
WEB TRAFFIC MODELING AND ITS APPLICATION IN THE
DESIGN OF CACHING AND PREFETCHING SYSTEMS

by

Abdullah Balamash

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY

In the Graduate College

THE UNIVERSITY OF ARIZONA

2 0 0 4

UMI Number: 3145040

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3145040

Copyright 2004 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

The University of Arizona
Graduate College

As members of the Final Examination Committee, we certify that we have read the

dissertation prepared by Abdullah Saeed Balamash

entitled Web Traffic Modeling And Its Application In The

Design Of Caching And Prefetching

and recommend that it be accepted as fulfilling the dissertation requirement for the

Degree of Doctor Of Philosophy

Marwan Krunz, Ph.D. date

Bemartf^ Zeigl^^^h.^^ date

A t A c ^ 0 4 - .
Srini R^MLSubrvaraaftianV Ph.D. fee

Bane Yasic® Fh.B.
\. ̂

Young-Jun Son, Ph.D.

Final approval and acceptance of this dissertation is contingent upon the
candidate's submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

Dissertation Director; Marwan Krunz, Ph.D. ^ date

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at The University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in part
may be granted by the head of the major department or the Dean of the Graduate
College when in his or her judgment the proposed use of the material is in the
interests of scholarship. In all other instances, however, permission must be obtained
from the author.

SIGNED:

4

ACKNOWLEDGEMENTS

First of all, I would like to thank my parents and my wife, for without whom this
dissertation would not have been possible. Their support, patience, and understand
ing helped me through the difficult times. Their encouragement and faith gave me
the strength to pursue my study and complete the degree requirements.

1 would like to express my deepest gratitude to my advisor Dr. Marwau Krunz
for his invaluable assistance and support. Special thanks to my friends Mohammad
Hassan, Dr. Turgay Korkmaz, Alaa Muqattash, and Aytac Azgin who in some way
liave contributed to this dissertation.

Finally, I would like to thank my dissertation committee members Dr. Bernard
Zeigler, Dr. Srinivasan Ramasubramanian, Dr. Bane Vasic, and Dr. Young Jun
Son for spending their valuable times in my PhD exams and making constructive
comments that led to the improvement of the contents of this dissertation.

DEDICATION

To my parents and my

6

TABLE OF CONTENTS

LIST OF FIGURES 8

LIST OF TABLES 10

ABSTRACT 11

CHAPTER 1 INTRODUCTION 13
1.1 Motivation 13
1.2 Main Contributions 15
1.3 Dissertation Overview 15

CHAPTER 2 BACKGROUND 17
2.1 WWW Traffic Characteristics 17

2.1.1 Popularity 17
2.1.2 Temporal Locality 18
2.1.3 Spatial Locality 20
2.1.4 Self-Similarity 21
2.1.5 Multifractality 23

2.2 WWW Client Behavior 25
2.3 Approaches to Reduce WWW Response Time 25

CHAPTER 3 MULTIFRACTAL MODELING OF WWW RE
QUESTS 31
3.1 Introduction 31
3.2 Multifractal Analysis of WWW Traffic 33

3.2.1 Riedi et al.'s Multifractal Model 34
3.2.2 Reducing the Number of Parameters 38
3.2.3 Selecting the Random Variable Aj 43

3.3 Stack distance Model 44
3.3.1 Extracting the Empirical Normalized Stack Distance String . . 44
3.3.2 Modeling the Normalized Stack Distance String 46
3.3.3 Modeling Popularity and Generating Synthetic Reference

Strings 50
3.3.4 Performance Evaluation 53

3.4 Intcr-request Distance Model 61
3.4.1 Traffic Generation Process 63
3.4.2 Performance Evaluation 64

7

TABLE OF CONTENTS - Continued

CHAPTER 4 WWW PREFETCHING MODEL 69
4.1 Introduction 69
4.2 Prefetching System Architecture 69
4.3 Analysis of Prefetching Gain 72
4.4 Prefetching Gain Optimization 75

4.4.1 Prefetching Precision Independent of Np 77
4.4.2 Prefetching Precision Varies with Np 78

4.5 Prefetching Protocol 81
4.5.1 Traffic Prediction 83

4.6 Effect of Caching on Prefetching Gain 84
4.7 Simulation Results 88

4.7.1 Simulation Setup 88
4.7.2 Traffic Model 88
4.7.3 Prediction Model 90
4.7.4 Validation of Ah and Pp 91
4.7.5 Validating the Access Improvement Index 92

CHAPTER 5 CONCLUSIONS AND FUTURE WORK 99
5.1 Conclusions 99
5.2 Future Work 100

APPENDIX A PROOF OF THEOREM 3.2.1 102

APPENDIX B PROOF OF THEOREM 4.4.1 103

APPENDIX C PROOF OF THEOREM 4.4.2 106

APPENDIX D PROOF OF THEOREM 4.4.4 108

REFERENCES 109

8

LIST OF FIGURES

2.1 Frequency of file accesses versus file ranking 18
2.2 Impact of transforming the marginal distribution of a F-ARIMA

model on the correlation structure 22
2.3 Self-similar traffic versus Poisson traffic 24
2.4 Possible locations for deploying WWW caching 26
2.5 Markovian predictor 30

3.1 Accuracy of the multifractal model in capturing the ACF of the stack
distance string of a real WWW trace 32

3.2 Process of generating the scaling coefficients in the DWT 36
3.3 Fitting the correlation structure of the normalized stack distance

string (Calgary trace) 40
3.4 Fitting the correlation structure of the normalized stack distance

string (ClarkNet trace) 41
3.5 Fitting the correlation structure of the normalized stack distance

string (Worldcup98 trace) 42
3.6 Example showing our approach for extracting stack distances from a

real trace 46
3.7 Marginal distribution of the normalized stack distance string

(ClarkNet trace) 47
3.8 Marginal distribution of the normalized stack distance string (Calgary

trace) 48
3.9 Marginal distribution of the normalized stack distance string (World-

cup98 trace) 49
3.10 Algorithm for generating synthetic scaled stack distance strings. . . . 51
3.11 Algorithm for generating synthetic WWW strings 53
3.12 File miss ratio versus cache size (Clarknet trace) 55
3.13 Byte miss ratio versus cache size (Clarknet tracc) 56
3.14 File miss ratio versus cache size (Calgary trace) 57
3.15 Byte miss ratio versus cache size (Calgary trace) 58
3.16 File miss ratio versus cache size (Worldcup98 trace). 59
3.17 Byte miss ratio versus cache size (Worldcup98 trace) 60
3.18 WWW synthetic trace generation process 65

4.1 Components of the prefetching system 71
4.2 Client behavior 72

9

LIST OF FIGURES - Continued

4.3 I versus Np (r = 500 kbps, G = 500 kbps, A = 6.25 files/s, s = 40
kbits, Non = 15 files, Pth — 0.5, he = 0, hproxy = 0) 78

4.4 I versus Np (C = 500 kbps, A = 6.25 files/s, s — 40 kbits, Non — 15
files, he = 0) 79

4.5 I versus Np for the case P = — (C = 500 kbps, A = 6.25

files/s, s = 40 kbits, Non = 15 files, Pth = 0.5, he -= 0) 80

4.6 Effects of R and hproxy on 1 for the case P = — (C = 500

kbps, A = 6.25 files/s, s = 40 kbits, Non = 9 files, Pth{R = 1 , hproxy
0) = 0.5, he = 0) 81

4.7 Impact of proxy caching on the effectiveness of prefetching (C = 1000
kbps, A = 20 files/s, s = 40 kbits, Non = 15 files, he = 0) 85

4.8 Impact of local (regular) caching on the effectiveness of prefetching
(r = 1000 kbps, C — 1000 kbps, A = 20 files/s, s = 40 kbits, Non — 15
files, hproxy — 0). . 86

4.9 Impact of local (regular) caching on the effectiveness of prefetching
(r = 56 kbps, C = 1000 kbps, A = 20 files/sec, s = 40 Kbits,

^on — 1^ files, hproxy — 0) 87
4.10 Client-side traffic generation process 90
4.11 Mechanism for traffic prediction 91
4.12 Increase in the client's cache hit ratio due to prefetching versus Np

when P = ^ = 500 kbps, C = 500 kbps, A = 8 files/s,

s = 38 kbits, hproxy = 0.39, he — 0.31) 92

4.13 Average system load versus Np for the case P — ^ (r = 500

kbps, C = 500 kbps, A = 8 files/s, 5 = 38 kbits, hproxy = 0-39,
/ic = 0.31) 93

4.14 I versus N p (P = r = 500 kbps, C = 500 kbps, A = 8

files/s, s = 38 kbits, hproxy = 0.39, he = 0.31) 95

4.15 / versus Np under fixed-size files {P = r = 500 kbps.

C = 500 kbps, A = 8 files/s, s — 38 kbits, hproxy — 0.39, he = 0.31). . 96

4.16 I versus Np { P — f = 500 kbps, C — 500 kbps, A = 8

files/s, s = 38 kbits, hproxy — 0.39, he = 0.31) 97

4.17 I versus Np (P = r — 500 kbps, C = 500 kbps, A = 8

files/s, 8 — 38 kbits, hproxy — 0.39, he = 0.31) 98

B.l Approximation of /i?(p) by 1/(1 — p^) 104

10

LIST OF TABLES

3.1 Upper bound on the ratio for various distri
butions 44

3.2 Summary of the data sets used in the modehng study 54
3.3 Statistical comparisons for CLARKNET trace 61
3.4 Statistical comparisons for CALGARY trace 62
3.5 Statistical comparisons for WORLDCUP98 trace 62
3.6 Cache miss ratio inaccuracy for the worldcup98 trace 66
3.7 Cache miss ratio inaccuracy for ClarkNet trace 67
3.8 Statistical comparisons for the worldcup98 trace 67
3.9 Statistical comparisons for ClarkNet trace 68

4.1 Parameters of the prefetching protocol 83
4.2 Probability distributions used in the simulations 89

11

ABSTRACT

Network congestion remains one of the main barriers to the continuing success of the

Internet. For web users, congestion manifests itself in unacceptably long response

times. One possible remedy to the latency problem is to use caching at the client,

at the proxy server, or even within the Internet. However, documents on the World

Wide Web (WWW) are becoming increasingly dynamic (i.e., have short lifetimes),

which limits the potential benefit of caching. The performance of a WWW caching

system can be dramatically increased by integrating document prefetching (a.k.a.,

"proactive caching") into its design.

Prefetching reduces the perceived user response time, but it also increases the

network load, which in turn may increase the response time. One main goal of

this dissertation is to investigate this tradeoff through a mathematical model of a

WWW caching/prefetching system, and to demonstrate how such a model can be

used in building a real prefetching system. In our model, the client cache consists of

a "regular" cache for on-demand requests and a "prefetching cache" for prefetched

requests. A pool of clients connect to a proxy server through bandwidth-limited

dedicated lines (e.g., dialup phone lines). The proxy server implements its own

caching system. Forecasting of future documents is performed at the client based

on the client's access profile and using hints from servers. Our analysis sheds light

on the interesting tradeoff between aggressive and conservative prefetching, and can

be used to optimize the parameters of a combined caching/prefetching system. We

validate our model through simulation. From the analysis and/or simulation, we

find that; (1) prefetching all documents whose access probabilities exceed a given

threshold value may, surprisingly, degrade the delay performance, (2) the variability

of WWW file sizes has a detrimental impact on the effectiveness of prefetching, and

(3) coexistence between caching and prefetching is, in general, beneficial for the

12

overall performance of the system, especially under heavy load.

Ideally, a caching/prefetching system should account for the intrinsic character

istics of WWW traffic, which include temporal locality, spatial locality, and pop

ularity. A second contribution of this dissertation is in constructing a stochastic

model that accurately captures these three characteristics. Such a model can be

used to generate synthetic WWW traces and assess WWW caching/prefetching de

signs. To capture temporal and spatial localities, we use a modified version of Riedi

et al.'s multifractal model, where we reduce the complexity of the original model

from 0{N) to 0(1); N being the length of the synthetic trace. Our model has the

attractiveness of being parsimonious (characterized by few parameters) and that it

avoids the need to apply a transformation to a self-similar model (as often done in

previously proposed models), thus retaining the temporal locality of the fitted traffic.

Furthermore, because of the scale-dependent nature of multifractal processes, the

proposed model is more flexible than monofractal (self-similar) models in describing

irregularities in the traffic at various time scales.

13

CHAPTER 1

INTRODUCTION

1.1 Motivation

WWW users can experience response times in the order of several seconds. Such

response times can be quite unacceptable, causing some users to request the delayed

files over and over again. This, in turn, aggravates the situation and further increases

the network load and the perceived latency. Caching is an effective approach for

reducing the user-perceived response time by, storing copies of popular WWW files

in a local cache, a proxy server cache close to the end user, or even within the

Internet. However, the benefit of caching diminishes as WWW files become more

dynamic [31, 52, 35]. A cached file may become stale at the time of its request,

because most WWW caching systems in use today are passive (i.e., files are fetched

or validated only when requested). Moreover, users mostly click on hyperlinks to

other files. If a hyperlinked file is accessed for the first time by the client and has

not been requested by other clients who have a common cache with this client,

then the file must be retrieved from the original server. The main consequence of

these limitations is that the maximum hit ratio that can be achieved by any caching

system is limited and was found not to exceed 50% [1].

Prefetching (or proactive caching) aims at overcoming the limitations of passive

caching by proactively fetching files in anticipation of users future requests. In ad

dition to regular (static) files, the prefetched files may also include hyperlinked files

that have not been requested before as well as dynamic objects ^[79, 68]. Moreover,

since WWW files are frequently updated, stale cached files can be considered for

prefetching, as well.

'A dynamic object is a web file that is created by the server on the fly based on a certain

number of parameters provided by the user

14

Although prefetching can increase the overall cache hit ratio, resulting in re

duced user response time, it consumes additional network resources because some

prefetched files are never requested. This, in turn, can increase the response time

if prefetching is not performed carefully. The prefetching problem has two aspects.

The first one is how to specify the set of files that are most likely to be accessed in

the near future. The second aspect is how to determine the number files to prefetch

that would minimize the overall average response time.

Most of the studies on WWW prefetching dealt with the first part of the prob

lem where a set of candidate files for prefetching is computed based on a prediction

algorithm (see section 2.3). Each candidate file is identified by its name and its

likelihood of being accessed in the near future. The likelihood value of a file repre

sents the probability of accessing such file in the near future. In these studies, either

a threshold-based approach is used, whereby all files with access probabilities that

exceed a fixed threshold value are prefetched, or a fixed number of the most popular

files are prefetched. Both approaches may actually increase the average response

time, since they do not consider the state of the network during the prefetching

process [88, 24]. One solution to this problem is to dynamically adjust the prefetch

ing threshold and to vary the number of files to prefetch depending on the network

state. The need for such a solution is one motivation behind this dissertation.

An good WWW cac:hing/prefetching system must take into account in its design

the intrinsic properties of WWW traffic. These properties include temporal locality,

spatial locality, and popularity. Temporal locality measures the closeness in time

between requests to the same file. Spatial locality measures the correlation between

requests to different files (e.g., if file A is currently being requested, then there is a

good chance that file B will be requested in the near future). Popularity refers to

the overall likelihood of requesting a particular file, independent of other files. See

section 2.1 for detailed descriptions of these properties.

The ability to assess the performance of WWW caching/prefetching system

hinges on the availability of a representative workload that can be used in trace-

driven simulations [18, 46]. Measured ("real") traces can also be used for this

15

purpose. However, due to the difficulty associated with capturing real traces, only

a handful of such traces are available in the public domain (see [102] for public

domain traces). This makes it hard to provide simulation results with reasonable

statistical credibility. A more feasible alternative is to rely on synthetic traces that

are derived from an approximate stochastic model. The need for such a model is

another motivation behind this dissertation.

1.2 Main Contributions

The main contributions of this dissertations include the following:

• Investigation of the suitability of using multifractal modeling techniques in

capturing the essential properties of WWW traffic.

• Development of two parsimonious (characterized by few parameters) multi-

fractal traffic models that accurately capture the essential WWW traffic prop

erties.

• Mathematical modeling and analysis of a generic, hybrid prefetching/caching

system and investigation of the tradeoff between the increased network load

and the reduced user response time using such system.

• Investigation of the impact of caching on the effectiveness of prefetching.

• Development of an adaptive prefetching protocol that can optimize the client

access latency based on the network state.

1.3 Dissertation Overview

In chapter 2, we provide a background of related topics that help discuss the re

maining chapters of this dissertation. This background includes the main WWW

traffic properties and overview of WWW caching and prefetching mechanisms.

We investigate the suitability of multifractal modeling in capturing the WWW

essential traffic properties in Chapter 3. We develop two stochastic WWW traffic

16

models that can be used for performance evaluation of caching/prefetching sys

tems. Our models exploits the versatility of multifractal processes to simultane

ously capture the intrinsic properties of WWW traffic, namely temporal locality,

spatial locality, and popularity. They have the attractiveness of being parsimonious

(characterized by few parameters) and they avoid the need to apply nonlinear trans

formation to the 'basic' process, as often done in previous models [13], thus retaining

the temporal locality of the fitted traffic. Because of the scale-dependent nature of

multifractal processes, the proposed models are more flexible than a rnonofractal

(self-similar) models in describing irregularities in the traffic at various time scales.

In Chapter 4, we investigate the effectiveness of client-side prefetching in the

presence of local and proxy caching systems. We analytically study the tradeoff

between the increased network load and the reduction in the user response time due

to prefetching. We then use our analysis to design a prefetching protocol that can

optimize the user response time by dynamically adjusting the system parameters

based on the network state.

We conclude this dissertation in Chapter 5 and provide some directions for future

research.

17

CHAPTER 2

BACKGROUND

2.1 WWW Traffic Characteristics

In our context. WWW traffic represents the stream of clients requests seen by a

WWW/proxy server. Understanding the properties of such a stream is key to

designing good caching/prefetching systems [4]. In the following subsections, we

describe these characteristics in details.

2.1.1 Popularity

Popularity refers to the overall likelihood of requesting a particular file, independent

of other files. It was shown in [7, 17] that popular files on the WWW are "very pop

ular" meaning that references to a few number of files represent a high percentage

of the total number of requests in a given stream of WWW requests. Several other

studies showed that the distribution of the number of references a WWW file gets

follows a Zipf-like distribution [41, 27, 4, 12]. Zipf's law was applied earlier in char

acterizing the frequency of using a given word in terms of its popularity rank [93]. It

states that the relationship between a word's popularity rank (p) and the frequency

(P) of using this word in a given text is given by:

where a = 1. For a Zipf-like distribution, the constant a was found to take values

between 0 and 1 [17], Thus, the nth most popular file is 2° times as likely to be

accessed as the (2n)th most popular file. Figure 2.1 demonstrates the application of

Zipf-like distribution to WWW requests. The figure shows the number of times that

a file has been accessed versus the rank of the file in a given WWW trace, where

rank 1 means the most frequently accessed file. Note that both axes are in the log

18

scale. It is clear that the curve fits a straight line reasonably well. The straight line

on the log-log scale indicates that the number of requests is proportional to 1/p"

where -a is the slope of the line. For this plot, the value of a = 0.65 was obtained

using the mean-square error curve-fitting technique.

.4
10

- Fitted
— Empirical

3
10'

. 2
10'

1
10'

0̂
10'

10'
File ranl<

Figure 2.1: Frequency of file accesses versus file ranking.

2.1.2 Temporal Locality

Temporal locality refers to the likelihood that a file that has just been requested

will be requested again in the near future. In other words, it measures the closeness

in time between requests to the same WWW file. Accurate characterization of

temporal locality is very important because utilizing such a property in the design

of cache replacement policies can significantly improve the performance of a caching

system.

WWW traffic characterization has been the focus of several previous studies;

19

examples of which are given in [7, 4, 13, 27, 48, 47]. In these studies, the tem

poral locality of the traffic was represented by the marginal distribution of the

stack distance string [58]. The stack distance string, which is an equivalent rep

resentation of a reference string, is obtained by transforming the reference string

using the least recently used (LRU) stack , as follows. Let the reference string

be Rt — {ri, r2,..., rt}, where rj is the file (or object) requested at time j. Note

that a file may appear multiple times in Rt. Let the LRU stack at time t be

St = {Obji, Obj-2, Objs, ...,Objn}, where Obji, Obj2,..., Objn are distinct files; Obji

is the most recently requested file, Obj2 is the second most recently requested file,

and so on. Let dt be the stack distance of the file referenced at time t (the position

of the file in the LRU stack at time f — 1). Whenever a reference is made to a

file, the LRU stack must be updated. If Vt+i = Obji, then the LRU stack becomes

St+i = {Obji, 0bji,0hj2,Obji^i, Obji+i,Objn} and dt+i = i. Thus, for any

reference string Rt = {ri, rg,..., rt}, there is a corresponding stack distance string

D t — { d i , d . 2 , . • • , d t } .

In [49], the authors studied the temporal locality of WWW traffic and concluded

that such a phenomenon is induced by both temporal correlations and long-term

popularity. More specifically, references to globally popular files tend to be close

to each other in time. Furthermore, references to certain unpopular files may ex

hibit strong temporal correlations, if these references appear "clustered" in time

(e.g., a file may be frequently requested but only during a short period of time).

Long-term popularity suggests the use of the number of requests each file gets in

caching decision (e.g, the Least Frequently Used caching policy (LFU)). On the

other hand, the existence of temporal correlation suggests the use of the time since

last access in caching decision (e.g., the Least Recently Used caching policy(LRU)).

Accordingly, It is important to differentiate between the two aspects of temporal

locality since this can help in cache design [48, 49]. The standard stack-distance-

string approach does not differentiate between the two sources of temporal locality,

since the distribution of the stack distance string is predominantly affected by the

popularity profile (i.e., long-term popularity). To address this problem, one needs

20

to neutralize the effect of popularity. The authors in [19] introduced a new measure

for temporal locality, called the scaled stack distance, that attempts to do that. The

scaled stack distance string is obtained by normalizing the stack distances by their

expected values (assuming that requests to a given file are evenly distributed over

the duration of the trace). Accordingly, the scaled stack distance string captures

the deviation of the stack distances from their expected values, which is a measure

of the clustering of the references. In other words, equally popular files would have

the same expected stack distance but would differ in their scaled stack distances de

pending on the degree of short-term correlations. It was found that the distribution

of both, the normalized and the non-normalized stack distance follows a lognornial-

like distribution. The following simplified example explains the concept. The effect

of long-term popularity is seen in the reference stream ABACAADAEAAAEAF,

in which temporal locality arises from the popularity of file A. The effect of short-

term temporal locality can be seen in the reference stream AABBCCDDEEFF,

in which temporal locality arises from the repetition pattern of the files.

2.1.3 Spatial Locality

Spatial locality measures the correlation between requests to different files (e.g., if

file A is currently being requested, then there is a good chance that file B will be

requested in the near future). The reference stream ABC..ABE..ACB..ADEB..

illustrates this concept where with high probability file B is requested after file A

being requested. Accurate characterization of spatial locality is fundamental to the

prediction of future requests.

In [4] the authors showed that spatial locality can be captured (at least, in part)

through the autocorrelation structure (ACF) of the stack distance string. They

argued that the stack distance string exhibits a long range dependent (LRD) behav

ior. An LRD behavior is implied by a persistent correlation where the summation

of the ACF over all lags is infinite. To simultaneously model the marginal dis

tribution (temporal locality) and the correlation structure (spatial locality) of the

stack-distance string, they relied on the work in [42], which proved the invariance

21

of the Hurst parameter (a parameter that describes the asymptotic behavior of the

ACF) to transformations of the marginal distribution of an LRD process. More

specifically, the authors in [42] proved that under some mild assumptions, a point-

by-point transformation Y = F~^{Fa;{X)) of a Gaussian self-similar process (see

section 2.1.4 for details on self-similar processes) X with Hurst parameter H results

in a self-similar process Y with the same Hurst parameter, where and Fy are

the CDFs for X and Y, respectively. It should be noted, however, that this result

is valid asymptotically and only for Gaussian processes (e.g., fractional ARIMA).

More importantly, while this result assures the invariance of H, it does not neces

sarily preserve the shape of the ACF. As an example, consider the transformation

of the Gaussian distribution of a F-ARIMA model into a lognormal distribution

(this distribution adequately models the marginal distribution of the stack distance

string [48, 19]). The resulting ACFs are shown in Figure 2.2, along with the ACF

of the WWW stack distance string of the CLARKNET trace (see section 3.3.4 for

details on the trace information). The figure illustrates two main drawbacks of the

transformation-based approach. First, while the transformation may capture the

asymptotic behavior of the ACF (the H parameter), it destroys the overall shape

of the original ACF of the F-ARIMA model. Second, the original F-ARIMA model

itself is not accurate in representing the real ACF at finite lags.

To avoid these problems, in this dissertation, we resort to multifractal modelling

to simultaneously capture the correlation structure and the marginal distribution of

the stack distance string.

2.1.4 Self-Similarity

Self-similarity is a traffic property that is manifested by the presence of burstiness

at all time scales, compared to the non-self-similar traffic (e.g., the Poisson traffic),

which smooths off at large time scales as can be seen in Figure 2.3. In the figure,

we show a self-similar time series and a poisson time series at different aggregation

levels (time scales), 1,16,128, and 1024. As can be seen that the self-similar traffic

is still bursty even at time scale 1024, while the poisson traffic almost smoothed out.

22

1

0.9

0.8

0.7

0.6

0.4 I- : ; -

\ ; F-ARIMA (after transformation) ; : ; ^
0.3 -A \ • / \ ^ -

\ ; F-ARIMA (before transformation)

0.2 V;/ -
Empirical ;(CLARKNET trace) :

0.1 -

Q 1 4 i I t . - t - • 1 '

0 10 20 30 40 50 60 70 80 90 100
Lag

Figure 2.2: Impact of transforming the marginal distribution of a F-ARIMA model
on the correlation structure.

F-AF =1IMA (a ifter tra nsforme ition)

F-ARIMA (before J transf(srmatio n)

En ipirical (CLAR <NET trace)

1. 1 _ .

23

A self-similar time series has the property that when aggregated the new time

series asymptotically has the same ACF as the original. In other words, given a

stationary time series X — {Xt \ t — 0,1,2...), we define m-aggregated series by

summing the original series X over non-overlapping blocks of size m as follows

- km

= - E ^ i , k = l , 2 (2.1)

Then if X is self-similar, it asymptotically has the same ACF as X^"^\ This means

that the distribution of the aggregated series is the same as that of the original

except for changes in scale (X = m}~^X^'^\ 0.0 < H < 1.0).

An attractive feature of a self-similar process is that the degree of self-similarity is

expressed by a single parameter, the Hurst parameter (iJ). This parameter expresses

the rate of decay of the autocorrelation function, which is the same for all aggregated

versions of the traffic time series.

An LRD process is a self-similar process that has a slowly (hyperbolically) decay

ing ACF (// > 0.5). In an LRD time series, the summation of the autocorrelation

values over all lags approaches infinity. Moreover, the variance of n samples does

not decrease as a function of n~^, which is the case for for uncorrelated data, but

rather as function of n"^, Q < ,8 < 1.

The works in [53, 69, 90] pointed out that a self-similar traffic is constructed

by multiplexing a large number of ON/OFF sources that have heavy-tailed ON

and OFF periods. For WWW traffic in particular, Crovella and Bestavros [25, 26]

showed an evidence that the traffic exhibits self-similar behavior. The existence

of self-similarity was attributed to the ON/OFF behavior of WWW clients and the

heavy-tailed distributions of WWW file sizes, the ON periods, and the OFF periods.

2.1.5 Multifractality

Multifractality is a generalization of self-similarity (monofractality), whereby the

Hurst parameter is not fixed, but varies with time scale. This variability makes

multifractal processes more flexible than monofractal processes in describing "ir

24

regularities" in the traffic. Several studies demonstrated that wide-area network

traffic exhibits a multifractal scaling behavior [85. 56, 75, 36, 39, 35, 33, 97, 64].

Feldmann et al. [36] explained the multifractal behavior of network traffic through

multiplicative processes or cascades. Cascading is a process by which a component

(number,mass) is fragmented into smaller and smaller components according to some

rule, and at the same time fragments the mass associated with these components

according to other rule. Random cascades were introduced by Mandelbrot as a

model for turbulence [55]. The hierarchical structure of today's networks with their

protocols can be viewed as a cascade process that fragments units of data at one

layer into smaller units at the next layer [36]. The limiting construct of the fragmen

tation process is a multifractal structure. Comprehensive discussions of multifractal

processes can be found in [37, 76, 40, 74] and the references therein.

Original, M=1 M=16 IVI=128 M=1024

50 0 50 0 50 0

Self-similar traffic

3

2.5

2

1.5

1

0,5

0

Original, M=1 M=16 M=128 M=1024

50 0

PPPI

Poisson traffic

Figure 2.3: Self-sirnilar traffic versus Poisson traffic.

25

2.2 WWW Client Model

The authors in [13] described a WWW client as an ON/OFF process where it

alternates between ON and OFF periods. The ON period is the period during

which files are being transferred, and the OFF period is the period the user spends

reading a retrieved document (an html file and its inline objects) before clicking on

another WWW document. The OFF period was found to conform to a heavy-tailed

distribution [12, 27, 60].

A random variable X is said to have a heavy-tailed distribution, F if

lim (1 - F { x)) ~ a;-", 0 < a < 2. (2.2)
x—^oo

Significance of heavy-tailed distribution is that they result in bursty user traffic [90].

The length of an ON period depends on the number of embedded files in an html

document, the sizes of these files, and the way a client is connected to the Internet.

The number of embedded files in a WWW document plus the main WWW file was

found to follow a heavy-tailed distribution [13, 60].

Knowing the sizes of WWW files is useful in the design of caching systems.

Although there is a difference between sizes of files hosted by WWW servers and

the sizes of file transfers from servers to clients, both characteristics were found to

be fairly close [6, 12]. Previous works have shown that file sizes follow a heavy-tailed

distribution [61, 12, 27, 60].

2.3 Approaches to Reduce WWW Response Time

WWW caching provides a good solution for the WWW latency problem by bringing

documents closer to clients. As mentioned before, caching can be deployed at various

points in the Internet; within the client browser, at or near the server (reverse proxy)

to reduce the server load, or at a proxy server. A proxy server is a computer that

is often placed near a gateway to the Internet (see Figure 2.4) and that provides

a shared cache to a set of clients. Client requests arrive at the proxy regardless of

tlie WWW servers that host the required documents. The proxy either serves these

26

requests using previously cached responses or obtains the required documents from

the original Web servers on behalf of the clients. It optionally stores the responses

in its cache for future use. Hence, the goal of proxy caching is twofold. First, proxy

caching reduces the access latency for a document. Second, it reduces the amount

of external traffic that is transported over the wide-area network (primarily from

servers to clients), which also reduces the user's perceived latency. A proxy cache

may have limited storage in which it stores popular files. Whenever the cache is full

and the proxy needs to cache a new file, it has to decide which file to evict from

the cache to accommodate the new file. The policy used for the eviction decision is

referred to as the replacement policy.

Figure 2.4: Possible locations for deploying WWW caching.

Caching in the web works in a similar maimer to that of a traditional mem

ory system [95]. However, caching policies for traditional memory systems do not

necessarily perform well when applied to WWW traffic for the following reasons;

• In memory systems, caches deal mostly with fixed-size pages, so the size of the

page does not play any role in the replacement policy. In contrast, WWW files

vary in size, and the file size can affect the performance of the policy [92, 44],

• The cost of retrieving missed WWW files from their original servers depends

on several factors, including the distance between the proxy and the origi

nal servers, the size of the file, and the bandwidth between the proxy and

the original servers. Such dependence does not exist in traditional memory

systems.

27

• WWW files are frequently updated, which means that it is very important to

consider the file expiration date at replacement instances. In memory systems,

pages are not generally associated with expiration dates.

• As discussed before, the popularity of WWW files follows a Zipf-like law.

Accordingly, file popularity needs to be considered in any WWW caching

policy to optimize a desired performance metric. A Zipf-like law has not been

noticed in memory systems

Several WWW replacement policies have been proposed in the hterature to deal

with the above issues (see for example, [1, 89, 91, 18, 8, 63, 38, 5, 6, 2, 81, 78, 80,

49, 46, 82, 72, 9, 71, 11]).

While WWW caching is considered to be passive (i.e., files are fetched or vali

dated only when requested). Prefetching refers to proactive fetching of WWW files

in anticipation of users future requests. Prefetching can be deployed in three ways:

1. Between client and WWW server [15, 28, 24, 3, 22, 66, 50, 65, 83].

2. Between WWW proxy and WWW server [52, 43, 20, 57, 21],

3. Between client and WWW proxy [54, 34].

Regardless of where prefetching is deployed, the key metric used to evaluate a given

prefetching scheme is the latency seen by the end user when requesting a file.

A prefetching scheme can be "non-speculative", whereby a list of specific files are

prefetched. For example, the user can specify a list of files to be downloaded at the

beginning of any new browsing session. Examples of such mechanisms can be seen in

commercial products such as PeakJet2000 [99], Net Accelerator [103], NetSonic [100],

Webcelerator [96], and CacheFlow [98]. Non-speculative mechanisms can consume

extra network resources because some prefetched files are never requested. Moreover,

the number of prefetched files does not depend on the network state, which may

worsen the performance for highly loaded systems. Speculative prefetching is a way

to reduce the amount of wasted resources due to prefetching files that are never used

28

[16, 65, 59, 52, 54, 24. 57, 34, 94, 79, 32, 87]. In these mechanisms, a prediction

algorithm is used to restrict prefetching to a list of candidate files that are most

likely to be requested in the near future. The prediction algorithm compiles a list

of candidate files and the probabilities of accessing these files in the near future.

Most speculative prefetching approaches are based on a fixed threshold where

only files with a likelihood of being accessed exceeds certain static threshold value

are prefetched. These approaches may actually increase the average response time,

since they do not consider the state of the network when prefetching [88, 24].

There are few prefetching protocols that consider the negative effect of prefetch

ing. Davison et al. [30] proposed a prefetching scheme that uses a connectionless

protocol. They assumed that prefetched data are carried by low-priority datagrams

that are treated differently at intermediate routers. Although such prioritization is

possible in both IPv6 and IPv4, it is not widely deployed. Kokku et al. [51] proposed

the use of the TCP-Nice congestion control protocol [86] for low-priority transfers

to reduce network interference. They used an end-to-end monitor to measure the

spare capacity of the server. The reported results show that careful prefetching

is beneficial, but the scheme seems to be conservative because it uses an additive

increase(increase by 1), multiplicative decrease conservative policy to decide about

the amount of prefetching. Crovella et. al [24] sliowed that a rate-control strategy

for prefetching can help reduce traffic burstness and queuing delays. Our work is

different from these works since it adopts a dynamic approach that tries to optimize

the effect of prefetching without being so conservative. Moreover, it is based on a

thorough analysis of the system parameters that can control the prefetcliing gain.

The authors in [45, 84] consider a dynamic threshold-based prefetching solution,

assuming a group of clients who share a single access to the Internet and within

only a single level of caching (browser cache). Furthermore, they implicitly assumed

that clients have high-bandwidth connections relative to the capacity of the shared

access link . This assumption led to the conclusion that it is enough to specify a

threshold value for prefetching based on the network condition and then prefetch

all documents with access probabilities that exceed that value.

29

As discussed above, speculative prefetching approaches rely on good prediction

algorithms to achieve their goals. Such algorithms are based on information about

the past. The sources of this information are the client, the proxy server, and the

WWW server. Most prediction algorithms track the patterns of accesses by using

some variations of Markov modeling. A Markovian algorithm represents the files

accessed by a client as a string of their IDs. The recurrence of a part of a certain

pattern triggers the prefetching of the remainder of the pattern. Such algorithms

are implemented using a weighted directed graph where each node represents a file

(see Figure 2.5). The weights of the edges usually represent probability vahies.

For example, the weight 0.3 of the edge from node A to node C says that if file

A is requested, then with probability 0.3 file C will be requested next or in the

near future. Such algorithms can only predict the next file or some files that are

likely to be accessed in the near future. Examples of these algorithms are found

in [16, 65, 62]. Markovian algorithms discussed above are considered first-order

algorithms in the sense that they only consider the client's last access in predicting

the next request. On the other hand, there are some algorithms that consider the

last m requests in their prediction [79, 94, 70]. One such algorithm called Prediction-

by-Partial-Matching (PPM) [14, 29, 67, 34, 66] is based on the Partial Matching data

compressor. In contrast to Markovian algorithms, there are other algorithms that

make use of the structure information of the WWW documents (i.e., hyperlinks that

connect different files) [45, 32].

Figure 2.5: Markovian predictor.

31

CHAPTER 3

MULTIFRACTAL MODELING OF WWW REQUESTS

3.1 Introduction

A representative WWW workload helps to judge the performance of WWW

caching/prefetching protocols using trace-driven simulations [18, 17, 46, 49]. More

over, such workload can help in the process of WWW servers design and resource

dimensioning. Real traces can be used for this purpose but they lack the flexibility

of testing "what if" scenarios that need to be considered for future planning pur

poses. A more feasible alternative is to rely on stochastic models that can generate

representative synthetic workloads. The need for such models is the main motiva

tion behind this modeling work. In this chapter, by WWW traffic we mean the

sequence of WWW files served by a WWW server in response to clients' requests.

The popularity profile (how frequently each file is requested) is assumed to be given,

as it can be computed easily from the WWW server log files or it can be modeled

using a zipf's-like law.

In this chapter, we present a modified version of Riedi et al.'s multifractal model

[74]. We use this modified version to simultaneously capture the temporal and spa

tial localities of WWW traffic. Riedi's model has the attractiveness of being able to

simultaneously approximate the (lognormal) marginal distribution and the correla

tion structure of the traffic. Its main disadvantage is its complexity, which grows

linearly with the size of the generated trace. We modify this model, reducing its

complexity to 0(1). The resulting model is parsimonious in that it is characterized

by four to five parameters representing the mean, variance, and correlation struc

ture of the "normalized stack distance" string. Figure 3.1 shows the accuracy of

the multifractal model (which we describe in Section 3.2) in capturing the ACF of

the stack-distance string of a WWW trace. The popularity profile of the traffic

32

is incorporated in the model during the trace generation phase, assuming that the

popularity profiles for all files are given beforehand. Our model is mainly intended

for offline generation of the traffic demand seen by a WWW server. Accordingly,

the popularity profiles can be easily computed from the server logs.

.0 10
— Real
• • • Synthetic

•1
10'

,-3
10'

10
Lag

Figure 3.1: Accuracy of the multifractal model in capturing the ACF of the stack
distance string of a real WWW trace.

In [74] the authors used a wavelet-based construction of a multifractal process

to show that the correlation behavior of a strongly correlated time series can be

approximately captured by appropriately setting the second moments of the wavelet

coefficients of the multifractal process. This result provides the basis for modeling

the ACF of the stack distance string. Combined with the fact that the above

multifractal model exhibits an approximately lognormal marginal distribution, it

can be used to model both the temporal and spatial localities in WWW traffic.

As was described in Chapter 2, the normalized stack distance string has a

lognormal-like distribution and a slowly decaying correlation structure (i.e., LRD

33

behavior). We employ the multifractal model to capture both the marginal distri-

bution and the correlation structure of the normalized stack distance string. We

use extensive simulations to evaluate the performance induced by our WWW traf

fic model and contrast it with the self-similar model in [4] and the model in [19],

using the original (real) traces as a point of reference. Our evaluation measures

include sample statistics of the synthetic traces (e.g., mean, variance, correlations,

percentiles) as well as the cache and byte hit ratios for a trace-driven LRU cache.

The results indicate marked improvement in accuracy when using the proposed

multifractal-based WWW model.

The transformation used to generate the stack distance string has an effect on

the accuracy of the model. We demonstrate this effect considering an alternative to

the stack distance string, namely the inter-request string. File inter-request string

is defined as the number of requested files between any two references to the same

file.

The rest of the chapter is organized as follows. In Section 3.2 we give a brief

overview of Riedi et al.'s multifractal model and the modification we make to it

to render it parsimonious. The proposed WWW traffic generation model, which

considers the stack distance string approach is given in Section 3.3 with simulation

results. The alternative proposed model, which considers the inter-request string

approach is described in Section 3.4 along with simulation results that contrast the

model to its stack distance version.

3.2 Multifractal Analysis of WWW Traffic

As indicated earlier, multifractality is a generalization of monofractality (self-

similarity), where the fixed (scale independent) H parameter of a self-similar pro

cess is now scale dependent. The variability in the H value gives added flexibility to

multifractal processes, allowing them to characterize irregularities in the data being

modeled. Furthermore, certain multifractal processes, including the one considered

in this work, inherently exhibit an approximately lognormal-like marginal distribu

34

tion, in line with the shape of the (fitting) marginal distribution of typical WWW

traces. This convenient feature allows us to avoid the risky step of transforming the

marginal distribution, leaving us with the task of fitting the ACF. In this section,

we first briefly describe Riedi et al.'s multifractal model [74], This model uses a

wavelet-based construction to approximately capture the correlation behavior of a

given time series by appropriately setting the second moments of the wavelet coef

ficients at each scale. Its main deficiency is its complexity, which grows linearly (in

the number of parameters) with the size of the generated trace. We then describe

how we modify this model to reduce its complexity to 0(1), and then we apply the

modified model to characterize the temporal and spatial localities of WWW traffic.

3.2.1 Riedi et al.'s Multifractal Model

Riedi et al.'s model relies heavily on the discrete wavelet transform. The idea behind

the wavelet transform is to express a signal (time function) X(t) by an approximated

(smoothed) version and a detail. The approximation process is repeated at various

levels (scales) by expressing the approximated signal at a given level j by a coarser

approximation at level j — I and a detail. At each scale, the approximation is

performed through a scaling function </»(t), while the detail is obtained through a

wavelet function More formally, a wavelet expansion of the signal X{t) is given

by:

OO

EE (3.1)
k j=J k

where

(3.2)

(3.3)

35

and V'j.fc and (f)j^k, j , k = 0,1,2,, are shifted and translated versions of the wavelet

and scaling functions tp{t) and 4>{t), respectively, and are given by:

V'i.fcW = (3.4)

(pj,k{t) = - k). (3.5)

In (3.1), the index J indicates the coarsest scale (the lowest in detail). The

coefficients Wj^k and Uj^k are called, respectively, the wavelet and scale coefficients

at scale j and time 2^k. Together, they define the discrete wavelet transform of the

signal X{t), assuming that 0(t) and ijj{t) are specified. Several wavelet and scale

functions have been used in the literature, giving rise to different wavelet transforms.

One popular (and simple) transform is the Haar wavelet transform. This transform,

which is specified by the coefficients Wj^k and Uj^k for all j and k, can be obtained

recursively as follows (we adopt the same convention of [74], where the higher the

value of j, the better is the approximation of the original signal):

TT _ + Uj+I^2k+1 c;\
^i,k (3-0)

T j r U j + l f i k - U j + i ;2k + l T N Wj^k = ^ (3-7)

To initialize the recursion, the values of Uj^k, k = 0,1, 2-' — 1, at the highest

value of j are taken as the empirical trace to be modeled. Figure 3.2 depicts the

generation process of the scale coefficients (from top to bottom).

In order to generate synthetic traces with a given autocorrelation structure, the

Haar transform is reversed by rewriting (3.6) and (3.7) as:

TT _ (o 0\ Uj+i f lk - ^ (3.»)

T T (o n\
iJj+i,2k+i ^ (3.9)

36

Uj+2,4k Uj+2,4k+l Uj+2,4k+2 Uj+2,4k+4

Uj+l,2k Uj+l,2k+l

Figure 3.2: Process of generating the scahng coefficients in the DWT.

Now to generate nonnegative data, which in our case represent the stack dis

tance string, we need to have \Wj^k\ < Uj^- To satisfy this constraint, the wavelet

coefficients can be defined as:

where Aj^k is a random variable (rv) defined on the interval (—1,1). Using (3.8),

(3.9), and (3.10), the following recursion can be obtained for synthesizing the scale

coefficients:

The rvs Aj^k must also satisfy the following additional constraints [74]:

1 . Aj^k, k = 0,1, , 2 - ' — 1 , are i.i.divs that can be represented by the generic rv

Aj having the same CDF as Aj k.

2. For each j, the probability density function of the rvs Aj^k, fc = 0,1,..., 2^ — 1,

is symmetric with zero mean.

(3.10)

(3.11)

(3.12)

37

3. Aj is independent of Ai for I > j and is also independent of I7o,o-

The wavelet energy at a given scale is given by the variance of the wavelet

coefficients at that scale. It has been shown that the correlation structure of the

signal can be approximately captured by controlling the wavelet energy decay across

scales [74]. The ratio of the energy at scale j — 1 to the one at scale j {j is finer

than j — 1) was found to be [74];

„ EjAU]

E[W]\ E[A%l + E[AI_^\) ^ '

Assuming that E[W j] is given for all j, Equation (3.13) can be used to solve for

E[A J] , j = 1,2, The recursion can be initialized using E [A q] = where Wo

and U o are the wavelet and scale coefficients at the coarsest scale.

In [74], the authors suggested two different distributions for A j . One of them is

a symmetric beta distribution that has the following pdf:

where p j is the parameter of the rv and /?(.,.) is the beta function. The variance of

this random variable is given by:

The other distribution is a point-mass distribution defined as:

Pr[A' = Cj] = PxlAj = -Cj] = rj

Pr[.4j = 0] = 1 - 2rj

In the case of a beta distributed A j , the parameter p j at each scale can be found by

solving (3.13) and (3.15), resulting in:

Pi = + 1) - 1/2 (3.16)

This, however, assumes that E\\Vj] is given for j = 1,2,3, Since rjj, j =

1, 2 , . . . , cannot be obtained using a parametric model, it must be computed from

38

the empirical data, which makes the number of fitted parameters in the model in

the order of N; N being the trace length.

On the other hand, if A j has a point-mass distribution, then (3.13) by itself is not

sufficient to compute both parameters of Aj (cj and rj). An alternative approach for

computing these parameters is to rely on the following expression for the moments

of the scaling coefficients at different scales:

5= 1 , 2 , . . . (3 . 1 7)

However, to apply (3.17) one needs to have two moments (i.e., two values for

q) for each scale j. Again, unless we can compute these values using a parametric

model, we have to rely on the empirical data to do so, which makes the model more

complex than if a beta distributed Aj were to be used.

With either distribution of Aj, it was shown in [74] that the above model gener

ates positive-valued autocorrelated data with an approximately lognormal marginal

distribution.

3.2.2 Reducing the Number of Parameters

As shown in the previous section, whether Aj is a beta or a point-mass rv. one needs

to provide the second moments of the wavelet coefficients or two moments of the

scale coefficients at each scale in order to completely determine Aj, j = 1,2,.... This

significantly increases the complexity of the model, as the number of parameters to

be computed a priori is in the order of the trace length. Moreover, the point-mass

rv is not rich enough and takes only three possible values.

To reduce the complexity of the model, we select Aj to be a continuous-valued rv

w i t h o n e p a r a m e t e r . T h e n u s i n g (3 . 1 7) w i t h g = 2 , w e c o m p u t e t h e p a r a m e t e r o f A j ,

j = 1,2,..., assuming that we can compute the ratio E[Uj]/E[Uj_i] using a small

number of parameters (the mean fj,, the variance a, and the correlation structure of

the modeled data), as shown later. The selection of the rv Aj will be discussed in

Section 3.2.3.

39

For a discrete time series X = { X i :i = l,2,...}, we define = { x j ; " ^ ^ ; i =

1 , 2 , . . . } t o b e t h e a g g r e g a t e d t i m e s e r i e s o f X a t a g g r e g a t i o n l e v e l m :

nm

X j r ^ = ^ i , n = l , 2 , 3 , . . . , N / m (3.18)

where m= 1, 2,4,8, . . . J V ; N is the length of X . Note that if the aggregation level

m corresponds to scale j, then the aggregation level 2m corresponds to scale j — 1.

From the definition of the Haar wavelet transform, the following holds:

= 2-,/._gSL fo, „ = 1 2 (3 19)
jSKXP-))!] •' ^

From (3.19) and (3.17) we get:

= (3.20)

where = A j ^i. Evaluating (3.20) at q = 2 , we obtain the following expression:

1 P-21)

To reduce the number of parameters in the multifractal model, we need to ana

lytically obtain £J[(X^'"^)^] for all possible values of in. The variance at aggregation

level m, varfX^™'] = V^"^\ can be expressed in terms of the autocorrelation function

of the signal [23]:

= m v + 2 v (m — k) p k (3.22)
k~l

The mean, ^[(X^™^)] = is given by:

= mfi (3.23)

where and v are the mean and variance of the original signal, respectively. The

second moment of is then given by:

m
£;|^(j5f M)2] _ _|_ 2y ^ (yix — k)pk + (3.24)

k=i

40

From (3.21) and (3.24), the parameter of the rv Aj can be computed for all

scales j — 1,2,.... given /x, v, and the correlation structure of the time series

being modeled. For normalized stack distance strings, we found that the form pk =

g-/3 A: = 0,1,... , fits the correlation structure very well, where g is a function

of the lag k. For both the ClarkNet and the Worldcup98 traces, g{k) = k produced

a good fit to the empirical ACF, while for the Calgary trace, g{k) — log (A: 4-1) was

found appropriate. Figures 3.3, 3.4, and 3.5 show the fitting of the ACF functions

for the three traces.

Calgary: {i=1.31, n=1.7, g(k)=Log(k+1)
0

10'
Real

-1 10

.-2 10'
10 10'

Lag

Figure 3.3: Fitting the correlation structure of the normalized stack distance string
(Calgary trace).

In summary, to use the multifractal model for modeling the normalized stack

distance string, we only need five parameters:

• Mean of the normalized stack distance string (//).

41

ClarkNet: p=1.72, n=5.9. g(k)=k
.0

10'

— Real
• Fitted

-1 10'

,-3 10'
10' 10-

Lag

Figure 3.4: Fitting the correlation structure of the normalized stack distance string
(ClarkNe.t trace).

42

Worldcup98:P=2.38, n=8.5, g(k)=k
. 0

10'
Real
Fited

-1 10"

,-2 10'
10'

Lag

Figure 3.5: Fitting the correlation structure of the normalized stack distance string
(Worldcup98 trace).

43

® Variance of the normalized stack distance string (v).

• Autocorrelation structure (parameterized by /5, n, and g).

Using these parameters, along with (3.24) and (3.21), one can compute the param

eter of the rv Aj at each aggregation level (scale).

The synthesis process starts from the highest level of aggregation. At this level

we can start with I data points that are normally distributed with mean muiJ. (the

mean at aggregation level vfih) and variance of var[X'^™''^], where ruh is the highest

aggregation level. After that, the process can be carried out using (3.11) and (3.12).

3.2.3 Selecting the Random Variable Aj

As indicated earlier, the rv variable Aj must be symmetric with zero mean and

defined on the interval (-1,1). To reduce the number of parameters of the multifractal

model, we require that the Aj is specified by one parameter only. There are many

rvs that can satisfy these conditions. The difference between one rv and another is

the range of the values that the ratio jE[(X('"^)^]/E[(X^^"*^)^] can take.

Theorem 3.2.1 For any random variable X, the following hold:

Proof: See Appendix A.

As an example, consider the uniform rv in the range [—c, c], where |c| < 1. The

variance of tliis rv is given hy V = c-/3. Solving (3.21) for c, we get:

Since c < 1,
£:[(X(H)2] ^ 1
£;[(X(2m))2] < 3

Using similar calculations. Table 3.1 shows the upper bound for a number of popular

rvs.

44

Random variable Upper bound

Symmetric beta(/), p) 0.5000
Uniform(—c, c) 0.3333
Triangular(—c, 0, c) 0.2917
Normal(0, cr) 0.2778

Table 3.1: Upper bound on the ratio for various distribu
tions.

For the three traces we use in this work, the ratio did

not exceed 0.3333, and as a result, we decided to use the uniform rv since it is the

simplest one.

3.3 Stack distance Model

In this section, we describe our stack distance approach for modeling the stream of

file objects generated by a WWW server. Let U be the number of unique files (or ob

jects) at the server and let fvi be the fraction of times that the ith file, i — 1, 2...., U,

appears in the reference string {fri is the popularity profile of file i). The modeling

approach proceeds in three steps. First, we extract the stack distance string from

the URL reference string. Then, we apply some form of normalization to capture

both sources of temporal locality (temporal correlation and long-term popularity).

The modified multifractal model described in the previous section is then applied

to model the normalized stack distance string. Finally, we incorporate the popular

ity profile of the traffic during the process of generating synthetic reference strings.

These steps are described next.

3.3.1 Extracting the Empirical Normalized Stack Distance String

In this model, we use the concept of stack distance to model the temporal and spatial

localities in WWW traffic. The authors in [13] extract the stack distances from the

original trace assuming an arbitrary initial ordering of the stack. Whenever an object

is requested, its depth in the stack (stack distance) is recorded and the object is

45

pushed to the top of the stack. In our model, we avoid making any assumptions

on the initial ordering of the stack, which we have found to disturb the marginal

distribution and the correlation structure of the stack distance string. We start with

an empty stack and process the empirical reference string in the reverse direction,

starting from the last reference. If a file is referenced for the first time (in the reverse

direction), it is put on top of the stack but no stack distance is recorded. Otherwise,

if the file has already been referenced before (hence, it is already in the stack), then

it is pushed from its previous location in the stack to the top of the stack and its

depth is recorded as a stack distance. Finally, the resulting trace of stack distances

is reversed to get the correct stack distance string. The following example illustrates

the idea. Consider the reference string [adcbcddab], where each letter indicates

the name of a file. If we process this string starting from the end, the first reference

is to file b. Since this is the first time file b is being referenced, we push it to the

top of the stack without recording any distance. The same procedure is performed

for the next two references (for files a and d). The fourth reference (from the end)

is for file d. Since this file has been referenced before, it gets pushed to the top of

the stack and its stack depth is recorded (in this case, the stack depth for file d is

one). The procedure continues until all references are processed (see Figure 3.6).

The end result of this process is the stack distance stream [4 3 2 4 1].

Temporal locality in a stream of WWW requests is attributed to two factors:

long-term popularity and short-term temporal correlations. Both factors are im

portant for cache design [48, 47], and must therefore be incorporated in the model

for temporal locality. In [48], it was found that the (lognormal) distribution of

the stack distance string is predominantly affected by the popularity profile (i.e.,

long-term popularity). So the marginal distribution of the stack distance (without

normalization) does not capture the effect of short-term temporal correlations.

To accurately capture the temporal locality of the traffic, we need to isolate

the effect of popularity from that of short-term correlations. One solution is to

have a separate stack-distance-string model for equally popular objects. Another

solution, used in our work, is to capture how much a stack distance deviates from

46

Reference string Q Q E

Stack distance

Time

Figure 3.6: Example showing our approach for extracting stack distances from a
real trace.

its "expected" value. This deviation is captured by normalizing (scaling) the stack

distances by their expected values. The resulting scaled stack distance string is a

measure of how files are clustered over the trace length (temporal correlation). This

measure is insensitive to the popularity profile, so it allows us to separately model

the popularity profile and the short-term temporal correlations.

The expected stack distance for a file i is computed as follows:

where /, is the number of references to file i [19]. For the three studied traces, we

found that the normalized stack distance string has an approximately lognormal

marginal distribution. Figures 3.7, 3.8, and 3.9 show the fitting of the lognormal

marginal distribution of the normalized stack distance string for the three traces.

3.3.2 Modeling the Normalized Stack Distance String

To model the normalized stack distance string, we need to determine n, v, (3, and

n. Once the values of these parameters are determined, the multifractal model de

scribed in Section 3.2 can be used to capture the marginal distribution and the cor

relation structure of the normalized stack distance string. Note that spatial locality

47

ClarkNet
1

0.9

0.8

Empirical normalized stack distance E 0.7

O0.6

O 0.5

ffiO.4
Fitted normalized stack distance

0.3

0.2

0.1

0
!5 20 25
Normalized stack distance

0

Figure 3.7: Marginal distribution of the normalized stack distance string (ClarkNet
trace).

48

Calgary
1

0.9

to 0.8

Empirical normalized stack distance
£ 0.7

O 0.6

0.5

Fitted normalized stack distance
fflO.4

0.3

0.2

0.1

0
30 0

Normalized stack distance

Figure 3.8: Marginal distribution of the normalized stack distance string (Calgary
trace).

49

Worlclcup98

Empirical normalized stack distance

Rtted normalized stack distance

10 15 20 25 30
Normalized stack distance

35 40

Figure 3.9: Marginal distribution of the normalized stack distance string (World-
cup98 trace).

50

is captured by modeling the autocorrelation function of the unsealed stack-distance

string. However, since the rnuitifractal model is applied to the scaled version of the

stack-distance string, we have to invert back the synthesized trace of the rnuitifrac

tal model so that the resulting trace models the unsealed version of the data. The

pseudo-code in Figure 3.10 describes the modeling process. The function GenNorm-

StackDistance takes five input parameters. The first three parameters are //, v, and

the ACF of the normalized stack distance string to be generated. The fourth pa

r a m e t e r , N , i s t h e l e n g t h o f t h e s y n t h e t i c n o r m a l i z e d s t a c k d i s t a n c e s t r i n g . T h e f i f t h

parameter, I, is the number of data points at the coarsest scalc. GenNormStackDis-

tance starts by computing the number of aggregation levels, NurnAggLevels (line

2). In line 4, the second moment of the normalized stack distance string at aggre

gation level m = 1 is computed. The for loop starting in line 5 is used to compute

the second moment for the remaining aggregation levels. The for loop that starts

from line 8 computes the summation in (3.24). In line 11, the second moments at

higher aggregation levels are computed using (3.24). The second moments ratio,

j5[(X('"))2]/£^[(X^^'"^)^], is computed in line 12. The parameter of the rv is

computed in line 13 using (3.21) and substituting for the variance of the uniform

rv in After computing these parameters, the mean of the time series

at the highest aggregation level is computed in line 15 using (3.23). The variance

at the highest aggregation level is computed in line 16. In line 17, I data points are

generated to represent the coarsest level. The while loop starting from line 19 is

used to continue the generation process using (3.11) and (3.12).

3.3.3 Modeling Popularity and Generating Synthetic Reference Strings

To generate a synthetic WWW reference string, we first generate a synthetic nor

malized stack distance string, as shown in the previous section. The process of

generating a synthetic WWW reference string starts by arranging the unique files

of the WWW server in an LRU stack. This is done by sampling from a probabil

ity distribution that is weighted by the popularity profiles of the various files (i.e.,

the more popular a file is, the more likely it will be placed closer to the top of

51

GenNormStackDistance(/x, v , P k ,N,l)
2 NumAggLevels = [log2(A^/i)]
3 m = 1
4 SecMom{l) = mv -f- ni^iJ?
5 for i = 2 to NumAggLevels Do
6 m = 2m
7 sum = 0
8 for k = 1 to m Do
9 sum = sum + {m — k)pk
10 end for
11 SecMom{i) — mv-\-2vs + m^p?

12 SecMomjratios{NumAggLevels — i + 1) =

13 AParm{N umAggLevels — i + 1) =
\/3(4 SecMom-ratio(NumAggLevels — i + 1) — 1)

14 end for
15 IJ.h = ^ ^
16 Vh = SecMom{N umAggLevels) —
17 NormStkDist — normjrandom{fj.h, \/\4,1)
18 i = l
19 While{length{NormStkDist) < N) Do
20 A — Uniform.random{—AParm{i),AParm{i),length{N ormStkDist))

21 NormStkDist = [NormStkDist NormStkDist
22 i — i + 1
23 end while
END

Figure 3.10: Algorithm for generating synthetic scaled stack distance strings.

52

the stack). This ordering approach was used in [19]. It is known to provide more

accurate results than using an arbitrary ordering. Note that even though the prob

ability of selecting a given unpopular file is small, the probability of selecting any

of the unpopular files is relatively large (because of the large number of unpopular

files). So, probabilistically, there is a good chance that some unpopular files will

b e p l a c e d n e a r t h e t o p o f t h e s t a c k . T o g e n e r a t e a r e f e r e n c e s t r i n g o f l e n g t h N ,

we first compute the number of references a file can get according to its popularity

profile. Then, the top file in the LRU stack is considered as the next referenced file

in the synthetic reference string. If the required number of references for this file is

reached, then this file is flushed out of the stack. Otherwise, it is pushed down the

stack according to the next value in the normalized stack distance string. This is

done after scaling back the normalized stack distance by multiplying it by the cor

responding expected stack distance for the object in hand (objects with the same

popularity profile have the same expected stack distance). Note that our notion of

a "stack" allows for the insertion of an object in between two objects in the stack,

which does not happen in a regular LRU stack. This process continues until the

popularity profiles of all objects are satisfied (no files are left in the LRU stack). The

pseudo-code in Figure 3.11 describes the generation process. Function GenTrace ac

cepts three parameters: the synthetic normalized stack distance (NormStkDist),

the number of requests each file gets (req), and the Iru stack with the files ordered

according to the popularity profile (i.e., placed randomly according to the empirical

distribution of the popularity profiles). The while loop in line 4 is used to generate

the reference string. Line 5 is used to record the next reference, Ref(i), taken as

the file at the top of the LRU stack. Then the number of outstanding references to

this file, req{Ref{i)), is reduced by one (line 7). If this number reaches zero, then

the file is dropped out the stack. Otherwise, the next stack distance, StkDist, is

computed in line 11 by scaling back the normalized stack distance according to the

popularity of the file. The file is then pushed StkDist positions down the stack.

The while loop in line 4 is continued until the LRU stack is empty.

53

GenTrace{NormStkDist, req, Iru)
2 i = 0
3 k = 0

4 While(stack is not empty) Do
5 Ref{i)=top{lru)
6 i = i + 1
7 req{Ref{i)) — req{Ref{i)) — 1
8 if {req{Ref{i)) —— 0) then
9 drop file from the stack
10 else
11 StkDisf = Sca\e-IisLck{NormStkDist{k) ,Ref {i))
12 Push-Top-Fi\e-Down-Sta.ck{StkDist)
13 k = k + l
14 endif
15 end while
END

Figure 3.11; Algorithm for generating synthetic WWW strings.

3.3.4 Performance Evaluation

In this section, we evaluate the accuracy of the proposed multifractal model and

contrast it with two other models. The first model is a self-similar (monofractal)

model [4, 13]. This model involves transforming the Gaussian marginal distribution

of a fractional ARIMA process into a lognormal distribution. We simply refer to

this model as the LRD model. The second model was proposed by Cherkasova

et al. [19]. The three investigated models were mainly designed for offline traffic

generation, with the primary purpose of generating synthetic traces for use in cache

design studies. Accordingly, we compare these models in terms of the file and

byte miss ratios seen at an LRU cache that is driven by synthetic traces from these

models. The comparison is made with reference to the cache performance seen under

the real traffic. As real traffic we use three data sets that were obtained from three

separate WWW servers log files: the Computer Science Department WWW server

at the University of Calgary, the WWW server at ClarkNet (a commercial Internet

54

provider in Baltimore, Washington DC), and from the WorIdcup98 WWW servers

[102]. Table 3.2 provides a summary of the main features of the data sets. More

details can be found in [102, 7]. Note that the three traces have contrasting loads

(in requests/second). The Calgary's load is the lightest while the Worldcup98's load

is the heaviest.

Trace
Feature Calgary ClarkNet Worldcup98

Log duration one year one week One day
Start date Oct 24, 1994 August 28, 1995 May 6, 1998
Log size (MB) 52.3 120.1 107
Total number of requests 726,739 1,164,868 1,193,353
before reduction
Total number of requests 567,519 1,125,092 1,033,567
after reduction
Number of unique files 8,220 20,168 3,824
Number of files referenced 1,752 5,279 665
only once

Table 3.2: Summary of the data sets used in the modeling study.

The data sets contain several pieces of information, including the name of the

host that generated the URL request, the day and time the request was recorded,

the name of the requested file, the HTTP reply code (explained below), and the

number of transferred bytes in response to the request. Four types of HTTP reply

codes were recorded: successful, not modified, found, and unsuccessful. A successful

code indicates that the requested file was found at the server and was returned to

the client. The client may have a copy of a file, but may want to verify if this copy

is up-to-date or not. If the file is up-to-date, the server responds with a not modified

code. The found code indicates that the requested file is available at a different server

whose address is provided in the response. Finally, the unsuccessful code indicates

that the requested file is not available, the client has no permission to access the

file, or that there is an error. In our analysis, we only included the requests with

successful code, since they are the ones that result in actual data transfer from the

55

server. We also excluded dynamic files (e.g., cgi and pi files). Figures 3.12. 3.13,

3.14, 3.15, 3.16 and 3.17 show the simulation results for the three modeles.

0.45
• Real data

Multifractal Model
O Cherkasova Model

LRD Model
0.4

0.35

0.3

!g0.25

0.2

0.15

0.1

0.05

0.05 0.15 0.2 0.25 0.3 0.35 0.4 0.45
Cache size as a fraction of the working set size

0.5 0.1

Figure 3.12: File miss ratio versus cache size (Clarknet trace).

It is clear that of the three models, the proposed multifractal model produces

the most accurate results, especially for small cache sizes. The relative accuracy in

terms of capturing the behavior of the real data is greater in the case of the Calgary

data. Consider, for example, the Calgary data with a normalized cache size of 0.3.

Tlie percentage inaccuracies in the file miss rate for the multifractal model, the LRD

model, and Cherkasova et al.'s model are 0.5%, 53%, and 111%, respectively. In the

case of the byte miss rate, the corresponding values are 4.9%, 65%, and 109%. The

overall improvement in the accuracy of the file and byte miss rates due to the use

of the multifractal model is significant. Moreover, our model captures the spatial

locality which is not reflected through the file/byte miss ratios of the LRU caching

policy. To show how well our model captures this property, we also compared the

inter-request times (number of requested files between any two references to a given

56

0.7
• • Real data

Multifractal Model
O Cherkasova Model

LRD Model 0.6

0.5

m 0.4

ov.

DQ 0-3

o^
0.2

0.05 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Cache size as a fraction of the working set size

Figure 3.13: Byte miss ratio versus cache size (Clarkuet trace).

57

0.2
• • • Real data

Multifractal model
-e- Cherkasova model

LRD model
0.18

0.16

0.14

2 0.12

0.1

0.08

0.06

0.04

0.02
Jit.

0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Cache size as a fraction of the working set size

Figure 3.14: File miss ratio versus cache size (Calgary trace).

58

0.4
• • • • Real data

Multifractal model
-e- Cherkasova model

LRD model 0.35

0.3

•g 0-25

0.2

0.15

0.1

0.05
5|i

0
0.5 0.35 0.4 0.45 0.15 0.2 0.25 0.3 0.05 0.1 0

Cache size as a fraction of the working set size

Figure 3.15: Byte miss ratio versus cache size (Calgary trace).

59

0.3
• • • Real data

Multifractal model
-e- Cherkasova model

LRD model
0.25

0.2

£ 0.15

0.1

0.05

0
0.15 0.2 0.25 0.3 0.35 0.4 0.45

Cache size as a fraction of the working set size
0 0.05 0.1 0.5

Figure 3.16: File miss ratio versus cache size (Worldcup98 trace).

0.7
• • • • Real data

Multifractal model
-e- Cherkasova model
-»i- LRD model 0.6

0.5

CO 0.4

0.2

0.1

0
0.1 0 0.05 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Cache size as a fraction of the wor!<ing set size
0.5

Figure 3.17: Byte miss ratio versus cache size (Worldcup98 trace).

61

file) in the real data to those in the synthetic traces of the models. We found

that the sequence of inter-request times is non-stationary (has a clear decreasing

trend). So we normalized this sequence by the expected inter-request time, which

is equal to l/Zr,-, for file i. The mean, variance, percentile values, and some values

of the autocorrelation function for the normalized inter-request times are shown in

Tables 3.3,3.4, and 3.5. Note that the mean, variance, percentile values of the inter-

request times are measures of the temporal locality, while the autocorrelation is a

measure of the spatial locality.

Statistics Real data Multifractal
model

Cherkasova's
model

LRD model

/i 0.954 0.937 0.806 0.905
<7 1.032 1.164 1.918 1.428

Pi 0.130 0.118 0.000 0.060

P5 0.076 0.075 0.000 0.020

PlO 0.061 0.058 0.000 0.009

P25 0.039 0.039 0.000 0.001

Percentiles 75% 1.306 1.149 0.778 1.063 Percentiles
90% 2.233 2.210 1.697 2.161

Percentiles

98% 3.976 4.230 4.980 5.051

Table 3.3: Statistical comparisons for CLARKNET trace.

3.4 Inter-request Distance Model

In this model, we capture the main properties of WWW traffic using the inter-

request distance string. Analogous to the stack distance model, the marginal dis

tribution of the inter-request distance string can be used as a measure of temporal

locality since it measures the closeness in time between requests to the same file.

Spatial locality is captured by the inter-request distance correlation structure. To

distinguish between temporal correlation and long-term popularity, as was done in

the stack distance model, we normalize the inter-request distances by their expected

values for the case when the files are uniformity distributed over the whole trace.

Statistics Real data Multifractal

model

Cherkasova's

model

LRD model

0.714 0.68 0.62 0.907

a L541 2.010 7.080 4.224

Pi 0.192 0.185 0.000 0.030

Ps 0.070 0.063 0.000 0.030

PlQ 0.036 0.036 0.000 0.027

P25 0.009 0.010 0.000 0.023

Percentiles 75% 0.813 0.813 0.771 0.326 Percentiles

90% 1.790 1.790 2.293 2.046

Percentiles

98% 4.289 5.241 5.531 6.644

Table 3.4: Statistical comparisons for CALGARY trace.

Statistics Real data Multifractal

model

Cherkasova's

model

LRD model

P 0.990 0.951 0.823 0.941

a 0.986 1.137 1.718 1.289

Pi 0.054 0.054 0.000 0.098

P5 0.027 0.037 0.000 0.089

PlQ 0.025 0.030 0.000 0.071

P2h 0.022 0.023 0.000 0.034

Percentiles 75% 1.373 1.136 0.856 1.134 Percentiles

90% 2.266 2.099 1.727 2.101

Percentiles

98% 3.843 4.210 4.666 4.726

Table 3.5: Statistical comparisons for WORLDCUP98 trace.

63

The expected value of the inter-request distance for a file p { I R { p)) in the uniform

case is defined as;

£|/R(rt| = (3.27)
J ^ p

where f r ^ is the popularity of file p .

The marginal distribution of the normalized inter-request distance string was

found to have the same distribution as the normalized stack distance string (log-

normal distribution). The correlation structure model of the normalized stack dis

tance string, pk = e~^ can be used for the normalized inter-request distance

string too.

After extracting the normalized inter-request distance string from the empirical

reference string, we compute its mean ft, variance a^, and fit its correlation structure.

These parameters directly capture a real workload, as opposed to the parameters of

the stack distance string. Using these parameters, the multifractal model can then

be applied to generate normalized inter-request distances.

3.4.1 Traffic Generation Process

To generate a synthetic reference string, we first need to model the inter-arrival

distance of new files (for simplicity we only consider the marginal distribution). As

expected, this marginal distribution was found to follow a log-normal like distribu

tion. The process of generating synthetic reference string starts by arranging the

unique files in a vector according to their popularity, as we do in the stack distance

model. After sampling from the distribution of the inter-arrival distance of new

files, we assign each file in the vector a location (real value). This is the location

of the first occurrence of each file in the generated trace. The first file is assigned a

location value of zero. Knowing the popularity profile and the trace length, we com

pute the number of requests each file gets. Next, we scan the vector starting from

the first file. If the file reaches the required number of requests, we skip it and go

to the next file in the vector. Otherwise, the location of the next request to the file

is computed as the current reference location plus the next synthetic inter-request

64

distance. This is done after scahng the normahzed inter-rcquest distance back by

multiplying by the file's expected inter-request distance. Another reference to this

file is inserted into the vector according to the new location. The process continues

until all files reach their required numbers of requests. The example in Figure 3.18

illustrates the process. In this example, we assume that we have four unique files,

a, b, c, and d, with popularity profile {(a,0.1), (b,0.2), (c,0.3), (d,0.4)}. Suppose we

want to generate a synthetic trace of length 10. We first order these files in a vector

according to their popularity profile (the more popular a file is, the more likely it

will be placed close to the top of the vector). Let the initial order be [d b c a].

Sampling from the distribution of the new files inter-arrival distance, we assign the

locations of the first occurrences of the files in the trace. We assign the first file in

the vector a position 0.0. Suppose that the new files inter-arrival distance samples

are {3.4,3.4,3.6}. Then file d takes position 0.0, file b takes position 0.0 + 3.4 = 3.4,

file c takes position 3.4 + 3.4 = 6.8, and file a takes position 6.8 + 3.6 — 10.4. Now we

generate a normalized inter-request distance synthetic string using the multifractal

model. Let this string be {3.8,1.34,1.05,0.28,1.4,1.53}. Using (3.27), we compute

the expected inter-request distance for all unique files, which in our example are

found to be {(a,10.0),(b,5.0),(c,3.33),(d,2.5)}. Scanning the vector from the top, we

find that file d is on the top of the vector with a position 0.0. The first normalized

inter-request distance is 3.8. Scaling this value back by multiplying by the expected

inter-request distance for file d, we can compute the po.sition of the next reference

to file d, which is equal to 0.0 + 3.8 * 2,5 = 9.5. A new reference to file d is inserted

in position 9.5. The process continues until all the required number of references

for all files are satisfied. Once a file reaches its required number of references, it is

skipped (as can be seen in the fifth column from the left in Figure 3,18, where file

b is skipped),

3,4,2 Performance Evaluation

In this section, we evaluate the performance of the inter-request distance (IRD)

model, and compare it with the stack distance (SD) model. Both models are mainly

65

Expected inter-request distance Nonnalized inter-request distance
^ / - 2.5 1.34-»<S)-®-5.0 1.05-M4>«-3.33 0.28-K5H-2.5 1.4 -»^>»-2.5 I.53-«KSH^3.33

d 0.0 —

b 3.4

c 6.8
9.5

a 10.4
9.5

10.2

10.3

Figure 3.18: WWW synthetic trace generation process.

intended for offline generation of WWW synthetic traces. We compare the two

models in terms of the file miss ratio seen by an LRU cache that is driven by synthetic

traces from both models. Moreover, since the spatial locality is not reflected through

the file miss ratios of the LRU caching policy, we also compare both models in

terms of the mean, variance, correlation, and percentile values of the inter-request

distance string of the synthetic traces. We found that the inter-request distance

string exhibits a clear increasing trend and for this reason we used the normalized one

in the comparison. The real traffic is considered as a reference for the comparison.

Tables 3.6 and 3.7 show the inaccuracies in the LRU miss ratios resulting from two

traces (relative to the cache miss ratio for the real trace). The cache size is measured

as a percentage of the total size of the unique files. It is clear that the IRD model

is more accurate than the SD model, which is an indication of a better capturing of

the temporal locality of the real trace. For example, in the worldcup98 trace with

a cache size of 10%, the percentage of inaccuracies in the file miss rate for the IRD

model and the SD model are given by 5.34% and 15.6% respectively. Tables 3.8 and

3.9 show the inaccuracies in the mean, variance, correlation, and in some percentile

values of the normalized inter-request distance string from both traces. Again, it is

clear that the IRD model is more accurate than the SD model in capturing these

66

statistics, which is an indication of better capturing of the spatial locality of the real

trace.

Cache Size (%) Real data SD Model IRD Model

Miss Ratio (%) Error (%) Error (%)

4% 27.9 3.02 3.1

6% 19.6 3.61 3.6

8% 14.7 11.8 5.25

10% 11.5 15.6 5.34

15% 6.70 11.8 7.57

20% 4.32 1.94 2.1

25% 3.05 4.54 4.54

30% 2.23 10.3 6.19

35% 1.71 14.2 5.91

40% 1.35 15.5 5.68

45% 1.07 13.3 8.33

50% 0.88 9.69 6.93

Table 3.6: Cache miss ratio inaccuracy for the worldcup98 trace.

Cache Size (%) Real data SD Model IRD Model

Miss Ratio (%) Error (%) Error (%)

4% 31.7 4.71 1.21

6% 25.2 9.05 3.97

8% 20.8 12.0 3.41

10% 17.6 14.7 4.79

15% 12.4 18.2 6.3

20% 9.26 19.4 6.77

25% 7.22 19.4 6.27

30% 5.77 17.7 4.35

35% 4.72 14.7 0.81

40% 3.96 11.4 3.33

45% 3.39 7.66 2.31

50% 2.96 3.78 3.5

Table 3.7: Cache miss ratio inaccuracy for ClarkNet trace.

Statistics Real data SD Model IRD Model

Error (%) Error (%)

0.990 3.94 0.81

a 0.986 15.3 0.51

Pi 0.054 0.00 1.85

P5 0.027 37.0 25.9

1̂0 0.025 20.0 8.00

Percentiles 75% 1.373 17.3 3.71

90% 2.266 7.37 1.37

98% 3.843 9.55 1.74

Table 3.8; Statistical comparisons for the worldcup98 trace.

68

Statistics Real data SD Model IRD Model

Error (%) Error (%)

0.954 1.78 0.52

a 1.032 12.8 0.68

Pi 0.130 9.23 1.54

P5 0.076 1.32 1.32

PlO 0.061 4.92 0.00

Percentiles 75% 1.306 12.0 8.04

90% 2.233 1.03 0.54

98% 3.976 6.39 0.55

Table 3.9; Statistical comparisons for ClarkNet trace.

69

CHAPTER 4

WWW PREFETCHING MODEL

4.1 Introduction

Aggressive or Non-controlled prefetching was found to degrade the performance by

increasing the load in the system, which is in turn my worsen the WWW client per

ceived latency. Accordingly, in this chapter we investigate the trade off between the

reduction in the response time and the increase in the system load due to prefetching.

The aim of such investigation is to come up with a dynamically controlled prefetch

ing protocol that can balance this trade off and optimize the performance. Such

protocol can dynamically adjust the degree of prefetching (how much to prefetch)

according to the state of the system. We achieve this goal through a mathematical

model that incorporate the system essential paymasters to characterize both effects

of prefetching.

The rest of the chapter is organized as follows. In Section 4.2 we describe the

prefetching system architecture. In Section 4.3 we describe our network access model

and derive an expression for the prefetching gain as a function of the system param

eters (system load and cache parameters). In Section 4.4, we treat the prefetching

problem as an optimization problem, where we compute a threshold value for the

prefetching precision. Moreover, we answer the question of "How many documents to

prefetch?"' In Section 4.5, we describe the use of our model in designing a prefetching

protocol. In Section 4.6, we discuss the effects of proxy caching and local caching on

prefetching performance. In Section 4.7 we validate our model througli simulations.

4.2 Prefetching System Architecture

Consider a group of WWW clients who are connected to a proxy server through

dedicated lines (i.e., dial-up modems, cable modems, DSL, etc.) of capacity r bits

70

per second (see Figure 4.1). The proxy server is connected to the Internet via an

access hnk of capacity C bps. A client is assumed to run one browsing session

at a time. The case of multiple sessions will be treated in a future work. Each

client maintains a local cache. To generalize the treatment, an arbitrary cache

replacement policy is assumed and is parameterized by its hit ratio he- A very small

portion of the client cache is reserved for prefetching, and is called the prefetching

cache. The remaining portion is called the regular cache. It was reported in several

studies (e.g., [4, 18, 27, 17]) that the hit ratio increases as the logarithm of the cache

size. Hence, reserving a small portion of the cache for prefetching has a negligible

effect on the hit ratio of the regular cache, making this hit ratio almost independent

of prefetching. The regular cache stores demand-requested documents, whereas the

prefetching cache stores prefetched documents. A demand-requested document that

happens to be in the prefetching cache is considered for regular caching (i.e., is moved

to the regular cache). Accordingly, a given document cannot be in both caches at

the same time. Prefetched documents are brought to the local cache from either

the proxy server (if available) or are retrieved from the original WWW server. The

performance of the proxy cache is described by its hit ratio hproxy, which is assumed

to be independent of prefetching (the proxy does not cache any prefetched file). We

verify this point later in the simulations. Each client alternates between active (ON)

periods, during which the client retrieves some documents, and idle (OFF) periods,

during which the retrieved information is read by the user (see Figure 4.2). An ON

period starts with the retrieval of an html file (the main document), which is usually

followed by the retrieval of its inline files.

Each client runs a prediction algorithm that predicts future requests using the

history of the client's requests and hints from the proxy and original servers. We

assume that the HTTP protocol can be easily modified to include these hints in

the header of the response to any regular request. Typically, the outcome of the

prediction algorithm becomes available right after the receipt of the main document.

We assume a generic prediction model, where the predictor computes a set of k

candidate files Di, D2, •. •, Dk and the probabilities of accessing them in the next

71

Proxy cache

C bits/si Internet r bis/sec Shared
access
link

r bits/:
Client Proxy server

Client

Predictor

Web server Regular cach{
Prefetcher

PreTetching cS

Figure 4.1: Components of the prefetching system.

user's active period , Pk). For example, one can adopt the scheme in

[45] with a straightforward modification to account for hints from the proxy server

(the details of such modification will be described later). Note that the events

of requesting any two or more files in an ON period are not necessarily mutually

exclusive, i.e., Pi can be greater than one. The prefetcher uses the information

provided by the predictor to prefetch files in the subsequent OFF period, starting

from the one with the highest access probability. The number of prefetched files

depends on the length of the OFF period and the state of the network. If the OFF

period is large enough, prefetching ends before the start of the next ON period.

Otherwise, the client instructs the proxy to stop forwarding the currently prefetched

file once a new demand-request (new ON period) is issued. Any partially prefetched

file is kept in the prefetching cache to be used in any future access to such a file.

A demand-request is first served from the local cache (regular or prefetching cache)

if available. Otherwise, the request is forwarded to the proxy server. If the proxy

server docs not have the requested file in its cache, it retrieves it from the original

server.

72

Main documenl

I Inline objects
Prefetching period

OFF (think period) ON period

Prediction algorithm starts
time

Main/proxy server hints

Figure 4.2; Client, behavior.

4.3 Analysis of Prefetching Gain

In this section, we study the benefit of client-side prefetching using access delay

as the performance metric. The improvement in the access delay is indicated by

the ratio of the average access time of an arbitrary demand-requested file ' under

prefetching (Ap) to the average access time of such a file without prefetching (A„p).

We call this ratio the access improvement index (/). Prefetching is advantageous

when I < I. We study the effectiveness of prefetching in reducing the average access

time for a given client. In the absence of client caching and prefetching, the proxy

server is assumed to retrieve files from the original servers at a rate A (in files per

second) in response to requests from all clients. Note that caching and prefetching

can impact the rate of bringing files from their respective servers.

Prefetching always increases the hit ratio of the client cache because prefetched

files do not replace any cached ones (they are stored in the prefetching cache).

Suppose that, on average, a client prefetches Np files in a given OFF period. Then,

the average number of "useful" files is:

m = N p P (4.1)

p p. —
where P = ' (0 < P < 1) is the prefetching precision [73]. The increase in the

client-cache hit ratio due to prefetching is given by:

(4.2)

^ A web document consists of one or more files.

73

where is the average number of files in an ON period. This says that for each

demand-requested file, there are useful prefetched ones.

If a client does not employ prefetching, a requested file is brought from the local

cache, the proxy cache, or the original server. The corresponding access times for a

file of an average size s are 0, Voi(s), and tserv{s), respectively. Hence, the average

access time without prefetching for a file of size s is

-^np (1 ^c) • (^proxy^prox (s) + (1 - ^proxy) ̂ serv m (4.3)

When prefetching is employed, the access time from the original server is denoted

by fgervi^)- Note that / tserves) because prefetching files for a given client

increases the traffic seen by other clients that share the same access link, which as

a result affects the given client. The time to retrieve a demand-requested file from

the proxy cache is not affected by prefetching, because prefetching is done in the

OFF period of that client, who communicates with the proxy via a dedicated line.

Accordingly,

— (1 h(. ^h)'(^hproxytproxi^^^ ^proxy^^servi.^^^' (4-4)

From (4.3) and (4.4), the access improvement index becomes:

J (1 ~ /ic ~ ^ h) - { h p r o x y t p r o x { ^) 4" (1 ~ hproxy)t

(1 .{^hproxy^prox(^^) + (l- ̂ proxy^^serv (s)) •

We assume that tservis) and t'^ervi^) dominated by the queueing/service de

lays at the shared access link between the proxy server and the Internet (downlink

direction). This assumption is justified when the pool of clients that share the ac

cess link is large, as is often the case in ISP networks. To compute tserv{s) and

^seri;(^)> inodel the queueing/service delays at the proxy using an M/G/R Pro

cessor Sharing (M/G/R-PS) system. Riedl et al. [77] suggested the use of this

model for the dimensioning of IP access networks with elastic traffic and concluded

its suitability for WWW delivery systems, particularly when file sizes are large. The

rationale behind employing the M/G/R-PS approximation is that in the underlying

WWW delivery system, multiple file downloads occur simultaneously over different

74

connections (clients). These downloads are serviced by a shared link (processor) of

capacity C. In our case, clients can be limited by the bandwidth r of the dedicated

access link, which can be less than C. A special case of the M/G/R-PS is when

R= 1. In this case, a single client can fully utilize the capacity of the shared access

link. For a client's peak rate r, the shared link behaves approximately as a system

with R = C/r servers. If there are n customers in the system, then each customer

gets a fraction of the capacity C that depends on n; if n < R , then each customer

gets a fixed fraction r/C. Otherwise, each customer gets a fraction 1/n. This means

that up to R flows can be served simultaneously, each at rate r bps.

For the M/G/R-PS model, the mean file transfer time is given by [77]:

t = (4.6)
r

where s is the file average size and

f („\ ^ 1 I E2{R, P)

2Lji=0 i! + R\ 1-p

Equation (4.8) is the Erlang C formula. The utilization of the access link is given

by p = Xs/C. The quantity //? is called the delay factor. It is a measure of how link

congestion affects the response time.

To apply the above model, we need to compute the average load on the shared

access link (downward direction) for the prefetching and no prefetching cases. The

average load in the case of no prefetching (with caching only) is given by:

_ (1 — hproxy)ii — hc)Xs . .
Pnp ^

This represents the downlink traffic in response to client requests that cannot be

satisfied from either the regular cache or the proxy cache.

When prefetching is implemented, an average of Np files are retrieved during the

OFF period. Hence, the average load on the shared access link under prefetching is

75

given by;
(1 hproxy)(i he A/i + NpfNon)Xs ^ ^ ^

Pp — ^ • \^4.iUj

This is the load on the downlink in response to requests that cannot be satisfied from

the regular, the prefetching, or the proxy caches, plus the extra prefetched traffic

ij^)- Note that for each demand-requested file, there are on average Np/Non

prefetched ones.

Because each client performs prefetching during its idle (think) periods and only

one browsing session is allowed per client, the queuing delay at the (dedicated)

proxy-client link can be safely ignored. Hence, the average time to retrieve an

arbitrary file of size s from the proxy server is tproxis) = f.

From (4.5) and (4.6), the improvement index reduces to:

J (1 ^h) - (^hproxy "t" (^ hproxy) fr(^PP))
(1 - hc).{h proxy -f- (1 hproxy)fR{pnp))

4.4 Prefetching Gain Optimization

In this section, we study the performance of a generic prefetching system. We use

the analysis in Section 4.3 to optimize the effect of prefetching. Intuitively, there are

two factors that affect the mean access time for a file. On the one hand, prefetching

more files improves the overall hit ratio and, as a result, reduces the number of files

that need to be retrieved from the original server. On the other hand, prefetching

more files results in increasing the load on the shared access link, which affects

the retrieval time of other missed files (which are not in the cache nor are being

prefetched). Hence, a client should be careful not to prefetch every file suggested

by the predictor, as this may lead to increasing the overall average access time.

Accordingly, we seek to compute the optimal number of files to prefetch in an

OFF period. Before trying to find this optimal value, we need to study the behavior

of J as a function of Np. It can be mathematically shown (see below) that if prefetch

ing a single file or a fraction of a file does not lead to any gain, then prefetching

more files can only worsen the performance. On the other hand, if there is a gain

out of prefetching a single file or a fraction of a file, then there is a unique optimal

76

value for the average number of prefetched files in an OFF period. The following

theorem describes the general relationship between I and Np. It also specifies the

condition under which prefetching is beneficial.

Theorem 4.4.1 Suppose that files are prefetched in a decreasing order of their ac

cess probabilities, start,ing from the most likely one. Then the following hold:

1. If prefetching a single file or a fraction of a file does not improve the mean

file access time, then increasing the number of prefetched files does not do any

better.

2. If there is a gain out of prefetching, then there is only one optimal value for

the average number of prefetched files in an OFF period.

3. For prefetching to be of a value, the following condition must be satisfied:

where

(1 Pnp) (1 hproxy Pnp)

and P{Np = 1) is the prefetching precision when, on average, only one docu

ment is prefetched in an OFF period. In other words, P{Np — 1) is the average

access probability of the first file to prefetch in the list of candidate files.

Proof: See Appendix B.

It is clear from Theorem 4.4.1 that a prefetching protocol must first decide

whether to prefetch or not based on the prefetching condition (threshold). After

that, if prefetching is beneficial, then the optimal number of files to prefetch can

be computed. To find this optimal value, we need to solve the equation = 0

for Np. Unfortunately, such an equation cannot be analytically solved, except for

some special cases, as shown in the rest of this section. In general, one can rely on

numerical methods to solve for the optimal Np, which we denote as N*.

77

4.4.1 Prefetching Precision Independent of Np

Consider the special case when P is independent of Np (i.e., all files have the same

access probabiHties). Accordingly, the condition in (4.12) translates into having the

file access probability greater than Pfh- In this case, N* can be computed analytically

for two special cases, as described in the following theorem.

Theorem 4.4.2 Consider the case when P is independent of Np, P > Pth, and

i? = 1. Then,

1.

where

> 0

N* = ^ Largest number of candidate (4.14)

files subject to pp < 1, otherwise

A ^ ^ (4 x 5)
ViVon(i- M y ^ • '

P A —2/>„p(l — P){1 — pnp) H Ifi"!
® - (1 ̂ K)N^

O ^ (1 - p„,)'- LJVf" (te - l) (4.17)
^proxy ^ ^

2. If no proxy caching is used (hproxy = Oj, then the higher the number of

prefetched files, the higher is the prefetching gain.

Proof; See Appendix C.

Figure 4.3 depicts I as a function of Np for the special case when P is constant,

R = 1, and hproxy = 0. It is clear that when P > Pth, 1 decreases monotonically

with the number of prefetched documents. In this case, I can be maximized by

prefetching all documents with access probabilities greater than Pth [84].

For the other cases, I does not necessarily decrease monotonically with the num

ber of prefetched files. This is shown in Figure 4.4-a {R = 10 and hproxy = 0) and

Figure 4.4-b (i? = 1 and hproxy = 0.6). It can be seen from Figure 4.4-a that when

P = 0.4, I decreases with the increase in Np up to a certain point, after which the

78

trend is reversed. Furthermore, when P ^ Pth, the trend in the access improve

ment becomes monotone. This is because the improvement in the hit ratio is more

signiticant than the loss due to the increased traffic. Moreover, prefetching cannot

go beyond a point where the shared access link is 100% loaded.

Note that the threshold value decreases with the increase in R and hproxy, which

is intuitive since increasing R or hproxy moves the delay bottleneck towards the

client-proxy link.

2.5 r

2 -

E 1.5 -

I 1

0.5 -

P=0.1 /
/

/

/
/

P=0.4 ^

P=0.5

P=0,6

P=0.8

10 15
N

20 25 30

Figure 4.3: 1 versus N y (r = 500 kbps, C — 500 kbps, A = 6.25 files/s, s = 40 kbits,
^on — 15 files, Rth — 0.5, he — 0, hproxy — 0^.

4.4.2 Prefetching Precision Varies with Np

To study the effect of the variability of P on I, consider the following simple rela

tionship between Ah and Np-.

AH = K (1 (4.18)

79

P=0.5

^P«0.6

15 20

PnO.M ̂

P=0.1B

1Q 20 30 40 SO 60 70

(a) r = 50 kbps, Pth = 0.05,
hproxy — 0

(b) r = 500 kbps, Pth = 0.102,

^proxy — 0.6

Figure 4.4: I versus Np (C = 500 kbps, A = 6.25 files/s, s = 40 kbits, Non = 15
files, he = 0).

where 0 < K < 1 — he- Based on this relationship, the lowest value Ah can have

is 0 (no prefetching) and the highest value cannot exceed 1 — he, since the overall

cache hit ratio {he + Ah) cannot exceed one. Accordingly, the prefetching precision

is given by:

P = H { 1 -

K,
{4.19)

where H = Non K. Because P < 1, the constant a is bounded (0 < a < — ln(l —•^)).

Suppose that the prefetcher retrieves files according to their access probabilities,

starting from the most likely file. Then increasing Np should result in a smaller P,

which influences the access time improvement. Consider, for example, the relation

ship between P and Np as defined in (4.19) with H = 4.8 and a = 0.16. When

Np changes from 3 to 7, P will change from 0.6 to 0.46. Hence, based on Fig

ure 4.3, when Np — 3, / < 1 (prefetching is beneficial), whereas I > I (prefetching

is harmful) when Np = 7. This example demonstrates that aggressive prefetching

may sometimes worsen the performance.

Figure 4.5 shows the performance for the same system shown in Figures 4.3,

4.4-a, and 4.4-b, but with P varying according to (4.19). Consider the case R = 1

80

and hproxy = 0. In this case, P > Pth whenever Np < 7. For Np = 7, prefetching

all seven files with access probabilities greater than Pth improves the performance

(/ < 1), but does not necessarily optimize it (e.g., prefetching 6 files is actually more

beneficial than prefetching 7 files). For the other two cases shown in Figure 4.5, we

can see that increasing the number of prefetched files can worsen the performance,

sometimes even when P > Pth-

1.4

P>P,

< 0.!

0.8

0.7

N
P

Figure 4.5: I versus Np for the case P = ^ — (C = 500 kbps, A = 6.25

files/s, s = 40 kbits, Non = 15 files, Pth = 0.5, hc = 0).

Corollary 4.4.3 Consider the case when R = 1, hproxy — 0, and P varies with

Np. Then, prefetching all files with access probabilities greater than Pa, reduces the

average access time.

Proof: The proof follows readily from part 2 of Theorem 4.4.2.

Theorem 4.4.4 For given P and Np, increasing R or hproxy reduces the average

access time.

81

Proof: See Appendix D.

According to Corollary 4.4.3 and Tlieorein 4.4.4, a prefetching system can

prefetch all files with access probabilities greater than a special threshold value,

Pth (the threshold value when R = 1 and hproxy = 0). As can be seen in Figure 4.6,

this solution reduces the average access time but does not necessarily minimize it

with respect to Np. This is because for a given A',,, the worst access delay is when

i? = 1 and hproxy = 0.

R=1, h
-e- R=2. h

=0
proxy 1 =
proxy

proxy
R=1,h =0.2

proxy

§0.9

g 0.8

0.7

P> K (R=1,h
proxy

N
P

Figure 4.6: Effects of R and hproxy on I for the case P = ^^ (C = 500
kbps, A = 6.25 files/s, s = 40 kbits, Non = 9 files, Pth{R — 1, hproxy = 0) = 0.5,
K = 0).

4.5 Prefetching Protocol

In this section, we discuss the applicability of our analytical model in designing a real

prefetching system. We first address the issue of estimating the model parameters

and then show how such estimates can be used in performing "optimal" prefetching.

82

The prefetching scheme works as follows. Initially, each client goes through a no-

prefetching warm-up period, during which the client estimates its own parameters,

including he and N^n (the number of demand-requested files in an ON period). The

client also estimates the relationship between P and A',,. This is done by running the

prediction algorithm but without performing any prefetching. Each client reports

this information to the proxy, which uses it in estimating Pth- The proxy uses P,f, to

determine the feasibility of prefetching and to compute Np for each client. Moreover,

the proxy estimates its own cache hit ratio.

By the end of the warm-up period, the proxy will have computed for each client

an approximation of he, the relationship between P and Np, and the average length

of the ON period. If the proxy determines that prefetching is beneficial (based on

Pth and P), it uses (4.11) to optimize the number of files each client can prefetch.

The proxy provides each client with its N* by piggybacking this information in its

response to the client. Once a client has its N*, it can start prefetching in the

subsequent OFF period. We assume that N* can take non-integer values, where the

fractional part means that only a part of a file is prefetched using, for example, the

HTTP range request [101]. This feature is critical because of the higli variability

of file sizes in the web. Upon receiving a demand-request, prefetching is stopped

and all prefetched data are saved. When a file that was partially prefetched is

demand-requested, only the remaining portion of this file is retrieved.

Clients periodically update the proxy with estimates of their parameter values.

The proxy uses these estimates along with the estimated load at the proxy (pp)

to recompute the prefetching parameters (Pth and Np). The recomputation of the

prefetching parameters is done based on the variability of the estimated parameters.

Prefetching needs to be implemented fairly for clients with different traffic de

mands. A reasonable approach is to assign weights to clients depending on their

(downlink) traffic demands. The higher the weight assigned to a client, the liigher

the volume of prefetched traffic that is allowed for that client. The assigned weights

can be easily computed by the proxy based on the observed loads of different clients

at the shared link. We do not explore this issue further in this paper, and as

83

sume a homogenous environment (clients have the same traffic model). Table 4.1

summarizes the main parameters that are used by the prefetching protocol.

Parameter Definition

Pp Average load over the shared link

he Hit ratio of the regular cache

hproxy Hit ratio of the proxy cache

HN,) Prefetching precision as a function of Np

Non Average length of the ON period

Pc Client's offered load

Pc Average client's offered load

r Client access rate (in bps)

C Proxy access rate (in bps)

Table 4.1: Parameters of the prefetching protocol.

4.5.1 Traffic Prediction

Several schemes for WWW traffic prediction have been proposed in the literature

(e.g., [16, 65, 57, 45, 94, 34, 79]). Any of these schemes can be integrated into our

prefetching protocol. Without loss of generality, we can consider for our simulations

the predictor by Jiang et. al [45], with some modifications to include hints from the

proxy server. In [45], prediction is done at the client side using the client's history

along with hints from the main server. Two types of counters are maintained at

the client for each html document: a page counter and a set of link counters. Any

time an html document X is accessed, its page counter Px is incremented. If X

has a link to an html document Y and Y is accessed from X, then the link counter

Lxy is incremented. Following each access to document X, the predictor computes

the probability of accessing every document that is linked from X. For a linked
r

document Y, this probability is given by If not enough historical information

is available for computing this probabihty, the client relies on hints from the proxy,

which runs a similar prediction algorithm but based on the aggregate traffic seen

84

by all clients. The proxy also maintains some hints from the original servers that

can be used if the information collected by the proxy is not statistically sufficient.

The prediction algorithm at the proxy requires that clients provide the proxy with

information about the html document from which the request is initiated. The proxy

also provides the server with similar information.

4.6 Effect of Caching on Prefetching Gain

Intuitively, one may expect that proxy caching has an adverse effect on the prefetch

ing gain. It turns out that this is not always true. For clients with low-bandwidth

connections (relative to C), the cHent-proxy link is the bottleneck, and the access

time saving due to prefetching a file from the proxy is comparable with the access

time saving due to prefetching a file from the original server. As shown in Figure 4.7-

a, increasing hproxy has a negligible effect on the access time saving, especially for a

lightly loaded system. At high loads, the gain Anp — Ap increases with hproxy until

a certain point, and after that it stays almost flat. The reason for this increase is

that the increase in the load slightly moves the bottleneck to the shared access link,

whereas the increase in hproxy has the opposite effect.

On the other hand, proxy caching is expected to limit the effect of prefetching

for clients with high-bandwidth connections and under light load. In this case, the

access time saving due to prefetching a file from the original server is considerably

higher than the access time saving due to prefetching that file from the proxy server.

Figure 4.7-b shows a lightly loaded system (e.g., hproxy = 0.4 and Np = 4). It can

be seen that improving the performance of the proxy cache has a negligible effect on

Anp — Ap. On the other hand, when the load is heavy (e.g., hproxy — 0 and Np — 12),

a slight improvement in the performance of the proxy cache can significantly increase

the prefetching gain. As the load of the system decreases due to cache performance

improvement, this trend is reversed.

The local cache can also limit the number of prefetched files, which in turn

limits the prefetching gain. But it also reduces the load, which is advantageous for

I.
s
r
I,
1

2

(a) r = 56 kbps (b) r = 1000 kbps

Figure 4.7: Impact of proxy caching on the effectiveness of prefetching (C = 1000
kbps, A = 20 files/s, 5 = 40 kbits, Non = 15 files, he — 0).

prefetching especially for clients with high-bandwidth connections (R — 1) and for

a heavily loaded system, as seen in Figure 4.8.

For clients with low-bandwidth connections, local caching has a similar effect to

that of proxy caching. The prefetching gain is affected by the local cache only when

the system load is high. In this case, increasing he results in an increase in

as can be seen in Figure 4.9.

In summary, client (and proxy) caching has two opposite effects on the prefetch

ing performance. It has a negative effect by limiting the number of prefetched

documents from the original server. But it also has a positive effect by reducing

the load on the shared access link. Depending on the confluence of the two effects,

the prefetching precision, and the average system load, proxy caching may increase

or decrease the effectiveness of prefetching. More importantly, as suggested by the

above figures, a certain amount of prefetching is always profitable, irrespective of the

client connection speed and the hit rate of tlie caching system. Moreover, when the

system is highly loaded, a modest improvement in the performance of the caching

system can significantly increase the prefetching gain.

85

I

I
I
I

0.05 0.1 0.15 0.2 0.2S 0.3 0.3G 0.45 0.5 0.4

86

0.7

N =6, A^=0.32

0.3

0.2

0.1

0.05 0.1 0.15 0.2
Local cache hit ratio, h

C

0.25 0.3 0.35 0.45 0.5 0.4
cache hit

Figure 4.8: Impact of local (regular) caching on the effectiveness of prefetching
(r = 1000 kbps, C = 1000 kbps, A = 20 files/s, s — 40 kbits, Ngn = 15 files,

hproxy — 0).

87

5.5
1 I 1 1 1 1 t 1

Np=9, A|^=0.49

5 -

4.5 -

f 4 - -

c»
•£ 3

Np=6, A^=0.32

c»
•£ 3 -

0)
I2.5 - _

(0 0)

1 2 N =3, A. =0.16
P n

1.5 -

1 -

N =1. A. =0.05 p n
0.5 - 1 - 1 - - 1 1 t 1 1 1 1 "

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Local cache hit ratio, h c

Figure 4.9; Impact of local (regular) caching on the effectiveness of prefetching
(r = 56 kbps, C = 1000 kbps, A = 20 files/sec, s = 40 Kbits, = 15 files,
^proxy 0).

88

4.7 Simulation Results

4.7.1 Simulation Setup

We consider 50 clients who access the WWW through a common proxy. The proxy

cache implements the LRU caching policy with hproxy = 0.4 (the cache hit ratio is

controlled by adjusting the cache size). Each client has a large local cache. One

percent of this cache is reserved for prefetching. Local caches also implement the

LRU caching policy. The shared access link is modeled as an M/G/R-PS queueing

system.

4.7.2 Traffic Model

We use an ON/OFF source to model the behavior of each client. To mimic the

essential properties of web traffic, we rely on an extension of the model in [10] to

generate client-side traffic. The model in [10] is based on multifractal processes,

which are found to be more flexible than monofractal (self-similar) models in de

scribing traffic "irregularities" at different time scales. This model captures the

essential properties of WWW traffic , including temporal locality, spatial locality,

and popularity. It allows us to synthesize the aggregate downlink traffic seen by the

proxy. This traffic represents responses to requests for main html documents from

all clients. Each html document can have one or more inline files (e.g., images). As

suggested in [60, 13], the distribution for the number of inline objects in an html

document follows a heavy-tail distribution. The OFF period and the file size are

also generated according to a heavy-tail distribution [13, 27, 60]. The duration of

the ON period is specified by the requested main document and the time it takes

the client to retrieve such a document and its inline files. Table 4.2 summaries the

parameters of the most important distributions used in traffic generation.

The model in [10] was not intended for client-side traffic, but rather to capture

the properties of the aggregate traffic destined to a group of clients. To synthesize

client-side traffic, we start with a no-prefetching simulation run, in which each client

is represented by an ON/OFF profile based on the distributions shown in Table 4.2.

89

Component Distribution /(^) Parameters

OFF period Lognorrnal
, -(In(i)-Mp

(T = 1.57

/< = 2.75

File size Lognormal (J = 1.82

f j . = 6.78

Files per

web page

Pareto f { x) = k = l

a = 1.42

Table 4.2; Probability distributions used in the simulations.

The aggregate stream is arranged as a vector. When a client starts a new ON period,

it selects a document from the top of that vector. This document is considered as

the main html document in the current ON period. Each unique document in the

vector is assigned a group of unique inline files. Moreover, each file (main document

or inline file) is assigned a size that is sampled from the proper distribution. The

client retrieves the main document with its inline files from the local cache, proxy

cache, or from the original server if the document has not been cached before. The

outcome of this simulation run is streams of client requests that are saved in several

files to be used in the main simulation experiments. Figure 4.10 depicts an example

with three clients. The three chents start their first ON periods at times ti, t2, and

ts, respectively, where tz > h > t^- According to these times. Client 2 selects the

top document (A) in the vector of aggregate requests. The first and the third clients

select documents C and B, respectively. It takes the second client a period of dti

seconds to retrieve document A and its preassigned inhne files (.4o and Ai), and

it takes it a period of dt2 seconds to read the retrieved information (OFF period).

At the end of the OFF period, this client starts a new ON period, while the other

clients are still in their OFF periods. Hence, it selects document D as the main

document, and so on.

90

OFF period

CO CI C2

Client 0 Web page C
inline files

Aggregate traffic

AO A1

Client 2

B2 BO B1

Client 1

Time

Figure 4.10; Client-side traffic generation process.

4.7.3 Prediction Model

Because prediction is not the focus of our work, for our model-validation purposes,

we adopt an artificial predictor whose accuracy can be controlled. The predictor

works as follows. Each client is assumed to know the future with certain accuracy

and has a window through which it sees this future. To produce a certain relationship

between the P and Np, the client considers a window of m files (number of files to

prefetch) that are neither in the local cache. Each file is considered for prefetching

with probability Pi, the access probability of the ith. file in the candidate list. If a file

is not considered for prefetching, it means that the predictor made a wrong decision.

In this case, the client retrieves a dummy file whose size is sampled from the file

size distribution. This dummy file is either retrieved from the proxy or the original

server based on the estimated value of hproxy Figure 4.11 illustrates the main idea

behind this artificial predictor. In this figure, the client needs to prefetch three files

in the current OFF period. The first three files that are in the future window and

are not locally cached are Bi, 5-2, and Cq. To capture a specific relationship between

P and Np, the access probabilities Pi, P^, and P3 for the three candidate files to be

prefetched are computed as Pi = 'iP{i) — YL'j=\^ Pj, i = 1,2,3. The client prefetches

file B\ with probability P\, and with probability 1 — Pi an alternative dummy file is

91

Current time

— OFF period >• File either in the local
cache or in the prefetching
cache

CO AO Al B2 DO D1 D2

Future window

Cached
file

Set of probabilities
to control the
predictor

With probability Pi, select the file
for prefetching, and with probability
1-Pi select a dummy file for prefetching

Set of Prefetched files

Figure 4.11: Mechanism for traffic prediction.

prefetched. The same thing is done for files B2 and Cq. Accordingly, the precision
p. —

in predicting three files in the future is ', which reflects the mimicked P{Np).

4.7.4 Validation of Ah and pp

In this section, we validate the appropriateness of the models for the increase in

the hit ratio due prefetching and the average system load with prefetching. In a

given simulation run, each client tries to prefetch a fixed number of files (n) in

every OFF period, if possible. Each run outputs the access improvement index

(/), the average hit ratios for all caches, the average system load, and the average

number of prefetched documents in an OFF period (Np). Note that Np can be

less than n because some OFF periods are not long enough to retrieve all n files.

Figure 4.12 compares the increase in the client cache hit ratio due to prefetching

with its numerical counterpart computed using (4.2). It is clear from the figure that

the model is very accurate. The average load versus Np is depicted in Figure 4.13.

92

Overall, the modeled and simulated loads are sufficiently close to each other, with

a slight deviation when Np is high. This deviation comes from the slight change in

hproxy due to prefetching, which we assumed in our analysis to be independent of

prefetching. Although we assumed that prefetched documents are not cached in the

proxy, prefetching can affect hproxy as it changes the stream of web requests seen by

the proxy.

0,35
-K- Model

Simuiation

0.3

c 0.25

.2
Q.
2 0.2
<D
S T3
P
1 0.15
c
0} Oi
O
O c 0.1

0.05

0©-

N

Figure 4.12: Increase in the client's cache hit ratio due to prefetching versus Np
when P = — {r = 500 kbps, C = 500 kbps, A = 8 files/s, s = 38 kbits,

hproxy 0.39, — 0.31^.

4.7.5 Validating the Access Improvement Index

Figure 4.14 depicts I versus Np, computed using the analytical model and the sim

ulations. The two plots depict a similar trend. Surprisingly, the prefetching gain

in the simulations is lower than the one obtained using the analysis. One reason

is related to using the average file size in the analysis, knowing that the file size

93

-K- Model
-e- Simulation

0.55

0.5

a
3
"D
3
 ̂ 0.45

E
<a
>%

CO

0.4

0.35

0.3

N.

Figure 4.13: Average system load versus Np for the case P = ^ ^ (r = 5 0 0
kbps, C = 500 kbps, A = 8 files/s, 5 = 38 kbits, hproxy = 0.39, he = 0.31).

94

follows a heavy-tail distribution (highly variable). To test the effect of the file size

on the average access delay, we reran the simulations, assigning to all files the same

size (average file size). The outcome of this simulation experiment is shown in Fig

ure 4.15. It is clear that our analysis needs to account for the high variability in

the file size. This can be done by modelling the average access delay for a single

byte of data. Hence, we use the byte hit ratio of the caching system to compute the

probability of finding an arbitrary byte of data in a given cache. Accordingly, the

average access time of an arbitrary byte is computed as:

^h^ihproxy (1 ^proxy^ fr(_PP}) (4.20)
r

where he is the regular-cache byte hit ratio, hproxy is the proxy cache byte hit ratio,

and Ah is the increase in the local cache byte hit ratio due to prefetching. To

validate this revised model, we reran the simulations to compute the byte hit ratios

for all caches. Figure 4.16 shows the numerical results for the original and revised

models, along with the simulation results. It is very clear that the results for the

revised model are quite close to the simulations.

Based on the revised model, we simulate an adaptive prefetching mechanism, as

was described in Section 4.5. Each client dynamically adjusts the number of files to

prefetch at the beginning of each OFF period based on the estimated parameters

(system load, prefetching precision, and caches byte hit ratios). As before, both

the regular cache and the proxy cache byte hit ratios are estimated from historical

data. The increase in the local cache hit ratio due to prefetching (A/,) is estimated

based on the number files the client intends to prefetch. The estimated Ah is used

to compute the increase in the local cache byte hit ratio due to prefetching (A/,).

This is done by multiplying Ah by a correction factor a, which is an estimate of the

deviation in the increase in the byte hit ratio to the increase in the file hit ratio due

to prefetching. Note that Ah is estimated for several values of Np for optimization

purposes (Np that gives the best I is selected). Figure 4.17 shows the simulation

results for the adaptive prefetching protocol. In this plot, we also show the results

under non-adaptive prefetching, where we run several simulation experiments and

Model
-B~ Simulation

Figure 4.14; I versus Np [P = ^ ^ ^

files/s, s = 38 kbits, hproxy = 0.39, he — 0.31).
= 500 kbps, C = 500 kbps, A = 8

96

Basic model
-if- Simulation with fixed size files

0.95

0.9

0.85

.£ 0.8

0.75

S 0.7

0.65

0.6

0.55

0.5

N
P

Figure 4.15: I versus N p under fixed-size files { P — ^ r = 500 kbps,
C = 500 kbps, A = 8 files/s, s = 38 kbits, hproxy = 0.39, he = 0.31).

Basic model
-e- Simulation

Revised model 0.95

0.9

0.85 X o TJ
C

•£ 0.8

<0
>

g 0.75 a
£

0.7 CO CO o u u < 0.65

0.6

0.55

0.5

Average number of prefetched documents, N

Figure 4.16; I versus Np { P = r = 500 kbps, C
files/s, s = 38 kbits, /iproxy = 0.39, he = 0.31).

= 500 kbps, A

98

in each experiment we set Np to a given value. From the non-adaptive prefetching

simulation, we found that N* « 5.3 files. Based on the simulation of the adaptive

protocol, the average number of prefetched files was found to be Np = 5.6, which is

very close to N*. Moreover, I for the adaptive protocol is very close to I{Np).

0.95
Non-adaptive
prefetching

0.9

Adaptive
protocol
based on
the revised
model

SO.75

0.7

S. 0.65

0.6

0.55

0.5

N
P

Figure 4.17: I versus Np {P — r = 500 kbps, C — 500 kbps, A — 8
files/s, S — 38 kbits, hproxy — 0.39, he — 0.31).

From the above results, we observe that for higher values of Np, I in the sim

ulation results tends to slightly deviate from its analytically obtained value. As

explained before, this deviation is related to ignoring the change in hproxy due to

prefetching. One more indirect result we discovered from the simulation is that if

the number of prefetched files during the OFF periods are highly variable, the de

gree of burstness in the traffic increases, which can hurt the performance. This is

inline with the finding in [24].

99

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this dissertation, we demonstrated the potential of multifractal processes as a

viable approach for WWW traffic modeling. We presented two WWW traffic models

that uses multifractal analysis. While one of the models uses the stack distance

approach to capture the main WWW traffic properties, the other model directly

capture these properties through the inter-request distance string. As an application

for these traffic models, we designed a generic client side prefetching system.

In Chapter 3, we described the multifractal modeleing of WWW traffic. We

started with the multifractal model of Riedi et al., which is capable of generating

approximately lognormal synthetic traces with any desired autocorrelation struc

ture. However, to apply this model in traffic fitting and trace generation, one needs

to match as many parameters of the model as the length of the trace to be generated.

To make the model parsimonious, we modified it by using a different distribution for

the multiplier Aj (which relates the wavelet and scale coefficients) and by analyti

cally expressing the parameter of Aj, j — 1,2,..., in terms of the mean, variance,

and ACF of the modeled data. As a result, the modified multifractal model is spec

ified by five parameters only. We fitted this model to both the normalized stack

distance strings and the normalized inter-request strings of different WWW traffic

traces. The proposed models capture the spatial and temporal localities of the real

traffic as well as the popularity profile. Trace-driven simulations of the LRU cache

policy indicates that the proposed models give much more accurate cache miss rates

than two previously proposed WWW traffic models. Statistics of the normalized

inter-request distances support the goodness of our models. While both approaches,

the stack distance approach and the inter-request approach, are superior to previ

100

ously proposed models, the accuracy of inter-request distance approach seems better

that the stack distance one.

In Chapter 4, we modeled the performance of a generic client side prefetching

system. We considered the access time improvement as the performance metric. The

model considered both types of caching systems, proxy and client caches. Based on

our analysis, we obtained an expression for the prefetching threshold that can be set

dynamically to optimize the effectiveness of prefetching. We proposed a prefetching

protocol that use the model to optimize the gain out of prefetching. We investigated

the effect of the caching system on the effectiveness of prefetching. The main result

we discovered is that prefetching all documents that has access probabihty greater

than the optimal threshold value does not always lead to the minimum access delay,

as was reported in previous works. This is only true for the case when clients have

high access speeds relative to the access speed of their common proxy. For the

other cases, the access delay improves with the increase in the number of prefetched

documents until a certain point, after which the trend is reversed. Moreover, we

found that prefetching is always profitable even with the existence of a good caching

system. Another result we found is that the high variability in web file sizes limits

the effectiveness of prefetching.

5.2 Future Work

The research presented in this dissertation can be extended to different environments

such as wireless ad hoc networks. In such environment, each mobile terminal (MT)

is equipped with a small storage space that enables the MT to act as a proxy server

for a group of neighboring devices. The topic of WWW caching for wireless users

is rather new, and not much work has been done in this area. It can be argued,

however, that the traffic and prefetching models presented in this dissertation can

be adapted for the wireless environment with some modifications to account for

the differences in the new environment. For example, prefetching/caching protocols

need to account for the MT limitations and the dynamics of the wireless channel.

101

These limitations include the MT's limited battery life and its small cache size.

For the prefetching model presented in Chapter 4, we assumed that each client

can have only one browsing session at a time. The one-session assumption is accept

able for clients of low bandwidth (e.g., dial-up or wireless connections). The case of

multiple sessions is more common for clients with high bandwidth connections and

multi-user systems, which can be considered for future work.

102

APPENDIX A

PROOF OF THEOREM 3.2.1

The lower bound follows immediately from (3.21) and the fact that £^[(A(^"'))^] > 0.

To prove the upper bound, let X = { X i : i = 1,2,...} be a positive valued

stationary random process, and let Y = {Yi : z = 1,2,...} be an aggregation of X

that is defined as follows:

Yn — X2n~l "l~ X2n

Note that A'''"' in (3.25) represents X, while represents Y. We now prove

that E { X ^] / E [Y ^] < 0.5.

E\xl] ^ ara
EKl B[{X2„,I+X2„)2]

EM

mL-v\ + 2£1X2„_,X2„| + E{XU

Since X is stationary, then E[Xl^_i] — .E[A'|,J = E[X^], which leads to:

mi] ^ Ejxi]
E[Y^] 2E[X^] + 2E[X2n-lX2n]

1

2 _j_ 2

< 0.5

since E[X2n-iX2n]/E[Xl] > 0.

103

APPENDIX B

PROOF OF THEOREM 4.4.1

First, we show that if prefetching a single file or a fraction of a file does not improve

the mean file access time, then increasing the number of prefetched files does not

do any better. To do that, we express I as the product of two functions fi{x) and

hi^), where x is the average number of prefetched files in an OFF period:

where

h{^)
A

f2{x)
A

A
A

^ (B.l)

< 1 (B.2)
I - he

A + BfR{p^{x))>l (B.3)
hproxy

hproxy + (1 - hproxy) fRi^pnp)
(B.4)

Q ^ 1 hproxy

hproxy + (1- hproxy) /i? (Pnp)

We approximate fnip) in (4.7) by:

fdp) ~ (B.6)

The goodness of this approximation is demonstrated in Figure B.l.

It is easy to show that f\{x) deceases monotonically with since ^ =

0 for all 0 < a; < cx). Note that > 0, as prefetching always increases the overall

cache hit ratio.

On the other hand, f2{x) increases monotonically with x, considering that for

all 0 < X < oo we have

B I Jp- > 0. (B.7)
ax ax (1 — Pp)^ dx

104

5
Exact

— Approximation

4.5

4

3.5
R=7

R=5

2,5
R=3

R=2
2

1.5

1
0.1 0.2 0 0.3 0.4 0.5

P
0.6 0.7 0.8 0.9

Figure B.l: Approximation of //?.(p) by 1/(1 — p^).

Note that ^ > 0, because prefetching always increases the network traffic unless

the prediction is 100% accurate.

Now if we can show that fi{x) decreases at a slower rate than the rate at which

fiix) increases, then we can say for sure that there is no gain out of prefetching

more files if prefetching a single or a fraction of a file is not beneficial. This also

assures that if there is a gain out of prefetching, then there is a unique value for

N*. Formally, we need to show that < 0 and > 0. Consider the first

inequality. Recall that A/,. = Then,

dx 1 — he dx"^ "

= (rr^(^"W-+2P'{x))<0. (B.8)

Note that P' {x) < 0 because P{x) is a monotonically decreasing function in x.

Also, P"{x) < 0 since the popularity of WWW files follows a Zipf-like distribution

105

{Pv ~ 0 < a < 1). For we have

'i|/;(x)l BRp^-\{R - 1)(1 - pf) + 2 p f R (t f) , B.Rp^"' <Pp, . „

dx (1-p*)' (1- p«)2 • ^ '

Formally, for prefetching to be beneficial, the following condition must be satis

fied:

lim
x—>0+

d f i

iff lim
X—>0+

iff lim
aj—>-0+

dx
•dAh
dx

I- he

-dAn
dx

iff lim
X—*0+

I - he

P ' { x) x + P { x)

iff

iVo„(l - he)

limj_^o, P{x)

Non{l - K)

> lim
X—»0+

> lim
x-^0+

> lim
X-+0+

> lim
X—>0+

d f 2
dx

d p p

(1 - dx

BRp^-'
(1 -

(1 -- P p f
(1 -

BRf^

>

(1 hproxy) (
Nn

dAh H

1 '̂~C

P' (x)x + P{x) Xs)_
N. on

(1 -

1 limx_o- P{x). A.S
[l nproxy) \ ̂ ' /O '

-i » f on N„

Note that lim,^o+ F i x) = P(l). Defining M = = (i - p f t .

up with

P (l) >

C

we end

(B.IO)

106

APPENDIX C

PROOF OF THEOREM 4.4.2

Let X be the number of prefetched files. Then, I can be expressed as

I = Lg(.) + , W
1 - ag{x) -(5x ^ '

where

g { x) = 1 - h e - A h { x) (C.2)

I ^ hproxy 2^
(1 hfy^i^hpfQxy ~l~ (1 hpfQxy^ fR^pnp)^

M = ^ ~ (C.4)
(1 hc)(^hproxy "l~ (1 hproxy)fuiPup)^

a = (1 - hproxy)P (C.5)

(C.6)

Now to optimize J, we let ^ = 0 and solve for x\

'E = + WW(1- W + M^(X) ^ ̂

d x (1 — a g { x) — I 3 x y

With A/,(.t) defined according to (4.18), g ' (x) reduces to Solving (C.7) for

X yields
-f ^2 _ 4 4(^. > 0

X — { Largest number of candidate (C.8)

files subject to pp < 1, otherwise

where. A, B. and C are given in (4.15), (4.16), and (4.17), respectively.

To prove the second part of Theorem 4.4.2, we know that for prefetching to be

107

of a value, we must have / < 1. Therefore,

I < 1
• ̂ { I - h e - A h) { h p r oxy + (i h p r o x y) f r{Pp}) ^ j

(1 - he) {hpr oxy + (1 - hproxy)fR{Pnp))

iff ^h) ^ hproxy "t" (1 hproxy) fR^Pnp)

(1 he) hproxy "I" (1 ~ hproxy) f r{Pp)

2 PNp ^ hproxy ~l~ (1 hproxy) fR{pnp)

(1 - he)Non hproxy + (1 - hproxy) fR^Pp)

Taking hproxy = 0, we end up with

. Px fnipup)

(1 - he)Non /h(Pp)

/ R (P n p) (l ~ P p) -

Because pp is hnear in x, both sides of the above inequahty decrease hnearly

with X. Hence, if the rate at which the left-hand side (LHS) decreases at x — 0 is

greater than the rate of the right-hand side (RHS), then increasing the value of x

increases the reduction in I (improves I).

For the rate of the LHS to be greater than the rate of the RHS, we must have

the following:

(1 - hproxy){l - P)P
> - • • • •

(1 hc^Noji (1 pnp)Non

P > pnp

which is the threshold value that is necessary for prefetching when R = 1 and

hproxy — ^ *

108

APPENDIX D

PROOF OF THEOREM 4.4.4

Consider Ap as defined in (4.4) and fnip) as defined in (B.6). Then,

dAp A L ^PpHpp)
dR hproxy) ' (^-1)

which is less than zero because In(pp) < 0. Accordingly, the access time with

prefetching decreases with R.

For hproxy, we have

dAp ^ 1 - {1 - hpro^y^W + R{1 - ^
{l-K.- A,)(l ^ ,7 ,) (D.2)

dhproxy (1 - (1 - hpraxy YHV f

where

(D.3)

But 1 - (1 - hproxy)^W = (1 - Pp) < 1. Therefore, 1 - (1 - hproxy)^W > (1 - (1 -

hproxy)^W)'̂ . Accordingly, < 0 and the access time with prefetching decreases

wit h hpfQxy •

109

REFERENCES

[1] M. A brains, C. Standbridge, G. Abdulla, S. Williams, and E. Fox. Caching

proxies: Limitat ions and potentials. In Proceedings of the Fourth International

World Wide Web Conference, Boston University, December 1995.

[2] C. Aggarwal, J. Wolf, and P. Fellow. Caching on the world wide web.

IEEE Transactions on Knowledge and Data Engineering, 11(1):94-107, Jan

uary/February 1999.

[3] D. Albrecht, I. Zukerman, and A. Nicholson. Pre-seiiding documents on the

www: A comparative study. In Proceedings of the Sixteenth International Joint

Conference on Artificial Intelligence (IJCAI-99), volume 2, pages 1274-1279,

Stockholm, Sweden, July/August 1999.

[4] V. Almeida, A. Bestavros, M. Crovella, and A. deOliveira. Characterizing

reference locality in the WWW. In Proceedings of the Fourth International

Conference on Parallel and Distributed Information Systems (PDIS), pages

92-103, 1996.

[5] M. Arlitt, R. Priedrich, and T. Jin. Performance evaluation of web proxy cache

replacement policies. In Proceedings of the tenth International Conference on

Computer Performance Evaluation: Modelling Techniques and Tools, pages

193-206, 1998.

[6] M. Arlitt, R. Friedrich, and T. Jin. Workload characterization of a web proxy

in a cable modem environment. Technical Report HPL-1999-35R1, Hewlett

Packard, Hewlett Packard Labs, 1999.

[7] M. Arlitt and C. Williamson. Web server workload characterization: The

search for invariants. In Proceedings of the ACM SIGMETRICS Conference,

pages 126-137, 1996.

110

[8] M. Arlitt and C. Williamson. Trace-driven simulation of document caching

strategies for internet web servers. Simulation Journal^ 68(l);23-33, 1997.

[9] H. Bahn, K. Koh, S. H. Noh, and S. L. Min. Efficient replacement of nonuni

form objects in web caches. IEEE Computer, pages 65-73, June 2002.

[10] A. Balamash and M. Krunz. WWW traffic modeling: A multifractal approach.

Computer Networks Journal, 43(2):211-226, October 2003.

[11] A. Balamash and M. Krunz. An overview of web caching replacement al

gorithms. IEEE Communications Surveys and Tutorials, 6(2):44~56, Second

Quarter 2004.

[12] P. Barford, A. Bestavros, A. Bradley, and M. Crovella. Changes in web client

access patterns: Characteristics and caching implications. In Proceedings of

the World Wide Web Conference, pages 15-28, 1999.

[13] P. Barford and M. Crovella. Generating representative web workloads for

network and server performance evaluation. In Proceedings of the A CM SIG-

METRICS Conference, pages 151-160, 1998.

[14] T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, 1990.

[15] A. Bestavros and C. Cunha. Server-initiated document dissemination for the

www. IEEE Data Engineering Bulletin, 19(3):3-11, September 1996.

[16] A. Bestavros. Using speculation to reduce server load and service time on the

WWW. In Proceedings of the 4th ACM International Conference on Informa

tion and Knowledge Management, pages 403 410, 1995.

[17] L. Breslau, P. Cao, L. Fan, G. Philips, and S. Shenker. Web caching and zipf-

like distributions: Evidence and implications. In Proceedings of the INFO COM

Conference, pages 126-134, 1999.

I l l

[18] P. Cao and S. Irani. Cost-aware WWW proxy caching algorithms. In Pro

ceedings of the 1997 USENIX Symposium on Internet Technology and System,

pages 193-206, 1997.

[19] L. Cherkasova and G. Ciardo. Characterizating temporal locality and its im

pact on web server performance. In Proceedings of the Ninth International

Conference on Computer Communication and Networks (ICCCN), pages 434

441, 2000.

[20] E. Cohen, B. Krishnamurthy, and J. Rexford. Improving end-to-end perfor

mance of the web using server volumes and proxy filters. In Proceedings of the

ACM SIGCOMM'98, pages 241- 253, Vancouver, British Columbia, Canada,

1998.

[21] E. Cohen, B. Krishnamurthy, and J. Rexford. Improving end-to-end perfor

mance of the web using server volumes and proxy filters. In Proceedings of the

ACM SIGCOMM'98, pages 241-253, Vancouver, British Columbia. Canada,

August 1998.

[22] E. Cohen, B. Krishnamurthy, and J. Rexford. Efficient algorithms for predict

ing requests to web servers. In Proceedings of IEEE INFOCOM, volume 1,

pages 284-293, New York, March 1999.

[23] D. Cox. Long-range dependence; A review. Statistics: An Appraisal, pages

55-74, 1984. The Iowa State University, Ames, Iowa.

[24] M. Crovella and P. Barford. The network effects of prefetching. In Proceedings

of IEEE INFOCOM Conference, pages 1232 1239, 1998.

[25] M. Crovella and A. Bestavros. Explaining world wide web traffic self-similarity.

Technical 1995-015, Boston University, Computer Science Department, 1995.

[26] M. Crovella and A. Bestavros. Self-similarity in world wide web traffic;

Evidence and possible causes. In IEEE/A CM Transactions on Networking,

5(6);835-846. December 1997.

112

[27] C. Cunha, A. Bestavros, and M. Crovella. Characteristics of WWW client-

based traces. IEEE/A CM Transactions on Networking, 1(3): 134 233, Jan

1999.

[28] C. Cunlia and C. Jaccoud. Determining www user's next access and its applica

tion to pre-fetching. In Proceedings of ISCC'97: The second IEEE Symposium

on Computers and Communications, pages 6-11, July 1997.

[29] K. Curewitz, P. Krishnan, and J. Vitter. Practical prefetching via data com

pression. In Proceedings of the ACM SIGMOD intemational conference on

Management of data, pages 257-266, Washington, D.C., 1993.

[30] B. Davison and V. Liberatore. Pushing politely: Improving web responsiveness

one packet at a time. Performance Evaluation Review, 28(2):43-49, September

2000.

[31] F. Douglis, A. Feldrnann, and B. Krishnamurthy. Rate of change and other

metrics: a live study of the world wide web. In Proceedings of USENIX

Symposium on Internet Technologies and Systems, 1997.

[32] D. Duchamp. Prefetching hyperlinks. In Proceedings of 2nd USENIX Sympo

sium on Internet Technologies and Systems, pages 127-138, 1999.

[33] A. Erramilli, O. Narayan, A. Neidhardt, and I. Saniee. Performance impacts

of multi-scaling in wide area TCP/IP traffic. In Proceeding of IEEE INFO-

COM'2000, volume 1, pages 352 -359, Tel Aviv , Israel, March 2000.

[34] L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web prefetching between low-

bandwidth clients and proxies: Potential and performance. In Proceedings of

A CM SIGMETRICS Conference on Measurment and Modeling of Computer

Systems, pages 178 -187, May 1999.

[35] A. Feldmann, A. Gilbert, P. Huang, and W. Willinger. Dynamics of ip traffic:

a study of the role of variability and the impact of control. In Proceedings

113

of the A CM SIGCOMM, pages 301 -313. Cambridge, Massachusetts, August

1999.

[36] A. Feldraann, A. Gilbert, and W. Willinger. Data networks as cascades: In

vestigating the multifractal nature of internet wan traffic. In Proceedings of

the ACM SIGCOMM, pages 25-38, Vancouver, B.C., 1998.

[37] A. Feldman, A. Gilbert, W. Willinger, and T. Kurtz. The changing nature of

network traffic: Scaling phenomena. In Proceedings of the A CM SIGCOMM

Conference, pages 5-29, April 1998.

[38] A. Foong, Y.-H. Hu, and D. Heisey. Adaptive web caching using logistic

regression. In Proceedings of 1999 IEEE Signal Processing Society Workshop,

pages 515-524, Madison, WI, August 1999.

[39] J. Gao and I. Rubin. Multifractal analysis and modeling of long-range depen

dent traffic. In Proceedings of the IEEE International Conference on Commu

nications (ICC), volume 1, pages 382 -386, 1999.

[40] A. Gillbert, W. Willinger, and A. Feldmann. Scaling analysis of conservative

cascades, with applications to network traffic. IEEE Transactions on Infor

mation Theory - Special Issues of on Multiscale Statistical Signal analysis and

its Applications, 45(3):971-991, 1999.

[41] S. Glassman. A caching relay for the World Wide Web. In Proceedings of the

1st World Wide Web Conference, pages 69-76, May 1994.

[42] C. Huang, M. Devetsikiotis, I. Lambadaris, and A. R. Kays. Modeling and

simulation of self-similar variable bit rate compressed video; A unified ap

proach. In Proceedings of the ACM SIGCOMM Conference, pages 114-125,

1995.

[43] K. ichi Chineu and S. Yamaguchi. An interactive prefetching proxy server for

improvement of www latency. In Proceedings of the Seventh Annual Conference

of the Internet Society (INET'97), Kuala Lumpur, Malasia, June 1997.

114

[44] S. Irani. Page replacement with multi-size pages and applications to web

caching. Algorithmica, 33(3):384-409, July 2002.

[45] Z. Jiang and L. Kleinrock. An adaptive network prefetch scheme. IEEE

Journal in Selected Areas of Communication, 17(4):358-368, April 1998.

[46] S. Jin and A. Bestavros. Popularity-aware greedy-dual size web proxy caching

algorithms. In Proceedings of the International Conference on Distributed

Computing Systems (ICDCS), Taiwan, May 2000.

[47] S. Jin and A. Bestavros. Sources and characteristics of web temporal locality.

In Proceedings of IEEE/A CM International Symposium on Modeling, Analysis

and Simulation of Computer and Telecommunication Systems, San Fransisco,

CA, August 2000.

[48] S. Jin and A. Bestavros. Temporal locality in web request streams. In Pro

ceedings of the ACM SICMETRICS Conference, pages 110-111, 2000.

[49] S. Jin and A. Bestavros. Greedy-dual* web caching algorithm. International

Journal on Computer Communications, 24(2):174-183, Febreuary 2001.

[50] R. Klemm. Webcompanion: A friendly client-sideweb prefetching agent.

IEEE Transactions on Knowledge and Data Engineering, ll(4):577-594,

July/August 1999.

[51] R. Kokku, P. Yalagandula, A. Venkataramani, and M. Dahlin. NPS: A non-

interfering deployable web prefetching system. In USENIX Symposium on

Internet Technologies and Systems, 2003.

[52] T. Kroeger, D. Long, and J. Mogul. Exploring the bounds of web latency

reduction from caching and prefetching. In USENIX Symposium on Internet

Technologies and Systems, 1997.

115

[53] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar

nature of ethernet traffic. IEEE/ACM Transactions on Networking, 2(1):1-

15, February 1994.

[54] T. S. Loon and V. Bharghavan. Alleviating the latency and bandwidth prob

lems in WWW browsing. In Proceedings of USE NIX Symposium on Internet

Technologies and Systems, pages 219-230, 1997.

[55] B. Mandelbrot. Intermittent turbulence in self-similar cascades: Divergence of

high moments and dimension of carrier. Journal of Fluid Mechanics, 62:331-

358, 1974.

[56] P. Mannersalo and I. Norros. Multifractal analysis of real atm traffic: A first

look. Technical Report COST257TD, VTT Information Technology, 1997.

[57] E. Markatos and C. Chronaki. A top-10 approach to prefetching on the web.

In Proceedings of the I NET Conference, 1998.

[58] R. L. Mattson, J. Gecsei, and I. T. D. Slutz. Evaluation techniques for storage

hierarchies. IBM Systems Journal, 9(2):78-117, 1970.

[59] J. Mogul. Hinted caching in the web. In Proceedings of the seventh A CM

SIC OPS European workshop, pages 103-108, Connemara, Ireland, September

1996.

[60] M. Molina, P. Castelli, and G. Foddis. Web traffic modeling exploiting tcp con

nections' temporal clustering through html-reduce. IEEE Network Magazine,

14(3):46-55, May 2000.

[61] M. Nabe and M. Miyahara. Analysis and modeling of world wide web traf

fic for capacity dimensioning of internet access lines. Elsevier Performance

Evaluation, 34(4):249 -271, December 1998.

[62] A. Nicholson, I. Zukerman, and D. Albrecht. A decision-theoretic approach

for pre-sending information on the www. In Proceedings of the 5th Pacific Rim

116

International Conference on Topics in Artificial Intelligence, pages 575-586,

Singapore, 1998.

[63] N. Niclausse, Z. Liu, and P. Nain. A new efficient caching policy for the

world wide web. In Proceedings of the Internet Server Performance Workshop

(WISP'98), pages 119-128, Madison, WI, USA, June 1998.

[64] A. Nogueira, P. Salvador, and R. Valadas. Modeling network traffic with

multifractal behavior. Telecommunication Systems, 24(2):339-362, December

2003.

[65] V. Padmanabhan and J. Mogul. Using predictive prefetching to improve world

wide web latency. In Proceedings of the A CM SIGCOMM Conference, pages

26-36, 1996.

[66] T. Palpanas and A. Mendclzon. Web prefetching using partial match predic

tion. In Proceedings of Web Caching Workshop, San Diego, California, March

1999.

[67] T. Palpanas. Web prefetching using partial match prediction. Technical Re

port CSRG-376, University of Toronto, Ontario, Canada, March 1998.

[68] A. Pandey, J. Srivastava, and S. Shekhar. Web proxy server with an intelligent

prefetcher for dynamic pages using association rules. Technical Report TR-

01-004, Department of Computer Science, University of Minnesota, January

2001.

[69] V. Paxson and S. Floyd. Wide-area traffic: The failure of wide-area traffic:

The failure of poisson modeling. In IEEE/A CM Transactions on Networking,

3(3):226-244, June 1997.

[70] J. Pitkow and P. Pirolli. Mining longest repeated subsequences to predict

world wide web surfing. In Proceedings of the Second USENIX Symposium on

Internet Technologies and Systems, Boulder, Colorado, USA, October 1999.

117

[71] S. Podlipriig and L. Bszrmenyi. A survey of web cache replacement strategies.

ACM Computing Surveys, 35(4):374-398, December 2003.

[72] K. Psounis and B. Prabhakar. A randomized web-cache replacement scheme.

In Proceedings of the IEEE INFO COM Conference, volume 3, pages 1407

1415, April 2001.

[73] M. Rabinovich and O. Spatscheck. Web Caching and Replication. Addison

Wesley, 1st edition, December 2001.

[74] R. Riedi, M. Grouse, V. Ribeiro, and R. Baraniuk. A multifractal wavelet

model with application to network traffic. IEEE Transactions on Information

Theory, 45(3):992-1018, April 1999.

[75] R. Riedi and J. Vehel. Multifractal properties of tcp traffic: a numerical study.

Technical Report RR-3129, INRIA Rocquencourt, France, March 1997.

[76] R. Riedi. Introduction to multifractals.

http: //www.dsp.rice.edu/publications/.

[77] A. Riedi, T. Bauschert, M. Perske, and A. Probst. Inverstigation of the

M/G/R processor sharing model for dimensioning IP networks with elastic

traffic. In First Polish-German Teletraffic Symposium PGTSDresden, Septem

ber 2000.

[78] L. Rizzo and L. Vicisano. Replacement policies for a proxy cache. IEEE/ACM

Transactions on Networking, 8(2): 158-170, April 2000.

[79] S. Schechtera, M. Krishnanb, and M. Smithc. Using path profiles to pre

dict http requests. In Proceedings of the 7th International World Wide Web

Conference, pages 457-467, April 1998.

[80] D. Serpanos, G. Karakostas, and W. Wolf. Effective caching of web objects us

ing zipf's law. In Proceedings of IEEE International Conference on Multimedia

and Expo, volume 2, pages 727-730, New York, NY, July/August 2000.

http://www.dsp.rice.edu/publications/

118

[81] J. Shim, P. Scheuermann, and R. Vingralek. Proxy cache algorithms: De

sign, implementation, and performance. IEEE Transactions on Knowledge

and Data Engineering, 11 (4):549-562, July/August 1999.

[82] D. Starobinski and D. Tse. Probabilistics methods for web caching. Perfor

mance Evaluation, 46(2-3):125-137, October 2001.

[83] N. Swaminathan and S. V. Raghavan. Intelligent prefetch in www using client

behavior characterization. In Proceedings of the Eighth Inter-national Sympo

sium on Modeling, Analysis and Simulation of Computer and Telecommuni

cation Systems (MASCOTS), pages 13-19, San Francisco, CA, August 2000.

[84] N. J. T. Tuah, M. Kumar, and S. Venkatesh. Resource-aware speculative

prefetching in wireless networks. In Wireless Networks, volume 9, pages 61-

72, 2003.

[85] J. Vehel and R. Riedi. Fractional Brownian motion and data traffic model

ing: The other end of the spectrum. Fractals in Engineering, pages 185-202,

January 1997.

[86] A. Venkataramani, R. Kokku, and M. Dahlin. TCP Nice: A mechanism

for background transfers. In Proceedings of the 5th Symposium on Operating

Systems Design and Implementation, volume 36, pages 329 - 343, 2002.

[87] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif, and M. Dahlin. The

potential costs and benefits of long-term prefetching for content distribution.

In The Sixth Web Caching and Content Distribution Workshop, 2001.

[88] Z. Wang and J. Crowcroft. Prefetching in world wide web. In Proceedings of

the Global Internet Symposium, pages 28-32, 1996.

[89] S. Williams, M. Abrams, C. Standbridge, G. Abdulla, and E. Fox. Removal

policies in network caches for world-wide web documents. In Proceedings of

the A CM SIGCOMM Conference, pages 293- 305, Stanford University, August

1996.

119

[90] W. Willinger, V. Paxson, and M. Taqqu. Self-similarity and heavy tails: struc

tural modeling of network traffic, a practical guide to heavy-tails: statistical

techniques and applications. Birkauser, Boston, 1998.

[91] R. Wooster and M. Abrams. Proxy caching that estimates page load delays.

In Proceedings of the 6th International World Wide Web Conference, pages

325-334, Santa Clara, CA, April 1997.

[92] N. Young. Online caching as cache size varies. In The Second Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 241-250, 1991.

[93] G. K. Zipf. Relative frequency as a determinant of phonetic change. Reprinted

from the Harvard Studies in Classical Philiology, Volume XL, 1929.

[94] I. Zukernian, D. Albrecht, and A. Nicholson. Predicting users' requests on the

WWW. In Proceedings of the 7th International Conference on User Modeling,

pages 275-284, 1999.

[95] A study of replacement algorithms for a virtual storage computer. IBM Sys

tem, 5(2):78-101, 1966.

[96] eAcceleration corporation. Webcelerator help page on prefetching,

http://www.webcelerator.com/webcelerator/prefetch.htm, 2001.

[97] . . In Proceedings of IEEE Global Telecommunications Conference GLOBE-

COM, pages 2518 -2522, Inst, of Telecommun., Aveiro Univ., Portugal, Novem

ber 2002.

[98] CacheFlow Inc. CacheFlow products web page,

http://www.cacheflow.com/products/, 2002.

[99] PeakSoft corporation. PeakJet 2000 web page.

http://www.peaksoft.com/peakjet2.htmL , 2002.

[100] Web 3000 inc. NetSonic internet accelerator web page.

http://www.web3000.com/, 2002.

http://www.webcelerator.com/webcelerator/prefetch.htm
http://www.cacheflow.com/products/
http://www.web3000.com/

120

[101] http;//www.w3.org/Protocols.

[102] Internet traffic archive: http://ita.ee.lbl.gov/.

[103] RizalSoftware. Net accelerator, http://www.rizalsoftware.com/.

http://www.w3.org/Protocols
http://ita.ee.lbl.gov/
http://www.rizalsoftware.com/

