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ABSTRACT 

Imaging is often used for the purpose of estimating the value of some parameter of interest. 

For example, a cardiologist may measure the ejection fraction (EF) of the heart in order to 

know how much blood is being pumped out of the heart on each stroke. In clinical practice, 

however, it is difficult to evaluate an estimation method because the gold standard is not 

known, e.g., a cardiologist does not know the true EF of a patient. Thus, researchers have 

often evaluated an estimation method by plotting its results against the results of another 

(more accepted) estimation method, which amounts to using one set of estimates as the 

pseudo-gold standard. In this dissertation, we present a maximum-likelihood approach for 

evaluating and comparing different estimation methods without the use of a gold standard 

with specific emphasis on the problem of evaluating EF estimation methods. We have 

named this method Regression Without Truth or RWT. 

Results of numerous simulation studies will be presented and indicate that the method 

can precisely and accurately estimate the parameters of a regression line without a gold 

standard, i.e., without the x-axis. We also characterize the performance of this method 

in comparison to conventional regression analysis using x-axis information. Also in this 

work we calculate the Fisher information for our method to quantify the performance of 

our evaluation method. Results of simulation studies are presented to show that we are very 

nearly efficient at estimating the parameters used in our method. In an attempt to further 

validate RWT we present the results of a volume estimation experiment using a physical 

phantom and two imaging systems (SPECT,CT). 

We conclude the dissertation with a discussion of the strengths and weaknesses of RWT. 

In an attempt to aid users of RWT we provide multiple consistency checks for users to 

evaluate results of RWT. Finally, we present some areas of potential application for RWT. 
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Chapter 1 

INTRODUCTION 

A great deal of research in the field of medical imaging is dedicated to image-system design 

and image processing. Researchers often claim to have a system or method that produces 

"better" images, although they rarely support their claims with objective comparative stud­

ies. Even when objective comparisons are made, rarely do such comparisons account for 

the reason the images were taken and/or the observer reading the images. We advocate 

a statistical, task-based approach to the objective assessment of image quality [1-3]. To 

properly quantify the performance of an imaging system or image processing technique, 

we define the task the image is to be used for and measure the performance of an observer 

performing this task. 

The most important tasks in medical imaging are classification and estimation tasks. 

Classification tasks consist of an observer determining some categorical (usually binary) 

diagnosis for a patient, e.g., tumor present or tumor absent. This task may be performed 

by a human observer, a computer observer, or some combination thereof The performance 

of this observer may be assessed using psychophysical studies and receiver operating char­

acteristic (ROC) analysis in the case of binary decision tasks [4]. Figures of merit such 

as sensitivity, specificity, and/or the area under the ROC curve (AUC) can then be used to 

compare different imaging modalities. 

Along with classification, imaging is often performed to estimate some parameter of 

interest that will aid a physician in diagnosis. Examples of estimation tasks in medical 

imaging include estimating bone density [5], blood-oxygen levels [6], and cardiac ejection 

fraction [7]. Estimation tasks typically involve computer observers, though sometimes 

these computer observers require human intervention, e.g., defining regions of interest [8, 

9]. The performance of estimation tasks is typically measured using the bias and variance 
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of the estimate, often combined to form mean-squared error (MSE) which can be used as a 

scalar figure of merit. 

More than one imaging modality often exists to perform both classification and esti­

mation tasks [10]. In order to evaluate the performance of an imaging modality we need 

to compare this performance to the truth. The gold standard is the method that returns the 

true estimate of the parameter. The presence of a gold standard allows for the evaluation of 

new imaging techniques via figures of merit such as AUC and MSE. A gold standard rarely 

exists for most imaging problems. Even when one does exist, the financial costs and patient 

risk are often too high for practical application. It is extremely rare for an inexpensive, safe, 

always correct classification or estimation technique to exist while other techniques are still 

under development. 

In the case of classification tasks, biopsy is typically considered the gold standard [11]. 

The problems with biopsy and histological analysis is that they are not always available, 

and, even when available, are subject to errors. For example, biopsy will give information 

about those lesions detected in images. If, however, a lesion is not detected in an image, 

then its contribution to the false-negative fraction remains unmeasurable [12]. 

The problem of comparing classification tasks without a gold standard was first ad­

dressed successfijlly in the medical imaging literature by Henkelman, Kay, and Bronskill 

in their work on ROC analysis without truth in 1990 [13]. Since the publication of their 

work their has been a great deal of research performed comparing classification tasks with­

out a gold standard [14-20]. 

Similar problems regarding gold standard techniques exist for estimation tasks. For ex­

ample, in cardiac studies, ventriculography or ultrasound might be taken as the gold stan­

dard for estimation of EF, and nuclear medicine or dynamic MRI might then be compared 

to the supposed standard [10], A very common graphical device is to plot a regression 

line of EFs derived from the system under study to those derived from the standard and to 

report the slope, intercept and correlation coefficient (r) for this regression [21-25]. An­

other comparison approach is the use of a Bland-Altman plot, which attempts to measure 
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the agreement between two different modalities [21,23-26]. Neither of these approaches 

allows for objective performance rankings of the imaging systems, a point we expand upon 

in Chap. 2. In reality, no present modality can lay claim to the status of gold standard for 

the estimation of quantitative cardiac parameters, and thus the aforementioned compari­

son techniques suffer from major inconsistencies. The goal of this work is to address the 

no-gold-standard problem for estimation tasks. 

We have developed a method for evaluating and comparing multiple estimation meth­

ods without the benefit of a gold standard [27-29]. We have named it Regression Without 

Truth (RWT). The goal of this method is to quantify the relationship between estimates of 

a parameter of interest and the underlying gold standard without knowledge of the gold 

standard. Stated differently, if researchers are to estimate a quantity of interest using mul­

tiple techniques on a set of P patients, we would like to quantify the relationship between 

those estimates and the true value of the quantities of interest without assuming any given 

technique to be the gold standard. 

In Chap. 3 we derive a method we have called Regression Without Truth (RWT) that 

assesses the relationship between the estimates and the so-called ground truth without as­

suming a gold standard. Chaps. 3 and 4 contain the results of numerous simulations studies 

indicating the success of RWT. Also in Chap. 3, we discuss how researchers can apply the 

results of RWT to better rank and compare different estimation methods. 

In Chaps. 3 and 4 we were able to assess the performance of RWT because all of our 

work was done in simulation, i.e., we did in fact know the gold standard. Much of this 

work has been received with the justified skepticism associated with computer simulations. 

Chaps. 5 and 6 attempt to quell such skepticism. In Chap. 5 we derive an expression for 

the Fisher information matrix for RWT, from which we ascertain the Cramer-Rao (CR) 

lower bounds for the variances of the model parameters estimated using RWT [30-32], We 

also show that the variances calculated experimentally are very close to the CR bounds 

calculated using the Fisher information. In Chap. 6 we present the results of a volume 

estimation experiment performed using multiple modalities with a gold standard. We use 
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the results of this experiment to assess the performance of RWT when applied to real data. 

We conclude the dissertation in Chap. 7 with a summary and evaluation of RWT, along 

with a discussion of future applications for RWT. 
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Chapter 2 

BACKGROUND 

As discussed in the introduction, there exist many medically relevant parameters physicians 

would like to estimate that do not have a gold standard estimator. In this dissertation we 

focus our attention on cardiac EF. We chose EF because it is prevalent in the literature and 

because it is bound between zero and one, a point we return to later in the dissertation. 

There have been numerous studies performed comparing cardiac EF estimation techniques 

[21-26]. The focus of this chapter is to discuss the different EF estimation techniques used 

in practice and the methods used in the literature to compare these techniques. 

2.1 Cardiac Ejection Fraction 

For the sake of completeness we present a brief discussion of current estimation procedures 

for cardiac ejection fraction (EF). Cardiac EF measures the difference in the end-diastolic 

and end-systolic volumes divided by the end-diastolic volume. In other words, it records 

the fraction of the blood in the left ventricle pumped out into the body in a given heart cycle. 

Physicians measure EF for patients displaying cardiac problems, for individuals about to 

undergo a strenuous treatment program such as chemotherapy, or even as part of an armual 

physical examination. 

Sharir et al [7] showed that the likelihood of cardiac death increases exponentially 

with decreasing EF. Due to this relationship, there has been increased interest in assessing 

the accuracy of EF measurements. Cardiac EF even played a role in the 2000 presidential 

elections when the election hopes of current Vice President Richard Cheney were almost 

squashed when he suffered a mild heart attack and was reported to have an EF around 40% 

[33], approximately a 2.5% chance of cardiac death according to Sharir et al. With heart 

disease as the leading cause of death in the United States (1 out of every 2.4 deaths) [34], it 
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is no surprise that the advancement of cardiac EF estimation techniques has become a large 

field of research. 

There currently exist five different approaches to estimating cardiac EF: left ventricular 

angiography, echocardiography, nuclear medicine, electron beam computed tomography, 

and magnetic resonance imaging. According to labs at the University Medical Center at 

the University of Arizona cardiac is estimated roughly 125 times per month using left 

ventricular angiography, 40 times per month using radionuclide angiography, and on the 

order of 350 to 400 times per month using echocardiography. The UMC does not have 

electron beam computed tomography imaging systems, nor do are they currently using 

magnetic resonance imaging to estimate cardiac EF. In this section we will discuss what 

these five procedures entail, along with their pros and cons. For a more extensive discourse 

on EF estimation methods we refer the reader to Rumberger et al. [10]. 

2.1.1 Left Ventricular Angiography 

The process of left ventricular angiography (LVA) consists of placing a catheter, tj^ically 

through the left ventricular cavity via the aortic valve. The catheter then disperses a contrast 

agent enabling the acquisition of a dynamic fluoroscopic x-ray image. Typically, three to 

six heart cycles are imaged. Ideally, biplane imaging is performed, though for practical 

purposes LVA is often performed using only a single planar projection [35]. Estimates 

of the EF are then made by assuming that the left ventricle is an ellipsoid. Under this 

assumption end-diastolic and end-systolic volumes can be estimated by determining the 

semimajor axis (height) and the two semiminor axes (length and width) using the biplanar 

projections. The semiminor axes are assumed to be equal when using monoplane imaging. 

Biplane LVA is often considered the gold standard technique for estimating EF. This 

assumption is incorrect. While LVA, developed in the 1950's, is the oldest and most es­

tablished imaging technique used to estimate EF, it does not estimate EF with the tj^e of 

reproducibility required of even a pseudo-gold standard. The technique has a mean in-
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terobserver difference of approximately 5% [36] and a reproducibility of approximately 

10% [37], These errors arise due to the invasive nature of the procedure as well as the in­

correct assumption concerning the geometry of the left ventricle. Validation work has been 

done using cadaver hearts, but there are severe limitations to the conclusions one can draw 

from such studies [38], 

2.1.2 Echocardiography 

Echocardiography is the practice of cardiac imaging using ultrasound. Estimation of EF is 

often performed using echocardiography since the procedure is safe, quick, and inexpen­

sive. Once imaging is performed, estimates of the EF range, e.g. 60 to 65%, are made 

via simple visual assessment. This approach tends to produce fairly high interobserver 

variability and is heavily dependent on the experience of the sonographer [39]. As a re­

sult of this error there exist numerous quantification and semiquantification techniques for 

estimating EF using echocardiography. 

One such approach often used consists of estimating the left ventricular end-diastolic 

diameter (LVEDD) and the left ventricular end-systolic diameter (LVESD) using an elec­

trocardiogram and then estimating cardiac EF via 

EF = (LVEDD'^ - LVESD'^)/LVEDD^. (2.1) 

This estimation technique is extremely limited by assuming an ellipsoidal left ventricular 

shape. 

Another approach to estimating EF consists of imaging the apical views and using 

the area-length method or some sort of modified Simpson's rule [40], This approach is 

again limited by shape assumptions for the left ventrical and/or segmentation of the images. 

Echocardiography is a relatively new technology with plenty of room for improvement, but 

it will never lay claim to gold standard status for EF estimation given the resolution of 

ultrasound. 
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2.1.3 Radionuclide angiography 

Radionuclide angiography consists of collecting planar cardiac projections using an Anger 

gamma camera with a parallel-hole collimator imaging the tracer radionuclide ^Qw^Xc. The 

left ventrical is manually segmented at multiple stages of the heart cycle and counts within 

the segmented ventrical are used to calculate the EF. As a result, unlike LVA and Echocar­

diography, radionuclide angiography does not make any assumptions about the geometry 

of the left ventricular cavity. . 

There are numerous ways of measuring cardiac EF using radionuclide angiography. 

The most common approach is a multiple gated acquisition (MUGA) study, also called a 

gated blood-pool scan. MUGA consists of injecting a very small amount of radiotracer into 

the blood stream, often mixed with a patients blood prior to injection for better uniformity. 

Gated cardiac imaging is then performed using an electrocardiogram, and 20 to 100 ft-ames 

are observed per heart cycle. This process is carried for the duration of around 1000 heart 

beats. Abnormal heart beats are removed, and the left ventricle is manually segmented in 

the planar images [41], The maximimi number of counts in a given cycle is considered 

the end-diastole, and likewise the minimum is considered the end-systole. The number of 

counts is assumed proportional to the volume and EF is estimated by the following, 

EF = (diastolic counts — systolic counts)/[diastolic counts). (2.2) 

Cardiac EF is more difficult to study in patients with larger hearts due to increased 

gamma-ray absorption, but corrections can be made in such situations. The largest prob­

lems in MUGA studies are assuming a uniform distribution of the radiotracer in the blood­

stream and the resolution of gamma-ray imaging. 

2.1.4 Electron Beam Computed Tomography 

Electron beam computed tomography (EBCT) or ultrafast-CT was designed by Boyd [42] 

in the early 1980's. Gated imaging is performed using a iodinated contrast median and 
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end-diastolic and end-systolic volume estimation is straightforward given the quality of the 

tomographic images. In principle this is an ideal technique for estimating EF, but from 

a clinical standpoint, EBCT is at this point impractical. EBCT involves a large exposure 

(^5 rad for a cardiac study) and the use of iodinated contrast media, making serial studies 

impossible. 

2.1.5 Magnetic Resonance Imaging 

Estimating EF using cardiac MRI has become possible due to general innovations in the 

imaging modality. EF can be estimated with MRI using echo-planar imaging sequences al­

lowing for numerous images to be collected during a heart cycle. Biplane MRI can be per­

formed and EF estimation can then be accomplished as it is in LVA and echocardiography. 

Motion artifacts, claustrophobia, and time of acquisition are the major problems present in 

cardiac MRI. Breath-hold MRI techniques allow for better cardiac imaging, though in the 

case of EF the process of holding one's breath impacts the true cardiac EF. The confines of 

an MRI machine also impact cardiac imaging in about 10-20% of patients due to cardiac 

motion artifacts. 

Acquisition time is a problem in cardiac imaging due to the beating of the heart. It is 

also a problem in general since imaging time on MRI systems are in high demand. While 

newer MRI systems have software for calculating EF, older systems must perform estima­

tion off-line. As a result, many hospitals are simply incapable of performing functional 

cardiac imaging. 

2.2 Current Methods of Comparison 

Comparing estimation techniques when a gold standard is available is rather straightfor­

ward. For example, let us envision an experiment in which we would like to compare two 

newly developed EF estimation techniques, namely Estimator I and Estimator II, and let 

us assume that a gold standard technique GS exists. We can simply measure the EFs for 
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a group of patients using Estimator I, Estimator II, and GS and then compare the two new 

techniques using linear regression analysis. In Fig. 2.1 we show plots of the Estimator I and 

Estimator II estimates versus the gold standard. In each plot we have estimated the slope 

and intercept of the regression line along with a parameter a that quantifies the spread of 

the data away from the regression line. Using these parameters we can then compare the 

two techniques quantitatively by calculating their respective reproducibility, a point we ex­

pand upon in the next chapter. Furthermore, we can calibrate either of our new estimators 

using the respective slope and intercept determined by the linear regression analysis so as 

to increase the accuracy of our estimator in the future. 

As stated in the introduction, the current techniques used to compare different estima­

tion tasks are regression and/or Bland-Altman analysis. The first attempts to use values of 

the slope, intercept, and correlation coefficient (r) to compare the performance of a new, 

less accepted, modality to a more accepted pseudo-gold standard. An example is given 

in Fig. 2.2. This approach has many shortcomings. Unlike the example discussed above 

in which a gold standard existed, the importance of the calculated slope, intercept, and r 

values are unclear. If a researcher were to believe in the estimates given by the pseudo-

gold standard, then the slope and intercept of the regression line could, as discussed, be 

used to adjust the new estimates to calibrate the new system. This calibration is not often 

done, however, because rarely does such confidence exist in any of the available estimation 

techniques. 

Calculating the correlation coefficient r for the regression plot is not particularly in­

formative when comparing two estimation tasks [43^5]. A non-zero value of r imphes 

correlation, which is of very little help considering the two estimators are attempting to 

measure the same quantity. Rather, researchers would like to state that a large r value 

implies strong agreement. This is not necessarily true. The value of r depends on the mag­

nitude of the spread of the data points around the regression line and the variance of the true 

parameter across the subjects. As a result, the interpretation of r can be very misleading. 

For example, if for a given comparative study we were to measure the EFs for 100 patients 
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FIGURE 2.1. An example of regression analysis when a gold standard is available. 
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with true EFs between 0.6 and 0.7 using two different modalities we would very likely have 

a lower r value than if we were to run the same study, using the same modalities to measure 

the EFs for 100 patients with EFs between 0.4 and 0.9. 

Bland and Altman presented a simple approach to comparing estimation techniques 

in 1983 which attempts to quantify the level of agreement between two methods for cal­

culating the same quantity [43]. Given two sets of estimates for the same parameter the 

Bland-Altman plot depicts the difference between the estimates vs. the mean of the esti­

mates. An example is shown in Fig. 2.3. If 95% of the estimates fall within two standard 

deviations of the mean of the differences, then the the two methods of estimation are said 

to "agree" and thus one method could, in theory, replace another. A shortcoming of this 

approach lies in the definition of agreement which appears to be rather arbitrary. Their def­

inition implies that if the differences of the estimates follow a Gaussian distribution then 

"agreement" is achieved independent of how big or small those differences are. 

Both regression and Bland-Altman analysis attempt to draw conclusions about the cor­

relation or agreement between two methods. Neither approach determines which method 

is doing a better job of estimating the true parameter of interest. In order to achieve such 

a ranking one must incorporate the underlying true parameter into the method of compar­

ison even though it is unknown. In this dissertation we present and evaluate a method of 

comparison that does just that. 
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FIGURE 2.3. An example of a Bland-Altman plot used to quantify the "agreement" be­
tween two different estimation techniques. Note, this plot is just a rotation and rescaling of 
Fig. 2.2. 
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Chapter 3 

REGRESSION WITHOUT TRUTH 

Ideally we would like to be able to compare estimation techniques by performing regression 

analysis with a gold standard technique plotted along the x axis. In this chapter, we develop 

a statistical model that allows us to perform regression analysis without a gold standard. 

In Sec. 3.2 we present the results of numerous simulation studies used to analyze the 

performance of our method. In Sec. 3.3, we discuss our method in the context of the 

current statistics literature for the sake of completeness. We conclude the chapter with a 

discussion of the assumptions made in our model, the results of our simulations, and how 

the results of our technique can be used to compare estimation techniques. 

3.1 Approach 

We begin with the assumption that there exists a linear relationship between the true EF and 

its estimated value. We will describe this relationship for a given modality m and a patient 

p using a regression line with a slope a^, intercept b^, and noise term €pm. We represent 

the true EF for a given patient with 0p and an estimate of the EF made using modality m 

with 9pm. The linear model is thus represented by 

^pm ~ bjn H" ^pm-  (3-1) 

We make the following assumptions: 

1. Qp does not vary for a given patient across modalities and is statistically independent 

from patient to patient. 

2. The parameters and bm are characteristic of the modality and independent of the 

patient. 
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3. The error terms, €pm, are statistically independent and normally distributed with zero 

mean and variance a^. 

Note that the zero-mean assumption for epm entails no loss of generality since the mean is 

lumped into bm in equ. 3.1. Using assumption number 3 we write the probability density 

fiinction for the noise epm for a given patient p and M modalities as 

pr-{{epm}) = n ' (3-2) 
m=l y \  / 

where the term {spm} signifies the set of M noise terms. In other words, we assume a 

multivariate noise model with a diagonal covariance matrix. We could relax this assumption 

by adding non-zero terms in the off-diagonal components of the covariance matrix. One 

could also assume a different noise model, even one that is dependent on 0p. Solving for 

Cpm in equ. 3.1, we rewrite equ. 3.2 as the probability of the estimated EFs for multiple 

modalities and a specific patient given the linear model parameters (am's,bms,am'^) and 

the true EF as 

bfni ^m}) ~ I I / „ 0,m®p ~ b^) J . (3.3) 
^II\/27RA^ V 2(7„ ) 

The notation {Opm} represents the estimated EFs for a given patient p over M modalities. 

Using the following property of conditional probability 

pr[xi,x2) =pr{xi\x2)pr{x2), (3.4) 

as well as the marginal probability law, 

pr{xi) = J dx2pr{xi,x2), (3.5) 

we write the probability of the estimated EF for a specific patient across all modalities 

given the linear model parameters as 

Pf{{0pm}\{(^m) bmt = 

dQppr(Qp)S BXp ^ 2^2 0,m®p ^m) ^ ) (3-6) / 
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where 
M 

s = r i  - j = ^ -  ( 3 . 7 )  

From assiamption number 1 above, the likeHhood of the linear model parameters can be 

expressed as 

i = ri  ̂ *5 J dGppriQp) exp - dm^p - "j , (3.8) 

where P is the total number of patients. Upon taking the log, we rewrite products as sums 

we obtain, 

A = ln(L) = Pln(5)+ 

^In (/ d0ppr(0p) exp - a^Qp - bmf)^ j • (3.9) 

It is this scalar A, the log-likelihood, that we seek to maximize to obtain our estimates of 

am, bm, and These estimates will be maximum-likelihood estimates for our parameters 

when the data match the model. Althoughpr(0p) may appear to be a prior term, we are not 

using a maximum-a posteriori approach; we are simply marginalizing over the unknown 

parameter 0p which we are treating as a nuisance parameter. We are not estimating ©p, 

rather we are estimating the linear model parameters in an attempt to compare the different 

modalities. Thus we have derived an expression for the log-likelihood of the model param­

eters which does not require knowledge of the true EF 0p, i.e., without the use of a gold 

standard. This procedure is analogous to fitting lines without the use of the x axis. 

3.1.1 True (prt(©p)) versus Assumed (pra(0p)) Distributions 

Although the expression for the log-likelihood in equ. 3.9 does not require the true EF 0p, it 

does require some knowledge of their distribution pr{Qp). We will refer to this distribution, 

as it appears in equ. 3.9, as the assumed distribution (pra (0p)) of the EFs. In this chapter we 

will investigate the effect different choices of the assumed distributions have on estimating 
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the linear model parameters. We first sample parameters from a true distribution (prt{Qp)) 

and generate different estimated EFs for the different modalities by linearly mapping these 

values using known a^'s and bm'&, then add normal noise to these values with known cTrn's-

These EF estimates form the values 9pm, that will be used in the process of determining 

the estimates of the linear model parameters by optimizing equ. 3.9. We will look at cases 

in which the assumed and true distributions match (data match model), as well as cases in 

which they do not match (data do not match model). 

For our experiments we will investigate beta distributions and truncated normal distri­

butions as our choices for both the assimied and true distributions. These distributions have 

been chosen because EF is bounded between 0 and 1 and has been shown to follow a uni-

modal distribution [7,46], Furthermore, Kastis showed EF data to be well fit by beta and 

truncated normal distributions [46]. The beta distribution has probability density function 

given by 

BlUjUi) 

where 6 G [0,1] and the beta fimction is a normalizing constant. The truncated 

normal distribution is given by 

pr{e) =A(fx,a)exp ^(0), (3.11) 

where A{n, a) is a normalizing constant involving error functions and n(0) is a rect func­

tion that truncates the normal from 0 to 1. It should be noted that /i and a are the mean 

and standard deviation for the normal distribution, not necessarily the mean and standard 

deviation of the truncated normal. While v, uj, /j., and a appear to be hyperparameters 

they are not; they are simply parameters characterizing the density, pr{Qp), that we used 

to marginalize 0p in equ. 3.3. The beta and truncated normal distributions are discussed in 

more detail in App. A. 

Using a truncated normal for the assumed distribution in equ. 3.9, we find the following 
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closed-form solution for the log-likelihood: 

p 

A=- E (^) IN H iW - (I^)]) 
(3.12) 

where 

M 2 
a = J_ + y"^ 

^ ^mj^pm ^m) 

m=l 

_ (^pm ~ bmY 
20-2 Z-^ 2(7^ m=l 

The expression for the log-likelihood with a beta assumed distribution does not easily sim­

plify to a closed-form solution, and thus we used numerical integration techniques to eval­

uate the one-dimensional integral in equ. 3.9. 

We used a quasi-Newton optimization method in Matlab on a Dell Precision 620 run­

ning Linux to maximize the log-likelihood as a function of our parameters [47,48]. For 

each experiment we generated EF data for 100 patients using one of the aforementioned 

distributions. We then ran the optimization routine to estimate the parameters and repeated 

this entire process 100 times in order to compute sample means and variances for the pa­

rameter estimates. The tables that follow consist of the true parameters used to create the 

patient data as well as the sample means and standard deviations obttained through the 

simulations. 

3.2 Results 

3.2.1 Estimating the Linear Model Parameters for a Given Assumed Distribution 

We first investigated the results of choosing the assumed distribution to be the same as 

the true distribution. The asymptotic properties of maximum-likelihood estimates would 
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TABLE 3.1. Values of the estimated linear model parameters using matching assumed and 
true distributions. 

ai 02 as bi b2 bs 

True Values 0.6 0.7 0.8 -0.1 0.0 0.1 
pr(0)=Beta 0.59±.03 0.69±.03 0.79±.05 -0.10±.02 0.00±.02 0.11d=.03 
pr(0)=Normal 0.58±.04 0.68±.04 0.78±.06 -0.09±.02 0.01±.02 0.11±.03 

CTl 0-2 <73 
True Values 0.05 0.03 0.08 
pr(0)=Beta 0.048±.005 0.029±.009 0.079±.007 
pr(0)=Normal 0.048±.006 0.028±.010 0.080±.007 

predict that in the limit of large patient populations the estimated linear model parameters 

would converge to the true values [49]. The results, shown in Table 3.1, are consistent with 

this prediction. For the experiment below we have chosen u = 1.5 and a; = 2 for the 

beta distribution and fj, = 0.5 and a = 0.2 for the truncated normal distribution. Fig. 3.1 

illustrates the results of an individual experiment using the truncated normal distribution. 

In an attempt to understand the impact of the assumed distribution on the method we 

next used a flat assumed distribution, which is in fact a special case of the beta distribution 

(u = 1, ui = 1). We used the same beta and truncated normal distributions for the true 

distribution as was chosen in the previous experiment, namely u = 1.5, u = 2, /j, = 0.5 and 

a = 0.2. As shown in Table 3.2, the parameters estimated using a flat assumed distribution 

are not as accurate as those in the experiment with matching assumed and true distributions. 

However, the systematic underestimation on the a^'s and the systematic overestimation on 

the bm'& has not affected the ordering of these parameters. In fact, the estimated parameters 

have been shifted roughly the same amount. It should also be noted that the estimates of 

the ajn's are still accurate. We will return to both of these points later in this chapter. 
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FIGURE 3.1. The results of an experiment using ICQ patients, 3 modalities, and the same 
true parameters as shown in Table 3.1. In each graph we have plotted the true ejection 
fraction against the estimates of the EF for three different modalities ((a), (b) and (c)). The 
solid line was generated using the estimated linear model parameters for each modality. The 
dashed lines denote the estimated standard deviations for each modality. The estimated a^, 
bm and a^n for each graph are (a)0.59, -0.07, 0.06, (b)0.69, 0.03, 0.025 and (c)0.83, 0.12, 
0.082. Note that although we have plotted the true EF on the x-axis of each graph, this 
information was not used in computing the linear model parameters. 
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TABLE 3.2. Values of estimated linear model parameters using a flat assumed distribution 
(praiQ) = l). 

ai 02 as 

True Values 0.6 0.7 0.8 
prt (©)=Beta 0.53±.03 0.61±.03 0.70±0.05 
prt(0)=Normal 0.50±.01 0.56±.03 0.64±.08 

h b2 h 
True Values -0.1 0.0 0.1 
prt(0)=Beta -0.09±.02 0.02±.02 0.13±.03 
prt (0)=Normal -0.05±.02 0.07±.03 0.18±.04 

0-2 <73 
True Values 0.05 0.03 0.08 
prt(0)=Beta 0.049±0.005 0.031 ±0.009 0.079±0.007 
prt(0)=Normal 0.048±0.005 0.033±0.008 0.080±0.007 

3.2.2 Estimating the Linear Model Parameters and the Parameters of the Assumed 

Distribution 

After noting the impact of the choice of the assumed distribution on the estimated pa­

rameters, we investigated the effect of varying this distribution. In the case of the beta 

distribution this was simply a case of adding u and ui to the list of parameters over which 

we were attempting to maximize the likelihood. In similar fashion, we added ij, and a to the 

list of parameters for the truncated normal distribution. In the case of the beta distributions, 

we limited the search in the region 1< u,u)<5, since values of u and co between 0 and 1 

create singularites at the boundaries, an impossibility considering the nature of EF. In the 

case of the truncated normal distributions we limited the search in the region 0< yu < 1 

and 0.1 < (7 <10. We began by choosing the form of the assumed distribution and the true 

distribution to be the same, i.e., we estimated the parameters of the beta distribution while 

using beta distributed data. We found that the method successfully approximated the values 

of all parameters, including those on the assumed distribution, as displayed in Table 3.3. 

The results of an individual experiment are displayed graphically in Figs. 3.2 and 3.3. 

In the previous experiment the estimated parameters associated with both the beta and 
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FIGURE 3.2. The results of an experiment using ICQ patients, 3 modalities, and the same 
true parameters as shown in Table 3.3. In each graph we have plotted the true ejection 
fraction against the estimates of the EF for three different modalities ((a), (b) and (c)). 
The solid line was generated using the estimated linear model parameters for each modal­
ity. The dashed lines denote the estimated standard deviations for each modality. The 
estimated a^, and Um for each graph are (a)0.66,-0.11,0.050, (b)0.75,0.01,0.035 and 
(c)0.86,0.07,0.073. Note in this study the parameters of the beta distribution were esti­
mated along with the linear model parameters. 
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FIGURE 3.3. When the form of the assumed distribution matches the true distribution we 
see that RWT results in estimates of the assumed distribution which closely resemble the 
true distribution. In (a), the true distribution is a beta with parameters u = 1.5 and cu = 2.0 
that have been estimated to be z/ = 1.27 and oo = 2.29. In (b), the true distribution is a 
truncated normal with parameters /^ = 0.5 and a = 0.25 that have been estimated to be 
ji — 0.55 and a = 0.20. 
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TABLE 3.3. Values of estimated linear model and distribution parameters with the assumed 
distribution and the fixed true distribution having the same form. 

fli 02 03 

True Values 0.6 0.7 0.8 
pr(0)=Normal 0.59±.03 0.69±.04 0.79±.04 
?)r(0)=Beta 0.60±.09 0.70±.09 0.79±.ll 

hi bi 
True Values -0.1 0.0 0.1 
pr(0)=Normal -0.09±.03 0.01±.03 0.11dz.04 
pr(0)=Beta -0.10±.03 0.01±.03 0.11 ±.04 

0-1 0"2 f3 
True Values 0.05 0.03 0.08 
pr(0)=Normal 0.050±.002 0.029±.004 0.080±.003 
pr(0)=Beta 0.048±.006 0.030±.011 0.080±.006 

Distribution Parameters 
True Values pL = 0.5, u = 1.5 cr = 0.2, ui = 2.0 
j»r(©)=Nonnal H = 0.50±.03 a = 0.20±.02 
pr(0)=Beta V = 1.50±.53 u = 2.08±.99 

truncated normal distributions were very close to their true values. We now show the results 

when the assumed distribution differs from the true distribution in Table 3.4. We know from 

our previous experiment that when the form of the assumed and true distributions match, 

the correct distribution parameters are estimated (on average). However, it remains to be 

seen what distribution parameters will be estimated when the forms of the two distributions 

differ. Thus in Fig. 3.4 we display the true distribution as well as the assumed distribution 

with the mean estimates of the distribution parameters. Note that the assumed distribution 

cannot equal the true distribution because they are from two different distribution families, 

i.e. beta and truncated normal. The assumed distribution does, however, take on a form 

which approximates the true distribution in an attempt to maximize the likelihood. 
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FIGURE 3.4. When the form of the assumed distribution does not match that of the true 
distribution, we see that the optimal distribution parameters are such that the form of the as-
sximed distribution approximates the true distribution. In (a), the true distribution is a trun­
cated normal which is approximated automatically by the method using a beta distribution 
(u = 3.93, cj = 3.47). In (b), the roles are reversed, as a truncated normal automatically 
approximates a beta distribution (// = 0.33, a = 0.42). 
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TABLE 3.4. Values of estimated linear model parameters using different forms of the 
varying assumed distribution and the fixed true distribution. 

ai 02 as 

True Values 0.6 0.7 0.8 
(0)=Normal/j9rt (0)=Beta 0.56±.04 0.65±.05 0.74±.06 
(0)=Beta/prt (0)=Normal 0.66±.10 0.78±.09 0.89±.12 

bi 62 
True Values -0.1 0.0 0.1 
pra (0)=Normal/prt (0)=Beta -0.09±.02 0.01±.02 0.12±.03 
pro (0)=Beta/;)rt (0)=Normal -0.14±.06 -0.06±.06 0.03±.07 

* CTl 0-3 
True Values 0.05 0.03 0.08 
pj'a (0)=Normal/prt (0)=Beta 0.050±.005 0.029±.004 0.080±.007 

(0)=Beta/prt (0)=Normal 0.050±.007 0.025±.011 0.079±.009 

3.3 Linear Mixed-Effects Models 

From a statistical model viewpoint, RWT is a tj?pe of latent-variable analysis which falls 

into the category of general linear mixed-effects model [50-53]. A mixed-effects model is 

one which consists of both random and fixed effects. Random effects are stochastic terms 

in a model while fixed effects are terms whose value remains constant. Let us revisit our 

model from equ. 3.1, 

^pm ~ "I" ^pm-

The a^'s and bm's are considered fixed effects, Qp is a random effect, and the Cpm are the 

noise terms often referred to as the residual components. 

Linear mixed-effects models have been used in the past to address the no-gold-standard 

problem for classification tasks. [15-20]. RWT is the first attempt at solving the no-gold-

standard problem for estimation tasks. 
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3.4 Discussion 

We have developed a method for characterizing an observer's performance in estimation 

tasks without the use of a gold standard. Although a gold standard is not required for this 

method, it is necessary to make some assumptions on the distribution of the parameter 

of interest {i.e., EF). We have found that when the assumed distribution matches the true 

distribution, the estimates of the linear model parameters are both accurate and precise. 

Conversely, when the assumed and true distributions do not match, we find that our linear 

model parameters are no longer as accurate. This led us to investigate the role of the 

assumed distribution in the accuracy of the linear model parameters. By optimizing both 

the distribution parameters and the model parameters we found that one can effectively find 

both the model parameters and the form of the assumed distribution. 

3.4.1 Assumptions 

The key advantage of RWT over conventional regression analysis is that it does not require 

a gold standard. The performance of RWT, however, is hindered by this lack of information. 

Furthermore, like conventional regression analysis, RWT assumes a known functional form 

for the relationship between the gold standard and the data. However, unlike conventional 

regression analysis, this relationship cannot be visually assessed without the gold standard. 

We must also assume a functional form of the gold standard density pr{Q), but there are 

parameters characterizing the shape of this density which are free to vary in RWT. We have 

assumed a Gaussian noise model, which is also implicit in conventional regression analysis, 

but other noise models are easy to implement in the likelihood expression. 

A major underlying assumption of the method proposed here is that the true parameter 

of interest does not vary according to modality. This assumption may not be accurate in 

the context of estimating EF, which may vary moment to moment with a patient's mood 

and/or breathing pattern. This assumption may be valid, however, for other estimation 

tasks. Another assumption we have made is the linear relationship between the true and 
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FIGURE 3.5. Correlation matrices for the bias of the estimates of the linear model param­
eters estimated by RWT using 100 runs with three modalities and 100 patients. Note that 
the bias is highly correlated for the slopes (a) and intercepts (b) and only mildly correlated 
for the a terms (c). 

estimated parameters of interest. This linear relationship was chosen in large part due to 

mathematical simplicity, but is, nonetheless, a good first step. More complicated, non­

linear models can easily be accommodated by this method and are discussed briefly in the 

next chapter. Ideally, we would like to choose a model based on some sort of physical 

knowledge of the estimation technique. 

3.4.2 Using RWT 

An estimator of a medically relevant parameter should be both accurate and precise. For the 

linear models discussed above, accuracy can be approximately achieved by adjusting the 

measurements using the estimated model parameters am and bm- Namely, we can rewrite 

equ. 3.1 as 

(3.13) 
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After this correction the variance in the adjusted measurements, i.e., the precision, is 

estimate of this quantity a'^/a^ can be used as a figure of merit for cross-

modality comparisons. 

When comparing different imaging modalities one would typically prefer the modality 

with the smallest error, i.e., the smallest Estimating am/dm facilitates modality 

comparisons without knowledge of a gold standard. As discussed earlier, the estimates of 

the slopes retained the proper ordering amongst modalities even when a bias is intro­

duced by mismatching true and assumed distributions. In Fig. 3.5 we present correlation 

matrices for the bias of the linear model parameters estimated using RWT. We generated 

these matrices using estimates of the linear model parameters for 100 runs of RWT with 

three modalities and 100 patients. The estimates of Um were very accurate regardless of the 

choice of the assumed and true distributions. Combining these observations we feel con­

fident that am/dm will serve as a good figure of merit to compare imaging systems even 

when the data do not match the model. 

The estimates of the slope and intercept values describe the systematic error (or bias) of 

the modality. If one were confident in these estimates they could be employed to adjust and 

correct systematic error for each modality. Another interesting result of the experiments 

is the successfial estimation of the distribution parameters to fit the form of the true dis­

tribution. This could serve as an insight into the distribution of the true parameter for the 

population studied, i.e., the patient distribution of EFs. We will fiirther discuss applications 

of RWT in Chap. 7. 
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Chapter 4 

RESULTS OF SIMULATIONS USING RWT 

In Chapter 3 we presented our method RWT along with an analysis of the bias and variance 

of the method using simulation studies. More specifically, we evaluated how well RWT 

could estimate the linear model parameters and the parameters of the assumed distribution 

for a given number of patients and modalities. In this chapter we analyze the performance 

of RWT with varying amounts of patients, modalities, and noise. Also in this chapter we 

investigate the impact of relaxing the linear model assumption. We conclude the chapter 

with a discussion of our findings. 

4.1 Figures of Merit 

The figure of merit in linear regression analysis is root mean-squared error (RMSE). When 

comparing estimation tasks with an available gold standard, RMSE is an estimate of the 

parameter Without the x coordinates we are unable to calculate RMSE. We can, 

however, use the results of RWT to derive a comparable figure of merit to characterize the 

performance of a single application of RWT. RMSE for a given modality m is as follows, 

this figure of merit as it measures the difference between the gold standard (0p) and the 

values found by adjusting the data (9pm) by the estimated linear model parameters. 

We would like to note that this figure of merit cannot be used in practice due to a 

lack of a gold standard, but it provides an excellent technique to evaluate the method in 

simulation. In our results section we perform 50 simulations and average RMSE^ (denoted 

by RMSE^) as well as compute the standard error. 

(4.1) 

where and bm are estimates of the linear model parameters returned by RWT. We choose 
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4.2 Simulations 

In Chap. 2 we focused on estimating the linear model parameters for a fixed number of pa­

tients and modalities. We showed that RWT was accurate even when the true and assumed 

distributions were from different families. In this section we investigate the performance 

of RWT with varying number of patients, number of modalities, and noise. Furthermore, 

we compare the performance of RWT to conventional linear regression analysis under the 

unlikely assumption that a gold standard is available. 

4.2.1 Implementation 

The likelihood function was implemented and optimized on an 800 MHz Pentium III using 

Matlab. We used a quasi-Newton optimization method from Matlab to determine the max­

imum of the likelihood. We constrained the optimization to look for reasonable values of 

the parameters, i.e., positive slopes and positive variances. We fixed the initial guess as the 

midpoint of the search space, a point not equal to the true values of the parameters. With 

the above constraints, the results of the optimization were not sensitive to the initial guess. 

The optimization took from a few seconds to a few minutes to run depending on the form 

of the assumed distribution used in the likelihood expression. 

We performed numerous simulation studies in which we sampled cardiac ejection frac­

tions (the gold standard) for a simulated patient population from a beta distribution with 

fixed parameters, i.e., prt{Q) was a beta PDF. We then adjusted this gold standard using 

linear models with known parameters a^, bm as well as a known noise level characterized 

by am- This comprised the data that was input to RWT. The gold standard values were not 

input into the method. In computing the likelihood fiinction, we not only need the data 

but we must also assume a functional form for the gold-standard density. We assumed a 

truncated normal distribution with varying mean and variance, i.e.,pra{Q) was a truncated 

normal density characterized by and a a. Note that this distribution is different from the 

distribution that was actually used to generate the gold standard. This difference is meant 
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to simulate the real-world situation in which one would not know exactly how the gold 

standard was distributed. 

Both the beta and the truncated normal distributions are bounded between zero and one. 

In this chapter we study the performance of RWT only with these bounded distributions. 

Difficulties that arise when extending the RWT method to distributions that span the entire 

real line will be discussed in Chap. 5. 

In Fig. 4.1 (a) we show that the RMSE, as given in equ. 4.1, decreases as patient number 

increases. The variance of the noise am was fixed for each modality in this experiment. In 

the limit of large patient numbers the three different curves (each representing a different 

modality), tend to a minimum value (Jm/O'm (See equ. 3.1 and equ. 4.1), in accordance with 

ML theory. Figure 4.1(b) compares the performance of conventional regression analysis 

to that of RWT. As one would expect, conventional regression analysis using the gold 

standard outperforms RWT. The difference between the two decreases as a function of 

patient population size. 

Another, slightly different approach, to studying the relationship between bias and the 

number of patents is plotting the true and estimated linear model parameters as a function 

of the number of patients. In Fig. 4.3, we present the results of an experiment consisting of 

averaging the results of RWT over 150 runs using three modalities. We see from the figure 

that RWT is asymptotically unbiased, as predicted for an ML estimator. 

It is not surprising that an increase in data yields more accurate results. An increase 

in the number of modalities is a somewhat less intuitive notion given the complexity of 

our ML estimator. In Fig. 4.2 we display a plot of RMSE versus number of modalities. 

One sees that after a few modalities the gain in accuracy is not substantial. Note that 

the performance of conventional linear regression analysis is independent of the number of 

modalities. The performance of RWT with one modality is very poor but relatively constant 

with two or more modalities. 

Lastly, we look at the impact on RMSE of varying the parameter to understand what 

occurs to the accuracy as the noise in the data increases. The curves in Fig. 4.4(a) show 
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FIGURE 4.1. In (a), the RMSE for three different modalities is plotted versus the number 
of patients. As patients increase, RMSE^ converges to am/dm, by equ. 3.1 and equ. 4.1. 
In (b) a comparison is made between RWT and linear regression analysis with a gold stan­
dard. Note that the RMSE in (b) is also averaged over the three modalities. As expected, 
conventional regression analysis has lower RMSE, but the performances of the two meth­
ods converge as the number of patients increases. For these experiments a = [0.6,0.7,0.8], 
b = [—0.1,0.0, 0.1], a = [0.05,0.03,0.08], and the error bars represent the standard error 
calculated over 50 independent experiments. 
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FIGURE 4.2. The above plot displays RMSE (averaged across simulations and modalities) 
versus the number of modalities used in a RWT experiment. There exists a sharp decline 
in RMSE from one to tvs^o modalities followed by a slow decline. One might expect this, 
especially since RWT cannot work properly with only one modality. The performance of 
conventional regression analysis is independent of the number of modalities. The same 
model parameters were used for all modalities in all experiments (a^ = 1, 6m = 0.1, 
am = 0.05, P = 100) 
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FIGURE 4.3. Plotting estimated and true linear model parameters as a function of the 
number of patients. The experiment consists of averaging the results of RWT over 150 
runs using three modalities. Each plot has three dotted lines representing the true values 
and three solid lines representing the estimates. Notice that all estimates asymptote to the 
truth. In this experiment, the assumed and true distribution were both from the truncated 
normal family. 
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FIGURE 4.4. In (a), the RMSE for three different modalities is plotted versus variance of 
the noise am- RMSE increases in accordance with 1/a^, by equ. 3.1 and equ. 4.1. In (b) 
a comparison is made between RWT and linear regression analysis with a gold standard. 
Note that the RMSE in (b) is also averaged over the three modalities. RMSE does not con­
verge to zero for RWT as cr^ tends to zero. The parallel nature of the two graphs indicates 
that the comparative performance of RWT is independent of For these experiments 
a = [0.6, 0.7, 0.8], b = [—0.1, 0.0,0.1], P = 100, and the error bars represent the standard 
error calculated over 50 independent experiments. 
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that RMSE increases linearly with increases in a^. The slope of these lines are given by 

l/om as predicted from equ. 3.1 and equ. 4.1. Figure 4.4(b) compares the performance of 

conventional regression analysis with that of RWT. We see that while the RMSE limits to 

zero as (Tm —> 0 for conventional regression analysis, RWT limits to a positive constant. 

This positive constant is a result of bias introduced by using different true and assumed 

distribution. Namely, in this simulation we sampled from a beta distribution and used a 

truncated normal distribution in our likelihood expression. The constant difference between 

the two plots in Fig. 4.4(b) indicates the independent relationship between the variance of 

the noise and the comparative performance of RWT and conventional regression analysis. 

4.3 Nonlinear models 

A clear limitation of what we have presented thus far is the strict assumption of a linear 

model governing the relationship between the gold standard and the individual modalities. 

To ease this assumption one can rewrite equ. 3.1 as, 

^pm ~ (®p) fpmi (4-2) 

where is some nonlinear function of the gold standard with model parameters Um-

In Fig. 4.4 we show the results of a single experiment using three modalities with a 

quadratic model for each modality. In modality one, Fig. 4.4(a), there is a nonlinear rela­

tionship between the gold standard and the estimate. Modality two, Fig. 4.4(b), has a weak 

nonlinear relationship. Finally, modality three, Fig. 4.4(c), is linear. RWT accurately fits all 

three modalities. The time required for the optimization procedure to converge is increased 

by the added parameters to be estimated. It should also be noted that, with too many pa­

rameters, regression analysis will eventually fit the noise in the data. While we have shown 

that the method can be extended to nonlinear models, there is extensive work that needs to 

be completed with the linear models before we can fully characterize the performance of 

this technique using nonlinear models. 
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FIGURE 4.5. An application of RWT with a quadratic model. For modality one there 
existed a strong nonlinear relationship with the gold standard and a relatively large vari­
ance which qualitatively were discovered. Modality two was slightly nonlinear with small 
variance, while modality three was linear with large variance. Both were fit well by the 
quadratic RWT. 
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4.4 Discussion 

In Chap. 3 we studied the bias and variance of our linear model parameter estimates for a 

fixed number of patients and modalities. In this chapter we analyzed the performance of 

RWT through numerical simulation with varying amounts of patients, modalities, and noise 

using RMSE as a figure of merit. The purpose for doing so was to analyze the robustness of 

our method with respect to such quantities. We were able to use RMSE as a figure of merit 

because all studies were done in simulation and the gold standard was thus known. RMSE 

is not a viable figure of merit for comparing estimation techniques when a gold standard is 

not available. Furthermore, since the gold standard was available we were able to compare 

the performance of RWT with regression analysis with the truth or x axis. 

The results of the simulation studies performed agreed with predictions from the the­

oretical analysis. Namely, as the number of patients was increased, the RMSE decreased 

rapidly and approached the performance of conventional regression analysis. We also found 

that RMSE declines as additional modalities are added to the analysis, though the advan­

tage is not very significant after a few modalities. We return to this point in the next chapter. 

Another intuitive result was the linear increase in RMSE as a function of the modality noise 

parameter Finally, in Sec. 4.3 we address the potential for a nonlinear model relating 

the gold standard to the estimate. We give the results of a simulation using a quadratic 

model that displays the effectiveness of RWT even in the nonlinear case. 
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Chapter 5 

CALCULATING THE FISHER INFORMATION FOR RWT 

In previous chapters we have presented a method for evaluating and comparing multiple 

estimation methods without the benefit of a gold standard. We have named it Regression 

Without Truth (RWT). We have evaluated the robustness of the method through numerous 

simulation studies. This chapter attempts to use Fisher information to better evaluate the 

performance of RWT. 

As discussed, if a gold standard is available, evaluating an estimation method consists 

of analyzing scatter plots of data along with the fitted model, e.g., estimated EF versus true 

EF. With our method, however, this type of analysis is not possible because we do not use 

the gold standard and assume it is unavailable. Thus we are unsure how well the method 

fit the model parameters, and we must resort to other means to assess the performance and 

reliability of RWT. 

In this chapter we derive an expression for the Fisher information matrix for RWT, from 

which we ascertain the Cramer-Rao (CR) or lower bound for the variances of the estimated 

model parameters [30-32]. We also show that the variances calculated experimentally are 

very close to the CR bounds calculated using the Fisher information. In an attempt to 

further understand our method we also derive the Fisher information matrix for standard 

regression analysis and compare the resultant CR bound with that of RWT Also in this 

chapter, we discuss the importance of having a boimded assumed distribution. We conclude 

the chapter with a discussion of our findings. 

5.1 Vector Notation 

Let us first address some notational issues for the sake of convenience. We began by assum­

ing a linear relationship between the true (0p) and estimated (0pm) EF for a given patient p 
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measured on modality m. We represent the relationship as 

^pm ~ "I" (5-1) 

where am and bm are the linear model parameters and Cpm is the noise term. For this chapter 

we would like to work with vector notation, therefore we write equ. 5.1 using the measured 

EFs for a given patient p from M different modalities as 

0p = aQp + 5 + Cp, (5-2) 

where is an M x 1 vector consisting of the measured EFs, a and 6 are M x 1 vectors 

made up of the linear model parameters, and ep is an iW x 1 vector whose elements are the 

noise terms. 

We model the true distributionprt(0p) with an assumed distribution, prai&p\r), which 

is parameterized by r. The parameters r are added to the list of unknown parameters, 

allowing us to write a likelihood over all patients as 

p 

A = JJpr(0p|a,6,cr,r). (5.3) 
p=i 

The log-likelihood is given by 

, M 

2 
A - ln(A) = -^ X! In (27ra^) + 

m=l 

El" 
p=i 

J deppra(Qp\r) exp - am&p - (5.4) 

5.2 Calculating Fisher information for RWT 

Using the expression for the log-likelihood in equ. 5.4 we are able to calculate the Fisher 

information matrix for our estimator. The parameters we are estimating can be represented 

by the vector, 

7) ^ {a,b,(T,r}, (5.5) 
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where 77 consists of the linear model parameters as well as the parameters of our assumed 

distribution. For the example presented in Sec. 3.1,77 consisted of 11 parameters; 3 linear 

model parameters from each of the 3 modalities along with the parameters v and uj char­

acterizing the beta density in the likelihood expression. Notice that the true EF is not in 

this list of parameters. As discussed in Chap. 3, we are not estimating the true EF. We are 

performing ML estimation and using measured EF as our data to estimate the linear model 

parameters and the parameters of the assumed distribution. 

The likelihood A and the log-likelihood A are fianctions of the parameters t], represented 

as 

Kv\{0p}) = ln[A(r7|{0p})] = ln[pr({0p}|?7)]. (5.6) 

Using this notation, we write the component of the Fisher information matrix as 

/dXir]\{dp}) dX{r}\{ep}) 

\  dr)i drij 
Jij  — (5.7) 

»7=»7o {Op} 

where r)g is the true value of rj [30,31]. The expectation in the above equation is taken with 

respect to the density on the data at 77^. Using the expression for the log-likelihood given 

in equ. 5.4, we are able to rewrite equ. 5.7 as 

Jij 
' ( (r^r-(f) \.dlnpr{ep\r]) dlnpriOplrj) 

L —% %— 

(5.8) 
•n=r)o 

where R is the range of 9^. The diagonal element J^^^ is the CR bound for the correspond­

ing parameter rji. 

Although J cannot be computed analytically for most choices of pr{dp\r]), it can be 

readily approximated using Monte Carlo methods. The two partial derivatives in the above 

expression are also, in general, derivatives of definite integrals (see appendix B for exam­

ples). Both integral expressions, however, contain density functions that we can sample 

from and thus perform Monte Carlo integration. This integration was accomplished in 

practice by sampling 10,000 observations fi-om pr{dp\r]o), and for each of these observa­

tions sampling another 10,000 obserervations from pr(0p|ro) to compute the two partial 
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derivatives. This amounts to more than 1x10® samples to compute the elements of J. Us­

ing this many samples resulted in a reproducibility of 3%. Calculations were made using 

Matlab on a Pentium IV, 1.4 GHz machine running Linux. We show the results of these 

calculations in the next section. 

5.3 Results 

5.3.1 Evaluation of method 

ML estimators are asymptotically efficient since they achieve the CR bound as the number 

of samples tends to infinity [54]. Equality holds in the CR boxmd irrespective of sample size 

if and only if the likelihood is a member of a dim(r7)-parameter exponential family [54-56]. 

We are not able to show analytically that our likelihood is a member of an exponential fam­

ily. Therefore, we are forced to rely on empirical studies. Furthermore, because large data 

sets are often difficult to obtain in medical imaging, we are inclined to evaluate the "effi­

ciency" of RWT with small sample sizes {i.e., few patients). To accomplish this evaluation, 

we calculate the sample variance of the estimated parameters for varying numbers of pa­

tients and compare these results to the CR lower bound of the variance as computed using 

eqn. 5.8. 

We ran simulation studies in which we varied the number of patients P from 5 to 400 

and measured the sample standard deviation of the estimated parameters using 100 inde­

pendent runs of RWT. There were 3 modalities for each run, and the true gold standard was 

sampled from a truncated normal distribution. Furthermore, the assumed distribution used 

in the method was also a truncated normal distribution. In the example presented in Sec. 

3.1 the true and assumed distributions were from different families. In our calculation of 

the Fisher information for RWT, we assume the model matches the data. 

In Fig. 5.1 we plot the sample standard deviation along with the CR lower bound of 

the linear model parameter ai versus number of patients. Similar graphs were obtained for 

the other elements of a. In Figs. 5.2 and 5.3 we show the analogous results for hi and a\ 
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FIGURE 5.1. A comparison between the measured and minimum standard deviation for 
the estimated parameter oi- The measured standard deviation was determined from 100 
independent runs using three modalities. The measured standard deviation is lower than 
the minimum standard deviation for certain patient numbers due to sampling effects. 

respectively. We see from these figures that even with small sample sizes our estimator is 

very close to the CR lower bound. 

Although the CR bound will decrease with increasing numbers of patients P, the impact 

of the number of modalities on the CR bound is less obvious. In Fig. 5.4 we plot the CR 

bound as a function of patients for a varying number of modalities. As the number of 

modalities increases, the CR bound decreases. However, the added benefits of increasing 

the number of modalities is quickly saturated. In fact, the curves for 6 and 12 modalities 

are indistinguishable. 

Thus far we have shown the effect that varying numbers of patients and modalities 

has on the CR bound for the various estimated parameters. A complex relationship exists 

between the true values of the parameters and the lower bound of the variance for the 

estimates of these parameters. This relationship is shown clearly in Fig. 5.5, where the true 

value of the slope for all three modalities was varied from 0 to 1.5 and the CR bound for 
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FIGURE 5.2. A comparison between the measured and minimum standard deviation for 
the estimated parameter bi. The measured standard deviation was determined from 100 
independent runs using three modaUties. 
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FIGURE 5.3. A comparison between the measured and minimum standard deviation for 
the estimated parameter ai. The measured standard deviation was determined from 100 
independent runs using three modalities. Note the two curves are especially close. 
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FIGURE 5.4. Comparing the CR bound of AI as a function of patients across a varying 
nimiber of modalities. The linear model parameters were equal across all modalities. 
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FIGURE 5.5. A comparison of the CR bounds in the beta case for the parameters a, b, a, v 
and w as a function of a. Note that with the exception of v the CR bound for each parameter 
varies slowly with a. The parameter v tends to infinity as a limits to zero because less and 
less information is transmitted about the true density. Other than a, the true values of the 
parameters did not vary significantly from modality to modality. 
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FIGURE 5.6. A comparison of the CR bounds in the beta case for the parameters a, b, a, 
V and a; as a function of o". As the value of a increases the noise grows larger and the 
other parameters become more difficult to estimate. Other than a, the true values of the 
parameters did not vary from modality to modality. 
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each of the estimated parameters was plotted. With the exception of the beta parameter u, 

the CR bounds appears to vary slowly with varying a. The CR bound on the parameter u 

varies greatly due to the increase in information gained with increasing slope. For example, 

a slope of zero would give no information about the shape of the true distribution. The 

results obtained from varying ai are shown in Fig. 5.6. The CR bounds for all of the 

es t imated  parameters  a re  independent  o f  the  va lues  of  b.  

In Fig. 5.7 we compare the CR bounds of the various parameters in the case when the 

assumed and true distributions are truncated normal distributions. More specifically, we 

compare the bounds as a fiinction of the standard deviation a a of the assumed distribution 

pfai'dplitJ', <7a}). Increasing cr^ results in an increase of the width of the truncated normal 

density function. This in turn increases the difficulty of estimating the mean /x as shown 

in Fig. 5.7. As aa tends to zero, the CR bounds for ai and 6i increase dramatically. This 

increase occurs because a small value of at corresponds to a very tightly packed set of EFs 

sampled from prt(Q), a data set for which even conventional regression analysis falters. 

5.3.2 With truth 

It is informative to calculate the Fisher information for the case with a gold standard and 

compare the CR bound to that of RWT. Calculating the Fisher information in the case when 

a gold standard exists is a much simpler problem. Since the 0p values are now known there 

is no need to marginalize, nor is it necessary to use multiple modalities to estimate the 

linear model parameters . The log-likelihood can be written as 

p  

\{a,h,a) = ^ln[w{Op,Qp\a,b,a)] (5.9) 
P=l 

P 

= (5.10) 
p=i 

where a, b, and a are now scalars and the components of p characterize the density on 0p. 

Using this expression for A and equ. 5.8, we are able to represent the Fisher information 
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matrix as 

J = 

^ d a  d a '  

\ d b  d a /  

^ d a  d b '  \  d a  d a  I  

\ d b d b '  

l d \  d X \  

\ d h  d a '  

- \ dcT da' \ d(T db ' \ da da' 

(5.11) 

where the expectations (•) are taken with respect to 9p and 0p. Using equ. 5.10 and 

equ. 5.11 we write the Fisher information matrix as 

(©^){0p} (0){0p} 0 

J = ^ (0){0,} 1 0 , (5.12) 

0 0 2 

where (Q){0p} is the expected value of the true EF data. 

We compare the CR bounds of ai, 6i, and ai for RWT to those of conventional regres­

sion analysis with truth. In Figs. 5.8 and 5.9 we show the difference between the computed 

CR bounds in the cases with and without truth as a function of the number of patients for 

the linear model parameters ai, bi, and cti. Note that when we plot the CR bound we 

are plotting the lower bound of the standard deviation. The underlying true distributions 

Pft{Qp) in Figs. 5.8 and 5.9 are beta and truncated normal, respectively. One can see that 

the CR bounds approach each other as the number of patients increases since all tend to 

zero as l/\/P. Plots for the other components of a, 6, and (t are very similar, and thus not 

shown here. 

5.4 Normal assumed distribution 

Thus far we have discussed calculating the Fisher information matrix for RWT numerically. 

In this section we discuss an analytic solution. Let us take a closer look at the likelihood 

expression given in eqn. 5.3. Whenpra(0p|r) is normal over the real line, the likelihood 
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FIGURE 5.8. The difference of the CR bounds between our method and conventional 
regression analysis with truth when the true density is beta distributed. 
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FIGURE 5.9. The difference of the CR bounds between RWT and conventional regression 
analysis with truth when the true density is truncated normal distributed. 
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takes on the form 

p  /  M  

* = 0 ("«/>• 

• exp ^ 2^2 (^m^p ^m) (5.13) 

where a a and jj. are the standard deviation and mean, respectively, for the assumed distribu­

tion. While this choice of distribution does not make sense for the EF problem, it very well 

may arise in different applications of RWT. This integral has the following closed-form 

solution 

A  =  n f n 5 ^ ^ e x p f ^ ) V  ( 5 . 1 4 )  

where A, B, and C are given as 

^ ,2 
+ (5.15) 

m=l 
M  h  - f )  

T) S~^ ®m"m "pm'^m A' /£• i z:\ 
® = 2^ ^2 ^ (516) 

m=l " 

^ ^{epm-bmr u' 

While this expression is complicated, it is simply a multivariate Gaussian that can be written 

as 
p  

A = n (iV exp (- i (0, - ) , (5.18) 

where N is the normalizing constant and K and Op are the covariance and mean of the 

vector Op. An example for the case when M -3is given in Appendix C. 

We calculate the components of the Fisher information matrix for RWT using the fol-
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lowing form 

/ <92 

V—Vo 

-P .  (log(A^)) 
dVidVj 

(5.19) 

(5.20) 

(5.21) 
»?=»Jo 

which we may rewrite as 

/ 
Jij — 

\dT]idr]^ 
(log(iV)) 

1 /" 
-xtr X-

(5.22) 

(5.23) 
V=Vo 2" \  drfidrjj 

The derivation of this expression is given in appendix D. 

5.4.1 Singular Fisher information matrices 

The Fisher information matrix is singular when the assumed distribution pr(i(0|{^, a;}) is 

unbounded. This singularity can be seen by looking at likelihood function used in RWT 

which is of the form 

L{a,h ,cr , r \9p)  = j dQppra{Qp\r)pr{6p\a ,h,<T,Qp) .  (5.24) 

If 0p is unbounded and if both pra(0p|r) and pr (6p\a ,  b ,  a ,  Bp) are members of families 

with shift and scale parameters, then the value of L will remain constant for specific shifts 

and scales in the above integral. These shifts and scales result in a singularity in the Fisher 

informat ion  mat r ix  brought  on  by  the  cons tant  va lue  of  L.  

This singularity is displayed nicely in our Gaussian example by looking at the integral 

in equ. 5.13. We may rewrite the exponent in the integrand as 

^ 2 / n L 
IM _ „ f (=) - ~ 

1 / Q 
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Looking at this expression, we notice that the value of the integral, and thus its likelihood, 

is unchanged by the following shift, 

(J ,  +  A,b  b  — aA.  (5.26) 

In other words, the likelihood is constant along this direction in parameter space. The 

likelihood is also unchanged by the following scaling, 

(5.27) 
T 

Both correspond to singularities in the Fisher information matrix. 

The problem of singular Fisher information matrices is dealt with rigorously in a work 

by Stoica and Marzetta [57] in which they derive an expression for the CR bound of the 

form 

C-^UrU-riUnuiiUiuu, (5.28) 

where, in the case of an unbiased estimator, U is an orthonormal matrix, Unuii is the com­

ponent of U projecting to the null space of J, is a Moore-Penrose pseudoinverse of J, 

7 is a free parameter, and C is the covariance matrix for the parameters. In the example 

presented here J does have a non-trivial null component, which follows directly from the 

shift described in eqn. 5.26 and scaling described in eqn. 5.27 above. The existence of 

these null components implies C is unbounded as 7 tends to infinity. While the dimension 

of the null space for the Fisher information is only two, the direction of the vector involves 

2M+2 parameters. As a result the CR bound for these parameters is infinite. 

In terms of the log-likelihood function this shift and scale can be written as 

Kv\{Op}) = A(Ta.«77|{0J), (5.29) 

where Ta,q; is a linear operator that shifts the parameters according to eqs. 5.26 and 5.27. 

One can view this singularity of the Fisher information matrix as a result of the invariance 

of the log-likelihood under the two-parameter group of shifts and scales in eqn. 5.29. 
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5.5 Discussion 

We have evaluated our method (RWT) for comparing and ranking estimation methods with­

out the use of a gold standard. We found experimentally, in Chap. 3, that RWT produces 

estimates with very small bias when the data match the model. We also found in Chap. 3 

that the bias was larger, but reasonable, when the data does not match the model [28]. The 

focus of our work here was to quantify the efficiency of our estimator. We have not yet 

proved RWT to be efficient. However, we have shown above that, experimentally, RWT is 

close to efficient. 

We have also used Fisher information to analyze a case in which RWT does not work. 

The particular difficulty that arises in this case can be avoided by choosing an assumed 

distribution with compact support. We looked at the difference in the CR bounds for RWT 

and conventional regression analysis with truth and found that this difference decreased 

for all model parameters as the number of patients increased. Furthermore, the CR bound 

for RWT decreased as the number of modalities increased. However, this decrease quickly 

levels off at a value above the CR bound for the conventional regression analysis, indicating 

that there is a limit to how much information can be gained by increasing the number of 

modalities. Lastly, we showed that the CR boimd is largely independent of the linear model 

parameters. 

Because RWT is close to efficient, the Fisher information matrix for RWT is a valuable 

tool for analyzing and imderstanding how well our method will work for a given estimation 

task. For example, we could calculate the Fisher information for reasonable values of the 

true model parameters for a particular problem and use the corresponding CR bounds as 

measures of the reliability of RWT. A potential shortcoming of our analysis is the assump­

tion that the data matches the model. This information is typically unavailable. Despite this 

problem. Fisher information has proven to be helpful in evaluating the reliability of RWT 

and our understanding of the method. 
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Chapter 6 

VALIDATING THE NO-GOLD-STANDARD THEORY USING 
VOLUME ESTIMATION 

6.1 Introduction 

In Chapters 3 and 4 we performed extensive studies using simulated data to better under­

stand the performance of RWT. In Chap. 5 we further investigated the performance of RWT 

by calculating the Fisher information matrix for the linear model parameters and analyzing 

the corresponding Cramk-Rao bounds. These studies have largely been successful, yet of­

ten received the usual, and justified, skepticism associated with simulation studies. Thus, to 

address this skepticism we have performed a phantom study involving volume estimation 

using both computed tomography (CT) and single photon emission computed tomography 

(SPECT). We chose volume as our parameter of interest largely because estimating cardiac 

EF is a volume estimation task. 

In this chapter we present the design and the results of our volume estimation exper­

iment. We performed our experiment using the dual-modality imaging system developed 

here at the Center for Gamma Ray Imaging (CGRI) [58], a system we describe in detail in 

Sec. 6.2. In Sec. 6.3 we present the results of three different volimie estimation experiments 

we performed by comparing the performance of RWT with that of conventional regression 

analysis. We conclude the chapter with a discussion of our findings. 

6.2 Design of Experiment 

As mentioned above, our experiment to validate RWT consists of estimating multiple vol­

umes in a phantom using a dual-modality (CT/SPECT) imaging system developed by our 

group shown in Fig. 6.1. The CT component of the dual-modality system is comprised of an 
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FIGURE 6.1. A photograph of the dual-modality imaging system. 



Top View 

X-Ray Tube 

CdZnTe Detector / 

CCD Detector 

U Mouse Holder and 
Rotation Stage 

FIGURE 6.2. A schematic diagram for the dual-modality imaging system. 
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FIGURE 6.3. A photograph of the phantom used in the volume estimation experiment. 

Oxford Instruments (XTF5000/75) x-ray tube and a Kodak KAF-IOOIE series 1024 x 1024 

pixel CCD array with an active area of 5.0 x S.Ocm^ [46]. The SPECT component of the 

dual-modality system consists of a compact Cadmium Zinc Teluride (CdZnTe) semicon­

ductor camera with field of view 2.5 x 2.5cm^ developed previously at the CGRI [59-61]. 

Note that the tomographic data in both systems are generated by rotating the object rather 

than the camera. A schematic diagram of the system is given in Fig. 6.2. 

We fabricated the phantom by drilling out an asymmetric pattern in a 2.5cm diameter 

plexiglass cylinder. A photograph of the phantom is shown in Fig. 6.3. A 3D reconstruction 

of the phantom imaged on the CT system is given in Fig. 6.4 (note that the reconstruction 

is inverted in an attempt to better display the complex nature of the phantom). The phan­

tom has a volume of approximately 4ml. We used a solution consisting of 25% 9®'^Tc-

pertechnetate solution (typically 8mCi/ml), 5% omnipaque (an x-ray contrast agent), and 

70% water. We imaged 25 volumes with values we sampled from a truncated normal dis­

tribution with lower and upper bounds of 0.5 and 3.5ml, respectively. The phantom was 

filled to the predetermined volumes using a pipette accurate to db 2//1. Given the accuracy 



FIGURE 6.4. A 3D Reconstruction of the phantom filled with 3.06ml of solution imaged 
using the CT system. Note that the reconstruction is inverted in an attempt to better display 
the complex nature of the phantom. 

of the pipette, it is a gold standard of volume for this experiment. Thus we will be able to 

compare RWT with conventional regression analysis. 

Image data were acquired at 180 projection angles with 1 second exposures on the 

CT system. The SPECT data were taken at 60 projection angles each with 35 seconds of 

exposure. Data were collected for forty-two different volumes, totaling approximately 16 

Gigabytes of projection data. The data collected using the CT system were reconstructed 

on a 64 X 64 X 32 voxelized grid, while data collected using the SPECT system were 

reconstructed on a 64 x 64 x 64 voxelized grid. All CT data were reconstructed using filtered 

back projection (FBP) [62]. A slice of a CT reconstruction is shown in Fig. 6.5. SPECT 

data were reconstructed using either FBP, as shown in Fig. 6.6, or maximum-likelihood 

expectation maximization (MLEM) [63] as shown in Fig. 6.7. We thresholded voxel values 

in order to segment out the solution in the image reconstructions. We will discuss our 
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Pixel Number 

FIGURE 6.5. A 2D slice of the 3D Reconstruction of the phantom imaged with 3.06ml of 
solution using the X-ray CT. 

approach to reconstruction and thresholding in more detail in the results section. 

6.3 Results 

In this section we discuss the results of three separate volume estimation experiments. In 

section 6.3.1 we present the results of Experiment I involving twenty-five different volumes 

and three separate volume estimation techniques, the results of which were presented at the 

2003 SPIE Conference on Medical Imaging [64]. Experiment II involves more data, forty-

two volumes, and only two estimation techniques. In Experiment III we investigate the 

impact of a sub-par estimator on RWT. Image reconstruction in Experiments I and II were 

performed using FBP and the entire set of projection data. In Experiment III, however, we 

use the MLEM algorithm to reconstruct the SPECT data set and reconstruct the CT data 
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Pixel Number 

FIGURE 6.6. A 2D slice of the 3D Reconstruction of the phantom imaged with 3.06ml of 
solution using the Spot Imager. 
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Pixel Number 

FIGURE 6.7. A 2D slice of the 3D EM Reconstruction of the phantom imaged with 3.06ml 
of solution using the Spot Imager. 



77 

with a limited number of projection angles. 

6.3.1 Experiment I 

In this section we present the results of an experiment to validate RWT involving twenty-

five different volumes imaged using the dual-modality system. We generated two sets of 

volume estimates using the CT data and a third using the SPECT data. For the SPECT re­

constructions we chose our threshold values manually using a gray-level histogram for each 

image. We generated two sets of volume estimates using the CT data. The first estimation 

approach, CTI, consisted of manual thresholding and included magnification correction. 

The second estimation approach, CTII, used a fixed threshold and did not account for mag­

nification. Thus the relationship between the estimates obtained using CTII and the gold 

standard is quantified with a slope greater than one. In Fig. 6.8 we display a histogram of 

voxel values from a CT reconstruction. 

We applied RWT to the three sets of volume estimates obtained in the experiment re­

sulting in estimated slopes, intercepts, and noise terms relating the voliraie estimates to 

the gold standard. This analysis did not use the known gold standard (i.e., pipette values) 

to determine this relationship. We also performed conventional regression analysis using 

the gold standard {i.e., pipette values) for comparison. In Table 6.1 we summarize these 

results. Note that there are differences between the slopes, intercepts, and noise terms ob­

tained from these two methods. However, the ordering of the slopes and noise terms is the 

same between the two methods, as predicted by the simulation in Sec. 3.4.2. Regression 

analysis performs better than RWT because it has access to the x coordinates {i.e., the gold 

standard). 

In Fig. 6.9 we plot the volume estimates obtained using the three aforementioned tech­

niques versus the gold standard. Also shown in Fig. 6.9 are the lines representing the linear 

model parameters estimated using RWT. The results shown in Fig. 6.9 are somewhat mis­

leading given that we use the gold standard in the plots; an advantage RWT does not have. 
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FIGURE 6.8. A histogram of positive voxel values from a CT reconstruction of the phan­
tom imaged with 3.06ml of solution. The two peaks consist of voxel values corresponding 
to plexiglass (~50,000) and solution (~90,000). A majority of the voxel values corre­
sponding to air are negative, and thus not shown. Note that the voxel values are not given 
in Hounsfield units. 

TABLE 6.1. Estimates of the linear model parameters using regression analysis with and 
without truth. Note that the CTI estimates were obtained using manual thresholding and 
magnification correction while the CTII estimates were obtained using a fixed threshold 
and no magnification correction. 

Estimation Techniques SPECT CTI CTII 

^SI ^CTI ^CTII 

Estimates from regression analysis 
Estimates using RWT 

0.9387 
0.8091 

1.0462 
0.9032 

1.6135 
1.3947 

bsi bcTI bcTII 
Estimates from regression analysis 
Estimates using RWT 

0.0110 
0.0253 

-0.0684 
0.0026 

-0.0210 
0.3572 

^CTI O'er 11 

Estimates from regression analysis 
Estimates using RWT 

0.0351 
0.0478 

0.0428. 
0.0512 

0.0646 
0.1003 
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This explains the noticeable imperfections in the plots. 

As discussed previously, RWT also returns estimates of the parameters defining the 

underlying distribution of the gold standard. Because we generated the gold standard from 

a known distribution, we can, again, evaluate the performance of RWT. Fig 6.10 contains 

plots of the true and estimated densities along with a histogram of the data used in the 

experiment. 

6.3.2 Experiment II 

In this experiment we evaluate the performance of RWT using forty-two data sets and only 

two estimation techniques. The two volume estimation techniques we evaluated are SPECT 

with manual thresholding and CT with magnification correction and manual thresholding. 

We display the numerical results of our linear model parameter estimation in Table 6.2 and 

the graphical results in Fig. 6.11. Fig 6.12 contains plots of the true and estimated densities 

along with a histogram of the data used in the experiment. Notice that the results of RWT 

for Experiment II are better than in Experiment I. We will address this improvement fiirther 

in the discussion. 

6.3.3 Experiment III 

The primary goal of Experiment III is to investigate the impact of a noisy modality on RWT 

for a case with three modalities. To generate a noisy modality we first studied the impact 

decreasing the number of projection angles has on volume estimation. We were able to do 

this quantitatively by plotting the volume estimate as a function of the number of projection 

angles as shown in Fig. 6.13. From this plot and a qualitative assessment of the histograms 

corresponding to different numbers of projection angles, we decided to reconstruct the CT 

data set using only fifteen projection angles for each volume. 

For our "good" estimation techniques we used the same CT estimates as generated in 

Experiment II and our SPECT data reconstructed using the MLEM algorithm. MLEM has 
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FIGURE 6.9. Experiment I: The results of a phantom study for estimating volumes from 
three estimation techniques. Twenty-five different volumes were imaged on two different 
modalities (SPECT, CT). In each graph we have plotted the true volume against the esti­
mates from three different estimation techniques ((a)SPECT, (b)CTI, (c)CTII). The solid 
lines were generated using the estimated linear model parameters. The dashed lines denote 
the estimated standard deviations for each estimation technique. Values for these parame­
ters are shown in Table 6.1. Note that although we have plotted the true volumes on the x 
axis of each graph, this information was not used in computing the linear model parameters 
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FIGURE 6.10. A comparison of the normalized histograms for the underlying volumes with 
the parameters returned by RWT estimating the mean and variance of the underlying gold-
standard distribution. The true volumes were sampled from a truncated-normal distribution 
with a mean of 2ml and standard deviation of 0.5ml. The 25 volumes themselves had a 
sample mean of 1.8016ml and sample standard deviation 0.5607ml. Our no-gold-standard 
analysis predicted a mean of 1.9444ml and a standard deviation of 0.7057ml. 
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FIGURE 6.11. Experiment II; The results of a phantom study for estimating volimies with 
two estimation techniques. Forty-two different volumes were imaged on two different 
modalities (SPECT, CT). In each graph we have plotted the true volume against the es­
timates from two different estimation techniques ((a)SPECT, (b)CT). The solid lines were 
generated using the estimated linear model parameters. The dashed lines denote the esti­
mated standard deviations for each estimation technique. Values for these parameters are 
shown in Table 6.2. 
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FIGURE 6.12. Experiment II: A comparison of the normalized histograms for the underly­
ing volumes with the parameters returned by RWT estimating the mean and variance of the 
underlying gold-standard distribution. The true volumes were sampled from a truncated-
normal distribution with a mean of 2ml and standard deviation of 0.5ml. The 25 vol­
umes themselves had a sample mean of 1.8383ml and sample standard deviation 0.5301ml. 
Our no-gold-standard analysis predicted a mean of 1.9062ml and a standard deviation of 
0.7141ml. 
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FIGURE 6.13. A plot of estimated volume using CT as a function of the number of projec­
tion angles used in the reconstruction. All reconstructions were performed using FBP. 
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TABLE 6.2. Experiment II: Estimates of the linear model parameters using regression 
analysis with and without truth with 42 data sets and two estimation techniques. 

Estimation Techniques SPECT CT 

os/ acT 

Estimates from regression analysis 
Estimates using RWT 

0.9708 
0.9306 

1.0462 
0.9999 

bsi hcT 

Estimates from regression analysis 
Estimates using RWT 

-0.0691 
0.0489 

-0.0743 
0.0476 

^SI ^CTI 

Estimates from regression analysis 
Estimates using RWT 

0.1521 
0.1386 

0.0657 
0.0257 

a] as J ajacTi 

Estimates from regression analysis 
Estimates using RWT 

0.1567 
0.1489 

0.0628 
0.0257 

a free parameter, namely stopping point, which has been studied extensively in our group 

[65,66] . In order to determine a proper stopping point for the algorithm, we evaluated 

the relationship between our volume estimates and the iteration number. In Fig. 6.14 we 

plot our volume estimates as a function of iteration number using a fixed threshold for our 

segmentation technique. In Fig. 6.15 we plot our volume estimates as a function of iteration 

number using manual thresholding. The different segmentation approaches have a dramatic 

impact on the shape of the plots as a function of iteration ntmiber. 

Unlike the first two experiments, in this experiment we also perform RWT using a 

beta density as our assumed distribution. Namely, we evaluate the performance of RWT 

when the data do not match the model. We display the numerical results of our linear 

model parameter estimation using both beta and truncated normal families as the assumed 

distributions in Table 6.3. We display the graphical results of RWT using the truncated 

normal distribution as the assumed distribution in Fig. 6.16. Fig 6.17 contains plots of the 

true and estimated densities along with a histogram of the data used in the experiment. The 



86 

2.1|  r  

10 20 30 40 50 60 70 80 90 100 
MLEM Iteration Number 

FIGURE 6.14. A plot of estimated volume using SPECT as a function of the iteration 
number for the MLEM reconstruction algorithm. Note that the gold standard volume was 
1.87 ml. A fixed threshold was used for the volume estimation. 
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FIGURE 6.15. A plot of estimated volume using SPECT as a function of the iteration 
number for the MLEM reconstruction algorithm. The gold standard volume was 1.87 ml. 
For our reconstruction scheme, 1.87 ml corresponds to approximately 34,080 voxels. 
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TABLE 6.3. Estimates of the linear model parameters using regression analysis with and 
without truth with 42 data sets and three estimation techniques. 

Estimation Techniques CT SPECT-EM CT-15 

acT ^EM &LA 

Estimates from regression analysis 
Estimates using RWT: Truncated Normal 
Estimates using RWT: Beta 

1.0405 
0.9635 
1.3008 

0.9203 
0.8882 
1.1775 

0.9811 
0.9392 
1.2664 

bcT bsM bhA 

Estimates from regression analysis 
Estimates using RWT: Truncated Normal 
Estimates using RWT: Beta 

-0.0743 
-0.0976 
-0.7106 

0.0341 
-0.0579 
-0.5813 

0.2155 
0.1238 
-0.4708 

acT d'EM ^LA 
Estimates from regression analysis 
Estimates using RWT: Truncated Normal 
Estimates using RWT: Beta 

0.0802 
0.1148 
0.0897 

0.1410 
0.0256 
0.0653 

0.4147 
0.3828 
0.3778 

estimates of the linear model parameters using the beta assumed distribution were not very 

accurate, this is not a surprise given the number of patients and modalities (see Sec. 4.2). 

6.4 Discussion 

We have further evaluated our method (RWT) for comparing estimation methods without 

the use of a gold standard by performing volume estimation using a phantom and multiple 

imaging systems. We have found that our method does, in fact, allow for the comparison of 

estimation techniques without the use of a gold standard. Specifically, the estimates of the 

linear model parameters obtained using RWT are closely correlated with those obtained 

through standard regression analysis using the x axis. The errors observed in our esti­

mates of the linear model parameters are consistent with the results of simulation studies 

presented in Chaps. 3, 4, and 5. 

The estimation techniques we employed in Experiment I (SPECT, CTI, and CTII) for 

volume estimation were not particularly noisy, as can be seen in Fig. 6.9. However, the 
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FIGURE 6.16. Experiment III: The results of a phantom study for estimating 42 volumes 
using three estimation techniques. The estimates given in (a) are the same as the CT es­
timates in Experiment II. The estimates in (b) were generated using SPECT data recon­
structed with the MLEM algorithm carried out to 100 iterations. The estimates in (c) were 
generated using only fifteen of the 180 projection angles of the CT data set. 
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FIGURE 6.17. Experiment III: A comparison of the normalized histograms for the xm-
derlying 42 volumes with the parameters returned by RWT estimating the mean and vari­
ance of the underlying gold-standard distribution. The true volumes were sampled from a 
truncated-normal distribution with a mean of 2ml and standard deviation of 0.5ml. The 42 
volumes themselves had a sample mean of 1.8383 and sample standard deviation 0.5301ml. 
Our no-gold-standard analysis predicted a mean of 2.0206ml and a standard deviation of 
0.7137ml. When the assumed distribution was from the beta family, RWT returned beta 
parameter values of = 4.1794 and uj = 4.3558. A beta distribution characterized by these 
values has a mean of 1.9691ml and a standard deviation of 0.4866ml. 
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slope of CTII is substantially greater than one due to magnification in our CT system. 

RWT accurately determined this increased slope (Fig. 6.9(c)). The lack of noise present in 

the three volume estimation techniques used in our experiment led to differences between 

the estimates of a ml Qm for each technique that were not statistically significant. This result 

implies that the three volume estimation techniques we used performed equally well. 

In Experiment II we added seventeen gold-standard volumes and removed an estimation 

technique. The results of the experiment were noticeably better than those of Experiment 

1. These results agree well with the simulation results presented in Sec. 5.3.1. Most impor­

tantly, RWT returns an accurate estimate of a mlboth techniques. 

In Experiment III we performed RWT with 42 volumes estimates using three different 

techniques. We studied the impact of using MLEM rather than FBP to reconstruct the 

SPECT data as well as the impacting of removing projection angles prior to reconstructing 

the CT data. No significant gain in volume estimation accuracy was achieved using MLEM. 

Removing projection angles, on the other hand, produced an expected drop off in accuracy. 

The volume estimates using only 15 of the 180 projection angles produced an extremely 

noisy modality. The significant increase in a for a given estimation technique is very likely 

the cause for the somewhat inaccurate estimates of the linear model parameters given in 

Table 6.3. This result follows the findings of the simulation study shown in Fig. 4.3, in 

which RMSE increased as a fimction of Om-

In conclusion, we have fiirther evaluated our method (RWT) as applied to a real data 

set rather than a data set generated numerically in simulation. The results of RWT as 

calculated in our volume estimation experiment match very well with the simulation studies 

performed in previous chapters. As discussed, the performance of RWT suffered with 

the introduction of a very noisy estimation technique in Experiment III. In practice, we 

recommend researchers remove the noisy data set and perform RWT again with just two 

estimation techniques as is done in Experiment II. 
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Chapter 7 

CONCLUSION 

7.1 Introduction 

In this chapter we summarize the results of the dissertation, discuss the practical implemen­

tation of RWT, and present problems worth investigating in the future. In Sec. 7.2 and 7.3 

we discuss the advantages and limitations of RWT, respectively. In Sec. 7.4 we discuss a 

set of consistency checks researchers can use when performing RWT to gain confidence in 

their results. We conclude the chapter with fiiture work section made up of results from a 

preliminary study in which we perform the consistency checks using a real data set without 

a gold standard along with a discussion of some areas of potential research for RWT. 

7.2 Discussion of RWT 

We have presented and evaluated a method for ranking estimation methods in medical 

imaging without the use of a gold standard. Our model consists of assuming that each 

estimation method is simply an afiine transformation of the gold standard with Gaussian 

noise. Our method, RWT, then uses a maximum-likelihood approach to estimate the pa­

rameters defining this mapping. These parameters, which we have called the linear model 

parameters, can then be used to rank the different estimation methods. 

We showed through numerous numerical simulations in Chaps. 3 and 4 that RWT is able 

to accurately estimate the linear model parameters under varying conditions. In Chap. 5 we 

calculated the Fisher information for RWT using our likelihood expression and we were 

able to show numerically that our estimator achieves the Cramer-Rao bound, indicating we 

have an efficient estimator of the linear model parameters. In Chap. 6 we moved away from 

simulation studies by performing a volume estimation experiment using a phantom imaged 

via SPECT and x-ray CT here at the Center for Gamma Ray Imaging. RWT performed 
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extremely well with both simulated and real data. We strongly recommend that RWT be 

used in the future by researchers comparing estimation techniques. A noteworthy aspect 

of RWT is the exploitation of information previously unused. We have shown that we can 

succeed without the x-axis if we have measurements on multiple modalities for a common 

group of patients. 

7.3 Limitations of RWT 

The key advantage of RWT over conventional regression analysis is that it does not require 

a gold standard. The performance of RWT, however, is hindered by this lack of information. 

Furthermore, like conventional regression analysis, RWT assumes a known functional form 

for the relationship between the gold standard and the data. However, unlike conventional 

regression analysis, this relationship cannot be visually assessed without the gold standard. 

We must also assume a functional form of the gold standard density pr (0), an assumption 

we cannot actually check. The model does, however, permit the parameters characterizing 

the shape of this density to vary in RWT. We have assumed a Gaussian noise model, that 

is also implicit in conventional regression analysis, but other noise models are easy to 

implement in the likelihood expression. We will further discuss independence assumptions 

in the future work section. 

Another limitation of RWT is the requirement (see Sec. 5.4.1) that the assumed distri­

bution be bounded. Often these bounds can be drawn with confidence based upon some 

physical properties of the forward problem, z.e.EF, though for certain parameters of interest 

choice of bounds could be cause for argument. 

Possibly the largest limitation of RWT is our inability to measure its performance. In 

all of the studies performed here we have had a gold standard, either through simulation or 

in the case of the phantom study through the use of a pipette. Such checks will not exist 

in problems to which we would like to apply RWT. In an attempt to better facilitate the 

use of RWT we present a few consistency checks in the next section in an attempt to help 
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researchers gain (or lose) confidence in RWT. 

7.4 Consistency Checks 

In this work we have been able to compare our estimates of the linear model parameters 

and the models of the gold standard distribution to their true values since all studies were 

done with ground truth available. Namely, either we generated the truth in simulation 

or we used a legitimate gold standard technique (/.e.pipette) for comparison. Without a 

gold standard it is impossible to verify if RWT has accurately estimated the linear model 

parameters and the parameters of the gold standard distribution. As a result, we have 

developed a set of consistency checks for researchers to invoke when performing RWT. 

These consistency checks will not guarantee researchers that RWT is working properly, 

though they can determine if the method is NOT working properly. We derive three such 

consistency checks below and in the next section we present preliminary results of the 

checks as applied in a study we have begun comparing cardiac EF estimation algorithms. 

7.4.1 Consistency Check 1 

The RWT method returns information relating the gold standard to the estimates returned 

by a method (equ. 3.1). Two different estimation methods, however, share the same gold 

standard because the same patient population is employed in both. Thus, we can use the 

results returned by RWT to represent the relationship between two estimates. Mathemati­

cally, this relationship is determined by solving for the gold standard in equ. 3.1 for each 

of the estimates 6pi and 9pj resulting in. 

If the parameters returned by the RWT method accurately relate the gold standard to the 

estimates returned by the various methods, then the slopes and intercepts determined by 

equ. 7.1 should accurately relate the two estimates to each other. The converse of the 

(7.1) 
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previous statement is not necessarily true. Namely, if the relationship between the estimates 

is accurately determined by RWT, then the relationship between the gold standard and the 

estimates is not necessarily accurate. However, the contrapositive of the above statement 

is true and allows us to state that if the relationship between the estimates is not accurately 

determine then the relationship between the gold standard and the estimates is also not 

accurately determined by RWT. 

7.4.2 Consistency Check 2 

Another consistency check that we can run involves comparing the distribution of the gold 

standard returned by RWT pr(Q\^ to the histogram of the raw data 9prn for a given method 

m calibrated to match the gold standard. Specifically, we will compare the gold standard 

density to a histogram of 

^pm ~ bm ^ 2^ 

for all patients p and for a given method m. These data should not match exactly because 

equ. 7.2 has extra noise added onto to it from the €pm term. However, if the variance of 

epm is small for method m, then the histograms should match the gold-standard density 

returned by RWT. 

7.4.3 Consistency Check 3 

A final consistency check we have developed tests the sample covariance of the EF es­

timates returned by the various methods to what is predicted by the model employed 

(equ. 3.1). This test incorporates two very important aspects of the RWT model; the first 

is the linear relationship we assume, and the second is the independence of the noise in the 

estimates returned by different modalities. Using these two aspects of our RWT model, it 

can be shown that 

Cov{9i ,6 j )  = ajajVar(0), (7.3) 
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where 9i and 9j are the estimates of EF from the different methods, and aj are the 

estimates of the slopes returned by RWT, and Var(0) is the variance of the gold standard 

parameter, and Cov {9i, 9j) is the covariance of the estimates returned by method i and the 

estimates returned by method j. The expectations needed to compute the covariance and 

variance in equ. 7.3 are expectations taken over the population of patients, hence, the single 

subscript denoting the method on the estimates and the lack of a subscript on the gold 

standard 0. The left-hand side of equ. 7.3 can be estimated using the sample covariance 

and the data given. However, the right-hand side of equ. 7.3 is completely determined by 

the slopes returned by RWT along with the p returned by RWT that definines the gold 

standard density. Hence, we are relating a data-measure to a value determined completely 

by RWT and using the assumptions that make-up RWT. Once again, this check can only 

tell us if the the method is not working or our assumptions are invahd; it cannot inform us 

if the method is working properly. 

7.5 Future Work 

7.5.1 Comparing Cardiac Ejection Fraction Estimation Algorithms 

In this section we present preliminary results of our consistency checks applied to a data 

set consisting of multiple cardiac EF estimation algorithms used in SPECT. As discussed 

in Sec. 2.1.3, EF is typically estimated in nuclear medicine using planar imaging. Recently 

researchers have attempted to estimate EF using SPECT, an approach that presents a more 

complicated segmentation problem. Many approaches exist for estimating EF from SPECT 

data [67-71]. Our data set consists of 85 EFs estimated using Quantitative Gated SPECT 

(QGS) developed by Germano et al. [68] at Cedars-Sinai Medical Center, the Emory Car­

diac Toolbox (ECT) developed by Faber et al. [69] at Emory University, and Wackers-Liu 

Cardiac Quantification (WLCQ) developed by Wackers and Liu [71] at Yale University. 

Nakajima et al. [67] performed a study that compared cardiac EF estimation algorithms 

using the approaches discussed in Sec. 2.2.2. In this section we show the preliminary results 
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TABLE 7.1. Values for b^, cr^, and a-miam estimated using RWT and the EF data 
sets estimated using the QGS, Emory, and WLCQ techniques. Results are given for RWT 
assuming either a beta or a truncated normal distribution. Note that while the values of the 
estimates are differ under the two different assumptions, the ranking of the techniques is 
conserved. 

QGS Emory WLCQ 

Estimates assuming a beta dist. 
Estimates assuming a tmnc. normal dist. 

1.1537 
0.7547 

1.0309 
0.6759 

1.1555 
0.7560 

QGS Emory WLCQ 

Estimates assuming a beta dist. 
Estimates assuming a trunc. normal dist. 

-0.1356 
0.1446 

0.0414 
0.2909 

-0.0838 
0.1968 

QGS Emory WLCQ 

Estimates assuming a beta dist. 
Estimates assuming a trunc. normal dist. 

0.0587 
0.0590 

0.0470 
0.0464 

0.0769 
0.0770 

^m/ 0"m QGS Emory WLCQ 

Estimates assuming a beta dist. 
Estimates assuming a trunc. normal dist. 

0.0509 
0.0781 

0.0456 
0.0686 

0.0665 
0.1018 

of a similar study in which we use RWT to compare the different techniques. We present 

the results of linear model parameters estimated using RWT in Table 7.1 along with the 

results of the three aforementioned consistency checks in Fig. 7.1, Fig. 7.2, and Table 7.2. 

Our estimates using RWT performed very well in all three consistency checks. Specifically, 

RWT performed very well when we assumed a beta density in our model. This result fits 

well with previous working claiming EF to be beta distributed [7,46]. 

7.5.2 Evaluating Assays Used to Identify Human Herpesvirus 8 

The methodology presented in this dissertation is applicable to numerous estimation prob­

lems outside of medical imaging. For example, human herpesvirus 8 (HHV-8) is a recently 

discovered vims [72] that is rurming rampant throughout the world, especially Africa. The 

means of transfer of HHV-8 are unknown and the percentage of the population infected is 
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FIGURE 7.1. The results of consistency check 1 applied to the cardiac EF estimation algo­
rithm data set. The plots consist of the EF estimates of the three different methods plotted 
against each other. The regression lines shown are NOT the result of conventional regres­
sion analysis. Rather they are the results of the slopes and intercepts in Equ. 7.1 estimated 
using the results of RWT. The plot shown was generated using results of RWT performed 
with a beta assumed distribution, plots using a truncated normal assumed distribution are 
nearly identical. 
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FIGURE 7.2. The results of consistency check 2 applied to the cardiac EF estimation 
algorithm data set. The plots consist of the beta PDF returned by RWT along with the 
histogram-med data sets adjusted according to 7.2. 
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TABLE 7.2. Results of the consistency check for the sample covariance using the results of 
RWT applied to the EF data gathered using QGS, Emory, and WLCQ techniques. 

Sample Covariances Emory vs. QGS WLCQ vs. QGS WLCQ vs Emory 

Est. directly from data 0.0210 0.0236 0.0210 
Est. w/RWT: beta 0.0212 0.0237 0.0212 
Est. w/RWT: trunc. norm. 0.0245 0.0274 0.0245 

estimated to be somewhere between 20 and 80 percent in Africa [73]. All data indicate that 

the presence of HHV-8 in an individual is a necessary, though not sufficient, condition for 

the onset of a cancer called Kaposi's sarcoma (KS). KS is the disease responsible for the 

dark skin lesions associated with AIDS. 

A problem confronting epidemiologists studying the HHV-8 is the lack of a gold stan­

dard assay test to determine the presence of HHV-8 [74-76]. The goal of such assays is to 

classify blood samples as virus present or virus absent. The assays, however, are not binary 

decision variables, rather they give an estimate of the level of infection for a given patient 

represented by the continuous variable "viral load". Thus HHV-8 assays can be viewed as 

both an estimation and a classification task. 

A study was performed using blood samples taken from KS patients and a control group 

and the classification task performance of multiple assays were assessed using AUG as the 

figure of merit [75]. We would like to rank the different assays "viral load" estimation per­

formance using RWT and compare this ranking to the ranking arrived at using classification 

task performance. A potential goal of epidemiologists at the National Cancer Institute is to 

design a classification scheme consisting of multiple assays. Recently, models have been 

developed defining classifiers that take into account multiple covariates [77]. We are in­

terested in defining a classifier based on information gathered from performing RWT and 

comparing the two. 
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Appendix A 

A.l The beta distributions 

The PDF for the beta distribution has the form 

where 

_ 0 w-i 
pr{e,M= - (A.1) 

a;) = r (A.2) 
Jo 

A.2 The truncated normal distribution 

The PDF for the truncated normal has the form 

pr(0pi/i, aa)  =  A{n,  Ga)  exp n(x), (A.3) 

where 11 (a:) is an indicator function with value one on the interval [0,1] and zero else­

where. We use the subscript a in equ. A.3 so as to differentiate this a from the linear model 

parameters cr. The normalizing constant A^/i, aa) is given as 

M,, .,) = (erf + e./ (^) ) (A.4) 

and 
2 

erf{x) = —1= / (it exp (—t^) • (A.5) 
V^r Jo 
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Appendix B 

B.l Derivatives of the log-likelihood 

As derived in Sec. 5.2, the components of the Fisher information matrix for our problem 

are given by 

T - p f  1 dpr{Op\v)  
Jr ' [pr{0 , \ r i )  dm dr j j  

where 

V=Vo 

Ml f ^ I 
Pr{ep\r]) = / pr{Qp\r) TT —^ exp V -^{9p - a^0p - ) M -

The expressions for the partial derivatives of pr{0p\r}) with respect to the linear model 

parameters are as follows: 

M / M 
dpriOplr]) 

dai 
[ dQpPT(Qp\r) I I ^ — exp ( ^ ^ „ i^pm 0,m^p ^m) 

^{Spi - o-Sp - bi)^ 

dpri^lvl ^ r Y[ -7^== exp (^ " «mQp - hmf 
jR ^ii\/27ra^ 2(7^ 

2^^pi ^i^p b^ 

dpr{dp\r}) f jr\ rr\ \ \'^ ^ ^ 
o f dQppr{Qp\r) J~J ^ ̂  ^ 2 o^m^p bm) 

jR r^=iV27ra^ 2(7^ 
2 

( 3 (.̂ pi Ojî p bi) I . 
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For the linear model parameters these calculations were straightforward. The calcula­

tions are more involved in the case of the parameters of the assumed distribution. Below we 

show the partial derivatives with respect to r ; the parameters of the assumed distribution. 

When the assumed distribution is from the beta family, the partial derivative of the beta 

PDF with respect to u is 

dpr{Qp\u,uj) \ A ^ 9B{u,u;)  /  \  
^ = pr{ep\u,uj) (^ln(0p) j j , 

and thus 

dvr{%\ri) ^ r __L= exp ( - amQp - ) 

. ( l n (0 , ) -« /B( . , . ) ) .  

The partial derivative of the normalizing constant with respect to v is given by 

du du Jo ^ 

= An(0,)0;-^(l-e,r-\ 
Jo 

which is an integral we solve numerically. In similar fashion, the partial derivative with 

respect to u is given as 

dpriOplri) ^ r JJ J_ exp ( ^ -7^{0pm - am&p -
^=iV27ra^ V;^i J 

• (^ln(l - 0p) - j Biu, uj)y 

where 

= [ ' H I  -  Q p)Q;-\I - Qpr-\ 
Jo 

We solve this integral numerically as well. 
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The partial derivatives in the case when the assumed distribution is from the truncated 

normal family follows in much the same way as those in the case of the beta. The two 

parameters of interest are the mean fx and the standard deviation a a- Differentiating the 

truncated normal with respect to jj, yields 

= MOM o.) ( aj + i(e„ - , 

from which it follows that 

dpri^plv) ^ f dQppr{Qp\ij,, Oa) exp [ - am% -

JR m=l \m=l J 

The partial derivative of the normalizing constant A(/i, ag) with respect to ^ is given by 

^ ( " _  / ' I  - f ^ '  
AIT " V J V 

For (To we have 

dpriOplrj) ^ r Y[ —X=~ exp [ ̂  - OmQp -

m=iV27ra^ 2al 

where 

daa V 2 V \\/2aa) V\/2cra 

h  ( -  ( ^ ) ( -  {it))  
B.2 The Likelihood, A, in the Case of a Normal Assumed Distribution 

for M=3 

As derived earlier, the likelihood, A, in the case of a normal assumed distribution may be 

written as 
p 

A = [J AT exp - 0pYK-\0p - • 
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In the case when M=3 

N = 
(27r) 2 det { K )  

1 ) 
2 

K-' = 

Aal 
2crj 

Aaia2 

Aaia2 
'2 2^ 2^ 

•Aaioa 
2a?<7= 

Aa^gg 
2̂  ̂

and 

0. 
4 ' 

where /3 is a 3 x 1 vector given by 

Affli g.s 

A02te 
2of^ 

Aa| 1 

" = 1 

liai affci ai 0262 a1 as63 
2(7 a" 1 2o-?o-| 20-2 <T| 

IM2 0362 ai02&i ao.axbx 
2<roCr| 20-2 2<T2CT| 2(7^ <T| 

A102 a^bs aioabi a2g363 
. 2(70 (T| 2a| 2cr=(7| 2(T^a| 

A61 

The expression for A is given in equ. 5.15. 

B.3 Derivation of Jij in the case of a normal assumed distribution 

In this appendix we calculate the components of the Fisher information for our problem 

when the assumed distribution is a normal. 

Jij — 
drfidr]. 

-A 
'J / {0p} 

\ dr]idr]j 

- p ( - ^  

V=Vo 

V=Vo 
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The partial derivative of the remaining expected value consists of nine different terms, six 

of them are equal to zero. For example, 

= 0 

There are two non-zero terms of the form 

/ d (,^ -Ti\t\ d 7T\\ d f-p^\ d 

p 
\dVi ^ dVj 'Wo, 9Vi \ 'J' ' dV: 

and the final non-zero term is given by 

/

°° _ / (92 _ 
^ d^9, {e, - ej ̂  (if-') (9, - e„) pr(e,|r,) 

= " (^-)) • 

Thus our expression for is 

1 --tr ( Jf-
dr]idr). 7j=»;o 
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