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ABSTRACT 

Imaging is often used for the purpose of estimating the value of some parameter of interest. 

For example, a cardiologist may measure the ejection fraction (EF) of the heart in order to 

know how much blood is being pumped out of the heart on each stroke. In clinical practice, 

however, it is difficult to evaluate an estimation method because the gold standard is not 

known, e.g., a cardiologist does not know the true EF of a patient. Thus, researchers have 

often evaluated an estimation method by plotting its results against the results of another 

(more accepted) estimation method, which amounts to using one set of estimates as the 

pseudo-gold standard. In this dissertation, we present a maximum-likelihood approach for 

evaluating and comparing different estimation methods without the use of a gold standard 

with specific emphasis on the problem of evaluating EF estimation methods. We have 

named this method Regression Without Truth or RWT. 

Results of numerous simulation studies will be presented and indicate that the method 

can precisely and accurately estimate the parameters of a regression line without a gold 

standard, i.e., without the x-axis. We also characterize the performance of this method 

in comparison to conventional regression analysis using x-axis information. Also in this 

work we calculate the Fisher information for our method to quantify the performance of 

our evaluation method. Results of simulation studies are presented to show that we are very 

nearly efficient at estimating the parameters used in our method. In an attempt to further 

validate RWT we present the results of a volume estimation experiment using a physical 

phantom and two imaging systems (SPECT,CT). 

We conclude the dissertation with a discussion of the strengths and weaknesses of RWT. 

In an attempt to aid users of RWT we provide multiple consistency checks for users to 

evaluate results of RWT. Finally, we present some areas of potential application for RWT. 
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Chapter 1 

INTRODUCTION 

A great deal of research in the field of medical imaging is dedicated to image-system design 

and image processing. Researchers often claim to have a system or method that produces 

"better" images, although they rarely support their claims with objective comparative stud­

ies. Even when objective comparisons are made, rarely do such comparisons account for 

the reason the images were taken and/or the observer reading the images. We advocate 

a statistical, task-based approach to the objective assessment of image quality [1-3]. To 

properly quantify the performance of an imaging system or image processing technique, 

we define the task the image is to be used for and measure the performance of an observer 

performing this task. 

The most important tasks in medical imaging are classification and estimation tasks. 

Classification tasks consist of an observer determining some categorical (usually binary) 

diagnosis for a patient, e.g., tumor present or tumor absent. This task may be performed 

by a human observer, a computer observer, or some combination thereof The performance 

of this observer may be assessed using psychophysical studies and receiver operating char­

acteristic (ROC) analysis in the case of binary decision tasks [4]. Figures of merit such 

as sensitivity, specificity, and/or the area under the ROC curve (AUC) can then be used to 

compare different imaging modalities. 

Along with classification, imaging is often performed to estimate some parameter of 

interest that will aid a physician in diagnosis. Examples of estimation tasks in medical 

imaging include estimating bone density [5], blood-oxygen levels [6], and cardiac ejection 

fraction [7]. Estimation tasks typically involve computer observers, though sometimes 

these computer observers require human intervention, e.g., defining regions of interest [8, 

9]. The performance of estimation tasks is typically measured using the bias and variance 
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of the estimate, often combined to form mean-squared error (MSE) which can be used as a 

scalar figure of merit. 

More than one imaging modality often exists to perform both classification and esti­

mation tasks [10]. In order to evaluate the performance of an imaging modality we need 

to compare this performance to the truth. The gold standard is the method that returns the 

true estimate of the parameter. The presence of a gold standard allows for the evaluation of 

new imaging techniques via figures of merit such as AUC and MSE. A gold standard rarely 

exists for most imaging problems. Even when one does exist, the financial costs and patient 

risk are often too high for practical application. It is extremely rare for an inexpensive, safe, 

always correct classification or estimation technique to exist while other techniques are still 

under development. 

In the case of classification tasks, biopsy is typically considered the gold standard [11]. 

The problems with biopsy and histological analysis is that they are not always available, 

and, even when available, are subject to errors. For example, biopsy will give information 

about those lesions detected in images. If, however, a lesion is not detected in an image, 

then its contribution to the false-negative fraction remains unmeasurable [12]. 

The problem of comparing classification tasks without a gold standard was first ad­

dressed successfijlly in the medical imaging literature by Henkelman, Kay, and Bronskill 

in their work on ROC analysis without truth in 1990 [13]. Since the publication of their 

work their has been a great deal of research performed comparing classification tasks with­

out a gold standard [14-20]. 

Similar problems regarding gold standard techniques exist for estimation tasks. For ex­

ample, in cardiac studies, ventriculography or ultrasound might be taken as the gold stan­

dard for estimation of EF, and nuclear medicine or dynamic MRI might then be compared 

to the supposed standard [10], A very common graphical device is to plot a regression 

line of EFs derived from the system under study to those derived from the standard and to 

report the slope, intercept and correlation coefficient (r) for this regression [21-25]. An­

other comparison approach is the use of a Bland-Altman plot, which attempts to measure 
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the agreement between two different modalities [21,23-26]. Neither of these approaches 

allows for objective performance rankings of the imaging systems, a point we expand upon 

in Chap. 2. In reality, no present modality can lay claim to the status of gold standard for 

the estimation of quantitative cardiac parameters, and thus the aforementioned compari­

son techniques suffer from major inconsistencies. The goal of this work is to address the 

no-gold-standard problem for estimation tasks. 

We have developed a method for evaluating and comparing multiple estimation meth­

ods without the benefit of a gold standard [27-29]. We have named it Regression Without 

Truth (RWT). The goal of this method is to quantify the relationship between estimates of 

a parameter of interest and the underlying gold standard without knowledge of the gold 

standard. Stated differently, if researchers are to estimate a quantity of interest using mul­

tiple techniques on a set of P patients, we would like to quantify the relationship between 

those estimates and the true value of the quantities of interest without assuming any given 

technique to be the gold standard. 

In Chap. 3 we derive a method we have called Regression Without Truth (RWT) that 

assesses the relationship between the estimates and the so-called ground truth without as­

suming a gold standard. Chaps. 3 and 4 contain the results of numerous simulations studies 

indicating the success of RWT. Also in Chap. 3, we discuss how researchers can apply the 

results of RWT to better rank and compare different estimation methods. 

In Chaps. 3 and 4 we were able to assess the performance of RWT because all of our 

work was done in simulation, i.e., we did in fact know the gold standard. Much of this 

work has been received with the justified skepticism associated with computer simulations. 

Chaps. 5 and 6 attempt to quell such skepticism. In Chap. 5 we derive an expression for 

the Fisher information matrix for RWT, from which we ascertain the Cramer-Rao (CR) 

lower bounds for the variances of the model parameters estimated using RWT [30-32], We 

also show that the variances calculated experimentally are very close to the CR bounds 

calculated using the Fisher information. In Chap. 6 we present the results of a volume 

estimation experiment performed using multiple modalities with a gold standard. We use 
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the results of this experiment to assess the performance of RWT when applied to real data. 

We conclude the dissertation in Chap. 7 with a summary and evaluation of RWT, along 

with a discussion of future applications for RWT. 
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Chapter 2 

BACKGROUND 

As discussed in the introduction, there exist many medically relevant parameters physicians 

would like to estimate that do not have a gold standard estimator. In this dissertation we 

focus our attention on cardiac EF. We chose EF because it is prevalent in the literature and 

because it is bound between zero and one, a point we return to later in the dissertation. 

There have been numerous studies performed comparing cardiac EF estimation techniques 

[21-26]. The focus of this chapter is to discuss the different EF estimation techniques used 

in practice and the methods used in the literature to compare these techniques. 

2.1 Cardiac Ejection Fraction 

For the sake of completeness we present a brief discussion of current estimation procedures 

for cardiac ejection fraction (EF). Cardiac EF measures the difference in the end-diastolic 

and end-systolic volumes divided by the end-diastolic volume. In other words, it records 

the fraction of the blood in the left ventricle pumped out into the body in a given heart cycle. 

Physicians measure EF for patients displaying cardiac problems, for individuals about to 

undergo a strenuous treatment program such as chemotherapy, or even as part of an armual 

physical examination. 

Sharir et al [7] showed that the likelihood of cardiac death increases exponentially 

with decreasing EF. Due to this relationship, there has been increased interest in assessing 

the accuracy of EF measurements. Cardiac EF even played a role in the 2000 presidential 

elections when the election hopes of current Vice President Richard Cheney were almost 

squashed when he suffered a mild heart attack and was reported to have an EF around 40% 

[33], approximately a 2.5% chance of cardiac death according to Sharir et al. With heart 

disease as the leading cause of death in the United States (1 out of every 2.4 deaths) [34], it 
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is no surprise that the advancement of cardiac EF estimation techniques has become a large 

field of research. 

There currently exist five different approaches to estimating cardiac EF: left ventricular 

angiography, echocardiography, nuclear medicine, electron beam computed tomography, 

and magnetic resonance imaging. According to labs at the University Medical Center at 

the University of Arizona cardiac is estimated roughly 125 times per month using left 

ventricular angiography, 40 times per month using radionuclide angiography, and on the 

order of 350 to 400 times per month using echocardiography. The UMC does not have 

electron beam computed tomography imaging systems, nor do are they currently using 

magnetic resonance imaging to estimate cardiac EF. In this section we will discuss what 

these five procedures entail, along with their pros and cons. For a more extensive discourse 

on EF estimation methods we refer the reader to Rumberger et al. [10]. 

2.1.1 Left Ventricular Angiography 

The process of left ventricular angiography (LVA) consists of placing a catheter, tj^ically 

through the left ventricular cavity via the aortic valve. The catheter then disperses a contrast 

agent enabling the acquisition of a dynamic fluoroscopic x-ray image. Typically, three to 

six heart cycles are imaged. Ideally, biplane imaging is performed, though for practical 

purposes LVA is often performed using only a single planar projection [35]. Estimates 

of the EF are then made by assuming that the left ventricle is an ellipsoid. Under this 

assumption end-diastolic and end-systolic volumes can be estimated by determining the 

semimajor axis (height) and the two semiminor axes (length and width) using the biplanar 

projections. The semiminor axes are assumed to be equal when using monoplane imaging. 

Biplane LVA is often considered the gold standard technique for estimating EF. This 

assumption is incorrect. While LVA, developed in the 1950's, is the oldest and most es­

tablished imaging technique used to estimate EF, it does not estimate EF with the tj^e of 

reproducibility required of even a pseudo-gold standard. The technique has a mean in-
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terobserver difference of approximately 5% [36] and a reproducibility of approximately 

10% [37], These errors arise due to the invasive nature of the procedure as well as the in­

correct assumption concerning the geometry of the left ventricle. Validation work has been 

done using cadaver hearts, but there are severe limitations to the conclusions one can draw 

from such studies [38], 

2.1.2 Echocardiography 

Echocardiography is the practice of cardiac imaging using ultrasound. Estimation of EF is 

often performed using echocardiography since the procedure is safe, quick, and inexpen­

sive. Once imaging is performed, estimates of the EF range, e.g. 60 to 65%, are made 

via simple visual assessment. This approach tends to produce fairly high interobserver 

variability and is heavily dependent on the experience of the sonographer [39]. As a re­

sult of this error there exist numerous quantification and semiquantification techniques for 

estimating EF using echocardiography. 

One such approach often used consists of estimating the left ventricular end-diastolic 

diameter (LVEDD) and the left ventricular end-systolic diameter (LVESD) using an elec­

trocardiogram and then estimating cardiac EF via 

EF = (LVEDD'^ - LVESD'^)/LVEDD^. (2.1) 

This estimation technique is extremely limited by assuming an ellipsoidal left ventricular 

shape. 

Another approach to estimating EF consists of imaging the apical views and using 

the area-length method or some sort of modified Simpson's rule [40], This approach is 

again limited by shape assumptions for the left ventrical and/or segmentation of the images. 

Echocardiography is a relatively new technology with plenty of room for improvement, but 

it will never lay claim to gold standard status for EF estimation given the resolution of 

ultrasound. 
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2.1.3 Radionuclide angiography 

Radionuclide angiography consists of collecting planar cardiac projections using an Anger 

gamma camera with a parallel-hole collimator imaging the tracer radionuclide ^Qw^Xc. The 

left ventrical is manually segmented at multiple stages of the heart cycle and counts within 

the segmented ventrical are used to calculate the EF. As a result, unlike LVA and Echocar­

diography, radionuclide angiography does not make any assumptions about the geometry 

of the left ventricular cavity. . 

There are numerous ways of measuring cardiac EF using radionuclide angiography. 

The most common approach is a multiple gated acquisition (MUGA) study, also called a 

gated blood-pool scan. MUGA consists of injecting a very small amount of radiotracer into 

the blood stream, often mixed with a patients blood prior to injection for better uniformity. 

Gated cardiac imaging is then performed using an electrocardiogram, and 20 to 100 ft-ames 

are observed per heart cycle. This process is carried for the duration of around 1000 heart 

beats. Abnormal heart beats are removed, and the left ventricle is manually segmented in 

the planar images [41], The maximimi number of counts in a given cycle is considered 

the end-diastole, and likewise the minimum is considered the end-systole. The number of 

counts is assumed proportional to the volume and EF is estimated by the following, 

EF = (diastolic counts — systolic counts)/[diastolic counts). (2.2) 

Cardiac EF is more difficult to study in patients with larger hearts due to increased 

gamma-ray absorption, but corrections can be made in such situations. The largest prob­

lems in MUGA studies are assuming a uniform distribution of the radiotracer in the blood­

stream and the resolution of gamma-ray imaging. 

2.1.4 Electron Beam Computed Tomography 

Electron beam computed tomography (EBCT) or ultrafast-CT was designed by Boyd [42] 

in the early 1980's. Gated imaging is performed using a iodinated contrast median and 
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end-diastolic and end-systolic volume estimation is straightforward given the quality of the 

tomographic images. In principle this is an ideal technique for estimating EF, but from 

a clinical standpoint, EBCT is at this point impractical. EBCT involves a large exposure 

(^5 rad for a cardiac study) and the use of iodinated contrast media, making serial studies 

impossible. 

2.1.5 Magnetic Resonance Imaging 

Estimating EF using cardiac MRI has become possible due to general innovations in the 

imaging modality. EF can be estimated with MRI using echo-planar imaging sequences al­

lowing for numerous images to be collected during a heart cycle. Biplane MRI can be per­

formed and EF estimation can then be accomplished as it is in LVA and echocardiography. 

Motion artifacts, claustrophobia, and time of acquisition are the major problems present in 

cardiac MRI. Breath-hold MRI techniques allow for better cardiac imaging, though in the 

case of EF the process of holding one's breath impacts the true cardiac EF. The confines of 

an MRI machine also impact cardiac imaging in about 10-20% of patients due to cardiac 

motion artifacts. 

Acquisition time is a problem in cardiac imaging due to the beating of the heart. It is 

also a problem in general since imaging time on MRI systems are in high demand. While 

newer MRI systems have software for calculating EF, older systems must perform estima­

tion off-line. As a result, many hospitals are simply incapable of performing functional 

cardiac imaging. 

2.2 Current Methods of Comparison 

Comparing estimation techniques when a gold standard is available is rather straightfor­

ward. For example, let us envision an experiment in which we would like to compare two 

newly developed EF estimation techniques, namely Estimator I and Estimator II, and let 

us assume that a gold standard technique GS exists. We can simply measure the EFs for 
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a group of patients using Estimator I, Estimator II, and GS and then compare the two new 

techniques using linear regression analysis. In Fig. 2.1 we show plots of the Estimator I and 

Estimator II estimates versus the gold standard. In each plot we have estimated the slope 

and intercept of the regression line along with a parameter a that quantifies the spread of 

the data away from the regression line. Using these parameters we can then compare the 

two techniques quantitatively by calculating their respective reproducibility, a point we ex­

pand upon in the next chapter. Furthermore, we can calibrate either of our new estimators 

using the respective slope and intercept determined by the linear regression analysis so as 

to increase the accuracy of our estimator in the future. 

As stated in the introduction, the current techniques used to compare different estima­

tion tasks are regression and/or Bland-Altman analysis. The first attempts to use values of 

the slope, intercept, and correlation coefficient (r) to compare the performance of a new, 

less accepted, modality to a more accepted pseudo-gold standard. An example is given 

in Fig. 2.2. This approach has many shortcomings. Unlike the example discussed above 

in which a gold standard existed, the importance of the calculated slope, intercept, and r 

values are unclear. If a researcher were to believe in the estimates given by the pseudo-

gold standard, then the slope and intercept of the regression line could, as discussed, be 

used to adjust the new estimates to calibrate the new system. This calibration is not often 

done, however, because rarely does such confidence exist in any of the available estimation 

techniques. 

Calculating the correlation coefficient r for the regression plot is not particularly in­

formative when comparing two estimation tasks [43^5]. A non-zero value of r imphes 

correlation, which is of very little help considering the two estimators are attempting to 

measure the same quantity. Rather, researchers would like to state that a large r value 

implies strong agreement. This is not necessarily true. The value of r depends on the mag­

nitude of the spread of the data points around the regression line and the variance of the true 

parameter across the subjects. As a result, the interpretation of r can be very misleading. 

For example, if for a given comparative study we were to measure the EFs for 100 patients 
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FIGURE 2.1. An example of regression analysis when a gold standard is available. 
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with true EFs between 0.6 and 0.7 using two different modalities we would very likely have 

a lower r value than if we were to run the same study, using the same modalities to measure 

the EFs for 100 patients with EFs between 0.4 and 0.9. 

Bland and Altman presented a simple approach to comparing estimation techniques 

in 1983 which attempts to quantify the level of agreement between two methods for cal­

culating the same quantity [43]. Given two sets of estimates for the same parameter the 

Bland-Altman plot depicts the difference between the estimates vs. the mean of the esti­

mates. An example is shown in Fig. 2.3. If 95% of the estimates fall within two standard 

deviations of the mean of the differences, then the the two methods of estimation are said 

to "agree" and thus one method could, in theory, replace another. A shortcoming of this 

approach lies in the definition of agreement which appears to be rather arbitrary. Their def­

inition implies that if the differences of the estimates follow a Gaussian distribution then 

"agreement" is achieved independent of how big or small those differences are. 

Both regression and Bland-Altman analysis attempt to draw conclusions about the cor­

relation or agreement between two methods. Neither approach determines which method 

is doing a better job of estimating the true parameter of interest. In order to achieve such 

a ranking one must incorporate the underlying true parameter into the method of compar­

ison even though it is unknown. In this dissertation we present and evaluate a method of 

comparison that does just that. 
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FIGURE 2.3. An example of a Bland-Altman plot used to quantify the "agreement" be­
tween two different estimation techniques. Note, this plot is just a rotation and rescaling of 
Fig. 2.2. 
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Chapter 3 

REGRESSION WITHOUT TRUTH 

Ideally we would like to be able to compare estimation techniques by performing regression 

analysis with a gold standard technique plotted along the x axis. In this chapter, we develop 

a statistical model that allows us to perform regression analysis without a gold standard. 

In Sec. 3.2 we present the results of numerous simulation studies used to analyze the 

performance of our method. In Sec. 3.3, we discuss our method in the context of the 

current statistics literature for the sake of completeness. We conclude the chapter with a 

discussion of the assumptions made in our model, the results of our simulations, and how 

the results of our technique can be used to compare estimation techniques. 

3.1 Approach 

We begin with the assumption that there exists a linear relationship between the true EF and 

its estimated value. We will describe this relationship for a given modality m and a patient 

p using a regression line with a slope a^, intercept b^, and noise term €pm. We represent 

the true EF for a given patient with 0p and an estimate of the EF made using modality m 

with 9pm. The linear model is thus represented by 

^pm ~ bjn H" ^pm-  (3-1) 

We make the following assumptions: 

1. Qp does not vary for a given patient across modalities and is statistically independent 

from patient to patient. 

2. The parameters and bm are characteristic of the modality and independent of the 

patient. 
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3. The error terms, €pm, are statistically independent and normally distributed with zero 

mean and variance a^. 

Note that the zero-mean assumption for epm entails no loss of generality since the mean is 

lumped into bm in equ. 3.1. Using assumption number 3 we write the probability density 

fiinction for the noise epm for a given patient p and M modalities as 

pr-{{epm}) = n ' (3-2) 
m=l y \  / 

where the term {spm} signifies the set of M noise terms. In other words, we assume a 

multivariate noise model with a diagonal covariance matrix. We could relax this assumption 

by adding non-zero terms in the off-diagonal components of the covariance matrix. One 

could also assume a different noise model, even one that is dependent on 0p. Solving for 

Cpm in equ. 3.1, we rewrite equ. 3.2 as the probability of the estimated EFs for multiple 

modalities and a specific patient given the linear model parameters (am's,bms,am'^) and 

the true EF as 

bfni ^m}) ~ I I / „ 0,m®p ~ b^) J . (3.3) 
^II\/27RA^ V 2(7„ ) 

The notation {Opm} represents the estimated EFs for a given patient p over M modalities. 

Using the following property of conditional probability 

pr[xi,x2) =pr{xi\x2)pr{x2), (3.4) 

as well as the marginal probability law, 

pr{xi) = J dx2pr{xi,x2), (3.5) 

we write the probability of the estimated EF for a specific patient across all modalities 

given the linear model parameters as 

Pf{{0pm}\{(^m) bmt = 

dQppr(Qp)S BXp ^ 2^2 0,m®p ^m) ^ ) (3-6) / 
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where 
M 

s = r i  - j = ^ -  ( 3 . 7 )  

From assiamption number 1 above, the likeHhood of the linear model parameters can be 

expressed as 

i = ri  ̂ *5 J dGppriQp) exp - dm^p - "j , (3.8) 

where P is the total number of patients. Upon taking the log, we rewrite products as sums 

we obtain, 

A = ln(L) = Pln(5)+ 

^In (/ d0ppr(0p) exp - a^Qp - bmf)^ j • (3.9) 

It is this scalar A, the log-likelihood, that we seek to maximize to obtain our estimates of 

am, bm, and These estimates will be maximum-likelihood estimates for our parameters 

when the data match the model. Althoughpr(0p) may appear to be a prior term, we are not 

using a maximum-a posteriori approach; we are simply marginalizing over the unknown 

parameter 0p which we are treating as a nuisance parameter. We are not estimating ©p, 

rather we are estimating the linear model parameters in an attempt to compare the different 

modalities. Thus we have derived an expression for the log-likelihood of the model param­

eters which does not require knowledge of the true EF 0p, i.e., without the use of a gold 

standard. This procedure is analogous to fitting lines without the use of the x axis. 

3.1.1 True (prt(©p)) versus Assumed (pra(0p)) Distributions 

Although the expression for the log-likelihood in equ. 3.9 does not require the true EF 0p, it 

does require some knowledge of their distribution pr{Qp). We will refer to this distribution, 

as it appears in equ. 3.9, as the assumed distribution (pra (0p)) of the EFs. In this chapter we 

will investigate the effect different choices of the assumed distributions have on estimating 
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the linear model parameters. We first sample parameters from a true distribution (prt{Qp)) 

and generate different estimated EFs for the different modalities by linearly mapping these 

values using known a^'s and bm'&, then add normal noise to these values with known cTrn's-

These EF estimates form the values 9pm, that will be used in the process of determining 

the estimates of the linear model parameters by optimizing equ. 3.9. We will look at cases 

in which the assumed and true distributions match (data match model), as well as cases in 

which they do not match (data do not match model). 

For our experiments we will investigate beta distributions and truncated normal distri­

butions as our choices for both the assimied and true distributions. These distributions have 

been chosen because EF is bounded between 0 and 1 and has been shown to follow a uni-

modal distribution [7,46], Furthermore, Kastis showed EF data to be well fit by beta and 

truncated normal distributions [46]. The beta distribution has probability density function 

given by 

BlUjUi) 

where 6 G [0,1] and the beta fimction is a normalizing constant. The truncated 

normal distribution is given by 

pr{e) =A(fx,a)exp ^(0), (3.11) 

where A{n, a) is a normalizing constant involving error functions and n(0) is a rect func­

tion that truncates the normal from 0 to 1. It should be noted that /i and a are the mean 

and standard deviation for the normal distribution, not necessarily the mean and standard 

deviation of the truncated normal. While v, uj, /j., and a appear to be hyperparameters 

they are not; they are simply parameters characterizing the density, pr{Qp), that we used 

to marginalize 0p in equ. 3.3. The beta and truncated normal distributions are discussed in 

more detail in App. A. 

Using a truncated normal for the assumed distribution in equ. 3.9, we find the following 
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closed-form solution for the log-likelihood: 

p 

A=- E (^) IN H iW - (I^)]) 
(3.12) 

where 

M 2 
a = J_ + y"^ 

^ ^mj^pm ^m) 

m=l 

_ (^pm ~ bmY 
20-2 Z-^ 2(7^ m=l 

The expression for the log-likelihood with a beta assumed distribution does not easily sim­

plify to a closed-form solution, and thus we used numerical integration techniques to eval­

uate the one-dimensional integral in equ. 3.9. 

We used a quasi-Newton optimization method in Matlab on a Dell Precision 620 run­

ning Linux to maximize the log-likelihood as a function of our parameters [47,48]. For 

each experiment we generated EF data for 100 patients using one of the aforementioned 

distributions. We then ran the optimization routine to estimate the parameters and repeated 

this entire process 100 times in order to compute sample means and variances for the pa­

rameter estimates. The tables that follow consist of the true parameters used to create the 

patient data as well as the sample means and standard deviations obttained through the 

simulations. 

3.2 Results 

3.2.1 Estimating the Linear Model Parameters for a Given Assumed Distribution 

We first investigated the results of choosing the assumed distribution to be the same as 

the true distribution. The asymptotic properties of maximum-likelihood estimates would 
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TABLE 3.1. Values of the estimated linear model parameters using matching assumed and 
true distributions. 

ai 02 as bi b2 bs 

True Values 0.6 0.7 0.8 -0.1 0.0 0.1 
pr(0)=Beta 0.59±.03 0.69±.03 0.79±.05 -0.10±.02 0.00±.02 0.11d=.03 
pr(0)=Normal 0.58±.04 0.68±.04 0.78±.06 -0.09±.02 0.01±.02 0.11±.03 

CTl 0-2 <73 
True Values 0.05 0.03 0.08 
pr(0)=Beta 0.048±.005 0.029±.009 0.079±.007 
pr(0)=Normal 0.048±.006 0.028±.010 0.080±.007 

predict that in the limit of large patient populations the estimated linear model parameters 

would converge to the true values [49]. The results, shown in Table 3.1, are consistent with 

this prediction. For the experiment below we have chosen u = 1.5 and a; = 2 for the 

beta distribution and fj, = 0.5 and a = 0.2 for the truncated normal distribution. Fig. 3.1 

illustrates the results of an individual experiment using the truncated normal distribution. 

In an attempt to understand the impact of the assumed distribution on the method we 

next used a flat assumed distribution, which is in fact a special case of the beta distribution 

(u = 1, ui = 1). We used the same beta and truncated normal distributions for the true 

distribution as was chosen in the previous experiment, namely u = 1.5, u = 2, /j, = 0.5 and 

a = 0.2. As shown in Table 3.2, the parameters estimated using a flat assumed distribution 

are not as accurate as those in the experiment with matching assumed and true distributions. 

However, the systematic underestimation on the a^'s and the systematic overestimation on 

the bm'& has not affected the ordering of these parameters. In fact, the estimated parameters 

have been shifted roughly the same amount. It should also be noted that the estimates of 

the ajn's are still accurate. We will return to both of these points later in this chapter. 
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FIGURE 3.1. The results of an experiment using ICQ patients, 3 modalities, and the same 
true parameters as shown in Table 3.1. In each graph we have plotted the true ejection 
fraction against the estimates of the EF for three different modalities ((a), (b) and (c)). The 
solid line was generated using the estimated linear model parameters for each modality. The 
dashed lines denote the estimated standard deviations for each modality. The estimated a^, 
bm and a^n for each graph are (a)0.59, -0.07, 0.06, (b)0.69, 0.03, 0.025 and (c)0.83, 0.12, 
0.082. Note that although we have plotted the true EF on the x-axis of each graph, this 
information was not used in computing the linear model parameters. 
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TABLE 3.2. Values of estimated linear model parameters using a flat assumed distribution 
(praiQ) = l). 

ai 02 as 

True Values 0.6 0.7 0.8 
prt (©)=Beta 0.53±.03 0.61±.03 0.70±0.05 
prt(0)=Normal 0.50±.01 0.56±.03 0.64±.08 

h b2 h 
True Values -0.1 0.0 0.1 
prt(0)=Beta -0.09±.02 0.02±.02 0.13±.03 
prt (0)=Normal -0.05±.02 0.07±.03 0.18±.04 

0-2 <73 
True Values 0.05 0.03 0.08 
prt(0)=Beta 0.049±0.005 0.031 ±0.009 0.079±0.007 
prt(0)=Normal 0.048±0.005 0.033±0.008 0.080±0.007 

3.2.2 Estimating the Linear Model Parameters and the Parameters of the Assumed 

Distribution 

After noting the impact of the choice of the assumed distribution on the estimated pa­

rameters, we investigated the effect of varying this distribution. In the case of the beta 

distribution this was simply a case of adding u and ui to the list of parameters over which 

we were attempting to maximize the likelihood. In similar fashion, we added ij, and a to the 

list of parameters for the truncated normal distribution. In the case of the beta distributions, 

we limited the search in the region 1< u,u)<5, since values of u and co between 0 and 1 

create singularites at the boundaries, an impossibility considering the nature of EF. In the 

case of the truncated normal distributions we limited the search in the region 0< yu < 1 

and 0.1 < (7 <10. We began by choosing the form of the assumed distribution and the true 

distribution to be the same, i.e., we estimated the parameters of the beta distribution while 

using beta distributed data. We found that the method successfully approximated the values 

of all parameters, including those on the assumed distribution, as displayed in Table 3.3. 

The results of an individual experiment are displayed graphically in Figs. 3.2 and 3.3. 

In the previous experiment the estimated parameters associated with both the beta and 
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FIGURE 3.2. The results of an experiment using ICQ patients, 3 modalities, and the same 
true parameters as shown in Table 3.3. In each graph we have plotted the true ejection 
fraction against the estimates of the EF for three different modalities ((a), (b) and (c)). 
The solid line was generated using the estimated linear model parameters for each modal­
ity. The dashed lines denote the estimated standard deviations for each modality. The 
estimated a^, and Um for each graph are (a)0.66,-0.11,0.050, (b)0.75,0.01,0.035 and 
(c)0.86,0.07,0.073. Note in this study the parameters of the beta distribution were esti­
mated along with the linear model parameters. 
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FIGURE 3.3. When the form of the assumed distribution matches the true distribution we 
see that RWT results in estimates of the assumed distribution which closely resemble the 
true distribution. In (a), the true distribution is a beta with parameters u = 1.5 and cu = 2.0 
that have been estimated to be z/ = 1.27 and oo = 2.29. In (b), the true distribution is a 
truncated normal with parameters /^ = 0.5 and a = 0.25 that have been estimated to be 
ji — 0.55 and a = 0.20. 



37 

TABLE 3.3. Values of estimated linear model and distribution parameters with the assumed 
distribution and the fixed true distribution having the same form. 

fli 02 03 

True Values 0.6 0.7 0.8 
pr(0)=Normal 0.59±.03 0.69±.04 0.79±.04 
?)r(0)=Beta 0.60±.09 0.70±.09 0.79±.ll 

hi bi 
True Values -0.1 0.0 0.1 
pr(0)=Normal -0.09±.03 0.01±.03 0.11dz.04 
pr(0)=Beta -0.10±.03 0.01±.03 0.11 ±.04 

0-1 0"2 f3 
True Values 0.05 0.03 0.08 
pr(0)=Normal 0.050±.002 0.029±.004 0.080±.003 
pr(0)=Beta 0.048±.006 0.030±.011 0.080±.006 

Distribution Parameters 
True Values pL = 0.5, u = 1.5 cr = 0.2, ui = 2.0 
j»r(©)=Nonnal H = 0.50±.03 a = 0.20±.02 
pr(0)=Beta V = 1.50±.53 u = 2.08±.99 

truncated normal distributions were very close to their true values. We now show the results 

when the assumed distribution differs from the true distribution in Table 3.4. We know from 

our previous experiment that when the form of the assumed and true distributions match, 

the correct distribution parameters are estimated (on average). However, it remains to be 

seen what distribution parameters will be estimated when the forms of the two distributions 

differ. Thus in Fig. 3.4 we display the true distribution as well as the assumed distribution 

with the mean estimates of the distribution parameters. Note that the assumed distribution 

cannot equal the true distribution because they are from two different distribution families, 

i.e. beta and truncated normal. The assumed distribution does, however, take on a form 

which approximates the true distribution in an attempt to maximize the likelihood. 
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FIGURE 3.4. When the form of the assumed distribution does not match that of the true 
distribution, we see that the optimal distribution parameters are such that the form of the as-
sximed distribution approximates the true distribution. In (a), the true distribution is a trun­
cated normal which is approximated automatically by the method using a beta distribution 
(u = 3.93, cj = 3.47). In (b), the roles are reversed, as a truncated normal automatically 
approximates a beta distribution (// = 0.33, a = 0.42). 
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TABLE 3.4. Values of estimated linear model parameters using different forms of the 
varying assumed distribution and the fixed true distribution. 

ai 02 as 

True Values 0.6 0.7 0.8 
(0)=Normal/j9rt (0)=Beta 0.56±.04 0.65±.05 0.74±.06 
(0)=Beta/prt (0)=Normal 0.66±.10 0.78±.09 0.89±.12 

bi 62 
True Values -0.1 0.0 0.1 
pra (0)=Normal/prt (0)=Beta -0.09±.02 0.01±.02 0.12±.03 
pro (0)=Beta/;)rt (0)=Normal -0.14±.06 -0.06±.06 0.03±.07 

* CTl 0-3 
True Values 0.05 0.03 0.08 
pj'a (0)=Normal/prt (0)=Beta 0.050±.005 0.029±.004 0.080±.007 

(0)=Beta/prt (0)=Normal 0.050±.007 0.025±.011 0.079±.009 

3.3 Linear Mixed-Effects Models 

From a statistical model viewpoint, RWT is a tj?pe of latent-variable analysis which falls 

into the category of general linear mixed-effects model [50-53]. A mixed-effects model is 

one which consists of both random and fixed effects. Random effects are stochastic terms 

in a model while fixed effects are terms whose value remains constant. Let us revisit our 

model from equ. 3.1, 

^pm ~ "I" ^pm-

The a^'s and bm's are considered fixed effects, Qp is a random effect, and the Cpm are the 

noise terms often referred to as the residual components. 

Linear mixed-effects models have been used in the past to address the no-gold-standard 

problem for classification tasks. [15-20]. RWT is the first attempt at solving the no-gold-

standard problem for estimation tasks. 



40 

3.4 Discussion 

We have developed a method for characterizing an observer's performance in estimation 

tasks without the use of a gold standard. Although a gold standard is not required for this 

method, it is necessary to make some assumptions on the distribution of the parameter 

of interest {i.e., EF). We have found that when the assumed distribution matches the true 

distribution, the estimates of the linear model parameters are both accurate and precise. 

Conversely, when the assumed and true distributions do not match, we find that our linear 

model parameters are no longer as accurate. This led us to investigate the role of the 

assumed distribution in the accuracy of the linear model parameters. By optimizing both 

the distribution parameters and the model parameters we found that one can effectively find 

both the model parameters and the form of the assumed distribution. 

3.4.1 Assumptions 

The key advantage of RWT over conventional regression analysis is that it does not require 

a gold standard. The performance of RWT, however, is hindered by this lack of information. 

Furthermore, like conventional regression analysis, RWT assumes a known functional form 

for the relationship between the gold standard and the data. However, unlike conventional 

regression analysis, this relationship cannot be visually assessed without the gold standard. 

We must also assume a functional form of the gold standard density pr{Q), but there are 

parameters characterizing the shape of this density which are free to vary in RWT. We have 

assumed a Gaussian noise model, which is also implicit in conventional regression analysis, 

but other noise models are easy to implement in the likelihood expression. 

A major underlying assumption of the method proposed here is that the true parameter 

of interest does not vary according to modality. This assumption may not be accurate in 

the context of estimating EF, which may vary moment to moment with a patient's mood 

and/or breathing pattern. This assumption may be valid, however, for other estimation 

tasks. Another assumption we have made is the linear relationship between the true and 
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FIGURE 3.5. Correlation matrices for the bias of the estimates of the linear model param­
eters estimated by RWT using 100 runs with three modalities and 100 patients. Note that 
the bias is highly correlated for the slopes (a) and intercepts (b) and only mildly correlated 
for the a terms (c). 

estimated parameters of interest. This linear relationship was chosen in large part due to 

mathematical simplicity, but is, nonetheless, a good first step. More complicated, non­

linear models can easily be accommodated by this method and are discussed briefly in the 

next chapter. Ideally, we would like to choose a model based on some sort of physical 

knowledge of the estimation technique. 

3.4.2 Using RWT 

An estimator of a medically relevant parameter should be both accurate and precise. For the 

linear models discussed above, accuracy can be approximately achieved by adjusting the 

measurements using the estimated model parameters am and bm- Namely, we can rewrite 

equ. 3.1 as 

(3.13) 
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After this correction the variance in the adjusted measurements, i.e., the precision, is 

estimate of this quantity a'^/a^ can be used as a figure of merit for cross-

modality comparisons. 

When comparing different imaging modalities one would typically prefer the modality 

with the smallest error, i.e., the smallest Estimating am/dm facilitates modality 

comparisons without knowledge of a gold standard. As discussed earlier, the estimates of 

the slopes retained the proper ordering amongst modalities even when a bias is intro­

duced by mismatching true and assumed distributions. In Fig. 3.5 we present correlation 

matrices for the bias of the linear model parameters estimated using RWT. We generated 

these matrices using estimates of the linear model parameters for 100 runs of RWT with 

three modalities and 100 patients. The estimates of Um were very accurate regardless of the 

choice of the assumed and true distributions. Combining these observations we feel con­

fident that am/dm will serve as a good figure of merit to compare imaging systems even 

when the data do not match the model. 

The estimates of the slope and intercept values describe the systematic error (or bias) of 

the modality. If one were confident in these estimates they could be employed to adjust and 

correct systematic error for each modality. Another interesting result of the experiments 

is the successfial estimation of the distribution parameters to fit the form of the true dis­

tribution. This could serve as an insight into the distribution of the true parameter for the 

population studied, i.e., the patient distribution of EFs. We will fiirther discuss applications 

of RWT in Chap. 7. 
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Chapter 4 

RESULTS OF SIMULATIONS USING RWT 

In Chapter 3 we presented our method RWT along with an analysis of the bias and variance 

of the method using simulation studies. More specifically, we evaluated how well RWT 

could estimate the linear model parameters and the parameters of the assumed distribution 

for a given number of patients and modalities. In this chapter we analyze the performance 

of RWT with varying amounts of patients, modalities, and noise. Also in this chapter we 

investigate the impact of relaxing the linear model assumption. We conclude the chapter 

with a discussion of our findings. 

4.1 Figures of Merit 

The figure of merit in linear regression analysis is root mean-squared error (RMSE). When 

comparing estimation tasks with an available gold standard, RMSE is an estimate of the 

parameter Without the x coordinates we are unable to calculate RMSE. We can, 

however, use the results of RWT to derive a comparable figure of merit to characterize the 

performance of a single application of RWT. RMSE for a given modality m is as follows, 

this figure of merit as it measures the difference between the gold standard (0p) and the 

values found by adjusting the data (9pm) by the estimated linear model parameters. 

We would like to note that this figure of merit cannot be used in practice due to a 

lack of a gold standard, but it provides an excellent technique to evaluate the method in 

simulation. In our results section we perform 50 simulations and average RMSE^ (denoted 

by RMSE^) as well as compute the standard error. 

(4.1) 

where and bm are estimates of the linear model parameters returned by RWT. We choose 
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4.2 Simulations 

In Chap. 2 we focused on estimating the linear model parameters for a fixed number of pa­

tients and modalities. We showed that RWT was accurate even when the true and assumed 

distributions were from different families. In this section we investigate the performance 

of RWT with varying number of patients, number of modalities, and noise. Furthermore, 

we compare the performance of RWT to conventional linear regression analysis under the 

unlikely assumption that a gold standard is available. 

4.2.1 Implementation 

The likelihood function was implemented and optimized on an 800 MHz Pentium III using 

Matlab. We used a quasi-Newton optimization method from Matlab to determine the max­

imum of the likelihood. We constrained the optimization to look for reasonable values of 

the parameters, i.e., positive slopes and positive variances. We fixed the initial guess as the 

midpoint of the search space, a point not equal to the true values of the parameters. With 

the above constraints, the results of the optimization were not sensitive to the initial guess. 

The optimization took from a few seconds to a few minutes to run depending on the form 

of the assumed distribution used in the likelihood expression. 

We performed numerous simulation studies in which we sampled cardiac ejection frac­

tions (the gold standard) for a simulated patient population from a beta distribution with 

fixed parameters, i.e., prt{Q) was a beta PDF. We then adjusted this gold standard using 

linear models with known parameters a^, bm as well as a known noise level characterized 

by am- This comprised the data that was input to RWT. The gold standard values were not 

input into the method. In computing the likelihood fiinction, we not only need the data 

but we must also assume a functional form for the gold-standard density. We assumed a 

truncated normal distribution with varying mean and variance, i.e.,pra{Q) was a truncated 

normal density characterized by and a a. Note that this distribution is different from the 

distribution that was actually used to generate the gold standard. This difference is meant 
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to simulate the real-world situation in which one would not know exactly how the gold 

standard was distributed. 

Both the beta and the truncated normal distributions are bounded between zero and one. 

In this chapter we study the performance of RWT only with these bounded distributions. 

Difficulties that arise when extending the RWT method to distributions that span the entire 

real line will be discussed in Chap. 5. 

In Fig. 4.1 (a) we show that the RMSE, as given in equ. 4.1, decreases as patient number 

increases. The variance of the noise am was fixed for each modality in this experiment. In 

the limit of large patient numbers the three different curves (each representing a different 

modality), tend to a minimum value (Jm/O'm (See equ. 3.1 and equ. 4.1), in accordance with 

ML theory. Figure 4.1(b) compares the performance of conventional regression analysis 

to that of RWT. As one would expect, conventional regression analysis using the gold 

standard outperforms RWT. The difference between the two decreases as a function of 

patient population size. 

Another, slightly different approach, to studying the relationship between bias and the 

number of patents is plotting the true and estimated linear model parameters as a function 

of the number of patients. In Fig. 4.3, we present the results of an experiment consisting of 

averaging the results of RWT over 150 runs using three modalities. We see from the figure 

that RWT is asymptotically unbiased, as predicted for an ML estimator. 

It is not surprising that an increase in data yields more accurate results. An increase 

in the number of modalities is a somewhat less intuitive notion given the complexity of 

our ML estimator. In Fig. 4.2 we display a plot of RMSE versus number of modalities. 

One sees that after a few modalities the gain in accuracy is not substantial. Note that 

the performance of conventional linear regression analysis is independent of the number of 

modalities. The performance of RWT with one modality is very poor but relatively constant 

with two or more modalities. 

Lastly, we look at the impact on RMSE of varying the parameter to understand what 

occurs to the accuracy as the noise in the data increases. The curves in Fig. 4.4(a) show 
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FIGURE 4.1. In (a), the RMSE for three different modalities is plotted versus the number 
of patients. As patients increase, RMSE^ converges to am/dm, by equ. 3.1 and equ. 4.1. 
In (b) a comparison is made between RWT and linear regression analysis with a gold stan­
dard. Note that the RMSE in (b) is also averaged over the three modalities. As expected, 
conventional regression analysis has lower RMSE, but the performances of the two meth­
ods converge as the number of patients increases. For these experiments a = [0.6,0.7,0.8], 
b = [—0.1,0.0, 0.1], a = [0.05,0.03,0.08], and the error bars represent the standard error 
calculated over 50 independent experiments. 
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FIGURE 4.2. The above plot displays RMSE (averaged across simulations and modalities) 
versus the number of modalities used in a RWT experiment. There exists a sharp decline 
in RMSE from one to tvs^o modalities followed by a slow decline. One might expect this, 
especially since RWT cannot work properly with only one modality. The performance of 
conventional regression analysis is independent of the number of modalities. The same 
model parameters were used for all modalities in all experiments (a^ = 1, 6m = 0.1, 
am = 0.05, P = 100) 
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FIGURE 4.3. Plotting estimated and true linear model parameters as a function of the 
number of patients. The experiment consists of averaging the results of RWT over 150 
runs using three modalities. Each plot has three dotted lines representing the true values 
and three solid lines representing the estimates. Notice that all estimates asymptote to the 
truth. In this experiment, the assumed and true distribution were both from the truncated 
normal family. 
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FIGURE 4.4. In (a), the RMSE for three different modalities is plotted versus variance of 
the noise am- RMSE increases in accordance with 1/a^, by equ. 3.1 and equ. 4.1. In (b) 
a comparison is made between RWT and linear regression analysis with a gold standard. 
Note that the RMSE in (b) is also averaged over the three modalities. RMSE does not con­
verge to zero for RWT as cr^ tends to zero. The parallel nature of the two graphs indicates 
that the comparative performance of RWT is independent of For these experiments 
a = [0.6, 0.7, 0.8], b = [—0.1, 0.0,0.1], P = 100, and the error bars represent the standard 
error calculated over 50 independent experiments. 
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that RMSE increases linearly with increases in a^. The slope of these lines are given by 

l/om as predicted from equ. 3.1 and equ. 4.1. Figure 4.4(b) compares the performance of 

conventional regression analysis with that of RWT. We see that while the RMSE limits to 

zero as (Tm —> 0 for conventional regression analysis, RWT limits to a positive constant. 

This positive constant is a result of bias introduced by using different true and assumed 

distribution. Namely, in this simulation we sampled from a beta distribution and used a 

truncated normal distribution in our likelihood expression. The constant difference between 

the two plots in Fig. 4.4(b) indicates the independent relationship between the variance of 

the noise and the comparative performance of RWT and conventional regression analysis. 

4.3 Nonlinear models 

A clear limitation of what we have presented thus far is the strict assumption of a linear 

model governing the relationship between the gold standard and the individual modalities. 

To ease this assumption one can rewrite equ. 3.1 as, 

^pm ~ (®p) fpmi (4-2) 

where is some nonlinear function of the gold standard with model parameters Um-

In Fig. 4.4 we show the results of a single experiment using three modalities with a 

quadratic model for each modality. In modality one, Fig. 4.4(a), there is a nonlinear rela­

tionship between the gold standard and the estimate. Modality two, Fig. 4.4(b), has a weak 

nonlinear relationship. Finally, modality three, Fig. 4.4(c), is linear. RWT accurately fits all 

three modalities. The time required for the optimization procedure to converge is increased 

by the added parameters to be estimated. It should also be noted that, with too many pa­

rameters, regression analysis will eventually fit the noise in the data. While we have shown 

that the method can be extended to nonlinear models, there is extensive work that needs to 

be completed with the linear models before we can fully characterize the performance of 

this technique using nonlinear models. 



51 

0.2 

0,6 
CM 

i-0,1 0.4 

-0.2 0.2 

-0.3 

-0.4, -0.2, 
0.2 0.2 0.4 0.6 

Gold Standard 
0.4 0.6 

Gold Standard 
1 

(a) (b) 

n 

0.4 

0.2 

-0.2, 
0.2 0.4 

Gold Standard 
0.6 

Standard 

(c) 

FIGURE 4.5. An application of RWT with a quadratic model. For modality one there 
existed a strong nonlinear relationship with the gold standard and a relatively large vari­
ance which qualitatively were discovered. Modality two was slightly nonlinear with small 
variance, while modality three was linear with large variance. Both were fit well by the 
quadratic RWT. 



52 

4.4 Discussion 

In Chap. 3 we studied the bias and variance of our linear model parameter estimates for a 

fixed number of patients and modalities. In this chapter we analyzed the performance of 

RWT through numerical simulation with varying amounts of patients, modalities, and noise 

using RMSE as a figure of merit. The purpose for doing so was to analyze the robustness of 

our method with respect to such quantities. We were able to use RMSE as a figure of merit 

because all studies were done in simulation and the gold standard was thus known. RMSE 

is not a viable figure of merit for comparing estimation techniques when a gold standard is 

not available. Furthermore, since the gold standard was available we were able to compare 

the performance of RWT with regression analysis with the truth or x axis. 

The results of the simulation studies performed agreed with predictions from the the­

oretical analysis. Namely, as the number of patients was increased, the RMSE decreased 

rapidly and approached the performance of conventional regression analysis. We also found 

that RMSE declines as additional modalities are added to the analysis, though the advan­

tage is not very significant after a few modalities. We return to this point in the next chapter. 

Another intuitive result was the linear increase in RMSE as a function of the modality noise 

parameter Finally, in Sec. 4.3 we address the potential for a nonlinear model relating 

the gold standard to the estimate. We give the results of a simulation using a quadratic 

model that displays the effectiveness of RWT even in the nonlinear case. 
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Chapter 5 

CALCULATING THE FISHER INFORMATION FOR RWT 

In previous chapters we have presented a method for evaluating and comparing multiple 

estimation methods without the benefit of a gold standard. We have named it Regression 

Without Truth (RWT). We have evaluated the robustness of the method through numerous 

simulation studies. This chapter attempts to use Fisher information to better evaluate the 

performance of RWT. 

As discussed, if a gold standard is available, evaluating an estimation method consists 

of analyzing scatter plots of data along with the fitted model, e.g., estimated EF versus true 

EF. With our method, however, this type of analysis is not possible because we do not use 

the gold standard and assume it is unavailable. Thus we are unsure how well the method 

fit the model parameters, and we must resort to other means to assess the performance and 

reliability of RWT. 

In this chapter we derive an expression for the Fisher information matrix for RWT, from 

which we ascertain the Cramer-Rao (CR) or lower bound for the variances of the estimated 

model parameters [30-32]. We also show that the variances calculated experimentally are 

very close to the CR bounds calculated using the Fisher information. In an attempt to 

further understand our method we also derive the Fisher information matrix for standard 

regression analysis and compare the resultant CR bound with that of RWT Also in this 

chapter, we discuss the importance of having a boimded assumed distribution. We conclude 

the chapter with a discussion of our findings. 

5.1 Vector Notation 

Let us first address some notational issues for the sake of convenience. We began by assum­

ing a linear relationship between the true (0p) and estimated (0pm) EF for a given patient p 
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measured on modality m. We represent the relationship as 

^pm ~ "I" (5-1) 

where am and bm are the linear model parameters and Cpm is the noise term. For this chapter 

we would like to work with vector notation, therefore we write equ. 5.1 using the measured 

EFs for a given patient p from M different modalities as 

0p = aQp + 5 + Cp, (5-2) 

where is an M x 1 vector consisting of the measured EFs, a and 6 are M x 1 vectors 

made up of the linear model parameters, and ep is an iW x 1 vector whose elements are the 

noise terms. 

We model the true distributionprt(0p) with an assumed distribution, prai&p\r), which 

is parameterized by r. The parameters r are added to the list of unknown parameters, 

allowing us to write a likelihood over all patients as 

p 

A = JJpr(0p|a,6,cr,r). (5.3) 
p=i 

The log-likelihood is given by 

, M 

2 
A - ln(A) = -^ X! In (27ra^) + 

m=l 

El" 
p=i 

J deppra(Qp\r) exp - am&p - (5.4) 

5.2 Calculating Fisher information for RWT 

Using the expression for the log-likelihood in equ. 5.4 we are able to calculate the Fisher 

information matrix for our estimator. The parameters we are estimating can be represented 

by the vector, 

7) ^ {a,b,(T,r}, (5.5) 
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where 77 consists of the linear model parameters as well as the parameters of our assumed 

distribution. For the example presented in Sec. 3.1,77 consisted of 11 parameters; 3 linear 

model parameters from each of the 3 modalities along with the parameters v and uj char­

acterizing the beta density in the likelihood expression. Notice that the true EF is not in 

this list of parameters. As discussed in Chap. 3, we are not estimating the true EF. We are 

performing ML estimation and using measured EF as our data to estimate the linear model 

parameters and the parameters of the assumed distribution. 

The likelihood A and the log-likelihood A are fianctions of the parameters t], represented 

as 

Kv\{0p}) = ln[A(r7|{0p})] = ln[pr({0p}|?7)]. (5.6) 

Using this notation, we write the component of the Fisher information matrix as 

/dXir]\{dp}) dX{r}\{ep}) 

\  dr)i drij 
Jij  — (5.7) 

»7=»7o {Op} 

where r)g is the true value of rj [30,31]. The expectation in the above equation is taken with 

respect to the density on the data at 77^. Using the expression for the log-likelihood given 

in equ. 5.4, we are able to rewrite equ. 5.7 as 

Jij 
' ( (r^r-(f) \.dlnpr{ep\r]) dlnpriOplrj) 

L —% %— 

(5.8) 
•n=r)o 

where R is the range of 9^. The diagonal element J^^^ is the CR bound for the correspond­

ing parameter rji. 

Although J cannot be computed analytically for most choices of pr{dp\r]), it can be 

readily approximated using Monte Carlo methods. The two partial derivatives in the above 

expression are also, in general, derivatives of definite integrals (see appendix B for exam­

ples). Both integral expressions, however, contain density functions that we can sample 

from and thus perform Monte Carlo integration. This integration was accomplished in 

practice by sampling 10,000 observations fi-om pr{dp\r]o), and for each of these observa­

tions sampling another 10,000 obserervations from pr(0p|ro) to compute the two partial 
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derivatives. This amounts to more than 1x10® samples to compute the elements of J. Us­

ing this many samples resulted in a reproducibility of 3%. Calculations were made using 

Matlab on a Pentium IV, 1.4 GHz machine running Linux. We show the results of these 

calculations in the next section. 

5.3 Results 

5.3.1 Evaluation of method 

ML estimators are asymptotically efficient since they achieve the CR bound as the number 

of samples tends to infinity [54]. Equality holds in the CR boxmd irrespective of sample size 

if and only if the likelihood is a member of a dim(r7)-parameter exponential family [54-56]. 

We are not able to show analytically that our likelihood is a member of an exponential fam­

ily. Therefore, we are forced to rely on empirical studies. Furthermore, because large data 

sets are often difficult to obtain in medical imaging, we are inclined to evaluate the "effi­

ciency" of RWT with small sample sizes {i.e., few patients). To accomplish this evaluation, 

we calculate the sample variance of the estimated parameters for varying numbers of pa­

tients and compare these results to the CR lower bound of the variance as computed using 

eqn. 5.8. 

We ran simulation studies in which we varied the number of patients P from 5 to 400 

and measured the sample standard deviation of the estimated parameters using 100 inde­

pendent runs of RWT. There were 3 modalities for each run, and the true gold standard was 

sampled from a truncated normal distribution. Furthermore, the assumed distribution used 

in the method was also a truncated normal distribution. In the example presented in Sec. 

3.1 the true and assumed distributions were from different families. In our calculation of 

the Fisher information for RWT, we assume the model matches the data. 

In Fig. 5.1 we plot the sample standard deviation along with the CR lower bound of 

the linear model parameter ai versus number of patients. Similar graphs were obtained for 

the other elements of a. In Figs. 5.2 and 5.3 we show the analogous results for hi and a\ 




