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ABSTRACT 

Some of the most important and challenging problems in computer science and 

operations research are stochastic combinatorial optimization (SCO) problems. 

SCO deals with a class of combinatorial optimization models and algorithms in 

which some of the data are subject to significant uncertainty and evolve over 

time, and often discrete decisions need to be made before observing complete 

future data. Therefore, under such circumstances it becomes necessary to develop 

models and algorithms in which plans are evaluated against possible future scenarios 

that represent alternative outcomes of data. Consequently, SCO models are 

characterized by a large number of scenarios, discrete decision variables and 

constraints. 

This dissertation focuses on computational experimentation with 

practical decomposition algorithms for large-scale SCO. Stochastic mixed-integer 

programming (SMTP), the optimization branch concerned with models containing 

discrete decision variables and random parameters, provides one way for dealing 

with such decision-making problems under uncertainty. This dissertation studies 

decomposition algorithms, models and applications for large-scale two-stage SMIP. 

The theoretical underpinnings of the method are derived from the disjunctive 

decomposition (Z?^) method. We study this class of methods through applications, 

computations and extensions. 

With regard to applications, we first present a stochastic server location 

problem (SSLP) which arises in a variety of applications. These models give rise to 

SMIP problems in which all integer variables are binary. We study the performance 
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of the method with these problems. In order to carry out a more comprehensive 

study of SSLP problems, we also present certain other valid inequalities for SMIP 

problems. 

Following our study with SSLP, we also discuss the implementation of the 

method, and also study its performance on problems in which the second-stage is 

mixed-integer (binary). The models for which we carry out this experimental study 

have appeared in the literature as stochastic matching problems, and stochastic 

strategic supply chain planning problems. Finally, in terms of extensions of the 

method, we also present a new procedure in which the first-stage model is allowed 

to include continuous variables. We conclude this dissertation with several ideas for 

future research. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Combinatorial optimization problems are among some of the most important and 

challenging problems in computer science and operations research (Cook et al., 

1998). These optimization problems are characterized by discrete-choice variables. 

Stochastic combinatorial optimization (SCO) deals with a class of combinatorial 

optimization models and algorithms in which some of the data are subject to 

significant uncertainty. Such models are characterized by data that evolve over 

time and often decisions need to be made before observing complete future data. 

Therefore, under such circumstances it becomes necessary to develop models in 

which plans are evaluated against possible future scenarios that represent alternative 

outcomes of data. Consequently, SCO models are of a large-scale nature and are 

characterized by a large number of decision variables and constraints. 

Stochastic programming (SP), the optimization branch concerned with 

models containing random parameters, provides one way for dealing with such 

decision-making problems under uncertainty. In particular, stochastic linear 

programming (SLP) deals with SP models with continuous decision variables, 

while stochastic mixed-integer programming (SMTP) deals with SCO models in 

which some of the decision variables are required to be continuous, discrete, or 

mixed. SMIP is a very young field which has a lot of applications in both science 

and engineering. SP models arise for example in telecommunication (Sen et al.. 
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1994), transportation (Powell, 1988), finance (Carino et al., 1994), electricity power 

generation (Car0e and Schultz, 1998), manufacturing (Eppen et al., 1989), and the 

military (Morton et al., 1996; Baker et al., 2002). Deterministic models often lead to 

myopic decisions under uncertainty that can result in significant losses. SP models 

on the other hand take into account the possible future outcomes and thus hedge 

against unforseen potential losses. Several application cases have been reported in 

the literature where SP models have indeed resulted in better decision making and 

significant savings in profits. 

SMIP models generally arise whenever deterministic IP models result in 

inadequate models under uncertainty. In the general case integer decisions have to 

be made both before and after observing the outcomes of the random variables. For 

example, strategic decisions about production topology and plant sizing in strategic 

supply chain management under uncertainty have to be made prior to the final 

product price and demand realizations at different markets, while operational or 

tactical decisions such as scheduling, and raw material volume supply from vendors 

are generally made after price and demand realizations. 

Despite the large number of applications that lead to SMIP models, very 

few practical algorithms have been developed to date. In fact, computational 

results and algorithms are fairly scant. One may attribute this to the fact that 

integer programming (IP) is generally NP-hard. But in addition to inheriting the 

properties of IP models, SMIP models are generally of a large-scale nature due to 

the uncertainty in the problem data. Therefore, SMIP models present formidable 

algorithmic challenges. Indeed, this calls for novel decomposition algorithms that 

are both scalable and practical. 

The objective of this dissertation is to contribute to tackling the afore­

mentioned challenges of SMIP through new models, algorithms, and computational 

experiments. This dissertation is devoted to all three aspects. 
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1.2 Problem Statement 

Throughout this dissertation we consider the following general two-stage SMIP 

problem: 

Min c^x + E[f{x,uj)], (1.1) 

where c is a known vector in 3?"^, X C 3?"^ is a set of feasible first-stage decisions 

and X define restrictions requiring some first-stage decision variables to be integer, 

E[.] is the usual mathematical expectation operator with 

E [ f { x , u ) ]  =  ̂ p ^ f { x , u ) ,  

w is a multi-variate discrete random variable with a realization (scenario) to with 

probability and sample space U, and for any cv 

f  { x ,  L u )  =  M m  (1.2a) 

s.t. Wy > r{u) — T ( l v ) x ,  (l-2b) 

y > 0 ,  y j  integer, j  e  J ^ .  (1.2c) 

In problem formulation (1-2), q [ u j )  is the cost vector in 3?"^ for scenario l o  and 

J2 is an index set that may include some or all the variables hsted in y € 3?"^. 

Although the second-stage (recourse) variable y depends on the outcome uj, this 

dependence is not explicitly indicated here. This is because the subproblem for 

each outcome to is decoupled from all other outcomes once a vector x is given. Thus 

this formulation emphasizes the loosely coupled nature of two-stage SMIP problems. 

In this dissertation we address instances of problem (1.1-1.2) under the 

following assumptions: 

(Al) is a finite set. 

(A2) X is a closed set and is defined as X = {x G 3?"^ | A x  >  b } .  
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(A3) f { x , L o )  <  oo for all { x , l u )  G  X  x  Q .  

Assumption (A3) requires that the subproblem (1.2) remain feasible for all { x , u j )  G  

X X fl and is referred to as relatively complete (integer) recourse (Wets, 1974). 

Since we assume that the problem data is governed by discrete random 

variables, the formulation (1.1-1.2) can also be written as the so called deterministic 

equivalent problem (DEP) formulation or extensive form as follows: 

Problem (1.3) is a large-scale MIP formulation and potentially can be solved by 

an MIP solver directly. However, in order to adequately capture the uncertainty 

in the problem, the number of scenarios |r2| is generally large. Therefore, problem 

(1.3) may become intractable even for the state-of-the-art commercial MIP solvers. 

Also note that the dependence of the second-stage decision on the scenario is now 

explicitly made in the DEP formulation. 

1.3 Research Scope and Approach 

This dissertation deals with decomposition algorithms for SCO. The starting point 

for this dissertation is the Disjunctive Decomposition (D^) algorithm proposed in 

(Sen and Higle, 2000). The aim of the dissertation is to investigate the potential of 

the method through computational studies, and extend its realm of applications 

by studying a wider class of problems. Accordingly, we begin by reviewing the 

underlying theory, and illustrate the concepts through a simple example problem. 

Computer implementation of the D'^ method is discussed and the associated 

(1.3a) 

s.t. T { u j ) x  +  W y ' ^  >  r i u j ) ,  Vo; e 

y'̂  > 0, y" integer, j G J2, Vcj G Q. 

(1.3b) 

(1.3c) 
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efficiency and convergence issues discussed. A computational study of the method 

is carried out through application to different large-scale SCO models and finally, 

extensions to the current D'^ theory are made. 

This dissertation is oriented towards modeling and computation and its 

contributions will be in the following aspects: 

1. Computer implementation of the D'^ algorithm and the identification of 

the issues associated such an implementation. These issues will potentially 

translate to future algorithms that follow a similar approach. 

2. Proposing a new model for server location under uncertainty (the SSLP) with 

potential use in a variety of application domains. Conducting a computational 

study of the SSLP and demonstrating that significant gains can be made by the 

application of the method to SSLP. As a by-product of this experiment, we 

have developed SSLP test problems that can be used to test the performance 

of other algorithms. These test problems will be made available via SIPLIB 

at http;//www.isye.gatech.edu/~sahmed/siplib/. 

3. Solving some of the largest SCO problem instances reported in the literature 

to date. Some of these problem instances have up to over a hundred thousand 

constraints and over a million binary variables. Furthermore, this research 

has revealed that the convergence of the method on large-scale SCO 

problems is in fact attainable. In addition, the dissertation demonstrates the 

applicability of the D'^ approach to stochastic strategic supply chain planning 

and stochastic matching problem instances from the literature. 

4. Finally, an extension of disjunctive decomposition to two-stage SMIP with 

continuous first-stage is made and a new branch-and-cut procedure is 

proposed. 

http://www.isye.gatech.edu/~sahmed/siplib/
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1.4 Organization of the Dissertation 

This dissertation consists of nine chapters and is organized as follows. The 

first paragraph of each chapter gives a summary of the ideas presented in that 

chapter. This is followed by some background/motivation before the main ideas 

are presented. A problem statement and assumptions are restated in the chapter if 

deemed necessary for continuity and completeness. 

Chapter 2 provides a literature review of SP programming with a focus 

on two-stage SP models. SP properties, algorithmic and computational challenges, 

decomposition algorithms, and applications are discussed. 

Chapter 3 gives a review of theory for D'^ for two-stage SMIP. In particular, 

a summary of the principles of disjunctive programming with set convexification are 

summarized. An illustrative application of the method to the solution of a small 

SCO example problem instance is provided. 

In chapter 4 a computer implementation of three decomposition algorithms 

for SMIP is discussed. These are the algorithm, the Z^^-BAC (branch-and-

cut) algorithm derived by Sen and Sherali (2003) and the decomposition algorithm 

derived by Laporte and Louveaux (1993) for two-stage SMIP with binary first-

stage. Issues with a computer implementation of the algorithm are discussed 

and illustrative pseudo code for various parts of the algorithm is given. 

Chapter 5 reports on the solution of some of the largest stochastic 

combinatorial optimization problems arising in server location under uncertainty. 

Some of these SSLP instances consist of thousands of constraints and up to a million 

binary decision variables. 

Chapter 6 presents a comprehensive study on server location problems 

under uncertainty. Several valid inequalities for the SSLP models are derived and 
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computational experience with using the algorithm to solve several randomly 

generated large-scale problem instances are reported. 

The main goal of chapter 7 is to investigate the performance of the D"^ 

method for cases in which the second stage has continuous variables. This is in 

contrast to the computational experiments with SSLP which is purely binary in 

both stages. In these experiments, we use two problems from the literature; one 

dealing with stochastic strategic supply chain planning, and another with stochastic 

bipartite matching. While the latter is a combinatorial problem, using linear 

programming in the second stage suffices. Hence, we include a report on these 

experimental results in this chapter. 

The current algorithm is convergent under the assumption that the 

first-stage solutions are extreme points of the first-stage feasible set. Chapter 8 

extends the theory to allow for the solution of SMIP problems with continuous 

first-stage. This is one of those cases in which the presence of continuous variables 

in the first-stage tends to make the solution harder for decomposition algorithms. 

Finally, a conclusion is given and contributions of the research and future directions 

along this line of work are given in Chapter 9. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides a hterature review of SP with a focus on two-stage SMIP 

models. Models for two-stage SP problems with recourse, chance constrained 

problems, and multistage SP with recourse are given. The properties of SLP 

and SMIP recourse models and their differences are reviewed and the algorithmic 

challenges pointed out. A review of decomposition algorithms for SP is given with 

a focus on algorithms for SMIP. Finally, several example apphcations of SP are 

discussed. 

2.1 Stochastic Programming Models and Properties 

The need to incorporate uncertainty in mathematical programming models resulted 

in the field of SP. Early work started with Dantzig (1955) and Beale (1955). Their 

model involves an action followed by observation and reaction or recourse. Charnes 

and Cooper (1959) developed an alternative model called chance or probabilistically 

constrained programming. Even though both methods have their roots in statistical 

decision theory (Wald, 1950), SP focuses on methods of solution and analytical 

properties instead of constructing derivatives and updating probabilities. For a 

thorough understanding of SP the books by Kail and Wallace (1994) , Prekopa 

(1995) and Birge and Louveaux (1997), a survey article by Birge (1997) and a 

tutorial paper by Sen and Higle (1999), provide valuable resources. Recent resources 

on SMIP include survey articles by Schultz et al. (1996), Sen (2003) and Ph.D. 
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theses by Stougie (1985), van der Vlerk (1995) and Car0e (1998). 

2.1.1 Two-Stage Recourse Problems 

Consider a model in which a decision vector x associated with a system must be 

chosen in such a way that the consequences of such decisions are evaluated against 

several alternative outcomes of a random variable oj within an optimal choice model. 

The decision x could be a design decision for example. The random variable d) is 

used for modeling data uncertainty in the model while x is referred to as the first-

stage decision. Then the performance of such a system under uncertainty is also 

a random variable. Therefore, measures such as expectation and other moments 

of performance can be naturally considered. In SP the consequences of the first-

stage decisions are measured through an optimization problem referred to as the 

recourse problem, which enables the decision-maker to adapt their decision to the 

random variable realizations. While the SP framework allows a variety of measures 

(Takriti and Ahmed (2002)), the predominant measure is the "expectation". This 

risk measure allows the use of LP-based methodologies. However, several alternative 

nonlinear risk measures have been incorporated with the SP models (see e.g. 

Riis and Schultz (2003), Schultz (2003), Ogryczak and Ruszczynski (2002), and 

Bertsimas and Sim (2003)). 

The general two-stage SMIP recourse model to minimize "expected cost" 

can be written as follows: 

Min c '  X  +  E [ f { x , C u ) ] ,  (2.1a) 

(2.1b) 

(2.1c) 

s.t. Ax > 6, 

x > 0, Xj integer, j G Ji, 
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and for any scenario (realization) uj of cu 

f { x , u > )  = Min q{uj)'^y, 

s.t. W { u j ) y  >  r { L i j )  —  T { u j ) x ,  

y > 0, yj integer, j G J2. 

(2.2a) 

(2.2b) 

(2.2c) 

Problem (2.1) is the first-stage problem while problem (2.2) is the second-

stage problem and is generally referred to as the recourse problem or scenario 

subproblem. In problem (2.1), c is a known vector in 3?"^; £^[.] is the usual 

mathematical expectation operator; constraints (2.1b) are the first-stage constraints 

with A e and b E constraints (2.1c) restrict some of the first-stage 

decision variables to be integer or binary, that is, Ji is an index set consisting of 

some or all of the first-stage variables x E 3?"^. 

In problem (2.2), q{u!) is a cost vector in for scenario tu; y is the 

second-stage decision variable; constraints (2.2b) are the second-stage constraints 

with W{uj) e g ^1712 T{u>) e g^^™•2XTn. constraints (2.2c) restrict 

some of the recourse decision variables to be integer or binary, that is, J2 is an 

index set consisting of some or all of the recourse decision variables y € 3?"^. The 

matrices A and W{uj) are assumed to be rational matrices for all oj. 

Although the second-stage (recourse) variable y continues to depend on the 

outcome w, this dependence is not explicitly indicated in problem (2.2). This is 

because the subproblem for each outcome u is decoupled from all other outcomes 

once a vector x is given. Thus this formulation emphasizes the loosely coupled 

nature of two-stage SP problems. 

Throughout the dissertation we assume that the random variables have 

finite support so that 
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where p^j is the probability of outcome for scenario uj £ Vt. Therefore, problem 

(2.1-2.2) can be rewritten as a large-scale deterministic equivalent problem or DEP 

as follows. 

Note that the dependence of y on a; is now explicitly indicated here since the first-

stage decision variable x couples all the scenarios. Thus x is sometimes referred to 

in the literature as the "linking" or "complicating" variable. 

The matrices W { . )  and T ( . )  are sometimes referred to in the literature as 

the recourse matrix and technology matrix, respectively. If the recourse matrix is 

deterministic, that is, W{uj) = W, the SP problem is said to have fixed recourse. 

If the technology matrix is deterministic, that is, T{lj) = T, the SP problem is 

said to have fixed tenders. The value function f{x,u)) is referred to as the recourse 

f u n c t i o n  d u e  t o  i t s  d e p e n d e n c e  o n  t h e  f i r s t - s t a g e  d e c i s i o n  x .  S i m i l a r l y ,  E [ f { x , L o ) ]  

is referred to as the expected recourse function of the two-stage model. When the 

second-stage problem is feasible for all x € 3?"^ the SP problem is said to possess 

the complete recourse property. When the second-stage problem is feasible for all 

Vt X {Ax > b,x > 0,Xj integer ,j G Ji}, the SP problem is said to possess the 

relatively complete recourse property. 

When the recourse matrix W has a special structure W = [/,—/], the 

second-stage decision variables are continuous and the constraints (2.2b) have 

equality constraints, the resulting SP model is said to possess the simple recourse 

property. Such a problem is referred to as a stochastic program with simple recourse. 

(2.3a) 

s.t. Ax > h, 

T{(jj)x -|- W(uj)y^ > r(u>) \/uj € O, 

X  >  0 ,  X j  i n t e g e r ,  j  E  J i ,  

y'^ > 0, integer, j G J2, Va; G fi. 

(2.3b) 

(2.3c) 

(2.3d) 

(2.3e) 
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An example of such a problem is the news vendor problem, sometimes known as the 

newsboy problem. In this model the vendor must determine how many papers x to 

buy now at a cost c without knowing the demand represented by the random variable 

u, with known distribution and given a selling price p. It is generally assumed that 

there is no salvage value so that the papers bought in excess of the unknown demand 

are discarded, resulting in potential losses. In this case the recourse problem decision 

variables simply measure the deviation from an uncertain target. Accurate solution 

methods for continuous simple recourse models have been derived in Kail and Mayer 

(1996). 

In the SLP models the objective functions and constraints are defined by 

affine/linear functions. SLP models remain the most widely studied and most of 

the applications reported in the literature belong to this class of models. SLP 

problems have been shown to be convex optimization problems (see e.g. Van Slyke 

and Wets (1969)) and therefore, convex analysis methods are applicable to this class 

of convex problems as well. Thus the recourse function, and hence the expected 

recourse function are both convex. Nevertheless, SLP problems lack the desirable 

numerical property of smoothness except under the condition of absolute continuity 

of the random variables (Kali, 1976). 

In SMIP models the recourse function inherits the properties of SLP if 

only the first-stage decisions include integer restrictions. Otherwise, if the integer 

restrictions appear in the second-stage the SMIP is much more challenging. The 

objective function f{x,u) is generally discontinuous and nonconvex in x for all 

(jj E fl, and the expected recourse function is lower semi-continuous under the 

assumption of complete recourse and a weak covariance condition (Schultz, 1993). 
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2.1.2 Chance Constrained Problems 

Sometimes, decisions must be made in such a manner that a chosen design 

must satisfy a reliability constraint. Such decision models lead to the so-

called probabilistic constraints or chance-constrained stochastic programs. These 

constraints are generally of the form: 

P { h { x , u )  > 0} > a, (2-4) 

where, a is the probability for the constraint to hold, and the function h is often 

modeled by a linear function. Such constraints are often used to model system 

reliability. Early work on this class of SP models can be found in Prekopa (1971). 

Several chance constrained models with continuous random variables have 

been studied by Prekopa (1971). In particular, he showed that if the function h 

is hnear/affine in x and the randomness only appears additively, and the random 

variable has log-concave probability density function, then the resulting feasible 

region is convex. The early work for these models was restricted to normally 

distributed random variables. More recently, however. Sen (1992) has shown that 

this does not hold for discrete random variables, and in this case, the set of feasible 

solutions can be represented as a disjunctive set. Finally, the choice of SP model to 

use, a recourse model or a chance-constrained model, or even some combination of 

these models depends on the modeler or decision-maker. 

2.1.3 Multistage Recourse Problems 

Even though the focus of this dissertation is on two-stage SMIP, the ideas presented 

and illustrated herein can be extended to the multistage case. Therefore, we shall 

give a summary of the multistage SMIP model following the formulation given in 

Lulli and Sen (2004). 
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Multi-stage stochastic programs have been studied from several 

perspectives. Birge (1985) presents a nested Benders' decomposition algorithm in 

which the two stage approach is extended in such a way as to allow us to approximate 

the value function by a piecewise Hnear approximation in each stage. Gassmann 

(1990) reports computational results with the nested Benders' decomposition 

algorithm, and subsequently, several applications have been addressed using this 

algorithm. Higle et al. (2002) derive the stochastic scenario decomposition method, 

which is a statistically motivated cutting plane algorithm for multi-stage SP. 

Other decomposition algorithms for multi-stage SP include the scenario aggregation 

method of Rockafellar and Wets (1991) and the diagonal quadratic approximation 

method of Ruszczynski (1993), Mulvey and Ruszczynski (1995) and Rosa and 

Ruszczynski (1996). These algorithms are based on modifications of the augmented 

Lagrangian methods. Rockafellar and Wets (1992) present a dual-based approach 

for multistage SP, and Higle and Sen (2002) use a sampled cutting plane approach 

based on this dual problem. 

Consider a finite horizon sequential decision process under uncertainty. Let 

us denote by T = {1,..., |T|} the decision horizon and assume that the information 

is revealed by a discrete time stochastic process The decision at time t is 

made based on the revealed information at that time. This means that decisions 

will be based on the set of decisions and the outcomes of the random variables in 

the previous stages. So let = {xi, denote the vector of decisions made from 

stage 1 to stage t and let = 1,..., t be the corresponding vector of the random 

variable outcomes. Then a multistage SP can be given as follows; 

Min{ci(tJi).'ri -|- Qi{xi) \ WiXi < /ii(c^i), xi G Xi}, (2.5) 

where, 

Qt{xt) = M.\xi{ct+i{ut+i)xt+i -F (5t+i(^t+i) : (2.6a) 

< ^t+i(^^t+i)) ^t+i £ ^t+i} (2.6b) 
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where, t = 1,|T| — 1, Q\t\ = 0, and denotes the expectation with respect 

to the distribution of Ut+i conditioned on the observation It is assumed that lui 

is known at time t = 1 and that Tt{u^), Wt, Ct{ujt), htiuit) are rational matrices and 

vectors of conformable dimensions. The set denotes restrictions on the decision 

variables requiring some of them to be integer. 

As in the two-stage case, to ensure that problem (2.5) is well defined, we 

can impose the relatively complete recourse assumption. This implies that the 

expectation defining Qt is finite for any policy x^. The assumption of finite support 

for the random vector u implies that Q = with probabilities p^, 

Therefore, we can represent uncertainty by means of scenarios, where a scenario is a 

realization of the random variable (c(t<;), h{uj),T{uj)) corresponding to an elementary 

atom cu G Jl. 

The evolution of all information trajectories over time in a multistage 

stochastic program can be represented by a scenario tree (Birge and Louveaux, 

1997). The scenario tree represents the relationship between scenarios. Let H be 

the node set for the scenario tree. At each node of the tree we have a branch(es) to 

indicate future possible outcomes of the random variable from that node. A scenario 

includes one node at each stage and is represented by a path from the root node to 

a leaf node of the tree. The root node represents the first-stage (stage 1) while the 

leaf nodes represent the final stage (stage |T|). Let the set of scenarios be given 

by 5 = {1, ...jT}. Then the correspondence between nodes of the scenario tree and 

the 2-tuples (t, s) e T x S is given by the surjective map H : T x 5 ̂  K. Now if 

we associate a vector of decisions = {xi{ui^), ...,x\t\{^^)) with each scenario 

s G S, we can write the deterministic equivalent problem (DEP) formulation of the 
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multistage stochastic program (2.5) as follows: 

Min Ep'E (2.7a) 
S=1 t=l 

S.t. W i X i { u ! ^ )  < hi{LLll), Vs e S ,  (2.7b) 

V 5  e S y t e  r ,  ( 2 . 7 c )  

= [E E P^' e 5, Vi G r, (2.7d) 
ueBt u&Bl 

x t { u ' ) e X t ,  y s e S , ^ t e T ,  (2.7e) 

where, Bl represents the set or bundle of scenarios that are indistinguishable from 

scenario s at time t, that is, all scenarios u for which for all r = 1, 

A  bundle of scenarios for any node 7i{ t , s )  of the scenario tree includes all paths 

passing through that node. The constraints (2.7d) state that all scenarios with 

the same history until the t-th stage must share the same decision until this stage. 

Therefore, these constraints are referred to as the nonanticipativity constraints in 

SP literature. They also imply that decisions depend only on information revealed 

in the past and not in the future. The nonanticipativity constraints can also be 

written for each node 7Y(t, s) of the scenario tree as follows 

where, Xn{t,s) is a decision associated with the node T - C { t , s ) .  Next we turn to the 

computational challenges of SP. 

2.2 Computational Challenges 

Let us now briefly summarize some of the algorithmic challenges of SP. The 

main computational challenges can be attributed to the evaluation of the multi­

dimensional integral as was recently proved in Dyer and Stougie (2003). They 

showed that two-stage SP programs are actually T^F-hard, meaning that they have 

X-H{t,s) — E S, \ft E T, (2.8) 
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the same complexity as the most difficult counting problems in combinatorics. The 

complexity class was first defined by Valiant (1979). This class is a set of 

integer-valued functions that express the number of accepting computations of a 

nondeterministic Turing machine of polynomial time complexity. Therefore, the 

notions and #P-hard or #P-completeness express the hardness of problems 

that count the number of solutions. Let N denote the set of nonnegative integers 

and let S be the finite alphabet of the input and output of the Turing machines 

considered. Then Fortnow (1997) defines as follows. 

Definition 1. The class consists of the functions / ; E* N such that there 

exists a nondeterministic polynomial time Turing machine M such that for all inputs 

X G E*, f(x) is the number of accepting paths of M. 

This implies that efficient or polynomial time algorithms for two-stage stochastic 

program solutions are not likely to be found. Even in the case of discrete random 

variables the total number of outcomes or scenarios may be too large for evaluating 

the expected value function. Thus one has to resort to approximations of the value 

function as explained momentarily. 

In SMTP integrality requirements on (some of) the first-stage and/or 

second-stage decision variables introduce further computational complexity. Integer 

programming is generally NP-hard and therefore, SMIP models inherit this 

property. However, Dyer and Stougie (2003) have shown that #P-hardness of the 

evaluation of the integrals involved remains the dominating factor in the overall 

complexity of SMIP problems. Once there are integrality requirements on the 

second-stage decision variables, the evaluation of one f{x,uj) requires the solution 

of an NP-hard problem. Furthermore, the convexity properties of the continuous 

recourse and expected recourse functions no longer hold. As pointed out earlier in 

Section 2.1.1, f{x,io) is generally discontinuous and nonconvex in x for every cu E ^ 

(Schultz, 1993). Hence successful SLP solution methods are difficult to adapt for 
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the solution of SMIP problems. 

The two main approaches to generating approximations of the scenario 

outcomes are data-aggregation and data-selection. Note that these approximations 

have to do with approximations of the value function and not approximations of the 

feasible set. In data-aggregation the algorithms lead to successive approximation 

methods in which finer discretizations of the sample space are created based 

on the solution of an aggregated stochastic program. Methods based on data-

aggregation can be found in Frauendorfer (1992) and Edirisinghe and Ziemba (1996) 

for two-stage stochastic programs and Frauendorfer (1994) for multistage stochastic 

programs. 

Data-selection methods arise in sample-based methods. Romish and 

Schultz (1991) and Shapiro (1991) use a fixed point and perform a statical analysis 

of the output. Shapiro and Homem de Mello (1998) suggest solving a sequence of 

sample approximations with increasing sample size to obtain asymptotic results. 

However, as the sample size gets larger (and therefore the approximating problem) 

each iteration may become computationally demanding. Higle and Sen (1991) 

and later, Higle and Sen (1996) and Higle and Sen (1999) derive a stochastic 

decomposition algorithm (SD) to speed up the computations associated with such a 

method, whereby approximations generated earlier in the iterations are sequentially 

updated. 

2.3 Algorithms for Stochastic Programming 

There are two fundamental approaches to solution methods for SP; direct methods 

using SP structure and decomposition approaches. Direct approaches are largely 

for SLP and include extreme-point methods (Kail (1979), Strazicky (1980), Birge 

(1995)), interior point methods (Lustig et al. (1991) and Lustig et al. (1994)), and 

column splitting method (Carpenter et al., 1991). Since the focus of this dissertation 
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is on decomposition approaches, we shall review some of the decomposition methods 

that have shown potential for solving large-scale problems. The basic idea behind 

decomposition approaches is to decompose the large-scale SP into a master program 

and subproblems for each scenario, and then solving the smaller pieces of the 

problem separately in a decomposition-coordination setting. 

The decomposition approaches can be divided into two categories based on 

how the SP problem is decomposed. Resource-directive decomposition methods 

decompose the large-scale SP problem stage-wise or time-wise. On the other 

hand, price-directive methods decompose the SP problem scenario-wise. Stage-

wise decomposition scales well with the number of scenarios in the two-stage case. 

However, the scalability of stage-wise decomposition with respect to multistage 

SLP problems remains unclear (Sen, 2003). In this dissertation we follow stage-

wise decomposition for two stage SMIP and therefore, our review on decomposition 

algorithms will be focused as such. Before reviewing the algorithms for SMIP, 

we first state the L-shaped method for SLP since it provides a framework for the 

algorithmic setting in this dissertation, and then point out other SLP methods. 

2.3.1 Decomposition Algorithms for SLP 

The size of an SP model grows linearly with the number of possible realizations of 

the random parameters. Further, this number also increases exponentially with the 

number of decision stages in the model in the multistage case. Consequently, the 

algorithmic developments in this area focused on exploiting the SP model structure. 

This in turn led to the development of the L-shaped method (Van Slyke and Wets, 

1969) for SLP. The L-shaped method is essentially a Dantzig-Wolfe decomposition 

(Dantzig and Madansky, 1961) of the dual or Benders' decomposition (Benders, 

1962) of the primal. These methods deal with hnear models and are cutting-plane-

based (see e.g. Kelley (I960)). 
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The L-shaped method, derived by Van Slyke and Wets (1969), forms the 

fundamental decomposition algorithm on which many other SP methods are based. 

The name comes from the dual-block angular structure of the linear case for problem 

(2.3). In this approach a master program in x and r] is built, where the variable 

77 represents the expected recourse function evaluations. Thus the assumption of 

finite support is taken in order to make this approach possible. The master program 

takes the form; 

Constraints (2.9c) are the so-called feasibility cuts while constraints (2.9d) are called 

optimality cuts. The feasibility cuts determine {x | E[f{x,u})] < +00} and the 

optimality cuts provide linear supports of E[f{x,uj)] on its domain of finiteness. 

The L-shaped algorithm can be summarized as follows. 

The L-Shaped Algorithm 

Step 0. Initialization: 

Min c~^x + T], 

s.t. Ax > b, 

D e x  > d e ,  i =  1, ...,r, 

E e x  +  r ] > e ^ ,  £  =  I , . . . ,  s ,  

x  >  0 ,  7 /  e  3 ? ,  

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

(2.9e) 

and for each scenario u E Q the subproblem to solve is 

f { x , u } )  =  Min q'^y, (2.10a) 

(2.10b) 

(2.10c) 

s.t. Wy > r(ui) — T{ui)x, 

y > 0, 

Set s <— 0, t <— 0 and <— 0. 
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Step 1. Solve the master program 

Set k  ^  k  +  1 .  Solve master program (2.9). 

Let {x^,rj^) be an optimal solution. If no constraint (2.9d) is present, 

7]'^ is set to —GO and not considered in the computation of x^. 

Step 2: Solve scenario sub problems 

Solve scenario subproblem (2.10b) for all (u; 6 

If for some u) subproblem is infeasible 

Let be the associated dual rays and define 

-Dr+i = u^Tiuj) and = (T^r{uj) to generate a feasibility 

cut (2.9c). 

Set r r + L Add feasibility cut to master program 

and return to Step 1. 

else 

Let be the associated dual multipliers and define 

es+i = and e,+i = E..enP'^7r'=(a;)r(cj) 

to generate an optimality cut (2.9c). 

Let — Eg+ix^ 

Step 2: Termination 

If 'if' >w^, stop. The solution x^ is optimal. 

Otherwise set s •!— s + 1, and add optimality cut to master program 

and return to Step 1. 

Birge and Louveaux (1988) have proposed a multi-cut approach for this method in 

which the optimality cut is disaggregated for each scenario. This requires a variable 

ri{uj) for all e in the master program for approximating the function value 
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of each scenario subproblem. The L-shaped method has also been generalized to 

multistage SLP as a nested decomposition method by Birge (1985) and Gassmann 

(1990). Also, Laporte and Louveaux (1993) extended the L-shaped method to 

models with integer decision variables and derived the integer L-shaped method. 

In many practical SP problems the number of scenarios is generally large. SP 

models often include some approximation of an underlying probability distribution. 

When the number of scenarios is very large and the underlying probability 

distribution is known, it is common to resort to sampling. Two main methods 

that embed sampling into the L-shaped method are the approaches by Dantzig and 

Glynn (1990) and Dantzig and Infanger (1991) and by Higle and Sen (1991) and 

Higle and Sen (1996). 

The first approach is based on large samples to derive the cuts. In this approach, 

f{x, (jj) is sampled in the L-shaped method instead of actually computing E[f{x^ (D)]. 

Dantzig and Infanger (1991) report on the solution of experiments with large-scale 

problems. The results improve significantly with importance-sampling variance 

reduction techniques. In order to form confidence intervals on the optimal values, 

however, Infanger (1991) makes several assumptions. 

The second approach, called stochastic decomposition (SD), generates many 

cuts with increasing samples based on previous samples. These cuts are updated 

and/or dropped as the algorithm continues processing. The authors assume 

complete recourse and a known lower bound on f{x,u) (generally 0). They also 

a s s u m e  t h a t  t h e  s e t  o f  d u a l  s o l u t i o n s  a r e  b o u n d e d  a n d  t h e  s e t  X  =  { x \  A x  >  b , x  >  

0} and Q are also compact. This approach has been applied to solve large-scale 

network design problems (Sen et al., 1994). 
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2.3.2 Decomposition Algorithms for Two-Stage SMIP 

Decomposition algorithms for integer SP models started to appear only recently. 

In SMIP, the type of integrality restrictions (binary, mixed-binary, general integer, 

mixed-integer) and where it appears (first-stage, second-stage) in the model greatly 

determines the type of decomposition algorithm suitable for the model. Therefore, 

we can categorize algorithms for SMIP based on the integrality restrictions on the 

decision variables in the model as in Sen (2003): (a) simple integer recourse models 

with random RHS, (b) binary first-stage, arbitrary second-stage, (c) binary first-

stage, 0-1 MIP second-stage with fixed recourse, (d) binary first-stage, MIP second-

stage, (e) continuous first-stage, integer second-stage and fixed tenders, and (f) 0-1 

MIP in both stages with general random data. 

(a) Simple Integer Recourse Models with Random RHS 

Imposing integer restrictions on the second-stage SLP simple recourse model and 

rewriting the equality constraints into inequality constraints results in the simple 

integer recourse (SIR) model. This model has been extensively studied by Klein 

Haneveld et al. (1995) and Klein Haneveld et al. (1996). Let i denote the row index. 

Under the assumptions that all data elements in the problem are deterministic 

except the right-hand side, and that ri{Cj) has finite support and that the technology 

matrix t has full rank, these researchers have shown that it is possible to compute 

the convex hull of the expected recourse function by using enumeration over each 

dimension i. However, the resulting problem only provides a lower bound since the 

first-stage feasible set XnX is not used in the convexification process. Consequently, 

branch-and-bound may be necessary to close the gap. More recently, van der 

Vlerk (2002) has extended this approach to general recourse models with totally 

unimodular recourse matrices. 
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(b) Binary First Stage, Arbitrary Second Stage 

This class of SMIP models has pure 0-1 decision variables in the first-stage. 

Assuming relatively complete recourse and that a lower bound L on the expected 

recourse function is known or can be computed, Laporte and Louveaux (1993) 

derive valid inequalities that can be applied to the expected recourse function. They 

propose the earliest decomposition algorithm for this type of SMIP model which is 

illustrated in Birge and Louveaux (1997). Their approach follows the algorithmic 

setting of Benders' decomposition (Benders, 1962) (and consequently the L-shaped 

method (Van Slyke and Wets, 1969)) in that, at each iteration k, a master program 

is solved whose solution x'' is passed on to the scenario subproblem MIPs. All the 

scenario subproblem MIPs are solved exactly at each iteration of the algorithm. 

The optimality cut proposed by Laporte and Louveaux (1993) has been shown 

to be ge n e r a l l y  w e a k .  I t  i s  o n l y  s h a r p  a t  t h e  p o i n t  a n d  t h a t  i t s  v a l u e  i s  a t  m o s t  L  

at all other feasible solutions. Nevertheless, Birge and Louveaux (1997) show how 

to improve the optimality cut when more information is available on E[f{x^,Lb)]^ 

such as other bounds. 

(c) Binary First Stage, 0-1 MIP Second Stage with Fixed Recourse 

We now turn to SMIP models with pure binary first-stage and mixed-binary second-

stage and fixed recourse matrix W. Under the assumption of relatively complete 

recourse. Sen and Higle (2000) propose the common-cut-coefficient theorem and a 

(D^) algorithm for this class of problems. The methodology follows a sequential 

convexification of the recourse function problem in the context of Benders' 

decomposition, and is motivated by the need to avoid solving every subproblem 

from scratch in each iteration. The cuts are generated in both stages in this 

approach. The cuts in the second-stage, referred to as the D'^ cuts, are generated 

using disjunctive programming (see e.g. Balas (1979)). Under the theorem, one 
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cut generated for one scenario can easily be translated for the other scenarios. These 

cuts can also be derived using the reformulation-linearization technique (RLT) of 

Sherali and Fraticelli (2002). This SP solution approach forms the basis for this 

dissertation and is described in greater detail in the ensuing chapters. 

(d) Binary First Stage, MIP Second Stage 

The approach described in the last case extends to this case under relatively 

complete recourse and fixed recourse assumptions. However, the properties of 

branch-and-bound algorithms are now incorporated into the approach. Recently, 

Sen and Sherali (2003) proposed a with branch-and-cut or £)^-BAC algorithm 

for this class of SMIP problems. The essence of the method is to use 

information provided by the branch-and-bound tree on the second-stage to derive 

approximations of the value function of the second-stage MIP via disjunctive 

programming. This approach is also described in detail in the dissertation. 

(e) Continuous First Stage, Integer Second Stage and Fixed Tenders 

So far with the exception of the SIR models, all the models considered have binary 

first-stage. For the case with continuous first-stage and mixed-integer second-stage 

the situation is more complex. Finite termination of the method when the first-stage 

is continuous is far from obvious. Ahmed et al. (2004) derive a finite branch-and-

bound algorithm for this class of SMIP models that is based on global optimization. 

They assume pure integer recourse and fixed tenders {Tiu) = T) but the recourse 

matrix is allowed to be random. 

The main observation in this approach is that the value function of a pure 

IP with integer W is constant over hyper-rectangles ("boxes"). Furthermore, if 

the set X = {x \ Ax > 6, a; > 0} is bounded, then there are finitely many such 
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hyper-rectangles. In fact, this observation was used by Schultz et al. (1998) to 

design an enumerative scheme for the first-stage decisions while the second-stage 

decisions were obtained using polynomial ideal theory. To fit the problem into a 

global optimization setting they transform the problem into the space of "tender 

variables" x — Tx. Then the transformed problem becomes: 

Min¥?(x), (2.11a) 

where =  { x \ T x  =  x ,  x  e  X }  and (/? is defined as the sum of 

= Min{c'^a; | Tx = x, a; G X} and $(x) = ^p^h{r{u) - x), 

where h{r{Lo) — x) denotes the value function resulting from the value of a pure IP 

with right-hand side r{Lu) — x-

(f) 0-1 MIP in Both Stages writh General Random Data 

Unlike the previous cases considered, this case has mixed-binary in both stages 

with general random data. There is no special structure associated with the random 

elements and therefore, it is easier to cast this SMIP model into the large-scale DEP 

formulation (2.3). This model was studied by Car0e (1998) who devised a branch-

and-cut method in which the cuts are based on disjunctive programming. Car0e 

(1998) derives lift-and-project cuts of Balas et al. (1993) in the DEP setting. The 

cuts are in the {x,y{uj)) space and are derived for each scenario. Other types of 

cuts can also be used. 

The basic idea of the method is as follows. The LP relaxation of the DEP is 

first solved to optimality to get a solution (x,y(w)}a;en)- If the solution satisfies 

the integrality restrictions then an optimal solution has been found and the method 

stops. Otherwise, a fractional variable solution is chosen and used for cut derivation, 

which involves forming and solving another LP for each scenario u E fl. After 
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all the cuts are generated they are added to the DEP LP relaxation and the 

process repeated. Branching is embedded in this method just as in deterministic 

integer programming. Since lift-and-project cuts are generally costly in terms of 

computation time, Car0e (1998) suggests translating a cut derived for one scenario 

to another scenario if possible. This is possible under the assumption that the 

t e c h n o l o g y  a n d  r e c o u r s e  m a t r i c e s  a r e  f i x e d ,  t h a t  i s ,  T ( u j )  =  T  a n d  W { u j )  =  W .  

Finally, let us point out that among the recent work that seem promising 

towards the development of practical algorithms for SMIP is Car0e (1998) and Car0e 

and Schultz (1999), who use the scenario decomposition approach of (Rockafellar 

and Wets, 1991) to develop a branch-and-bound algorithm and Norkin et al. (1998), 

who propose a stochastic branch-and-bound method for minimizing the expected 

value of an arbitrary function over a finite set. 

2.4 Applications of Stochastic Programming 

Due to the fact that many real-life problems have inherent uncertainty in them, 

applications for SP are vast. In this section we simply highlight a few of the 

applications where both SLP and SMIP have seen significant success and provide 

references for further reading. Unlike SLP models, most SMIP models started 

appearing in the literature only in the last few years. This has mainly been due 

to lack of practical algorithms to tackle these problems. For instance, Bertsimas 

(1994) presents a variety of SP problems with discrete decision variables but these 

problems are reduced to deterministic-equivalent or near equivalent problems. A lot 

of practical problems, such as capacity planning and strategic supply chain planning 

under uncertainty often involve discrete decision variables. Thus applications 

for SMIP will continue to grow as more practical solution methods for these 

problems are derived and implemented. Next we discuss applications of SP to 

telecommunication, transportation, finance, manufacturing and electricity power 
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generation. 

2.4.1 Telecommunication 

The system traffic, performance and reliability of telecommunications systems 

planning and operations naturally involve uncertainties. Therefore, SP naturally 

renders itself a viable approach to problems that arise in this field. Sen et al. (1994), 

for example, applied the SP planning methodology to an industrial-sized network 

planning problem for Sonet-Switched Network (SSN), and demonstrated improved 

network performance due to the SP model. This particular problem involves making 

network design and configuration decisions that require consideration of random 

point-to-point demands with high variance forecasts in the network. The authors 

used the stochastic decomposition (SD) method to solve the problem. 

Another problem in telecommunications system that is amenable to the SP 

approach is the server location problem under uncertainty. These problems find 

many real-life applications in situations where facilities or "servers" have to be 

located at some given potential sites in order to provide some service to some 

potential "clients". In such problems uncertainty appears not only in the client 

demands, but also in the client availability and server location costs. For example, 

Wang et al. (2003) study the facility location problem for immobile servers with 

continuous stochastic demands. They present several models and provide heuristics 

for their solutions. Riis et al. (2004) study a server location problem for the 

deployment of mobile switching centers in a telecommunications network and report 

on the solution of a real large-scale problem instance using the SP approach. 
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2.4.2 Transportation 

Many transportation models are commonly formulated as SP models from the 

Ferguson and Dantzig (1956) model. In particular, dynamic vehicle allocation has 

been one of the prominent areas in which SP has been applied. Dynamic vehicle 

allocation involves routing a set of vehicles (e.g. trucks, freight cars, planes) to meet 

demand along routes and to position them for anticipated future demands (loads). 

The objective is to maximize the total returns over given time horizons. See for 

example Powell (1988), Powell (1990), Frantzeskakis and Powell (1990) and Powell 

(1996) for various SP dynamic vehicle allocation models. Over the last few years, 

Powell and Gittoes (1996) and Powell et al. (2004) have developed approximations 

and an adaptive labeling algorithm that effectively approximate the value function 

at each time period and yield a form of dynamic approximation. 

Other SP models in transportation include the widely studied stochastic vehicle 

routing problem. See for example Laporte et al. (2002) propose the integer 

L-shaped method for the capacitated vehicle routing problem with stochastic 

demands, Kenyon and Morton (2003) study the stochastic vehicle routing with 

random travel times, and Laporte et al. (1994) propose an exact solution for the a 

priori optimization of the probabilistic traveling salesman problem. 

2.4.3 Electricity Powrer Generation 

Another common area of application and source of developments for SP methods 

has been electricity power generation. The problem, usually referred to as the unit 

commitment, aims at finding a fuel cost optimal scheduling of startup/shutdown 

decisions and operation levels for power generation units over some given time 

horizon. (Car0e, 1998) and Car0e and Schultz (1998) study a unit commitment 
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problem in the presence of uncertainty in the load profiles and develops a two-

stage SMIP model with integer first-stage and mixed-integer recourse. They apply 

a Lagrangian-based decomposition algorithm to solve a problem with real data for 

a German utility company. The problem has a total of 20,000 integer and 150,000 

continuous decision variables with up to 180,000 constraints. 

Other examples include Pereira and Pinto (1985) and Pereira and Pinto (1991), 

who use decomposition procedures for models of the Brazilian power system, and 

Takriti et al. (1996), who apply the progressive hedging algorithm to a model of 

the Michigan power system designed for daily scheduling. They report achieving 

a convergence to near optimal solutions quickly with potential savings over a 

deterministic procedure of almost $150,000 in generation costs for one sample week. 

The recent deregulation of the electricity market has also led to the development 

of new SP models in this area. For example, Sen et al. (2003) develop a SP-based 

model for power portfolio optimization called DASH. This model is designed to 

help decision-makers to coordinate production decisions with opportunities in the 

wholesale power markets. They report that their model selects portfolio positions 

that perform well on a variety of scenarios generated through statistical modeling 

and optimization. 

2.4.4 Finance 

Finance problems inherently involve uncertainty due to the future time nature 

of financial returns and are therefore, amenable to the SP approach. The goal 

of SP is to provide a strategy for making decisions that hedge against unforseen 

scenarios and thus avoid potential losses. An excellent example of SP appHcation 

to finance is the Russel-Yasuda Kasai Model reported in Carino et al. (1994), which 

won second prize in the 1993 Franz Edelman Award Competition for Management 

Science Achievement. In the model decisions are made for a Japanese insurance 
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company on how to optimally invest in assets to meet an uncertain liability stream 

over time. The investment returns are also random and the model includes legal 

constraints about the use of income to meet liabilities. The authors model the 

problem as a multistage SLP problem and report that the model yield $79 million 

in its first year of use. For a list of other successes of application of SP to finance 

see an article in Business Week (Coy, 1996) 

Other finance models in finance are presented in Markowitz (1952) and Kusy 

and Ziemba (1986). For more recent work in this field see papers by Rockafellar 

and Uryasev (2000) and Rockafellar and Uryasev (2002) and a book by Uryasev 

and Pardalos (2001). 

2.4.5 Manufacturing 

Manufacturing usually involves complex operations in which randomness cannot be 

ignored. The demand and supply aspects of manufacturing are often characterized 

by randomness. In fact, the uncertainty inherent in manufacturing operations make 

this area also particularly amenable to SP models. In recent years there has been a 

lot of interest in applying the SP approach to tackle problems especially in capacity-

planning and expansion and strategic supply chain management under uncertainty. 

Eppen et al. (1989) provide a capacity-planning model at General Motors 

formulated as a SLP whose goal is to determine capacity for various products at 

a number of plants. They maximize an expected profit objective with a downside 

risk constraint. Ahmed and Garcia (2003) study the dynamic capacity acquisition 

and assignment problem under uncertainty using the SP approach. Given a set of 

resources and tasks, this problem seeks to find a minimum cost schedule of capacity 

acquisitions for the resources and the assignment or resources to tasks over a given 

planning horizon. This problem arises, for example, in the integrated planning 

of locations and capacities of distribution centers (DCs), and the assignment of 
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customers to the DCs, in supply chain applications. The randomness in the problem 

appear in the assignment costs and the processing requirements for the tasks. 

They formulate a SMIP model and apply a decomposition based branch-and-bound 

method (Ahmed et al., 2004) to solve numerous instances of the problem. 

Apphcation of SP to strategic supply chain management under uncertainty 

seems to have gained interest only in the last few years. Strategic supply chain 

planning involves the determination of production topology, plant sizing, product 

selection, product allocation among plants and vendor selection for raw materials. 

The goal is to maximize the expected profit over a given time horizon for the 

investment depreciation and operations costs. Uncertainty in strategic supply chain 

planning may appear in the product net price, product demand, raw material supply 

cost and production cost. Some recent work in this area include that of Escudero 

et al. (1996), MirHassani et al. (2000), Ahmed et al. (2003), and (Alonso-Ayuso 

et al., 2003). In particular, (Alonso-Ayuso et al., 2003) follow a two-stage SP 

approach for the problem and derive a branch-and-fix coordination (BFC) method 

and report on the solution of large-scale SMIP problem instances. 

2.4.6 Other Applications 

There are many other applications for SP. For instance, with the rise in global 

terrorism, we expect to see new SP models to address some of the problems involved 

for example, in both anti-terrorism and counter-terrorism, and in the prevention and 

counteraction of cyber attacks. These problems are amenable to the SP approach 

due to the inherently uncertainty in the problem data. Other SP applications 

include military applications (Morton et al., 1996; Baker et al., 2002), network 

interdiction (Cormican et al., 1998; Woodruff, 2002), and airport security (Simms, 

1997). 
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CHAPTER 3 

A SUMMARY AND ILLUSTRATION OF DISJUNCTIVE 

DECOMPOSITION WITH SET CONVEXIFICATION 

This chapter has been published as Sen et al. (2002) and has been included in this 

dissertation for convenience in providing the needed background. In this chapter the 

disjunctive decomposition (i?^) algorithm for two-stage Stochastic Mixed Integer 

Programs (SMIP) is reviewed. This method uses the principles of disjunctive 

programming to develop cutting-plane-based approximations of the feasible set 

of the second-stage problem. At the core of this approach is the Common Cut 

Coefficient Theorem, which provides a mechanism for transforming cuts derived 

for one outcome of the second-stage problem into cuts that are valid for other 

outcomes. An illustrative application of the method to the solution of a small 

SMIP illustrative example is provided. 

SMIP comprise one of the more difficult classes of mathematical programming 

problems. Indeed, this class of problems combines the extremely large scale nature 

of stochastic programs and the inherent computational difficulties of combinatorial 

optimization. The main difficulty in solving two-stage stochastic mixed-integer 

programs is that the recourse costs are represented as the expected value of a 

mixed-integer program whose value function is far more complicated than the value 

function of a linear program. In general, the expected recourse function is non-

convex and possibly discontinuous. In this chapter the Disjunctive Decomposition 

(Z?^) algorithm with set convexification for two stage SMIP proposed by Sen and 

Higle (2000) is illustrated. 
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The method uses the principles of disjunctive programming to develop a cutting-

plane-based approximation of the feasible set of the second-stage problem. This 

task is streamlined via the Common Cut Coefficients (C^) Theorem (Sen and Higle, 

2000), which provides a simple mechanism for transforming cuts derived for one 

instance of the second-stage problem into cuts that are valid for another instance. 

This significantly reduces the effort required to approximate the convexification of 

the feasible set, a task that must be undertaken for each possible outcome of the 

random variables involved. In this chapter, the D'^ algorithm and the manner in 

which the Theorem is used to reduce the computational effort are illustrated. 

Because the methodology is related to, but distinctly different from, the work of 

Car0e (1998), we also use this forum to highlight the relationship between the two 

approaches. 

This chapter is organized as follows. In Section 3.1 the results of Sen and 

Higle (2000) are summarized, and identify connections between their work and 

that of Car0e (1998). In Section 3.2 the application of the Algorithm is 

illustrated through a simple numerical example with both first and second-stage 

binary variables. Finally, a discussion and our conclusions are found in Section 3.3. 

3.1 Background 

In this section the main results from Sen and Higle (2000) that are critical to 

the illustration of the D'^ algorithm are given. In particular, the theorem is 

reviewed the details of its application discussed. For a more thorough explanation of 

disjunctive decomposition concepts, proofs, and the derivation of the D'^ algorithm, 

the reader is referred to Sen and Higle (2000). Throughout this chapter the following 

SMIP problem is considered: 

Min X  +  E [ f i x , C j ) ] ,  
x e x n b  ' •  

(3.1) 
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where X C is a set of feasible first-stage decisions, B C 3?"^ is the set of binary 

vectors, w is a random variable defined on a probability space {n,A,V), and for 

any lu E 

It is assumed that X is a convex polyhedron, Q is a finite set, and that f{ x , u ! )  <  oo 

for all {x,iu) E X X Q. Moreover, it is assume that by using appropriately 

penalized continuous variables, the subproblem (3.2) remains feasible for any 

restriction of the integer variables 2;. Note that the inclusion of integer variables 

in the second-stage problem, (3.2), is the primary source of the computational 

and algorithmic challenges associated with (3.1). In particular, in order to 

evaluate the SMIP objective cx + E[f{x,uj)], it is necessary to solve (implicitly 

or approximately) the MIP (3.2) for each uj E Q. Moreover, the structural 

difficulties associated with MIP objective functions are well documented (see, e.g., 

Blair and Jeroslow (1982) and Blair (1995)). These difficulties are compounded by 

the fact that the expected value operations associated with the SMIP objective 

function amounts to a convex combination of the complicated individual MIP 

objective functions. The Theorem exploits the specific structure of (3.2), thereby 

permitting a computationally streamlined development of SMIP objective function 

approximations. 

3.1.1 Common Cut Coefficients 

f { x , u j ) =  M i n g j u  +  g j z ,  

s.t. WuU -I- W z Z  —  r { u ) )  —  T { u j ) x ,  

u E W^,zE 

(3.2a) 

(3.2b) 

(3.2c) 

In an effort to develop approximations of the SMIP objective, we begin with an 

approximation of the convex hull of feasible integer points for (3.2). This set can 
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be expressed as a disjunction, 

5 = U '5'^' 
heH 

where i? is a finite index set, and the sets { S h } h e H  are polyhedral sets represented 

as 

S h = ^  { y \  W h y  > r h , y >  0} 

Within our setting, we have y  =  { u , z )  as in (3.2) and r u  includes r { w )  —  T [ w ) x .  

More formally, we note that the constraints in (3.2), 

WuU + WzZ > r{u) — T{uj)x 

vary with the first-stage decision, x, and the scenario uj. Consequently, the 

disjunctive representation of the set depends on {x,uj) G X x Q, 

<S(x,a;) = IJ 5/i(x,a;), (3.3) 
h e h  

where 

S h { x , u j )  =  { y  I W h u U + W h z Z  >  r h { x , L u ) , u , z  > 0}. 

A convex relaxation of the nonconvex set (3.3) can be represented by a collection 

of valid inequalities of the form 

• k I u  +  - k I z  >  7 r o i x , u ; ) .  

While the disjunctive representation depends on ( X , L J ) ,  the Theorem, which is 

stated below, ensures that as the argument changes, cut validity can be maintained 

by a shift in the right-hand-side element without altering the gradient of the cut. 

In the following we use n2 = n^. 

Definition 1. (The Theorem). Consider the stochastic program with fixed 

r e c o u r s e  a s  s t a t e d  i n  ( 3 . 1 ) ,  ( 3 . 2 ) .  F o r  { x , u j )  G  X  x  O ,  l e t  Y ( x , u i )  =  { y  =  ( u , z )  |  

Wy > r{uj) — T{u)x,u € W^,z E B^'}, the set of mixed-integer feasible solutions 

for the second-stage mixed-integer linear program. Suppose that {Chidh}h^H, is a 


