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ABSTRACT 

Hydraulic tomography (i.e., a sequential aquifer test) has recently been proposed 

as a method for characterizing aquifer heterogeneity. In this study a sequential inverse 

approach is developed to interpret results of hydraulic tomography. The approach uses 

an iterative geostatistical inverse method to yield the effective hydraulic conductivity of 

an aquifer, conditioned on each set of head/discharge data. To efficiently include all the 

head/discharge data sets, a sequential conditioning method is employed. 

Two-dimensional numerical experiments were conducted to investigate the 

optimal sampling scheme for the hydraulic tomography. The effects of measurement 

errors and uncertainties in statistical parameters required by the inverse model were also 

investigated. The robustness of this inverse approach was demonstrated through its 

application to a hypothetical, three-dimensional, heterogeneous aquifer. 

Two sandbox experiments were conducted to evaluate the performance of the 

sequential geostatistical inverse approach under realistic conditions. One sandbox was 

packed with layered sands to represent a stratified aquifer while the other with 

discontinuous sand bodies of different shapes and sizes to represent a more complex and 

realistic heterogeneous aquifer. The tomography was found ineffective if abundant head 

measurements were collected at closely spaced intervals in a highly stratified aquifer. 

While it was foimd beneficial when head measurements were limited and the geological 

structure was discontinuous. 

The sequential inverse approach for hydraulic tomography was extended for 

electrical resistivity tomography. Numerical experiments were conducted to demonstrate 
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the robustness of this approach for delineating the resistivity distribution in the 

subsurface and to investigate effectiveness of different sampling arrays of the ERT: the 

surface, the down-hole, and the combination of the surface and down-hole array. 

Orientation of bedding was found to dictate the effectiveness of the ERT layout. 

Samples were collected to quantify spatial variability of the resistivity-moisture 

relationship in the field. Numerical experiments then illustrated how the spatially 

varying relationship exacerbated the level of uncertainty in the interpretation of change of 

moisture content based on the estimated change in resistivity. A sequential inverse 

approach was then developed to estimate water content with less uncertainty by 

considering the spatial variability of the resistivity-moisture relationship and 

incorporating point moisture measurements and ERT data sets. 
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CHAPTER 1 INTRODUCTION 

Research Problem 

Hydrological properties of the subsurface exhibit strong spatial variability at 

various scales due to the heterogeneous nature of geological formations. Detailed and 

accurate knowledge of these heterogeneous properties plays a key role in predicting 

groundwater flow and contaminant movement in the subsurface. Consequently, 

increasing concern over soil and groundwater contamination stimulates research on 

quantitative characterization of aquifers and vadose zones. 

Direct measurement of hydraulic properties of small-scale samples at a large 

number of locations is time- consuming, labor-intensive and hence costly. To circumvent 

these difficulties and to efficiently gain information of the spatial distribution of 

hydrauUc conductivity, the geophysical tomography concept has been employed, and 

resulted in hydraulic tomography, a sequential aquifer test method. Hydraulic 

tomography can yield many useful sets of aquifer response data that can be used to 

identify the heterogeneity, however, a reliable and efficient inverse methodology is 

needed to interpret these data sets. Classical inverse methodologies such as the 

minimum-output-error based approaches are known to have many numerical difficulties, 

they also confi-ont an insurmountable computational burden when they are used to 

delineate three-dimensional aquifer heterogeneity. On the other hand, the linear 

assumption embedded in cokriging limits its application in aquifer characterization when 

the degree of aquifer heterogeneity is large. Better inverse approaches are needed to 



10 

interpret the abundant data sets from hydraulic tomography in order to reveal the aquifer 

heterogeneity at greater details. 

Similarly, electrical resistivity tomography (ERT) has been used to image the 

electrical properties of the vadose zone and the resistivity change is then used to reflect 

water content change in the vadose zone by assuming some constant empirical 

relationship between resistivity and moisture content. However, field data indicates that 

the resistivity-moisture relationship exhibits strong spatial variability. Neglecting the 

spatial variability results in misleading interpretation of water movement based on the 

resistivity change. In addition, imsaturated hydraulic conductivity is a function of water 

content instead of water content change. Thus effective characterization of the vadose 

zone requires a novel inverse methodology that can directly estimate water content wilt 

less uncertainty and less numerical difficulty by conditioning on available moisture 

measurements and ERT dates sets and accounting for the spatial variability of the 

resistivity-moisture relationship. 

Literature Review 

Characterization of Aquifer Heterogeneity: Hydraulic Tomography 

Aquifer systems are essential heterogeneous and this heterogeneity plays an 

extremely important role in flow and contaminant movement in the aquifer system. As a 

consequence, accurate predictions of water and solute distributions and movement in 

geological formations require detailed knowledge of the spatial distribution of the 

hydraulic properties of the formations (Yeh, 1992 and 1998). Conventional aquifer tests 
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(also known as pumping tests) assume aquifer homogeneity and yield effective hydraulic 

conductivity and the storage coefficient for an equivalent homogeneous aquifer. These 

hydraulic parameters are average properties of the aquifer over a large volume (Butler 

and Liu, 1993) and do not provide information on the spatial distribution of hydraulic 

conductivity within the voliune. On the other hand, measurement of hydrauhc 

conductivity of small-scale samples at a large number of locations is time consuming, 

costly, and impractical. 

To circumvent these difficulties and to efficiently characterize the spatial 

distribution of hydraulic conductivity, the tomography concept widely used in medical 

and geophysical imaging during the last two decades has recently been employed 

(Gottlieb and Dietrich, 1995; Butler et al., 1999). Specifically, fully screened wells are 

segregated into many vertical intervals using packers. Water is pumped fi"om or injected 

into an aquifer at one of the intervals to create a steady flow condition. Hydraulic head 

responses of the aquifer at other intervals are then monitored, yielding a set of 

head/discharge (or recharge) data. By sequentially pumping (or injecting) water at one 

interval and monitoring the steady-state head response at others, many head/discharge (or 

recharge) data sets are obtained. Such a sequential aquifer test is referred to as hydrauUc 

tomography. This new field method has significant advantages over traditional pumping 

tests. For instance, hydraulic tomography can provide detailed information about vertical 

and lateral pressure head responses induced by pumping at a given location. 

Furthermore, by changing the position of the pump in the well, many sets of aquifer 

responses to pumping at different locations can be obtained. Such a large number of 



data sets may minimize the non-uniqueness issue of the inverse problem and may reveal 

the details of a heterogeneous hydraulic conductivity field. 

Several researchers (Scarascia and Ponzini, 1972; Sagar et al., 1975; Giudici et 

al., 1995; and Snodgrass and Kitanidis, 1998) have investigated the use of data 

corresponding to different flow situations to improve the uniqueness of the inverse 

solution or to reduce uncertainties in the identification of flow model parameters. Until 

recently, very few researchers have investigated the use of hydraulic tomography. For 

example, Gottlieb and Dietrich (1995) proposed a method of hydraulic tomography for 

identifying the permeability distribution in a hypothetical, two-dimensional saturated soil. 

They used two boreholes to create hydraulic dipoles. The positions of source and sink 

were varied over both boreholes. Pore-water pressure changes along the vertical were 

monitored in monitoring wells at other locations. They subsequently applied a least-

squares based inverse approach to the pressure data to produce an image of the spatial 

distribution of hydraulic conductivity. Butler et al. (1999) applied this hydraulic 

tomography concept to networks of multilevel sampling wells. They developed new 

techniques for measuring drawdown data at a scale that were previously unobtainable. 

These new techniques greatly facilitate the implementation of hydraulic tomography in 

the field. 

Hydraulic tomography can yield many useful sets of secondary information, 

namely head responses, which can be used to identify heterogeneity of the aquifer. Still, 

a reliable and efficient inverse methodology is required to decipher the information so 

that a reliable image of the hydraulic conductivity field can be obtained. Classical 
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inverse methodologies are known to have many difficulties (Yeh, 1986). They also 

confront an insurmountable computational burden when they are used to estimate 

detailed hydraulic properties in three-dimensional geological formations (Kitanidis, 

1997). Consequently, few classical inverse models have been used to identify small-

scale heterogeneity in three-dimensional geological media. More importantly, the 

abundance of hydraulic head information generated by hydraulic tomography presents an 

even greater challenge for classical inverse methodologies. 

In the past few decades, cokriging has been used to estimate hydrauUc 

conductivity fields from scattered measurements of pressure head in saturated flow 

problems (Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 1984). However, 

cokriging is a linear estimator and its application is limited to mildly nonlinear systems, 

such as groundwater flow in geological formations of mild heterogeneity (variance of 

natural log of conductivity, a^ink=0.1). When the degree of aquifer heterogeneity is large 

(cy^ink>l) and the linear assumption becomes inadequate, cokriging cannot provide a good 

estimate of the conditional mean conductivity field (Yeh et al., 1996). In other words, it 

cannot take full advantage of the head information to obtain an optimal estimate of the 

hydraulic properties. 

To overcome this shortcoming, Yeh et al. (1995 and 1996), and Zhang and Yeh 

(1997) developed an iterative geostatistical technique in which a linear estimator was 

successively used to incorporate the non-linear relationship between hydraulic properties 

and pressure head. This method is referred to as a successive linear estimator (SLE). 

They demonstrated that with the same amount of information, the SLE revealed a more 
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detailed conductivity field than cokriging. Hughson and Yeh (1998 and 2000) showed 

that the SLE is computationally efficient compared to the classical inverse method. They 

extended it to the inverse problem in three-dimensional, variably saturated, 

heterogeneous porous media, which had not been done before. In their study, pressure 

head and moisture content measurements at 42 locations (7 wells x 6 depths) in a three-

dimensional porous medium were collected at three different times during an infiltration 

event. This secondary information was then used to estimate saturated hydraulic 

conductivity, Ks, a and n parameters of the Mualem-van Genuchten imsaturated 

hydraulic property model (van Genuchten, 1980) at 500 locations in the porous medium. 

In the first manuscript (Appendix A), we develop a sequential inverse technique 

for hydraulic tomography to process the large amoimt of data to characterize aquifer 

heterogeneity which is based on the SLE. While demonstrating the robustness of the 

inverse method, we also investigate the effect of monitoring intervals, ptmiping intervals, 

and the number of pumping locations on the final estimate of hydraulic conductivity. 

Guidelines for optimal design of a hydraulic tomography test are subsequently 

established. To fiirther verify our results, Monte Carlo inverse simulations are 

performed, and the effects of measurement errors and uncertainties in the statistical 

parameters required by the inverse model are investigated. Finally, an example is used to 

illustrate the effectiveness and robustness of this sequential approach for hydraulic 

tomography under three-dimensional, steady flow conditions. 

Hydraulic tomography has been tested using numerical experiments (Gottlieb and 

Dietrich, 1995; Yeh and Liu, 2000) but not laboratory or field experiments. In nimierical 
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experiments, the effects of conceptual model errors are absent because synthetic 

tomography data are generated from the same model used in the inversion. Model inputs 

are also assimied error-free. Conversely, in field experiments, the effects of conceptual 

model errors are imknown. Model inputs, such as boundary conditions, pumping rates, 

the mean, variance, and correlation scales, are always subject to uncertainty. Further, the 

pressure head/discharge data inevitably contain unknown measiu-ement errors. Field 

experiments are, thus, the most appropriate test for hydraulic tomography. 

Nevertheless, field experiments are so costly that well-controlled sandbox 

experiments are a reasonable altemative. In the second manuscript (Appendix B), we test 

the effectiveness of our sequential inverse approach (Yeh and Liu, 2000) with two 

sandbox experiments. The first experiment represents a stratified aquifer system, while 

the other represents a more complex and realistic heterogeneous aquifer. In addition, 

numerical experiments are conducted to diagnose anomalies in the inverse results from 

the sandbox experiments, and to explore conditions trader which the hydraulic 

tomography can be effective. 

Monitoring Water Movement in Vadose Zone: Electrical Resistivity Tomography 

The dc resistivity survey is an inexpensive and widely used technique for 

investigation of near surface resistivity anomalies and it recently has become popular for 

the investigation of subsurface pollution problems (NRC, 2000). In principle, it measures 

the voltage generated by transmission of current between electrodes implanted at the 

ground surface. Apparent (bulk or effective) resistivity is then calculated and used to 

interpret subsurface structures. 



The conventional resistivity survey includes vertical sounding and profiling 

(Sharma, 1997). Vertical sounding is used to provide a resistivity map as a function of 

depth. In a sounding, voltage probes are fixed at a center location in between two source 

electrodes and voltages are measured at a variety of source electrode separation distances 

(i.e., the Schlumberger array). The depth of investigation increases with increases in 

separation distances. In the classical interpretation of the sounding survey, the apparent 

resistivity for a given source electrode separation distance is determined using the voltage 

measurement and an analytical model that assumes resistivity homogeneity of the 

subsurface. Because of the homogeneity assumption, the calculated resistivity represents 

a spatially averaged resistivity value over a volume of geological media that varies with 

the distance between the source electrodes. The greater the distance between the source 

electrodes, the greater volume the apparent resistivity represents. As a result, sounding is 

most suitable for the cases where the geological formation is made of only a few layers 

with significant resistivity contrast or where a relatively uniform formation embeds some 

simple objects of resistivity distinctly different from the surrounding media. For more 

complex heterogeneity patterns, deciphering signals fi-om the survey becomes more 

difficult, subjective, non-unique and highly imcertain due to the averaging nature of the 

apparent resistivity. 

Profiling is used to detect lateral changes in resistivity. In profiling, the spacing 

between current electrodes and between two voltage probes is fixed, and the relative 

position of the electrodes and probes array is also fixed in space, but the entire array is 

moved laterally (i.e., the Wenner array). At a given array position, measurements of 
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current and voltage are used to determine the apparent resistivity, by using an analytical 

formula that assumes subsurface homogeneity. Again, the estimated apparent resistivity 

is a volume-averaged property. As a consequence, the estimated resistivity field is 

generally very smooth unless a distinct resistivity anomaly exists in the subsurface. 

Because the homogeneity assumption is embedded in the formulas for calculating 

apparent resistivity and the potential field is smooth due to its highly diffiisive nature, 

conventional interpretations of resistivity survey data have been virtually ineffective in 

environmental hydrology or pollution applications, where resistivity anomalies are subtle, 

complex, and multi-scale. To overcome these difficulties, contemporary resistivity 

surveys collect extensive current and electrical potential data sets in multi-dimensions. 

Without assuming subsurface homogeneity, a mathematical computer model is employed 

to invert the data sets to estimate the resistivity field, using the minimum output error 

(MOE) criterion (e.g., Ellis and Oldenburg, 1994; Li and Oldenburg, 1994; Zhang et al., 

1995; and Daily et al., 1992). However, the general imiqueness and resolution of the 

three-dimensional resistivity inversion have not been investigated sufficiently thus far 

(NRC, 2000). 

While the physical process is different, the governing equation for electrical 

currents and potential fields created in the resistivity siuvey is analogous to that for 

steady flow in saturated porous media. The mathematical solution to the inversion of a 

resistivity survey is, thus, similar to that of a groundwater hydrologjcal survey. 

In the third manuscript (Appendix C), we extend the inverse methodology 

developed by Yeh and Liu (2000) to the three-dimensional, electrical resistivity 
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tomography (ERT) problem. This method allows the use of prior information on the 

resistivity fabric, and point measurements of voltage and resistivity, if any, to be included 

in the interpretation of the result of the ERT. Numerical simulations are carried out to 

illustrate the robustness of the approach and discuss pros and cons of surface and down-

hole resistivity surveys. We sampled twenty-seven cores in a field, conducted laboratory 

measurements to determine the relationship between resistivity and moisture content of 

the core samples, and analyzed the spatial variability of the resistivity-moisture content 

relationship. Subsequently, impacts of the spatial variability on the estimated changes in 

moisture content in the vadose zone, based on ERT, are explored and discussed. 

As discussed above, the ERT survey has found its way into subsurface 

hydrological applications. This is attributed to the fact that resistivity can be related to 

water content with some empirical relationships, i.e. the power law (Knight, 1991). 

During an infiltration event, water content of geological media is generally the only 

element that undergoes dramatic changes. Therefore, tracking the resistivity difference at 

different time has often been regarded as a useful tool to detect the temporal changes of 

water content in the vadose zone (Daily et al., 1992). To do this, current/potential data 

sets are collected using ERT surveys before and after infiltration. With the help of 

inverse models, the images of resistivity distribution before and after infiltration are 

obtained and then the change in resistivity is computed accordingly. By assuming a 

constant deterministic relationship between resistivity and water content, the change in 

resistivity is converted to the change in water content. 
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However, the resistivity-moisture relationship exhibits strong spatial variability in 

the field (Yeh, et al., 2001). Therefore, ignoring the spatial variability while using the 

simplified assumption exacerbates the level of imcertainty in the interpretation of change 

of moisture content based on the estimated change in resistivity. Regardless of the 

uncertainties in the interpretation of the change of moisture content, this change in 

moisture content only provides qualitative information of water movement in the vadose 

zone. The exact water content distribution remains unknown. Since unsaturated 

hydraulic conductivity is a function of water content instead of water content change, the 

converted change of moisture content can not be directly used in hydrological inversions. 

A novel inverse methodology that considers the spatial variability of the resistivity-

moisture relationship and is able to directly estimate the water content distribution with 

less uncertainty is needed for better characterization of the vadose zone. 

In the fourth manuscript (appendix D), we adopt the sequential inverse approach 

for hydraulic tomography (Yeh and Liu, 2000) to the ERT survey. In this method, we do 

not simply estimate resistivities, instead, we simultaneously estimate po,0 and m, which 

are functions of resistivity. This method allows processing of a large number of 

ciurent/voltage data yielded by ERT survey, incorporates the point measurements of 

moisture content, and estimates the actual water content distribution. More importantly, 

this model considers the spatial variabihty of the resistivity-water content relationship. 

Three-dimensional numerical experiments are carried out to illustrate the robustness of 

our sequential inverse approach in delineating water content distribution at time of 

50,000 minutes after an infiltration event. Meanwhile, change in resistivity due to 
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infiltration is also obtained to track the change of moisture content. The converted 

change in water content is then compared to the true change in water content, thus to 

evaluate the effect of the spatial variability of the resistivity-moisture relationship. 

Explanation of Dissertation Format 
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the infiltration site and the project. 
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CHAPTER 2 PRESENT STUDY 

The approaches, results and conclusions of this study are presented in the four 

manuscripts appended to this dissertation. The following is a summary of the most 

important findings in this dissertation, which are contributions to the imderstanding of 

subsurface heterogeneity characterization. 

Summary 

Characterization of subsurface heterogeneity is of fundamental importance to the 

study of groimdwater flow and contaminant transport in aquifers and vadose zones. 

Conventional aquifer test methods assume aquifer homogeneity and yield effective 

hydraulic conductivity and the storage coefficient for an equivalent homogeneous 

aquifer. These hydraulic parameters are average properties of the aquifer over a large 

voltmie and do not provide information on the spatial distribution of the hydraulic 

conductivity within the volume. On the other hand, measurement of hydraulic 

conductivity of small-scale samples at a large number of locations is time-consuming, 

costly and therefore impractical. 

Since pressure head measurements are less expensive and can be obtained with 

relative ease, a cost-effective methodology is needed to yield abundant pressure head data 

sets to help decipher aquifer heterogeneity. Hydraulic tomography is such an effective 

tool. During a hydraulic tomography experiment, water is sequentially pumped firom or 

injected into an aquifer at different vertical portions or intervals of the aquifer. During 
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each pumping or injection, hydraulic head responses of the aquifer at other intervals are 

monitored, yielding a set of head/discharge (or recharge) data. By sequentially pumping 

(or injecting) water at one interval and monitoring the steady-state head responses at 

others, many head/discharge (recharge) data sets are obtained. 

In the present study, a sequential inverse approach is developed to interpret results 

of hydraulic tomography. The approach uses an iterative geostatistical inverse method to 

yield the effective hydraulic conductivity of an aquifer, conditioned on each set of 

head/discharge data. To efficiently include all the head/discharge data sets, a sequential 

conditioning method is employed. It uses the estimated hydraulic conductivity field and 

covariances, conditioned on the previous head/discharge data set, as prior information for 

the next stage of estimations using a new set of pumping data. 

The proposed sequential inverse approach has several advantages. It incorporates 

the spatial structure of hydraulic conductivity through its input parameters such as mean, 

variance and correlation structure; it incorporates point measurements such as 

conductivity measurements and pressure head measurements and preserves these 

measurement values during the inversion and thus tailors our estimates based on these 

site-specific information; it considers the non-linear relationship between hydraulic 

conductivity and pressure head and manages to take full advantage of the secondary 

information (pressure head); it is able to process abundant data sets yielded by hydraulic 

tomography since it processes pressure data sets in a sequential manner. Results of 

numerical experiments show that the sequential inverse approach, using data obtained by 

hydraulic tomography, is a promising tool for characterizing aquifer heterogeneity. By 



sequentially using the secondary information, the size of the covariance matrix in our 

inverse approach remains small so that the matrix equations can be solved with ease. 

Thus, inversion of die large amount of secondary information collected during hydraulic 

tomography becomes feasible. Compared to the results yielded from the Monte Carlo 

simulations, the residual variance produced from our sequential approach reflects the 

pattem of the conditional variance. 

Results of our numerical experiments also show that the hydraulic tomography 

can be most effective if the horizontal separation distance between wells is set to be half 

of the horizontal correlation scale of hydraulic conductivity. The vertical interval 

between two pressure monitoring locations should be no more than half of the vertical 

correlation scale of hydraulic conductivity. The optimal number of pumping locations is 

equal to the ratio of the aquifer depth to the vertical correlation scale of hydraulic 

conductivity. The pumping rate has no effect on the estimate. 

Our analysis shows that the uncertainty in the input variance for our inverse 

model has no influence on the estimates. Similarly, uncertainty in correlation scales of 

hydraulic conductivity has no significant effect on the estimate imless the correlation 

scales are extremely under-estimated or over-estimated. Abundant secondary 

information (such as pressure head) in space can greatly reduce the effect caused by 

inaccurate knowledge of the correlation structure. If there are large measurement errors 

associated with pressure head, our inverse approach yields a smoother estimate than that 

obtained from the error-free data, reflecting the fact that less information is extracted 
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from the measurements. Consequently, accurate measurements of the secondary 

information (i.e. pressure head) are needed to make hydraulic tomography successful. 

Hydraulic tomography appears to be a promising field technique for providing 

abundant secondary information for characterizing aquifer heterogeneity. Using our 

sequential inverse model, hydraulic tomography can reveal more detailed aquifer 

heterogeneity than classical aquifer tests. 

In numerical experiments, effects of conceptual model errors are absent because 

synthetic tomography data are generated from the same model used in the inversion. 

Model inputs are also assimied error-free. Conversely, in field experiments, the effects of 

conceptual model errors are imknown. Model inputs, such as boimdary conditions, 

pumping rates, the mean, variance, and correlation scales, are always subject to 

uncertainty. Further, the pressure head/discharge data inevitably contain unknown 

measurement errors. Field experiments are, thus, the most appropriate test for hydraulic 

tomography. 

Nevertheless, field experiments are so costly that well-controlled sandbox 

experiments are a reasonable alternative. In the present study, we tested the effectiveness 

of our sequential inverse approach under realistic conditions with two sandbox 

experiments. One sandbox was packed with layers of sands to represent a stratified 

aquifer while the other with discontinuous sand bodies of different shapes and sizes to 

represent a more complex and realistic heterogeneous aquifer. Parallel to the sandbox 

experiments, numerical experiments were conducted to assess the effects of measurement 



errors and uncertainties associated with laboratory data, and to diagnose the hydrauHc 

conductivity estimates obtained from sandbox experiments. 

For both sandbox experiments, our inverse model was able to reproduce the major 

heterogeneous patterns. The results show that our approach works well under realistic 

conditions, in spite of measurement errors and uncertainties associated with the pressure 

head/discharge data sets and other input parameters required by our model. Our analyses 

also indicate that hydraulic tomography does not improve the conductivity estimate 

significantly if abundant head measurements are available. This is especially true for a 

stratified aquifer system represented in sandbox 1. Hydraulic tomography can be useful 

and effective when pressure head measurements are not available at a large number of 

sample locations, and when aquifer heterogeneity exhibits highly discontinuous and non

uniform nature as presented in sandbox 2. 

Our well-controlled sandbox experiments tested the effectiveness of our inverse 

method for realistic problems where measurements are inherently imperfect. Our 

successful laboratory verifications of the inverse approach is a step towards applications 

of our inverse model to field-scale problems. 

A resistivity survey is an inexpensive and widely used technique for investigation 

of near surface resistivity anomalies and it recently has been popular for the investigation 

of the subsurface pollution problems. In addition, resistivity is related to moisture 

content through some empirical relationship, for instance, the power law. During an 

infiltration event, water content of geological media is generally the only element that 

undergoes dramatic changes. Therefore, tracking the change in resistivity has often been 



regarded as a useful means to delineate the change of the water content in the vadose 

zone. 

While the physical process is different, the governing equation for electrical 

currents and potential fields created in the resistivity survey is analogous to that for 

steady flow in saturated porous media. The mathematical solution for the inversion of a 

resistivity is, thus, similar to that of a groundwater hydrological survey. In the present 

study, the inverse methodology for hydraulic tomography is extended to the three-

dimensional, electrical resistivity tomography (ERT). This sequential inverse approach is 

computationally efficient, allows fine-grid discretization of the solution domain, and 

permits sequential inclusion of different data sets. Further more, the conditional variance 

in the inverse model quantifies uncertainty in the estimate. 

Through numerical experiments based on our inverse approach, we showed that 

geological bedding dictates effectiveness of the sampling array of ERT: sampling 

perpendicular to bedding (down-hole array) increase resolution of the resistivity estimate 

due to the long correlation of resistivity in the direction parallel the bedding. On the 

other hand, the long correlation scale of resistivity along the bedding and the short 

correlation scale of resistivity perpendicular to bedding restrict the effectiveness of the 

surface array (sampling parallel to bedding) to a shallow depth. 

Conducting ERT surveys before and after infiltration events and then applying 

the sequential inverse approach to the ERT data sets, we can obtain the detailed 

resistivity distributions before and after infiltration. The resistivity change is then 

computed accordingly and used to interpret water movement in the vadose zone by 
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assuming a constant relationship between resistivity change and water content change. 

However, great variability of the resistivity-moisture relationship was foxmd to exist in 

our field samples. Both the theoretical analysis and num.erical experiments suggested 

that such a spatially varying relationship exacerbates the level of uncertainty in the 

interpretation of change of moisture content based on the estimated change in resistivity. 

In addition to the great uncertainty resulted from the interpretation of the 

estimated change in resistivity, the change of water content only provides qualitative 

information of the water movement in the vadose zone, the actual water content 

distribution remains unknown. Since the unsaturated hydraulic conductivity is a function 

of water content instead of water content change, the converted change of water content 

cannot be directly used by hydraulic inversions to better characterize the vadose zone. 

Therefore, in the present study, a sequential conditioning approach that considers the 

spatial variability of the resistivity-moisture relationship, incorporates point moisture 

measurements, and efficiently utilizes the large number of voltage data sets yielded by 

ERT is developed to directly estimate the water content distribution. By applying our 

inverse approach to the ERT surveys condcuted at different times, the 3-D development 

of water plume in the vdose zone with time can be monitored with less imcertainty, and 

this information is significantly beneficial to the quantatitive characterization of the 

vadose zone. 

Concluding Remarks of the dissertation 
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This study makes several contributions to the methods for quantitative 

characterization of aquifer hetrogeneity and to the cost-effective and more accurate 

method of monitoring water movement in the vadose zone. These new findings have 

applications to advanced site characterization and enhanced remediation of contaminated 

sites where heterogeneity is present. 

Hydraulic tomography is a cost-effective tool that can yield abundant pressure 

head measurements that give the site-specific information of aquifer systems. The 

sequential inverse approach makes it mathematically feasible and computationally 

efficient to process such a large number of data sets and yields a greater detail of 

hydraulic conductivity distribution for a three-dimensional aquifer. Numerical 

experiments demonstrate the robustness of the inverse approach, establish the guidelines 

of optimal network design. Sandbox experiments verify the effectiveness of the 

sequential inverse approach imder realistic conditions where all the input data of the 

inverse model are inherently imperfect. These successful laboratory verifications of the 

inverse approach is a step towards applications of our inverse model to field-scale 

problems. 

Electrical resistivity surveys have been widely used to detect the subsurface 

resistivity anomalies and has recently become popular for the investigation of water 

movement in vadose zone. The sequential inverse approach for hydraulic tomography is 

adapted for interpreting electrical resistivity tomography with higher efficiency and less 

uncertainty. However, the interpretation of water movement using estimated resistivity 

change involves great uncertainty by assuming a constant resistivity-moisture content 
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relationship. Our theoretical analysis and field data reveal that the resistivity-moisture 

content relationship exhibits strong spatial variability. Neglecting the spatial variability 

may result in a misleading interpretation of water movement in vadose zone. The 

sequential inverse approach for electrical resistivity tomography is extended to directly 

estimate water content distribution. This inverse model considers the spatial variability 

of the resistivity-moisture content relationship, incorporates point moisture content 

measurements and resistivity data and quantifies the uncertainty associated with our 

estimate through conditional variance. Our inverse model provides valuable information, 

the water content distribution, for hydraulic inversion in vadose zone and thus makes it 

possible to enhance the vadose zone characterization by integrating geological, 

hydrological and geophysical data sets. 
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Abstract 

Hydraulic tomography (i.e., a sequential aquifer test) has recently been proposed 

as a method for characterizing aquifer heterogeneity. During a hydraulic tomography 

experiment, water is sequentially pumped from or injected into an aquifer at different 

vertical portions or intervals of the aquifer. During each pumping or injection, hydraulic 

head responses of the aquifer at other intervals are monitored, yielding a set of 

head/discharge (or recharge) data. By sequentially pumping (or injecting) water at one 

interval and monitoring the steady-state head responses at others, many head/discharge 

(recharge) data sets are obtained. 

In this study a sequential inverse approach is developed to interpret results of 

hydraulic tomography. The approach uses an iterative geostatistical inverse method to 

yield the effective hydraulic conductivity of an aquifer, conditioned on each set of 

head/discharge data. To efficiently include all the head/discharge data sets, a sequential 

conditioning method is employed. It uses the estimated hydraulic conductivity field and 

covariances, conditioned on the previous head/discharge data set, as prior information for 

next estimations using a new set of pumping data. 

This inverse approach was first applied to hypothetical, two-dimensional, 

heterogeneous aquifers to investigate the optimal sampling scheme for the hydraulic 

tomography, i.e., the design of well spacing, pumping and monitoring locations. The 

effects of measurement errors and uncertainties in statistical parameters required by the 

inverse model were also investigated. Finally, the robustness of this inverse approach 

was demonstrated through its application to a hypothetical, three-dimensional, 

heterogeneous aquifer. 
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1. Introduction 

Accurate predictions of water and solute distributions and movement in 

geological formations require detailed knowledge of the spatial distribution of the 

hydraulic properties of the formations (Yeh, 1992 and 1998). Conventional aquifer tests 

(also known as pumping tests) assume aquifer homogeneity and yield effective hydraulic 

conductivity and the storage coefficient for an equivalent homogeneous aquifer. These 

hydraulic parameters are average properties of the aquifer over a large volume (Butler 

and Liu, 1993) and do not provide information of spatial distribution of the hydraulic 

conductivity within the volume. On the other hand, measurement of hydraulic 

conductivity of small-scale samples at a large number of locations is time consuming, 

costly, and impractical. 

To circumvent these difficulties and to efficiently gain information of the spatial 

distribution of hydraulic conductivity, the tomography concept widely used in medical 

and geophysical imaging during the last two decades has recently been employed 

(Gottlieb and Dietrich, 1995; Butler et al., 1999). Specifically, fully screened wells are 

segregated into many vertical intervals using packers. Water is pumped fi-om or injected 

into an aquifer at one of the intervals to create a steady flow condition. Hydraulic head 

responses of the aquifer at other intervals are then monitored, yielding a set of 

head/discharge (or recharge) data. By sequentially pumping (or injecting) water at one 

interval and monitoring the steady-state head response at others, many head/discharge (or 

recharge) data sets are obtained. Such a sequential aquifer test is referred to as hydrauUc 
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tomography. This new field method has significant advantages over traditional pumping 

tests. For instance, hydraulic tomography can provide detailed information about vertical 

and lateral pressure head responses induced by pumping at a given location. 

Furthermore, by changing the position of the pump in the well, many sets of aquifer 

responses to pumping at different locations can be obtained. Such a large number of 

data sets may reduce the non-uniqueness issue of the inverse problem and may reveal the 

details of a heterogeneous hydraulic conductivity field. 

Several researchers have recently investigated this idea of hydraulic tomography. 

For example, Gottlieb and Dietrich (1995) proposed a method of hydraulic tomography 

for identifying the permeability distribution in a hypothetical, two-dimensional saturated 

soil. In their study, they used two boreholes to create hydraulic dipoles. The positions 

of source and sink are varied over both boreholes. Pore-water pressure changes along the 

vertical were monitored in monitoring wells at other locations. They subsequently 

applied a least-squares based inverse approach to the pressure data to produce an image 

of the spatial distribution of hydraulic conductivity. Butler et al. (1999) applied this 

hydraulic tomography concept to networks of multilevel sampling wells. They developed 

new techniques for measuring drawdown data at a scale that had previously been 

unobtainable. These new techniques greatly facilitate the implementation of hydraulic 

tomography in the field. 

Hydraulic tomography can yield many useful sets of secondary information, 

namely head responses, which can be used to identify heterogeneity of the aquifer. Still, 
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a reliable and efficient inverse methodology is required to decipher the information so 

that a rehable image of the hydraulic conductivity field can be obtained. Classical 

inverse methodologies are known to have many difficulties (Yeh, 1986). They also 

confront an insurmountable computational burden when they are appUed to estimate 

detailed hydraulic properties in three-dimensional geological formations (Kitanidis, 

1997). Consequently, few classical inverse models have been applied to identify small-

scale heterogeneity in three-dimensional geological media. More importantly, the 

abundance of hydraulic head information generated by hydraulic tomography presents an 

even greater challenge for the classical inverse methodologies. 

In the past few decades, cokriging has been used to estimate hydraulic 

conductivity fields from scattered measurements of pressure head in saturated flow 

problems (Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 1984). However, 

cokriging is a linear estimator and its application is limited to mildly nonlinear systems, 

such as groundwater flow in geological formations of mild heterogeneity (variance of 

natural log of conductivity, a^ink=0.1). When the degree of aquifer heterogeneity is large 

(c?^ink>l) and the linear assumption becomes inadequate, cokriging cannot provide a good 

estimate of the conditional mean conductivity field (Yeh et al., 1996). In other words, it 

cannot take frill advantage of the head information to obtain an optimal estimate of the 

hydraulic properties. 

To overcome this shortcoming, Yeh et al. (1995 and 1996), and Zhang and Yeh 

(1997) developed an iterative geostatistical technique in which a linear estimator was 

used successively to incorporate the non-linear relationship between hydraulic properties 



and pressure head. This method is referred to as a successive linear estimator (SLE). 

They demonstrated that with the same amount of information, the SLE revealed a more 

detailed conductivity field than cokriging. Hughson and Yeh (1998 and 2000) showed 

that the SLE is computationally efficient compared to the classical inverse method. They 

extended it to the inverse problem in three-dimensional, variably saturated, 

heterogeneous porous media, which had not been attempted before. In their study, 

pressure head and moisture content measurements at 42 locations (7 wells x 6 depths) in 

a three-dimensional porous medium were collected at three different times during an 

infiltration event. This secondary information was then used to estimate saturated 

hydraulic conductivity, Ks, and a parameter of the Mualem-van Genuchten unsaturated 

hydraulic property model (van Genuchten, 1980) at 500 locations in the porous medium. 

In this paper, based on the SLE we develop a sequential inverse technique for 

hydraulic tomography to process the large amoimt of data to characterize aquifer 

heterogeneity. While demonstrating the robustness of the inverse method, we also 

investigate the effect of monitoring intervals, pumping intervals, and the nimiber of 

pumping locations on the final estimate of hydraulic conductivity. Guidelines for optimal 

design of a hydraulic tomography test are subsequently established. To further verify our 

results, Monte Carlo inverse simulations are performed, and the effects of measurement 

errors and imcertainties in statistical parameters required by the inverse model are 

investigated. Finally, an example is used to illustrate effectiveness and robustness of this 

sequential approach for hydraulic tomography under three-dimensional, steady flow 
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2. Methodology 

2.1. Equation of flow in three-dimensional saturated media: 

In this study, we assume that the steady-state flow field, created by the hydraulic 

tomography in three-dimensional, saturated, heterogeneous, porous media can be 

described by the following equation: 

V«(^(x)V^z>)+0(x) = 0 (1) 

with boundary conditions 

and iKix)V^).nl^=q (2) 

where (j) is total head [m], x is the location vector (x ={xi, x^, xs}, [m]), and xs represents 

the vertical coordinate and is positive upward), Q is the pumping rate [m /hr- m ] at the 

selected interval during the tomography experiment, and K(x) is the saturated hydraulic 

conductivity field in [m/hr]. In (2), prescribed total head on the Dirichlet boundary, Fi, is 

denoted by [m]. Specified flux, q in [m/hr], is given on the Neumann boundary 

conditions, r2, and k is a unit vector normal to the union of Fi and F2. 

2.2. Sequential inverse algorithm: 

To deal with aquifer heterogeneity, the natural log of hydraulic conductivity, 

lnK(x), of an aquifer is treated as a stationary stochastic process with an unconditional 

mean, <lnK>=F (< > denotes the expected value) and the unconditional perturbation,/ 

The corresponding steady hydraulic head distribution due to pumping in an interval in the 
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hydraulic tomography is then presented by ^x)-H (x)+ h (x), where H=<^ and h is the 

unconditional head perturbation. Suppose that we have used well-log data and core 

samples to determine conductivity values, y/*= (InKi* - F) where i=l, 2,.. .rif (we will 

refer to these data sets as primary information). Additionally, we have estimated the 

mean and correlation structure of the conductivity field. Also assume that, during a 

hydraulic tomography experiment, we have collected m sets of observed head values, 

where j =nfrl, nfrl, ... tif+m x during m sequential pumping tests. These head 

data sets are referred to as secondary information. We then seek an inverse model that 

can produce head and conductivity fields that preserve the observed head and 

conductivity values at sample locations, and satisfy their imderlying statistical properties 

(i.e., mean and covariance, etc.) and the goveming flow equation. In the conditional 

probability concept, such a head or conductivity field is a conditional realization of (j) or 

InK field among many .possible realizations of the ensemble. Consequently, a 

conditional conductivity field can be expressed as the sum of conditional mean 

conductivity and its conditional perturbation, (x)= <Kc (x)> + kc (x). Similarly, the 

conditional head field can be written as <pc =<<j>c (x)> +hc (x) (the subscript c denotes 

conditional). While many possible realizations of such conditional InK and <(> fields 

exist, the conditional mean fields, i.e., <Kc (x)> and <<j>c (x)>, are xmique. One way to 

derive these conditional mean fields is to solve the inverse problem in terms of the 

conditional mean flow equation. The conditional mean equation can be formulated by 

substituting the conditional stochastic variables into the goveming groundwater flow 
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equation (1) and taking the expected value. The conditional mean flow equation then 

takes the form: 

^•[<KJx)>V< ̂ /x) >7 + < V .[K(x)Vhc(x)] > +Q(x) = 0 (3) 

We assume the pumping rate Q(x) is deterministic. Notice that the true conditional mean 

K and <j) fields do not satisfy the continuity equation (3) unless the second term in (3) is 

zero. The second term, <V-(k^^ ^c)>, becomes zero only under two conditions: 1) all the 

conductivity values in the aquifer are specified (i.e., kc (x)= 0); or 2) all the head values in 

the domain are known (measured) so that he (x) is zero everywhere. In practice, these 

two conditions will never be met and we are currently unaware of a means by which to 

correctly evaluate this term. Accordingly, we will assimie that this term is proportional to 

the conditional mean gradient such that we can rewrite the mean equation as: 

V •[<K^(x) > V < (j>Jx) >] + Q(x) = 0 (4) 

This conditional mean equation has the same form as (1) but it is expressed in terms of 

the conditional effective conductivity and conditional mean hydrauhc head field. The 

conditional effective conductivity, <Keff>, is a parameter that combines the conditional 

mean conductivity <Kc> and the ratio of the second term to the conditional mean 

gradient. 

Based on the concept of conditional mean equation, we essentially seek an inverse 

approach to derive the conditional effective hydrauhc conductivity that will produce a 
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conditional mean head field in (4). To do this, we used the SLE, which starts with the 

classical cokriging technique using observed fi* and hj* collected in one pumping test in 

the tomography to construct a cokriged, mean-removed log conductivity map. That is, 

n / nf^nh 
fk (xo) = ̂  A/o fi (Xi) "f" X ^jo h'j (Xj) (5) 

i=I 

where/t^W is the cokriged/value at location XQ. Then, conductivity Kj^x^ becomes 

exp [F+fk(xo)]. 2/0 and /jjo are the cokriging weights associated with xo , which can be 

evaluated as follows: 

"f nf*ni, 
^  . 2 / 0 R f f ( X f , X j ) ^  ,  M j o R f i t ( ^ c y X j )  R f f ( X o ' X t )  
/=/ j=nr-' 

nf nf*nh 
^hoRhf(x(,Xi)+ ^ MjoRhh(x(,Xj) = Rhf(xo'X() ^ = nf + l,nf + 2,...,nf + nh 
1=1 j=nf+I 

where Rjf, Rhh, and R/h , are covariances of/and h, and the cross-covariance off and h, 

respectively. The covariance Rhh, and the cross-covariance Rjh in (6) are derived from the 

first-order numerical approximation (similar to equations (9) - (11)) because of its 

flexibility for cases that involve bounded domains and nonstationary problems. 

As mentioned in introduction, the information of hydraulic head may not be fiilly 

utilized because of the nonlinear relationship between f and h and the linear assumption 

embedded in cokriging. To circumvent this problem, a successive linear estimator is 

used. That is. 
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yT"(xo) = y7(xo)+ "T co%[(fj(xj)-<t>J(xj)] (7) 
J=nr' 

where a^o is the weighting coefficient for the estimate at location Xo with respect to the 

head measurement at location xj , and r is the iteration index, y'c' ^ estimate of the 

conditional mean of InK, which is equal to the cokriged log conductivity field,_/* + F, at r 

=0. The residual about the mean estimate at an iteration r is jv '^(i.e., y ''=lnK - YC'' )• ^ 

(7), is the head at the location of the solution to (4) at iteration r and is the 

observed head at location j (i.e., (f)*j = Hj + hj*). The values of ofs are determined by 

solving the following system of equations: 

nf+ni, 
"YJ 0}%£'hh(xc , Xj) + OSn^£Z(xo ' Xe) ^ = nf +L nf + 2,...,nf +nk (8) 

j=nf*I 

where Shh and are the error covariance (or conditional covariance function) and error 

cross-covariance (or conditional cross-covariance), respectively, at each iteration. ^ is a 

stabilizing term and is an identity matrix. During the iteration, the stabilizing term is 

added to the diagonal terms of the left-hand side matrix of equation (8) to numerically 

condition the matrix, and thus to assure a stable solution. A larger term can result in a 

slower convergence rate, and a smaller 6 value may lead to nimierical instability. In our 

approach, this stabihzing term is determined dynamically as the product of a constant 

weighting factor and the maximimi value of the diagonal terms of Shh at each iteration. 

The solution to (8) requires knowledge of Shy and Shh, which is approximated at 

each iteration. Based on the first-order analysis for a finite element groimdwater flow 
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model (Dettinger and Wilson, 1981), hydraulic head at the iteration can be written as a 

first-order Taylor series: 

+k"=Gc?:"+y'" > Gff;')+ 
olnK 

„ y'" (9) 
Yc 

where G(Yc') represents the resulting head of the conditional mean equation (4) 

evaluated with parameters y'r' . The first-order approximation of the residual h!''^ can then 

be written as 

«_8G(y2) 
dlnK 

where / can be evaluated using an adjoint state sensitivity method (Sykes et al., 1985; 

= (10) 
Y c  

Sun and Yeh, 1992; Li and Yeh,1998) subject to boundary conditions. Using (11), we 

then derive the approximate covariance of ĥ ''̂  and cross-covariances between/'̂  and ĥ ''K 

.W= jf" 
(11) 

sU = f^s%J 

Jr) — 
&hy ^yy 

where J is the sensitivity matrix of Uh x N, and superscript T stands for the transpose. % 

is the covariance of;;, which is given by 

n f tf+ni, 
S\y( Xo » Xk) Xo * Xk) Xi r Xk) ~ ^ ^jQRfh(Xj * Xk) (1^) 

i=I j=n f*I 

at iteration r  =  0 ,  where k  =  1 ,  2 , N ,  and A  and // are cokriging coefficients. Equation 

(12) is the cokriging variance if Xo=Xk. For r>l, the covariances are evaluated according 

to 

n/*nh 
£%"(xo , Xk ) = £%(Xo > Xk )~ /I' 0}h£%(^i > Xk) (13) 



These covariances are approximate conditional covariances. The accuracy of this 

approximation was investigated by Hanna and Yeh (1998) and will be discussed in 

section 5. 

After updating Yc (x), the mean flow equation (4) is solved again with the newly 

updated Yc (x) for a new head field, (p. Then, the change of q/ (the variance of the 

estimated conductivity field) and the change of the biggest head misfit among all the 

monitoring locations between two successive iterations are evaluated. If both changes are 

smaller than prescribed tolerances, the iteration stops. If not, new % and £hh, are 

evaluated using (11). Equation (8) is then solved to obtain a new set of weights which are 

used in (7) with (4^* - to obtain a new estimate of Yc (x). 

The above discussion describes the SLE for only one set of primary and 

secondary information during a hydraulic tomography experiment. This algorithm can 

also simultaneously include all of the head data collected during all the pumping 

operations in the sequence. Nevertheless, the system of equations in (6) and (8) can 

become extremely large and ill conditioned, and stable solutions to the equations can 

become difficult to obtain (Hughson and Yeh, 2000). 

To avoid this problem, the head data sets are used sequentially. Specifically, our 

method starts the iterative process with the available conductivity measurements and the 

head data set collected from one of the pumping operations. Once the estimated field 

converges to the given criteria, the newly estimated conductivity field, is the 

effective conductivity conditioned on head data due to pumping at the first location, and 

the residual conductivity covariance is the corresponding conditional conductivity 
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covariance. Subsequently, the conditional effective conductivity is used to evaluate the 

conditional mean head and sensitivity matrix, associated with pumping at the next 

location. Based on (11), the sensitivity matrix in conjunction with the conditional 

conductivity covariance then yields the head covariance and cross-covariance of head and 

conductivity that reflect pumping at the next location, which are subsequently employed 

in (8) to derive the new weights (Li and Yeh, 1999). With the conditional mean heads, 

new weights, and the observed heads, equation (7) yields the conductivity estimate, 

representing the first estimate based on the information from the pumping at the new 

location. The iterative process is then employed to include the nonlinear relationship 

between head and conductivity. The same procedure is used for the next pumping 

location. In essence, our sequential approach uses the estimated hydraulic conductivity 

field and covariances, conditioned on previous sets of head measurements, as prior 

information for the next estimation based on a new set of pumping data. It continues 

until all the data sets are fully utilized. Such a sequential approach allows accumulation 

of high-density secondary information obtained from hydraulic tomography, while 

maintaining the covariance matrix at a manageable size that can be solved with the least 

numerical difficulties. Vargas-Guzman and Yeh (1999) provided a theoretical proof to 

show that such a sequential approach is identical to the simultaneous approach for linear 

systems. 
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3. Design Criteria for Hydraulic Tomography 

The design of the monitoring network, the piimping location, the number of 

pumping tests, and the pumping rate can influence the effectiveness of hydraulic 

tomography. In this section, the "optimum" design of hydraulic tomography is 

investigated by applying our sequential geostatistical inverse model to a two-

dimensional, vertical, hypothetical aquifer. The hydraulic tomography experiment 

considered consists of two fully screened wells, separated into many vertical intervals by 

packers, in a confined aquifer. Water is pumped from the aquifer at one of the vertical 

intervals and after steady-state flow is established, head responses of the aquifer are 

monitored at the other intervals. The same procedure is then repeated at different 

pumping locations. 

3.1. Aquifer description and evaluation criteria: 

The hypothetical confined aquifer was assumed to be 20 m x 20 m, and was 

discretized into 400 elements of one meter square. Each element was assigned a 

conductivity value using a random field generator (Gutjahr, 1989). This generated 

conductivity field had a geometric mean of 0.44 m/hr and an exponential correlation 

structure with a variance of 0.63 for InK. The correlation structure was anisotropic: a 

horizontal correlation scale of 12 m and a vertical correlation scale of 4 m are used. The 

left and right sides of the aquifer were constant head boimdaries (with a prescribed 

hydraulic head of 80 m), while the top and the bottom sides were set to be no-flux 

boundaries. 
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The performance of each network design was evaluated using the average 

absolute error norm, LI and the mean square error norm, L2, which are defined as 

follows: 

where fi and represent the true and estimated perturbation of the log transformed 

conductivity, respectively, i indicates the element number and n is the total number of 

elements. The smaller the LI and L2 values are, the better the estimate is. 

Conditional variance of estimated conductivity, Sff(Xo,Xg) (see equations 12 and 

13), is also used to evaluate the performance of the network design. The smaller the 

variance is, the more accurate the estimate. If the value of conductivity at a location is 

known exactly, the conditional variance at that location is zero. 

3.2. Optimal monitoring network: 

One factor that must be considered during the design of a hydraulic tomography 

experiment is the separation distance of the two wells and the interval of packer 

placements within the well. To address this issue, the first well in the numerical 

experiments was fixed at one location in the aquifer (x = 13.5 m, x is the horizontal 

coordinate) and the second well was located at various distances to create different 

configurations. Subsequently, many monitoring network designs using different 

combinations of well separation distances and packer intervals were examined. For each 

monitoring network design, a steady state flow was established by ptunping at the fixed 

point (13.5 m, 13.5 m) and at a constant rate of 20 m^/hr. The aquifer head values 

(14) 
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collected at each monitoring network were then used with our inverse model to estimate 

the hydraulic conductivity field. 

Effects of horizontal well spacing and vertical packer intervals are shown in 

Figures la and b, where the contour maps of LI and L2 for different values of Ax /A^, and 

Az./?l: are plotted. The correlation scales in the x direction and the z direction are denoted 

by and Ax. is the separation distance between the two wells, and Az is the vertical 

distance between neighboring packers. The "optimal" horizontal and vertical intervals 

are defined as those that yield the minimum of LI and L2 over the entire domain. 

According to the figures, the optimal distance between the two wells (horizontal interval) 

is approximately half of the horizontal correlation scale. This distance can not be too 

large or too small because the best estimate of conductivity values is near the vicinity of 

the wells where pressure changes are collected (see section 5). The optimal vertical 

distance between packers along the well (vertical interval) should be as small as possible 

(at least smaller than 0.5 times the vertical correlation scale). Also shown is that the 

separation distance between the two wells has more influence on the conductivity 

estimates than that between vertical monitoring points along the well. 

3.3. Optimal pumping interval: 

The main idea of hydraulic tomography is to collect a large nimiber of aquifer 

responses using the same monitoring network by changing the pimiping locations along 

the wells. It is important to know how the choice of pumping interval (the distance 

between two adjacent pumping locations) influences the effectiveness of hydraulic 

tomography. 
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To address this issue, numerical experiments were conducted. Based on the 

results of the previous analysis, the horizontal separation distance of the two wells in the 

experiments was chosen to be 6 m and the vertical monitoring interval to be 2 m. 

Consequently, two wells were set up at x = 7.5 m and x = 13.5 m, and 10 monitoring 

intervals along each well were employed. The well at x = 7.5 m was chosen as the well 

where various pumping intervals would be considered. By changing the distance 

between two adjacent pimiping locations from 2 m, to 4 m, 6 m, 8 m, etc., the effect of 

the pumping interval was then evaluated. Figure 2 shows the number of elements of the 

aquifer with the conditional variance less than some given values for different designs of 

the pumping interval. Based on this figure, the size of the pumping interval has little 

effect on the conditional variance. However, a slightly better estimate is obtained if the 

pumping interval is greater than 2 m, which is half of the vertical correlation scale. The 

same result is also obtained by evaluating LI and L2 for different pumping intervals. 

Consequently, we conclude that the pumping interval should be greater than the half of 

the vertical correlation scale. 

3.4. Optimal number of pumping locations: 

From the analysis of the optimal pumping interval, we found that once the 

pumping interval is greater than the half of the vertical correlation scale, a further 

increase of the interval does not significantly improve the f estimate. Nonetheless, for a 

given aquifer thickness, the larger the pumping interval we select, the fewer the pumping 

locations we have, and the less information we can obtain from the tomography. 
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Therefore, it is imperative to determine the optimal number of pumping locations so that 

hydraulic tomography can provide sufficient secondary information. 

The influences of increasing numbers of pimiping locations on the effectiveness 

of the tomography are shown in Figures 3a and b. Figure 3a plots the niunber of / 

estimates with conditional variance lower than the specified threshold value for different 

niunber of pumping locations. For a given threshold value of the conditional variance 

(for instance, 0.1), as the number of pumping locations increases firom 2 to 4, the number 

of/estimates with conditional variance smaller than 0.1 increases firom 47 to 147. As the 

number of pumping locations increases to 5, the number of good / estimates increases 

fi-om 147 to 164, showing that the rate of improvement decreases. The same trend is also 

shown in Figure 3b, where the values of LI and L2 decrease significantly when the 

number of pumping locations increases fi-om 2 to 4. Then, the decrease becomes 

moderate and LI and L2 gradually approach a constant value when 5 pumping locations 

are used. The results show that an increase in the number of pumping locations 

improves the final / estimate but the improvement diminishes as more pumping locations 

are used, indicating that certain data sets generated from hydraulic tomography may 

provide redundant information. Based on this example, the optimal number of pumping 

location is 5 (20 m/4 m, here 20 m is the aquifer depth and 4 m is the vertical correlation 

scale). For a generic aquifer, we may conclude that the optimal number of pumping 

location is the ratio of the aquifer depth to the vertical correlation scale. 

3.5. Effect of pumping rate: 
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Our numerical experiments show that the pumping rate does not affect the final 

estimate of conductivity. Under steady-state flow conditions, an increase in the pumping 

rate leads to an increase in the hydraulic gradient, which subsequently affects the 

sensitivity of head with respect to saturated conductivity. Such an increase in hydraulic 

gradients also results in an increase in head variance but the cross-correlation between the 

head and the conductivity remains the same. Consequently, the increase in the pumping 

rate does not affect the cokriging weights and does not influence the estimate (Li and 

Yeh, 1998). In other words, different pumping rates will yield identical results. One 

must recognize, though, that in practice, pressure head data may be corrupted by noises. 

Thus, an increase in pumping rate may increase the signal-to-noise ratio such that the 

inversion of hydraulic tomography data can yield better results. 

4. Uncertainty Analysis 

Our inverse method for the hydraulic tomography requires the knowledge of 

mean, variance, and correlation structure of the conductivity field, head data sets and the 

associated pumping rates, and some conductivity values if they are available. While head 

data and pumping rates can be collected during the tomography, several means can be 

employed to obtain the mean, variance, and correlation structure of the conductivity. For 

example, one can estimate them based on core samples and well logs if they are available 

or one can employ the structure identification approach developed by Kitanidis and 

Vomvoris (1983). Geophysical survey is an alternative for determining correlation scales 



(Rea and Knight, 1998) and the traditional aquifer test analysis assuming aquifer 

homogeneity is a good way to estimate the mean conductivity. 

Nevertheless, these statistical parameters are estimates and not known precisely, 

and measurement errors in pressure heads are inevitable. Therefore, the influence of the 

uncertainty in the statistical parameters and the effects of measurement errors on the 

estimate by our sequential inverse method are discussed next. 

4.1. Uncertainty in the mean and variance of hydraulic conductivity 

Without collecting a large number of hydraulic conductivity data sets, the mean 

and variance estimates involve uncertainty. How the uncertainty affects the estimate of 

hydraulic conductivity by our inverse method needs to be addressed. Several numerical 

experiments were conducted and the results show that the uncertainty in the mean 

conductivity can cause the shift of the mean of our estimated conductivity field. The 

pattern of heterogeneity remains almost the same. On the other hand, the uncertainty 

associated with the variance of conductivity has no influence on the final estimate. This 

is attributed to the fact that our inverse approach relies on the correlation and cross-

correlation, which do not involve the variance. Specifically, as the variance term 

appeared on both sides of the system of equations (6 and 8), it is factored out and 

canceled when solving the equations for weights. 

4.2. Uncertainty in correlation scales 

In order to study the effect of the uncertainty in correlation scales, we used the 

previous hypothetical aquifer with the optimal network design as our base case. Then, 

we conducted many test cases in which the correlation scales in horizontal and vertical 



directions were either overestimated or iinderestimated up to 90%. For each test case, the 

percent changes in the values of the norm LI and L2 from the base case were computed 

and the changes for all the cases were then contoured. Figures 4a and b show that our 

inverse solution is not very sensitive to the uncertainty in correlation scales unless the 

uncertainty is so large that it completely alters the direction of anisotropy (e.g., the upper 

left comer of the figures). This can be attributed to the fact that the correlation structure 

only provides a description of the average size of heterogeneity. Once more point 

measurements (such as head information fi-om tomography) become available, the impact 

of the information about the average size of heterogeneity fades out rapidly. The same 

argument applies to the effect of imcertainty in the shape of the correlation structure 

(correlation fimctions). 

4.3. Measurement errors in pressure heads 

To investigate impacts of these errors, we generated random head measurement 

errors with a zero mean and a variance that is equal to a specified Section of the head 

variance for each monitoring location. The head variance was calculated based on the 

first-order analysis for the given pumping rate. The pressure head measurements at the 

monitoring locations were then perturbed with these errors and then were used in the 

inversion. Results of the inversion show that the estimate by our sequential inverse 

model is very sensitive to the errors: small measurement errors can lead to erroneous 

estimates of the conductivity field. 

To extract useful information from the head data corrupted with errors, the error 

variances were added to the diagonal terms of the head covariance matrix, corresponding 
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to the head measurement locations, when the weights for the SLE were sought. Because 

of the addition of the variance, the estimated conductivity field becomes smooth and head 

values at the sampling locations do not agree with the observed values. 

The effects of errors on our estimates using the above approach are shovm in 

Figure 5, where the LI and L2 norms are plotted as a function of the error. As 

demonstrated in the figure, the norm LI and L2 grow rapidly when the error increases, 

which indicates that the estimate of the conductivity field is sensitive to the errors. 

However, when the variance of the error approaches more than 50% of the head variance, 

the rate of increase in LI and L2 declines. This implies that the larger error the data set 

has, the less useful information the data set contributes. Therefore, our inverse method 

results in a smooth conductivity field that is close to the imconditional mean value. 

4.4. Effect of gravel pack 

Wells are usually gravel-packed over the screen interval. Several nximerical 

experiments were conducted to address the effects of omitting the gravel pack in the 

inverse modeling. In the experiments, gravel packs of different uniform conductivity 

value around the two wells were considered in the forward simulation to produce head 

measurements. The measured heads were then used in the inversion. Results of the 

inversion show that the influence of the gravel pack depends upon the contrast between 

the hydraulic conductivity of the back-filled gravel and the mean conductivity of the 

aquifer system. If the conductivity of the gravel pack is close to the geometric mean of 

the conductivity of the aquifer, then its effect is negligible. However, if the gravel pack 

has a conductivity value that is several orders of magnitude greater than the geometric 
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mean of the aquifer, then its impact is significant. Since the gravel pack changes the head 

distribution the effect can be minimized by treating it as the head measurement error. 

5. Monte Carlo Simulations 

As mentioned in section 2.2, the conditional covariance fimctions (Shh) and cross-

covariance functions (Shy,) are approximations. One way to evaluate the accuracy of the 

approximations is to compare them to those provided by the Monte Carlo simulations. 

Accordingly, we conducted Monte Carlo simulations using thirty realizations of/fields. 

For each realization, five steady-state pressure head data sets were produced based on the 

optimum design of hydraulic tomography (section 3). In addition, two / measurements, 

one fi-om each well, were included as primary information. Then, our proposed sequential 

inverse approach was employed. The difference between our estimate and the true 

conductivity field for each realization at each element was then accumulated to determine 

the conditional variance at each element. 

The spatial distribution of the resulting conditional variance is shown in Figure 

6a. Compared to the conditional variance of/calculated using the linear approximation 

(Figure 6b), the conditional variances obtained from Monte Carlo simulations are larger. 

Nonetheless, these two conditional variance maps show a similar pattern. That is, lower 

variances of / occur at locations along the wells where either pressure head or 

conductivity was measured. Such a result indicates that significant improvements, due 

to primary or secondary information, are limited to the vicinity of the measurement 

locations. 
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6.3-D Case Example 

To demonstrate the robustness of the sequential iterative approach for real-world 

problems, it was applied to hydraulic tomography in a three-dimensional hypothetical 

aquifer that had dimensions of 10 m x 5 m x 20 m. The aquifer was discritized into 1000 

elements with dimensions oflmx Imx Im. Four sides of the aquifer were constant 

hydraulic head boundaries with a prescribed value of 80 m while the top and the bottom 

of the aquifer were no-flow boundaries (Figure 7). We assumed the heterogeneous 

hydraulic conductivity field had a horizontal correlation scale of 12 m and a vertical 

correlation scale of 4 m. We further assumed that the geometric mean of the hydraulic 

conductivity was 0.3452 m/hr with a variance of InK equal to 0.625. With these assumed 

parameters, the conductivity value for each element was generated using the spectral 

method (Gutjahr, 1989) (Figure 8a). Based on the optimum-sampling scheme (section 

3), a total of 20 pressure measurement locations were used. Two conductivity 

measurements were taken on each of the wells located in the synthetic flow domain 

(Figure 7). A three-dimensional steady-state flow field created by pumping at a selected 

interval, with a discharge of 20 m^/hr was then simulated and the head responses at other 

intervals were monitored. By sequentially pumping at five different vertical locations 

(figure 7), five pressure/discharge data sets were obtained. 

For each set of data, the SLE was used to determine the conditional effective 

hydraulic conductivity field. The field obtained from this set of head measurements was 

used as prior information for the next estimation of the conductivity field, using the next 

set of pressure/discharge data. This procedure was performed sequentially. 



Figure 8b shows the f estimates based on only the head data set created by 

pumping at location No.l. Figure 8c shows the/estimates when the head data set created 

by pumping at location No.2 was included. Accordingly, Figure 8f shows the final / 

estimates when the fifth data set was included. As illustrated in these figures, the major 

features of the heterogeneity are captured in the first sequence of the inversion. By 

incorporating the secondary information sequentially in the inversion, more details of 

heterogeneity are revealed and the estimate field increasingly resembles the true one. A 

scatter plot of the final estimated / versus the true / values along with the two statistical 

norms LI and L2 is displayed in Figure 9. 

7. Conclusion 

The sequential inverse approach using data yielded firom hydraulic tomography is 

a promising tool for characterizing aquifer heterogeneity. By using the secondary 

information sequentially, the size of the covariance matrix in our inverse approach 

remains small so that the matrix equations can be solved with ease. Thus, inversion of 

the large amount of secondary information collected during hydraulic tomography 

becomes feasible. Compared to the results yielded fi-om the Monte Carlo simulations, the 

residual variance produced fi-om our sequential approach reflects the pattern of the 

conditional variance. 

Results of our numerical experiments show that the hydraulic tomography can be 

most effective if the horizontal separation distance between wells is set to be half of the 

horizontal correlation scale. The vertical interval between two pressure monitoring 
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locations should be no more than half of the vertical correlation scale. The optimal 

number of pumping locations is equal to the ratio of the aquifer depth to the vertical 

correlation scale. The pumping rate has no effect on the estimate. 

Our analysis also leads to the conclusions that the uncertainty in the input 

variance for our inverse model has no influence on the estimates. Similarly, the 

uncertainty in correlation scales has no significant effect on the estimate xmless the 

correlation scales are extremely under-estimated or over-estimated. Abundant secondary 

information (such as pressure head) in space can greatly reduce the effect caused by 

inaccurate knowledge of the correlation structure. If large measurement errors associated 

with pressure head exist, our inverse approach yields a smoother estimate than that 

obtained fi-om the error-firee data, reflecting the fact that less information is extracted 

from the measurements. Consequently, accurate measurements of the secondary 

information are needed to make hydraulic tomography successful. 

Finally, hydraulic tomography appears to be a promising field technique for 

providing abimdant secondary information for characterizing aquifer heterogeneity. 

Using our sequential inverse model, hydraulic tomography can reveal more detailed 

aquifer heterogeneity than classical aquifer tests. 
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Figure 1. a) Contour map of norm LI for different designs of hydraulic tomography, b) 
Contour map of norm L2 for different designs of hydraulic tomography. Here Ax / X,x 
represents the ratio of the well spacing to the horizontal correlation scale and Az / X-z 
represents the ratio of the distance between packers to the vertical correlation scale. 
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Figure 2. Comparison of the goodness of f estimate for various pumping intervals, 
represented by the number of elements whose conditional variance is less than a given 
threshold value. Here, y is the ratio of the pumping interval Ap to the vertical correlation 
scale Xz. 
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Figure 3. a) Comparison of the goodness of f estimate for various numbers of pumping 
locations, represented by the number of elements whose conditional variance is less than 
a given threshold value. A, two pumping locations; B, three pumping locations; C, four 
pumping locations; and D, five pumping locations, b) Norm LI and L2 versus number of 
pumping locations. 
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Figure 4. a) Contour map of the change of LI in percentage for different values of A^x I 
Xx (ratio of the change of horizontal correlation scale to the true correlation scale) and 
ATiz / ^ (ratio of the change of vertical correlation scale to the true correlation scale), b) 
Contour map of the change of L2 in percentage for different values of AX^ / and 
AA,Z / ?Lz. 
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Figure 5. Norm LI and L2 versus the percentage of the variance of measurement errors 
of head variance. 
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Figure 6. a) Contour map of the conditional variance of InK (Monte Carlo simulations), 
b) Contour map of the conditional variance of InK (our sequential inverse approach). 
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Figure 7. Schematic diagram of hydraulic tomography for a three dimensional aquifer. 
Right triangles indicate monitoring locations, circles represent pumping locations (the 
numbers next to them indicate the order of pumping), and squares represent / 
measurement locations. 
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Figure 8. a) The synthetic true / field, b) estimated / field using data generated by 
pumping at location #1, c) estimated / field using data generated by pumping at location 
#1 and #2, sequentially, d) estimated / field using data generated by pumping at location 
#1, #2, and #3, sequentially, e) estimated / field using data generated by pumping at 
location #1, #2, #3 and #4, sequentially, f) estimated / field using data generated by 
pumping at location #1, #2, #3, #4, and #5, sequentially. 
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Abstract 

Two sandbox experiments were conducted to evaluate the performance of a 

sequential geostatistical inverse approach for hydraulic tomography in characterizing 

aquifer heterogeneity. One sandbox was packed with layered sands to represent a 

stratified aquifer while the other with discontinuous sand bodies of different shapes and 

sizes to represent a more complex and realistic heterogeneous aquifer. Parallel to the 

sandbox experiments, numerical experiments were conducted to assess the effects of 

measurement errors and uncertainties associated with laboratory data, and to diagnose the 

hydraulic conductivity estimates obtained from sandbox experiments. 

Results of this study show that our sequential inverse approach works well imder 

realistic conditions, in spite of measurement errors and uncertainties associated with 

pumping rates, boundary conditions, pressure head measurements, and other parameters 

required by our model. The tomography was foimd ineffective if abundant head 

measurements were collected at closely spaced intervals in a highly stratified aquifer. On 

the other hand, it was found beneficial when pressure head measurements were limited 

and the geological structure was discontinuous. 
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1. Introduction 

Hydraulic tomography, a sequential aquifer test, has recently been proposed to 

characterize aquifer heterogeneity (Gottlieb and Dietrich, 1995; Butler and Liu, 1993; 

Butler et al., 1999; Yeh and Liu, 2000). Specifically, fully screened wells are divided 

into many vertical intervals using packers. Water is pumped fi"om an aquifer at one of the 

intervals to create a steady state flow condition. Hydraulic head responses at other 

intervals are then monitored, yielding one set of head/discharge data. Then the pumping 

location is moved to another interval and the resulting steady state head responses at 

other locations are collected accordingly, resulting in a second data set. By performing 

this procedure sequentially, a large number of head/discharge data sets can be obtained. 

With a proper inverse methodology, these data sets can be used to produce a detailed 

image of heterogeneity in the aquifer. 

Several researchers (Scarascia and Ponzini, 1972; Sagar et al., 1975; Giudici et 

al., 1995; and Snodgrass and Kitanidis, 1998) have investigated the use of data 

corresponding to different flow situations to improve the uniqueness of the inverse 

solution or to reduce uncertainties in the identification of flow model parameters. Until 

recently, very few researchers have investigated the idea of hydraulic tomography. 

Gottlieb and Dietrich (1995)'proposed a hydraulic tomography method and employed a 

least-squares based inverse approach to illustrate its potential to identify the permeability 

distribution in a hypothetical two-dimensional saturated soil. Butler et al. (1999) applied 

the hydraulic tomography concept to networks of multi-level sampling wells. They 

developed new techniques for measuring drawdown at multi-level sampling ports that 
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had previously been unobtainable. They suggested that such sampling techniques could 

facilitate the implementation of hydraulic tomography in the field. Until recently, even 

fewer researchers have attempted to develop a realistic three-dimensional inverse model 

for hydraulic tomography because computational burdens hinder applications of classical 

inverse algorithms to 3-D hydraulic tomography. Yeh and Liu (2000) have developed a 

sequential geostatistical inverse approach that eases the burdens and allows one to 

efficiently interpret the abundant data sets produced by hydraulic tomography. In their 

study, not only did they demonstrate the robustness of their inverse approach, but they 

also investigated the network design issue for hydraulic tomography, and addressed 

uncertainty in the hydraulic conductivity estimate. 

Hydraulic tomography has been tested using numerical experiments (Gottlieb and 

Dietrich, 1995; Yeh and Liu, 2000) but not laboratory or field experiments. In numerical 

experiments, effects of conceptual model errors are absent because synthetic tomography 

data are generated from the same model used in the inversion. Model inputs are also 

assumed error-free. Conversely, in field experiments, the effects of conceptual model 

errors are imknown. Model inputs, such as boundary conditions, pumping rates, the 

mean, variance, and correlation scales, are always subject to uncertainty. Further, the 

pressure head/discharge data inevitably contain unknown measurement errors. Field 

experiments are, thus, the most appropriate test for hydraulic tomography. 

Nevertheless, field experiments are so costly that well-controlled sandbox 

experiments are a reasonable alternative. In this paper, we tested the effectiveness of our 

sequential inverse approach (Yeh and Liu, 2000) with two sandbox experiments. The 



first experiment represented a stratified aquifer system, while the other represented a 

more complex and realistic heterogeneous aquifer. In addition, numerical experiments 

were conducted to diagnose anomalies in the inverse results fi-om the sandbox 

experiments, and to explore conditions under which the hydraulic tomography can be 

effective. 

2. Experimental Setup 

2.1. Design of the Sandbox 

The sandbox has outside dimensions of 92 cm in length, 4.5 cm in width, and 62 

cm in height, and inside dimensions of 80 cm, 3.2 cm, and 50 cm, respectively. Two 

commercially sieved sands were used to pack the sandbox: a No. 30 and No. 60 silica 

sand. For No. 30 sand, greater than 60% of the sand is retained on sieve #30, whose 

mesh size is 0.6mm. For No. 60 sand, greater than 60% of the sand is retained on sieve 

#60, whose mesh size is 0.25mm. These two sands were selected because of the contrast 

in their grain sizes and the uniformity of their grain size distributions. The hydraulic 

conductivity of these two types of sand was determined using the constant head 

permeameter procedure (Klute and Dirksen, 1986). The resulting saturated hydraulic 

conductivity values were 0.165 cm/s for the medium sand (No. 30) and 0.038 cm/s for the 

fine sand (No. 60). These two sands were used to create two different structures of 

heterogeneity in the sandbox for flow experiments to be discussed in sections 2.2 and 2.3. 

The sandbox was constructed with % " acrylic, and supported by 1/8 " angle irons 

to brace the walls of the sandbox and to control bowing due to the mass of soil and water. 



A network of 14 monitoring ports consisting of two columns of seven locations each was 

drilled into one face of the sandbox. A cylindrical filter with a diameter of 0.5 cm and a 

length of 2.5 cm was placed in each of the ports. These filters protruded into the soil, 

partially penetrated the sandbox, and were connected to the exterior of the sandbox 

through tubing. This allowed each location to be monitored by a pressure transducer or 

used as an extraction port. There are reservoirs on either side of the sandbox, and a 

constant head is maintained in these reservoirs through a mariotte device connected 

through inlets at the bottom of the reservoirs. This mariotte device consists of a sealed 

carboy with an atmospheric line set at the level of constant head in the sandbox. Water in 

the reservoirs enters the packed sand through perforated plates on either side of the box, 

which allow water to pass through, but prevent sand from leaking into the reservoirs 

(Figure 1). 

During the tomography, some of the 14 monitoring ports were selected to be the 

pmnping ports. Water was pumped using a vacuum pump and the flow field was allowed 

to reach steady state. The pumping rate was maintained constant throughout the 

experiment by use of a rotometer (Matheson Gas Products model #604). An increase in 

pumping rate causes a float to rise in relation to graduations on the rotometer, and a 

needle value of the rotometer allows one to adjust the pumping rate. The pumping rate 

was carefully selected during the two sandbox experiments. A pumping rate that is too 

low may cause changes in pressure smaller than the sensitivity of the instruments. A 

piraiping rate that is too large could disrupt the upper boundary condition of the sandbox 

due to an insufficient communication between the reservoirs and the sand unit. 
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Pressure heads were monitored using gage pressure transducers during each 

pumping event. Data from the experiments were obtained using a Campbell Scientific 

Datalogger connected to two multiplexers, and were processed by the Campbell 

Scientific PC-208W software. The use of multiplexers allows for virtually simultaneous 

measurement of the transducers. 

2.2. Description of Sandbox 1 

Sandbox 1 was designed to represent a layered aquifer. A uniform and 

continuous horizontal layer of fine sand was packed in the middle of the sandbox with a 

thickness of 9.5cm and the remainder of the sandbox was packed with the mediimi sand. 

The configuration of sandbox 1 is shown in Figure 2. 

During the data collection phase, the sandbox was pumped at one of the 14 ports, 

and the resultant steady-state pressure heads were recorded at the other 13 ports of the 

monitoring network. The flow in the sandbox reached steady state within approximately 

10 seconds. Afterwards, the pump was moved to another port, and the corresponding 

pressure heads were collected, yielding the second data set. By performing this 

procedure sequentially, several data sets were obtained. For sandbox 1, three data sets 

were obtained by pumping at three different locations. 

2.3. Description of Sandbox 2 

Since the geological structure of an aquifer is typically more complex than that in 

sandbox 1, sandbox 2 was packed with the two types of sand but with a discontinuous 

and complex structure. Specifically, four lenses of fine sand were contained within a 



80 

medium sand matrix, with each lens of the fine sand exhibiting a different shape and size. 

The configuration of sandbox 2 is shown in Figure 3. 

Our experience with sandbox 1 experiments (to be discussed in section 5.1) led to 

several modifications of the design of sandbox 2. Two more sampling ports on the upper 

part of the sandbox and two more at the lower part of the sandbox were added to each 

column of ports, for a total of 11 evenly spaced ports per column. These additional ports 

gave us more information of the pressure response of the system. The number of holes in 

the perforated plates connecting the reservoirs to the main portion of the sandbox was 

also doubled to ensure sufficient communication between these two regions. Finally, the 

diameter of the tubes connecting the mariotte device to the inlets in the reservoirs was 

increased to improve the reservoirs' response to changes in constant head level. Thus, the 

constant head boimdary condition could be maintained at a stationary level with less 

uncertainty. Since there was some concern over the abihty of the rotometer to accurately 

measure a low flow rate, in sandbox 2, the rotometer was replaced with a more accurate 

instrument of similar design (Key Instruments FR-4000 Model #4152). 

During the implementation of hydraulic tomography in sandbox 2, data sets were 

again collected fi-om the two columns of ports. Five data sets were created by pumping at 

five selected locations (see Figure 7), and each data set contained pressure head 

measurements for 21 locations. 

3. Method of Analysis 
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A sequential geostatistical inverse approach was used to interpret the data yielded 

from hydraulic tomography in our sandbox experiments. Details of the approach can be 

found in Yeh and Liu (2000). Here only a brief description is provided. 

Our approach is comprised of two steps. First, the successive linear estimator 

(SLE) is employed for each data set. This estimator starts with the classical cokriging 

technique using observed conductivity and head values collected in one pumping test 

during the tomography to create a cokriged, mean-removed log conductivity {f. i.e., 

perturbation of log conductivity^ map. However, cokriging does not take full advantage 

of the observed head values because it assumes a linear relationship between heads and 

conductivity while the true relationship is nonlinear. To circumvent this problem, a 

linear estimator based on the difference between the simulated and observed head values 

is used successively to improve the estimate. 

During the estimation, a simultaneous inclusion of all the head/discharge data 

collected during the tomography can lead to extremely large and ill-conditioned matrices 

that are difficult to solve (Hughson and Yeh, 2000). Thus, the second step of our 

approach is to use the head data sets sequentially. That is, once an estimated/field based 

on a set of head/discharge data is derived, it is employed along with the head data sets 

collected from the next pumping operation to obtain the next estimated / field. During 

this new estimation, the conditional effective parameters, the covariances and the cross-

covariances derived from previous estimation are propagated to evaluate the weights of 

our new estimate (Li and Yeh, 1999). In essence, our sequential approach uses the 

estimated hydrauUc conductivity field and covariances, conditioned on previous sets of 
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head measurements, as prior information for the next estimation based on a new set of 

pumping data. It continues until all the data sets are fiilly utilized. Such a sequential 

approach allows for the accimiulation of high-density secondary information obtained 

from hydraulic tomography, while maintaining the covariance matrix at a manageable 

size that can be solved with minimal numerical difficulty. Vargas-Guzman and Yeh 

(1999) provided proof of the validity of such a sequential approach for linear systems. 

4. Inputs to the Inverse Model 

To solve the inversion problem, the sandbox was discretized into 1066 elements 

with dimensions of 1.95cm x 3.2cm x 1.95cm. Both sides and the top boundary were set 

to be constant head boundary conditions, while the bottom boimdary of the sandbox was 

considered a no-flow boundary. 

Inputs to our inverse model include the effective conductivity, the variance and 

correlation scales of hydraulic conductivity, pressure head/discharge data sets, and 

available point measurements of conductivity. The procedures we used to obtain the 

required input parameters are discussed below. 

4.1. Effective hydraulic conductivity 

Two approaches were used to obtain the effective hydraulic conductivity of the 

sandbox, K^. In the first approach, the geometric mean was computed to approximate 

Keff. Since the conductivity of each sand used in the sandbox was measured and their 

spatial distributions were knovra, a simple calculation determines the geometric mean. 

That is. 
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n 

(1) lnK^ = 
n 

where Kg is the resulting geometric mean conductivity, n represents the total number of 

elements and Ki is the hydraulic conductivity of each element. However, this method 

does not consider the effect of packing and more importantly, the flow dynamics of the 

system. A more desirable approach to determine the effective hydraulic conductivity is 

by the use of model calibration. Specifically, the heterogeneous sandbox was considered 

as an equivalent homogeneous system. By adjusting the conductivity value of this 

fictitious medium to minimize the discrepancy between the simulated and the observed 

head values, the effective conductivity was obtained. Two criteria, LI and L2, as 

described below, were used to evaluate the goodness-of-fit between the simulated head 

responses and the observed ones: 

The approach described above was applied to the simulated pressure responses at 

all 1066 elements based on the known f field subject to pumping at a given location. The 

contour map of the head distribution due to pimiping at element #603 (x=55.575cm, 

y=1.6 cm, z=28.275 cm) of the heterogeneous field of sandbox 2, and that of the 

equivalent homogeneous field are plotted in Figure 4a. The corresponding scatter plot of 

(2) 

(3) 

where Hi and represent the observed and simulated pressure head, respectively. 



the pressure heads is shown in Figure 4b. Applications of this approach to the head 

distribution induced by pumping show that the effective conductivity value varies with 

the pumping location. This variation may be attributed to the non-ergodic flow condition 

due to the simple heterogeneous structure in the sandbox. Consequently, the final 

value was determined by taking the average of these values. Table 1 tabulates the Keff 

values obtained fi^om pumping at elements #341(x=24.375 cm, y=1.6 cm, z=16.575 cm), 

#603(x=55.575 cm, y=1.6 cm, z=28.275 cm), and #767(x=55.575 cm, y=1.6 cm, 

z=36.075 cm). Averaging the three values yields the final Kejj-of 0.1242 cm/s. 

We also applied the same procedure to the pressure head data collected in the 

laboratory sandbox experiments. However, there are fewer points in the laboratory data 

(21 points) than in the synthetic data (1066 points). Estimated effective conductivity 

values for each pumping location are given in Table 2. The averaged Keffvzlne is 0.0783 

cm/s. The estimated values using both simulated and observed heads were employed 

in our analysis for sandbox 2. The effect of this input parameter on our/final estimate is 

discussed in section 5. 

4.2. Other inputs 

The variance and the correlation scales of the conductivity field — our inverse 

model assumes an exponential correlation structure ~ are also required input to our 

inverse model. Table 3 lists values of these statistical parameters used in our inverse 

analysis for both sandbox 1 and sandbox 2. 

Estimation of the variance always involves uncertainty. Our previous numerical 

study (Yeh and Liu, 2000), however, has demonstrated that the variance has negligible 
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effects on the estimated hydrauhc conductivity using our inverse model. Therefore, an 

estimate of the variance was obtained based on the known conductivity distribution and 

measured conductivity of each sand. 

Correlation scales represent the average size of heterogeneity that is critical for 

analyzing the average behavior of aquifers. Correlation scales of any geological 

formation are difficult to determine in general. The effects of mcertainty in correlation 

scales on the estimate based on the tomography are negligible because the tomography 

produces a large number of head measurements, reflecting detailed site-specific 

heterogeneity (Yeh and Liu, 2000). Therefore, the correlation scales were approximated 

based only on the average thickness and length of the heterogeneity. 

5. Results 

5.1. Sandbox 1 

The "true" mean-removed natural log of the conductivity (the "true" / field) in 

sandbox 1 is depicted in Figure 5a, and the estimated / field based on the head data set 

produced by pumping at the first location is plotted in Figure 5b. Figure 5c shows the 

estimated / field using the head data set obtained by pumping at the second location, in 

addition to the data set used in Figure 5b. The final estimate, based on the head data sets 

fi-om the pumping at the third location and those used in Figures 5b and 5c, is illustrated 

in Figure 5d. Note that the "true"/field depicted in Figure 5a is our conceptualization of 

the conductivity distribution based upon the geometry of the layered sands and 

conductivity measurements of the sand samples. This field may not correspond to the 



actual conductivity field in the sandbox. According to the figures, the estimated / field 

upon the sequential inclusion of data sets, nevertheless, gradually resembles the "true" 

field at the region where we had pressure head measurements. At the upper and lower 

portions of the sandbox, where measurements were not available and the model 

boundaries were nearby, the estimate off was poor. Several factors could be responsible 

for the poor estimates: a lack of pressure measurements at these regions; boxmdary 

effects; uncertainties in the input data. 

To investigate possible causes of the poor estimate, numerical experiments were 

conducted. First, we assimied the "true"/field is identical to the one shown in Figure 5a. 

Forward simulations were then carried out using the same pumping rate, pumping 

locations, and boundary conditions. Afterwards, three error-free head data sets were 

collected firom the simulations at the monitoring locations identical to those in the 

sandbox experiments. Our inverse model was then employed to estimate the/ field using 

these synthetic data sets. The final estimate is displayed in Figure 6a. Compared to 

Figure 5d (the final estimated / field using the laboratory data). Figure 6a is a better 

estimate because the synthetic data sets do not involve any uncertainty inherent in our 

laboratory data sets. However, at the region where there are no pressure measurements, 

the / estimate is still poor. This indicates that some point measurements are lacking and 

may thus be necessary at this region. To substantiate this speculation, simulated head 

data were collected at two more measurement points of the top and the bottom of the two 

columns. Consequently, 21 pressure head measurements instead of 13 were sampled and 

were subsequently used in our inverse model. The resultant/estimate is shown in Figure 



6b, which indicates that the increase of pressure measurements significantly improves the 

final f estimate. 

Since the additional pressure measurements improved the f estimate, we then 

tested the inversion with the maximum number of pressure measurements along the two 

columns . In this case, the inversion employed 51 pressure head measurements instead of 

21 for each pmnping operation. As expected, the abundant point measurements 

significantly improved our estimate of the heterogeneity in the sandbox. More 

importantly, we observed that in this case, only one pumping test was necessary to 

closely reproduce the "true" / field, and the inclusion of additional data sets firom 

pumping at the other locations did not improve the estimate. Figure 6c illustrates the 

estimated / field using 51 pressure head measurements corresponding to pumping at 

element #603 (x=55.575cm, y=1.6 cm, z=28.275 cm) only. This result suggests that in a 

layered aquifer, hydrauUc tomography is not necessary if one can collect a large number 

of closely spaced pressure measurements during one pimiping test. 

Criteria similar to (2) and (3) were also employed to quantify the success of our 

estimated/ fields. The values for LI and L2 associated with these estimated fields for 

sandbox 1 are listed in Table 4. The smaller the values of LI and L2, the better our 

estimates. 

With the help of synthetic data sets, the causes of poor estimates based on the 

actual laboratory data appeared to be diagnosed. While a lack of pressure head 

measurements on the upper and lower portion of the sandbox was one reason for the poor 

estimates, the boimdary effects during experiments could not be excluded. Specifically, 



the design of sandbox 1 was not able to keep the upper boundary condition at the 

specified level during pumping tests. In order to reduce this boundary effect, several 

improvements were made in the design of sandbox 2. Details are discussed in section 

2.3. 

5.2. Sandbox 2 

Because sandbox 2 has a more complex heterogeneous structure, data sets from 

five sequential pumping tests were used for the inversion. Figure 7 illustrates the 

comparison of the "true"/ field and those produced firom the successive inclusion of the 

five data sets. The conductivity of 0.0783cm/s determined from laboratory data was used 

as the effective conductivity in this inversion. As shown in Figure 7, the estimated/field 

progressively resembles the true one and successively reveals more details of 

heterogeneity. 

To investigate the effects of the imcertainty associated with effective 

conductivity, another inversion was conducted using 0.1242cni/s as the effective 

conductivity while keeping other inputs the same. The result is shown in Figure 8. 

Comparing Figure 7f with Figure 8~two final f estimates corresponding to the use of two 

different effective values~we find that the resulting conductivity is different in 

magnitude but the major heterogeneous patterns are similar. 

An inversion was also conducted using synthetic data sets. Again, the synthetic 

data sets were sampled from the pressure head fields derived from flow simulations based 

on the conceptualized "true"/field under the same conditions as those in the lab. Figtire 

9 displays the final inversion result. Comparing Figure 7f and Figure 8 to Figure 9, we 



find that all three figures adequately captured the major features of the heterogeneity of 

sandbox 2 (the four lenses of fine sand contained in the medium sand matrix). However, 

Figure 9 appears to have a slightly better result over the entire domain for the reason that 

synthetic data sets do not contain any measurement errors and other uncertainties. Again, 

please note that the exact true / field in sandbox 2 is unknown except for the general 

pattern. Considering the fact that measurement errors and some uncertainties in 

boundary conditions and input parameters are inevitable, the result (Figure 7f) of our 

inverse modeling is promising. 

To evaluate the efficiency of hydraulic tomography under the conditions of 

sandbox 2, numerical experiments were conducted. These experiments considered 

measurements taken at five columns with 26 locations each, instead of the previous 

laboratory configuration of two columns with 11 locations each, and kept other 

conditions the same. Therefore, for each pumping operation, head responses at 129 

locations were collected. This large amount of secondary information dramatically 

improved the final estimated / field (Figure 10). The values for LI and L2 associated 

with these estimated fields for sandbox 2 are listed in Table 5. It is interesting to observe 

that the 129 head responses generated by a single pumping event in sandbox 2 did not 

reproduce the true/ field as effectively as the 51 pressure head measurements in sandbox 

1. The discontinuous and non-uniform nature of the sand structures in sandbox 2 

explains the difference. Consequently, multiple head/discharge sets obtained by 

hydraulic tomography are necessary to produce a more detailed hydraulic conductivity 

distribution in this case. 
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6. Conclusion 

The performance of our sequential inverse approach for hydraulic tomography 

was evaluated using two sandbox experiments. One sandbox was packed with layered 

sands to represent a stratified aquifer. The other was packed wdth discontinuous sand 

bodies of different shapes and sizes to represent a more complex and realistic 

heterogeneous aquifer. For both sandbox experiments, our inverse model was able to 

reproduce the major heterogeneous patterns. The results show that our approach works 

well under realistic conditions, in spite of measurement errors and imcertainties 

associated with the pressure head/discharge data sets and other input parameters required 

by our model. 

Results of our analysis indicate that in the cases we investigated, hydraulic 

tomography does not improve the conductivity estimate significantly if abundant head 

measurements are available. This is especially true for a stratified aquifer system 

represented in sandbox 1. Hydraulic tomography can be usefiil and effective when 

pressure head measurements are not available at a large number of sample locations, and 

when aquifer heterogeneity exhibits highly discontinuous and non-uniform nature as 

presented in sandbox 2. 

Paralleled numerical experiments were useful in this study. Not only did they 

assess the effects of measxu-ement errors and uncertainties associated with laboratory 

data, but also helped to diagnose the causes of those poor estimates. This diagnosis 

improved our design of sandbox 2. 
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Our well-controlled sandbox experiments tested the effectiveness of our inverse 

method for realistic problems where measurements are inherently imperfect. Our 

successful laboratory verifications of the inverse approach is a step towards application of 

our inverse model to field-scale problems. 



92 

Acknowledgements 

The authors are grateful for useful comments by Mauro Giudici and Michael H. 

Young. This research is funded in part by a DOE EMSP96 grant through Sandia 

National Laboratories (contract AV-0655#1) and a DOE EMSP99 grant through 

University of Wisconsin, AO 19493, and in part by an EPA grant R-827114-01-0. This 

work does not necessarily reflect the views of DOE and EPA, and no official 

endorsement should be inferred. 



93 

References 

Butler, JJ., Jr. and W.Z. Liu, Pumping tests in non-uniform aquifers: the radially 
asymmetric case, Water Resour. Res., 29(2), 259-269, 1993. 

Butler, J.J., Jr., C.D. McElwee and G.C. Bohling, Pumping tests in networks of multilevel 
sampling wells: methodology and implications for hydraulic tomography. Water Resour. 
Res., 35(11), 3553-3560,1999. 

Giudici M., Morossi G., Parravicini G., and Ponzini G., A new method for the 
identification of distributed transmissivities. Water Resour. Res., 31,1969-1988,1995. 

Gottlieb, J., and P. Dietrich, Identification of the permeability distribution in soil by 
hydraulic tomography. Inverse Problems, 11, 353-360, 1995. 

Hughson, D. L., and T.-C. J. Yeh, An inverse model for three-dimensional flow in 
variably saturated porous media. Water Resour. Res., 36(4), 829-839,2000. 

Klute A. and C. Dirksen, Hydraulic conductivity and diffusivity: laboratory methods, in 
A. Klute (ed.) Methods of Soil Analysis, Part I., Chapter 9: Agronomy, 687-734, Am. 
Soc. Agron., Madison, Wise., 1986. 

Li, B., and T.-C. J. Yeh, Cokriging estimation of the conductivity field under variably 
saturated flow conditions. Water Resour. Res., 35(12), 3663-3647,1999. 

Sagar B., Yakowitz S., and Duckstein L., A direct method for the identification of the 
parameters of dynamic nonhomogeneous aquifers. Water Resour. Res., 11, 563-570, 
1975. 

Scarascia S., and Ponzini G., An approximate solution for the inverse problem in 
hydraulics, UEnergia Elettrica, 49, 518-531,1972. 

Snodgrass M. F., and Kitanidis P.K., Transmissivity identification through multi
directional aquifer stimulation. Stochastic Hydrol. Hydraul., 12,299-316, 1998. 

Vargas-Guzman and T. -C. J. Yeh, Sequential kriging and cokriging: two powerful 
geostatistical approaches. Stochastic Environmental Research and Risk Assessment, 13, 
416-435,1999. 

Yeh, T. -C. J., and S. Liu, Hydraulic tomography: development of a new aquifer test 
method. Water Resour. Res., 36(8), 2095-2105,2000 



94 

Table 1. Summary of values computed using synthetic data for sandbox 2 

Pumping location Keff (cm/s) LI L2 
Element #341 0.1040 0.14032 0.03604 
Element # 603 0.1335 0.08361 0.03108 
Element #767 0.1350 0.06552 0.00777 
Average 0.1242 

Table 2. Summary of values computed using laboratory data for sandbox 2 

Pumping location Kefr(cm/s) LI L2 
Element #341 0.080 0.3362 0.1920 
Element # 603 0.080 0.2748 0.1123 
Element #767 0.075 0.3219 0.1724 
Average 0.0783 

Table 3. Inputs specification for sandbox 1 and sandbox 2 

Keff (cm/s) 
;LX 

(cm) 
;iz 

(cm) 
covariance 
model for/ 

pumping 
rate 

(cmVs) 
Sandbox 1 0.1142 (from laboratory data) 0.34 400 20 exponential 2.94 

Sandbox 2 0.1242 (from synthetic data) 
0.0783 (from laboratory data) 

0.46 300 20 exponential 3.33 

Table 4. LI and L2 values for estimates of sandbox 1 

Fig. 5b Fig. 5c Fig. 5d Fig. 6a Fig. 6b Fig. 6c 

LI 0.8984 0.8031 0.8542 0.1474 0.1339 0.0518 

L2 1.4450 1.1852 1.2868 0.0476 0.0474 0.0095 

Table 5. LI and L2 values for estimates of sandbox 2 

Fig .7b Fig .7c Fig .7d Fig .7e Fig.7f Fig.8 Fig. 9 Fig. 10 

LI 0.7475 0.6027 0.5251 0.5229 0.5178 0.4563 0.3137 0.1459 

L2 0.8573 0.5844 0.3897 0.4245 0.4160 0.3195 0.1677 0.0470 
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Figure 1. Sandbox design and experimental apparatus. 
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Figure 2. Sandbox 1 configiiration. F = fine sand, and M = medium sand. 
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Figure 3. Sandbox 2 configuration. F = fine sand, and M = medium sand. 
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preesure head of a homo, system (cm) 

Figure 4. a). Comparison of the total head field for a single pumping event at element # 
603 of heterogeneous and equivalent homogeneous systems. Shaded contours are the 
head field for the heterogeneous system and the dashed line for the equivalent 
homogeneous system, b). The scatter plot corresponding to (a). 
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Figure 5. a) The "true"/field for sandbox 1; b) estimated/field using laboratory head 
data for pumping at location #1 (the circle); c) estimated / field based on data fi-om 
pumping at the location #1 and 2); d) estimated/field using data produced by pumping at 
locations #1, 2, and 3. The triangles indicate the monitoring locations, and the square 
show the conductivity measurement locations. 
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x(cm) 

Figure 6. a) Estimated / field using three synthetic head data sets generated by the same 
pumping operations and locations as in Figure 5; b) estimated f field using the three 
synthetic data sets but with 8 more monitoring locations for each pumping; c) estimated / 
field using only one synthetic data set generated by pumping at the location of circle and 
monitoring at the locations indicated by triangles. The square shows the conductivity 
measurement location. 
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X (cm) X (cm) 

Figure 7. a) The "true"/field for sandbox 2; b) estimated/field using laboratory head 
data corresponding to pumping at location #1 (the circle) and the effective conductivity 
of 0.0783 cm/s; c) estimated/field after including head data corresponding to pumping at 
location #2 (the circle) in addition to the data fi-om pumping at location #1; d)/ estimate 
using head data sets from pimiping at locations #1,2, and 3 indicated by the circles; e) 
estimated / field using data sets from pumping at the locations #1, 2, 3, and 4; f) 
estimated/field using head data sets from pumping at location #1, 2, 3, 4, and 5. The 
triangles indicate the monitoring locations. The square shows the conductivity 
measurement location. 



102 
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Figure 8. The final estimated/field using the same five laboratory data sets as those in 
Figure 7, but a different effective conductivity of 0.1242 cm/s. 
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Figure 9. The final estimated/field using five synthetic data sets generated by using the 
same configuration as that in Figure 7. 
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Figure 10. The final estimated/field using five synthetic data sets, generated by pumping 
at the same locations as those in Figure 7, and monitored at the locations indicated by 
triangles. The square shows the conductivity measurement location. 
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Abstract 

A sequential, geostatistical inverse approach is developed for electrical resistivity 

tomography. The sequential approach mimics the sequential ERT data collection scheme 

commonly employed in the field survey to reduce equipment costs. The approach also 

allows one to include point measurements of resistivity, in addition to potential 

measurements firom the ERT survey, and information on geological structures through 

statistical covariances to constrain the estimate of the resistivity field. The approach is 

computationally efficient, allows fine-grid descritization of the solution domain, and permits 

sequential inclusion of different data sets. Furthermore, the conditional variance in the 

inverse model quantifies the uncertainty of the estimate. 

Numerical experiments were conducted to demonstrate the robustness of the inverse 

approach for delineating the resistivity distribution in the subsurface and to investigate 

effectiveness of different sampling arrays of the ERT: surface, down-hole, and a combination 

of surface and down-hole arrays. The orientation of bedding was found to dictate the 

effectiveness of the ERT layout. 

A statistical analysis was undertaken to explore effects of spatial variability of the 

resistivity-moisture relationship on imcertainty in relating the change in resistivity to the 

change in water content in the vadose zone. Samples were collected to quantify spatial 

variability of the resistivity-moisture relationship in the field. Numerical experiments then 

illustrated how the spatially varying relationship exacerbated the level of uncertainty in the 

interpretation of change of moisture content based on the estimated change in resistivity. 
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1. Introduction 

The dc resistivity survey is an inexpensive and widely used technique for 

investigation of near surface resistivity anomalies and it recently has become popular for the 

investigation of subsurface pollution problems (NRC, 2000). In principle, it measures the 

voltage generated by transmission of current between electrodes implanted at the ground 

surface. Apparent (bulk or effective) resistivity is then calculated and used to interpret 

subsurface structures. 

The conventional resistivity survey includes vertical sounding and profiling (Sharma, 

1997). Vertical sounding intends to provide a resistivity map as a function of depth. In a 

sounding, voltage probes are fixed at a center location in between two source electrodes and 

voltages are measured at a variety of source electrode separation distances (i.e., the 

Schlumberger array). The depth of investigation increases with separation distance. In the 

classical interpretation of the sounding survey, the apparent resistivity for a given source 

electrode separation distance is determined using the voltage measurement and an analytical 

model that assumes resistivity homogeneity of the subsurface. Because of the homogeneity 

assumption, the calculated resistivity represents a spatially averaged resistivity value over 

a volume of geological media that varies with the distance between the source electrodes. 

The greater the distance between the source electrodes, the greater volume the apparent 

resistivity represents. As a result, sounding is most suitable for the cases where the 

geological formation is made of only a few layers with significant resistivity contrast or 

where a relatively uniform formation embeds some simple objects of resistivity distinctly 

different firom the surrounding media. For more complex heterogeneity patterns, deciphering 
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signals from the survey becomes more difficult, subjective, non-unique and highly uncertain 

due to the averaging nature of the apparent resistivity. 

Profiling is used to detect lateral changes in resistivity. In profiling, the spacing 

between current electrodes and between the two voltage probes is fixed, and the relative 

position of the electrodes and probes array is also fixed in space, but the entire array is 

moved laterally (i.e., the Wenner array). At a given array position, measurements of current 

and voltage are used to determine the apparent resistivity, by using an analj^ical formula that 

assumes subsurface homogeneity. Again, the estimated apparent resistivity is a volume-

averaged property. As a consequence, the estimated resistivity field is generally very smooth 

unless there is a distinct resistivity anomaly in the subsurface. 

Because the homogeneity assimiption is implicit in the formulas for calculating 

apparent resistivity, and the potential field is smooth due to its highly diffusive nature, 

conventional interpretations of resistivity survey data have been virtually ineffective in 

environmental hydrology or pollution applications, where resistivity anomalies are subtle, 

complex, and multi-scale. To overcome these difficulties, a contemporary resistivity survey 

collects extensive current and electrical potential data sets in multi-dimensions. Without 

assuming subsurface homogeneity, a mathematical computer model is employed to invert the 

data sets to estimate the resistivity field, using the minimimi output error (MOE) criterion 

(e.g., Ellis and Oldenburg, 1994; Li and Oldenburg, 1994; Zhang et al., 1995; and Daily et 

al., 1992). However, the general xmiqueness and resolution of the three-dimensional 

resistivity inversion have not been sufficiently investigated thus far (NRC, 2000). 

While the physical process is different, the governing equation for electrical currents 
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and potential fields created in the resistivity survey is analogous to that for steady flow in 

saturated porous media. The mathematical solution to the inversion of a resistivity survey 

is, thus, similar to that of a groundwater hydrological survey. Groundwater hydrologists and 

reservoir engineers have attempted to solve the inverse problem of flow through 

multidimensional, heterogeneous porous media for the last three decades (Galvalas, 1976). 

Yeh (1986) and McLaughlin and Townley (1996) provided extensive reviews on the inverse 

problem of subsurface hydrology and various solution techniques. They concluded that, in 

general, prior information on the geological structure, and some point measurements of 

parameters to be estimated, such as hydraulic conductivity, are necessary to better constrain 

the solution of the inverse problem when a MOE approach is used. 

Groundwater hydrologists also have employed a multi-component linear estimator 

(cokriging) to estimate the hydraulic conductivity field fi-om scattered measurements of 

pressure head and hydraulic conductivity in saturated flow problems (Kitanidis and 

Vomvoris, 1983; Hoeksema and Kitanidis, 1984). Its popularity is attributed to its ability to 

incorporate spatial statistics and point measurements of conductivity and head into the 

estimation and to yield conditional mean estimates. Moreover, it is capable of quantifying 

the uncertainty associated with the estimate. Cokriging is, however, a linear estimator and 

is limited to mildly nonlinear systems, such as groimdwater flow in geological formations 

of mild heterogeneity (variance of the natural log of conductivity, c7^,ogK=0.1). When the 

degree of aquifer heterogeneity is large (cj^iogK> 1) aiid the linear assumption is inappropriate, 

cokriging does not provide a good estimate of the conditional mean conductivity field (Y eh 

et al., 1996). In other words, it does not take full advantage of the head information to obtain 
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an optimal estimate of the hydraulic properties. 

To overcome this shortcoming, Yeh et al. (1995 and 1996), and Zhang and Yeh 

(1997) developed an iterative geostatistical technique in which a linear estimator was used 

successively to incorporate the nonlinear relationship between hydraulic properties and 

pressure head. This method is referred to as a successive linear estimator (SLE). They 

demonstrated that with the same amount of information, the SLE revealed a more detailed 

conductivity field than cokriging. Hughson and Yeh (1998 and 2000) showed that the SLE 

is computationally efficient compared to the classical inverse method. They extended it to 

the inverse problem in three-dimensional, variably saturated, heterogeneous porous media. 

Based on the SLE, Yeh and Liu (2000) recently developed a sequential inverse technique for 

hydraulic tomography (similar to electrical resistivity tomography) to process the large 

amount of data created by tomography to characterize aquifer heterogeneity. While 

demonstrating the robustness of the inverse method, they also investigated the effect of 

monitoring intervals, pumping intervals, and the number of pumping locations on the final 

estimate of hydraulic conductivity. Guidelines for optimal design of a hydraulic tomography 

test are subsequently established. 

In this paper, we extend the inverse methodology developed by Yeh and Liu (2000) 

to the three-dimensional, electrical resistivity tomography (ERT) problem. This method 

allows prior information of the resistivity fabric, and point measurements of voltage and 

resistivity, if any, to be included in the interpretation of the results of the ERT. We used 

numerical simulations to illustrate the robustness of the approach and discussed pros and 

cons of surface and down-hole resistivity surveys. We sampled twenty-seven cores in a field. 
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conducted laboratory measurements to determine the relationship between resistivity and 

moisture content of the core samples, and analyzed its spatial variability. Subsequently, 

impacts of the spatial variability on the estimated changes in moisture content in the vadose 

zone, based on ERT, were explored and discussed. 

2. Stochastic Conceptualization of Resistivity Field and a Geostatistically-Based 

Inversion Technique 

Assume that in the geological formation, the current flow induced by electrical 

resistivity survey can be described by 

where (f)is electrical potential [V], /represents the electrical current source [A/m^], i denotes 

the electrical current density per unit area, and a is the electrical conductivity [S/m], a 

reciprocal of resistivity, p [Qm], which is assumed to be locally isotropic. Electrical 

conductivity or resistivity of geological media varies spatially due to inherent heterogeneous 

geological processes (Sharma, 1997). One way to describe the spatial variability of the 

electrical conductivity is the stochastic representation approach, similar to that used by 

geohydrologists for the variability of hydraulic properties of aquifers and vadose zones (see 

V-(c7(x)V<zJ) + /(jc) = 0 (1) 

subject to boundary conditions 

^ and <j{x)V(f) 
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Gelhar, 1993; Yeh, 1998). Specifically, the natural log of electrical conductivity, logo (x), 

of a geological formation is to be considered as a stochastic process with a mean, <logo>=F 

(< > denotes the expected value) and perturbation,/ which has an infinite number of possible 

realizations, characterized by a joint probability distribution. Note that the use of natural 

logarithm transformation is merely a mathematic convenience. Similarly, the electrical 

potential field induced during an ERT survey is considered as a stochastic process and 

presented by 4^x) =H(x)+h(x), where H=< (p(xp' and h is the unconditional perturbation of 

electrical potential. 

Suppose that we have electrical conductivity measurement (referred to as primary 

information), /*= (log <J* - F) where i=I, 2, ... , oi core samples at rij- locations. 

Additionally, we have estimated the mean and correlation structure of the electrical 

conductivity field fi^om these core samples. It is further assumed that during an ERT survey, 

we have collected m sets of observed electrical potential values, hj*. wherej =nj+l, nfr2, 

... n^+m X during m ERT surveys. These electrical potential data sets are hereafter 

referred to as secondary information. We then seek an inverse model that can produce 

electrical potential and electrical conductivity fields that preserve the observed electrical 

potential and electrical conductivity values at sample locations, and satisfy their underlying 

statistical properties (i.e., mean and covariance, etc.) and the governing electrical potential 

equation. In the conditional probability concept, such an electrical potential field or 

electrical conductivity field is a conditional realization of 0 or loga field, respectively, 

among many possible realizations of the ensemble. A conditional electrical conductivity 
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field, then, can be expressed as the sum of conditional mean electrical conductivity and its 

conditional perturbation, \oga^ (x)= F^(x)+/^(x). Similarly, the conditional potential field can 

be written as =H/x)+h^ (x) (the subscript c denotes conditional). While many possible 

realizations of such conditional logcand fields exist, the conditional mean fields (i.e., 

Fj(x) and H/x)) are unique although not necessarily the true fields. 

One way to derive these conditional mean fields is to solve the inverse problem to 

derive all possible realizations of resistivity fields that preserve measured resistivity and 

potential values at sampled locations and satisfy the underlining spatial statistics of the 

resistivity field and the governing equations. Then, an average of all the possible realizations 

produces the conditional mean resistivity field (see Hanna and Yeh, 1998, for hydrological 

inverse problems). Another way to derive the conditional mean field is to solve the inverse 

problem in terms of the conditional mean flow equation. The conditional mean equation can 

be formulated by substituting the conditional stochastic variables into the governing 

electrical current flow equation (1) and taking the expected value. The conditional mean 

equation takes the form: 

V • [f^ {x)VH^ (x)] + (V • [/^ {x)Vh^ (;c)]) + I{x) = 0 (3) 

where the current source I(x) is deterministic. Notice that the true conditional mean ^^(x) 

and HJx) fields do not satisfy the continuity equation (3) unless the second term involving 

the product of perturbations, (V-[/c(x)VA^(x)]^, in (3) is zero. This term represents the 

uncertainty due to lack of information of the two variables at nonsampled locations. It 
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becomes zero only imder two conditions: 1) all the electrical conductivity values in the 

domain are specified (i.e.,^ (x)= 0); or 2) all the electrical potential values in the domain are 

known (i.e., measured) so that (x) is zero everywhere. In practice, these two conditions 

will never be met and evaluation of this term is intractable. Consequently, we will assume 

that this term is proportional to the conditional mean potential gradient such that we can 

rewrite the mean equation as 

V.[F,^(x)Vif,W] + /(;r) = 0 (4) 

Notice this conditional mean equation has the same form as (1) but the variables are 

expressed as the conditional effective electrical conductivity, and conditional mean 

electrical potential field, H/x). The conditional effective electrical conductivity is a 

parameter field that combines the conditional mean electrical conductivity F<.(x) and the ratio 

of the second term to the conditional mean potential gradient. Based on the concept of the 

conditional mean equation (4), the optimal inverse methodology is the one that can derive 

the conditional effective electrical conductivity that will produce a conditional mean 

electrical potential field in (4), a smooth field that preserves values of potential 

measurements. The successive linear estimator (SLE) approach, developed by Yeh and his 

coworkers, is most appropriate. The SLE starts with the classical cokriging technique using 

observedf^* and hj* collected in one ERT survey to construct a cokriged, mean-removed log 

electrical conductivity map. That is, 

fkiXo)=J.^iofhxi)+ Z Mjofyxj) (5) 
/=1 y=«^+l 
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where f^(xj is the cokriged / value at location XQ. Then, electrical conductivity is 

obtained by exp [F+f/xJ]. and are the cokriging weights associated with XQ , which 

can be evaluated as follows; 

/=1 j=nf+\ 
(6) 

rif n^+n^ 
Y.Xi^Rhf{x^,Xi)+ S ^pRhh{x^,Xj) = R,,f{x„,x^) £ = nf + \,nj- + 2,...,nf + nh 
/=1 j=nj-+\ 

where Rp R^^, and Rp,, are covariances of/ and h, and the cross-covariance of/ and h, 

respectively. The covariance R^h, and the cross-covariance Rp, in (6) are derived from the 

first-order numerical approximation (similar to equations (9) - (11)). 

As mentioned in the introduction, the information on electrical potential may not be 

fully utilized by cokriging because of the nonlinear relationship between / and h and the 

linear assumption embedded in cokriging. To circumvent this problem, a successive linear 

estimator is used. That is, 

= "T (7) 
J=n/+I •• •' 

where cOj^ is the weighting coefficient for the estimate at location x^ with respect to the 

potential measurement at location Xj, and r is the iteration index. is an estimate of the 

conditional mean of logo; which is equal to the cokriged log electrical conductivity field, 
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+ F.zXr =0. The residual about the mean estimate at an iteration r is y '"(i.e., y '= logo -

Y^''^). In (7), (pj''' is the potential at thef" location of the solution to (4) at iteration r and (ZJ* 

is the observed potential at location j (i.e., <p*j = Hj + h*). The values of <y are determined 

by solving the follow^ing system of equations: 

y=n^+l 

v^here and s^y, are the error covariance (or conditional covariance function) and error 

cross-covariance (or conditional cross-covariance), respectively, at each iteration, A: is a 

stabilizing term and <5yis an identity matrix. Diuing the iteration, the stabilizing term is 

added to the diagonal terms of the left-hand side matrix of equation (8) to numerically 

condition the matrix, and thus to assure a stable solution. A larger term can result in a slower 

convergence rate, and a smaller value may lead to numerical instability. In our approach, this 

stabilizing term is determined dynamically as the product of a constant weighting factor and 

the maximvmi value of the diagonal terms of % at each iteration. 

The solution to (8) requires knowledge of £i,y and which are approximated at each 

iteration. Based on the first-order analysis, electrical potential at the r* iteration can be 

written as a first-order Taylor series: 

(P = « G(}^^') + 
<^]na 

(9) 

where G(}^^''^) represents the resulting potential of the conditional mean equation (4) 
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evaluated with parameters, , which was previously estimated. In other words, the first-

order approximation of the residual h'''' is written as 

^(r) _ .  ^  

^\n.a 
(10) 

where Jean be evaluated using an adjoint state sensitivity method (Sykes et al., 1985; Sun 

and Yeh, 1992; Li and Yeh, 1998) subject to boundary conditions. Using (10), we then 

derive the approximate covariance of h"'' and cross-covariances between y'"'' and 

where J is the sensitivity matrix of XN, and superscript T represents the transpose, is 

the covariance of y, which is given by 

rzj-
^yyip^o'>^k^ ~ 21 (12) 

i=l j=n^ 

at iteration r = 0, where k = 1,2,..., N, and A and jj. are cokriging coefficients. Equation (12) 

is the cokriging variance \.fx=x,^. For 1, the covariances are evaluated according to 

nj-+ni, 

Z = «y+1 

These covariances are approximate conditional covariances. Hanna and Yeh (1998) 
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investigated the accuracy of this approximation. 

After updating 7^ (x), the mean flow equation (4) is solved again with the newly 

updated for a new potential field, 0. Then, both the change of the variance of the 

estimated electrical conductivity field and the change of the largest potential misfit, among 

all the monitoring locations between two successive iterations are evaluated. Ifboth changes 

are smaller than prescribed tolerances, the iteration stops. If not, a new and are 

evaluated using (11). Equation (8) is then solved to obtain a new set of weights which are 

used in (7) with ((p* -(pjto obtain a new estimate of . 

The above discussion describes the SLE for only one set of primary and secondary 

information during an ERT experiment. This algorithm can simultaneously include all of the 

potential data collected during all the ERT operations in the sequence. Nevertheless, the 

system of equations in (6) and (8) can become extremely large and ill conditioned, and stable 

solutions to the equations can become difficult to obtain (Hughson and Yeh, 2000). 

To avoid this problem, the potential data sets are used sequentially. Specifically, our 

method starts the iterative process with the available electrical conductivity measurements 

and the potential data set collected fi-om one of the ERT surveys. Once the estimated field 

converges to the given criteria, the newly estimated electrical conductivity field, >;(x), is the 

effective electrical conductivity conditioned on potential data, due to emission of the current 

source at the first location, and the residual electrical conductivity covariance is the 

corresponding conditional electrical conductivity covariance. This conditional effective 
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electrical conductivity is, then, used to evaluate the conditional mean potential and sensitivity 

matrix, associated with the current source at the next location. Based on (11), the sensitivity 

matrix in conjunction with the conditional electrical conductivity covariance then yields the 

potential covariance and cross-co variance of potential and electrical conductivity that reflect 

the current source at the next location, which are subsequently employed in (8) to derive the 

new weights. With the conditional mean potential, new weights, and the observed potential, 

equation (7) yields the electrical conductivity estimate, representing the first estimate based 

on the information from the current source at the new location. The iterative process is then 

employed to include the nonlinear relationship between electrical potential and electrical 

conductivity. The same procedure is used for the next current source location. In essence, 

our sequential approach uses the estimated electrical conductivity field and covariances, 

conditioned on previous sets of potential measurements, as prior information for the next 

estimation based on a new set of current source data. It continues until all the data sets are 

fully utilized. Such a sequential approach allows accumulation of high-density, secondary 

information obtained from ERT, while maintaining the covariance matrix at a manageable 

size that can be solved with the least nimierical difficulties. More importantly, this 

sequential approach allows one to collect potential data sets over a large area sequentially 

and thus, avoids complex and expensive cables, probes, and data loggers. The algorithm is 

similar to the one developed for subsurface hydrology, which has been tested numerous times 

wdth numerical examples and even sandbox laboratory examples (Yeh et al., 1996; Yeh and 

Zhang, 1996; Hughson and Yeh, 2000; Yeh and Liu, 2000). Vargas-Guzman and Yeh 

(1999) provided a theoretical proof to show that such a sequential approach is identical to 
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the simultaneous approach for linear systems. 

3. Numerical Examples 

To demonstrate our inverse method, the vertical profile of a hypothetical geological 

formation (200 cm x 200 cm) was created and descretized into 400 elements of 100 cm^. 

A stochastic random field generator developed by Gutjahr (1989) was employed to assign 

an electrical conductivity value to each element, assuming that the electrical conductivity 

field had a mean of 0.01261 S/m and an exponential correlation structure with a variance of 

0.5 for log<7. The correlation structure was anisotropic with a horizontal correlation of 240 

cm and a vertical correlation scale of 20 cm. This anisotropic structure yielded 

heterogeneous and stratified electrical conductivity distribution shown in Figure la. 

On the basis of this hypothetical field, three ERT survey layouts were investigated: 

1) the surface ERT survey—deployment of the electrode array on the surface (Figure lb); 2) 

the down-hole ERT survey— the electrode array deployed along two vertical bore holes 

(Figure Ic); and 3) the combination of surface and down-hole ERT survey (Figure Id). 

During each ERT survey in all the three layouts, a pole-pole array was used. That is, one 

current electrode was placed at a great distance fi:om the field so that only one source 

electrode was considered. Similarly, for measuring the voltage potential, one electrode was 

placed at a fixed location as a reference and the potential was obtained fi^om the other at 

different locations. By moving the current electrode firom one position to different locations, 

a large number of voltage/current data sets were obtained for the ERT survey. 

Once the voltage/current data were obtained, our sequential inverse approach was 
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employed to interpret the data. Figures lb, c, and d show the estimated/fields for layouts 

1, 2, and 3, respectively. According to these figures, the surface ERT provides detailed 

information of electrical resistivity distribution only close to the land surface (Figure lb), 

while the down-hole electrode array resulted in a better estimate of electrical resistivity field 

throughout the entire domain (Figure 1 c). A combination of the surface and the down-hole 

electrode array 3delds an image of the resistivity field with the best resolution overall (Figure 

id). This conclusion is also manifested in Figures le, f, and g, where the corresponding 

conditional variance distribution for each scenario is shown. 

The conditional variance at a location (Equation 13 with Xo=Xk) reflects the 

uncertainty of an estimate at the location. For example, if the resistivity at a location is 

known exactly, the conditional variance at the location is zero. Otherwise, the conditional 

variance is equal to the variance of the resistivity field. Therefore, the smaller the 

conditional variance at a given location, the better the estimate. Figure 1 e shows that surface 

ERT yields small conditional variances only near the land surface where voltage 

measurements were taken. The variance increases rapidly with depth, indicating that the 

effectiveness of the survey decreases due to the stratification of the resistivity field of the 

medium. Notice that the stratification is denoted statistically by the long correlation scale 

in the horizontal direction and short correlation scale in the vertical direction during the 

generation of the resistivity field. 

In the case of down-hole ERT, the conditional variance distribution shows that high-

resolution estimates again were obtained at the locations where voltage measiorements were 

collected (Figure 1 f). However, the long correlation scale of resistivity(stratification) in the 
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horizontal direction enhances the propagation of the effect of voltage measurements over a 

greater distance. As a consequence, the down-hole electrode array covers a greater area than 

the surface array and is more effective for depicting the resistivity distribution in 

horizontally-stratified geological formations. 

While the conditional variance provides uncertainty of the estimate, it is an ensemble 

statistics, which may not be appropriate for a single realization as in these examples. A 

better means to compare the estimated resistivity field with the true field is to use the average 

absolute error norm, LI and the mean square error norm, L2, which are defined as: 

where and f. represent the true and estimated perturbation of the log-transformed 

electrical conductivity, respectively, i indicates the element number and n is the total number 

of elements. The smaller the LI and L2 values, the better the estimate. Figures 2a, b, and 

c show plots of the true field vs. the estimated and the LI and L2 values associated with the 

three layouts. The results are consistent with those based on the conditional variance 

criterion. Also illustrated in the figures is the discrepancy between the true and the estimate 

(scattering around the 45-degree line) due to the limited measurements of the potential field. 

In the above inversion examples, the voltage/current measurements were assumed to 

be error-firee and statistical parameters such as mean, variance, and correlation scales 

required for the inversion were assumed to be known or estimated beforehand. Effects of 

error in measurements and imcertainty of the statistical parameters on the estimate were 

(14) 
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reported by Yeh and Liu (2000) for hydraulic tomography. In short, they found that 

uncertainty of the statistical parameters does not influence the estimate significantly if 

sufficient and accurate secondary information is available. However, errors in point 

measurement of electrical conductivity or voltage can have significant impacts on the 

estimate. They reported that the benefit vanishes rapidly when increasing the niunber of data 

sets by varying the source location during the tomography. In addition, they investigated 

network design issues, such as the sample interval for head measurements and the location 

of pumping in terms of the correlation scale of the heterogeneity. We believe these results 

also hold for the ERT. 

4. Relating Water Content to Resistivity Distribution 

During an infiltration event, water content of geological media is generally the only 

element that undergoes dramatic changes. Therefore, tracking the change in resistivity has 

often been regarded as a useful means to delineate the change of the water content in the 

vadose zone. Specifically, an ERT survey is conducted on a site before an infiltration event 

in order to obtain the backgroimd distribution of electrical resistivity. Following an 

infiltration event, the ERT survey is undertaken again to obtain the resistivity distribution 

after the infiltration. Next, the change in resistivity is used to interpret the movement of the 

water plume from infiltration, assuming a relationship between resistivity and water content. 

In order to relate the water content to resistivity, a power law has often been used 

P=PoO-'" (15) 
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(e.g., Knight, 1991): 

where p is bulk resistivity, is a fitting parameter that is related to the resistivity of pore 

water, w is a fitting parameter, and ^denotes water content. Using (15), the difference 

between the log resistivity before and after infiltration then becomes: 

A log(/7) = -wA log(^) (16) 

This equation shows that if m is constant and is known precisely, then the change of log 

resistivity is linearly proportional to the change of log water content. However, the change 

in log resistivity may not directly correspond to the change of log moisture content if m 

exhibits significant spatial variability or is a random variable. This implies that the same 

amount of change in moisture content may lead to different amounts of change in resistivity 

in different media. Notice the variability of y9^doesnotplayanyrolein(16). A statistical 

analysis based on (16), assuming independence between m and d, leads to an expression for 

the variability in change in log resistivity: 

var[A log(p)] = var[A log(^)] + 0^ var[w] (17) 

where var[Alog {&)], var[Alog(/9)], and var(m) are variances of Alog(^, Alog {p) and m, 

respectively. The change in mean log( d) is denoted by 0 and M is the mean value of m. As 

suggested by (17), the variability of Alog(/3) depends on not only the variance of Alog( 6) but 

also the variance (spatial variability) of m and the mean of Q. It is, then, logical to ask what 

the magnitude of variability of these parameters might be in the field. 
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5. Variability of Resistivity-Moisture Content Relationship 

To investigate the spatial variability of and m in the field, sediment hydraulic 

properties, including electrical resistivity as a function of moisture content, were measured 

for samples collected from the Sandia-Tech Vadose Zone (STVZ) infiltration field site 

located in Socorro, NM. The field site sediments are mapped as part of the Sierra Ladrones 

Formation, Upper Santa Fe Group consisting of fine-coarse grained, poorly consolidated, 

ancestral Rio Grande axial-river deposits with intermittent layers of debris flow sediments 

and sedimentary layers of eolian sands (see Brainard et al., 2001 for a complete site 

description). Twenty-seven samples were collected from eight 5-ft lengths of a continuous 

core from a borehole at the field site. Because the samples were highly unconsolidated and 

easily disintegrated, they had to be repacked into sample rings to bulk density values based 

on preliminary in situ measurements and tabulated values for deposits of similar texture (van 

Genuchten et al., 1991). The desired bulk density was estimated to be 1.53 g/cc for fine-

medium sand, 1.61 g/cc for medium-coarse sand, and 1.34 g/cc for clays. The samples were 

then placed in the hanging column apparatus and were allowed to reach moisture equilibrium 

at tensions from 100 cm down to 0 cm to obtain the main wetting curve (MWC). Also, we 

reversed the process measuring moisture retention for the main drainage curve (MDC) 

starting at the satiated moisture content. Pressure chambers were used to drain the samples 

at high pressures greater than 100 cm. Moisture equilibrium was determined during 

imbibition by weighing the samples daily and observing changes in moisture content. 

Equilibrium was determined during drainage by monitoring the water level in the burette. 
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Electrical resistivity was determined at each moisture equilibrium point for both the 

MWC and MDC by placing the sample in the impedance analyzer sample holder, and 

applying a logarithmic sweep of frequencies across the sample. A Hewlett Packard model 

4129A LF (Knight, 1991) impedance analyzer was connected to a personal computer for 

automated data acquisition of impedance measurements during application of a logarithmic 

sweep of frequencies of current to the sample. The impedance value corresponding to the 

frequency not affected by polarization at the sample/electrode interface was used to calculate 

electrical resistivity by multiplying the sample impedance by the ratio of the sample cross-

sectional area to the sample length (Knight, 1991). A plot of resultant resistivity at each 

moisture content for the twenty-seven cores is shown in Figure 3. Significant variability of 

the relationship between resistivity and moistiu-e content exists. 

Equation (15) was fit to the measured resistivity and moisture data to determine the 

values for and m. Assuming both and m follow log normal distributions, the statistics 

for these two parameters of the core samples are shown in Table 1. A spatial statistical 

analysis was also conducted and results are shown in Table 2. In general, the two 

parameters exhibit significant spatial variabihty, especially, the parameter m, but they are 

correlated over space, and the variation appears to correspond to the lithology of the field 

site. Further, we foimd that the relationship between electrical resistivity did not appear to 

be hysteretic [Baker, 2001]. 

6. Uncertainty in Hydrological Interpretation 

To illustrate the effect of spatial variation of m on the interpretation of change in 
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water content based on change in resistivity, we investigated two possible scenarios in a 

hypothetical vadose zone of200 cm x 200 cm: 1) the resistivity field before infiltration and 

the resistivity field after infiltration were known precisely; and 2) the resistivity fields were 

estimated with some uncertainty fi-om a down-hole ERT survey. 

The hypothetical vadose zone was descritized into 200 elements, and each element 

has a dimension of 20 cm in the horizontal direction and 10 cm in the vertical. The 

unsaturated hydraulic properties of each element were assimied to be described by the 

Mualem-van Genuchten model [van Genuchten, 1980]: 

(18) 

The variability of saturated moisture content, 6^, and residual moistiu^e content, 6^ is 

generally negligible; both were treated as deterministic constants with a value of0.366 and 

0.029, respectively. However, the parameters, a and n were considered as random fields 

with the geometric mean of0.0063 cm/sec, 0.028 1/cm and 2.0, respectively. The variances 

of log log a and log n were 0.1, 0.1, and 0.01, respectively. Also assumed was that all 

three parameters possessed the same exponential correlation structure with a horizontal 

correlation scale of 240 cm and a vertical correlation scale of 20 cm. Following the 

generation of random hydraulic parameter fields, a hydrostatic pressure distribution with zero 

pressure at the bottom was assigned to the vadose zone as the initial condition and the 

corresponding water content distribution was considered as the background water content 

distribution (Figure 4a). Next, a steady infiltration event was simulated using a finite 
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element model for flow and solute transport in variably saturated media: MM0C2, developed 

by Yeh et al. (1993). The top center of the vadose zone (from x=80 cm to 120 cm at z = 200 

cm) was treated as a constant head boundary with pressure head of -80 cm, the remainder 

of the surface and the two sides of the zone as no-flux boimdaries, and the bottom as the 

water table. Once the simulation of the steady flow field was completed, the resulting water 

content distribution was denoted as the water content after infiltration (Figure 4b). The 

change of the log-transformed water content distribution before and after the infiltration was 

then computed (Figure 4c). 

In order to convert the simulated moisture content distribution to a resistivity field, 

each element of the vadose zone was assigned a pair of PQ and m values using the random 

field generator. For the two aforementioned scenarios, three m fields were generated with 

a mean of 1.35 and log m variances, 0.0, 0.033, and 0.1 for cases 1, 2, and 3, respectively. 

While the three cases have different m fields, they have an identical pg field with a geometric 

mean of 8.5 and variance of log pg of 0.1. Again, similar to the hydraulic parameter field, 

these fields have an exponential correlation structure with a horizontal correlation scale of 

240 cm and the vertical correlation scale of 20 cm. While hydraulic parameter fields, p^, and 

m fields are spatially correlated, they are statistically imcorrelated among themselves. 

For scenario 1, where the resistivity field is assumed to be known precisely, equation 

(15) was used in conjunction with the generated pg, m, and the background water content 

distribution to construct the background resistivity map for this hypothetical site. Similarly, 

a resistivity distribution was obtained, corresponding to the water content distribution after 

infiltration. Then, the change in log transformed resistivity was derived by subtracting the 
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log resistivity infiltration fi-om the background log resistivity. The change in log p for cases 

1,2, and 3 are shown in Figures 5a, 5b, and 5c, respectively and are plotted against mA\og(6) 

of case 1 (Figures 6a, 6b, and 6c) with the values of LI and L2. 

According to Figures 4c, 5a, 5b, and 5c , the change in log resistivity reflects the 

change in log water content only if the information of resistivity is known exactly and m is 

a constant (i.e., var(/w)=0 in (17), see Figure 6a). However, the discrepancy between the 

change in log resistivity and the change in log of water content grows as the variance of m 

increases (Figures 6b and 6c). In other words, due to variability of the parameter, m, 

different parts of a geological medium can exhibit different amounts of change in resistivity 

even if they undergo the same amount of change in water content. 

In scenario 2, the background resistivity distribution and the distribution after 

infiltration are no longer known exactly. Instead, both resistivity distributions were 

estimated using our sequential inverse approach to interpret the ERT data collected from the 

down-hole survey, illustrated in Figures 5d, e, and f Specifically, forward simulations of 

ERT surveys of the resistivity fields, created from the random po and m fields and water 

content distributions before and after infiltration in scenario 1, were conducted to yield 

potential measurements at specified monitoring locations. Afterwards, these measurements 

were used in the inverse model to derive estimated resistivity fields. The change in log/7 for 

cases 1, 2, and 3 were then calculated and shown in Figures 5d, 5e, and 5f, respectively. 

They also are plotted against mh\og(6) of case 1 and shown in Figiu-es 6d, 6e, and 6f) with 

the values of LI and L2. Again, the measurements were considered error free and other 

inputs to the model were assiuned to be known exactly. 
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In this case, our estimated resistivity fields involve uncertainty due to limited 

information. A comparison of Figure 4c and Figure 5d (or Figure 6d) shows that even with 

this uncertainty, the change in log resistivity still resembles the change in log water content 

when m is constant. The resemblance deteriorates though as the variance of m increases 

(Figures 6e and 6f). Anomalous change in resistivity was estimated near the locations 

(Figure 5f) where potential measurements were taken, indicating that the greater variation 

in m can exacerbate the effect of the limited data set on the interpretation of ERT results as 

indicated by (17). As a consequence, interpretation of the change in moistm-e content based 

on the change in resistivity can be misleading, depending on the accuracy of ERT data 

inversion, the mean value of m, the amoimt of change in mean log moisture content, and the 

variability of m. 

We note that our illustrations consider only variation of parameters of the simple 

power law for the resistivity-moisture relationsliip in the synthesized vadose zone. Under 

field conditions, many other factors can further complicate the interpretation of an ERT 

survey, and the validity of the power law deserves further explorations regarding the 

resistivity-moisture relationship. For instance, while the power law fits our field data quite 

well, it may not be suitable for other geological media. It is also well known to be sensitive 

to salt concentration, clay content, ion exchange, temperature (Keller, 1987) or other site-

specific attributes. 

While the resistivity in this study is assumed to be locally isotropic, in the field it can 

be anisotropic and measurement-scale dependent. The resistivity anisotropy of a medium 

at a given measurement scale, similar to hydraulic conductivity anisotropy, is an artifact due 
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to averaging distinct resistivity values of layers of material at scales smaller than the 

measurement scale. The anisotropy, therefore, depends on the average length and thickness 

of the layers, and the variance of layer resistivity, which may vary w^ith the scale of 

measurement (or the size of descritization of the domain used in ERT inversion). In general, 

the resistivity is greatest in the direction perpendicular to layering and least in the direction 

parallel to layering. Moreover, because the resistivity of each layer can vary with moisture 

content and thus its variability among the layers, anisotropy of the averaged bulk resistivity 

is expected to vary with moisture content. Specifically, we expect that the ratio of the bulk 

resistivity, in the direction perpendicular to layering, to the bulk resistivity, in the direction 

parallel to layering, increases as the medium becomes less saturated, in a manner similar to 

moisture-dependent anisotropy in unsaturated hydraulic conductivity described by Yeh et al., 

(1985 a and b). These possible complications necessitate ftirther theoretical and 

experimental investigations of the fundamental resistivity-moisture relationship. Their 

effects on the inversion of ERT and its hydrological interpretation deserve further 

investigations. 

7. Conclusions 

A sequential, geostatistical inverse approach for hydraulic tomography was adapted 

for electrical resistivity tomography. The sequential inverse approach mimics the sequential 

ERT data collection scheme commonly employed in the field survey to reduce equipment 

costs. The inverse method also allows one to include point measurement of resistivity, in 

addition to potential measurements from the ERT survey, and information of geological 
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structures through statistic covariances to constrain the estimate of the resistivity field. The 

sequential approach is computationally efficient, allows fine-grid descritization of the 

solution domain, and permits sequential inclusion of different data sets. Furthermore, the 

conditional variance in the inverse model quantifies uncertainty in the estimate. 

Through numerical experiments based on our inverse approach, we showed that 

geological bedding dictates effectiveness of the sampling array of ERT: sampling 

perpendicular to bedding (down-hole array) increases resolution of the resistivity estimate 

due to the long correlation in the direction parallel the bedding. On the other hand, the long 

correlation scale along bedding and the short correlation scale perpendicular to bedding 

restricts the effectiveness of the surface array (sampling parallel to bedding) to a shallow 

depth. 

Great variability of the resistivity-moisture relationship was found to exist in our field 

samples. Both the theoretical analysis and numerical experiments suggested that such a 

spatially varying relationship exacerbates the level of uncertainty in the interpretation of 

change of moisture content based on the estimated change in resistivity. These results call 

for additional studies of the xmderlying physics of the resistivity-moisture relationship and 

its spatial variation, and for development of better methodologies for incorporating this 

variability in the interpretation of the ERT survey, such that ERT can be better appHed for 

hydrologic purposes. 
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Table. 1. Statistics of fitting parameters and m 

parameter Mean(Qm) Variance(^2m)^ Std. Dev.(Qm) % C.V. 

Po 7.036 0.633 0.796 40.8 

m 1.336 0.034 0.185 63.72 

Table 2. Parameters of fitted sample variogram models for pgand m 

Parameter Model Sill (Qm)^ range (m) Nugget (Qm)^ 

Po exponential 20 4.6 2.8 

m exponential 0.05 3 0.035 
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Figure 1. 

Illustrations of effectiveness of the electrical resistivity survey: a) the synthesized "true" 
resistivity field, b) the estimated resistivity field from the surface array, c) the field from the 
down-hole array, d) the field from the combination of the surface and down-hole array, 
figures e, f and g are the conditional variance distributions correspond to figures b, c, and 
d. The square presents the resistivity sample location, circles indicate current source 
locations and triangles indicate voltage measurement locations. 
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Figure 2. The scatter plots and values of LI and L2 for the surface array, down-hole array 
and the combination of surface and down-hole array in Figure 1. 
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Figure 3. Resistivity-moisture relationships of the field. 
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Figure 4. Simulated moisture content distributions: a) before infiltration, 2) after infiltration, 
3) the difference. 
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Figure 5. a, b, and c show the change in log resistivity for scenario #1 with three different 
values for the variance of m: 0.0,0.033, and 0.1, respectively. The changes in log resistivity 
for scenario #2 with the same variances are shown in d, e, and f. The square presents the 
resistivity sample location, circles indicate current source locations and triangles indicate 
voltage measurement locations. 
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Figure 6. The scatter plots and values of LI and L2 for the cases in Figure 5. 
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Abstract 

The electrical resistivity tomography (ERT) technique, which utilizes a limited 

number of bore holes has been a natural tool for detecting moisture content in the vadose 

zone without intensive and destructive sampling. However, a reliable and accurate image 

of water content distribution requires a sound inversion algorithm to interpret the ERT 

data sets. In this paper, a hydro-geophysical inverse approach, which conditions on 

available point measurements of resistivity, water content and voltage, was proposed to 

better interpret ERT data sets with less uncertainty. While the classical conversion of the 

resultant resistivity field to water content distribution often assumes a constant empirical 

relationship between resistivity and water content, our approach attempted to reflect the 

true image of water content distribution by taking into account the strong spatial 

variability of this relationship exhibited by field data. To process the ERT data sets more 

efficiently with less numerical difficulty, our conditioning approach was performed 

sequentially. 

In this study, 2-D numerical experiments were first conducted to investigate the 

effect of imcertainties associated with model input such as mean and covariance function 

of water content. Then the usefulness of our approach was demonstrated by directly 

estimating the moistiu-e distribution at a certain time after an infiltration event for a 

hypothetical 3-D vadose zone. Results show that our estimate reveals the general pattern 

of the true water content distribution, and that the incorporation of moisture 

measurements significantly constrains our estimate. Results also illustrate how the 
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spatially varying resistivity-moisture relationship may result in uncertainty in the 

interpretation of change of moisture content based on estimated resistivity change. 

1. Introduction 

Detailed and accurate knowledge of electrical properties can provide valuable 

information for characterizing waste sites and monitoring contaminant movement in the 

vadose zone. Consequently, electrical resistivity tomography (ERT) survey has been 

widely employed to collect extensive current and electrical potential data sets in multi-

dimensions to image the subsurface electrical resistivity distribution (Ellis and 

Oldenburg, 1994; Li and Oldenburg, 1994; Zhang et al., 1995; Daily et al., 1992). 

Recently, the ERT survey has found its way into subsurface hydrological applications. 

This is attributed to the fact that resistivity can be related to water content with some 

empirical relationships, i.e. the power law (Knight, 1991). During an infiltration event, 

water content of geological media is generally the only element that undergoes dramatic 

changes. Therefore, tracking the resistivity difference at different time has often been 

regarded as a usefiil mean to demonstrate the temporal changes of water content in the 

vadose zone (Daily et al., 1992). To do so, current/voltage data sets are collected using 

ERT survey before and after infiltration. With the help of inverse models, the images of 

resistivity distribution before and after infiltration are obtained and then the change in 

resistivity is computed accordingly. By assuming a constant deterministic relationship 

between resistivity and water content, the change in resistivity is converted to the change 

in water content. 
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However, Yeh et al. (2001) showed that uncertainties in the interpretation of ERT 

surveys in subsurface hydrological applications can be significant. Several factors could 

be responsible for these uncertainties. One factor is the inverse model currently used for 

ERT inversion. Though ERT surveys can produce abundant current/voltage data sets that 

are essential in characterizing subsurface resistivity distribution, a proper inverse model 

is more critical. Currently employed inverse approaches for ERT inversion are the 

minimum-output-error (MOE) based approach, and there are some inherent numerical 

difficulties associated with it, such as the non-uniqueness. These difficulties can result 

in great uncertainty in the estimated resistivity distributions. On the other hand, the 

computational burden of MOE often hinders its application to a three-dimensional ERT 

inversion. 

Another factor is the spatial variability of the relationship between resistivity and 

water content. The conversion of change of estimated resistivity to change of water 

content often assumes a constant relationship between them in current practice. While 

our preliminary field study indicates that the resistivity-moisture content relationship 

exhibits strong spatial variability in the field (Yeh, et al., 2001). Therefore, neglecting 

the great spatial variability while using the simplified assumption exacerbates the level of 

uncertainty in the interpretation of change of moisture content based on the estimated 

change in resistivity. 

Regardless of the imcertainties in the interpretation of the change of moisture 

content, this change of moisture content only provides qualitative information of water 

movement in vadose zone due to the infiltration. The exact water content distribution 
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remains nnknown. Since unsaturated hydraulic conductivity is a function of water 

content instead of water content change, the converted change of moisture content cannot 

be directly used by hydrological inversions. Therefore, a novel methodology that can 

produce detailed water content distribution with less uncertainty, consider the spatial 

variability of the resistivity-moisture relationship and efficiently process the large number 

of ERT data sets is desired for a better characterization of the vadose zone. 

While the physical process is different, the governing equation for electrical 

current and potential fields created in the ERT survey is analogous to that for steady flow 

in saturated porous medium. The mathematical solution to the inversion of an ERT 

survey is, thus, similar to that of a hydraulic tomography. In this paper, the sequential 

inverse approach for hydraulic tomography (Yeh and Liu, 2000) is extended for the ERT 

survey. By sequentially including the ERT data sets, this inverse model makes it 

numerically feasible and computationally efficient to process the large number of 

current/voltage data yielded by ERT survey. In addition, this inverse approach 

incorporates point measurements of moisture content and geological information, and 

estimates the actual water content distribution. More importantly, this model considers 

the spatial variability of the resistivity-water content relationship. Two-dimensional 

numerical experiments were first conducted to evaluate the effect of the uncertainties 

associated with our inverse model input such as the mean, variance and correlation 

structure of water content. Then, three-dimensional nimierical experiments were carried 

out to illustrate the robustness of our sequential inverse approach in delineating water 

content distribution at time of 50,000 minutes after an infiltration event. Meanwhile, 
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change in resistivity due to infiltration is also obtained to track the change of moistvire 

content, and this converted change of water content is then compared with true change of 

water content. By doing so, the effect of the spatial variability of the resistivity-water 

content relationship on the interpretation of water movement in vadose zone is 

investigated. 

2. Methodology 

2.1 Three-dimensional electrical potential equation 

Assume that in the geological formation, the current flow induced by electrical 

resistivity survey can be described by 

V-(cr(x)V^z5) + /(x) = 0 

subject to boimdary conditions 

(2) 

cr(x)V^-?^j. =i O) 

where <!> is electrical potential [v] , I represents the electrical current source density per 

<5 

volume [A/m ], i denotes the electrical current density per unit area [A/m ], , and CT is the 

electrical conductivity [S/m], cr = — , and p [Qm] is electrical resistivity, which is 
P 

assumed to be locally isotropic. 

2.2. Relating water content to resistivity distribution 
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A power law has often been used to relate the water content to resistivity (e.g. 

Knight, 1991): 

P = Poe"" (4) 

where p is bulk resistivity, po is a fitting parameter that is related to the pore water 

resistivity, aw is a fitting parameter, 6 denotes moisture content. Assuming po doesn't 

change during the infiltration event, using equation (4), the difference of the log 

resistivity before and after an infiltration then becomes: 

A log(p) = -wA log(^) 

This equation shows that if m is constant and is known precisely, then the change of log 

resistivity is luiearly proportional to the change of the log water content. However, the 

change in log resistivity may not directly correspond to the change of log moisture 

content if m exhibits significant spatial variability or is a random variable. This implies 

that the same amount of change in moisture content may lead to different amounts of 

change in resistivity in different media. 

According to Sharma (1997), the resistivity of porous medium is highly variable, 

depending on the degree of saturation and the nature of the pore electrolytes. Considering 

the equation (4), the spatial variability of po and m may represent that of the pore 

electrolytes in the porous medivim. Since most mineral grains (except metallic ores and 

clay materials) are insulators, electrical conduction is mainly being through interstitial 

water in pores. Groundwater filling the pore space is a natural electrolyte with a 

considerable amotint of ions present contributing to conductivity. When clay materials 

are present, a relatively large number of ions may be released &om such minerals by ion 



151 

exchange process, increasing the electrical conductivity significantly. In addition, during 

an infiltration event, many chemical reactions/or processes may become possible due to 

different water chemistry carried in the infiltrated water, altering the composition of ions 

present in pores and changing the nature of the pore electrolytes, and hence make 

resistivity vary even more spatially. 

To investigate the spatial variability of po and m in the field, sediment hydraulic 

properties, including electrical resistivity as a fimction of moisture content, were 

measured for samples collected from the Sandia-Tech Vadose Zone (STVZ) infiltration 

field site located in Socorro, NM (Baker, 2001). Twenty-seven samples were collected 

from eight 5-fl lengths of a continuous core from a bore hole at the field site. Electrical 

resistivity was determined at each moisture equilibriimi by placing the sample in the 

impedance analyzer sample holder and applied a logarithmic sweep of frequencies across 

the sample. A plot of resultant resistivity at each moisture content for the twenty-seven 

cores is shown in Figure 1. This figure illustrates that significant variability of the 

relationship between resistivity and moisture content exists in the field. Equation (4) was 

fitted to the measured resistivity and moisture data to determine the values for po and m. 

Figure 2 displays fitted values of po and m along the vertical distance. Assiuning both po 

and m follow log normal distributions, the statistics for these two parameters for the core 

samples are shown in Table 1. A spatial statistical analysis was also conducted and 

results are shown in Table 2. Based on these tables, we conclude that, in general, the two 

parameters exhibit significant spatial variability, especially the parameter m whose 

coefficient of variation exceeds 50%. 
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23. Sequential inverse algorithm 

Since field data demonstrates that parameters po, 0, and m vary significantly in 

space, delineating the spatial distribution of these parameters at high resolution is not 

generally possible. These parameters may best be represented as random fields (Ye/z, 

1992 and 1998). We assume that these random fields are characterized by exponential 

covariance functions with assumed known parameters of mean, variance, and correlation 

scales. Accordingly, the electrical potential^ can be characterized by its statistical 

moments. In the following analysis, we assume log (po) = F +f, log (G) = A + a, log(m) 

= (p = H + h, where F, A, N and H are the mean values, f, a, n and h are the 

purtubations. 

Using first-order second moment analysis, state variable can be expanded in a 

Taylor series about the mean values of parameters. Neglecting the second and higher 

order terms of Taylor series leads to a linear relationship between electrical potential and 

these parameters 

• mw 

where is the state variable, Xi =^i -(^/) represents the zero mean perturbation in a 

log transformed parameter, for instance, /= log (po) - F, a= log 6 - A, n= log m - N, 

p S A  

perturbation in the state variable is h= <p-<(j)> = (j>- H, and it has a zero mean 

represents the sensitivity derivatives of electrical potential with respect to the parameters, 

and is computed using the adjoint state method. Details of the derivation of these 
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sensitivities can be found in Sun and Yeh (1992), Li and Yeh(1998) and Hughson and 

Yeh (2000). The sensitivity of electrical potential at location / to a perturbation in a 

parameter at location k can be obtained by 

(7) 

specifically, 

jcrV(^).V<t.d£2 (8) 

\ -m  a -VU)  • V 0dQ (9) 

-^ = f- mLog{§)d^U) • (10) 
A 

Qk is the domain of the element containing the node k. O represents the adjoint state 

variable and can be solved by the adjoint state equation described below; 

V-(cr(x)V<D) = ^(;c-x^) (H) 

where J is Dirac delta function and Xk is the measurement location of electrical potential. 

Notice that sensitivities are evaluated using mean electrical potential <^ >. To do so, 

the mean electrical governing equation is solved by assuming that the mean equation is in 

the same form of the original electrical governing equation (1), and that the relationship 

between electrical resistivity and water content is described by (4) with parameters set to 

their mean values. 
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Once the mean electrical potential field is obtained, the above sensitivity 

equations can be used to calculate covariances and cross-covariances which are required 

by our inverse approach. Rewriting equation (6) in a matrix form yields 

{z) (12) 
n :  H . { x )  

where { } indicates the vector of the descretized variable; a jacobian matrix 

representing the derivatives of potential with respect to the parameters, i.e. , which 
dz, 

can be obtained using equation (8) through (10) and has dimensions of «/, xnelem. rih is 

the number of voltage measurement locations and nelem is the total number of elements 

in the domain. Multiplying (12) by the transpose of {x} (i.e. (f), {a}, {n}) and {h}, then 

taking the expectations on both sides, we obtain 

D  - V /  D  t T  ( 1 ^ )  
^hh - Aj'^hz^zz^hz 

where T indicates transpose, R,,^ represents the cross-covariance functions between h and 

f or h and a, or k and n with dimensions of rih xnelem. denotes the covariance 

flmctions off,a and n vvith dimensions of nelem xnelem, and it can be represented as 

exponential models {De Marsily, 1986) and assumed known. Rhh 'i^ the covariance 

function of h with dimensions of m xnh. It is assumed that f, a, and n are independent 

parameters, this assumption represents the worst scenario which means that the least 

information is available for the analysis. 
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Using these cross-covariance functions and covariance functions, we can obtain a 

first-order estimate of the perturbations in the log transformed parameters, conditioning 

on observed primary information x* and secondary information h* collected in one ERT 

test in the tomography, that is 

i = (14) 

where f is a nelem x 1 vector of the estimated purtabation for parameters po ,m and 6, x 

and h* are data of perturbation in the parameters and electrical potential. and are 

the cokriging weights applied to data of the primary variable and the secondary 

information of electrical potential, which can be evaluated as follows: 

^zx CzA 

1 << 

f-hz 1 A. J^hz_ 

where x indicates the primary variable being estimated, and Ch^ represents 

covariances and cross-covariances of the data locations which are subsets of covariance 

and cross covariance matrices obtained from (13). The right-hand of (15) are the 

covariances and cross-covariances of the data locations with the primary variable to be 

estimated. 

23.1 Successive linear estimator 

As mentioned in introduction, the information of electrical potential may not be 

fully utilized because of the nonlinear relationship between electrical potential and those 

parameters, and the linear assxmiption embedded in cokriging. To circumvent this 
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problem, we employed a successive linear estimator similar to Yeh et al. (1996), Zhang 

and Yeh (1997) and Hughson and Yeh (2000). That is, 

(16) 

where Wd represent the parameter estimated at iteration i+l and r, is the 

electrical potential at the the measurement locations calculated from the the forward 

simulation using parameters estimated at iteration r. is weights at iteration r and it can 

be computed through the following: 

(17) 

The solution to (17) requires knowledge ois'll and s'h^, which can be approximated at 

each iteration using the following: 

= (18) 
z 

M _ T W (r) 
Shz-'^hz £u 

where -''/.^yis the sensitivity matrix of rih x nelem, and superscript T stands for the 

transpose. At iteration r = 0, is given by 

^'xx~^xx~ ̂ ZZ^Z ~ ̂ Zh^h (19) 

where is a subset of. For r>l, the residual covariances are evaluated according to 

(20) 

These covariances are approximated conditional covariances. 
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Once we update all the three parameters by fully utilizing the potential data and 

thus updating the electrical conductivity through equation (4). Then mean potential 

equation is solved again with the newly updated conductivity for a new potential field, (p. 

Then, the maximum change of cr/ (the variance of the estimated parameters of/, a, and 

ri) and the change of the biggest potential misfit among all the monitoring locations 

between two successive iterations are evaluated. If both changes are smaller than 

prescribed tolerances, the iteration stops. If not, new and Shh, are evaluated using (18). 

Equation (17) is then solved to obtain a new set of weights that are used in (16) with 

- <j)j to obtain a new estimate of parameters 

2.3.2 Sequential approach 

The above discussion described inverse approach for only one set of primary and 

secondary information obtained in one ERT operation. This algorithm can simultaneously 

include all of the data sets collected during all the ERT operations in the sequence. 

However, the system of equations in (15) and (17) can become extremely large and ill 

conditioned, and stable solutions to the equations can become difficult to obtain 

(Hughson and Yeh, 2000). 

To avoid the numerical difficulty in solving the system of equations, the voltage 

data sets are included sequentially. The sequential algorithm is similar to the one 

developed for hydraulic tomography (Yeh and Liu, 2000). In essence, our sequential 

approach uses the estimated electrical conductivity field derived firom the estimated m 

and 0 fields, and covariances, conditioned on previous sets of voltage measurements, as 

prior information for the next estimation based on a new set of ciirrent/voltage data. It 
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continues until all the data sets are fully utilized. Consequently, information carried by 

all the data sets are fully processed by propagating the conditional first and second 

moments fi-om one data set to another. Such a sequential approach allows acciraiulation 

of high-density secondary information obtained from ERT surveys, while maintaining the 

covariance matrix at a manageable size that can be solved with the least numerical 

difficulties. More importantly, this sequential approach demonstrates a significant 

advantage in terms of cost. Specifically, this sequential approach allows one to collect 

voltage data sets over a large area sequentially and thus, avoids complex and expensive 

cables, probes and data loggers. 

3. Two-dimensional numerical experiments 

The advantage of numerical experiments is that synthetic data sets allow the 

results of the inverse model to be compared to the parameter fields that are generated and 

fully characterized. To start our inverse model, we need to provide model inputs that 

may contain uncertainty under realistic situations. In the following numerical 

experiments, we focus on the effect of uncertainty of the mean and covariance functions 

of water content 6 on the estimation of 0 distribution, the main objective of our research. 

Therefore, we assume the parameters of /?<, and m are ramdom variables but we have 

complete information about them. 

3.1. Generation of true water content distribution 

The hypothetical site has dimensions of 200 cm x 200 cm and is descretized into 

10 horizontal x 20 vertical elements of 200 cm^. The unsaturated hydraulic properties of 
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each element were assumed to be described by the Mualem-van Genuchten model (van 

Genuchten, 1980): 

The variability of saturated water content, 0^, and residual moisture content, 9^, is 

generally negligible; both were treated as deterministic constants with a value of 0.366 

and 0.029, respectively. However, the parameters, Ks, a, and n were considered as 

random fields and were generated using the method by Gutjahr (1989). The mean values, 

variances, and correlation structures used for generating hydraulic parameters of Ks, a, 

and n are listed in Table 3. These generated random fields are treated as our true 

hydraulic parameter fields. 

The initial condition of this site is assumed to be hydrostatic. Specifically, no-flux 

boundary conditions are on the two sides, the bottom of the site is water table, and a 

constant presstire head of - 200 cm boimdary is on the top. Then the infiltration to this 

hypothetical site is started by changing the pressure head from -200 cm to -80 cm at the 

center of the top boundary, where z = 200 cm, x ranges from 80 cm to 120 cm. This 

hypothetical site is then allowed to reach steady state. 

The water content distribution due to the infiltration is simulated by solving the 

Richards equation subject to the boimdary conditions mentioned above. This resulting 

water content distribution is used as our true water content field in our ERT experiments. 

Similarly, the mean water content distribution is obtained by conducting a simulation for 

(21) 

9{¥) = {ds - ̂r)[l + [aw)" f + Or 
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infiltration under identical boundary conditions, but using mean hydraulic parameters 

instead of true heterogeneous parameters. The mean water content distribution and the 

true one are shown in Figure 3a and b. 

3.2. Generation of true fields for p^and m 

Since electrical resistivity p is a function of p^, m and 9, in addition to the 

generated true field of 6, the other two parameters, po and m were considered as random 

fields with the geometric mean of 8.5 Qm and 1.35, respectively. The variances of \ogpo 

and log m were 0.1 and 0.01, respectively. Also assumed was that both of the two 

parameters possessed the same exponential correlation structure with a horizontal 

correlation scale of 240 cm and vertical correlation scale of 20 cm. Figure 4a and b show 

the generated true fields for these two parameters. 

3.3. ERT experiments 

Based on these generated po, m and 9 fields, the true resistivity field can be 

formulated using equation (4). ERT experiments were then conducted. First, two bore 

holes were drilled, 10 electrodes were placed in each hole, and one electrode was placed 

far away from the domain that is used as a reference electrode. Then one electrode in the 

bore hole and the reference electrode were driven a known source current, and the 

voltage difference between the reference electrode and the rest electrodes in the bore 

holes were measured, yielding one voltage/current data set. By moving the source 

location along the bore hole, and repeating the same procedure, many data sets can be 

obtained. In our analysis, foiu: voltage data sets were collected and these data sets are 

referred to as secondary information. In addition, we assume that one 9 was measured 
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from core samples and it is referred to as primary information. The current sources, 

voltage and 9 measurement locations are displayed on Figure 5. 

3.4. Estimating water content using ERT data 

In addition to the collected primary and secondary information, our inverse model 

requires input parameters such as mean, variance and correlation structure for the 

parameter to be estimated. For water content 9, these properties cannot be estimated 

easily since the true water content distribution is controlled by many factors such as 

heterogeneous hydraulic properties and boundary conditions. In our analysis, three 

different methods were used to approximate the required input for water content 

estimation, and the effect of the uncertainty associated with these approximations is 

investigated. 

3.4.1. Using geometric mean and exponential covariance function 

As we discussed in the analysis of hydraulic tomography (Yeh and Liu, 2000), 

variance of parameters appears on both sides of the system of equations and can be 

canceled out. Therefore, it has no effect on the estimate of parameters. This conclusion 

holds for ERT, and we will skip it from now on in our analysis. For the mean value of 

water content, it is first approximated by a geometric mean method. Specifically, the 

mean of water content distribution is assumed to be a constant geometric mean that can 

be computed based on the water content distribution. The covariance structure is 

approximated based on those of hydraulic parameters, which is assumed to be an 

exponential model with horizontal and vertical correlation scale of 240 cm and 20 cm, 

respectively. Employing our sequential inverse model and using these approximated 
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input parameters and other necessary inputs, we obtained the estimated perturbation of 

water content. The resulting estimated water content distribution was then obtained by 

adding the constant geometric mean to the estimated perturbations. The estimated water 

content using the geometric mean and exponential covariance function is shown on 

Figure 5b. The corresponding scatter plot is displayed on Figure 6a. 

3.4.2. Using true mean and exponential covariance function 

In this case, the approximation of the covariance function is kept the same as in 

the above case. While the mean of water content becomes more meaningful, which is a 

mean plume instead of a geometric mean, indicating the mean direction of water 

movement due to the infiltration. This mean distribution of water content was simulated 

using mean hydraulic parameters (shown on Figure 3 a). Substituting the geometric mean 

with the true mean into our inverse model, we obtained the estimated water content 

perturbation. The estimated perturbation distribution was then added to the mean water 

content distribution, resulting in the estimated water content distribution. The results are 

shown on Figure 5 c and Figure 6b. 

3.4.3. Using true mean and computed covariance function 

In this case, the mean of water content is also simulated using the mean hydraulic 

parameters. However, the covariance function is no longer assumed to be an exponential 

model, instead, we computed the covariance ftmction using numerical first order method 

and then imported it into our inverse model. The covariance function was computed 

according to the following formula: 

^00 = (22) 
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where, Rg^ is covariance function of water content, denotes the covariance functions 

of the log transformed perturbations of the hydraulic properties of Ks, a and n which are 

assumed known. J^is the Jacobian matrices, details of computing can be found in 

Hughson and Yeh ( 2000). The final estimate of water content using the true mean and 

computed covariance function is shown on Figure 5d and Figure 6c. 

3.5. Results and discussion 

Comparing Figures 5b, c and d to Figure 5a, we find that the estimated water 

content distribution captured major patterns of the true water content distribution 

regardless of the statistical parameters we used in our model, i. e., the mean, variance and 

covariance function. The same conclusion can be drawn from the scatter plots shown on 

Figure 6. On this plot, our estimated water content values scatter around the 45 degree 

line indicating good agreements vwth those of true ones. The goodness of fit can also be 

evaluated using LI and L2 norms described in the following: 

L2 norms are close to each other for the three cases, however, the norms of using true 

mean tend to be smaller than those of tising geometric mean. Based on Figure 5 and 

Figure 6, we can conclude that choices of mean and covariance flmction of water content 

have small effect on our estimate if sufficient information is available. Under realistic 

(23) 

(24) 

where 0, and 6^ represent the true and estimated water content, respectively. The LI and 
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situations, estimation of these input parameters always involves uncertainty. Therefore, 

to obtain better and more reliable estimation of water content requires collecting 

abundant primary or secondary information. These site-specific data can greatly out-

weight the coarse descriptive information such as mean, variance, and correlation 

structure, and the imcertainty associated with these parameters will thus be minimized. 

4. Three-dimeasional numerical examples 

Typically, flow through heterogeneous porous media is three-dimensional, and 

water movement due to infiltration can hardly reach steady state conditions. In this 

numerical example, water movement at time of 1,000 minutes and 50,000 minutes is 

simulated on a three-dimensional hypothetical site. Water content distributions at these 

two times, 0i,ooo and Sso.ooo, are used as our true water content fields, and their difference 

is denoted as the true water content change in the following analysis. Following the 

generation of random fields of po and m. the true resistvity fields at 1,000 minutes and 50, 

000 minutes are formulated using equation (4) with the generated po, m, Gi.ooo and 05o,ooo 

fields. Next, electrical resistivity tomography (ERT) experiments are performed on these 

two resistivity fields. Following collecting voltage/current data sets, two different 

inverse approaches were attempted to interpret the water movement due to the infiltration 

event. The first one is to directly estimate moisture distribution at the time of our interest 

using our new approach. The second one is first to estimate the resistivity fields at the 

time of 1,000 minutes and 50,000 minutes using the inverse model developed by Yeh et 

at., (2001). Then change in resistivity from 1,000 minutes to 50,000 minutes is computed. 
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Finally, the estimated change in resistivity is used to interpret the change in water 

content. 

4.1. Case description 

4.1.1. 3-D flow simulation 

This hypothetical site is a cube of 200 cm on each side and consists of 2000 

elements of 20 cm x 20 cm x 10cm. On this site, random fields of heterogeneous 

hydraulic parameters, Ks, a and n (van Genuchten, 1980), are generated using the 

spectral method (Gutjahr, 1989) with required parameters shown in Table 4. Figures 7a, 

b and c show the generated /og Ks, loga and log n fields. 

The initial condition is assimied to be hydrostatic, that is: the bottom is set to be a 

prescribed pressure head of - 50 cm, and the top is set to be a pressure head of-250 cm. 

Then an infiltration is introduced to the site by assigning an area of 1600 cm on the top 

center of the cube to a pressure head of -50 cm, and setting the remainder of the top and 

the four sides to be no-flux boxmdaries. This represents a non-uniform vertical infiltration 

from a constant source on the top center of the study domain. This infiltration is then 

simulated using MM0C3 (Srivastava and Yeh, 1992) at time of 1,000 minutes and 

50,000 minutes. Figure 7d shows the water content distribution at time of 1,000 minutes. 

Similarly, mean water content distributions at time of 1,000 minutes and 50,000 minutes 

are obtained using MM0C3 with effective mean fields of hydraulic parameters. True 

log water content change was computed as the difference between the true water content 

distributions at time of 1000 minutes and 50,000 minutes (Figure 11a). 

4.1.2. Generation of random poand m fields 
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Once the true water content fields for the two times are simulated, the other two 

parameters, po and m were considered as random fields with the geometric mean of 7.036 

Qm and 1.336. The variances of logp^ and log m were 0.633 and 0.034. Also assumed 

was that both of the two parameters possessed the same exponential correlation structure 

with a horizontal correlation scale of 80 cm and vertical correlation scale of 20 cm. 

Figures 8a and b show the generated true fields for these two parameters. 

4.1.3. Formulation of true random pfields and conducting ERT experiments 

Based on these synthetic fields of pb, 01,000 and 650,000, the true resistivity fields at 

time of 1,000 minutes and 50,000 minutes, pi.ooo and pso.ooo, are formulated using the 

power law described in equation (4). On these two resistivity fields, ERT experiments 

are conducted. The potential distribution induced by each ERT survey is then simulated 

using equation (1), and voltage data are collected at given sampling locations. Figure 9d 

displays the schematic diagram of our ERT survey. According to the diagram, the 

network of ERT consists of four boreholes penetrating the entire depth of the domain. 

The XY coordinates of the four boles are x = 50 cm, y = 50 cm; x = 150 cm, y =50 cm; x 

= 50 cm, y = 150 cm; and x = 150 cm, y = 150 cm, respectively. Twenty electrodes were 

placed along each bore hole. Electrodes are aslo placed along the four lines with the 

above XY coordinates on the surface. Five sequential current sovu-ces were driven along 

the upper right bore hole, and their XYZ coordinates are (150 cm, 150 cm, 25 cm), (150 

cm, 150 cm, 55 cm), (150 cm, 150 cm, 95 cm), (150 cm, 150 cm, 135 cm), and (150 cm, 

150 cm, 175 cm), respectively. Using the same voltage data collecting procedure which 

is desribed in the 2-D numerical examples, five voltage data sets were collected with 111 



voltage measurements on each ERT survey. In addition, 20/7o and 20m along each of the 

four bore holes, with a toal of 80, were assumed to be available in our analysis, and 20 9 

were sampled at locations indicated by squares shown on Figure 9d. To investigate the 

usefulness of 9 measiu-ements on conditioning our estimate of water content, zero 9 and 

209 measurements were used to estimate water content distribution for time of 50,000 

minutes. 

4.2. Directly estimating water content distribution 

The above mentioned five voltage data sets were used in our proposed sequential 

conditioning approach. Figure 9a shows the true water content distribution at time of 

50,000 minutes; Figure 9b shows our estimated water content using 1 llx 5 voltage, 80 po 

and m, and no 9 measurements; Figure 9c shows our estimate using the same number of 

voltage, Po and m measurements, but 20^ measurements. Compare the three figures, we 

find that our inverse approach capture the general pattern of the water content 

distribution, and that 9 measurements help greatly delineate the 9 distribution. A scatter 

plot provides a visual evaluation of the estimate. Figures 9e and f illustrate the scatter 

plots corresponding to Figures 9b and c. A 45° line indicates the perfect estimation. The 

goodness of fit were also evaluated using LI and L2 norms. The smaller the LI and L2 

norms are, the better our estimates. The decrease of the LI and L2 norms from Figures 

9e to f reveals that additional moisture measurements (from 0 to 20^ dramatically help 

reduce the uncertainty in our estimate. Another criteria for evaluating our estimate is to 

check the conditional variance of our estimate, smaller conditional variance indicates less 

uncertainty in our estimate. The conditional variances corresponding to our estimate by 
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using no ̂  and 20^ are shown on Figures 10a and b. According to these figures, we find 

that relative small conditional variance tend to locate closely to the four bore holes where 

secondary information is available. At locations where we have moisture measurements 

(primary information) the conditional variance becomes zero, which means that these 

measurements are preserved in our model and there are no uncertainties associated with 

them at all. 

Our estimation results show that our proposed sequential conditioning approach is 

a useful tool to efficiently process the ERT data sets and yield water content distribution 

with less uncertainty. These results also prove that the incorporation of moisture 

measurements can significantly help constrain our estimate, and that better estimates are 

obtained in between the four bore holes. The estimated water content distribution 

provides valuable information on water movement in the vadose zone, especially at 

places where moisture measurement devices are hard or impractical to install. Since 

unsaturated hydraulic properties are functions of water content, the estimated water 

content distribution at high resolution fi-om ERT provides large amount of secondary 

information required by the hydraulic inversion. These sufficient information which can 

not be obtained easily with other monitoring tools can be directly used by the hydraulic 

inversion to better constrain the estimates of hydraulic parameters, thus to better 

characterize vadose zone. 

4.3. Using resistivity change to interpret water movement 

For comparison purpose, resistivity change was also computed to reflect water 

movement in vadose zone. ERT experiments were performed at 1,000 minutes and 
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50,000 minutes after the beginning of the infiltration. Using the ERT network shown on 

Figure 9d, the same five voltage data sets were collected and then used in the sequential 

inverse approach developed by Yeh et al. (2001) to estimate the resistivity fields at these 

two times. Then, the resistivity change between 1,000 minutes and 50,000minutes which 

was caused by th^ infiltration was computed using these two estimated resistivity fields. 

Figure 11a displays the true water content change, the estimated resistivity change was 

shown on Figure 1 lb. Comparing these two figures, we see that our interpretation of 

water movement based on the estimated resistivity change greatly distorts the true water 

movement. From 1,000 minutes to 50,000 minutes, the true main water plume moves 

toward the south west direction, while according to the estimated resistivity change, we 

mispredict that the major water flow direction is to the south east. Several factors could 

contribute to the uncertainties in our interpretation. One factor is the uncertainty in our 

estimated resistivity fields introduced by using the limited knowledge of voltage to do the 

inverse modeling. Another crucial factor is the strong spatial variability of the resistivity-

moisture relationship, especially the spatial variability of parameter m. In our study, the 

variance of log m is only 0.034. According to equation (5), the change in resistivity is 

linearly proportional to change in water content only under the condition that m is 

constant and can be known precisely. While field data demonstrates that m does exhibit 

spatial variability and can not be knovra precisely. We believe that the larger the variance 

of logm in the field, the more uncertain our interpratation will be (Yeh et al. 2001). 

Consequently, the interpretation of water movement in vadose zone simply relying on 
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resistivity change and neglecting the spatial variability of the resistivity-moisture 

relationship may yield misleading interpretations. 

5. Conclusion 

In this paper, we presented a sequential inverse approach to effectively and 

directly estimate water content distribution for a three-dimensional synthetic field using 

voltage information yielded by electrical resistivity tomography and available point 

measurements of moisture content. By applying our inverse approach to the ERT surveys 

condcuted at different times, the 3-D development of water plume in the vadose zone 

with time can be monitored with less uncertainty, and this information is significantly 

beneficial to the quantatitive characterization of the vadose zone since imsaturated 

hydraulic properties are functions of water content. 

Our analysis investigates the effect of imcertainty associated wath our model 

inputs such as mean, variance, covariance flmction of parameters to be estimated. Since 

all these input parameters can not be knovm precisely in reality, any approximation might 

yield some imcertainties to our inverse model. Our investigation shows that these 

imcertainties have no significant effect on our final estimate, and this effect can be 

greatly minimized once sufficient primary and seconday information are available for 

conditioning. 

This study indicates that interpretation of water movement in the vadose zone 

based on the estimated resistivity change may be misleading. This is primarily attributed 

to the fact that the resistivity-moisture relationship exhibits strong spatial variability. 
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Our analysis also shows that good estimate are at the locations where primary and 

secondary information is available (i.e. the locations in between the four bore holes). 

Primary information, the moisture measurements, contributes more significantly than the 

secondary information, the voltage, to the estimated water content distribution in our 

model. In other words, a large number of voltage measiu^ements did not dramatically 

improve our estimated water content distribution as we would expect. This may be 

explained that the voltage measurements can be used to identify the resistivity at a high 

resolution, but the resistivity is a function of three parameters, Po, 9 and m, and the 

knowledge of resistivity obtained from voltage can not be easily differentiated among the 

three parameters. This fact implies that the voltage information alone may not be 

adequate to characterize the water movement in vadose zone in greater detail, and other 

types of information will be necessary to combine with ERT data to yield better results. 
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Table 1. Statistic properties of fitting parameters and m 

parameter Mean 
(Qm) 

Variance 
(Qm)^ 

Std. Dev. 
(Qm) 

% C.V. 

Po 7.036 0.633 0.796 40.8 
m 1.336 0.034 0.185 63.72 

Table 2. Fitted variogram model parameters for po and m 

Sill Range Nugget 
parameter Model (Qm)^ (m) (Qm)^ 

Po exponential 20 4.6 2.8 

m exponential 0.05 3 0.035 

Table 3. Hydrologicai and statistical parameters used in 2-D analysis 

parameter mean variance ^x (cm) Xz (cm) Covariance model 

Ks (cm/s) 0.0063 0.1 240 20 Exponential 

a (1/cm) 0.028 0.1 240 20 Exponential 

n 2.0 0.01 240 20 Exponential 

Table 4. Hydrologicai and statistical parameters used in 3-D analysis 

parameter mean variance A.X (cm) Xy (cm) Xz (cm) Covariance model 

Ks (cm/min) 0.043 0.893 80 80 20 Exponential 

a (1/cm) 0.067 0.631 80 80 20 Exponential 

n 1.811 0.015 80 80 20 Exponential 
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Figure 1. Resistivity vs. water content for the NW bore hole in STVZ field site from 1ft 
to 36 ft depth. 
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Figure 2. a) Fitted po values vs. the depth of the NW bore hole; b) Fitted m values vs. the 
depth of the NW bore hole. 
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Figure 3. a) The mean water content distribution simulated using homogeneous hydraulic 
parameters; b) The true water content distribution simulated using heterogeneous 
hydraulic parameters. 
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Figure 4. a) Generated random field for log po; b) Generated random field for log m. 
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Figure 5. a) True water content distribution; b) estimated water content distribution 
assuming water content has a geometric mean and exponential covariance fimction; c) 
estimated water content distribution assuming water content has a true mean and 
exponential covariance function; d) estimated water content distribution assuming a true 
mean and computed covariance function. Circles indicate current source locations, right 
triangles indicate voltage measurement locations and square indicates the water content 
measurement location. 
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Figure 6. a) Scatter plot corresponding to Figure 5b; b) Scatter plot corresponding to 
Figure 5c; c) Scatter plot corresponding to Figure 5d. 
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Figure 7. a) Generated log Ks field with mean of 0.043 cm/min, a^iogKs^ 0.893, Xx = Xy= 
80 cm, and A,z = 20cm; b) Generated log a field with mean of 0.067/cm, cf^ioga= 0.631, >.x 
= = 80 cm, and Xz= 20cm; c) Generated log n field with mean of 1.811, a^iogn = 0.015, 
^x= ^y= 80 cm, and >.z= 20cm; d) True water content field at t =1,000 minutes. 
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Figure 8. a) Generated true log po field; b) Generated true log m field. 
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Figure 9. a) True water content 0 at t = 50,000 minutes; b) Estimated 0 at t= 50,000 
minutes without 0 measurements; c) Estimated 0 at t= 50,000 minutes with 20 0 
measurements; d) Schematic diagram for 3-D ERT experiments, top center square 
indicates the infiltration area, ri^t triangles indicate voltage measurement locations, 
circles show current source locations, and squares show the locations of 20 0 
measurements; e) The scatter plot corresponding to b); f) The scatter plot corresponding 
to c). 
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Figure 10. a) Conditional variance w^hen no 0 measurements are used at t= 50,000 
minutes; b) Conditional variance when 20 0 measurements are used at t= 50,000 minutes. 
Circles indicate 0 measurement locations 
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Figure 11. a) True Alog 0 from 1,000 minutes to 5,000 minutes; b) Estimated Alog p from 
1,000 minutes to 50,000 minutes. 


