.89454%) .57425 (14.39243%) 1.5834E-02 1321 

15 Simplex SLS 32 355 (13.52632%) 3.5095E-05 (11.56608%) .30167 (39.90637%) 1.2555E+00 113 

SCE-UA 10.133 (64.44561%) 3.5521E-05 (10.49263° b) .30000 (40.23904%) 1.2452E+00 1119 

Simplex HMLE 55.641 (95.23158%) 3.4498E-05 (13.07043%) .30028 (40.18327%) 4.0979E-02 85 

SCE-UA 10.005 (64.89474%) 3.5429E-05 (10.72446? o) .30014 (40.21116%) 4.0209E-02 1215 

Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.9685E-05 and starting value of 9.00E-05 

True value of 28.5 and starting value of 42.5 d True value of0.502 and starting value of 1.15 

Values of Ki are multiplied by 10,000 



Table AlO. Results of Kf-xc parameter optimization problem with error-free data, Equation 1. 

Parameter Estimates (% of Error from True Values) 

a Antecedent °0 Search Objective b c Value of No. 

P Moisture Slope Algorithm Function Kf tauc Obj. Ftn. Iterations 

0 Dry 10 Simplex SLS 1.7190E-04 (0.01164%) .50212 (0.02390%) 5.9222E-08 96 

SCE-UA 1.7191E-04 (0.01745%) .50214 (0.02789%) 5.9184E-08 634 

Simplex HMLE 1.7191E-04 (0.01745%) .50213 (0.02590%) 1.4089E-01 79 

SCE-UA 1.7190E-04 (0.01164%) .50210 (0.01992%) 9.4199E-10 542 

15 Simplex SLS 1.7187E-04 (0.00582%) .50190 (0.01992° i>) 6.8309E-08 86 

SCE-UA I.7I87E-04 (0.00582%) .50190 (0.01992%) 6.8481E-08 544 

Simplex HMLE 1.7186E-04 (0.01164%) .50190 (0.01992%) I.4354E-01 78 

> SCE-UA 1.7186E-04 (0.01164%) .50185 (0.02988%) 1.1015E-09 601 

Wet 10 Simplex SLS 1.7192E-04 (0.02327%) .50218 (0.03586%) 2.7545E-08 114 

SCE-UA 1.7190E-04 (0.01164%) .50217 (0.03386%) 2.7556E-08 642 

Simplex HMLE 1.7193E-04 (0.02909° b) .50221 (0.04183%) 1.3935E-01 100 

SCE-UA 1.7192E-04 (0.02327%) .50219 (0.03785%) 8.8865E-10 585 

15 Simplex SLS 1.7191E-04 (0.01745%) .50223 (0.04582%) 2.1481E-08 118 

SCE-UA 1.7190E-04 (0.0U64«?b) .50212 (0.02390%) 2.7556E-08 642 

Simplex HMLE 1.7193E-04 (0.02909%) .50213 (0.02590%) I.2872E-0I 140 

SCE-UA 1.7190E-04 (0.01164%) .50219 (0.03785%) 6.0297E-10 569 

Very Wet 10 Simplex SI.S 1.7188E-04 (0.00000%) .50200 (0.00000%) 2.3099E-08 92 

SCE-UA 1.7188E-04 (0.00000%) .50200 (0.00000%) 2.3326E-08 535 

Simplex HMLE 1.7I88E-04 (0.00000%) .50198 (0.00398%) 1.3544E-01 85 

SCE-UA 1.7188E-04 (0.00000%) .50199 (0.00199%) 7.7244E-10 563 

15 Simplex SLS 1.7188E-04 (0.00000%) .50199 (0.00199%) 2.3099E-08 92 

SCE-UA 1.7188E-04 (0.00000%) .50203 (0.00598%) 2.6522E-08 528 

Simplex HMLE 1.7188E-04 (0.00000%) .50203 (0.00598%) 1.4021E-01 74 

SCE-UA 1.7188E-04 (0.00000%) .50199 (0.00199%) 8.I667E-I0 618 

a Correlation coefficient of sediment concentration; for p - 0, no random error b True value of 1.7188E-04 and starting value of 2.25E-04 

c True value of0.502 and starting value of 1.15 * Values of Ki are multiplied by 10,000 

U> 
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Table All. Results of Kf-xc parameter optimization problem with error-free data, Equation 2. 

Parameter Estimates (°/o of Error from True Values) 

a Antecedent % Search Objective h c Value of No. 

P Moisture Slope Algorithm Function Kf taue Obj. Ftn. Iterations 

0 Dry 10 Simplex SLS 3.7367E-03 (0.00535%) .50202 (0.00398%) 4.7698E-08 86 

SCE-UA 3.7370E-03 (0.01338%) .50199 (0.00199%) 6.2210E-08 629 

Simplex HMLE 3.7367E-03 (0.00535%) .50203 (0.00598%) 1.3419E-01 84 

SCF.-UA 3.7369E-03 (0.01071%) .50206 (0.01195%) 7.6014E-10 504 

15 Simplex SLS 3.7364E-03 (0.00268%) .50199 (0.00199%) 6.3I05E-08 88 

SCE-lIA 3.7364E-03 (0.00268%) .50199 (0.00199%) 6.2210E-08 629 

Simplex HMLE 3.7364E-03 (0.00268%) .50198 (0.00398%) 1.4180E-01 91 

SCE-UA 3.7364E-03 (0.00268%) .50198 (0.00398%) 1.0104E-09 549 

Wet 10 Simplex SLS 3.7359E-03 (0.01606%) .50191 (0.01793%) 1.6010E-08 91 

SCE-UA 3.7362E-03 (0.00803%) .50195 (0.00996%) 1.6409E-08 514 

Simplex 1IMI.F. 3.7361E-03 (0.01071%) .50193 (0.01394%) 1.2686E-01 99 

SCE-UA 3.7359E-03 (0.01606%) .50191 (0.01793%) 5.1506E-10 595 

15 Simplex SLS 3.7365E-03 (0.00000%) .50200 (0.00000%) 2.0885E-08 85 

SCE-UA 3.7363E-03 (0.00535%) .50195 (0.00996%) 2.0157E-Q8 575 

Simplex HMLE 3.7362E-03 (0.00803%) .50193 (0.01394%) 1.2720E-01 92 

SCE-UA 3.7364E-03 (0.00268'! i>) .50199 (0.00199%) 6.4399E-10 510 

Very Wet 10 Simplex SLS 3.7365E-03 (0.00000%) .50200 (0.00000%) 2.0885E-08 85 

SCE-UA 3.7366E-03 (0.00268%) .50203 (0.00598%) 2.6814E-08 441 

Simplex HMLE 3.7365E-03 (0.00000%) .50202 (0.00398%) 1.3327E-01 82 

SCE-UA 3.7365E-03 (0.00000%) .50201 (0.00199%) 7.3187E-10 498 

15 Simplex SLS 3.7365E-03 (0.00000%) .50198 (0.00398%) 2.9058E-08 82 

SCE-UA 3.7363E-03 (0.00535%) .50187 (0.02590%) 2.1989E-07 385 

Simplex HMLE 3.7365E-03 (0.00000%) .50199 (0.00199%) 1.4101 E-01 98 

SCE-UA 3.7365E-03 (0.00000%) .50199 (0.00199%) 1.1814E-09 443 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.7365E-03 and starting value of 4.25E-03 

c Tnievalueof0.502andstartingvalueof 1.15 * Values of Ki are multiplied by 10,000 
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Table A12. Results of Kf-xc parameter optimization problem with error-free data, Equation 3. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Seardi Objective b c Value of No. 

P Moisture Slope •Algorithm Function Kf tauc Obj. Pin. Iterations 

0 Dry 10 Simplex SLS 3.9687E-05 (0.00504%) .50203 (0.00598%) 5.4527E-08 121 

SCE-l'A 3.9685E-05 (0.00000%) .50200 (0.00000%) 5.5368E-08 579 

Simplex HMLE 3.9686E-05 (0.00252%) .50202 (0.00398%) 1.3792E-01 123 

SCF.-UA 3.9686E-05 (0.00252%) .50202 (0.00398%) 8.4665E-10 563 

15 Simplex SLS 3.9684E-05 (0.00252%) .50197 (0.00598%) 6.3439E-08 126 

SCE-UA 3.9684E-05 (0.00252%) .50197 (0.00598%) 6.4531E-08 582 

Simplex HMLE 3.9683E-05 (0.00504%) .50196 (0.00797%) 1.4218E-01 148 

SCE-UA 3.9682E-05 (0.00756%) .50192 (0.01594%) 1.0774E-09 555 

Wet 10 Simplex SLS 3.9680E-05 (0.01260%) .50194 (0.01195%) 1.9352E-08 130 

SCE-l'A 3.9681E-05 (0.01008%) .50195 (0.00996%) 1.9477E-08 527 

Simplex HMLE 3.9681E-05 (0.01008%) .50195 (0.00996%) 1.3030E-01 143 

SCE-UA 3.9680E-05 (0.01260%) .50194 (0.01195%) 6.2143E-10 721 

15 Simplex SI.S 3.9684E-05 (0.00252%) .50198 (0.00398%) 2.4184E-08 133 

SCE-l'A 3 9684E-05 (0.00252° i>) .50197 (0.00598%) 2.4269E-08 590 

Simplex HMI.E 3.9684E-05 (0.00252%) .50196 (0.00797%) 1.3046E-01 159 

SCE-UA 3.9684E-05 (0.00252%) .50197 (0.00598%) 6.6268E-10 686 

Very Wet 10 Simplex SLS 3.9685E-05 (0.00000%) .50199 (0.00199%) 2.6225E-08 87 

SCE-UA 3.9684E-05 (0.00252%) .50198 (0.00398%) 2.9370E-08 448 

Simplex HMLE 3.9684E-05 (0.00252%) .50199 (0.00199%) 1.3873E-01 91 

SCE-UA 3.9686E-05 (0.00252%) .50198 (0.00398%) 5.1408E-09 434 

15 Simplex SLS 3.9686E-05 (0.00252%) .50203 (0.00598%) 1.7655E-08 93 

SCE-UA 3.9686E-05 (0.00252%) .50204 (0.00797%) 1.9244E-08 502 

Simplex HMLE 3.9686E-05 (0.00252%) .50203 (0.00598%) 1.2934E-01 86 

SCE-UA 3.9686E-05 (0.00126%) .50201 (0.00199%) 7.1185E-09 538 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.9685E-05 and starting value of 9.00E-05 

c True value of0.502 and starting value of 1.15 * Values of Ki are multiplied by 10,000 
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Table A13. Results of Kf-ic parameter optimization problem for p = 0.25, Equation 1. 

Parameter Estimates (% of Error from True Values) 

a Antecedent °'o Seardi Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf tauc Obj. Ftn. Iterations 

0.25 Dry 10 Simplex SLS 1.8167E-04 (5.69583%) .54394 (8 35458%) 4.5690E-03 80 

SCF.-UA 1 8101E-04 (5.31185%) .54314 (8.19522%) 4.5620E-03 578 

Simplex HMLE 1.7064E-04 (0.72143%) .54025 (7.61952%) 5.7323E-01 65 

SCE-UA 1.7652E-04 (2.69956%) .52483 (4.54781%) 7.0922E-05 593 

15 Simplex SLS 1.7391E-04 (1.18106%) .52378 (4.33865%) 9.9754E-02 39 

SCE-UA 1.7154E-04 (0.19781%) .50768 (1.13147%) 9.9709E-02 720 

Simplex HMLE 1.8613E-04 (8.29067%) .55826 (11.20717%) 8.8676E-01 34 

SCE-UA 1.7310E-04 (0.70980%) .52175 (3.93426%) 1.5454E-03 505 

Wet 10 Simplex SLS 2.2462E-04 (30.68420%) .67820 (35.09960%) 3.8232E-03 57 

SCE-l'A 2.2455E-04 (30.64347%) .67757 (34.97410%) 3.8224E-03 595 

Simplex HMLE 2.2950E-04 (33.52339%) .69084 (37.61753%) 6.2403E-01 50 

SCE-UA 2.2444E-04 (30.57947%) .67731 (34.92231%) 1.2101E-04 729 

15 Simplex SLS 1.9250E-04 (11.99849%) .63201 (25.89841%) 3.5487E-02 57 

SCE-UA 1.9181E-04 (11.59530°,o) .62840 (25.17928%) 3.5482E-02 602 

Simplex HMLE 1.9999E-04 (16.35443%) .67677 (34.81474%) 8.2172E-01 36 

SCE-UA 2.0I70E-04 (17.34931%) .68499 (36.45219%) 1.1195E-03 562 

Very Wet 10 Simplex SLS 1.6248E-04 (5.46893%) .30958 (38.33068%) 4.8662E-01 58 

SCE-UA 1.6I63E-04 (5.96346%) .30000 (40.23904%) 4.8582E-01 417 

Simplex HMLE 1.6251E-04 (5,45148%) .33300 (33.66534%) 1.1287E+00 48 

SCE-UA 1.6111E-04 (6.26600%) .30001 (40.23705%) 1.6012E-02 475 

15 Simplex SLS 1.6133E-04 (6.13800%) .31966 (36.32271%) 1.7073E400 118 

SCE-UA 1.6131E-04 (6.14964%) .31928 (36.39841%) 1.7073E+00 474 

Simplex HMLE 1.6095E-04 (6.35909%) .30001 (40.23705%) 1.3482E+00 112 

SCE-UA 1.6090E-04 (6.38818%) .30002 (40.23506%) 5.5809E-02 449 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value ofl .7188E-04 and starting value of 2.25E-04 

c True valueofO. 502 and starting value of 1.15 • Values of Ki are multiplied by 10,000 



Table A14. Results of Kf-tc parameter optimization problem for p = 0.25, Equation 2. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf tauc Obj. Ftn. Iterations 

0.25 Dry 10 Simplex SLS 3.4678E-03 (7.19122%) .45753 (8.85857%) 1.0406E-01 49 

SCF.-UA 3 8383E-03 (2.72447%) .45290 (9.78088%) 1.0403E-01 550 

Simplex HMLE 3.3171E-03 (11.22441%) .43406 (13.53386%) 8.5087E-01 45 

SCE-UA 3.3648E-03 (9.94781%) .44187 (11.97809%) 1.5748E-03 484 

15 Simplex SLS 3.7191E-03 (0.46568%) .48945 (2.50000%) 2.0151E-01 57 

SCE-UA 3.7082E-03 (0.75739%) .48677 (3.03386%) 2.0150E-01 550 

Simplex HMIJi 3.8113E-03 (2.00187%) 50891 (1.37649%) 9.1560E-01 48 

SCE-UA 3.7260E-03 (0.28101%) .49032 (2.32669%) 3.2158E-03 603 

Wet 10 Simplex SLS 3.8053E-03 (1.84130%) .53361 (6.29681%) 2.0394E-02 54 

SCE-UA 3.8231E-03 (2.31768%) .53600 (6.77291%) 2.0387E-02 622 

Simplex HMLE 3.9652E-03 (6.12070%) .56325 (12.20120%) 7.1091E-01 81 

SCE-UA 3.9703E-03 (6.25719%) .56337 (12.22510%) 3.1789E-04 641 

15 Simplex SLS 4.5319E-03 (21.28730%) .66655 (32.77888%) 7.6247E-02 43 

SCE-UA 4.4746E-03 (19.75378%) .65632 (30.74104%) 7.6181E-02 559 

Simplex HMLE 4.2132E-03 (12.75793%) .61720 (22.94821%) 8.6366E-01 58 

SCE-UA 4.2039E-03 (12.50903%) .61646 (22.80080%) 1.7681E-03 686 

Very Wet 10 Simplex SLS 3.8298E-03 (2.49699%) .51257 (2.10558%) 6.5759E-01 47 

SCE-UA 3.8305E-03 (2.51572%) .51216 (2.02390%) 6.5757E-01 527 

Simplex HMLE 3.8363E-03 (2.67095%) .51391 (2.37251%) 1.1742E+00 38 

SCE-UA 3.8623E-03 (3.36679%) .52361 (4.30478%) 2.1755E-02 549 

15 Simplex SLS 3.6614E-03 (2.00990%) .52415 (4.41235%) 1.6738E+00 85 

SCE-UA 3.6614E-03 (2.00990%) .52407 (4.39641%) 1.6738E+00 551 

Simplex HMLE 3.6565E-03 (2.14104%) .52542 (4.66534%) 1.3479E+00 38 

SCE-UA 3.6594E-03 (2.06343%) .52488 (4.55777%) 5.5695E-02 508 

a Correlation coefficient ofsediment concentration; for p-0, no random error b Tme value of 3.7365E-03 and starting value of 4.25E-03 

c True value of 0.502 and starting value of 1.15 * Values of Ki are multiplied by 10,000 
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Table A15. Results of Kf-tc parameter optimization problem for p = 0.25, Equation 3. 

Parameter Estimates (% of Error from True Values) 

a .Antecedent % Seardi Objective b c Value of No. 

p Moisture Slope .Algorithm Function Kf tauc Obj. Rn. Iterations 

0.25 Drv 10 Simplex SLS 4.0797E-05 (2.80207% .51097 (1.78685%) 7.9542E-02 71 

SCE-UA 4.1024E-05 (3.37407% .51448 (2.48606%) 7.9503E-02 616 

Simplex HN1LE 4.1480E-05 (4.52312% .51953 (3.49203%) 8.3058E-01 72 

SCE-UA 4.0888E-05 (3.03137% .51254 (2.09960%) 1.2574E-03 582 

15 Simplex SLS 4.0212E-05 (1.32796% .51024 (1.64143%) 1.8483E-01 91 

SCE-UA 4.0275E-05 (1.48671% .51133 (1.85857%) 1.8482E-01 674 

Simplex HMJ-E 4.0095E-05 (1.03314% .50819 (1.23307%) 9.0694E-0] 90 

SCE-UA 3.6594E-05 (7.78884° b .52488 (4.55777° o) 5.5695E-02 508 

Wet 10 Simplex SLS 4.7908E-05 (20.72068% .61025 (21.56375%) 2.9160E-02 89 

SCE-L'A 4.7753E-05 (20.33010% .60855 (21.22510%) 2.9I62E-02 678 

Simplex I1MLE 5.4167E-05 (36.49238% .67701 (34.86255%) 8.1624E-01 57 

SCE-UA 4.7421E-05 (19.49351% .60765 (21.04582%) 7.9923E-04 644 

15 Simplex SLS 3.8936E-05 (1.88736% 49480 (1.43426%) 1.0240E-01 95 

SCE-UA 3.9076E-05 (1.53458% .49824 (0.74900%) 1.0239E-01 713 

Simplex HMLE 4.0185E-05 (1.25992% .52451 (4.48406%) 9.1820E-01 96 

SCE-UA 3.9173E-05 (1.29016% .50067 (0.26494%) 3.2925E-03 735 

Very Wet 10 Simplex SLS 3.9624E-05 (0.15371% .51261 (2.11355%) 5.4274E-01 47 

SCE-UA 3.9983E-05 (0.75091% .52099 (3.78287%) 5.4225E-01 445 

Simplex HMI.E 3.8928E-05 (1.90752% .48441 (3.50398%) 1.1216E+00 48 

SCE-UA 3.9152E-05 (1.34308% .48957 (2.47610%) 1.5401E-02 540 

15 Simplex SLS 4.0848E-05 (2.93058% .51281 (2.15339%) 1.5875E+00 49 

SCE-UA 4.0874E-05 (2.99609% .51337 (2.26494%) 1.5875E+00 488 

Simplex iRni 4.1358E-05 (4.21570° b .52989 (5.55578%) 1.5401E-02 540 

SCE-UA 4.1647E-05 (4.94393% .54429 (8.42430%) 5.1658E-02 565 

a Correlation coefficient of sediment concentration; for p = 0, no random error b Truevalueof3.9685E-05andstartingvalueof9.00E-05 

c Tnie value of0.502 and starting value of 1.15 * Values ofKi are multiplied by 10,000 

U> 



Table A16. Results of Kf-tc parameter optimization problem for p = 0.50, Equation 1. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf tauc Obj. Ftn. Iterations 

0.50 Dry 10 Simplex SLS 1.6193E-04 (5.78892%) .47280 (5.81673%) 6.3024E-03 50 

SCE-UA 1.6333E-04 (4.97440%) .47784 (4.81275%) 6.2963E-04 593 

Simplex HMI.E 1.6313E-04 (5.09076%) .48045 (4.29283%) 5.9972E-01 41 

SCE-UA 1.6290E-04 (5.22458%) .47747 (4.88645%) 9.7285E-05 551 

15 Simplex SI.S 1.5631E-04 (9.05865%) .31814 (36.62550%) 1.3541E-0! 61 

SCE-UA 1.5469E-04 (10.00116%) .30000 (40.23904%) 1.3530E-01 540 

Simplex HMI.E 1.8613E-04 (8.29067%) .55826 (11.20717%) 9.0675E-01 34 

SCE-UA 1.5461E-04 (10.04771%) .30003 (40.23307%) 2.1792E-03 627 

Wet 10 Simplex SLS 2.0599E-04 (19.84524%) .65375 (30.22908%) 2.2380E-03 54 

SCE-UA 2.0552E-04 (19.57179%) .65215 (29.91036%) 2.2378E-07 521 

Simplex HMLF, 2.0196E-04 (17.50058%) .64259 (28.00598%) 5.7251E-OI 46 

SCE-UA 1.9049F.-04 (10.82732%) .60297 (20.11355%) 7.0034E-05 548 

15 Simplex SLS 2.9280E-04 (70.35141%) .99852 (98.90837%) 3.0528E-02 39 

SCE-UA 2.9419E-04 (71.16011%) 1.00245 (99.69124%) 3.0512E-02 555 

Simplex HMLE 2.9502E-04 (71.64301%) 1.00640 (100.47809%) 8.1319E-01 32 

SCE-UA 2.9879E-04 (73.83640%) 1.01295 (101.78287%) 9.8180E-04 657 

Very Wet 10 Simplex SLS 1.8613E-04 (8.29067%) .55258 (10.07570%) 3.2960E-01 67 

SCE-UA 1.8681E-04 (8.68629%) .56168 (11.88845%) 3.2950E-01 507 

Simplex HMLE I.7115E-04 (0.42471%) .35622 (29.03984%) 1.0238E+00 45 

SCE-UA 1.6986E-04 (1.17524%) .34167 (31.93825%) 9.2912E-03 497 

15 Simplex SLS I.6214E-04 (5.66674%) .30000 (40.23904%) 2.4453E+00 99 

SCE-UA 1.6220E-04 (5.63184%) .30004 (40.23108%) 2.4453E+00 440 

Simplex HMLE 1.6205E-04 (5.71911%) .30002 (40.23506%) 1.4130E+00 105 

SCE-UA 1.6216E-04 (5.65511%) .30000 (40.23904%) 8.1509E-02 431 

a Correlation coefficient of sediment concentration; for p = 0, no random error b Truevalueof 1.7I88E-04andstartingvalueof2.25E-04 

c True value ofO. 502 and starting value of 1.15 * Values of Ki are multiplied by 10,000 



Table A17. Results of Kf-xc parameter optimization problem for p = 0.50, Equation 2. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective h c Value of No. 

p Moisture Slope Algorithm Function Kf tauc Obj. Ftn. Iterations 

0.50 Dry 10 Simplex SLS 4.4276E-03 (18.49592%) .44637 (11.08167%) 6.3662E-02 49 

SCE-UA 4.4237E-03 (18.39154°;,) .44650 (11.05578%) 6.3634E-02 547 

Simplex HMLE 4.6484E-03 (24.40519%) .48516 (3.35458%) 8.1897E-01 29 

SCE-UA 4.4768E-03 (19.81266%) .45492 (9.37849%) 9.7505E-03 587 

15 Simplex SLS 3.884 IF.-03 (3.95022%) .56052 (11.65737%) 2.5719E-01 47 

SCE-UA 3.8684E-03 (3.53004°o) .55807 (11.16932%) 2.5711E-01 585 

Simplex HMLE 3.7488E-03 (0.32919%) .53752 (7.07570%) 9.3817E-01 38 

SCE-UA 3.8357E-03 (2.65489%) .55163 (9.88645%) 3.9360E-03 625 

Wet 10 Simplex SLS 3.5491E-03 (5.01539%) .46085 (8.19721%) 4.7485E-02 55 

SCE-UA 3.5478E-03 (5.05018%) .45985 (8.39641%) 4.7461E-02 56] 

Simplex HMLE 3.6750E-03 (1.64593%) .48394 (3.59761%) 8.4498E-01 49 

SCE-UA 3.6493E-03 (2.33373%) .48191 (4.00199%) 1.4593E-03 631 

15 Simplex SLS 3.3608E-03 (10.05486%) .39494 (21.32669%) 8.0255E-02 57 

SCE-UA 3.3560E-03 (10.18333%) .39233 (21.84661%) 8.0170E-02 580 

Simplex HMI.E 3.4114E-03 (8.70066%) .41439 (17.45219%) 8.5521E-01 88 

SCE-UA 3.4132E-03 (8.65248%) .41459 (17.41235%) 1.6351E-03 689 

Very Wet 10 Simplex SLS 3.5722E-03 (4.39716%) .44111 (12.12948%) 4.7407E-01 50 

SCE-UA 3.5616E-03 (4.68085%) .43818 (12.71315%) 4.7402E-01 542 

Simplex HMLE 3.5568E-03 (4.80931%) .43612 (13.12351%) 1.1216E+00 44 

SCE-UA 3.5290E-03 (5.55466%) .42810 (14.72112%) 1.5390E-02 546 

15 Simplex SLS 3.3584E-03 (10.11910%) .34927 (30.42430%) 1.3112E+00 105 

SCE-UA 3.3584E-03 (10.11910%) .34924 (30.43028%) 1.3112E+00 547 

Simplex HMLE 3.3733E-03 (9.72033%) .35805 (28.67530%) 1.2993E+00 100 

SCE-UA 3.3684E-03 (9.85147%) .35508 (29.26693%) 4.3577E-02 535 

Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.7365E-03 and starting value of 4.25E-03 

True value of 0.502 and starting value of 1.15 * Values of Ki are multiplied by 10,000 



Table A18. Results of Kf-tc parameter optimization problem for p = 0.50, Equation 3. 

Parameter Estimates (% of Error from True Values) 

a Antecedent °0 Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf tauc Obj. Ftn. Iterations 

0.50 Dry 10 Simplex SLS 4.5501F.-05 (14.65541°, o) .57114 (13.77291%) 6.0609E-02 77 

SCE-UA 4.5350E-05 (14.27491%) .56939 (13.42430%) 6.0605E-02 519 

Simplex HMLE 4.5303E-05 (14.15648%) .56866 (13.27888%) 8.1064E-01 71 

SCE-UA 4.5353E-05 (14.28247- i) .56943 (13.43227%) 9.6199E-04 586 

15 Simplex SI.S 4.3359E-05 (9.25791%) .55486 (10.52988%) 1.8522E-01 86 

SCE-l'A 4.3021E-05 (8.40620%) .54987 (9.53586%) 1.8495E-01 601 

Simplex HMLE 4.3427E-05 (9.42926%) .55684 (10.92430%) 5.0675E-01 74 

SCE-UA 4.2205E-05 (6.35001%) .53600 (6.77291%) 2.9258E-03 635 

Wet 10 Simplex SLS 3.0474E-05 (23.21028%) .32436 (35.386459b) 4.8998E-02 97 

SCE-UA 3.0264E-05 (23.73945%) .31893 (36.46813%) 4.8985E-02 653 

Simplex HMLE 3.0979E-05 (21.93776%) .33485 (33.29681%) 8.5059E-01 98 

SCE-l'A 3.0348E-05 (23.52778%) .32056 (36.14343%) 1.5703E-03 660 

15 Simplex SLS 3.7238E-05 (6.16606%) .45643 (9.07769%) 6.5275E-02 76 

SCE-UA 3.7227E-05 (6.19378%) .45723 (8.91833%) 6.5206E-02 652 

Simplex HMLE 3.4558E-05 (12.91924%) .38978 (22.35458%) 8.5943E-01 95 

SCE-UA 3.4951E-05 (11.92894%) .39948 (20.42231%) 1.7044E-03 650 

Very Wet 10 Simplex SLS 4.2758E-05 (7.74348%) .60111 (19.74303%) 4.8377E-01 50 

SCE-UA 4.2452E-05 (6.97241%) .59451 (18.42829%) 4.8343E-01 542 

Simplex HMLE 4.2386E-05 (6.80610%) .60248 (20.01594%) 1.1279E+00 53 

SCE-UA 4.2723E-05 (7.65529%) .60350 (20.21912%) 1.5910E-02 507 

15 Sinqjlex SLS 3.5147E-05 (11.43505%) .30162 (39.91633%) 1.2531E+00 87 

SCE-UA 3.5100E-05 (11.55348%) .30004 (40.23108%) 1.2518E+00 397 

Simplex HMLE 3.5446E-05 (10.68162° i) .32022 (36.21116%) 1.2879E+00 52 

SCE-UA 3.5069E-05 (11.63160%) .30007 (40.22510%) 4.0380E-02 421 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of3.9685E-05 and starting value of 9.00E-05 

c Traevalueof0.502andstartingvalueof 1.15 * Values of Ki are multiplied by 10,000 



Table A19. Results of K;-Kf (xc = 0.502) parameter optimization problem with error-free data, Equation 1. 

Parameter Estimates (% of Error from True Values) 

a Antecedent °o Search Objective b c Value of No. 

P Moisture Slope Algorithm Function Kf Ki* Obj. Ftn. Iterations 

0 Dr>' 10 Simplex SLS 1.7189E-04 (0.00582°o 28.454 (0.16140%) 5.9781E-08 76 

SCE-l'A 1.7189E-04 (0.00582% 28.471 (0.10175%) 5.9640E-08 523 

Simplex HMLE 1.7189E-04 (0.00582% 28.443 (0.20000%) 9.5534E-10 88 

SCE-UA 1.7189E-04 (0.00582% 28.473 (0.09474%) 9.4637F.-10 548 

15 Simplex SLS 1.7187E-04 (0.00582% 28.607 (0.37544%) 6.7285E-08 93 

SCF.-UA 1.7186E-04 (0.01164% 28.612 (0.39298%) 6.7266E-08 603 

Simplex HMLE 1.7186E-04 (0.01164% 28.620 (0.42105%) 1.0783E-09 87 

SCF.-UA 1.7186E-04 (0.01164% 28.624 (0.43509%) 1.0766E-09 546 

Wet 10 Simplex SLS 1.7191E-04 (0.01745% 28.425 (0.26316%) 2.6467E-08 92 

SCE-UA 1.7191E-04 (0.01745% 28.425 (0.26316%) 2.6482E-08 483 

Simplex HMLE 1.7192F.-04 (0.02327% 28.406 (0.32982%) 7.2034E-10 92 

SCE-l'A 1.7192E-04 (0.02327% 28.409 (0.31930%) 7.0814E-10 601 

15 Simplex SLS 1.7189E-04 (0.00582% 28.420 (0.28070%) 2.3121E-08 122 

SCE-UA 1.7189E-04 (0.00582% 28.441 (0.20702%) 2.2957E-08 614 

Simplex HMLE 1.7188E-04 (0.00000% 28.503 (0.01053%) 6.5906E-10 118 

SCE-l'A 1.7188E-04 (0.00000% 28.499 (0.00351%) 6.6260E-10 602 

Very Wet 10 Simplex SLS 1.7187E-04 (0.00582% 28.515 (0.05263%) 2.2908E-08 91 

SCE-UA 1.7187E-04 (0.00582% 28.515 (0.05263%) 2.2868E-08 822 

Simplex HMLE 1.7187E-04 (0.00582% 28.520 (0 07018%) 7.5964E-10 92 

SCE-UA 1.7188E-04 (0.00000% 28.511 (0.03860%) 7.6111E-10 505 

15 Simplex SLS 1.7188E-04 (0.00000% 28.483 (0.05965%) 2.3086E-08 111 

SCE-UA 1.7188E-04 (0.00000% 28.483 (0.05965%) 2.3396E-08 522 

Simplex HMLE 1.7188E-04 (0.00000° o 28.482 (0.06316%) 7.6718E-10 110 

SCE-UA 1.7188E-04 (0.00000% 28.480 (0.07018%) 7.6630E-10 417 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 1.7188E-04 and starting value of2.25E-04 

c True value of 28.5 and staitingvalue of 42.5 • ValuesofKi are multiplied by 10,000 



Table A20. Results of Ki-Kf (xc = 0.502) parameter optimization problem with error-free data, Equation 2. 

Parameter Estimates (% of Error from True Values) 

a Antecedent 9-o Seardi Objective b c Value of No. 

P Moisture Slope Algorithm Function Kf Ki* Obj. Ptn. Iterations 

0 Dry 10 Simplex SLS 3.7366E-03 (0.00268°o) 28.475 (0.08772%) 4.8187E-08 99 

SCE-UA 3.7365F.-03 (0.00000%) 28.491 (0.03158%) 4.7982E-08 838 

Simplex HMIJ- 3.7364E-03 (0.00268%) 28.529 (0.10175%) 7.3938E-10 98 

SCE-UA 3.7364E-03 (0.00268%) 28.533 (0.11579%) 7.3957E-10 532 

15 Simplex S1.S 3.7363E-03 (0.00535%) 28.606 (0.37193%) 6.1381E-08 77 

SCE-lIA 3.7364E-03 (0.00268%) 28.588 (0.30877%) 6.1282E-08 634 

Simplex HMLE 3.7363E-03 (0.00535%) 28.639 (0.48772%) 9.5570E-10 131 

SCE-UA 3.7363E-03 (0.00535%) 28.641 (0.49474%) 9.5564E-10 636 

Wet 10 Simplex SI.S 3.7364E-03 (0.00268%) 28.552 (0.18246%) 1.7935E-08 101 

SCE-UA 3.7364E-03 (0.00268%) 28.543 (0.15088%) 1.7906E-08 598 

Simplex HMLE 3.7362E-03 (0.00803%) 28.607 (0.37544%) 5.4925E-10 118 

SCE-UA 3.7362E-03 (0.00803%) 28.605 (0.36842%) 5.4967E-10 525 

15 Simplex SLS 3.7364E-03 (0.00268%) 28.571 (0.24912%) 2.0533E-08 97 

SCE-UA 3.7364F.-03 (0.00268%) 28.574 (0.25965%) 2.0506E-08 593 

Simplex HMLE 3.7365E-03 (0.00000%) 28.508 (0.02807%) 6.30I5E-I0 119 

SCE-UA 3.7365E-03 (0.00000%) 28.508 (0.02807%) 6.2898E-10 653 

Very Wet 10 Simplex SLS 3.7364E-03 (0.00268%) 28.513 (0.04561%) 2.0042E-08 84 

SCE-UA 3.7364E-03 (0.00268%) 28.521 (0.07368%) 2.0002E-08 550 

Simplex HMLE 3.7364E-03 (0.00268%) 28.518 (0.06316%) 6.6372E-10 100 

SCE-UA 3.7364E-03 (0.00268%) 28 514 (0.04912%) 6.6189E-10 854 

15 Simplex SLS 3.7365E-03 (0.00000%) 28.493 (0.02456%) 2.8579E-08 95 

SCE-UA 3.7365E-03 (0.00000%) 28.495 (0.01754%) 2.8531E-08 667 

Simplex HMLE 3.7365E-03 (0.00000%) 28.493 (0.02456%) 9.4745E-10 85 

SCE-UA 3.7365E-03 (0.00000%) 28,494 (0.02105%) 9.5404E-10 597 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.7365E-03 and starting value of 4.25E-03 

c True value of28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 

00 



Table A21. Results of K;-Kf (xc = 0.502) parameter optimization problem with error-free data, Equation 3. 

Parameter Estimates (°i> of Error from Tnie Values) 

a /Antecedent % Search Objective b c Value of No. 

P Moisture Slope Algorithm Function Kf Ki* Obj. Ptn. Iterations 

0 Dry 10 Simplex SLS 3.9686E-05 (0.00252%) 28.472 (0.09825%) 5.4899E-08 112 

SCE-UA 3.9685F.-05 (0.00000%) 28.477 (0.08070%) 5.4823E-08 595 

Simplex HMLE 3.9684E-05 (0.00252%) 28.538 (0.13333%) 8.5125E-10 89 

SCE-UA 3.9684E-05 (0.00252%) 28.540 (0.14035%) 8.5498E-10 609 

15 Simplex SLS 3.9683E-05 (0.00504%) 28.638 (0.48421%) 6.2729E-08 125 

SCE-l'A 3.9683E-05 (0.00504%) 28.628 (0.44912%) 6.2719E-08 632 

Simplex HMLE 3.9683E-05 (0.00504%) 28.640 (0.49123%) 9.9533E-10 99 

SCE-l'A 3.9683E-05 (0.00504%) 28.629 (0.45263%) 9.9492E-10 592 

Wei 10 Simplex SLS 3.9683E-05 (0.00504%) 28.532 (0.11228%) 2.0513E-08 111 

SCE-UA 3.9683E-05 (0.00504° b) 28.552 (0.18246%) 2.0539E-08 526 

Simplex HMLE 3.9683E-05 (0.00504° o) 28.552 (0.18246° b) 6.4503E-10 123 

SCE-UA 3.9682E-05 (0.00756° b) 28.573 (0.25614%) 6.45I9E-10 566 

15 Simplex SLS 3.9685E-05 (0.00000° o) 28.527 (0.09474° o) 2.4453E-08 107 

SCE-l'A 3.9685E-05 (0.00000%) 28.539 (0.13684%) 2.4355E-08 593 

Simplex HMLE 3.9685E-05 (0.00000%) 28.504 (0.01404%) 5.7563E-10 90 

SCE-l'A 3.9685E-05 (0.00000%) 28.504 (0.01404%) 5.8939E-10 627 

Very Wet 10 Simplex SLS 3.9685E-05 (0.00000%) 28.495 (0.01754%) 2.6143E-08 112 

SCE-l'A 3.9685E-05 (0.00000%) 28.498 (0.00702%) 2.6071E-08 652 

Simplex HMLE 3.9685E-05 (0.00000%) 28.500 (0.00000%) 8.4940E-10 111 

SCE-UA 3.9685E-05 (0.00000° b) 28.498 (0.00702%) 8.4709E-10 644 

15 Simplex SLS 3.9684E-05 (0.00252%) 28.519 (0.06667%) 1.7629E-08 115 

SCE-UA 3.9685E-05 (0.00000%) 28.524 (0.08421%) 1.7547E-08 622 

Simplex HMLE 3.9685E-05 (0.00000%) 28.521 (0.07368%) 5.8003E-10 112 

SCE-UA 3.9685E-05 (0.00000%) 28.523 (0.08070%) 5.8237E-10 612 

a Correlation coefficient of sediment concentration; for p 0, no random error b True value of 3.9685E-05 and starting value of 9.00E-05 

c True value of 28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 



Table A22. Results of Kj-Kf (tc = 0.502) parameter optimization problem for p = 0.25, Equation 1. 

Parameter Estimates (% of Error from True Values) 

a Antecedent °b Search Objective h c Value of No. 

p Moisture Slope Algorithm Function Kf Ki* Obj. Fin. iterations 

0.25 Dry 10 Simplex SLS 1.7809E-04 (3.61299% 10.103 (64.55088%) 4.5071E-03 40 

SCF.-UA 1.7862E-04 (3.92134% 10.002 (64.90526%) 4.4975E-03 467 

Simplex HMIJ- 1.7781E-04 (3.45008% 12.244 (57.03860%) 7.0809E-05 40 

SCF.-UA 1.7765E-04 (3.35699% 12.585 (55.84211%) 7.0693E-05 560 

15 Simplex SLS 1.6590E-04 (3.47917% 65.442 (129.62105%) 9.9731E-02 38 

SCF.-UA 1.6845E-04 (1.99558® • 46.275 (62.36842%) 9.9644E+00 501 

Simplex HM1.E 1.6497E-04 (4.02025% 67.826 (137.98596%) 1.5270E-03 36 

SCE-UA 1.6400E-04 (4.58401% 74.977 (163.07719%) 1.5261E-03 566 

Wet 10 Simplex SI.S 1.8I49E-04 (5.59111% 10.823 (62.02456%) 4.1292E-03 58 

SCF.-UA 1.8175E-04 (5.74238% 10.000 (64.91228%) 4.1248E-03 440 

Simplex HMLE 1.8149E-04 (5.59111% 10.823 (62.02456%) 1.3287E-04 47 

SCE-UA 1.8181E-04 (5.77729% 10.003 (64.90175%) 1.3232E-04 472 

15 Simplex SI.S 1.7556E-04 (2.14103% 11.251 (60.52281%) 3.6136E-02 43 

SCE-UA 1.7571E-04 (2.22830% 10.002 (64.90526%) 3.6121E-02 533 

Simplex HMLE 1.7556E-04 (2.14103% 11.251 (60.52281%) I.1658E-03 43 
SCE-UA 1.7569E-04 (2.21666% 10.000 (64.91228%) 1.1653E-03 507 

Very Wet 10 Simplex SLS 1.6370E-04 (4.75913% 67.508 (136.87018%) 5.1474E-01 34 

SCE-UA 1.6167F.-04 (5.94019% 74.996 (163.14386%) 5.1357E-01 478 

Simplex HMLE 1.6213E-04 (5.67256% 73.278 (157.11579%) 1.6614E-02 43 

SCE-UA 1.6139E-04 (6.10310% 74.995 (163.14035%) 1.6605E-02 432 

15 Simplex SLS 1.7187E-04 (0.00582% 10.000 (64.91228%) 1.7406E+00 134 

SCE-UA I.7185E-04 (0.01745% 10.000 (64.91158%) 1.7406E+00 455 

Simplex HMLE 1.7194E-04 (0.03491% 10.001 (64.90877%) 5.7334E-02 106 

SCE-UA 1.7194E-04 (0.03491% 10.001 (64.90877%) 5.7334E-02 499 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 1.7188E-04 and starting value of 2.25E-04 

c True value of 28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 
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O 



Table A23. Results of Kj-Kf (xc = 0.502) parameter optimization problem for p = 0.25, Equation 2. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf Ki* Obj. Ftn. Iterations 

0.25 Dry 10 Simplex SLS 3.6951E-03 (1.10799%) 49.633 (74.15088%) 1.0528E-01 37 

SCE-l'A 3.6210E-03 (3.09113%) 74.993 (163.13333%) 1.0443E-01 462 

Simplex HMLE 3.6135E-03 (3.29185%) 74.979 (163.08421%) 1.5589E-03 57 

SCE-UA 3.6115E-03 (3.34538%) 74.999 (163.15439%) 1.5587E-03 407 

15 Simplex SLS 3.7338E-03 (0.07226%) 55.076 (93.24912%) 2.0104E-01 35 

SCE-UA 3.7082E-03 (0.75739%) 74.997 (163.14737%) 2.0051E-01 507 

Simplex HMLE 3.7440E-03 (0.20072%) 53.181 (86.60000%) 3.2I82E-03 33 

SCE-UA 3.7106E-03 (0.69316%) 74.998 (163.15088%) 3.2125E-03 528 

Wei 10 Simplex SLS 3.6232E-03 (3.03225%) 20.063 (29.60351%) 2.0644E-02 34 

SCE-UA 3.6576E-03 (2.11160%) 10.001 (64.90877%) 2.0393E-02 442 

Simplex HMLE 3.6527E-03 (2.24274%) 10.614 (62.75789%) 6.5504E-04 50 

SCE-UA 3.6563E-03 (2.14639%) 10.000 (64.91228%) 6.5445E-04 475 

15 Simplex SLS 3.7580E-03 (0.57540%) 11.434 (59.88070%) 8.8096E-02 62 

SCE-UA 3.7605E-03 (0.64231%) 10.003 (64.90175%) 8.8030E-02 441 

Simplex HMLE 3.7515E-03 (0.40145%) 22.685 (20.40351%) 2.8562E-03 35 

SCE-UA 3.7633E-03 (0.71725%) 10.003 (64.90175%) 2.8366E-03 519 

Very Wet 10 Simplex SLS 3.8225E-03 (2.30162%) 23.885 (16.19298%) 6.5806E-01 32 

SCE-UA 3.8623E-03 (3.36679%) 12.204 (57.17895%) 6.5718E-01 543 

Simplex HMLE 3.8093E-03 (1.94835%) 22.828 (19.90175%) 2.183IE-02 31 

SCE-UA 3.8275E-03 (2.43543%) 18.865 (33.80702%) 2.1825E-02 486 

15 Simplex SLS 3.6523E-03 (2.25345%) 10.003 (64.90175%) 1.6627E+00 114 

SCE-UA 3.6524E-03 (2.25077%) 10.003 (64.90175%) 1.6627E f 00 454 

Simplex HMLE 3.6470E-03 (2.39529%) 10.001 (64.90877%) 5.5366E-02 109 

SCE-UA 3.6470E-03 (2.39529%) 10.003 (64.90175%) 5.5366E-02 459 

a Con-elation coefficient ofsediment concentration; for p = 0, no random error b True value of 3.7365E-03 and starting value of 4.25E-03 

c True value of 28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 



Table A24. Results of Kj-Kf (xc = 0.502) parameter optimization problem for p = 0.25, Equation 3. 

Parameter Estimates (0/o of Error from True Values) 

a Antecedent °0 Search Objective b c Value of No. 

p Moisture Slope Algorithm Function KI Ki* Obj. Ftn. Iterations 

0.25 Dry- 10 Simplex SLS 3.8954F.-05 (1.84201%) 66.690 (134.00000%) 7.8892E-02 42 

SCE-UA 3.8751E-05 (2.35353%) 74.985 (163.10526%) 7.8757E-02 483 

Simplex HMLE 3.9046E-05 (1.61018%) 67.035 (135.21053%) I.2500E-03 42 

SCE-UA 3.8763E-05 (2.32330%) 74.998 (163.15088%) 1.2482E-03 498 

15 Simplex SLS 4.0073E-05 (0.97770%) 14.537 (48.99298%) 1.8493E-01 50 

SCE-UA 4.0109E-05 (1.06841%) 10.410 (63.47368%) 1.8489E-01 504 

Simplex HMLE 3.9178E-05 (1.27756%) 66.445 (133.14035%) 2.9480E-03 44 

SCE-UA 3.9481E-05 (0.51405%) 68.704 (141.06667%) 2.9481E-03 531 

Wet 10 Simplex SLS 4.0037E-05 (0.88699%) 10.214 (64.16140%) 3.2584E-02 60 

SCE-UA 4.0048E-05 (0.91470%) 10.004 (64.89825%) 3.2576E-02 468 

Simplex HMI-E 3.9963E-05 (0.70052%) 13.163 (53.81404%) 1.0201E-03 53 

SCE-UA 4.0074E-05 (0.98022%) 10.009 (64.88070%) 1.0472E-03 461 

15 Simplex SLS 3.8645E-05 (2.62064%) 65.731 (130.63509%) 1.0129E-01 45 

SCE-UA 3.8537E-05 (2.89278%) 74.959 (163.01404%) 1.0105E-01 386 

Simplex HMLE 3.8645E-05 (2.62064%) 65.731 (130.63509%) 3.2328E-03 45 

SCE-UA 3.8514E-05 (2.95074%) 74.996 (163.14386%) 3.2174E-03 431 

Very Wet 10 Simplex SLS 3.7892E-05 (4.51808%) 58.718 (106.02807%) 5.3468E-01 43 

SCE-UA 3.7225E-05 (6.19882%) 74.999 (163.15439%) 5.3224E-01 407 

Simplex HMLE 3.8I37E-05 (3.90072%) 59.820 (109.89474%) I.5547E-02 45 

SCE-UA 3.9637E-05 (0.12095%) 26.834 (5.84561%) 1.5426E-02 507 

15 Simplex SLS 4.0962E-05 (3.21784%) 14.060 (50.66667%) 1.5784E+00 47 

SCE-UA 4.1035E-05 (3.40179%) 10.001 (64.90877%) 1.5759E+00 498 

Simplex HMLE 4.0850E-05 (2.93562%) 14.520 (49.05263%) 5.1789E-02 51 

SCE-UA 4.0934E-05 (3.14728%) 10.020 (64.84211%) 5.1709E-02 428 

a Correlation coefficient of sediment concentration; for p = 0, no random error b Truevaiueof3.9685E-05andstartingvaIueof9.00E-05 

c True value of 28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 



Table A25. Results of Kj-Kf(xc = 0.502) parameter optimization problem for p = 0.50, Equation 1. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf Ki* Obj. Rn. Iterations 

0.50 Dry 10 Simplex SLS 1.5339E-04 (10.75751%) 66.097 (131.91930%) 6.3364E-03 38 

SCE-UA 1.6156E-04 (6.004191b) 45.474 (59.55789%) 6.2615E-03 519 

Simplex HMLE 1.6518E-04 (3.89807°o) 36.467 (27.95439%) 3.6963E-05 4) 

SCE-UA I.6477E-04 (4.13661%) 37.035 (29.94737%) 9.6949E-05 516 

15 Simplex SLS I.7I6IE-04 (0.15709%) 70.512 (147.41053%) I.3662E-0I 38 

SCE-UA 1.7108E-04 (0.46544%) 74.998 (163.15088%) 1.3628E-01 424 

Simplex HMLE 1.7097E-04 (0.52944%) 74.778 (162.37895%) 2.1938E-03 48 

SCE-UA 1.7106E-04 (0.47708%) 74.998 (163.15088%) 2.1934E-03 489 

Wet 10 Simplex SLS 1.7332E-04 (0.83779%) 11.125 (60.96491%) 2.4740E-03 44 

SCE-UA 1.7367E-04 (1.04142%) 10.018 (64.84912%) 2.4730E-03 467 

Simplex HMLE 1.6945E-04 (1.41378%) 19.174 (32.72281%) 6.6505E-05 46 

SCE-UA 1.6933E-04 (1.48359%) 19.446 (31.76842%) 6.6261E-05 669 

15 Simplex SLS 1.7634E-04 (2.59483%) 11.828 (58.49825%) 5.4202E-02 46 

SCE-UA 1.7663E-04 (2.76356%) 10.001 (64.90877%) 5.4085E-02 462 

Simplex HMLE 1.7615E-04 (2.48429%) 12.668 (55.55088%) 1.7478E-03 38 

SCE-UA 1.7690E-04 (2.92064%) 16.799 (41.05614%) 1.7411E-03 525 

Very Wet 10 Simplex SLS 1.8463E-04 (7.41797%) 10.004 (64.89825%) 3.3064E-01 35 

SCE-UA 1.8696E-04 (8.77356%) 17.238 (39.51579%) 2.9910E-01 479 

Simplex HMLE 1.8551E-04 (7.92995%) 10.007 (64.88772%) 9.5511E-03 40 

SCE-UA 1.8771E-04 (9.20991%) 74.697 (162.09474%) 9.5473E-03 542 

15 Simplex SLS 1.6626E-04 (3.26972%) 74.999 (163.15439%) 2.3888E+00 61 

SCE-UA 1.6654E-04 (3.10682%) 74.999 (163.15439%) 2.3872E+00 467 

Simplex HMLE 1.6647E-04 (3.14754%) 74.999 (163.15439%) 7.9543E-02 39 

SCE-UA 1.6650E-04 (3.13009%) 74.999 (163.15439%) 7.9533E-02 452 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 1.7188E-04 and starting value of 2.25E-04 

c True value of 28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 



Table A26. Results of K;-Kf (tc = 0.502) parameter optimization problem for p = 0.50, Equation 2. 

Parameter Estimates (% of Error from True Values) 

a .Antecedent % Search Objective h c Value of No. 

p Moisture Slope Algorithm Function Kf Ki* Obj. Ftn. Iterations 

0.50 Dry 10 Simplex SLS 3.6017E-03 (3.60765%) 49.166 (72.51228%) 6.5904E-02 32 

SCE-UA 3.5633E-03 (4.63535%) 62.892 (120.67368%) 6.5875E-02 466 

Simplex HMLE 3 6017E-03 (3.60765%) 49.160 (72.49123%) 1.0425E-03 31 

SCE-UA 3.5304E-03 (5.51586%) 74.984 (163.10175%) 1.0415E-03 471 

15 Simplex SLS 3.6232E-03 (3.03225%) 20.063 (29.60351%) 2.6089E-01 35 

SCE-UA 3.6409E-03 (2.55854%) 10.038 (64.77895%) 2.6076E-01 454 

Simplex HMLE 3.5803E-03 (4.18038%) 51.375 (80.26316%) 4.1734E-03 32 

SCE-UA 3.5438E-03 (5.15723%) 74.473 (161.30877%) 4.1700E-03 406 

Wet 10 Simplex SLS 3.7329E-03 (0.09635%) 52.005 (82.47368%) 4.8016E-02 30 

SCE-UA 3.7497E-03 (0.35327%) 49.165 (72.50877%) 4.7985E-02 380 

Simplex HMLE 3.7115E-03 (0.66908%) 54.000 (89.47368%) 1.4777E-03 37 

SCE-UA 3.7059E-03 (0.81895%) 54.691 (91.89825%) 1.4771E-03 571 

15 Simplex SLS 3.7354E-03 (0.02944%) 54.248 (90.34386%) 8.4566E-02 37 

SCE-UA 3.7043E-03 (0.86177%) 74.992 (163.12982%) 8.2850E-02 460 

Simplex HMLE 3.7001E-03 (0.97417%) 74.944 (162.96140%) 2.6136E-03 61 

SCE-UA 3.7023E-03 (0.91530%) 74.983 (163.09825%) 2.6116E-03 444 

Very Wet 10 Simplex SLS 3.8228E-03 (2.30965%) 20.014 (29.77544%) 4.9532E-0I 34 

SCE-UA 3 8514E-03 (3.07507%) 10.004 (64.89825%) 4.9170E-01 468 

Simplex HMLE 3.8228E-03 (2.30965%) 20.014 (29.77544%) 1.6321E-02 34 

SCE-UA 3.8517E-03 (3.08310%) 10.004 (64.89825%) 1.6225E-02 463 

15 Simplex SLS 3.7447E-03 (0.21946%) 10.007 (64.88772%) 1.4637E+00 109 

SCE-UA 3.7445E-03 (0.21410%) 10.009 (64.88070%) 1.4637E+00 451 

Simplex HMLE 3.7494E-03 (0.34524%) 10.002 (64.90526%) 4.7748E-02 103 

SCE-UA 3.7489E-03 (0.33186%) 10.000 (64.91228%) 4.7748E-02 439 

a Correlation coefficient ofsediment concentration; for p = 0, no random error b Truevalueof3.7365E-03andstaitingvalueof4.25E«03 

c True value of 28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 



Table A27. Results of Ki-Kf (xc = 0.502) parameter optimization problem for p = 0.50, Equation 3. 

Parameter Estimates (° 'o of Error from True Values) 

a Antecedent % Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf Ki* Obj. Ftn. Iterations 

0.50 Dry 10 Simplex SLS 4.0399E-05 (1.79917%) 15.293 (46.34035%) 6.5937E-02 46 

SCE-UA 4.0479E-05 (2.00076%) 10.003 (64 90175%) 6.5448E-02 493 

Simplex HMI.E 4.0342E-05 (1.65554%) 14.442 (49.32632%) 1.0347E-03 52 

SCE-UA 4.0504E-05 (2.06375%) 10.002 (64.90526%) 1.0334E-03 510 

15 Simplex SLS 4.0841E-0 5 (2.91294%) 14.037 (50.74737%) 1.8767E-01 51 

SCE-UA 4.0883E-05 (3.01877%) 10.006 (64.89123%) 1.8755E-01 483 

Sinqilex HK1LE 4.0668E-05 (2.47701%) 16.830 (40.94737%) 2.9552E-03 50 

SCE-UA 4.0766E-05 (2.72395%) 10.010 (64.87719%) 2.9536E-03 551 

Wet 10 Simplex SLS 3.8748E-05 (2.36109%) 66.523 (133.41404%) 5.4626E-02 38 

SCE-UA 3.8648E-05 (2.61308%) 74.996 (163.14386%) 5.3711E-02 517 

Simplex HMLE 3.8885E-05 (2.01588%) 66.360 (132.84211%) 1.7216E-03 43 

SCE-UA 3.8669E-05 (2.56016%) 74.999 (163.15439%) 1.7065E-03 471 

15 Simplex SLS 3.8578E-05 (2.78947%) 65.996 (131.56491%) 6.5304E-02 42 

SCE-UA 3.9377E-05 (0.77611%) 74.998 (163.15088%) 6.5034E-02 453 

Simplex HMLE 3.8927E-05 (1.91004%) 36.620 (28.49123%) 1.9585E-03 66 

SCE-UA 3.8928E-05 (1.90752%) 36.666 (28.65263%) 1.9385E-03 490 

Very Wet 10 Simplex SLS 3.6902E-05 (7.01273%) 74.337 (160.83158%) 5.0894E-0! 66 

SCE-UA 3.6819E-05 (7.22187%) 74.991 (163.12632%) 5.0852E-01 429 

Simplex HMLE 3.7304E-05 (5.99975%) 64.646 (126.82807%) 1.6856E-02 46 

SCE-UA 3.6824E-05 (7.20927%) 74.998 (163.15088%) 1.6655E-02 452 

15 Simplex SLS 4.0026E-05 (0.85927%) 17.046 (40.18947%) 1.6888E+00 43 

SCE-UA 4.0322E-05 (1.60514%) 10.002 (64.90526%) I.6736E+00 396 

Simplex HMLE 4.1101E-05 (3.56810%) 13.475 (52.71930%) 4.9625E-02 47 

SCE-UA 4.1236E-05 (3.90828%) 10.001 (64.90877%) 4.9437E-01 477 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.9685E-05 and starting value of 9.00E-05 

c True value of 28.5 and starting value of 42.5 * Values ofKi are multiplied by 10,000 



Table A28. Results of Kj-Kf (tc = 0.0) parameter optimization problem with error-free data, Equation 1. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c Value of No. 

P Moisture Slope Algorithm Function Kf Ki* Obj. Ftn. Iterations 

0 Dry 10 Simplex SLS 1.7190E-04 (0.01164%) 28.451 (0.17193%) 4.9920E-08 88 

SCE-UA 1.7189E-04 (0.00756%) 28.457 (0.15088%) 4.9906E-08 755 

Simplex HMLE 1.7189E-04 (0.00582%) 28.494 (0.02105%) 7.8055F.-10 86 

SCE-UA 1.7189E-04 (0.00582%) 28.485 (0.05263%) 7.7614E-10 530 

15 Simplex SLS 1.7188E-04 (0.00000%) 28 520 (0.07018%) 5.7422E-08 102 

SCE-lIA 1.7188E-04 (0.00000» o) 28.501 (0.00351%) 5.7284E-08 623 

Simplex HMLE 1.7188E-04 (0.00000%) 28.503 (0.01053%) 9.1509E-10 115 

SCE-UA 1.7188E-04 (0.00000%) 28.500 (0.00000%) 9.1660E-10 536 

Wet 10 Simplex SLS 1.7187E-04 (0.00582%) 28.516 (0.05614%) 3.0779E-08 83 

SCE-UA 1.7187E-04 (0.00582%) 28.510 (0.03509%) 3.0769E-08 530 

Simplex HMLE 1.7189E-04 (0.00582%) 28.462 (0.13333%) 7.5819E-10 101 

SCE-UA 1.7192E-04 (0.02327%) 28.445 (0.19474%) 4.3590E-13 631 

15 Simplex SLS 1.7189E-04 (0.00582%) 28.444 (0.19649° o) 2.6375E-08 93 

SCE-UA 1.7189E-04 (0.00582%) 28.447 (0.18596%) 2.6302E-08 664 

Simplex HMLE 1.7188E-04 (0.00000%) 28 513 (0.04561%) 8.2139E-10 109 

SCE-UA 1.7188E-04 (0.00000%) 28.449 (0.17895%) 8.2920E-10 579 

Very Wet 10 Simplex SLS 1.7188E-04 (0.00000%) 28.499 (0.00351%) 2.6539E-08 93 

SCE-UA 1.7188E-04 (0.00000%) 28.502 (0.00702%) 2.64I7E-08 23 

Simplex HMLE 1.7188E-04 (0.00000%) 28.497 (0.01053%) 8.8433E-10 95 

SCE-UA 1.7188E-04 (0.00000%) 28.504 (0.01404%) 8.8102E-10 683 

15 Simplex SLS 1.7I88E-04 (0.00000%) 28.484 (0.05614%) 2.7889E-08 117 

SCE-UA 1.7188E-04 (0.00000%) 28.484 (0.05614%) 2.7925E-08 628 

Sinqriex HMLE 1.7188E-04 (0.00000%) 28.489 (0.03860%) 8.6064E-10 113 

SCE-UA 1.7188E-04 (0.00000%) 28.488 (0.04211%) 8.6085E-10 763 

a Correlation coefficient of sediment concentration; for p - 0, no random error b True value of 1.7188E-04 and starting value of 2.25E-04 

c True value of 28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 



Table A29. Results of K;-Kf (tc = 0.0) parameter optimization problem with error-free data, Equation 2. 

Parameter Estimates (°o of Error from True Values) 

a Antecedent O- Search Objedive b c Value of No. 

P Moisture Slope Algorithm Function Kf Ki* Obj. Ftn. herations 

0 Dry 10 Simplex SLS 3.7366E-03 (0.00268%) 28.445 (0.19298%) 5.0414E-06 108 

SCE-l'A 3.7366E-03 (0.00268%) 28.460 (0.14035%) 5.0528E-08 595 

Simplex HMLE 3.7366E-03 (0.00268%) 28.432 (0.23860%) 7.9930E-10 118 

SCE-UA 3.7367E-03 (0.00535%) 28.395 (0.36842%) 7.992 IE-10 550 

15 Simplex SLS 3.7365E-03 (0.00000%) 28.464 (0.12632%) 6.2739E-08 104 

SCE-UA 3.7365E-03 (0.00000%) 28.531 (0.10877%) 6.2779E-08 730 

Simplex HMI-F. 3.7365E-03 (0.00000%) 28.527 (0.09474%) I.0131E-09 93 

SCE-UA 3.7365E-03 (0.00000%) 28.480 (0.07018%) 1.0127E-09 579 

Wet 10 Simplex SLS 3.7365E-03 (0.00000%) 28.487 (0.04561%) 1.8605E-08 100 

SCE-UA 3.7365E-03 (0.00000%) 28.486 (0.04912%) 1.8633E-08 708 

Simplex HV1LE 3.7366E-03 (0.00268%) 28.441 (0.20702%) 5.8503E-10 123 

SCE-UA 3.7366E-03 (0.00268%) 28.439 (0.21404%) 5.7750E-10 638 

15 Simplex SLS 3.7364E-03 (0.00268%) 28.590 (0.31579%) 2.2040E-08 115 

SCE-UA 3.7364E-03 (0.00268%) 28.600 (0.35088%) 2.2033E-08 879 

Simplex HMLE 3.7364E-03 (0.00268%) 28.630 (0.45614%) 6.5821E-10 94 

SCE-UA 3.7366E-03 (0.00268%) 28.439 (0.21404%) 5.7750E-10 638 

Very Wet 10 Simplex SLS 3.7365E-03 (0.00000%) 28.502 (0.00702%) 2.5993E-08 103 

SCE-UA 3.7365E-03 (0.00000%) 28.500 (0.00000%) 2.5903E-08 629 

Simplex HMLE 3.7365E-03 (0.00000%) 28.502 (0.00702%) 8.6620E-10 98 

SCE-UA 3.7365E-03 (0.00000%) 28.501 (0.00351%) 8.6934E-10 563 

15 Simplex SLS 3.7365E-03 (0.00000%) 28.499 (0.00351%) 1.7698E-08 97 

SCE-UA 3.7365E-03 (0.00000%) 28.531 (0.10877%) 6.2779E-08 730 

Simplex HMLE 3.7365E-03 (0.00000%) 28.498 (0.00702%) 5.9013E-10 87 
SCE-UA 3.7365E-03 (0.00000%) 28.498 (0.00702%) 5.8427E-10 731 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.7365E-03 and starting value of 4.25E-03 

c True value of 28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 



Table A30. Results of K;-Kf (xc = 0.0) parameter optimization problem with error-free data, Equation 3. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c Value of No. 

P Moisture Slope Algorithm Function Kf Ki* Obj. Ftn. Iterations 

0 Do- 10 Simplex SLS 3.9687E-05 (0.00504%) 28.376 (0.43509%) 4.7344E-08 150 

SCE-UA 3.9687E-05 (0.00504%) 28.376 (0.43509%) 4.7416E-08 655 

Simplex HMLE 3.9687E-05 (0.00504%) 28.342 (0.55439%) 7.46I8E-10 161 

SCE-UA 3.9687E-05 (0.00504%) 28.354 (0.51228%) 7.4826E-10 529 

15 Simplex SLS 3.9681E-05 (0.01008%) 28.929 (1.50526%) 6.8755E-08 109 

SCE-UA 3.9682E-05 (0,00756%) 28.364 (0.47719%) 6.8649E-08 694 

Simplex HMLE 3.9675E-05 (0.02520%) 29.604 (3.87368%) 9.4408E-08 160 

SCE-UA 3.9687E-05 (0.00504%) 28.354 (0.51228%) 7.4826E-10 529 

Wet 10 Simplex SLS 3.9686E-05 (0.00252%) 28.435 (0.22807%) 3.1767E-08 127 

SCE-UA 3.9686E-05 (0.00252%) 28.451 (0.17193%) 3.1775E-08 794 

Simplex HMLE 3.9686E-05 (0.00252%) 28.416 (0.29474%) 7.4219E-10 130 

SCE-UA 3.9686E-05 (0.00252%) 28.415 (0.29825%) 7.6982E-10 644 

15 Simplex SLS 3.9681E-05 (0.01008%) 28.474 (0.09123%) 2.4021E-08 141 

SCE-UA 3.9681E-05 (0.01008%) 28.519 (0.06667%) 2.3916E-08 649 

Simplex HMLE 3.9686E-05 (0.00252%) 28.436 (0.22456%) 7.5292E-10 117 

SCE-UA 3.9681E-05 (0.01008%) 28.515 (0.05263%) 7.5117E-10 616 

Very Wet 10 Simplex SLS 3.9681E-05 (0.01008® o) 28.504 (0.01404%) 2.2677E-08 125 

SCE-UA 3.9681E-05 (0.01008%) 28.503 (0.01053%) 2.2710E-08 836 

Simplex HMLE 3.9681E-05 (0.01008%) 28.505 (0.01754%) 7.5292E-10 144 

SCE-UA 3.9681E-05 (0.01008%) 28.502 (0.00702%) 7.5117E-10 531 

15 Simplex SLS 3.9681E-05 (0.01008%) 28.489 (0.03860%) 2.4975E-08 127 

SCE-UA 3.9681E-05 (0.01008%) 28.487 (0.04561%) 2.4995E-08 572 

Simplex HMLE 3.9681E-05 (0.01008%) 28.487 (0.04561%) 8.3130E-10 114 

SCE-UA 3.9681E-05 (0.01008%) 28.490 (0.03509%) 8.3181E-10 626 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.9685E-05 and starting value of 9.00E-05 

c Tnievalueof28.5andstaitingvaiueof42.5 * Values of Ki are multiplied by 10,000 

l/k 
00 



Table A31. Results of K;-Kf (xc = 0.0) parameter optimization problem for p = 0.25, Equation 1. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf Ki* Obj. Ftn. Iterations 

0.25 Dry 10 Simplex SLS 1.7490E-04 (1.75704%) 10.859 (61.89825%) 6.0561E-03 46 

SCE-UA 1.7503E-04 (1.83267%) 10.003 (64.90175%) 6.0492E-03 442 

Simplex HMLE 1.7463E-04 (1.59995%) 10.182 (64.27368%) 9.0575E-05 57 

SCE-UA 1.7467E-04 (1.62323%) 10.002 (64.90526%) 9.0664E-05 446 

15 Simplex SLS 1.6957E-04 (1.34396%) 70.160 (146.17544%) 1.0677E-01 39 

SCE-UA 1.6907E-04 (1.63486"! b) 74.959 (163.01404%) 1.0673E-01 510 

Simplex HMLE 1.6972E-04 (1.25669%) 67.650 (137.36842%) 1.6887E-03 35 

SCE-UA 1.6892E-04 (1.72213%) 74.993 (163.13333%) 1.6876E-03 510 

Wet 10 Simplex SLS 1.7396E-04 (1.21015%) 10.324 (63.77544%) 7.0902E-03 55 

SCE-UA 1.7368E-04 (1.04724%) 10.001 (64.90877%) 7.0679E-03 475 

Simplex HMLE 1.7374E-04 (1.08215%) 10.446 (63.3 473 7° o) 2.1399E-04 54 

SCE-UA 1.7401E-04 (1.23924%) 10.001 (64.90877%) 2.1378E-04 481 

15 Simplex SLS 1.7028E-04 (0.93088%) 44.803 (57.20351%) 4.5031E-02 30 

SCE-UA 1.7370E-04 (1.05888%) 10.018 (64.84912%) 4.4585E-02 472 

Simplex HMLE 1.7018E-04 (0.98906%) 47.898 (68.06316%) 1.4369E-03 33 

SCE-UA 1.6755E-04 (2.51920%) 74.607 (161.77895%) 1.4358E-09 544 

Very Wet 10 Simplex SLS 1.6168E-04 (5.93437%) 65.024 (128.15439%) 4.6901E-01 35 

SCE-UA 1.5935F.-04 (7.28997%) 74.993 (163.13333%) 4.6708E-01 432 

Simplex HMLE 1.6303E-04 (5.14894%) 62.333 (118.71228%) 1.5502E-02 38 

SCE-UA 1.5934E-04 (7.29579%) 74.995 (163.14035%) 1.5398E-02 469 

15 Simplex SLS 1.7369E-04 (1.05306%) 10.000 (64.91228%) 2.7874E+00 104 

SCE-UA 1.7359E-04 (0.99488%) 10.018 (64.84912%) 2.7873E+00 437 

Simplex HMLE 1.7371E-04 (1.06470%) 10.001 (64.90877%) 9.2654E-02 100 

SCE-UA 1.7374E-04 (1.08040%) 10.001 (64.90877%) 9.2654E-02 422 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 1.7188E-04 and starting value of 2.25E-04 

c True value of 28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 



Table A32. Results of K;-Kf (xc = 0.0) parameter optimization problem for p = 0.25, Equation 2. 

Parameter Estimates (% of Error from True Values) 

a .Antecedent O - Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf Ki* Obj. Pin. Iterations 

0.25 Dry 10 Simplex SLS 3.7589E-03 (0.59949%) 51.326 (80.09123%) 2.2805E-01 30 

SCE-UA 4.9798E-03 (33.27445%) 74.945 (162.96491%) 2.2773E-01 515 

Simplex HMLE 3.7589E-03 (0.59949%) 51.326 (80.09123%) 3.6199E-03 31 

SCE-l'A 4.9801E-03 (33.28248%) 74.808 (162.48421%) 3.6142E-03 578 

15 Simplex SLS 3.7039E-03 (0.87247%) 52.403 (83.87018%) 4.7400E-01 33 

SCE-l'A 3.6855E-03 (1.36491%) 74.963 (163.02807%) 4.7361E-01 479 

Simplex IIMLE 3.6976E-03 (1.04108%) 56.202 (97.20000%) 7.4675E-03 33 

SCE-l'A 3.6833F.-03 (1.42379%) 74.777 (162.37544%) 7.4659E-03 502 

Wet 10 Simplex SLS 3.6539E-03 (2.21062%) 74.794 (162.43509%) 8.1763E-02 59 

SCE-UA 3.6504E-03 (2 30430%) 74.995 (163.14035%) 8.1708E-02 527 

Simplex HMLE 3.6875E-03 (1.31139%) 50.493 (77.16842%) 2.6591E-03 37 

SCE-UA 3.6507E-03 (2.29734%) 74.930 (162.91228%) 2.6219E-03 440 

15 Simplex SLS 3.7186E-03 (0.47906%) 72.503 (154.39649%) 3.0739E-01 56 

SCE-UA 3.7150E-03 (0.57540%) 74.995 (163.14035%) 3.0703E-01 470 

Simplex HMLE 3.7219E-03 (0.39074%) 71 661 (151.44211%) 9.5810E-03 54 

SCE-UA 3.7165E-03 (0.53526%) 75.000 (163.15789%) 9.5714E-03 451 

Very Wet 10 Simplex SLS 3.7095E-03 (0.72260%) 46.694 (63.83860%) 9.4521E-01 32 
SCE-UA 3.6775E-03 (1.57902%) 56.493 (98.22105%) 9.4404E-01 485 

Simplex HMLE 3.6739E-03 (1.67536%) 50.995 (78.92982%) 3.1328E-02 31 

SCE-UA 3.6544E-03 (2.19724%) 63.494 (122.78596%) 3.1262E-02 585 

15 Simplex SLS 3.6292E-03 (2.87167%) 10000 (64.91228%) 2.1079E+00 121 
SCE-UA 3.6288E-03 (2.88238%) 10.002 (64.90526%) 2.1079E+00 427 

Simplex HMLE 3.6488E-03 (2.34712%) 10.001 (64.90877%) 6.0593E-02 107 

SCE-UA 3.6418E-03 (2.53446%) 10.006 (64.89123%) 6.0594E-02 397 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.7365K-03 and starting value of 4.25E-03 

c True value of 28.5 and starting value of 42.5 » Values of Ki are multiplied by 10,000 



Table A33. Results of K;-Kf (tc = 0.0) parameter optimization problem for p = 0.25, Equation 3. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf Ki* Obj. Pin. Iterations 

0.25 Dry 10 Simplex SLS 3.9143E-05 (1.36576%) 67.149 (135.61053%) 2.6258E-01 42 

SCE-UA 3.8994E-05 (1.74121%) 74.983 (163.09825%) 2.6244E-01 472 

Simplex HMLE 3.9069E-05 (1.55222%) 67.759 (137.75088%) 4.1093E-03 44 

SCE-llA 3.8944E-05 (1.86720%) 74.969 (163.04912%) 4.1400E-03 493 

15 Simplex SLS 4.0553E-05 (2.18722%) 16.388 (42.49825%) 7.1027E-01 48 

SCE-UA 4.0660E-05 (2.45685%) 10.016 (64.85614%) 7.0945E-01 481 

Simplex HMLE 4.0668E-05 (2.47701%) 16.830 (40.94737%) 1.1229E-02 50 

SCE-UA 4.0718E-05 (2.60300%) 10.090 (64.59649%) 1.1226E-02 507 

Wet 10 Simplex SLS 3.9970E-05 (0.71816%) 60.888 (113.64211%) 1.5650E-01 37 

SCE-l'A 3.9668E-05 (0.04284°o) 74993 (163.13333%) 1.5484E-01 451 

Simplex HMLE 3.9900E-05 (0.54177%) 59.797 (109.81404%) 4.8211E-03 41 

SCE-UA 3.9709E-05 (0.06048° b) 74.976 (163.07368%) 4.8027E-03 529 

15 Simplex SLS 2.5000E-05 (37.00391%) 14.950 (47.54386%) 1.4230E-01 85 

SCE-UA 2.5001E-05 (37.00139^0) 10.028 (64.81404%) 1.3862E-01 391 

Simplex 11 MI J7. 2.5000E-05 (37.00391%) 14.950 (47.54386%) 4.1192E-03 85 

SCF.-UA 2.5001E-05 (37.00139%) 10.016 (64.85614%) 3.9974E-03 397 

Verv Wet 10 Simplex SLS 4.0859E-05 (2.95830%) 15.003 (47.35789%) 1.2074E+00 46 

SCE-UA 4.0524E-05 (2.11415%) 30.092 (5.58596%) 1.2047E+00 492 

Simplex HMLE 4.1708E-05 (5.09739%) 15.384 (46.02105%) 3.9658E-02 55 

SCE-UA 4.1024E-05 (3.37407%) 17.038 (40.21754%) 3.9657E-02 591 

15 Simplex SLS 3.8554E-05 (2.84994%) 55.969 (96.38246%) 1.8356E+00 112 

SCE-UA 3.8555E-05 (2.84742%) 55.976 (96.40702%) 1.8356E+00 554 

Simplex HMLE 3.8580E-05 (2.78443%) 55.021 (93.05614%) 6.0839E-02 130 

SCE-UA 3.8688E-05 (2.51228° b) 48.339 (69.61053%) 6.0588E-02 572 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.9685E-05 and starting value of 9.00E-05 

c True value of 28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 



Table A34. Results ofKi-Kf(xc = 0.0) parameter optimization problem for p = 0.50, Equation 1. 

Parameter Estimates (% of Error from True Values) 

a Antecedent 0, Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf Ki» Obj. Ftn. Iterations 

0.50 Dry 10 Simplex SLS 1.7670E-04 (2.804280 0 10.304 (63.84561%) 7.9130E-03 50 

SCE-UA 1.7649E-04 (2.68210% 10.003 (64.90175%) 7.9040E-03 486 

Sinqilex HMI.F. 1.7593E-04 (2.35630% 10.036 (64.78596%) 1.1467E-04 49 

SCE-lIA 1.7588E-04 (2.32721% 10.003 (64.90175%) 1.1466E-04 432 

15 Simplex SLS 1.6817E-04 (2.15848% 59.888 (110.13333%) 1.3561E-01 38 

SCE-UA 1.6681E-04 (2.94973% 74.985 (163.10526%) I.3531E-01 491 

Simplex HMLE 1.6842E-04 (2.01303% 58.556 (105 45965%) 2.1862E-03 99 

SCE-UA 1.668IE-04 (2.94973% 74.998 (163.15088%) 2 1825E-03 497 

Wet 10 Simplex SLS 1.7653E-04 (2.70538% 17.081 (40.06667%) 7.9657E-03 39 

SCE-UA 1.7790E-04 (3.50244% 12.911 (54.69825%) 7.7596E-03 568 

Simplex HMLE 1.7653E-04 (2.70538% 14.223 (50.09474%) 1.8704E-04 48 

SCE-UA 1.8702E-04 (8.80847% 14.162 (50.30877%) 1.8702E-04 561 

15 Simplex SLS 1.6813E-04 (2.18175% 72.494 (154.36491%) 6.9699E-02 39 

SCE-UA 1.6776E-04 (2.39702% 74.991 (163.12632%) 6.9643E-02 487 

Simplex HMLE 1.6815E-04 (2.17012°'o 65.149 (128.59298%) 2.0395E-03 53 

SCE-UA 1.6810E-04 (2.19921% 67.166 (135.67018%) 2.0387E-03 527 

Very Wet 10 Simplex SLS 1.5523E-04 (9.68699% 66.690 (134.00000%) 3.2048E-01 34 

SCE-UA 1.5957E-04 (7.16197% 49.592 (74.00702%) 3.2012E-01 469 

Simplex HMLE 1.5379E-04 (10.52478% 67.515 (136.89474%) 9.6950E-03 37 

SCE-UA 1.5198E-04 (11.57785% 74.985 (163.10526%) 9.6756E-03 487 

15 Simplex SLS 1.7568E-04 (2.21084% 36.834 (29.24211%) 1.2889E+00 123 

SCE-UA 1.7566E-04 (2.19921% 37.044 (29.97895%) 1.2889E+00 498 

Simplex HMLE 1.7568E-04 (2.21084% 36.834 (29.24211%) 4.2962E-02 123 

SCE-UA 1.7583E-04 (2.29811% 35.497 (24.55088%) 4.2958E-02 525 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 1.7188E-04 and starting value of 2.25E-04 

c True value of 28.5 and starting value of 42.5 • Values ofKi are multiplied by 10,000 
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Table A35. Results of Kj-Kf (xc = 0.0) parameter optimization problem for p = 0.50, Equation 2. 

Parameter Estimates (% of Error from True Values) 

a Antecedent % Search Objective b c Value of No. 

p Moisture Slope Algorithm Function Kf Ki* Obj. Ftn. Iterations 

0.50 Dry 10 Simplex SLS 3.7300E-03 (0.17396%) 49.968 (75.32632%) 2.1134E-01 32 

SCF.-UA 3.6936E-03 (1.14813%) 74.986 (163.10877%) 2.1117E-01 457 

Simplex HMLE 3.7300E-03 (0.17396%) 49.968 (75.32632%) 3.2693E-03 32 

SCE-l'A 3.7030E-03 (0.89656%) 70.375 (146.92982%) 3.2691E-03 361 

15 Simplex SLS 3.6745E-03 (1.65931%) 23.108 (18.91930%) 5.4142E-01 38 

SCE-UA 3.6880E-03 (1.29801%) 10.005 (64.89474%) 5.4098E-01 434 

Simplex HMLE 3.6753E-03 (1.63790%) 22.838 (19.86667%) 8.1919E-03 39 

SCE-UA 3.6851E-03 (1.37562%) 10.063 (64.69123%) 8.1659E-03 555 

Wet 10 Simplex SLS 3.7929E-03 (1.50943%) 27.955 (1.91228%) 1.0876E-01 33 

SCE-UA 3.8099F.-03 (1.96441%) 10.013 (64.86667%) 1.0804E-01 518 

Simplex HMLE 3.7854E-03 (1.30871%) 25.333 (11.11228%) 3.4619E-03 38 

SCE-UA 3.8069E-03 (1.88412%) 10.000 (64.91228%) 3.4311E-03 504 

15 Simplex SLS 3.6738E-03 (1.67804%) 23.378 (17.97193%) 1.5185E-01 40 

SCE-UA 3.6849E-03 (1.38097%) 10.023 (64.83158%) 1.5151E-01 511 

Simplex HMLE 3.6731E-03 (1.69678%) 23.647 (17.02807%) 4.8853E-03 35 

SCE-UA 3.6843E-03 (1.39703%) 10.015 (64.85965%) 4.8650E-03 465 

Very Wet 10 Simplex SLS 3.9669E-03 (6.16620%) 10.121 (64.48772%) 1.0311E+00 67 

SCE-UA 3.9574E-03 (5.91195%) 10.003 (64.90175%) 1.0298E+00 441 

Simplex HMLE 3.9484E-03 (5.67108%) 10.459 (63.30175%) 3.4258E-02 55 

SCE-UA 3.9548E-03 (5.842379o) 10.004 (64.89825%) 3.4128E-02 463 

15 Simplex SLS 3.7501E-03 (0.36398%) 10.000 (64.91228%) 9.3284E-01 114 

SCE-UA 3.7500E-03 (0.36130%) 10.005 (64.89474%) 9.3285E-01 397 

Simplex HMLE 3.7488E-03 (0.32919%) 10.000 (64.91228%) 3.0920E-02 95 

SCE-UA 3.7491E-03 (0.33721%) 10.003 (64.90175%) 3.0940E-02 443 

a Correlation coefficient of sediment concentration; for p = 0, no random error b True value of 3.7365E-03 and starting value of 4.25E-03 

c True value of28.5 and starting value of 42.5 * Values of Ki are multiplied by 10,000 



Table A36. Results of Kj-Kf (tc = 0.0) parameter optimization problem for p = 0.50, Equation 3. 

Parameter Estimates (% of Error from True Values) 

a .Antecedent % Search Objective b c Value of No. 

p Moisture Slope .Algorithm Function Kf Ki» Obj. Ftn. Iterations 

0.50 Dry 10 Simplex SLS 3.8820E-05 (2.17966%) 65.802 (130.88421%) 2.5991E-01 44 

SCE-UA 3.8702E-05 (2.47701%) 74.931 (162.91579%) 2.5988E-0I 486 

Simplex HMLE 3 8776E-05 (2.29054%) 65.430 (129.57895° b) 4.0110E-03 42 

SCE-UA 3.8650E-05 (2.60804° b) 74.984 (163.10175%) 4.0096E-03 472 

15 Simplex SLS 3.9513E-05 (0.43341%) 64.561 (126.52982%) 6.7175E-01 43 

SCE-UA 3.9431E-05 (0.64004°o) 74.989 (163.11930%) 6.7143E-01 489 

Simplex HMLE 3.9513E-05 (0.43341 °o) 64.561 (126.52982%) 1.0148E-02 43 

SCE-UA 3.9403E-05 (0.71060%) 74.983 (163.09825%) 1.0132E-02 419 

Wet 10 Simplex SLS 3.9192E-05 (1.24228%) 74.750 (162.28070%) 7.0308E-02 65 

SCE-UA 3.9257E-05 (1 07849%) 74.996 (163.14386%) 7.0157E-02 424 

Simplex HMLE 3.9488E-05 (0.49641%) 62.083 (117.83509%) 2.0821E-03 43 

SCE-UA 3.9281E-05 (1.01802%) 74.994 (163.13684%) 2.0739E-03 490 

15 Simplex SLS 2.5000E-05 (37.00391%) 14.950 (47.54386%) 2.4882E-01 85 

SCE-UA 2.5000E-05 (37.00391%) 10.002 (64.90526%) 2.4377E-01 392 

Simplex HMLE 2.5000E-05 (37.00391%) 14.950 (47.54386%) 7.2479E-03 80 

SCE-UA 2.5000E-05 (37.00391%) 10.011 (64.87368%) 7.1411E-03 420 

Very Wet 10 Simplex SLS 3.7892E-05 (4.51808%) 59.086 (107.31930%) 4.2353E-01 46 

SCE-UA 3.7769E-05 (4.82802%) 63.494 (122.78596%) 4.2338E-01 512 

Simplex HMJii 3.7934E-05 (4.41225%) 61.318 (115.15088%) 1.3682E-02 45 

SCE-UA 3.8243E-05 (3.63361%) 51.443 (80.50175%) 1.3642E-02 617 

15 Simplex SLS 3.9018E-05 (1.68074%) 75.000 (163.15789%) 1.2892E+00 111 

SCE-UA 3.9013E-05 (1.69334%) 74.993 (163.13333%) 1.2893E+00 468 

Simplex HMLE 3.8579E-05 (2.78695%) 75.000 (163.15789%) 4.2346E-02 125 

SCE-UA 3.8699E-05 (2.48457%) 74.999 (163.15439%) 4.2221E-02 484 

a Correlation coefficient of sediment concentration; for p = 0, no random error b Tnievalueof3.9685E-05andstartingva!ueof9.00E-05 

c True value of 28.5 and starting value of 42.5 • Values of Ki are multiplied by 10,000 
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