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ABSTRACT 

Network congestion remains one of the main barriers to the continuing success of the 

Internet. For web users, congestion manifests itself in unacceptably long response 

times. One possible remedy to the latency problem is to use caching at the client, 

at the proxy server, or even within the Internet. However, documents on the World 

Wide Web (WWW) are becoming increasingly dynamic (i.e., have short lifetimes), 

which limits the potential benefit of caching. The performance of a WWW caching 

system can be dramatically increased by integrating document prefetching (a.k.a., 

"proactive caching") into its design. 

Prefetching reduces the perceived user response time, but it also increases the 

network load, which in turn may increase the response time. One main goal of 

this dissertation is to investigate this tradeoff through a mathematical model of a 

WWW caching/prefetching system, and to demonstrate how such a model can be 

used in building a real prefetching system. In our model, the client cache consists of 

a "regular" cache for on-demand requests and a "prefetching cache" for prefetched 

requests. A pool of clients connect to a proxy server through bandwidth-limited 

dedicated lines (e.g., dialup phone lines). The proxy server implements its own 

caching system. Forecasting of future documents is performed at the client based 

on the client's access profile and using hints from servers. Our analysis sheds light 

on the interesting tradeoff between aggressive and conservative prefetching, and can 

be used to optimize the parameters of a combined caching/prefetching system. We 

validate our model through simulation. From the analysis and/or simulation, we 

find that; (1) prefetching all documents whose access probabilities exceed a given 

threshold value may, surprisingly, degrade the delay performance, (2) the variability 

of WWW file sizes has a detrimental impact on the effectiveness of prefetching, and 

(3) coexistence between caching and prefetching is, in general, beneficial for the 
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overall performance of the system, especially under heavy load. 

Ideally, a caching/prefetching system should account for the intrinsic character

istics of WWW traffic, which include temporal locality, spatial locality, and pop

ularity. A second contribution of this dissertation is in constructing a stochastic 

model that accurately captures these three characteristics. Such a model can be 

used to generate synthetic WWW traces and assess WWW caching/prefetching de

signs. To capture temporal and spatial localities, we use a modified version of Riedi 

et al.'s multifractal model, where we reduce the complexity of the original model 

from 0{N) to 0(1); N being the length of the synthetic trace. Our model has the 

attractiveness of being parsimonious (characterized by few parameters) and that it 

avoids the need to apply a transformation to a self-similar model (as often done in 

previously proposed models), thus retaining the temporal locality of the fitted traffic. 

Furthermore, because of the scale-dependent nature of multifractal processes, the 

proposed model is more flexible than monofractal (self-similar) models in describing 

irregularities in the traffic at various time scales. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

WWW users can experience response times in the order of several seconds. Such 

response times can be quite unacceptable, causing some users to request the delayed 

files over and over again. This, in turn, aggravates the situation and further increases 

the network load and the perceived latency. Caching is an effective approach for 

reducing the user-perceived response time by, storing copies of popular WWW files 

in a local cache, a proxy server cache close to the end user, or even within the 

Internet. However, the benefit of caching diminishes as WWW files become more 

dynamic [31, 52, 35]. A cached file may become stale at the time of its request, 

because most WWW caching systems in use today are passive (i.e., files are fetched 

or validated only when requested). Moreover, users mostly click on hyperlinks to 

other files. If a hyperlinked file is accessed for the first time by the client and has 

not been requested by other clients who have a common cache with this client, 

then the file must be retrieved from the original server. The main consequence of 

these limitations is that the maximum hit ratio that can be achieved by any caching 

system is limited and was found not to exceed 50% [1]. 

Prefetching (or proactive caching) aims at overcoming the limitations of passive 

caching by proactively fetching files in anticipation of users future requests. In ad

dition to regular (static) files, the prefetched files may also include hyperlinked files 

that have not been requested before as well as dynamic objects ^[79, 68]. Moreover, 

since WWW files are frequently updated, stale cached files can be considered for 

prefetching, as well. 

'A dynamic object is a web file that is created by the server on the fly based on a certain 

number of parameters provided by the user 
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Although prefetching can increase the overall cache hit ratio, resulting in re

duced user response time, it consumes additional network resources because some 

prefetched files are never requested. This, in turn, can increase the response time 

if prefetching is not performed carefully. The prefetching problem has two aspects. 

The first one is how to specify the set of files that are most likely to be accessed in 

the near future. The second aspect is how to determine the number files to prefetch 

that would minimize the overall average response time. 

Most of the studies on WWW prefetching dealt with the first part of the prob

lem where a set of candidate files for prefetching is computed based on a prediction 

algorithm (see section 2.3). Each candidate file is identified by its name and its 

likelihood of being accessed in the near future. The likelihood value of a file repre

sents the probability of accessing such file in the near future. In these studies, either 

a threshold-based approach is used, whereby all files with access probabilities that 

exceed a fixed threshold value are prefetched, or a fixed number of the most popular 

files are prefetched. Both approaches may actually increase the average response 

time, since they do not consider the state of the network during the prefetching 

process [88, 24]. One solution to this problem is to dynamically adjust the prefetch

ing threshold and to vary the number of files to prefetch depending on the network 

state. The need for such a solution is one motivation behind this dissertation. 

An good WWW cac:hing/prefetching system must take into account in its design 

the intrinsic properties of WWW traffic. These properties include temporal locality, 

spatial locality, and popularity. Temporal locality measures the closeness in time 

between requests to the same file. Spatial locality measures the correlation between 

requests to different files (e.g., if file A is currently being requested, then there is a 

good chance that file B will be requested in the near future). Popularity refers to 

the overall likelihood of requesting a particular file, independent of other files. See 

section 2.1 for detailed descriptions of these properties. 

The ability to assess the performance of WWW caching/prefetching system 

hinges on the availability of a representative workload that can be used in trace-

driven simulations [18, 46]. Measured ("real") traces can also be used for this 
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purpose. However, due to the difficulty associated with capturing real traces, only 

a handful of such traces are available in the public domain (see [102] for public 

domain traces). This makes it hard to provide simulation results with reasonable 

statistical credibility. A more feasible alternative is to rely on synthetic traces that 

are derived from an approximate stochastic model. The need for such a model is 

another motivation behind this dissertation. 

1.2 Main Contributions 

The main contributions of this dissertations include the following: 

• Investigation of the suitability of using multifractal modeling techniques in 

capturing the essential properties of WWW traffic. 

• Development of two parsimonious (characterized by few parameters) multi-

fractal traffic models that accurately capture the essential WWW traffic prop

erties. 

• Mathematical modeling and analysis of a generic, hybrid prefetching/caching 

system and investigation of the tradeoff between the increased network load 

and the reduced user response time using such system. 

• Investigation of the impact of caching on the effectiveness of prefetching. 

• Development of an adaptive prefetching protocol that can optimize the client 

access latency based on the network state. 

1.3 Dissertation Overview 

In chapter 2, we provide a background of related topics that help discuss the re

maining chapters of this dissertation. This background includes the main WWW 

traffic properties and overview of WWW caching and prefetching mechanisms. 

We investigate the suitability of multifractal modeling in capturing the WWW 

essential traffic properties in Chapter 3. We develop two stochastic WWW traffic 
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models that can be used for performance evaluation of caching/prefetching sys

tems. Our models exploits the versatility of multifractal processes to simultane

ously capture the intrinsic properties of WWW traffic, namely temporal locality, 

spatial locality, and popularity. They have the attractiveness of being parsimonious 

(characterized by few parameters) and they avoid the need to apply nonlinear trans

formation to the 'basic' process, as often done in previous models [13], thus retaining 

the temporal locality of the fitted traffic. Because of the scale-dependent nature of 

multifractal processes, the proposed models are more flexible than a rnonofractal 

(self-similar) models in describing irregularities in the traffic at various time scales. 

In Chapter 4, we investigate the effectiveness of client-side prefetching in the 

presence of local and proxy caching systems. We analytically study the tradeoff 

between the increased network load and the reduction in the user response time due 

to prefetching. We then use our analysis to design a prefetching protocol that can 

optimize the user response time by dynamically adjusting the system parameters 

based on the network state. 

We conclude this dissertation in Chapter 5 and provide some directions for future 

research. 
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CHAPTER 2 

BACKGROUND 

2.1 WWW Traffic Characteristics 

In our context. WWW traffic represents the stream of clients requests seen by a 

WWW/proxy server. Understanding the properties of such a stream is key to 

designing good caching/prefetching systems [4]. In the following subsections, we 

describe these characteristics in details. 

2.1.1 Popularity 

Popularity refers to the overall likelihood of requesting a particular file, independent 

of other files. It was shown in [7, 17] that popular files on the WWW are "very pop

ular" meaning that references to a few number of files represent a high percentage 

of the total number of requests in a given stream of WWW requests. Several other 

studies showed that the distribution of the number of references a WWW file gets 

follows a Zipf-like distribution [41, 27, 4, 12]. Zipf's law was applied earlier in char

acterizing the frequency of using a given word in terms of its popularity rank [93]. It 

states that the relationship between a word's popularity rank (p) and the frequency 

(P) of using this word in a given text is given by: 

where a = 1. For a Zipf-like distribution, the constant a was found to take values 

between 0 and 1 [17], Thus, the nth most popular file is 2° times as likely to be 

accessed as the (2n)th most popular file. Figure 2.1 demonstrates the application of 

Zipf-like distribution to WWW requests. The figure shows the number of times that 

a file has been accessed versus the rank of the file in a given WWW trace, where 

rank 1 means the most frequently accessed file. Note that both axes are in the log 
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scale. It is clear that the curve fits a straight line reasonably well. The straight line 

on the log-log scale indicates that the number of requests is proportional to 1/p" 

where -a is the slope of the line. For this plot, the value of a = 0.65 was obtained 

using the mean-square error curve-fitting technique. 

.4 
10 

- Fitted 
— Empirical 

3 
10' 

. 2  
10' 

1 
10' 

0̂ 
10' 

10' 
File ranl< 

Figure 2.1: Frequency of file accesses versus file ranking. 

2.1.2 Temporal Locality 

Temporal locality refers to the likelihood that a file that has just been requested 

will be requested again in the near future. In other words, it measures the closeness 

in time between requests to the same WWW file. Accurate characterization of 

temporal locality is very important because utilizing such a property in the design 

of cache replacement policies can significantly improve the performance of a caching 

system. 

WWW traffic characterization has been the focus of several previous studies; 
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examples of which are given in [7, 4, 13, 27, 48, 47]. In these studies, the tem

poral locality of the traffic was represented by the marginal distribution of the 

stack distance string [58]. The stack distance string, which is an equivalent rep

resentation of a reference string, is obtained by transforming the reference string 

using the least recently used (LRU) stack , as follows. Let the reference string 

be Rt — {ri, r2,..., rt}, where rj is the file (or object) requested at time j. Note 

that a file may appear multiple times in Rt. Let the LRU stack at time t be 

St = {Obji, Obj-2, Objs, ...,Objn}, where Obji, Obj2,..., Objn are distinct files; Obji 

is the most recently requested file, Obj2 is the second most recently requested file, 

and so on. Let dt be the stack distance of the file referenced at time t (the position 

of the file in the LRU stack at time f — 1). Whenever a reference is made to a 

file, the LRU stack must be updated. If Vt+i = Obji, then the LRU stack becomes 

St+i = {Obji, 0bji,0hj2,Obji^i, Obji+i,Objn} and dt+i = i. Thus, for any 

reference string Rt = {ri, rg,..., rt}, there is a corresponding stack distance string 

D t  —  { d i , d . 2 , .  •  • ,  d t } .  

In [49], the authors studied the temporal locality of WWW traffic and concluded 

that such a phenomenon is induced by both temporal correlations and long-term 

popularity. More specifically, references to globally popular files tend to be close 

to each other in time. Furthermore, references to certain unpopular files may ex

hibit strong temporal correlations, if these references appear "clustered" in time 

(e.g., a file may be frequently requested but only during a short period of time). 

Long-term popularity suggests the use of the number of requests each file gets in 

caching decision (e.g, the Least Frequently Used caching policy (LFU)). On the 

other hand, the existence of temporal correlation suggests the use of the time since 

last access in caching decision (e.g., the Least Recently Used caching policy(LRU)). 

Accordingly, It is important to differentiate between the two aspects of temporal 

locality since this can help in cache design [48, 49]. The standard stack-distance-

string approach does not differentiate between the two sources of temporal locality, 

since the distribution of the stack distance string is predominantly affected by the 

popularity profile (i.e., long-term popularity). To address this problem, one needs 
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to neutralize the effect of popularity. The authors in [19] introduced a new measure 

for temporal locality, called the scaled stack distance, that attempts to do that. The 

scaled stack distance string is obtained by normalizing the stack distances by their 

expected values (assuming that requests to a given file are evenly distributed over 

the duration of the trace). Accordingly, the scaled stack distance string captures 

the deviation of the stack distances from their expected values, which is a measure 

of the clustering of the references. In other words, equally popular files would have 

the same expected stack distance but would differ in their scaled stack distances de

pending on the degree of short-term correlations. It was found that the distribution 

of both, the normalized and the non-normalized stack distance follows a lognornial-

like distribution. The following simplified example explains the concept. The effect 

of long-term popularity is seen in the reference stream ABACAADAEAAAEAF, 

in which temporal locality arises from the popularity of file A. The effect of short-

term temporal locality can be seen in the reference stream AABBCCDDEEFF, 

in which temporal locality arises from the repetition pattern of the files. 

2.1.3 Spatial Locality 

Spatial locality measures the correlation between requests to different files (e.g., if 

file A is currently being requested, then there is a good chance that file B will be 

requested in the near future). The reference stream ABC..ABE..ACB..ADEB.. 

illustrates this concept where with high probability file B is requested after file A 

being requested. Accurate characterization of spatial locality is fundamental to the 

prediction of future requests. 

In [4] the authors showed that spatial locality can be captured (at least, in part) 

through the autocorrelation structure (ACF) of the stack distance string. They 

argued that the stack distance string exhibits a long range dependent (LRD) behav

ior. An LRD behavior is implied by a persistent correlation where the summation 

of the ACF over all lags is infinite. To simultaneously model the marginal dis

tribution (temporal locality) and the correlation structure (spatial locality) of the 

stack-distance string, they relied on the work in [42], which proved the invariance 
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of the Hurst parameter (a parameter that describes the asymptotic behavior of the 

ACF) to transformations of the marginal distribution of an LRD process. More 

specifically, the authors in [42] proved that under some mild assumptions, a point-

by-point transformation Y = F~^{Fa;{X)) of a Gaussian self-similar process (see 

section 2.1.4 for details on self-similar processes) X with Hurst parameter H results 

in a self-similar process Y with the same Hurst parameter, where and Fy are 

the CDFs for X and Y, respectively. It should be noted, however, that this result 

is valid asymptotically and only for Gaussian processes (e.g., fractional ARIMA). 

More importantly, while this result assures the invariance of H, it does not neces

sarily preserve the shape of the ACF. As an example, consider the transformation 

of the Gaussian distribution of a F-ARIMA model into a lognormal distribution 

(this distribution adequately models the marginal distribution of the stack distance 

string [48, 19]). The resulting ACFs are shown in Figure 2.2, along with the ACF 

of the WWW stack distance string of the CLARKNET trace (see section 3.3.4 for 

details on the trace information). The figure illustrates two main drawbacks of the 

transformation-based approach. First, while the transformation may capture the 

asymptotic behavior of the ACF (the H parameter), it destroys the overall shape 

of the original ACF of the F-ARIMA model. Second, the original F-ARIMA model 

itself is not accurate in representing the real ACF at finite lags. 

To avoid these problems, in this dissertation, we resort to multifractal modelling 

to simultaneously capture the correlation structure and the marginal distribution of 

the stack distance string. 

2.1.4 Self-Similarity 

Self-similarity is a traffic property that is manifested by the presence of burstiness 

at all time scales, compared to the non-self-similar traffic (e.g., the Poisson traffic), 

which smooths off at large time scales as can be seen in Figure 2.3. In the figure, 

we show a self-similar time series and a poisson time series at different aggregation 

levels (time scales), 1,16,128, and 1024. As can be seen that the self-similar traffic 

is still bursty even at time scale 1024, while the poisson traffic almost smoothed out. 
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A self-similar time series has the property that when aggregated the new time 

series asymptotically has the same ACF as the original. In other words, given a 

stationary time series X — {Xt \ t — 0,1,2...), we define m-aggregated series by 

summing the original series X over non-overlapping blocks of size m as follows 

-  km 

=  -  E  ^ i , k  =  l , 2 . . . .  (2.1) 

Then if X is self-similar, it asymptotically has the same ACF as X^"^\ This means 

that the distribution of the aggregated series is the same as that of the original 

except for changes in scale (X = m}~^X^'^\ 0.0 < H < 1.0). 

An attractive feature of a self-similar process is that the degree of self-similarity is 

expressed by a single parameter, the Hurst parameter (iJ). This parameter expresses 

the rate of decay of the autocorrelation function, which is the same for all aggregated 

versions of the traffic time series. 

An LRD process is a self-similar process that has a slowly (hyperbolically) decay

ing ACF (// > 0.5). In an LRD time series, the summation of the autocorrelation 

values over all lags approaches infinity. Moreover, the variance of n samples does 

not decrease as a function of n~^, which is the case for for uncorrelated data, but 

rather as function of n"^, Q < ,8 < 1. 

The works in [53, 69, 90] pointed out that a self-similar traffic is constructed 

by multiplexing a large number of ON/OFF sources that have heavy-tailed ON 

and OFF periods. For WWW traffic in particular, Crovella and Bestavros [25, 26] 

showed an evidence that the traffic exhibits self-similar behavior. The existence 

of self-similarity was attributed to the ON/OFF behavior of WWW clients and the 

heavy-tailed distributions of WWW file sizes, the ON periods, and the OFF periods. 

2.1.5 Multifractality 

Multifractality is a generalization of self-similarity (monofractality), whereby the 

Hurst parameter is not fixed, but varies with time scale. This variability makes 

multifractal processes more flexible than monofractal processes in describing "ir
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regularities" in the traffic. Several studies demonstrated that wide-area network 

traffic exhibits a multifractal scaling behavior [85. 56, 75, 36, 39, 35, 33, 97, 64]. 

Feldmann et al. [36] explained the multifractal behavior of network traffic through 

multiplicative processes or cascades. Cascading is a process by which a component 

(number,mass) is fragmented into smaller and smaller components according to some 

rule, and at the same time fragments the mass associated with these components 

according to other rule. Random cascades were introduced by Mandelbrot as a 

model for turbulence [55]. The hierarchical structure of today's networks with their 

protocols can be viewed as a cascade process that fragments units of data at one 

layer into smaller units at the next layer [36]. The limiting construct of the fragmen

tation process is a multifractal structure. Comprehensive discussions of multifractal 

processes can be found in [37, 76, 40, 74] and the references therein. 

Original, M=1 M=16 IVI=128 M=1024 

50 0 50 0 50 0 

Self-similar traffic 
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Figure 2.3: Self-sirnilar traffic versus Poisson traffic. 
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2.2 WWW Client Model 

The authors in [13] described a WWW client as an ON/OFF process where it 

alternates between ON and OFF periods. The ON period is the period during 

which files are being transferred, and the OFF period is the period the user spends 

reading a retrieved document (an html file and its inline objects) before clicking on 

another WWW document. The OFF period was found to conform to a heavy-tailed 

distribution [12, 27, 60]. 

A random variable X is said to have a heavy-tailed distribution, F if 

lim (1 - F { x ) )  ~ a;-", 0 < a < 2. (2.2) 
x—^oo 

Significance of heavy-tailed distribution is that they result in bursty user traffic [90]. 

The length of an ON period depends on the number of embedded files in an html 

document, the sizes of these files, and the way a client is connected to the Internet. 

The number of embedded files in a WWW document plus the main WWW file was 

found to follow a heavy-tailed distribution [13, 60]. 

Knowing the sizes of WWW files is useful in the design of caching systems. 

Although there is a difference between sizes of files hosted by WWW servers and 

the sizes of file transfers from servers to clients, both characteristics were found to 

be fairly close [6, 12]. Previous works have shown that file sizes follow a heavy-tailed 

distribution [61, 12, 27, 60]. 

2.3 Approaches to Reduce WWW Response Time 

WWW caching provides a good solution for the WWW latency problem by bringing 

documents closer to clients. As mentioned before, caching can be deployed at various 

points in the Internet; within the client browser, at or near the server (reverse proxy) 

to reduce the server load, or at a proxy server. A proxy server is a computer that 

is often placed near a gateway to the Internet (see Figure 2.4) and that provides 

a shared cache to a set of clients. Client requests arrive at the proxy regardless of 

tlie WWW servers that host the required documents. The proxy either serves these 
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requests using previously cached responses or obtains the required documents from 

the original Web servers on behalf of the clients. It optionally stores the responses 

in its cache for future use. Hence, the goal of proxy caching is twofold. First, proxy 

caching reduces the access latency for a document. Second, it reduces the amount 

of external traffic that is transported over the wide-area network (primarily from 

servers to clients), which also reduces the user's perceived latency. A proxy cache 

may have limited storage in which it stores popular files. Whenever the cache is full 

and the proxy needs to cache a new file, it has to decide which file to evict from 

the cache to accommodate the new file. The policy used for the eviction decision is 

referred to as the replacement policy. 

Figure 2.4: Possible locations for deploying WWW caching. 

Caching in the web works in a similar maimer to that of a traditional mem

ory system [95]. However, caching policies for traditional memory systems do not 

necessarily perform well when applied to WWW traffic for the following reasons; 

• In memory systems, caches deal mostly with fixed-size pages, so the size of the 

page does not play any role in the replacement policy. In contrast, WWW files 

vary in size, and the file size can affect the performance of the policy [92, 44], 

• The cost of retrieving missed WWW files from their original servers depends 

on several factors, including the distance between the proxy and the origi

nal servers, the size of the file, and the bandwidth between the proxy and 

the original servers. Such dependence does not exist in traditional memory 

systems. 
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• WWW files are frequently updated, which means that it is very important to 

consider the file expiration date at replacement instances. In memory systems, 

pages are not generally associated with expiration dates. 

• As discussed before, the popularity of WWW files follows a Zipf-like law. 

Accordingly, file popularity needs to be considered in any WWW caching 

policy to optimize a desired performance metric. A Zipf-like law has not been 

noticed in memory systems 

Several WWW replacement policies have been proposed in the hterature to deal 

with the above issues (see for example, [1, 89, 91, 18, 8, 63, 38, 5, 6, 2, 81, 78, 80, 

49, 46, 82, 72, 9, 71, 11]). 

While WWW caching is considered to be passive (i.e., files are fetched or vali

dated only when requested). Prefetching refers to proactive fetching of WWW files 

in anticipation of users future requests. Prefetching can be deployed in three ways: 

1. Between client and WWW server [15, 28, 24, 3, 22, 66, 50, 65, 83]. 

2. Between WWW proxy and WWW server [52, 43, 20, 57, 21], 

3. Between client and WWW proxy [54, 34]. 

Regardless of where prefetching is deployed, the key metric used to evaluate a given 

prefetching scheme is the latency seen by the end user when requesting a file. 

A prefetching scheme can be "non-speculative", whereby a list of specific files are 

prefetched. For example, the user can specify a list of files to be downloaded at the 

beginning of any new browsing session. Examples of such mechanisms can be seen in 

commercial products such as PeakJet2000 [99], Net Accelerator [103], NetSonic [100], 

Webcelerator [96], and CacheFlow [98]. Non-speculative mechanisms can consume 

extra network resources because some prefetched files are never requested. Moreover, 

the number of prefetched files does not depend on the network state, which may 

worsen the performance for highly loaded systems. Speculative prefetching is a way 

to reduce the amount of wasted resources due to prefetching files that are never used 
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[16, 65, 59, 52, 54, 24. 57, 34, 94, 79, 32, 87]. In these mechanisms, a prediction 

algorithm is used to restrict prefetching to a list of candidate files that are most 

likely to be requested in the near future. The prediction algorithm compiles a list 

of candidate files and the probabilities of accessing these files in the near future. 

Most speculative prefetching approaches are based on a fixed threshold where 

only files with a likelihood of being accessed exceeds certain static threshold value 

are prefetched. These approaches may actually increase the average response time, 

since they do not consider the state of the network when prefetching [88, 24]. 

There are few prefetching protocols that consider the negative effect of prefetch

ing. Davison et al. [30] proposed a prefetching scheme that uses a connectionless 

protocol. They assumed that prefetched data are carried by low-priority datagrams 

that are treated differently at intermediate routers. Although such prioritization is 

possible in both IPv6 and IPv4, it is not widely deployed. Kokku et al. [51] proposed 

the use of the TCP-Nice congestion control protocol [86] for low-priority transfers 

to reduce network interference. They used an end-to-end monitor to measure the 

spare capacity of the server. The reported results show that careful prefetching 

is beneficial, but the scheme seems to be conservative because it uses an additive 

increase(increase by 1), multiplicative decrease conservative policy to decide about 

the amount of prefetching. Crovella et. al [24] sliowed that a rate-control strategy 

for prefetching can help reduce traffic burstness and queuing delays. Our work is 

different from these works since it adopts a dynamic approach that tries to optimize 

the effect of prefetching without being so conservative. Moreover, it is based on a 

thorough analysis of the system parameters that can control the prefetcliing gain. 

The authors in [45, 84] consider a dynamic threshold-based prefetching solution, 

assuming a group of clients who share a single access to the Internet and within 

only a single level of caching (browser cache). Furthermore, they implicitly assumed 

that clients have high-bandwidth connections relative to the capacity of the shared 

access link . This assumption led to the conclusion that it is enough to specify a 

threshold value for prefetching based on the network condition and then prefetch 

all documents with access probabilities that exceed that value. 
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As discussed above, speculative prefetching approaches rely on good prediction 

algorithms to achieve their goals. Such algorithms are based on information about 

the past. The sources of this information are the client, the proxy server, and the 

WWW server. Most prediction algorithms track the patterns of accesses by using 

some variations of Markov modeling. A Markovian algorithm represents the files 

accessed by a client as a string of their IDs. The recurrence of a part of a certain 

pattern triggers the prefetching of the remainder of the pattern. Such algorithms 

are implemented using a weighted directed graph where each node represents a file 

(see Figure 2.5). The weights of the edges usually represent probability vahies. 

For example, the weight 0.3 of the edge from node A to node C says that if file 

A is requested, then with probability 0.3 file C will be requested next or in the 

near future. Such algorithms can only predict the next file or some files that are 

likely to be accessed in the near future. Examples of these algorithms are found 

in [16, 65, 62]. Markovian algorithms discussed above are considered first-order 

algorithms in the sense that they only consider the client's last access in predicting 

the next request. On the other hand, there are some algorithms that consider the 

last m requests in their prediction [79, 94, 70]. One such algorithm called Prediction-

by-Partial-Matching (PPM) [14, 29, 67, 34, 66] is based on the Partial Matching data 

compressor. In contrast to Markovian algorithms, there are other algorithms that 

make use of the structure information of the WWW documents (i.e., hyperlinks that 

connect different files) [45, 32]. 



Figure 2.5: Markovian predictor. 
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CHAPTER 3 

MULTIFRACTAL MODELING OF WWW REQUESTS 

3.1 Introduction 

A representative WWW workload helps to judge the performance of WWW 

caching/prefetching protocols using trace-driven simulations [18, 17, 46, 49]. More

over, such workload can help in the process of WWW servers design and resource 

dimensioning. Real traces can be used for this purpose but they lack the flexibility 

of testing "what if" scenarios that need to be considered for future planning pur

poses. A more feasible alternative is to rely on stochastic models that can generate 

representative synthetic workloads. The need for such models is the main motiva

tion behind this modeling work. In this chapter, by WWW traffic we mean the 

sequence of WWW files served by a WWW server in response to clients' requests. 

The popularity profile (how frequently each file is requested) is assumed to be given, 

as it can be computed easily from the WWW server log files or it can be modeled 

using a zipf's-like law. 

In this chapter, we present a modified version of Riedi et al.'s multifractal model 

[74]. We use this modified version to simultaneously capture the temporal and spa

tial localities of WWW traffic. Riedi's model has the attractiveness of being able to 

simultaneously approximate the (lognormal) marginal distribution and the correla

tion structure of the traffic. Its main disadvantage is its complexity, which grows 

linearly with the size of the generated trace. We modify this model, reducing its 

complexity to 0(1). The resulting model is parsimonious in that it is characterized 

by four to five parameters representing the mean, variance, and correlation struc

ture of the "normalized stack distance" string. Figure 3.1 shows the accuracy of 

the multifractal model (which we describe in Section 3.2) in capturing the ACF of 

the stack-distance string of a WWW trace. The popularity profile of the traffic 
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is incorporated in the model during the trace generation phase, assuming that the 

popularity profiles for all files are given beforehand. Our model is mainly intended 

for offline generation of the traffic demand seen by a WWW server. Accordingly, 

the popularity profiles can be easily computed from the server logs. 

.0 10 
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• • • Synthetic 

•1 
10' 

,-3 
10' 

10 
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Figure 3.1: Accuracy of the multifractal model in capturing the ACF of the stack 
distance string of a real WWW trace. 

In [74] the authors used a wavelet-based construction of a multifractal process 

to show that the correlation behavior of a strongly correlated time series can be 

approximately captured by appropriately setting the second moments of the wavelet 

coefficients of the multifractal process. This result provides the basis for modeling 

the ACF of the stack distance string. Combined with the fact that the above 

multifractal model exhibits an approximately lognormal marginal distribution, it 

can be used to model both the temporal and spatial localities in WWW traffic. 

As was described in Chapter 2, the normalized stack distance string has a 

lognormal-like distribution and a slowly decaying correlation structure (i.e., LRD 
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behavior). We employ the multifractal model to capture both the marginal distri-

bution and the correlation structure of the normalized stack distance string. We 

use extensive simulations to evaluate the performance induced by our WWW traf

fic model and contrast it with the self-similar model in [4] and the model in [19], 

using the original (real) traces as a point of reference. Our evaluation measures 

include sample statistics of the synthetic traces (e.g., mean, variance, correlations, 

percentiles) as well as the cache and byte hit ratios for a trace-driven LRU cache. 

The results indicate marked improvement in accuracy when using the proposed 

multifractal-based WWW model. 

The transformation used to generate the stack distance string has an effect on 

the accuracy of the model. We demonstrate this effect considering an alternative to 

the stack distance string, namely the inter-request string. File inter-request string 

is defined as the number of requested files between any two references to the same 

file. 

The rest of the chapter is organized as follows. In Section 3.2 we give a brief 

overview of Riedi et al.'s multifractal model and the modification we make to it 

to render it parsimonious. The proposed WWW traffic generation model, which 

considers the stack distance string approach is given in Section 3.3 with simulation 

results. The alternative proposed model, which considers the inter-request string 

approach is described in Section 3.4 along with simulation results that contrast the 

model to its stack distance version. 

3.2 Multifractal Analysis of WWW Traffic 

As indicated earlier, multifractality is a generalization of monofractality (self-

similarity), where the fixed (scale independent) H parameter of a self-similar pro

cess is now scale dependent. The variability in the H value gives added flexibility to 

multifractal processes, allowing them to characterize irregularities in the data being 

modeled. Furthermore, certain multifractal processes, including the one considered 

in this work, inherently exhibit an approximately lognormal-like marginal distribu
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tion, in line with the shape of the (fitting) marginal distribution of typical WWW 

traces. This convenient feature allows us to avoid the risky step of transforming the 

marginal distribution, leaving us with the task of fitting the ACF. In this section, 

we first briefly describe Riedi et al.'s multifractal model [74], This model uses a 

wavelet-based construction to approximately capture the correlation behavior of a 

given time series by appropriately setting the second moments of the wavelet coef

ficients at each scale. Its main deficiency is its complexity, which grows linearly (in 

the number of parameters) with the size of the generated trace. We then describe 

how we modify this model to reduce its complexity to 0(1), and then we apply the 

modified model to characterize the temporal and spatial localities of WWW traffic. 

3.2.1 Riedi et al.'s Multifractal Model 

Riedi et al.'s model relies heavily on the discrete wavelet transform. The idea behind 

the wavelet transform is to express a signal (time function) X(t) by an approximated 

(smoothed) version and a detail. The approximation process is repeated at various 

levels (scales) by expressing the approximated signal at a given level j by a coarser 

approximation at level j — I and a detail. At each scale, the approximation is 

performed through a scaling function </»(t), while the detail is obtained through a 

wavelet function More formally, a wavelet expansion of the signal X{t) is given 

by: 

OO 

EE (3.1) 
k j=J k 

where 

(3.2) 

(3.3) 
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and V'j.fc and (f)j^k, j , k = 0,1,2,, are shifted and translated versions of the wavelet 

and scaling functions tp{t) and 4>{t), respectively, and are given by: 

V'i.fcW = (3.4) 

(pj,k{t) = - k). (3.5) 

In (3.1), the index J indicates the coarsest scale (the lowest in detail). The 

coefficients Wj^k and Uj^k are called, respectively, the wavelet and scale coefficients 

at scale j and time 2^k. Together, they define the discrete wavelet transform of the 

signal X{t), assuming that 0(t) and ijj{t) are specified. Several wavelet and scale 

functions have been used in the literature, giving rise to different wavelet transforms. 

One popular (and simple) transform is the Haar wavelet transform. This transform, 

which is specified by the coefficients Wj^k and Uj^k for all j and k, can be obtained 

recursively as follows (we adopt the same convention of [74], where the higher the 

value of j, the better is the approximation of the original signal): 

TT _ + Uj+I^2k+1 c;\ 
^i,k (3-0) 

T j r  U j  +  l f i k  -  U j  +  i ;2k +  l  T N  Wj^k = ^ (3-7) 

To initialize the recursion, the values of Uj^k, k = 0,1, 2-' — 1, at the highest 

value of j are taken as the empirical trace to be modeled. Figure 3.2 depicts the 

generation process of the scale coefficients (from top to bottom). 

In order to generate synthetic traces with a given autocorrelation structure, the 

Haar transform is reversed by rewriting (3.6) and (3.7) as: 

TT _ (o 0\ Uj+i f lk  -  ^ (3.») 

T T  ( o  n\ 
iJj+i,2k+i ^ (3.9) 
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Uj+2,4k Uj+2,4k+l Uj+2,4k+2 Uj+2,4k+4 

Uj+l,2k Uj+l,2k+l 

Figure 3.2: Process of generating the scahng coefficients in the DWT. 

Now to generate nonnegative data, which in our case represent the stack dis

tance string, we need to have \Wj^k\ < Uj^- To satisfy this constraint, the wavelet 

coefficients can be defined as: 

where Aj^k is a random variable (rv) defined on the interval (—1,1). Using (3.8), 

(3.9), and (3.10), the following recursion can be obtained for synthesizing the scale 

coefficients: 

The rvs Aj^k must also satisfy the following additional constraints [74]: 

1 .  Aj^k, k = 0,1, . . . . ,  2 - '  — 1 ,  are i.i.divs that can be represented by the generic rv 

Aj having the same CDF as Aj k. 

2. For each j, the probability density function of the rvs Aj^k, fc = 0,1,..., 2^ — 1, 

is symmetric with zero mean. 

(3.10) 

(3.11) 

(3.12) 
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3. Aj is independent of Ai for I > j and is also independent of I7o,o-

The wavelet energy at a given scale is given by the variance of the wavelet 

coefficients at that scale. It has been shown that the correlation structure of the 

signal can be approximately captured by controlling the wavelet energy decay across 

scales [74]. The ratio of the energy at scale j — 1 to the one at scale j {j is finer 

than j — 1) was found to be [74]; 

„ EjAU] 

E[W]\ E[A%l + E[AI_^\) ^ '  

Assuming that E[ W j ]  is given for all j, Equation (3.13) can be used to solve for 

E[ A J ] ,  j = 1,2, The recursion can be initialized using E [ A q ]  =  where Wo 

and U o  are the wavelet and scale coefficients at the coarsest scale. 

In [74], the authors suggested two different distributions for A j .  One of them is 

a symmetric beta distribution that has the following pdf: 

where p j  is the parameter of the rv and /?(.,.) is the beta function. The variance of 

this random variable is given by: 

The other distribution is a point-mass distribution defined as: 

Pr[A' = Cj] = PxlAj = -Cj] = rj 

Pr[.4j = 0] = 1 - 2rj 

In the case of a beta distributed A j ,  the parameter p j  at each scale can be found by 

solving (3.13) and (3.15), resulting in: 

Pi = + 1) - 1/2 (3.16) 

This, however, assumes that E\\Vj] is given for j = 1,2,3, Since rjj, j = 

1, 2 , . . . ,  cannot be obtained using a parametric model, it must be computed from 
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the empirical data, which makes the number of fitted parameters in the model in 

the order of N; N being the trace length. 

On the other hand, if A j  has a point-mass distribution, then (3.13) by itself is not 

sufficient to compute both parameters of Aj (cj and rj). An alternative approach for 

computing these parameters is to rely on the following expression for the moments 

of the scaling coefficients at different scales: 

5= 1 , 2 , . . .  ( 3 . 1 7 )  

However, to apply (3.17) one needs to have two moments (i.e., two values for 

q) for each scale j. Again, unless we can compute these values using a parametric 

model, we have to rely on the empirical data to do so, which makes the model more 

complex than if a beta distributed Aj were to be used. 

With either distribution of Aj, it was shown in [74] that the above model gener

ates positive-valued autocorrelated data with an approximately lognormal marginal 

distribution. 

3.2.2 Reducing the Number of Parameters 

As shown in the previous section, whether Aj is a beta or a point-mass rv. one needs 

to provide the second moments of the wavelet coefficients or two moments of the 

scale coefficients at each scale in order to completely determine Aj, j = 1,2,.... This 

significantly increases the complexity of the model, as the number of parameters to 

be computed a priori is in the order of the trace length. Moreover, the point-mass 

rv is not rich enough and takes only three possible values. 

To reduce the complexity of the model, we select Aj to be a continuous-valued rv 

w i t h  o n e  p a r a m e t e r .  T h e n  u s i n g  ( 3 . 1 7 )  w i t h  g  =  2 ,  w e  c o m p u t e  t h e  p a r a m e t e r  o f  A j ,  

j = 1,2,..., assuming that we can compute the ratio E[Uj]/E[Uj_i] using a small 

number of parameters (the mean fj,, the variance a, and the correlation structure of 

the modeled data), as shown later. The selection of the rv Aj will be discussed in 

Section 3.2.3. 
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For a discrete time series X  = { X i  :i = l,2,...}, we define = { x j ; " ^ ^  ; i = 

1 , 2 , . . . }  t o  b e  t h e  a g g r e g a t e d  t i m e  s e r i e s  o f  X  a t  a g g r e g a t i o n  l e v e l  m :  

nm 

X j r ^ =  ^ i , n = l , 2 , 3 , . . . , N / m  (3.18) 

where m= 1, 2,4,8, . . . J V ;  N  is the length of X .  Note that if the aggregation level 

m corresponds to scale j, then the aggregation level 2m corresponds to scale j — 1. 

From the definition of the Haar wavelet transform, the following holds: 

= 2-,/._gSL fo, „ = 1 2 (3 19) 
jSKXP-))!] •' ^ 

From (3.19) and (3.17) we get: 

= (3.20) 

where = A j ^i. Evaluating (3.20) at q  =  2 ,  we obtain the following expression: 

1 P-21) 

To reduce the number of parameters in the multifractal model, we need to ana

lytically obtain £J[(X^'"^)^] for all possible values of in. The variance at aggregation 

level m, varfX^™'] = V^"^\ can be expressed in terms of the autocorrelation function 

of the signal [23]: 

=  m v  +  2 v  (m — k ) p k  (3.22) 
k~l 

The mean, ^[(X^™^)] = is given by: 

= mfi (3.23) 

where and v  are the mean and variance of the original signal, respectively. The 

second moment of is then given by: 

m 
£;|^(j5f M)2] _ _|_ 2y ^ (yix — k)pk + (3.24) 

k=i 
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From (3.21) and (3.24), the parameter of the rv Aj can be computed for all 

scales j — 1,2,.... given /x, v, and the correlation structure of the time series 

being modeled. For normalized stack distance strings, we found that the form pk = 

g-/3 A: = 0,1,... , fits the correlation structure very well, where g is a function 

of the lag k. For both the ClarkNet and the Worldcup98 traces, g{k) = k produced 

a good fit to the empirical ACF, while for the Calgary trace, g{k) — log (A: 4-1) was 

found appropriate. Figures 3.3, 3.4, and 3.5 show the fitting of the ACF functions 

for the three traces. 

Calgary: {i=1.31, n=1.7, g(k)=Log(k+1) 
0 
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Figure 3.3: Fitting the correlation structure of the normalized stack distance string 
(Calgary trace). 

In summary, to use the multifractal model for modeling the normalized stack 

distance string, we only need five parameters: 

• Mean of the normalized stack distance string (//). 



41 

ClarkNet: p=1.72, n=5.9. g(k)=k 
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Figure 3.4: Fitting the correlation structure of the normalized stack distance string 
(ClarkNe.t trace). 
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Worldcup98:P=2.38, n=8.5, g(k)=k 
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Figure 3.5: Fitting the correlation structure of the normalized stack distance string 
(Worldcup98 trace). 
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® Variance of the normalized stack distance string (v). 

• Autocorrelation structure (parameterized by /5, n, and g). 

Using these parameters, along with (3.24) and (3.21), one can compute the param

eter of the rv Aj at each aggregation level (scale). 

The synthesis process starts from the highest level of aggregation. At this level 

we can start with I data points that are normally distributed with mean muiJ. (the 

mean at aggregation level vfih) and variance of var[X'^™''^], where ruh is the highest 

aggregation level. After that, the process can be carried out using (3.11) and (3.12). 

3.2.3 Selecting the Random Variable Aj 

As indicated earlier, the rv variable Aj must be symmetric with zero mean and 

defined on the interval (-1,1). To reduce the number of parameters of the multifractal 

model, we require that the Aj is specified by one parameter only. There are many 

rvs that can satisfy these conditions. The difference between one rv and another is 

the range of the values that the ratio jE[(X('"^)^]/E[(X^^"*^)^] can take. 

Theorem 3.2.1 For any random variable X, the following hold: 

Proof: See Appendix A. 

As an example, consider the uniform rv in the range [—c, c], where |c| < 1. The 

variance of tliis rv is given hy V = c-/3. Solving (3.21) for c, we get: 

Since c < 1, 
£:[(X(H)2] ^ 1 
£;[(X(2m))2] < 3 

Using similar calculations. Table 3.1 shows the upper bound for a number of popular 

rvs. 
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Random variable Upper bound 

Symmetric beta(/), p) 0.5000 
Uniform(—c, c) 0.3333 
Triangular(—c, 0, c) 0.2917 
Normal(0, cr) 0.2778 

Table 3.1: Upper bound on the ratio for various distribu
tions. 

For the three traces we use in this work, the ratio did 

not exceed 0.3333, and as a result, we decided to use the uniform rv since it is the 

simplest one. 

3.3 Stack distance Model 

In this section, we describe our stack distance approach for modeling the stream of 

file objects generated by a WWW server. Let U be the number of unique files (or ob

jects) at the server and let fvi be the fraction of times that the ith file, i — 1, 2...., U, 

appears in the reference string {fri is the popularity profile of file i). The modeling 

approach proceeds in three steps. First, we extract the stack distance string from 

the URL reference string. Then, we apply some form of normalization to capture 

both sources of temporal locality (temporal correlation and long-term popularity). 

The modified multifractal model described in the previous section is then applied 

to model the normalized stack distance string. Finally, we incorporate the popular

ity profile of the traffic during the process of generating synthetic reference strings. 

These steps are described next. 

3.3.1 Extracting the Empirical Normalized Stack Distance String 

In this model, we use the concept of stack distance to model the temporal and spatial 

localities in WWW traffic. The authors in [13] extract the stack distances from the 

original trace assuming an arbitrary initial ordering of the stack. Whenever an object 

is requested, its depth in the stack (stack distance) is recorded and the object is 
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pushed to the top of the stack. In our model, we avoid making any assumptions 

on the initial ordering of the stack, which we have found to disturb the marginal 

distribution and the correlation structure of the stack distance string. We start with 

an empty stack and process the empirical reference string in the reverse direction, 

starting from the last reference. If a file is referenced for the first time (in the reverse 

direction), it is put on top of the stack but no stack distance is recorded. Otherwise, 

if the file has already been referenced before (hence, it is already in the stack), then 

it is pushed from its previous location in the stack to the top of the stack and its 

depth is recorded as a stack distance. Finally, the resulting trace of stack distances 

is reversed to get the correct stack distance string. The following example illustrates 

the idea. Consider the reference string [adcbcddab], where each letter indicates 

the name of a file. If we process this string starting from the end, the first reference 

is to file b. Since this is the first time file b is being referenced, we push it to the 

top of the stack without recording any distance. The same procedure is performed 

for the next two references (for files a and d). The fourth reference (from the end) 

is for file d. Since this file has been referenced before, it gets pushed to the top of 

the stack and its stack depth is recorded (in this case, the stack depth for file d is 

one). The procedure continues until all references are processed (see Figure 3.6). 

The end result of this process is the stack distance stream [4 3 2 4 1]. 

Temporal locality in a stream of WWW requests is attributed to two factors: 

long-term popularity and short-term temporal correlations. Both factors are im

portant for cache design [48, 47], and must therefore be incorporated in the model 

for temporal locality. In [48], it was found that the (lognormal) distribution of 

the stack distance string is predominantly affected by the popularity profile (i.e., 

long-term popularity). So the marginal distribution of the stack distance (without 

normalization) does not capture the effect of short-term temporal correlations. 

To accurately capture the temporal locality of the traffic, we need to isolate 

the effect of popularity from that of short-term correlations. One solution is to 

have a separate stack-distance-string model for equally popular objects. Another 

solution, used in our work, is to capture how much a stack distance deviates from 
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Reference string Q Q E 

Stack distance 
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Figure 3.6: Example showing our approach for extracting stack distances from a 
real trace. 

its "expected" value. This deviation is captured by normalizing (scaling) the stack 

distances by their expected values. The resulting scaled stack distance string is a 

measure of how files are clustered over the trace length (temporal correlation). This 

measure is insensitive to the popularity profile, so it allows us to separately model 

the popularity profile and the short-term temporal correlations. 

The expected stack distance for a file i is computed as follows: 

where /, is the number of references to file i [19]. For the three studied traces, we 

found that the normalized stack distance string has an approximately lognormal 

marginal distribution. Figures 3.7, 3.8, and 3.9 show the fitting of the lognormal 

marginal distribution of the normalized stack distance string for the three traces. 

3.3.2 Modeling the Normalized Stack Distance String 

To model the normalized stack distance string, we need to determine n, v, (3, and 

n. Once the values of these parameters are determined, the multifractal model de

scribed in Section 3.2 can be used to capture the marginal distribution and the cor

relation structure of the normalized stack distance string. Note that spatial locality 
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Figure 3.7: Marginal distribution of the normalized stack distance string (ClarkNet 
trace). 
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Figure 3.8: Marginal distribution of the normalized stack distance string (Calgary 
trace). 
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Worlclcup98 
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Figure 3.9: Marginal distribution of the normalized stack distance string (World-
cup98 trace). 
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is captured by modeling the autocorrelation function of the unsealed stack-distance 

string. However, since the rnuitifractal model is applied to the scaled version of the 

stack-distance string, we have to invert back the synthesized trace of the rnuitifrac

tal model so that the resulting trace models the unsealed version of the data. The 

pseudo-code in Figure 3.10 describes the modeling process. The function GenNorm-

StackDistance takes five input parameters. The first three parameters are //, v, and 

the ACF of the normalized stack distance string to be generated. The fourth pa

r a m e t e r ,  N ,  i s  t h e  l e n g t h  o f  t h e  s y n t h e t i c  n o r m a l i z e d  s t a c k  d i s t a n c e  s t r i n g .  T h e  f i f t h  

parameter, I, is the number of data points at the coarsest scalc. GenNormStackDis-

tance starts by computing the number of aggregation levels, NurnAggLevels (line 

2). In line 4, the second moment of the normalized stack distance string at aggre

gation level m = 1 is computed. The for loop starting in line 5 is used to compute 

the second moment for the remaining aggregation levels. The for loop that starts 

from line 8 computes the summation in (3.24). In line 11, the second moments at 

higher aggregation levels are computed using (3.24). The second moments ratio, 

j5[(X('"))2]/£^[(X^^'"^)^], is computed in line 12. The parameter of the rv is 

computed in line 13 using (3.21) and substituting for the variance of the uniform 

rv in After computing these parameters, the mean of the time series 

at the highest aggregation level is computed in line 15 using (3.23). The variance 

at the highest aggregation level is computed in line 16. In line 17, I data points are 

generated to represent the coarsest level. The while loop starting from line 19 is 

used to continue the generation process using (3.11) and (3.12). 

3.3.3 Modeling Popularity and Generating Synthetic Reference Strings 

To generate a synthetic WWW reference string, we first generate a synthetic nor

malized stack distance string, as shown in the previous section. The process of 

generating a synthetic WWW reference string starts by arranging the unique files 

of the WWW server in an LRU stack. This is done by sampling from a probabil

ity distribution that is weighted by the popularity profiles of the various files (i.e., 

the more popular a file is, the more likely it will be placed closer to the top of 
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GenNormStackDistance(/x, v ,  P k ,N,l) 
2 NumAggLevels = [log2(A^/i)] 
3 m = 1 
4 SecMom{l) = mv -f- ni^iJ? 
5 for i = 2 to NumAggLevels Do 
6 m = 2m 
7 sum = 0 
8 for k = 1 to m Do 
9 sum = sum + {m — k)pk 
10 end for 
11 SecMom{i) — mv-\-2vs + m^p? 

12 SecMomjratios{NumAggLevels — i + 1) = 

13 AParm{N umAggLevels — i + 1) = 
\/3(4 SecMom-ratio(NumAggLevels — i + 1) — 1) 

14 end for 
15 IJ.h = ^ ^ 
16 Vh = SecMom{N umAggLevels) — 
17 NormStkDist — normjrandom{fj.h, \/\4,1) 
18 i = l 
19 While{length{NormStkDist) < N) Do 
20 A — Uniform.random{—AParm{i),AParm{i),length{N ormStkDist)) 

21 NormStkDist = [NormStkDist NormStkDist 
22 i — i + 1 
23 end while 
END 

Figure 3.10: Algorithm for generating synthetic scaled stack distance strings. 
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the stack). This ordering approach was used in [19]. It is known to provide more 

accurate results than using an arbitrary ordering. Note that even though the prob

ability of selecting a given unpopular file is small, the probability of selecting any 

of the unpopular files is relatively large (because of the large number of unpopular 

files). So, probabilistically, there is a good chance that some unpopular files will 

b e  p l a c e d  n e a r  t h e  t o p  o f  t h e  s t a c k .  T o  g e n e r a t e  a  r e f e r e n c e  s t r i n g  o f  l e n g t h  N ,  

we first compute the number of references a file can get according to its popularity 

profile. Then, the top file in the LRU stack is considered as the next referenced file 

in the synthetic reference string. If the required number of references for this file is 

reached, then this file is flushed out of the stack. Otherwise, it is pushed down the 

stack according to the next value in the normalized stack distance string. This is 

done after scaling back the normalized stack distance by multiplying it by the cor

responding expected stack distance for the object in hand (objects with the same 

popularity profile have the same expected stack distance). Note that our notion of 

a "stack" allows for the insertion of an object in between two objects in the stack, 

which does not happen in a regular LRU stack. This process continues until the 

popularity profiles of all objects are satisfied (no files are left in the LRU stack). The 

pseudo-code in Figure 3.11 describes the generation process. Function GenTrace ac

cepts three parameters: the synthetic normalized stack distance (NormStkDist), 

the number of requests each file gets (req), and the Iru stack with the files ordered 

according to the popularity profile (i.e., placed randomly according to the empirical 

distribution of the popularity profiles). The while loop in line 4 is used to generate 

the reference string. Line 5 is used to record the next reference, Ref(i), taken as 

the file at the top of the LRU stack. Then the number of outstanding references to 

this file, req{Ref{i)), is reduced by one (line 7). If this number reaches zero, then 

the file is dropped out the stack. Otherwise, the next stack distance, StkDist, is 

computed in line 11 by scaling back the normalized stack distance according to the 

popularity of the file. The file is then pushed StkDist positions down the stack. 

The while loop in line 4 is continued until the LRU stack is empty. 
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GenTrace{NormStkDist, req, Iru) 
2 i = 0 
3 k = 0 

4 While(stack is not empty) Do 
5 Ref{i)=top{lru) 
6 i = i + 1 
7 req{Ref{i)) — req{Ref{i)) — 1 
8 if {req{Ref{i)) —— 0) then 
9 drop file from the stack 
10 else 
11 StkDisf = Sca\e-IisLck{NormStkDist{k) ,Ref {i)) 
12 Push-Top-Fi\e-Down-Sta.ck{StkDist) 
13 k = k + l 
14 endif 
15 end while 
END 

Figure 3.11; Algorithm for generating synthetic WWW strings. 

3.3.4 Performance Evaluation 

In this section, we evaluate the accuracy of the proposed multifractal model and 

contrast it with two other models. The first model is a self-similar (monofractal) 

model [4, 13]. This model involves transforming the Gaussian marginal distribution 

of a fractional ARIMA process into a lognormal distribution. We simply refer to 

this model as the LRD model. The second model was proposed by Cherkasova 

et al. [19]. The three investigated models were mainly designed for offline traffic 

generation, with the primary purpose of generating synthetic traces for use in cache 

design studies. Accordingly, we compare these models in terms of the file and 

byte miss ratios seen at an LRU cache that is driven by synthetic traces from these 

models. The comparison is made with reference to the cache performance seen under 

the real traffic. As real traffic we use three data sets that were obtained from three 

separate WWW servers log files: the Computer Science Department WWW server 

at the University of Calgary, the WWW server at ClarkNet (a commercial Internet 
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provider in Baltimore, Washington DC), and from the WorIdcup98 WWW servers 

[102]. Table 3.2 provides a summary of the main features of the data sets. More 

details can be found in [102, 7]. Note that the three traces have contrasting loads 

(in requests/second). The Calgary's load is the lightest while the Worldcup98's load 

is the heaviest. 

Trace 
Feature Calgary ClarkNet Worldcup98 

Log duration one year one week One day 
Start date Oct 24, 1994 August 28, 1995 May 6, 1998 
Log size (MB) 52.3 120.1 107 
Total number of requests 726,739 1,164,868 1,193,353 
before reduction 
Total number of requests 567,519 1,125,092 1,033,567 
after reduction 
Number of unique files 8,220 20,168 3,824 
Number of files referenced 1,752 5,279 665 
only once 

Table 3.2: Summary of the data sets used in the modeling study. 

The data sets contain several pieces of information, including the name of the 

host that generated the URL request, the day and time the request was recorded, 

the name of the requested file, the HTTP reply code (explained below), and the 

number of transferred bytes in response to the request. Four types of HTTP reply 

codes were recorded: successful, not modified, found, and unsuccessful. A successful 

code indicates that the requested file was found at the server and was returned to 

the client. The client may have a copy of a file, but may want to verify if this copy 

is up-to-date or not. If the file is up-to-date, the server responds with a not modified 

code. The found code indicates that the requested file is available at a different server 

whose address is provided in the response. Finally, the unsuccessful code indicates 

that the requested file is not available, the client has no permission to access the 

file, or that there is an error. In our analysis, we only included the requests with 

successful code, since they are the ones that result in actual data transfer from the 
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server. We also excluded dynamic files (e.g., cgi and pi files). Figures 3.12. 3.13, 

3.14, 3.15, 3.16 and 3.17 show the simulation results for the three modeles. 
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Figure 3.12: File miss ratio versus cache size (Clarknet trace). 

It is clear that of the three models, the proposed multifractal model produces 

the most accurate results, especially for small cache sizes. The relative accuracy in 

terms of capturing the behavior of the real data is greater in the case of the Calgary 

data. Consider, for example, the Calgary data with a normalized cache size of 0.3. 

Tlie percentage inaccuracies in the file miss rate for the multifractal model, the LRD 

model, and Cherkasova et al.'s model are 0.5%, 53%, and 111%, respectively. In the 

case of the byte miss rate, the corresponding values are 4.9%, 65%, and 109%. The 

overall improvement in the accuracy of the file and byte miss rates due to the use 

of the multifractal model is significant. Moreover, our model captures the spatial 

locality which is not reflected through the file/byte miss ratios of the LRU caching 

policy. To show how well our model captures this property, we also compared the 

inter-request times (number of requested files between any two references to a given 
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Figure 3.13: Byte miss ratio versus cache size (Clarkuet trace). 
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Figure 3.14: File miss ratio versus cache size (Calgary trace). 
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Figure 3.15: Byte miss ratio versus cache size (Calgary trace). 
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Figure 3.16: File miss ratio versus cache size (Worldcup98 trace). 
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file) in the real data to those in the synthetic traces of the models. We found 

that the sequence of inter-request times is non-stationary (has a clear decreasing 

trend). So we normalized this sequence by the expected inter-request time, which 

is equal to l/Zr,-, for file i. The mean, variance, percentile values, and some values 

of the autocorrelation function for the normalized inter-request times are shown in 

Tables 3.3,3.4, and 3.5. Note that the mean, variance, percentile values of the inter-

request times are measures of the temporal locality, while the autocorrelation is a 

measure of the spatial locality. 

Statistics Real data Multifractal 
model 

Cherkasova's 
model 

LRD model 

/i 0.954 0.937 0.806 0.905 
<7 1.032 1.164 1.918 1.428 

Pi 0.130 0.118 0.000 0.060 

P5 0.076 0.075 0.000 0.020 

PlO 0.061 0.058 0.000 0.009 

P25 0.039 0.039 0.000 0.001 

Percentiles 75% 1.306 1.149 0.778 1.063 Percentiles 
90% 2.233 2.210 1.697 2.161 

Percentiles 

98% 3.976 4.230 4.980 5.051 

Table 3.3: Statistical comparisons for CLARKNET trace. 

3.4 Inter-request Distance Model 

In this model, we capture the main properties of WWW traffic using the inter-

request distance string. Analogous to the stack distance model, the marginal dis

tribution of the inter-request distance string can be used as a measure of temporal 

locality since it measures the closeness in time between requests to the same file. 

Spatial locality is captured by the inter-request distance correlation structure. To 

distinguish between temporal correlation and long-term popularity, as was done in 

the stack distance model, we normalize the inter-request distances by their expected 

values for the case when the files are uniformity distributed over the whole trace. 



Statistics Real data Multifractal 

model 

Cherkasova's 

model 

LRD model 

0.714 0.68 0.62 0.907 

a L541 2.010 7.080 4.224 

Pi 0.192 0.185 0.000 0.030 

Ps 0.070 0.063 0.000 0.030 

PlQ 0.036 0.036 0.000 0.027 

P25 0.009 0.010 0.000 0.023 

Percentiles 75% 0.813 0.813 0.771 0.326 Percentiles 

90% 1.790 1.790 2.293 2.046 

Percentiles 

98% 4.289 5.241 5.531 6.644 

Table 3.4: Statistical comparisons for CALGARY trace. 

Statistics Real data Multifractal 

model 

Cherkasova's 

model 

LRD model 

P 0.990 0.951 0.823 0.941 

a 0.986 1.137 1.718 1.289 

Pi 0.054 0.054 0.000 0.098 

P5 0.027 0.037 0.000 0.089 

PlQ 0.025 0.030 0.000 0.071 

P2h 0.022 0.023 0.000 0.034 

Percentiles 75% 1.373 1.136 0.856 1.134 Percentiles 

90% 2.266 2.099 1.727 2.101 

Percentiles 

98% 3.843 4.210 4.666 4.726 

Table 3.5: Statistical comparisons for WORLDCUP98 trace. 
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The expected value of the inter-request distance for a file p  { I R { p ) )  in the uniform 

case is defined as; 

£|/R(rt| = (3.27) 
J ^ p  

where f r ^  is the popularity of file p .  

The marginal distribution of the normalized inter-request distance string was 

found to have the same distribution as the normalized stack distance string (log-

normal distribution). The correlation structure model of the normalized stack dis

tance string, pk = e~^ can be used for the normalized inter-request distance 

string too. 

After extracting the normalized inter-request distance string from the empirical 

reference string, we compute its mean ft, variance a^, and fit its correlation structure. 

These parameters directly capture a real workload, as opposed to the parameters of 

the stack distance string. Using these parameters, the multifractal model can then 

be applied to generate normalized inter-request distances. 

3.4.1 Traffic Generation Process 

To generate a synthetic reference string, we first need to model the inter-arrival 

distance of new files (for simplicity we only consider the marginal distribution). As 

expected, this marginal distribution was found to follow a log-normal like distribu

tion. The process of generating synthetic reference string starts by arranging the 

unique files in a vector according to their popularity, as we do in the stack distance 

model. After sampling from the distribution of the inter-arrival distance of new 

files, we assign each file in the vector a location (real value). This is the location 

of the first occurrence of each file in the generated trace. The first file is assigned a 

location value of zero. Knowing the popularity profile and the trace length, we com

pute the number of requests each file gets. Next, we scan the vector starting from 

the first file. If the file reaches the required number of requests, we skip it and go 

to the next file in the vector. Otherwise, the location of the next request to the file 

is computed as the current reference location plus the next synthetic inter-request 



64 

distance. This is done after scahng the normahzed inter-rcquest distance back by 

multiplying by the file's expected inter-request distance. Another reference to this 

file is inserted into the vector according to the new location. The process continues 

until all files reach their required numbers of requests. The example in Figure 3.18 

illustrates the process. In this example, we assume that we have four unique files, 

a, b, c, and d, with popularity profile {(a,0.1), (b,0.2), (c,0.3), (d,0.4)}. Suppose we 

want to generate a synthetic trace of length 10. We first order these files in a vector 

according to their popularity profile (the more popular a file is, the more likely it 

will be placed close to the top of the vector). Let the initial order be [d b c a]. 

Sampling from the distribution of the new files inter-arrival distance, we assign the 

locations of the first occurrences of the files in the trace. We assign the first file in 

the vector a position 0.0. Suppose that the new files inter-arrival distance samples 

are {3.4,3.4,3.6}. Then file d takes position 0.0, file b takes position 0.0 + 3.4 = 3.4, 

file c takes position 3.4 + 3.4 = 6.8, and file a takes position 6.8 + 3.6 — 10.4. Now we 

generate a normalized inter-request distance synthetic string using the multifractal 

model. Let this string be {3.8,1.34,1.05,0.28,1.4,1.53}. Using (3.27), we compute 

the expected inter-request distance for all unique files, which in our example are 

found to be {(a,10.0),(b,5.0),(c,3.33),(d,2.5)}. Scanning the vector from the top, we 

find that file d is on the top of the vector with a position 0.0. The first normalized 

inter-request distance is 3.8. Scaling this value back by multiplying by the expected 

inter-request distance for file d, we can compute the po.sition of the next reference 

to file d, which is equal to 0.0 + 3.8 * 2,5 = 9.5. A new reference to file d is inserted 

in position 9.5. The process continues until all the required number of references 

for all files are satisfied. Once a file reaches its required number of references, it is 

skipped (as can be seen in the fifth column from the left in Figure 3,18, where file 

b is skipped), 

3,4,2 Performance Evaluation 

In this section, we evaluate the performance of the inter-request distance (IRD) 

model, and compare it with the stack distance (SD) model. Both models are mainly 
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Figure 3.18: WWW synthetic trace generation process. 

intended for offline generation of WWW synthetic traces. We compare the two 

models in terms of the file miss ratio seen by an LRU cache that is driven by synthetic 

traces from both models. Moreover, since the spatial locality is not reflected through 

the file miss ratios of the LRU caching policy, we also compare both models in 

terms of the mean, variance, correlation, and percentile values of the inter-request 

distance string of the synthetic traces. We found that the inter-request distance 

string exhibits a clear increasing trend and for this reason we used the normalized one 

in the comparison. The real traffic is considered as a reference for the comparison. 

Tables 3.6 and 3.7 show the inaccuracies in the LRU miss ratios resulting from two 

traces (relative to the cache miss ratio for the real trace). The cache size is measured 

as a percentage of the total size of the unique files. It is clear that the IRD model 

is more accurate than the SD model, which is an indication of a better capturing of 

the temporal locality of the real trace. For example, in the worldcup98 trace with 

a cache size of 10%, the percentage of inaccuracies in the file miss rate for the IRD 

model and the SD model are given by 5.34% and 15.6% respectively. Tables 3.8 and 

3.9 show the inaccuracies in the mean, variance, correlation, and in some percentile 

values of the normalized inter-request distance string from both traces. Again, it is 

clear that the IRD model is more accurate than the SD model in capturing these 
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statistics, which is an indication of better capturing of the spatial locality of the real 

trace. 

Cache Size (%) Real data SD Model IRD Model 

Miss Ratio (%) Error (%) Error (%) 

4% 27.9 3.02 3.1 

6% 19.6 3.61 3.6 

8% 14.7 11.8 5.25 

10% 11.5 15.6 5.34 

15% 6.70 11.8 7.57 

20% 4.32 1.94 2.1 

25% 3.05 4.54 4.54 

30% 2.23 10.3 6.19 

35% 1.71 14.2 5.91 

40% 1.35 15.5 5.68 

45% 1.07 13.3 8.33 

50% 0.88 9.69 6.93 

Table 3.6: Cache miss ratio inaccuracy for the worldcup98 trace. 



Cache Size (%) Real data SD Model IRD Model 

Miss Ratio (%) Error (%) Error (%) 

4% 31.7 4.71 1.21 

6% 25.2 9.05 3.97 

8% 20.8 12.0 3.41 

10% 17.6 14.7 4.79 

15% 12.4 18.2 6.3 

20% 9.26 19.4 6.77 

25% 7.22 19.4 6.27 

30% 5.77 17.7 4.35 

35% 4.72 14.7 0.81 

40% 3.96 11.4 3.33 

45% 3.39 7.66 2.31 

50% 2.96 3.78 3.5 

Table 3.7: Cache miss ratio inaccuracy for ClarkNet trace. 

Statistics Real data SD Model IRD Model 

Error (%) Error (%) 

0.990 3.94 0.81 

a 0.986 15.3 0.51 

Pi 0.054 0.00 1.85 

P5 0.027 37.0 25.9 

1̂0 0.025 20.0 8.00 

Percentiles 75% 1.373 17.3 3.71 

90% 2.266 7.37 1.37 

98% 3.843 9.55 1.74 

Table 3.8; Statistical comparisons for the worldcup98 trace. 
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Statistics Real data SD Model IRD Model 

Error (%) Error (%) 

0.954 1.78 0.52 

a 1.032 12.8 0.68 

Pi 0.130 9.23 1.54 

P5 0.076 1.32 1.32 

PlO 0.061 4.92 0.00 

Percentiles 75% 1.306 12.0 8.04 

90% 2.233 1.03 0.54 

98% 3.976 6.39 0.55 

Table 3.9; Statistical comparisons for ClarkNet trace. 
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CHAPTER 4 

WWW PREFETCHING MODEL 

4.1 Introduction 

Aggressive or Non-controlled prefetching was found to degrade the performance by 

increasing the load in the system, which is in turn my worsen the WWW client per

ceived latency. Accordingly, in this chapter we investigate the trade off between the 

reduction in the response time and the increase in the system load due to prefetching. 

The aim of such investigation is to come up with a dynamically controlled prefetch

ing protocol that can balance this trade off and optimize the performance. Such 

protocol can dynamically adjust the degree of prefetching (how much to prefetch) 

according to the state of the system. We achieve this goal through a mathematical 

model that incorporate the system essential paymasters to characterize both effects 

of prefetching. 

The rest of the chapter is organized as follows. In Section 4.2 we describe the 

prefetching system architecture. In Section 4.3 we describe our network access model 

and derive an expression for the prefetching gain as a function of the system param

eters (system load and cache parameters). In Section 4.4, we treat the prefetching 

problem as an optimization problem, where we compute a threshold value for the 

prefetching precision. Moreover, we answer the question of "How many documents to 

prefetch?"' In Section 4.5, we describe the use of our model in designing a prefetching 

protocol. In Section 4.6, we discuss the effects of proxy caching and local caching on 

prefetching performance. In Section 4.7 we validate our model througli simulations. 

4.2 Prefetching System Architecture 

Consider a group of WWW clients who are connected to a proxy server through 

dedicated lines (i.e., dial-up modems, cable modems, DSL, etc.) of capacity r bits 
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per second (see Figure 4.1). The proxy server is connected to the Internet via an 

access hnk of capacity C bps. A client is assumed to run one browsing session 

at a time. The case of multiple sessions will be treated in a future work. Each 

client maintains a local cache. To generalize the treatment, an arbitrary cache 

replacement policy is assumed and is parameterized by its hit ratio he- A very small 

portion of the client cache is reserved for prefetching, and is called the prefetching 

cache. The remaining portion is called the regular cache. It was reported in several 

studies (e.g., [4, 18, 27, 17]) that the hit ratio increases as the logarithm of the cache 

size. Hence, reserving a small portion of the cache for prefetching has a negligible 

effect on the hit ratio of the regular cache, making this hit ratio almost independent 

of prefetching. The regular cache stores demand-requested documents, whereas the 

prefetching cache stores prefetched documents. A demand-requested document that 

happens to be in the prefetching cache is considered for regular caching (i.e., is moved 

to the regular cache). Accordingly, a given document cannot be in both caches at 

the same time. Prefetched documents are brought to the local cache from either 

the proxy server (if available) or are retrieved from the original WWW server. The 

performance of the proxy cache is described by its hit ratio hproxy, which is assumed 

to be independent of prefetching (the proxy does not cache any prefetched file). We 

verify this point later in the simulations. Each client alternates between active (ON) 

periods, during which the client retrieves some documents, and idle (OFF) periods, 

during which the retrieved information is read by the user (see Figure 4.2). An ON 

period starts with the retrieval of an html file (the main document), which is usually 

followed by the retrieval of its inline files. 

Each client runs a prediction algorithm that predicts future requests using the 

history of the client's requests and hints from the proxy and original servers. We 

assume that the HTTP protocol can be easily modified to include these hints in 

the header of the response to any regular request. Typically, the outcome of the 

prediction algorithm becomes available right after the receipt of the main document. 

We assume a generic prediction model, where the predictor computes a set of k 

candidate files Di, D2, •. •, Dk and the probabilities of accessing them in the next 
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Figure 4.1: Components of the prefetching system. 

user's active period , Pk). For example, one can adopt the scheme in 

[45] with a straightforward modification to account for hints from the proxy server 

(the details of such modification will be described later). Note that the events 

of requesting any two or more files in an ON period are not necessarily mutually 

exclusive, i.e., Pi can be greater than one. The prefetcher uses the information 

provided by the predictor to prefetch files in the subsequent OFF period, starting 

from the one with the highest access probability. The number of prefetched files 

depends on the length of the OFF period and the state of the network. If the OFF 

period is large enough, prefetching ends before the start of the next ON period. 

Otherwise, the client instructs the proxy to stop forwarding the currently prefetched 

file once a new demand-request (new ON period) is issued. Any partially prefetched 

file is kept in the prefetching cache to be used in any future access to such a file. 

A demand-request is first served from the local cache (regular or prefetching cache) 

if available. Otherwise, the request is forwarded to the proxy server. If the proxy 

server docs not have the requested file in its cache, it retrieves it from the original 

server. 
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Figure 4.2; Client, behavior. 

4.3 Analysis of Prefetching Gain 

In this section, we study the benefit of client-side prefetching using access delay 

as the performance metric. The improvement in the access delay is indicated by 

the ratio of the average access time of an arbitrary demand-requested file ' under 

prefetching (Ap) to the average access time of such a file without prefetching (A„p). 

We call this ratio the access improvement index (/). Prefetching is advantageous 

when I < I. We study the effectiveness of prefetching in reducing the average access 

time for a given client. In the absence of client caching and prefetching, the proxy 

server is assumed to retrieve files from the original servers at a rate A (in files per 

second) in response to requests from all clients. Note that caching and prefetching 

can impact the rate of bringing files from their respective servers. 

Prefetching always increases the hit ratio of the client cache because prefetched 

files do not replace any cached ones (they are stored in the prefetching cache). 

Suppose that, on average, a client prefetches Np files in a given OFF period. Then, 

the average number of "useful" files is: 

m  =  N p P  (4.1) 

p p.  — 
where P = ' (0 < P < 1) is the prefetching precision [73]. The increase in the 

client-cache hit ratio due to prefetching is given by: 

(4.2) 

^ A web document consists of one or more files. 
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where is the average number of files in an ON period. This says that for each 

demand-requested file, there are useful prefetched ones. 

If a client does not employ prefetching, a requested file is brought from the local 

cache, the proxy cache, or the original server. The corresponding access times for a 

file of an average size s are 0, Voi(s), and tserv{s), respectively. Hence, the average 

access time without prefetching for a file of size s is 

-^np (1 ^c) • (^proxy^prox (s) + (1 - ^proxy ) ̂ serv m (4.3) 

When prefetching is employed, the access time from the original server is denoted 

by fgervi^)- Note that / tserves) because prefetching files for a given client 

increases the traffic seen by other clients that share the same access link, which as 

a result affects the given client. The time to retrieve a demand-requested file from 

the proxy cache is not affected by prefetching, because prefetching is done in the 

OFF period of that client, who communicates with the proxy via a dedicated line. 

Accordingly, 

— (1 h(. ^h)'(^hproxytproxi^^^ ^proxy^^servi.^^^' (4-4) 

From (4.3) and (4.4), the access improvement index becomes: 

J (1 ~ /ic ~ ^ h ) - { h p r o x y t p r o x { ^ )  4" (1 ~ hproxy)t 

(1 .{^hproxy^prox(^^ ) + (l- ̂ proxy^^serv ( s ) )  •  

We assume that tservis) and t'^ervi^) dominated by the queueing/service de

lays at the shared access link between the proxy server and the Internet (downlink 

direction). This assumption is justified when the pool of clients that share the ac

cess link is large, as is often the case in ISP networks. To compute tserv{s) and 

^seri;(^)> inodel the queueing/service delays at the proxy using an M/G/R Pro

cessor Sharing (M/G/R-PS) system. Riedl et al. [77] suggested the use of this 

model for the dimensioning of IP access networks with elastic traffic and concluded 

its suitability for WWW delivery systems, particularly when file sizes are large. The 

rationale behind employing the M/G/R-PS approximation is that in the underlying 

WWW delivery system, multiple file downloads occur simultaneously over different 
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connections (clients). These downloads are serviced by a shared link (processor) of 

capacity C. In our case, clients can be limited by the bandwidth r of the dedicated 

access link, which can be less than C. A special case of the M/G/R-PS is when 

R= 1. In this case, a single client can fully utilize the capacity of the shared access 

link. For a client's peak rate r, the shared link behaves approximately as a system 

with R = C/r servers. If there are n customers in the system, then each customer 

gets a fraction of the capacity C that depends on n; if n < R , then each customer 

gets a fixed fraction r/C. Otherwise, each customer gets a fraction 1/n. This means 

that up to R flows can be served simultaneously, each at rate r bps. 

For the M/G/R-PS model, the mean file transfer time is given by [77]: 

t = (4.6) 
r 

where s is the file average size and 

f ( „\ ^ 1 I E2{R, P) 

2Lji=0 i! + R\ 1-p 

Equation (4.8) is the Erlang C formula. The utilization of the access link is given 

by p = Xs/C. The quantity //? is called the delay factor. It is a measure of how link 

congestion affects the response time. 

To apply the above model, we need to compute the average load on the shared 

access link (downward direction) for the prefetching and no prefetching cases. The 

average load in the case of no prefetching (with caching only) is given by: 

_ (1 — hproxy)ii — hc)Xs . . 
Pnp ^ 

This represents the downlink traffic in response to client requests that cannot be 

satisfied from either the regular cache or the proxy cache. 

When prefetching is implemented, an average of Np files are retrieved during the 

OFF period. Hence, the average load on the shared access link under prefetching is 
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given by; 
(1 hproxy)(i he A/i + NpfNon)Xs ^ ^ ^ 

Pp — ^ • \^4.iUj 

This is the load on the downlink in response to requests that cannot be satisfied from 

the regular, the prefetching, or the proxy caches, plus the extra prefetched traffic 

ij^)- Note that for each demand-requested file, there are on average Np/Non 

prefetched ones. 

Because each client performs prefetching during its idle (think) periods and only 

one browsing session is allowed per client, the queuing delay at the (dedicated) 

proxy-client link can be safely ignored. Hence, the average time to retrieve an 

arbitrary file of size s from the proxy server is tproxis) = f. 

From (4.5) and (4.6), the improvement index reduces to: 

J (1 ^h) - (^hproxy "t" (^ hproxy) fr(^PP)) 
(1 - hc).{h proxy -f- (1 hproxy)fR{pnp)) 

4.4 Prefetching Gain Optimization 

In this section, we study the performance of a generic prefetching system. We use 

the analysis in Section 4.3 to optimize the effect of prefetching. Intuitively, there are 

two factors that affect the mean access time for a file. On the one hand, prefetching 

more files improves the overall hit ratio and, as a result, reduces the number of files 

that need to be retrieved from the original server. On the other hand, prefetching 

more files results in increasing the load on the shared access link, which affects 

the retrieval time of other missed files (which are not in the cache nor are being 

prefetched). Hence, a client should be careful not to prefetch every file suggested 

by the predictor, as this may lead to increasing the overall average access time. 

Accordingly, we seek to compute the optimal number of files to prefetch in an 

OFF period. Before trying to find this optimal value, we need to study the behavior 

of J as a function of Np. It can be mathematically shown (see below) that if prefetch

ing a single file or a fraction of a file does not lead to any gain, then prefetching 

more files can only worsen the performance. On the other hand, if there is a gain 

out of prefetching a single file or a fraction of a file, then there is a unique optimal 
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value for the average number of prefetched files in an OFF period. The following 

theorem describes the general relationship between I and Np. It also specifies the 

condition under which prefetching is beneficial. 

Theorem 4.4.1 Suppose that files are prefetched in a decreasing order of their ac

cess probabilities, start,ing from the most likely one. Then the following hold: 

1. If prefetching a single file or a fraction of a file does not improve the mean 

file access time, then increasing the number of prefetched files does not do any 

better. 

2. If there is a gain out of prefetching, then there is only one optimal value for 

the average number of prefetched files in an OFF period. 

3. For prefetching to be of a value, the following condition must be satisfied: 

where 

(1 Pnp ) (1 hproxy Pnp ) 

and P{Np = 1) is the prefetching precision when, on average, only one docu

ment is prefetched in an OFF period. In other words, P{Np — 1) is the average 

access probability of the first file to prefetch in the list of candidate files. 

Proof: See Appendix B. 

It is clear from Theorem 4.4.1 that a prefetching protocol must first decide 

whether to prefetch or not based on the prefetching condition (threshold). After 

that, if prefetching is beneficial, then the optimal number of files to prefetch can 

be computed. To find this optimal value, we need to solve the equation = 0 

for Np. Unfortunately, such an equation cannot be analytically solved, except for 

some special cases, as shown in the rest of this section. In general, one can rely on 

numerical methods to solve for the optimal Np, which we denote as N*. 
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4.4.1 Prefetching Precision Independent of Np 

Consider the special case when P is independent of Np (i.e., all files have the same 

access probabiHties). Accordingly, the condition in (4.12) translates into having the 

file access probability greater than Pfh- In this case, N* can be computed analytically 

for two special cases, as described in the following theorem. 

Theorem 4.4.2 Consider the case when P is independent of Np, P > Pth, and 

i? = 1. Then, 

1. 

where 

> 0 

N* = ^ Largest number of candidate (4.14) 

files subject to pp < 1, otherwise 

A  ^  ^  ( 4  x 5 )  
ViVon(i- M y  ^  •  ' 

P A —2/>„p(l — P){1 — pnp) H Ifi"! 
® - (1 ̂  K)N^ 

O ^ (1 - p„,)'- LJVf" (te - l) (4.17) 
^proxy ^ ^ 

2. If no proxy caching is used (hproxy = Oj, then the higher the number of 

prefetched files, the higher is the prefetching gain. 

Proof; See Appendix C. 

Figure 4.3 depicts I as a function of Np for the special case when P is constant, 

R = 1, and hproxy = 0. It is clear that when P > Pth, 1 decreases monotonically 

with the number of prefetched documents. In this case, I can be maximized by 

prefetching all documents with access probabilities greater than Pth [84]. 

For the other cases, I does not necessarily decrease monotonically with the num

ber of prefetched files. This is shown in Figure 4.4-a {R = 10 and hproxy = 0) and 

Figure 4.4-b (i? = 1 and hproxy = 0.6). It can be seen from Figure 4.4-a that when 

P = 0.4, I decreases with the increase in Np up to a certain point, after which the 
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trend is reversed. Furthermore, when P ^ Pth, the trend in the access improve

ment becomes monotone. This is because the improvement in the hit ratio is more 

signiticant than the loss due to the increased traffic. Moreover, prefetching cannot 

go beyond a point where the shared access link is 100% loaded. 

Note that the threshold value decreases with the increase in R and hproxy, which 

is intuitive since increasing R or hproxy moves the delay bottleneck towards the 

client-proxy link. 
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Figure 4.3: 1  versus N y  ( r  =  500 kbps, C  —  500 kbps, A = 6.25 files/s, s  =  40 kbits, 
^on — 15 files, Rth — 0.5, he — 0, hproxy — 0^. 

4.4.2 Prefetching Precision Varies with Np 

To study the effect of the variability of P on I, consider the following simple rela

tionship between Ah and Np-. 

AH = K (1 (4.18) 
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Figure 4.4: I versus Np (C = 500 kbps, A = 6.25 files/s, s = 40 kbits, Non = 15 
files, he = 0). 

where 0 < K < 1 — he- Based on this relationship, the lowest value Ah can have 

is 0 (no prefetching) and the highest value cannot exceed 1 — he, since the overall 

cache hit ratio {he + Ah) cannot exceed one. Accordingly, the prefetching precision 

is given by: 

P = H { 1  -

K, 
{4.19) 

where H = Non K. Because P < 1, the constant a is bounded (0 < a < — ln(l —•^)). 

Suppose that the prefetcher retrieves files according to their access probabilities, 

starting from the most likely file. Then increasing Np should result in a smaller P, 

which influences the access time improvement. Consider, for example, the relation

ship between P and Np as defined in (4.19) with H = 4.8 and a = 0.16. When 

Np changes from 3 to 7, P will change from 0.6 to 0.46. Hence, based on Fig

ure 4.3, when Np — 3, / < 1 (prefetching is beneficial), whereas I > I (prefetching 

is harmful) when Np = 7. This example demonstrates that aggressive prefetching 

may sometimes worsen the performance. 

Figure 4.5 shows the performance for the same system shown in Figures 4.3, 

4.4-a, and 4.4-b, but with P varying according to (4.19). Consider the case R = 1 
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and hproxy = 0. In this case, P > Pth whenever Np < 7. For Np = 7, prefetching 

all seven files with access probabilities greater than Pth improves the performance 

(/ < 1), but does not necessarily optimize it (e.g., prefetching 6 files is actually more 

beneficial than prefetching 7 files). For the other two cases shown in Figure 4.5, we 

can see that increasing the number of prefetched files can worsen the performance, 

sometimes even when P > Pth-

1.4 

P>P, 

< 0.! 

0.8 

0.7 

N 
P 

Figure 4.5: I versus Np for the case P = ^ — (C = 500 kbps, A = 6.25 

files/s, s = 40 kbits, Non = 15 files, Pth = 0.5, hc = 0). 

Corollary 4.4.3 Consider the case when R = 1, hproxy — 0, and P varies with 

Np. Then, prefetching all files with access probabilities greater than Pa, reduces the 

average access time. 

Proof: The proof follows readily from part 2 of Theorem 4.4.2. 

Theorem 4.4.4 For given P and Np, increasing R or hproxy reduces the average 

access time. 
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Proof: See Appendix D. 

According to Corollary 4.4.3 and Tlieorein 4.4.4, a prefetching system can 

prefetch all files with access probabilities greater than a special threshold value, 

Pth (the threshold value when R = 1 and hproxy = 0). As can be seen in Figure 4.6, 

this solution reduces the average access time but does not necessarily minimize it 

with respect to Np. This is because for a given A',,, the worst access delay is when 

i? = 1 and hproxy = 0. 

R=1, h 
-e- R=2. h 

=0 
proxy 1 = 
proxy 

proxy 
R=1,h =0.2 
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§0.9 
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0.7 

P> K (R=1,h 
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P 

Figure 4.6: Effects of R and hproxy on I for the case P = ^^ (C = 500 
kbps, A = 6.25 files/s, s = 40 kbits, Non = 9 files, Pth{R — 1, hproxy = 0) = 0.5, 
K = 0). 

4.5 Prefetching Protocol 

In this section, we discuss the applicability of our analytical model in designing a real 

prefetching system. We first address the issue of estimating the model parameters 

and then show how such estimates can be used in performing "optimal" prefetching. 
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The prefetching scheme works as follows. Initially, each client goes through a no-

prefetching warm-up period, during which the client estimates its own parameters, 

including he and N^n (the number of demand-requested files in an ON period). The 

client also estimates the relationship between P and A',,. This is done by running the 

prediction algorithm but without performing any prefetching. Each client reports 

this information to the proxy, which uses it in estimating Pth- The proxy uses P,f, to 

determine the feasibility of prefetching and to compute Np for each client. Moreover, 

the proxy estimates its own cache hit ratio. 

By the end of the warm-up period, the proxy will have computed for each client 

an approximation of he, the relationship between P and Np, and the average length 

of the ON period. If the proxy determines that prefetching is beneficial (based on 

Pth and P), it uses (4.11) to optimize the number of files each client can prefetch. 

The proxy provides each client with its N* by piggybacking this information in its 

response to the client. Once a client has its N*, it can start prefetching in the 

subsequent OFF period. We assume that N* can take non-integer values, where the 

fractional part means that only a part of a file is prefetched using, for example, the 

HTTP range request [101]. This feature is critical because of the higli variability 

of file sizes in the web. Upon receiving a demand-request, prefetching is stopped 

and all prefetched data are saved. When a file that was partially prefetched is 

demand-requested, only the remaining portion of this file is retrieved. 

Clients periodically update the proxy with estimates of their parameter values. 

The proxy uses these estimates along with the estimated load at the proxy (pp) 

to recompute the prefetching parameters (Pth and Np). The recomputation of the 

prefetching parameters is done based on the variability of the estimated parameters. 

Prefetching needs to be implemented fairly for clients with different traffic de

mands. A reasonable approach is to assign weights to clients depending on their 

(downlink) traffic demands. The higher the weight assigned to a client, the liigher 

the volume of prefetched traffic that is allowed for that client. The assigned weights 

can be easily computed by the proxy based on the observed loads of different clients 

at the shared link. We do not explore this issue further in this paper, and as
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sume a homogenous environment (clients have the same traffic model). Table 4.1 

summarizes the main parameters that are used by the prefetching protocol. 

Parameter Definition 

Pp Average load over the shared link 

he Hit ratio of the regular cache 

hproxy Hit ratio of the proxy cache 

HN,) Prefetching precision as a function of Np 

Non Average length of the ON period 

Pc Client's offered load 

Pc Average client's offered load 

r Client access rate (in bps) 

C Proxy access rate (in bps) 

Table 4.1: Parameters of the prefetching protocol. 

4.5.1 Traffic Prediction 

Several schemes for WWW traffic prediction have been proposed in the literature 

(e.g., [16, 65, 57, 45, 94, 34, 79]). Any of these schemes can be integrated into our 

prefetching protocol. Without loss of generality, we can consider for our simulations 

the predictor by Jiang et. al [45], with some modifications to include hints from the 

proxy server. In [45], prediction is done at the client side using the client's history 

along with hints from the main server. Two types of counters are maintained at 

the client for each html document: a page counter and a set of link counters. Any 

time an html document X is accessed, its page counter Px is incremented. If X 

has a link to an html document Y and Y is accessed from X, then the link counter 

Lxy is incremented. Following each access to document X, the predictor computes 

the probability of accessing every document that is linked from X. For a linked 
r 

document Y, this probability is given by If not enough historical information 

is available for computing this probabihty, the client relies on hints from the proxy, 

which runs a similar prediction algorithm but based on the aggregate traffic seen 
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by all clients. The proxy also maintains some hints from the original servers that 

can be used if the information collected by the proxy is not statistically sufficient. 

The prediction algorithm at the proxy requires that clients provide the proxy with 

information about the html document from which the request is initiated. The proxy 

also provides the server with similar information. 

4.6 Effect of Caching on Prefetching Gain 

Intuitively, one may expect that proxy caching has an adverse effect on the prefetch

ing gain. It turns out that this is not always true. For clients with low-bandwidth 

connections (relative to C), the cHent-proxy link is the bottleneck, and the access 

time saving due to prefetching a file from the proxy is comparable with the access 

time saving due to prefetching a file from the original server. As shown in Figure 4.7-

a, increasing hproxy has a negligible effect on the access time saving, especially for a 

lightly loaded system. At high loads, the gain Anp — Ap increases with hproxy until 

a certain point, and after that it stays almost flat. The reason for this increase is 

that the increase in the load slightly moves the bottleneck to the shared access link, 

whereas the increase in hproxy has the opposite effect. 

On the other hand, proxy caching is expected to limit the effect of prefetching 

for clients with high-bandwidth connections and under light load. In this case, the 

access time saving due to prefetching a file from the original server is considerably 

higher than the access time saving due to prefetching that file from the proxy server. 

Figure 4.7-b shows a lightly loaded system (e.g., hproxy = 0.4 and Np = 4). It can 

be seen that improving the performance of the proxy cache has a negligible effect on 

Anp — Ap. On the other hand, when the load is heavy (e.g., hproxy — 0 and Np — 12), 

a slight improvement in the performance of the proxy cache can significantly increase 

the prefetching gain. As the load of the system decreases due to cache performance 

improvement, this trend is reversed. 

The local cache can also limit the number of prefetched files, which in turn 

limits the prefetching gain. But it also reduces the load, which is advantageous for 
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Figure 4.7: Impact of proxy caching on the effectiveness of prefetching (C = 1000 
kbps, A = 20 files/s, 5 = 40 kbits, Non = 15 files, he — 0). 

prefetching especially for clients with high-bandwidth connections (R — 1) and for 

a heavily loaded system, as seen in Figure 4.8. 

For clients with low-bandwidth connections, local caching has a similar effect to 

that of proxy caching. The prefetching gain is affected by the local cache only when 

the system load is high. In this case, increasing he results in an increase in 

as can be seen in Figure 4.9. 

In summary, client (and proxy) caching has two opposite effects on the prefetch

ing performance. It has a negative effect by limiting the number of prefetched 

documents from the original server. But it also has a positive effect by reducing 

the load on the shared access link. Depending on the confluence of the two effects, 

the prefetching precision, and the average system load, proxy caching may increase 

or decrease the effectiveness of prefetching. More importantly, as suggested by the 

above figures, a certain amount of prefetching is always profitable, irrespective of the 

client connection speed and the hit rate of tlie caching system. Moreover, when the 

system is highly loaded, a modest improvement in the performance of the caching 

system can significantly increase the prefetching gain. 
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Figure 4.8: Impact of local (regular) caching on the effectiveness of prefetching 
(r = 1000 kbps, C = 1000 kbps, A = 20 files/s, s — 40 kbits, Ngn = 15 files, 

hproxy — 0). 
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(r = 56 kbps, C = 1000 kbps, A = 20 files/sec, s = 40 Kbits, = 15 files, 
^proxy 0). 
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4.7 Simulation Results 

4.7.1 Simulation Setup 

We consider 50 clients who access the WWW through a common proxy. The proxy 

cache implements the LRU caching policy with hproxy = 0.4 (the cache hit ratio is 

controlled by adjusting the cache size). Each client has a large local cache. One 

percent of this cache is reserved for prefetching. Local caches also implement the 

LRU caching policy. The shared access link is modeled as an M/G/R-PS queueing 

system. 

4.7.2 Traffic Model 

We use an ON/OFF source to model the behavior of each client. To mimic the 

essential properties of web traffic, we rely on an extension of the model in [10] to 

generate client-side traffic. The model in [10] is based on multifractal processes, 

which are found to be more flexible than monofractal (self-similar) models in de

scribing traffic "irregularities" at different time scales. This model captures the 

essential properties of WWW traffic , including temporal locality, spatial locality, 

and popularity. It allows us to synthesize the aggregate downlink traffic seen by the 

proxy. This traffic represents responses to requests for main html documents from 

all clients. Each html document can have one or more inline files (e.g., images). As 

suggested in [60, 13], the distribution for the number of inline objects in an html 

document follows a heavy-tail distribution. The OFF period and the file size are 

also generated according to a heavy-tail distribution [13, 27, 60]. The duration of 

the ON period is specified by the requested main document and the time it takes 

the client to retrieve such a document and its inline files. Table 4.2 summaries the 

parameters of the most important distributions used in traffic generation. 

The model in [10] was not intended for client-side traffic, but rather to capture 

the properties of the aggregate traffic destined to a group of clients. To synthesize 

client-side traffic, we start with a no-prefetching simulation run, in which each client 

is represented by an ON/OFF profile based on the distributions shown in Table 4.2. 
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Component Distribution /(^) Parameters 

OFF period Lognorrnal 
, -(In(i)-Mp 

(T = 1.57 

/< = 2.75 

File size Lognormal (J = 1.82 

f j .  = 6.78 

Files per 

web page 

Pareto f { x )  =  k = l 

a = 1.42 

Table 4.2; Probability distributions used in the simulations. 

The aggregate stream is arranged as a vector. When a client starts a new ON period, 

it selects a document from the top of that vector. This document is considered as 

the main html document in the current ON period. Each unique document in the 

vector is assigned a group of unique inline files. Moreover, each file (main document 

or inline file) is assigned a size that is sampled from the proper distribution. The 

client retrieves the main document with its inline files from the local cache, proxy 

cache, or from the original server if the document has not been cached before. The 

outcome of this simulation run is streams of client requests that are saved in several 

files to be used in the main simulation experiments. Figure 4.10 depicts an example 

with three clients. The three chents start their first ON periods at times ti, t2, and 

ts, respectively, where tz > h > t^- According to these times. Client 2 selects the 

top document (A) in the vector of aggregate requests. The first and the third clients 

select documents C and B, respectively. It takes the second client a period of dti 

seconds to retrieve document A and its preassigned inhne files (.4o and Ai), and 

it takes it a period of dt2 seconds to read the retrieved information (OFF period). 

At the end of the OFF period, this client starts a new ON period, while the other 

clients are still in their OFF periods. Hence, it selects document D as the main 

document, and so on. 
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Figure 4.10; Client-side traffic generation process. 

4.7.3 Prediction Model 

Because prediction is not the focus of our work, for our model-validation purposes, 

we adopt an artificial predictor whose accuracy can be controlled. The predictor 

works as follows. Each client is assumed to know the future with certain accuracy 

and has a window through which it sees this future. To produce a certain relationship 

between the P and Np, the client considers a window of m files (number of files to 

prefetch) that are neither in the local cache. Each file is considered for prefetching 

with probability Pi, the access probability of the ith. file in the candidate list. If a file 

is not considered for prefetching, it means that the predictor made a wrong decision. 

In this case, the client retrieves a dummy file whose size is sampled from the file 

size distribution. This dummy file is either retrieved from the proxy or the original 

server based on the estimated value of hproxy Figure 4.11 illustrates the main idea 

behind this artificial predictor. In this figure, the client needs to prefetch three files 

in the current OFF period. The first three files that are in the future window and 

are not locally cached are Bi, 5-2, and Cq. To capture a specific relationship between 

P and Np, the access probabilities Pi, P^, and P3 for the three candidate files to be 

prefetched are computed as Pi = 'iP{i) — YL'j=\^ Pj, i = 1,2,3. The client prefetches 

file B\ with probability P\, and with probability 1 — Pi an alternative dummy file is 
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Current time 

— OFF period >• File either in the local 
cache or in the prefetching 
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Future window 

Cached 
file 

Set of probabilities 
to control the 
predictor 

With probability Pi, select the file 
for prefetching, and with probability 
1-Pi select a dummy file for prefetching 

Set of Prefetched files 

Figure 4.11: Mechanism for traffic prediction. 

prefetched. The same thing is done for files B2 and Cq. Accordingly, the precision 
p. — 

in predicting three files in the future is ', which reflects the mimicked P{Np). 

4.7.4 Validation of Ah and pp 

In this section, we validate the appropriateness of the models for the increase in 

the hit ratio due prefetching and the average system load with prefetching. In a 

given simulation run, each client tries to prefetch a fixed number of files (n) in 

every OFF period, if possible. Each run outputs the access improvement index 

(/), the average hit ratios for all caches, the average system load, and the average 

number of prefetched documents in an OFF period (Np). Note that Np can be 

less than n because some OFF periods are not long enough to retrieve all n files. 

Figure 4.12 compares the increase in the client cache hit ratio due to prefetching 

with its numerical counterpart computed using (4.2). It is clear from the figure that 

the model is very accurate. The average load versus Np is depicted in Figure 4.13. 
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Overall, the modeled and simulated loads are sufficiently close to each other, with 

a slight deviation when Np is high. This deviation comes from the slight change in 

hproxy due to prefetching, which we assumed in our analysis to be independent of 

prefetching. Although we assumed that prefetched documents are not cached in the 

proxy, prefetching can affect hproxy as it changes the stream of web requests seen by 

the proxy. 
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-K- Model 

Simuiation 
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.2 
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S T3 
P 
1 0.15 
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Figure 4.12: Increase in the client's cache hit ratio due to prefetching versus Np 
when P = — {r = 500 kbps, C = 500 kbps, A = 8 files/s, s = 38 kbits, 

hproxy 0.39, — 0.31^. 

4.7.5 Validating the Access Improvement Index 

Figure 4.14 depicts I versus Np, computed using the analytical model and the sim

ulations. The two plots depict a similar trend. Surprisingly, the prefetching gain 

in the simulations is lower than the one obtained using the analysis. One reason 

is related to using the average file size in the analysis, knowing that the file size 
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Figure 4.13: Average system load versus Np for the case P =  ^ ^  ( r  =  5 0 0  
kbps, C = 500 kbps, A = 8 files/s, 5 = 38 kbits, hproxy = 0.39, he = 0.31). 
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follows a heavy-tail distribution (highly variable). To test the effect of the file size 

on the average access delay, we reran the simulations, assigning to all files the same 

size (average file size). The outcome of this simulation experiment is shown in Fig

ure 4.15. It is clear that our analysis needs to account for the high variability in 

the file size. This can be done by modelling the average access delay for a single 

byte of data. Hence, we use the byte hit ratio of the caching system to compute the 

probability of finding an arbitrary byte of data in a given cache. Accordingly, the 

average access time of an arbitrary byte is computed as: 

^h^ihproxy (1 ^proxy^ fr(_PP}) (4.20) 
r 

where he is the regular-cache byte hit ratio, hproxy is the proxy cache byte hit ratio, 

and Ah is the increase in the local cache byte hit ratio due to prefetching. To 

validate this revised model, we reran the simulations to compute the byte hit ratios 

for all caches. Figure 4.16 shows the numerical results for the original and revised 

models, along with the simulation results. It is very clear that the results for the 

revised model are quite close to the simulations. 

Based on the revised model, we simulate an adaptive prefetching mechanism, as 

was described in Section 4.5. Each client dynamically adjusts the number of files to 

prefetch at the beginning of each OFF period based on the estimated parameters 

(system load, prefetching precision, and caches byte hit ratios). As before, both 

the regular cache and the proxy cache byte hit ratios are estimated from historical 

data. The increase in the local cache hit ratio due to prefetching (A/,) is estimated 

based on the number files the client intends to prefetch. The estimated Ah is used 

to compute the increase in the local cache byte hit ratio due to prefetching (A/,). 

This is done by multiplying Ah by a correction factor a, which is an estimate of the 

deviation in the increase in the byte hit ratio to the increase in the file hit ratio due 

to prefetching. Note that Ah is estimated for several values of Np for optimization 

purposes (Np that gives the best I is selected). Figure 4.17 shows the simulation 

results for the adaptive prefetching protocol. In this plot, we also show the results 

under non-adaptive prefetching, where we run several simulation experiments and 
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in each experiment we set Np to a given value. From the non-adaptive prefetching 

simulation, we found that N* « 5.3 files. Based on the simulation of the adaptive 

protocol, the average number of prefetched files was found to be Np = 5.6, which is 

very close to N*. Moreover, I for the adaptive protocol is very close to I{Np). 

0.95 
Non-adaptive 
prefetching 

0.9 

Adaptive 
protocol 
based on 
the revised 
model 

SO.75 

0.7 

S. 0.65 

0.6 

0.55 

0.5 

N 
P 

Figure 4.17: I versus Np {P — r = 500 kbps, C — 500 kbps, A — 8 
files/s, S — 38 kbits, hproxy — 0.39, he — 0.31). 

From the above results, we observe that for higher values of Np, I in the sim

ulation results tends to slightly deviate from its analytically obtained value. As 

explained before, this deviation is related to ignoring the change in hproxy due to 

prefetching. One more indirect result we discovered from the simulation is that if 

the number of prefetched files during the OFF periods are highly variable, the de

gree of burstness in the traffic increases, which can hurt the performance. This is 

inline with the finding in [24]. 



99 

CHAPTER 5 

CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

In this dissertation, we demonstrated the potential of multifractal processes as a 

viable approach for WWW traffic modeling. We presented two WWW traffic models 

that uses multifractal analysis. While one of the models uses the stack distance 

approach to capture the main WWW traffic properties, the other model directly 

capture these properties through the inter-request distance string. As an application 

for these traffic models, we designed a generic client side prefetching system. 

In Chapter 3, we described the multifractal modeleing of WWW traffic. We 

started with the multifractal model of Riedi et al., which is capable of generating 

approximately lognormal synthetic traces with any desired autocorrelation struc

ture. However, to apply this model in traffic fitting and trace generation, one needs 

to match as many parameters of the model as the length of the trace to be generated. 

To make the model parsimonious, we modified it by using a different distribution for 

the multiplier Aj (which relates the wavelet and scale coefficients) and by analyti

cally expressing the parameter of Aj, j — 1,2,..., in terms of the mean, variance, 

and ACF of the modeled data. As a result, the modified multifractal model is spec

ified by five parameters only. We fitted this model to both the normalized stack 

distance strings and the normalized inter-request strings of different WWW traffic 

traces. The proposed models capture the spatial and temporal localities of the real 

traffic as well as the popularity profile. Trace-driven simulations of the LRU cache 

policy indicates that the proposed models give much more accurate cache miss rates 

than two previously proposed WWW traffic models. Statistics of the normalized 

inter-request distances support the goodness of our models. While both approaches, 

the stack distance approach and the inter-request approach, are superior to previ
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ously proposed models, the accuracy of inter-request distance approach seems better 

that the stack distance one. 

In Chapter 4, we modeled the performance of a generic client side prefetching 

system. We considered the access time improvement as the performance metric. The 

model considered both types of caching systems, proxy and client caches. Based on 

our analysis, we obtained an expression for the prefetching threshold that can be set 

dynamically to optimize the effectiveness of prefetching. We proposed a prefetching 

protocol that use the model to optimize the gain out of prefetching. We investigated 

the effect of the caching system on the effectiveness of prefetching. The main result 

we discovered is that prefetching all documents that has access probabihty greater 

than the optimal threshold value does not always lead to the minimum access delay, 

as was reported in previous works. This is only true for the case when clients have 

high access speeds relative to the access speed of their common proxy. For the 

other cases, the access delay improves with the increase in the number of prefetched 

documents until a certain point, after which the trend is reversed. Moreover, we 

found that prefetching is always profitable even with the existence of a good caching 

system. Another result we found is that the high variability in web file sizes limits 

the effectiveness of prefetching. 

5.2 Future Work 

The research presented in this dissertation can be extended to different environments 

such as wireless ad hoc networks. In such environment, each mobile terminal (MT) 

is equipped with a small storage space that enables the MT to act as a proxy server 

for a group of neighboring devices. The topic of WWW caching for wireless users 

is rather new, and not much work has been done in this area. It can be argued, 

however, that the traffic and prefetching models presented in this dissertation can 

be adapted for the wireless environment with some modifications to account for 

the differences in the new environment. For example, prefetching/caching protocols 

need to account for the MT limitations and the dynamics of the wireless channel. 
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These limitations include the MT's limited battery life and its small cache size. 

For the prefetching model presented in Chapter 4, we assumed that each client 

can have only one browsing session at a time. The one-session assumption is accept

able for clients of low bandwidth (e.g., dial-up or wireless connections). The case of 

multiple sessions is more common for clients with high bandwidth connections and 

multi-user systems, which can be considered for future work. 
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APPENDIX A 

PROOF OF THEOREM 3.2.1 

The lower bound follows immediately from (3.21) and the fact that £^[(A(^"'))^] > 0. 

To prove the upper bound, let X  =  { X i  :  i  = 1,2,...} be a positive valued 

stationary random process, and let Y = {Yi : z = 1,2,...} be an aggregation of X 

that is defined as follows: 

Yn — X2n~l "l~ X2n 

Note that A'''"' in (3.25) represents X, while represents Y. We now prove 

that E { X ^ ] / E [ Y ^ ]  <  0.5. 

E\xl] ^ ara 
EKl B[{X2„,I+X2„)2] 

EM 

mL-v\ + 2£1X2„_,X2„| + E{XU 

Since X is stationary, then E[Xl^_i] — .E[A'|,J = E[X^], which leads to: 

mi] ^ Ejxi] 
E[Y^] 2E[X^] + 2E[X2n-lX2n] 

1 

2 _j_ 2 

< 0.5 

since E[X2n-iX2n]/E[Xl] > 0. 
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APPENDIX B 

PROOF OF THEOREM 4.4.1 

First, we show that if prefetching a single file or a fraction of a file does not improve 

the mean file access time, then increasing the number of prefetched files does not 

do any better. To do that, we express I as the product of two functions fi{x) and 

hi^), where x is the average number of prefetched files in an OFF period: 

where 

h{^) 
A 

f2{x) 
A 

A 
A 

^ (B.l) 

< 1 (B.2) 
I - he 

A + BfR{p^{x))>l (B.3) 
hproxy 

hproxy +  ( 1 -  hproxy) fRi^pnp) 
(B.4) 

Q ^  1 hproxy  

hproxy  + (1- hproxy  ) /i? (Pnp) 

We approximate fnip) in (4.7) by: 

fdp) ~ (B.6) 

The goodness of this approximation is demonstrated in Figure B.l. 

It is easy to show that f\{x) deceases monotonically with since ^ = 

0 for all 0 < a; < cx). Note that > 0, as prefetching always increases the overall 

cache hit ratio. 

On the other hand, f2{x) increases monotonically with x, considering that for 

all 0 < X < oo we have 

B I Jp- > 0. (B.7) 
ax ax (1 — Pp )^ dx 
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Figure B.l: Approximation of //?.(p) by 1/(1 — p^). 

Note that ^ > 0, because prefetching always increases the network traffic unless 

the prediction is 100% accurate. 

Now if we can show that fi{x) decreases at a slower rate than the rate at which 

fiix) increases, then we can say for sure that there is no gain out of prefetching 

more files if prefetching a single or a fraction of a file is not beneficial. This also 

assures that if there is a gain out of prefetching, then there is a unique value for 

N*. Formally, we need to show that < 0 and > 0. Consider the first 

inequality. Recall that A/,. = Then, 

dx 1 — he dx"^ " 

= (rr^(^"W-+2P'{x))<0. (B.8) 

Note that P' {x) < 0 because P{x) is a monotonically decreasing function in x. 

Also, P"{x) < 0 since the popularity of WWW files follows a Zipf-like distribution 
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{Pv ~ 0 < a < 1). For we have 

'i|/;(x)l BRp^-\{R - 1)(1 - pf) + 2 p f R ( t f )  , B.Rp^"' <Pp, . „ 

dx (1-p*)' (1- p«)2 • ^ ' 

Formally, for prefetching to be beneficial, the following condition must be satis

fied: 

lim 
x—>0+ 

d f i  

iff lim 
X—>0+ 

iff lim 
aj—>-0+ 

dx 
•dAh 
dx 

I- he 

-dAn 
dx 

iff lim 
X—*0+ 

I - he 

P ' { x ) x  +  P { x )  

iff 

iVo„(l - he) 

limj_^o, P{x) 

Non{l - K) 

> lim 
X—»0+ 

> lim 
x-^0+ 

> lim 
X-+0+ 

> lim 
X—>0+ 

d f 2  
dx 

d p p  

( 1 - dx 

BRp^-' 
( 1 -

( 1 --  P p f  
( 1 -

BRf^ 

> 

(1 hproxy) ( 
Nn 

dAh H 

1 '̂~C 

P' (x)x + P{x) Xs )_ 
N. on 

(1 -

1 limx_o- P{x). A.S 
[l nproxy) \ ̂  ' /O ' 

-i » f on N„ 

Note that lim,^o+ F i x )  = P(l). Defining M  =  =  ( i - p f t  .  

up with 

P ( l )  >  

C 

we end 

(B.IO) 
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APPENDIX C 

PROOF OF THEOREM 4.4.2 

Let X be the number of prefetched files. Then, I can be expressed as 

I = Lg(.) + , W 
1 - ag{x) -(5x ^ ' 

where 

g { x )  =  1 -  h e  -  A h { x )  (C.2) 

I ^ hproxy 2^ 
(1 hfy^i^hpfQxy ~l~ (1 hpfQxy^ fR^pnp)^ 

M = ^ ~ (C.4) 
(1 hc)(^hproxy "l~ (1 hproxy)fuiPup)^ 

a = (1 - hproxy)P (C.5) 

(C.6) 

Now to optimize J, we let ^ = 0 and solve for x\ 

'E = + WW(1- W + M^(X) ^ ̂  

d x  (1 — a g { x )  —  I 3 x y  

With A/,(.t) defined according to (4.18), g ' ( x )  reduces to Solving (C.7) for 

X yields 
-f ^2 _ 4 4(^. > 0 

X — { Largest number of candidate (C.8) 

files subject to pp < 1, otherwise 

where. A, B. and C are given in (4.15), (4.16), and (4.17), respectively. 

To prove the second part of Theorem 4.4.2, we know that for prefetching to be 
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of a value, we must have / < 1. Therefore, 

I < 1 
•  ̂  { I -  h e -  A h ) { h p r  oxy +  ( i  h p r o x y )  f r{Pp}) ^ j 

(1 - he) {hpr oxy + (1 - hproxy )fR{Pnp)) 

iff ^h)  ^ hproxy  "t" (1 hproxy) fR^Pnp)  

(1 he)  hproxy  "I" (1 ~ hproxy)  f r{Pp)  

2 PNp ^ hproxy  ~l~ (1 hproxy) fR{pnp)  

( 1  -  he)Non hproxy  +  ( 1 -  hproxy)  fR^Pp)  

Taking hproxy = 0, we end up with 

. Px fnipup) 

(1 - he)Non /h(Pp) 

/ R ( P n p ) ( l  ~  P p ) -

Because pp is hnear in x, both sides of the above inequahty decrease hnearly 

with X. Hence, if the rate at which the left-hand side (LHS) decreases at x — 0 is 

greater than the rate of the right-hand side (RHS), then increasing the value of x 

increases the reduction in I (improves I). 

For the rate of the LHS to be greater than the rate of the RHS, we must have 

the following: 

(1 - hproxy){l - P)P 
> - • • • • 

(1 hc^Noji (1 pnp)Non 

P > pnp 

which is the threshold value that is necessary for prefetching when R = 1 and 

hproxy — ^ * 
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APPENDIX D 

PROOF OF THEOREM 4.4.4 

Consider Ap as defined in (4.4) and fnip) as defined in (B.6). Then, 

dAp A L ^PpHpp) 
dR hproxy) ' (^-1) 

which is less than zero because In(pp) < 0. Accordingly, the access time with 

prefetching decreases with R. 

For hproxy, we have 

dAp ^ 1 - {1 - hpro^y^W + R{1 - ^ 
{l-K.- A,)(l ^ ,7 , ) (D.2) 

dhproxy (1 - (1 - hpraxy YHV f 

where 

(D.3) 

But 1 - (1 - hproxy)^W = (1 - Pp) < 1. Therefore, 1 - (1 - hproxy)^W > (1 - (1 -

hproxy)^W)'̂ . Accordingly, < 0 and the access time with prefetching decreases 

wit h hpfQxy • 
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