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ABSTRACT 

Two problems of elastic filaments are considered, one a problem of determining the 

static shape of a filament with intrinsic curvature under constant force, and one a 

problem of determining the dynamical behavior of a planar rod. In the first problem, 

examining the phenomenon of perversion, methods of dynamical systems are used 

to examine the static equations of elastic filaments, in which the arc-length of the 

filament plays the role of time. The phenomenon of perversion, in which two oppo­

sitely handed helices are connected by an inversion of chirality, is represented by a 

heteroclinic orbit of the dynamical system. The second problem is an examination 

of a whip wave, the propagation of a loop in a whip as it travels the length of the 

whip to create a sharp crack as the loop reaches the end of the rod and accelerates 

to supersonic speeds. This study is undertaken in two stages; first we examine the 

propagation of the loop as it travels down the rod far from the end of the rod, and 

then we examine the behavior of the rod as the loop reaches the end of the rod and 

unfolds, accelerating the tip. In the first stage we use techniques of asymptotic anal­

ysis and perturbation methods to determine the relationship of the speed of the loop 

to the radius of the rod. In the second stage we employ a numerical technique to 

compute the behavior of the loop as it unfolds to determine the relationship of the 

maximal speed of the tip of the rod to the characteristics of the rod and the forces 

applied to the handle. 
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Chapter 1 

INTRODUCTION 

The study of elastic filaments arises naturally in many contexts. Phenomena at all 

scales, from microscopic chains of molecules to telephone cords to braided magnetic 

flux tubes in solar flares, may be properly modelled as elastic filaments. As a subset 

of elasticity theory, the study of elastic filaments has yielded a rich mine of problems 

in applied mathematics, from the catenary problem to the buckling of an elastic rod, 

and many others which have led to valuable insights into the physical phenomena, 

and to important developments in mathematical methods. 

A filament is a 3-dimensional elastic structure with one length scale that is much 

larger than the other two. In other words, a filament is an object whose length is 

much greater than its width. In this thesis, we will also use the term elastic rod, 

which is often used to be synonymous with an elastic filament, but which we take to 

be a filament with a circular cross-section. The central problem in the study of elastic 

filaments is to understand the possible configuration changes and dynamics involved 

in the changes when a force is applied to the filament. Filaments at all sizes seem 

to follow universal configuration changes triggered by generic instabilities. Consider 

for instance, the coiling of strings, ropes or telephone cords. Take a piece of rubber 

tubing, hold it between your fingers, and twist its ends, and you will see that the 

filament will soon coil on itself. This is an example of a writhing instability where a 

local change in twist eventually results in a global reconfiguration of the filament. In 

this case we have a twist-to-writhe conversion. The word writhe refers to a type of 

global deformation of a filamentary structure. This type of instability has received 

considerable interest and is known to be responsible for a host of important processes 

such as coiling and super-coiling of DNA structures [4]. 
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In this thesis, two phenomena are examined that illustrate many of the basic prob­

lems of elastic filaments-a static problem in three dimensions and a dynamic problem 

in two dimensions. The first phenomenon, which is studied in the context of the 

static equations for elastic filaments, is the phenomenon of perversion, a connection 

between two oppositely handed helices. This phenomenon is familiar to most people, 

even if they are not aware of it, as manifested in telephone cords (Fig. 1.2). The 

study of perversion is carried out in the context of the static equations as it is the 

shape of the filament that is of interest. Although it is necessary for a force to be 

applied to the filament in order to obtain the shape, we may consider that this is done 

very slowly, so that at each instant in time the filament may be considered to be in 

equilibrium. The second phenomenon under study is also one that most people are 

familiar with-the cracking of a whip. The correct answer to a common physics trivia 

question is that the crack of a whip is a sonic boom created when a section of the 

whip travels faster than the speed of sound. The question of how the tip of the whip 

is accelerated to this speed, so that a crack is produced, is addressed in the second 

part of this thesis. This phenomenon will be studied in the context of the dynamic 

equations for planar rods. A whip in motion is far from equilibrium, and thus the 

dynamics are of primary interest, although, as we will see, accounting for the shape 

of the whip is essential to a full understanding of the phenomenon. 

1.1 The first problem: a static problem in 3-D 

The first problem under consideration is a static problem, the problem of under­

standing the phenomenon of perversion. A perversion results from a type of writhing 

instability, less well understood than the twist-to-writhe instability mentioned ear­

lier, the so-called curvature-to-writhe instability, where changes of curvature trigger 

a global change of shape [5]. This instability can be observed in telephone cords. 

If one completely untwists the helical structure of the cord and applies a sufficient 
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tension at the ends, a completely straight cord can be obtained. Now, if one slowly 

releases the ends, a critical point will be reached where the new filament is composed 

of two helical structures with opposite handedness and linked by a small inversion 

(See Fig. 1.1). The use of the term perversion to describe an inversion of chirality 

goes back at least 150 years to when it was used in this sense by the German mathe­

matician J. B. Listing [6, 7]. The term has since been used often in this sense, as in 

D'Arcy Thompson's characterization of seashells: "the one is a mirror-image of the 

other; and the passing from one to the other through the plane of symmetry (which 

has no 'handedness') is an operation which Listing called perversion" [^, p. 820]. As 

another example, Maxwell, in 1881, in his treatise on electromagnetism also uses the 

word perversion: "They are geometrically alike in all respects, except that one is 

the perversion of the other, like its image in a looking glass." [9] The usage of the 

word perversum actually originated in the description of rare left-handed specimens 

of seashells in a species of overwhelming right-handed individuals (for instance, there 

are only 6 known left-handed specimens out of the million known Cerion, a West 

Indian land snail [10, 11]). 

A qualitative explanation of the creation of a perversion (See Figures 1.1 and 1.2) 

can be readily given. Consider a filament with given non-vanishing intrinsic curvature 

in one direction. That is, in the absence of any applied forces, i.e., in its unstressed 

state, the filament is a ring coiled on itself. (If we neglect self-contact, the filament 

would become a multi-covered ring; that is, the filament "wants" to be a ring.) If 

one applies tension to both ends without applying a moment, allowing the ends to 

rotate, the filament will stretch into a helix. In this process, the optimal solution (the 

solution with lowest energy), will be obtained, a helix whose torsion and curvature 

are functions of the tension. This optimal solution will have a total twist that is non­

zero. That is, the number of rotations a normal vector to the curve of the filament 

makes around this curve as it runs the length of the curve is non-zero. This can be 

seen by taking the helix and applying tension to both ends without allowing the ends 
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Tension 

FIGURE 1.1. A cartoon of the curvature-to-writhe instability, as the tension is de­
creased, the instability sets in and two helices with opposite handedness are created: 
a perversion. Illustration by M. Nizette 

to rotate, and noting the twist in the filament. Now, instead of allowing the ends 

of the filament to rotate as we apply tension to the unstressed filament, completely 

untwist the filament and straighten it out. Note that the total twist of the straight 

filament is now zero. Then, holding the ends of the filament so that they do not 

rotate, reduce the tension on both ends. Since the ends are not allowed to rotate, 

the optimal helical solution cannot be obtained. However, another solution with zero 

twist appears in which two oppositely handed helices are smoothly pasted together 

with a small inversion. In order that there is zero total twist, there must be an equal 

number of turns in both of the oppositely handed helices. This is the perversion 

solution, as seen in Figures 1.1 and 1.2. 

FIGURE 1.2. A perversion in a telephone cord. 
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In addition to telephone cords, the phenomenon of perversion occurs in several 

natural and man-made situations. For example, the human umbilical cord forms a 

triple helix made of two arteries and one vein, and according to different statisti­

cal studies, inversion from left-handed to right-handed structures in umbilical cords 

varies from 2% to 26% of all cases [12, 13]. Inversion of helicity appears also in 

the microscopic world. The flagella of some bacteria such as Salmonella or E. coli 

have helical shapes. Depending on the respective position of the different protofila-

ments, the flagella can be, in their unstressed configuration, either right-handed or 

left-handed [14, 15, 16, 17]. They are attached to the cell-body through a molecular 

rotary motor [18] and are observed to flip from a left- to a right-handed helix when 

the running motion is interrupted by a tumble motion [19, 20]. This inversion of 

helicity plays a crucial role in the ability of the bacterium to change direction of mo­

tion and is performed by propagating a right-handed helix onto a left-handed helix, 

henceforth creating a perversion [21]. Perversion can also be observed in a variety 

of other microscopic biological systems such as the shape of certain bacteria such as 

spirochetes[22], some mutant forms of B. subtilis [23], in the growth of cotton fibers 

[24] or in the shape of miniature (1 to 2 mm long) seashells [25]. Also, in the textile 

industry, there is a specific method used to roughen the yarn, based on the creation 

of inversion along the fibers, known as the False-Twist technique [26]. 

Perhaps the most striking and fascinating natural manifestations of perversion 

can be found in the growth of some climbing plants. Among the many different 

mechanisms climbing plants use to climb and grow along supports, the so-called 

"tendril-bearers" constitute an important class {e.g. the grape-vine, the hop, the 

bean, the melon). In the first stage of their development, tendrils are tender, soft, 

flexible and fairly straight organs originating from the stem. As they grow, the tendrils 

circumnutate [27, 28]. That is, the tip of the tendril describes large loops in space 

by completely rotating on themselves until they touch a support, such as a trellis, a 

pole or a branch. If the circumnutation does not result in a contact, they eventually 
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dry and fall off the stem. If the tendril makes contact with a support, it enters into 

another phase of development. The tissues start to develop in such a way that the 

tendril begins to curl up, developing an intrinsic curvature. Since the ends of the 

tendril are attached at either end to the support and the plant stem, no rotation can 

take place, so the total twist in the tendril remains zero. As the tendril continues to 

develop, its intrinsic curvature increases, and conditions are ripe for the creation of 

a perversion. A perversion develops, with the tendril developing into a spring made 

of a perversion, with oppositely handed helices connected by a small inversion. (See 

Fig. 1.3) Once the perversion is formed the tendril becomes woody and tough, and 

the spring-like connection to the support provides resistance to high winds and loads. 

FIGURE 1.3. (a) Growth of climbing plants (tendril bearers) as drawn by Darwin [1]. 
In the first stage (A), the tendrils are circumnutating until they find an attachment. 
In the second stage (B), the tendrils are attached and perversion sets in. (b) Another 
example of tendril perversion in Bryonia dioica. Illustration from Sachs' Text-book of 
Botany (1875) 
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The phenomenon of perversion in climbing plants has a long and interesting sci­

entific history. Inversion of helicity in tendrils already appears in the illustration (see 

Fig. 1.4) of Linnaei in Philosophia Botanica [2], However, according to De Candolle 

[29, 30], the first record of a scientific observation of perversion goes back to a letter 

of the French scientist Ampere to the French Academy of Sciences. From them on, 

almost all major botanists in the nineteenth century, such as Dutrochet in 1844 [31], 

von Mohl in 1852 [32], and Leon in 1858 [33, 34] describe the perversion found in 

tendrils. 

FIGURE 1.4. Climbing plants (right-handed) with tendrils (with perversion) as drawn 
by Linnaei in Philosophia Botanica [2] 

It was Charles Darwin, inspired by related studies by his friend, the American 

botanist, Asa Gray [35], who gave the first complete and truly scientific analysis of 

the growth of climbing plants in his delightful little book The Movements and Habits 

of Climbing Plants [1] based on an essay presented at the Linnean Society in 1865. 

In there, among many other observations (such as the spiral growth of stems and the 

phenomenon of circumnutation) he devotes a whole chapter on the problem of tendril 



FIGURE 1.5. Tendril perversion as drawn by Darwin [1] 

growth and gives the first qualitative explanation for the inversion :"when a tendril 

has caught a support and is spirally contracted, there are always as many turns in 

one direction as in the other; so that the twisting of the axis in the one direction is 

exactly compensated by the twisting in the opposite direction... I cannot resist giving 

one other illustration, though superfluous: when a haberdasher winds up ribbon for a 

customer, he does not wind it into a single coil; for, if he did, the ribbon would twist 

itself as many times as there were coils; but he winds it into a figure of eight on his 

thumb and little finger, so that he alternately takes turns in opposite directions, and 

thus the ribbon is not twisted. So it is with tendrils, with this sole difference, that 

they take several consecutive turns in one direction and then the same number in an 

opposite direction; but in both cases the self-twisting is avoided." (See Fig. 1.5). 

Perversion in tendrils was first modelled by Keller [36] who derived the equations 

governing the shape of tendrils based on the assumption that the shape is a minimizer 

of the energy of the system (composed of the elastic energy given by the strains and 

the potential energy of the force applied). In the third chapter, we study the onset of 

perversion in elastic filaments with intrinsic curvature by using the static Kirchhoff" 

equations for thin elastic rods with linear constitutive relationships. It is known 
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that the effect of intrinsic curvature in Kirchhoff filaments is to produce a dynamical 

instability responsible for the creation of perversion in filaments [5]. Here, we study 

the static problem from a dynamical system perspective [37, 38, 39] in which the arc-

length of the curve plays the role of time. We show that perversion can be represented 

in this setting by a heteroclinic orbit. We compute characteristics of the spring formed 

by a perversion. We then do a standard center manifold reduction and normal form 

derivation to reduce the dynamics to a three dimensional system, solutions to which 

can be completely characterized. 

1.2 The second problem: a dynamic problem in 2-D 

The second problem under study, the cracking of a whip, is fundamentally dynamic 

in nature. This phenomenon is analyzed by studying the whip as a planar elastic 

rod. Then, the problem can be posed as one of a wave travelling along an inho-

mogeneous background. Techniques are used that have been developed for studying 

such waves in other situations, and in the course of this study other techniques are 

developed that can be applied to a range of problems. The propagation of waves 

along an inhomogeneous background has been a topic of study in several contexts. 

The KdV equation, Schrodinger equation, and other equations that support soliton 

solutions have been studied with the additional complication of specifying a given 

function as the inhomogeneous background. Many of the same techniques are used 

in these varied situations to analyze how a wave is altered as the background it is 

travelling along is altered. Physically, the situation presents us that of a medium 

whose characteristics vary along its length, for example in the depth of the water 

for solitons in the KdV equation. Most analyses of this phenomenon begin with a 

known solution that travels along a homogeneous medium, and perturbations to this 

solution are sought as functions of the perturbations in the medium. In most cases, 

analysis of the perturbed solution yields such qualitative results such as whether the 
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speed of the solitary solution increases or decreases as the medium is perturbed in a 

particular way. 

The whip is modelled as an elastic rod. Most commercial whips are made from 

leather, whose elastic constants are known [40]. However, whips can be made from 

such mundane items as strings or even wet towels [41], and evidence exists that some 

dinosaurs used their tails as whips [42], In any case, the materials that various whips 

are made from can all be reasonably modelled as elastic rods. The most efficient 

means of cracking a whip involve sending a planar loop (Fig. 1.6) down the whip, 

so we assume that the rod lies in the Euclidean x — y plane. We also assume that 

it is inextensible and unshearable, and that it obeys a linear constitutive relation. 

Furthermore, we will consider an isotropic rod, i.e. we assume that the properties of 

the material, such as the density and elastic properties, are constant. We consider a 

rod whose cross-sections are circular, and, to account for the tapering, we allow the 

radius of the rod to vary along its length. The radius of the cross-section will be a 

given function of the arc-length, R{s). This is the inhomogeneity introduced into the 

equations by allowing the radius to vary. 

A crack is produced as a whip wave propagates down the length of the whip, 

concentrating all energy in the tip of the whip, which accelerates to high speed. 

Study of the whip wave is framed as the propagation of a wave along a planar elastic 

rod, in which the radius of the rod varies along its length. In this context, solitary 

waves travelling along such rods were studied by Samsonov, et. al. [43, 44], in the case 

of strain and longitudinal waves. The type of wave that travels along the length of a 

whip as it is cracked involves the propagation of a shape deformation along its length. 

We begin with a known travelling wave solution travelling along an ideal infinite rod. 

A perturbation analysis shows that the speed of this travelling wave increases if the 

radius of the rod decreases. Numerical analysis is performed to examine the behavior 

of the rod as the solitary shape reaches the end of the rod, when the crack is produced. 

It has been known since at least 1912 when Prandtl verified a hypothesis put 
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forward by Otto Lumer in 1905, that the crack of a whip is a sonic boom, created 

when a section of the whip travels faster than the speed of sound. Despite this, whips 

remain largely misunderstood and misrepresented. Usually represented in popular 

culture as weapons or torture devices, whips have been used for centuries as noise-

making tools, in such various activities as directing animals or communicating over 

long distances. The traditional uses of whips have largely become obsolete, and the 

practice of whip-cracking today resides largely in the hands of expert entertainers and 

enthusiasts. The class of whips falls into two categories, the "noise-making whips," 

and the "pain-making whips." The latter are generally short, and multi-threaded, 

such as the infamous "cat-'o-nine-tails." The former are the subject of this paper, 

and are generally long, thin, single-threaded, and tapered toward the end. In Figure 

1.6 are shown some actual whips. 

Several studies of the whip have been carried out. The only true experiment 

on the whip was performed by Z. Carriere in 1927 [45]. He showed through high 

speed shadow photography that a sonic boom is indeed created by the whip wave. 

Further observations were recorded by Bernstein, Hall and Trent in 1958 [46] and more 

recently in 1998, in a beautiful high-tech, high-speed digital photography experiment 

by Krehl, Engemann and Schwenkel [3] where acceleration of up to 50,000g was 

recorded (Fig. 1.7). In the latter two cases, the authors only report the observations 

of a real bullwhip manipulated by hand (as opposed to the experiments of Carriere 

performed with a "laboratory" whip under controlled acceleration and tension). 

Despite the several studies that have been done on the whip, there are still unan­

swered questions about this beautiful phenomenon. Whip construction has evolved 

over the centuries toward creating whips that create the loudest cracks for the least 

effort. The best whips are made of several parts, all of which taper toward the end. 

One question is how important this tapering is for creating a wave with a high speed. 

It is known, for instance, that one can produce a crack with a whip that is not ta­

pered, but it is not known how much the tapering aids in the rapid acceleration of 
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Cracker Thong 

FIGURE 1.6. Some actual whips. Notice the planar loops that propagate down a 
whip when it is cracked. 

the tip of the whip. The most important part of the whip is the so-called "cracker" at 

the end of the whip. (Fig. 1.6) A short cord is attached to the end of the whip, and a 

knot tied near the end of the cord. The section of the cord beyond the knot is frayed 

out to form a brush or tuft. The knot alone cannot produce an effective cracking 

sound, which is easily demonstrated by simply cutting away the tuft. The puzzling 

observation was reported by Krehl, Engemann and Schwenkel that a strong shock 

wave (sonic boom) is emitted when the tip velocity reaches about twice the speed of 

sound in air. Another question, then, is why the speed of the tip must be more than 

twice the speed of sound, and why simply breaking the sound barrier is not enough 

to produce a crack. Related to these questions are the questions of how the various 

boundary conditions contribute to the production of a crack. There are several sets of 
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FIGURE 1.7. High-speed digital shadowgraphs of a cracking whip and its sonic boom. 
The time interval between the 2 picture is 111/iS. The solid lines are superimposed 
over the shock waves. The velocity at the time of the crack was Mach 2.19. Picture 
courtesy of A. Krehl [3]. 

boundary conditions consistent with a rod with one free end. We address the question 

of the importance of the boundary conditions and material properties of the rod to 

producing a crack. 

Previous studies of the problem have reached seemingly mutually exclusive, con­

tradictory results, with no apparent reconciliation in the literature. Most of the 

previous formulations involved posing the propagation of a whip wave as an energy 

problem. Naively, as a wave travels down a whip, the mass that is travelling de­

creases. Thus, in order to maintain energy conservation, the speed must increase. 

This leads, however, to some non-intuitive results, such as the speed of the tip ap­

proaching infinity [46]. Zak [47, 48] took a simple model of an elastic rod, and showed 

that a localized disturbance travelling along the rod with one free end can create a 

shock, producing an acceleration of the tip to infinity. On the other hand, Steiner 

and Troger have shown [49] that if linear momentum is conserved for an assumed 

shape, then the speed of the tip remains constant. Of course, the speed of the tip 

of a whip does accelerate as the wave travels down the length of the whip, but it 
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does not approach infinity, even if it does taper to zero radius. These formulations 

all suffer from the same flaw, which is the failure to account for the shape of the 

whip. One cannot simply assume a shape that the travelling wave makes; the whip 

obeys physical laws that constrain the shape. In particular, one cannot assume that 

a disturbance in the rod will remain localized as it approaches the tip, and indeed, in 

the numerical simulations we perform, we see that as the disturbance reaches the end 

of a rod, there is some reflection of the disturbance in the direction opposite of the 

direction of travel. As is assumed in some previous studies, we will show that both 

energy and angular momentum are conserved in the whip wave. We show that the 

speed of the tip accelerates rapidly as the wave reaches the end of the rod, but that 

its maximum speed is indeed finite, and the acceleration is related to the tapering, 

length and physical characteristics of the rod. 
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Chapter 2 

THE KIRCHHOFF MODEL 

The Kirchhoff model of elastic rods is used to model the behavior of filaments in the 

static and dynamic cases under consideration. A general formulation of the model is 

presented by Antman [50]. The main idea behind the Kirchhoff model is to represent 

a filament as a space curve to which all of the attributes of the filament are attached. 

The space curve represents the central axis of the rod. (This is not generally the 

case, but is true for the cases we consider here.) The attributes of a rod are shape 

(how a rod is oriented in space), stiffness (elastic properties of a particular rod), twist 

(how adjacent cross-sections are oriented along the length of the rod), and spin (how 

a cross-section rotates in time). The external stresses are in the form of the force and 

moment, acting across and averaged over cross-sections of the filament. 

2.1 Kinematics 

We first consider space curves and ribbons. A ribbon is defined as a pair given by a 

space curve, x(s, t) together with a unit basis vector di(s,t) lying in a plane normal 

to the curve. Here, s is the arc-length and t is time, i.e. for each t, x(s, t) and di(s, t) 

are maps from an interval of E (possibly infinite) into E^. The kinematics of 

ribbons is described in terms of a director basis, 

(di, d2, da) = (di(s, t ) ,  d2( s ,  t ) ,  d3( s ,  t ) ) ,  (2.1) 

defined as follows. The basis vector 6.3(3,1) is the tangent vector to the curve, that is 

ds = x', (2.2) 

where (•)' = d { - ) / d s ,  ( • )  =  d { - ) / d t .  The introduction of ribbons rather than space 

curves allows one to attach to a space curve material properties such as twist, intrinsic 
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curvature or bending stiffness (see next section). The vector di will be chosen so as 

to follow that particular material property. For instance in the case of rods with 

elliptical cross section, one can choose the vector di to follow the direction of the 

major or minor axis (see Fig. 2.1.) The vector d2 = da x di is then chosen so that 

(di, d2, ds) is a right-handed orthonormal basis. Thus we can measure the twist and 

spin in the filament by measuring how much the basis twists or spins as s or t vary. 

The requirement that the basis remains orthonormal in space and time implies the 

existence of a twist vector k and a spin vector u) satisfying 

d'j = K X di, i = l,2,3, (2.3) 

dj = a; X dj, i = l,2,3. (2.4) 

A compatibility relation for k and uj is obtained by equating cross-derivatives: 

k — u}' = uj X K. (2.5) 

The director basis (di,d2,d3) can be related to the Frenet basis (n,b,t) (normal, 

binormal and tangent vectors) by introducing on each cross section an angle C between 

the normal vector and di. Then, the Frenet curvature K and torsion r defined through 

the Frenet equations [51] 

t = x', t' = Kn, b = t X n, b' = —rn, (2.6) 

are related to the components of the twist vector by 

K I  = ft:sin(C), K2  =  K C O S { ( ) ,  = r  +  ( ' ,  (2.7) 

K  =  K i d i  +  K 2 d 2  +  / ^ a d s .  ( 2 - 8 )  

Here, K I  and ^2 are the components of curvature, while K3, called the twist density, 

contains information on both the torsion of the curve and the twist of the filament. We 

adopt the standard convention that the curvature k > 0 and r G E. The derivative 

C' measures the change in the angle between di and the normal to the curve; this is 
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FIGURE 2.1. A filament with noncircular cross-section, showing the basis vectors di 
and 6.2. da is tangent to the central axis curve x(s,t). 

the twist. The twist thus measures how much consecutive cross sections rotate along 

the filament. The twist is distinguished from the total twist of the filament, which is 

f Ksds, where the integral is taken over the length of the filament. The total twist 

measures the total number of turns a basis vector makes along the full length of the 

filament, relative to a fixed vector. Thus, the total twist is a global property of a 

filament, whereas the twist is defined at each point s along the filament. 

2.2 Dynamics 

The filament is assumed to be inextensible and unshearable, and for the moment 

we assume that the shape of the cross-section does not vary. The vector di is now 

chosen to lie along one of the principal axes of inertia of the filament's cross-section. 

The KirchhofF model relates the force and moment, called F and M, respectively, 

acting across cross-sections of the filament to the director basis. Balancing linear 

and angular momenta across each cross-section and integrating over the cross section 
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leads to the Kirchhoff equations [50, 52], 

F' = pA^, (2.9) 

]VI' + d.3 X F = p ^/2di X di + -^id.2 X d2^ , (2.10) 

where p is the (constant) mass per unit volume of the rod and A is the cross-sectional 

area; the quantities Ii and I2 are the principal moments of inertia of the cross-section. 

The unstressed state is the stationary shape of a filament with no external con­

straints. This state can be defined by its intrinsic curvature, which we call 

4- ^'"2^6.2 + (2.11) 

The Kirchhoff equations are then closed by the constitutive relation of linear elasticity 

theory: 

M = Eh{Ki - + EI2{K2 - + /xJ(K3 - 4"^)d3, (2.12) 

where E is Young's modulus; // is the shear modulus; and J depends on the cross-

sectional shape. The elastic energy density of the filament is given by 

£ = M-(k-K("^), (2.13) 

so that the state of lowest elastic energy is indeed given by K = the unstressed 

state. 

2.3 Statics and re-scaling 

In the static case all time derivatives in (2.9 - 2.10) are set to zero, and the system 

becomes 

F' = 0, 

M' + da X F = 0. 

(2.14) 

(2.15) 
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We re-scale the system by choosing combinations of the length [L], time [T] and mass 

[M] units in the following way: 

|M1 = pv/M, = EIu (2,16) 

which amounts to making the substitution 

M ^ ^ M ,  F - > ^ F ,  ( 2 . 1 7 )  
Ij 

s L s ,  K, —>• K, (2.18) 

In the static case, the length scale L remains arbitrary. This contrasts with the 

dynamic case, in which we must choose L = Ajin order to non-dimensionalize 

the equations (2.9 - 2.10). This degree of freedom remains in the static case because 

the units of the force F contains a time scale which remains arbitrary in the static 

case. 

The static Kirchhoff equations reduce to the scaled form 

F' = 0, (2.19) 

M' + d3 X F = 0, (2.20) 

M = (aci - «;i"^)di + A(«;2 - K2"^)d2 + r(ft;3 - K3"^)d3, (2.21) 

where A = h j h  is the ratio of moments of inertia and T = jiJ/EIi is the ratio of 

torsional stiffness to the bending stiffness in the direction di. The asymmetry in the 

filament is measured by A. The choice of axis along which di lies determines whether 

A is larger or smaller than 1. Choosing di to lie in the direction of the largest bending 

stiffness, that is Ii > I2, we have A < 1. In the case /i < /2, A > 1. In the case of a 

circular cross-section, /i = I2, and 

A-1, r = (1-fa)"^ G [2/3,1], (2.22) 

where a is Poisson's ratio. Values of T near 1 correspond to incompressible material 

such as steel, while values near 2/3 correspond to hyperelastic material such as rubber. 
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The equations (2.2), (2.3), and (2.19 - 2.21) form a closed system. In the case 

of inextensible and unshearable rods, as we have assumed, this system decouples, so 

that one may solve (2.19 - 2.21), then (2.3), then (2.2), separately. Thus, we obtain 

a complete description of the filament by solving (2.19 - 2.21). 

The quantities in the scaled system (2.19 - 2.21) still have a dimension. From 

(2.21), we see that the scaled moment M has the dimension of an inverse length, and 

that the scaled force F has the dimension of the inverse of a squared length, hence 

every variable involved is a length to a power. However, the system cannot be further 

simplified by choosing the length unit [L], because the remaining constants A and F 

are already dimensionless. However, it is still possible to choose a convenient length 

scale for a given problem. For example, if we consider a finite rod, a natural choice 

for the length unit is the length of the rod. Another natural length scale, in the case 

of a rod which is a ring in its unstressed state, is the radius of the ring. Yet another 

length scale which is convenient for certain cases is the radius of the rod if the rod 

has a circular cross-section. 

The fact that the length unit [ L ]  is undetermined has yet another implication. 

Considering the static system (2.19 - 2.21), we see that every known solution actually 

determines a one-parameter family of solutions. More precisely, if {F(s), M(s), K(S)} 

is a solution of the system, then {A~^F(As), A~^M(As), A~^/«(As)} is another solution 

of the system for every real non-vanishing A. That is, the system is scale-invariant. 

Furthermore, if such a transformation is performed on the solution together with 

a re-scaling of the length unit [L] by a factor A~\ the solution remains unchanged, 

although the rod thickness is modified by a factor A'K Hence, the statics of a filament, 

in the limit of a Kirchhoff model, is independent of the rod thickness. 
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FIGURE 2.2. A rod in the plane. The centerline of the rod is r. 

2.4 The motion of rods in the plane 

For a planar rod, the system of six governing equations (2.9 - 2.10) reduces to three 

equations in three unknowns. For this case we will constrain ourselves to the discus­

sion of inextensible, unshearable rods with circular cross-sections and zero intrinsic 

curvature, but we will allow that the cross-sectional area may vary along the length of 

the rod. For planar rods, it is simpler to write equations in terms of the angle made 

b e t w e e n  t h e  t a n g e n t  v e c t o r  a n d  a  f i x e d  v e c t o r  i n  s p a c e .  L e t  r { s , t )  =  { x { s , t ) , y { s , t ) )  

b e  t h e  c e n t e r l i n e  o f  t h e  r o d ,  w h e r e  s  i s  t h e  a r c - l e n g t h  a n d  t  i s  t i m e .  L e t  { e x . , e y , e z )  

be the orthonormal basis in Euclidean 3-space. Then r = x BX + y By. The tangent 

vector t is given by 

We define the angle ip (see Figure 2.2) to be the angle between Bx and t. Since the 

rod is inextensible, jr'] = 1, so that 

From Frenet's equations [51], we have that t '  =  K H ,  where n is the normal to the 

curve r and K is the curvature. This implies that 

(2.23) 

cos(^), 

sin((^). 

(2.24) 

(2.25) 

K — (f (2.26) 
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We call the force and moment F and M, respectively. The force is written in compo­

nents as 

F = F Gx + CrBy. (2.27) 

The balance of linear momentum gives, as in (2.9), 

p A x  =  F '  (2.28) 

p A y  =  G ' ,  (2.29) 

where, as before p is the density per unit volume, and A = y4(s) is the area of the 

cross-section at the material point s, which we allow to vary as a function of s. The 

linear constitutive relation, relating the moment to the strain K, is, with M = Mez, 

M  =  E l K  =  E l ( f ' ,  (2.30) 

where, as before, E  is the material Young's modulus and I  =  I { s )  is the moment of 

inertia of the circular cross-section. The balance of angular momentum provides us 

with an equation for 

p i i f i  =  { E I ( p ' y  -f Gcos{ip) — Fsm{(p). (2.31) 

Since the cross-sections are circular, we have 

A = 7rR^, (2.32) 

where R  =  R { s )  is the radius of the cross-section. We make the following scalings: 

RQ  I p ~ 
t 

r = yf, (2.35) 

F = EtxRIY, (2.36) 
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where RQ  is the radius of a cross-section at a given reference point. Notice that, in 

this scaling, when s = 1, s = RQ/2, so the radius of the rod in the new variables is 

2 at the reference cross-section R = RQ. Furthermore, from (2.31), we see that the 

speed of sound in the rod is 

2.37 
P 

We would like to relate the speed of a wave in the new variables to the speed in 

the original variables. Notice that a speed of 1 in the new variables corresponds to 

As/At — 1, and that 
As As . . 

so that a speed of 1 in the scaled variables corresponds to the speed of sound in the 

material. The speed of sound in leather is approximately 220 m/s, comparable to the 

speed of sound in air, 330 m/s [40]. 

We define the ratio of the area of the cross-section to the typical cross-sectional 

area, 

Hs) = (2^39) 

Thus, if the radius is constant, <5=1. Then, the equations become, after making the 

scalings (2.33 - 2.36), and dropping the tildes, 

Sx = F', (2.40) 

5y = G', (2.41) 

S'̂  + G cos(f — Fsin(p. (2.42) 

We obtain a closed system of equations by dividing equations (2.40, 2.41) by S, and 

differentiating with respect to s: 

( c o s ( p ) -  =  ( F ' / Sy ,  (2.43) 

(sin I/))- = (G ' / S y ,  (2.44) 

S ^ ( p  =  ( S ' ^ c p ' ) ' +  G c o s c p  —  F s i n ( / ) .  (2.45) 
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Chapter 3 

A STATIC PROBLEM IN 3-D: PERVERSION 

This chapter concerns the description of static structures created when a rod with 

intrinsic curvature is held at its ends so that the rod has zero total twist. The result­

ing structure is a perversion, a connection between asymptotic helices with opposite 

handedness. We first proceed by describing the property of intrinsic curvature, and 

various ways to create rods with intrinsic curvature. Then we turn to a description of 

helices as solutions to the static Kirchhoff equations, which are the asymptotic states 

of perversion solutions. This description turns to comparisons of springs created 

from perversions and helices, and the properties of such springs. Next, we analyze 

the static equations using techniques from dynamical systems, in which the static 

equations are considered as dynamical equations, where the arc-length plays the role 

of time. A standard center manifold reduction and normal form analysis reduces the 

dynamics to a three-dimensional system, from which a complete description of the 

solutions is obtained. Lastly, we produce numerical solutions of the static equations, 

using a continuation method to produce a family of solutions representing perversion 

solutions with varying tension applied at the ends of the rod. 

3.1 Intrinsic curvature 

Intrinsic curvature describes the property of materials which in their unstressed states 

have locally a non-vanishing curvature. In terms of the unstressed curvature vector, 

we consider materials which (i) only exhibit intrinsic curvature (no intrinsic twist or 

torsion), (ii) in their unstressed shape, are locally curved in the direction of either 

the lowest or the highest bending stiffness. That is, 

= (/iT, 0, 0) (3.1) 
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If di lies along the principal axis of inertia, A < 1, and the curvature is in the direction 

of lowest bending stiffness. This last assumption, while restrictive, seems natural as 

one expects a rod to be locally curved in the direction of lowest bending stiffness. 

Thus, the most common case would be the one in which A < 1, but we include the 

case A > 1 for greater generality. 

In light of the discussion in the previous section, we can always rescale, by setting 

the length scale L = the radius of the ring the rod forms in its unstressed 

state. This implies that = (1,0,0) and we can take K = 1 without loss of 

generality. However, in our analysis we leave K undefined, in order to make explicit 

the dependence of solutions on the intrinsic curvature. 

In physical systems, there are various mechanisms for creating intrinsic curvature 

starting with an initially straight unstressed filament. For instance, differential growth 

is used in tendril perversion and in many other biological systems to curve strands [53]. 

Another mechanism is heat setting as used, for instance, in the textile industry where 

it is known as false-twist technique [54]. In this process, an initially straight filament is 

heated and shaped as a ring or helix and cooled down. Due to the thermo-plasticity of 

many materials, the material conserves its new shape at lower temperature. Finally, 

in a common experiment, chemical unbonding and rebonding is performed on hair, 

in most salons, to artificially create curls. Again, this process is based on the simple 

idea of destroying certain chemical bonds and setting the filament in the desired shape 

where the bonds are then re-created (usually by both chemical and heat setting). 

We now study how differential growth can affect the intrinsic curvature in the 

simplest case. Consider a filament that grows faster on one side than the other. Let 

the length of the side which grows faster be Li and the length of the slower growing 

side be L^. We assume that the the filament is unshearable, so the cross-sections 

remain at right angles to the edges, and the sides form circular arcs of radii r and 

r -\- h, where h is the diameter of the filament. (Fig. 3.1.) We can thus solve for r in 

terms of Li and L2. A simple calculation shows that the curvature of the centerline 
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The upper side 
grows faster than 

the lower side V. 

FIGURE 3.1. A filament after differential growth. The dashed line is the central axis 
of the filament. 

is given by 

( 3 2 ,  
h ( L ,  +  L ^ y  

Therefore, the curvature of the filament is a simple function of the lengths of the sides. 

As one side grows faster than the other, the curvature of the filament increases. 

In general, in biological material differential growth takes place in such a way 

that different points on the cross-sections experience different growth rates. This, 

in turn creates both intrinsic curvature and intrinsic twist that can vary with time 

and arclength. A complete treatment of the kinematics of differential growth requires 

a geometric description of each material line of the filaments and can be performed 

within the context of standard differential geometry [55]. 

3.2 Static solutions 

We now seek solutions of the static equations (2.19-2.21). Forming the vector X = 

(Fi, F2, F3, Ki,K2, 1^3)'^, we obtain a system of 6 ordinary differential equations: 

X'-g(X). (3.3) 
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We note that the system admits, for all values of the parameters A, F, and three 

first integrals: 

These first integral represent, respectively, a local form of the energy, the force, and 

the inner product of the force with the moment. System (3.3) can be shown to 

be a Hamiltonian system with a non-canonical symplectic structure (similar to the 

one obtained by Mielke and Holmes [37]). It has three degrees of freedom with 

three first integrals (3.4-3.6). However, two of these integrals, namely (3.5-3.6) are 

so-called "Casimirs" and cannot be used directly to integrate the system following 

Poincare-Arnold's theorem [56]. They can be used to reduce the system to a four 

dimensional (2 degree of freedom) canonical Hamiltonian system with one first integral 

(the Hamiltonian itself). However, we have not been able to use this additional 

structure to our advantage and in the following we study the system using classical 

methods from dynamical systems. 

In the case = KAX , equation (3.3) reads 

11 J + AK2 + F/tg + 2i^3, 

h  =  F l + F ^  +  F l  

h = F . K - K S " ' ) + A ^ ' 2 ( « 2 - 4 " ' ' ) + r f 3 ( ' : 3 - 4 " ' ) -

(3.4) 

(3.5) 

(3.6) 

= F2K3 —F3K2, 

F 2  =  F a  —  F i  K 3 ,  

F 3  =  F 1 K 2  —  F 2 K 1 ,  

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

— ^2 + (^ ~ r)'^3 1^2, 

Av2 = — (-f^i + (1 — r)/«3 Ki —/sT/^a)/A, 

K3 = { { I  -  A ) k - i K 2  -  K K 2 ) / r .  
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The associated flow is invariant under two symmetries: 

R 2  s  — s ,  F 2  — > •  ~ F 2 ,  K 2  — H 2 -

Ri : s —> —s, Fi —>• —Fx, F2 —> —F2, 1^3 (3.13) 

(3.14) 

We consider an ideal infinite filament, so that s G E. In this context, the space curve 

X = x(s) representing a perversion approaches asymptotically helices with opposite 

handedness as s ±00. Solutions in this case are bounded, and we therefore look 

for bounded solutions to (3.7-3.12), e.g. heteroclinic, homoclinic or periodic orbits. 

As shown in the next section, helices of opposite handedness are different fixed points 

of the system (3.7-3.12). A perversion, in this setting, is thus a heteroclinic orbit. 

3.2.1 Helical solutions 

A complete discussion of all fixed points of (3.7-3.12) is given in Appendix A where it 

is shown that all fixed points are either twistless helical solutions or twisted straight 

solutions. A helix is a curve with constant curvature K and torsion r. A helical 

solution represents a filament whose central axis is a helix. Therefore, all helical 

solutions have the form; 

where K  and r are constant but C is, in general, a function of s. The twist is given 

by so that a twistless helix is one in which C' = 0- We show in Appendix A 

that in order for a helical filament to be a stationary solution of (3.7-3.12) we must 

have = 0 or K = 0, therefore all helical filaments (excluding the straight helix) are 

twistless. Note however that the total twist (which includes torsion) of any section 

of a helix is not zero, it is just the pointwise twist density that is zero. Moreover, the 

helical solutions are such that: 

K = (/^sin(C), Kcos(C), r + C') • (3.15) 

F = 'JTK 

K «;di + rds. (3.16) 

(3.17) 
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where 7 = (^ —l+F). This imphes that the possible asymptotic helices in a perversion 

do not depend on the cross-section's characteristics, but only, as we now show, on the 

tension, intrinsic curvature and F, the ratio of twisting to bending stiffness. 

The tension applied at the ends of a rod forming a perversion is applied along the 

axes of the asymptotic helices. The axis of a helix is the centerline of the cylinder 

around which a helix is wrapped. This is not to be confused with the axis of a rod, 

which is the centerline of a rod. In order to compute the force in the direction of 

the axis of the asymptotic helices, we compute the force in terms of a fixed frame 

of reference. Let (61,62,63) be a fixed Euclidean basis, where 63 is chosen to lie 

along the axis of the asymptotic helices of a perversion. The external tension is then 

applied along 63, and, in order to compute the applied external force in terms of the 

components of F, we calculate the component of the force vector in this direction. A 

helix with curvature K and torsion r, with axis along 63 can be written 

where A = X/K^TT^. Since helical filaments have no twist, we can write the director 

basis (di,d2,d3) in terms of the Frenet basis (n, b,t), determined by (2.6). Substi­

tuting the twist vector k = ndi + rds into the twist equations (2.3), the equations 

for the basis vectors are 

(3.18) 

d'l = rd2. (3.19) 

(3.20) 

(3.21) 

d2 = «;d3 — r di. 

dg = —«:d2. 

Using (2.6), and the fact that da = t, equations (3.19-3.21) are solved by 

di = b, d2 = -n, da = t. (3.22) 
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Hence, we can calculate (di,d2,d3) in terms of the Euclidean basis using (2.6), 

di = Y ~ TC0s(As)e2 + ^63), (3.23) 
A 

d2 = cos(A5)ei + sin(As) e 2 ,  (3.24) 

ds = — (—Ksin(As) ei + «:cos(As)e2 + re^). (3.25) 
A 

Thus, the force in the Euclidean basis is 

F = -Fidi + -F2d2 + -^sds 

= [A cos(As) F2 + T sin(As) Fi — k sin(As) F^] ei + 

i [A sin(A s) F2 — T  cos(A s) Fi + K  cos(A s) F3] 62 + J [T  F^ + K  Fi] 63, 

(3.26) 

where the Fj's are s—independent. Note that the external tension is given by T = 

i l T F 3  +  K f , ] .  

3.2.2 Asymptotic states 

We now identify among the two-parameter family of helical solutions (given by cur­

vature and torsion), a one parameter family of solutions formed by the asymptotic 

states of heteroclinic solutions. A perversion, k = K{S), is a heteroclinic solution that 

connects asymptotically two helices with the same curvature K but opposite torsion 

r, that is: 

k Kdi±rd3. (3.27) 
s->±oo 

Thus, on this solution we can calculate the first integrals in terms of the parameters 

and the tension. Substituting (3.16-3.17) into the first integrals (3.4-3.6), we obtain 

Ii = + (r -l- 2'y)T^, (3.28) 

h = + (3.29) 

H  =  T7[rr^ —  K { K  —  Av)]. (3.30) 
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We note that /i and 12 are even in r, while Is is odd in r. Therefore, on the two 

asymptotic fixed points, we have h{T) = which implies = 0. Thus, in the 

curvature - torsion plane, the set of possible asymptotic helices form the ellipse: 

A perversion is a heteroclinic orbit connecting two points on this ellipse, as seen 

in Fig. 3.2. Now, we solve for the asymptotic curvature and torsion in terms of the 

tension and parameters of the system. The external force is applied at the ends of the 

filament. Without loss of generality, we assume that r > 0. The other asymptotic 

helix then has torsion —r. We call the force at the ends T = F.ea, the applied 

tension, which is applied along the axis of the asymptotic helices. That is, T is the 

magnitude of the applied tension, which is applied in opposite directions at s = ±00. 

Substituting (3.17) into the z component of the force, and identifying it with the 

tension, we have another equation for the curvature and torsion: 

The previous equation, along with (3.31), allows us to solve for K  and r in terms of 

the parameters and the applied tension. The following equation for K can be derived 

by solving for and substituting into (3.32): 

Equation (3.33) is a fourth degree polynomial equation for K  for which there is exactly 

one real solution in 0 < K, < K, the physically relevant case, for 0 < T < K'^/T. The 

asymptotic curvature K varies monotonically from iT to 0 as the tension T varies from 

0 to fV. The tension T = jV is the critical tension above which the solution 

representing a perversion does not exist. At T = 0, the filament is a ring with radius 

, and for T > K'^/T the filament is straight. The curvature as a function of the 

tension is obtained by solving (3.33) and is seen in Fig. 3.3a. Furthermore, the first 

(3.31) 

T = 7tA (3.32) 

[ K  { K  - k )  =  (3.33) 
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V 

FIGURE 3.2. The set of helices that can connect asymptotically to another helix with 
opposite torsion forms an ellipse in the curvature - torsion plane. 

integrals are 

where K  is given by the solution of (3.33). 

We can now deduce the boundary conditions necessary to produce a perversion 

solution as we have defined it. We have defined a perversion in an idealized form as a 

heteroclinic orbit. In this setting, for a rod with intrinsic curvature K in the direction 

di, and a tension T applied at the ends at ±oo, the boundary conditions are given by 

the asymptotic condition (3.27). If the tension is positive, then the curvature of the 

asymptotic helices is different from the intrinsic curvature. The control parameter in 

the problem is the tension T. From the previous analysis, once T is given, one can 

obtain the asymptotic curvature K and torsions ±r. Therefore, the moment and force 

h 

h = T\ 

(3.34) 

(3.35) 

(3.36) h = 0, 


