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ABSTRACT 

Given equations with k-rational coefficients that define a curve C of genus 1 over a 

perfect field k, can we find equations that define its jacohian Jc? The problem is 

trivial when the degree n of a A:-rational divisor on C is equal to 1. For the cases 

2 < n < 4, certain standard forms for C appear classically, and the classical invariant 

theory of those forms turns out to contain equations that define Jc- This modern 

interpretation of classical results was explained for n = 2 in 1954, for n = 3 in 2001, 

and for n = 4 in 1996. A standard form for C and its invariant theory was worked 

out by Tom Fisher for n = 5 in 2003, again leading to equations for i(j-

In the present work, the problem is solved algorithmically for all n > 3. (As in 

the classical approach, we must assume the characteristic of k does not divide n.) 

The basic idea, given to us by Minhyong Kim, is to embed C in using the di

visor of degree n, then to explicitly describe as matrices the finite Heisenberg group 

that corresponds to the n-torsion JcN on the jacobian, and then to determine equa

tions for the quotient of C by the Heisenberg group, giving us the sought jacobian: 

C/^c[n] — Jc- The Heisenberg matrices also allow us to compute the points of hy-

perosculation on C, which is a A;-rational orbit under the action of JcM and thus 

gives the origin for the group law on J^. Our algorithm relies on techniques from the 

theory of Grobner bases, and on techniques from the invariant theory of finite groups. 

In presenting the background material to our algorithm, we develop the theory of 

curves of genus 1 with an attached /s-rational divisor class, and the theory of non-

degenerate degree n curves in P^""'' of genus 1. We thus state in a more general context 

results that appeared previously in more specialized contexts in work of Klaus Hulek 

and work of Catherine O'Neil. We give an elementary proof that the commutator 

pairing on the Heisenberg group corresponds to the Weil pairing on Jc[n]. We describe 

intriguing hyperplane configurations and relate them to the points of hyperosculation 
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on the curve of genus 1. 
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I. INTRODUCTION 

LI. The motivating problem 

The motivation behind this work is the following arithmo-geometric problem: given 

equations defining a curve C of genus 1 over a perfect field k, find equations defining 

the jacobian curve Jc- The arithmetic nature of the problem is reflected in its triviality 

when k is algebraically closed, for in that case we have C = Jc- (The problem also 

turns out to be trivial when k is a finite field—see §I.2f.) 

This problem is in some sense the opposite or inverse of the following problem, 

which occurs in the theory of descent: given an elliptic curve, produce its principal 

homogeneous spaces. 

I.la. Previous work and related work 

Let n be the degree of a A:-rational divisor on C. The n = 1 case of the motivating 

problem is trivial: we have C = Jc-

For n > 2, it turns out the curve C always admits a non-degenerate degree n map 

to so without loss of generality we may assume that C is given that way to 

begin with. For n > 3 that map is an embedding, so we are essentially assuming that 

C is given to us as a non-degenerate degree n curve in P^"~^ of genus 1. 

The classical approach The cases n = 2, n — 3, n — 4, and N = 5 of the moti

vating problem, or slight variants thereof, have been solved, under the hypothesis 

char (A:) f n (in some cases also char (A:) ^ 2, 3), using techniques of classical invariant 

theory: [Wei54], [MSS96], [AKM+01], [VT], and [Fis]. The first four references rely 

on results from invariant theory worked out in the 19th century, and thus amount to 

establishing interesting modern interpretations of classical results. The work [Fis], on 
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the other hand, does quite a bit more: it develops from scratch the relevant invariant 

theory—which does not appear classically—and then gives the interpretation in terms 

of jacobians. 

This "classical approach" requires one to work with a suitable family of curves of 

genus 1. The classical invariant theory of the generic equations defining the family 

describes a fundamental system of covariants and their relations, called syzygies. In 

the cases considered so far, there has always been one Weierstrass-like syzygy (I 

am not aware of a satisfactory explanation for that), which turns out to define the 

jacobian 3c of each member C of the family. 

However, we know of a family JF (see §I.2a), for which the classical approach 

appears to go through without a hitch, yet the Weierstrass-like syzygy turns out to 

define a quadratic twist of the jacobian, not the jacobian itself! A little extra work 

then identifies which twist occurred, thereby leading to the actual jacobian. 

Because the classical approach works with a family of curves, it ends up producing 

formulas for the coefficients of Jc in terms of the coefficients of C. The approach itself 

does not apply to individual curves, but once the formulas are known, they can of 

course be applied to individual curves, giving us an algorithm (namely: substitution) 

of trivial computational complexity for solving a restricted version of the motivating 

problem; namely, its restriction to the particular curves that occur in the family under 

consideration. 

The O'Neil approach With additional assumptions on the starting curves and the 

ground field the motivating problem is treated by an intriguing approach in [O'NOl]: 

the jacobian Jc, together with a level-?! structure (this is part of the extra data 

on C), is expressed as a point on the modular curve Xi(n). For n — 3 and n — 5, 

[O'NOl] exhibits formulas for Jc G Xi(n) in terms of C. 

The Anderson approaches A related problem has been studied by Greg Anderson; 

given a curve of genus g defined over an algebraically closed field, find equations 
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defining its jacobian (an abelian variety of dimension g ) .  One approach to this prob

lem, which may lead to an algorithm, is given in [And02]. A different, and algorithmic, 

approach is given in [And]. By assuming the ground field to contain symbols that are 

algebraically independent over the prime subfield, this approach can treat a family of 

curves of genus 1, which then leads to formulas for the jacobian (which can then be 

applied to individual curves). Even though the formulas are defined over the prime 

subfield, it is unclear whether they always give the jacobian over that field—certainly 

they do so over the field's algebraic closure. As shown in [And], when the Anderson 

algorithm is applied over Q to two of the cases considered in [AKM^'^Ol], it produces 

the same equations for the jacobian as exhibited in [AKM+01], and thus gives the 

correct answer over Q. 

Lib. Present contribution 

In the present work, again assuming char(A:) j n (cf. §I.2e), we develop an algorithm 

(a computational process guaranteed to complete in a finite number of computational 

steps), based on ideas given to us by Minhyong Kim, that solves the motivating 

problem in all degrees n > 3. 

Unlike the approaches mentioned previously, this algorithm can be applied directly 

to individual curves. Of course, it can then also be applied to a family, serving as 

an alternate approach for obtaining formulas for Jc- (For example, in chapter V 

we apply the algorithm to the individual curve + 5z^ = 0, and then show 

in §V.7 how to tackle the family ax^ + by^ + cz^ + mxyz — 0.) 

After applying our algorithm, if one desires a Weierstrass model for Jc, one could 

apply the usual Riemann Roch algorithm (cf. §V.7c): find functions x, y with poles of 

orders 2 and 3 at the origin of Jc, then use linear algebra to find the relation between 

l , x , y , x ' ^ , x y , y ' ^ , x ^ .  

The mere existence of an algorithm is not surprising, at least when k is count
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able, for there certainly exists the following type of exhaustive search: given C, one 

enumerates all varieties defined over k (there are countably many); for each such va

riety V, one enumerates all A:-rational points in the ambient space; for each such pair 

(V, P), one enumerates all algebraic maps from the ambient space of C to the ambient 

space of V; for each such triple (V, P, (p), one checks whether F is a curve of genus 1, 

whether P lies on V, and whether (j) has degree n? and the difference of any pair of 

points in (f)^^{P) is a divisor class of order dividing n in the divisor class group; all of 

this can be done algorithmically, and once all the conditions are met, by [AKM+01, 

Prop. 4.5], one has found Jc- (This also shows that the motivating problem lies in the 

computational complexity class NP: a non-deterministic polynomial-time algorithm is 

to guess and then verify the certificate data indicated above.) But exhaustive search 

is completely useless: even in the simplest of cases, it exhausts our patience, and it 

has the philosophical drawback that its description relies only peripherally on the 

mathematics of the motivating problem. 

In contrast to exhaustive search, the algorithm in the present work relies heavily 

on the mathematics of the motivating problem, and the algorithm can be success

fully applied in practice (as we demonstrate in chapters V and VI). However, on 

multiple occasions in the algorithm, we need to find all solutions to a 0-dimensional 

intermediate problem; unfortunately, today we know how to complete those steps al

gorithmically only by appealing to the theory of Grobner bases, and thus the overall 

algorithm, in its present form, has seemingly unbounded computational complexity. 

In summary, our present algorithm has the advantage over the previous approaches 

of being applicable both to families and to individual curves, and of course the advan

tage that it can be applied in all degrees n > 3. On the otlier hand, from a practical 

perspective, on a current desktop-class computer (3 GHz Pentium processor, 2 GB 

RAM), we have been successful only with particular instances in the n = 3 and n = 4 

cases of the motivating problem. 
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Lie. Roadmap for the algorithm 

As described below in the chapter-by-chapter overview (see §1.3), this dissertation 

contains more than just the algorithm that solves the motivating problem. If the 

reader's only goal is to understand that algorithm, then the summary below in §I.3d 

may be a good starting point, and the more detailed roadmap is as follows. 

In chapter II, the only crucial material is: §11.2 on the map jt> and the isomorphism 

C/JcM Jc, and §11.2a on the points of hyperosculation. In chapter III, the only 

crucial material is: §111.8 on classifying linear automorphisms, §111.11 on the fixpoints 

and hyperplane configurations associated to generators of J„, and §111.12 on lifting 

Jn C PGL„(^) to Hn C SL„(^). Of course, all of chapter IV (description of the 

algorithm) is crucial, and the examples from chapter V and VI serve as concrete 

illustrations of the steps. 

1.2. Future research projects 

1.2a. The family T 

Consider the family =  U { X , Y ) ,  where U  i s  a  generic binary cubic form with 

distinct roots. When we look at the classical invariant theory of binary cubic forms 

(cf. [Stu93, 3.7.6, 3.7.7]), we find a Weierstrass-like syzygy. Let E be the elliptic curve 

over Q defined by that syzygy, and let C be a member of the family T with coefficients 

in Q. The syzygy leads to a map C E oi degree 3. Thus E cannot be J^, for a map 

C —)• Jc defined over Q must have degree a square: its pullback is multiplication-

by-m for some m. It turns out E is the quadratic twist of Jc over Q(\/^), which 

is the field over which Jc has complex multiplication. Further investigations into 

may give additional insight into the classical approach: when it works, and why it 

works when it does. (I intend to continue this research and publish the results in the 

future.) 
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L2b. The "j-invariant" approach 

An entirely different approach to finding Jc, not discussed elsewhere in this disser

tation, goes as follows: starting with C defined over k, move to a finite field exten

sion K/k over which C'k admits a point, then apply the Riemann -Roch algorithm 

(cf. §V.7c) to obtain a Weierstrass model W for Ck that has /s-rational coefficients. 

(From this we can read off the j-invariant of C—my original motivation for this 

approach—whence the name.) Thus C, W, and Jc (as an abstract curve) are all 

defined over k, and all three are isomorphic over K. But W and 3c are elliptic curves 

over k, whence either W = Jc, or W is a quadratic twist of Jc over one of the 

quadratic extensions lying inside Kjk. By writing down the possibilities, we obtain 

a finite list of Weierstrass models that are candidates for Jc (and one of them must 

a c t u a l l y  b e  J c ) -  N e x t  r e p e a t  t h e  p r o c e d u r e  w i t h  a  d i f f e r e n t  f i e l d  e x t e n s i o n  K / k ,  

hopefully obtaining a different finite list of candidates that necessarily contains Jc. 

Repeat this process until the various finite lists intersect in a single candidate, which 

must then be Jc- (I have successfully applied this approach in the case n = 2. I 

intend to continue this research and publish the results in the futmre.) 

Compared to the classical approach, or to the Anderson algorithm, or to the algo

rithm in this dissertation, the "j-invariant" approach has the following disadvantage: 

it does not give you a map C -> Jc-

I.2c. Arithmetic complexity bounds 

Any systematic approach to the jacobian might lead to relations between the arith

metic height (or other suitable notion of complexity) of Jc and the height of C. (A 

preliminary investigation of the "j-invariant" approach led to rough height relations. 

I intend to continue this line of research in the future.) 
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1.2d. Elucidating the hyperplane configurations 

We feel that more can be said about fixpoints and fixed hyperplanes of elements 

of PGL„{^) that preserve C (cf. §111.9 and §111.11). For example, what can be said 

about the hyperplanes fixed by the [—l]-automorphisms? For another example, we 

discover in chapter V that the [—l]-automorphisms have eigenvalue +1 at one fixpoint 

but eigenvalue —1 at the other three fixpoints. Why does this happen, and what 

happens in general? Many such questions are easily formulated from the examples 

worked out in chapters V and VI. 

It would also be nice to have a formula, or at least an algorithm more elegant 

than brute force, for determining the osculating hyperplane at a point (thus also for 

determining the hyperosculating hyperplanes at the points of hyperosculation). 

A better understanding of these matters may lead to further simphfications of the 

elementary proof in §111.10 that the commutator pairing is the Weil pairing, or at 

least some kind of insight into what is happening geometrically in each step of the 

proof. 

I.2e. Handling the modular case 

Our algorithm for the jacobian exploits the isomorphism (*) (from §I.3b below), 

which holds in general. Even the recasting of C/Jc[n] as C/if„ (cf. §I.3d below) 

holds in general. However, to compute C/if„ in practice, we start by finding the 

^-valued points of the group scheme When char(A:) | n (known as the modular 

case), we have #//„ ^ #if„(^), and our algorithm breaks down. (Note that the 

invariant theory of finite groups itself is not an obstacle: algorithms for the modular 

case appear in [Kem96] and [DHS98].) However, since we do determine equations 

defining the group scheme even in the modular case there may be a method for 

d e t e r m i n i n g  e q u a t i o n s  f o r  C / .  
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I.2f. Examples in characteristic p > 0 

It would be interesting to apply our algorithm to examples in characteristic p > 

0. For example, whereas working over function fields in characteristic 0 may be 

computationally out of reach on today's computers, it may turn out that something 

similar is feasible in characteristic p. 

It is worth remarking that the motivating problem is actually trivial when k is 

the finite field F^, where g is a power of p. By the Riemann hypothesis for curves 

(cf. [Har77, Ex. V.1.10]), we can easily see that a curve of genus g defined over Fg 

necessarily admits a rational point when q exceeds a bound expressible in terms of g. 

For g — I, the condition is g > 2. Therefore, our curve C of genus 1 always admits 

an Fq-rational point, whence C = JC- But this isomorphism is not canonical; in 

particular, given a family of curves of genus 1, it is unclear whether we can pick out 

the rational point in a consistent manner across the family. In other words, a non-

canonical isomorphism C = 3c exists for each individual members of the family, but 

there may be no single such isomorphism for the entire family. Our algorithm, on the 

other hand, always produces Jc in a canonical fashion. Thus, it is still interesting to 

apply the algorithm even when working over a finite field. 

1.3. Chapter-by-chapter overview 

1.3a. Chapter I; Introduction 

You're reading that chapter right now! 

1.3b. Chapter II; Background on quasi-elliptic curves 

Interest in the motivating problem led us to study an object we call a quasi-elliptic 

curve defined over k: a pair (C, 2>), where C is a curve of genus 1 defined over k, 

and P is a ^-rational divisor class on C. Each quasi-elliptic curve admits precisely 
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(when char(A;) f n) points of hyperosculation, which are A>vahied points P such 

that nP E V. They compose a ^-rational orbit under the action of the n-torsion JcH 

on C. This action respects the fibers of the map jp: C -> Jc, P [nP] — V, and 

we get an isomorphism of curves 

The hyperosculation orbit on C is the A:-rational point on the left that goes to the 

origin of Jc on the right. 

Remark. Our algorithm for Jc will in fact find equations for C/Jc[w]; it will find 

coordinates for the points of hyperosculation on C, and thus obtain the coordinates 

of the origin on C/JcH-

Chapter II proceeds with a description of morphisms between quasi-elliptic curves, 

and in particular establishes 

where O  G C { k )  is a point of hyperosculation. 

We next give an alternative description of a quasi-elliptic curve, namely as a map 

C Jc, such as jx) above, with the property that the induced pullback map Jc —)• Jc 

is multiplication-by-n. While working on the paper [AKM+01], such maps occurred 

when we were considering new ways of describing principal homogeneous spaces and 

n-coverings of an elliptic curve. We briefly give those descriptions here. 

Finally, when the class V admits a A--rational representative D, so that we are 

w o r k i n g  w i t h  a  p a i r  { C , D ) ,  t h e r e  i s  a l w a y s  t h e  a s s o c i a t e d  n o n - d e g e n e r a t e  d e g r e e  n  

map to the projective space bundle P(H"(C, 0(D))), which upon choosing coordi

nates is just P^""'. (The map is an embedding for n > 3.) We show that automor-

phisms of (C, D) extend to automorphisms of 

C 
(*) 

Aut(C^,I') == Jc[n](^) >1 Aut(Cg,0), (**) 
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1.3c. Chapter III: Projective quasi-elliptic curves C P^" ' 

This chapter generalizes material on "elliptic normal curves" from [Hul86] and on 

"n-prepared curves" from [O'NOl]. 

We study pairs (C, D) with n > 3 (cf. the last paragraph in the previous section), 

but identify them with their image in thus, we study "non-degenerate degree n 

curves in of genus 1" (it turns out, as we show, that none of these words is 

superfluous), and denote such a curve C 

We show that C P^"~' is projectively normal, we compute its Hilbert function 

and Hilbert polynomial, and we show that each generating set for the saturated 

ideal defining the curve contains n{n — 3)/2 linearly independent quadratic forms. 

Furthermore, when char(A;) 7^ 2, for n > 4 each minimal generating set comprises 

precisely n(n — 3)/2 quadratic forms; that is, C is cut out scheme-theoretically by 

quadrics. 

Combining (**) with the last paragraph in §I.3b, we obtain 

{ c p e P G L j k )  : 4>{Ck) ^ Ck} = Jc[n]{k) X Ant{iCk,0)), (***) 

and from this we conclude: the subgroup Jn C PGL„(^) of elements that preserve C 

and act fixpoint-free on C is a faithful and Galois equivariant representation of the 

action of JC[H](^) on C. 

No matter the characteristic of k or the j-invariant of C, the part of (***) that 

always exists is J„ xi {±1}. The non-trivial coset of is characterized as the subset 

of PGL„(^) whose elements preserve C, have a fixpoint on C, and have order 2. 

When n is odd, each point of hyperosculation on C occurs as the fixpoint of an 

element of that coset. When n is even, either all or none of the fixpoints of an 

element of that coset are points of hyperosculation. We can identify whether a given 

fixpoint is a point of hyperosculation by searching for a hyperplane that meets C with 

multiplicity n at the given point. Thus we have a practical procedure for finding the 

points of hyperosculation on C. 
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By choosing Hfts from PGL„(A:) to GL„(A;), we define the commutator pairing 

Jn X Jn ^ k , 

( [ M ] ,  [ N ] )  K - 4  M N M - ^ N ~ ' \  

Using the points of hyperosculation as a crutch, we give an elementary proof that 

the commutator pairing on corresponds to the Weil pairing on 3c[n]{k). To even 

discuss the Weil pairing, we must assume char(/c) f n, and this assumption now occurs 

repeatedly as we appeal to the commutator pairing and the fact that has two 

generators: we show that lifts of generators M and N for J„ have distinct eigenvalues, 

that each generator cyclically permutes the fixpoints (eigenspaces) of the other, and 

the same is true of the fixed hyperplanes (eigenspaces of the transposed matrices). 

For n odd, this leads to the following hyperplane configuration: the hyperplanes 

fixed by M intersect C in the points of hyperosculation, and the same is true of 

the hyperplanes fixed by N. Furthermore, each point of hyperosculation lies in the 

intersection of a unique hyperplane fixed by M with a unique hyperplane fixed by N. 

(This gives yet another procedure for finding the points of hyperosculation on (7.) 

For n even, the hyperplanes fixed by M intersect C in a collection of points 

that, under the isomorphism (*), correspond to a non-trivial point of 2-torsion on Jc, 

while the hyperplanes fixed by N do the same thing, but for a different point of 

2-torsion on Jc-

Next, we define Hn C SL„(&) to be the preimage of J„ under the map SL„ —> 

PGL„, giving us the exact sequence 

1 y ^ Hji y Jn ) 1. 

This is a central extension of J „  by /i„(^), of order (when char(/:) ]  n ) .  We 

characterize the different lifts of J„ to GL„(^) of order n^, and establish that is 

essentially the only lift we would want to work with. 

We finish the chapter by describing Schrodinger-like representations for Hn and 

how they relate to the Galois module structure of Jc'[n]. 
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I.Sd. Chapter IV; An algorithm for the jacobian 

We assume C to be smooth and given as in §L3c: a non-degenerate degree n curve 

in P^"~^ of genus 1. We furthermore assume char (A;) f n (cf. §I.2e). Actually, the 

algorithm takes arbitrary equations as input, and then verifies that the input meets 

the assumptions. Thus 
. k [ x o , . . . , X n - l ]  

C == Proj J , 

where the generators of I were given in the input. 

Now we exploit (*). As explained in §I.3c, the action of Jc[n](^) on C { k )  is given 

by the group J„ C PGL„(^), which we lift to C SL„(fc). We find as follows; 

using a Grobner basis for the ideal of C, we easily write down the conditions for a 

generic matrix to preserve C and have determinant 1. In finding the finitely many 

solutions, we obtain a finite field extension K/k over which each solution is defined. 

We can then check which matrices have no fixpoints on C, and which have fixpoints 

and are of order 2 in PGL„(&). Thus we can find matrices representing the elements 

of J„ XI {±1}. We identify two generators M,N for Hn by searching for a pair of 

matrices whose commutator is a primitive nth root of unity. 

By finding eigenvectors for each matrix and its transpose, we obtain the fixpoints 

and fixed hyperplanes under the action of the induced element of PGL„(^). As 

explained in §I.3c, this information gives us the coordinates of the points of hyper-

osculation. 

We identify with the K-valued points of a finite group scheme, again de

noted Hn, which is defined over k. Then (*) becomes 

_ _  %0, •  •  •  ,  X n - l ]  n K [ x o ,  

Algorithms in the invariant theory of finite groups (cf. [Stu93]) tell us how to find 
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the invariants under Hn{K). Because itself is invariant under G a l { K / k ) ,  these 

algorithms already give us the correct answer over k. 

Finally, substituting the coordinates of one of the points of hyperosculation on C  

gives us the coordinates of the A'-rational origin on Jc-

1.3e. Chapter V: Example: a Selmer cubic 

To illustrate our theory in the case n = 3, we apply the algorithm from chapter IV 

to the Selmer cubic 

{3x^ + 4:X^ + 5^;^) 

We show how to carry out each step of the algorithm by hand (but also include 

computer code in some cases), showing in moderate detail how to apply the well-

known intermediate algorithms that were referenced in chapter IV. 

At the end of the chapter, we rely on the earlier results in this chapter to tackle 

the family 

Proj 
{ax^ + bx^ + cz^ + mxyz)' 

where A; is a perfect field with char(fc) ^ 3. 

We include example code for all of the computer systems we used: GP/Pari 

[BBB+00], Macaulay 2 [GS], Mathematica [Wol03], mwrank [Cre], and Singular 

[GPSOl]. 

L3f. Chapter VI: Example: a pair of quadrics 

To illustrate the ca.se n — 4, we carry out some of the steps of applying the algorithm 

from chapter IV to 

r = Proi . 
+ x'̂  + y'̂  + ẑ , + 2x'^ + dy"^ + 4^;^) 

We include computer code that is easily adapted to arbitrary values of n. 
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Compared to the example from the previous chapter, the current example is in

teresting for at least two reasons: it illustrates how the algorithm works when n is 

even, and the finite Heisenberg group H4 looks even less Schrodinger-like. 

I.3g. Appendix A: Facts about curves of genus 1 

We state facts about curves of genus 1 that we reference in other parts of this disser

tation. 

L3h. Appendix B: Maps to projective space: a coordinate-free approach 

Well known from the theory of smooth projective curves is that a divisor D on a 

curve X leads to the map X —> P" given by P i-> [so(-P) : ... ; Sn(P)], where the s, 

a r e  e l e m e n t s  o f  L ( D )  =  H ° ( X ,  0 { D ) ) .  

In this appendix, for lack of a suitable reference, we give a coordinate-free de

scription of such maps. (For the same material described in terms of coordinates, 

see [Har77, §11.7].) 

We describe projective space bundles, how to think of their points as certain types 

of rank 1 quotients, and how they behave under base change. For X a noetherian 

scheme over a noetherian ring A, and £ an invertible sheaf on X that is generated by 

global sections and such that H°(X, £) is a free A-module of finite rank, we obtain a 

canonical morphism 

»P(H°(X,£) (8)^ OA) ,  

from X  to the displayed projective space bundle. When .4 is a field k ,  and K  is a 

field extension of k, the map 0 has a nice description in terms of i^-valued points: 

< P v : X { K ) — ^ F { E % X , C ) ) { K ) ,  

P ^ { S E  H ° ( X ,  C ) ® K K  :  S P  -  0  } .  

In other words, (p carries the A'-valued point P to the hyperplane. in the vector space 

H"(A', C) K, of global sections that vanish at P. 



1.4. Table of notation 

Symbol Explanation 
k, k, Gfc perfect field, algebraic closure, absolute Galois group Gal(A:/A;) 

K field extension of k, often a finite and/or Galois extension in k 
pn-l projective (n — l)-space over k = Proj(A:[Xo,..., Xn_i]) 
P(.) projective space bundle = space of hyperplanes 
X a fc-schenie, often a A:-curve of arbitrary genus 

XK the if-scheme X K 
X { K )  the if-valued points of X = morphisms Spec(iir) —>• X 

C a ^;-curve of genus 1 
k { C )  field of fc-rational rational functions on C { k )  
Jc the jacobian of C 
V A;-rational divisor class on C of positive degree 
n degree of V 

P char (A;) 
e when char(/;) | n, we have p® | n but f n 

3v the map C  — >  Jc, P  ̂  [ n P ]  —  V  
n hyperosculation packet on C (see II.2a) 
D A:-rational divisor on C of positive degree 

[ D ]  set of all divisors linearly equivalent to D 
[ D ] k  set of fc-rational divisors linearly equivalent to D 

i C , 0 )  elliptic curve with group law origin 0  G C ( k )  
{ C , V )  

c H l c  

quasi-elliptic curve (see II.2) { C , V )  

c H l c  map whose pullback Jc —> Jc is multiplication-by-n (see II.3) 
c ̂  p;'~^ non-degenerate degree n curve in of genus 1 (see III.l) 

I saturated homogeneous ideal of C (see III.3) 
Jn Jc[n](^) disguised as a certain subgroup of PGL„(fc) (see III.10) 
Hn finite Heisenberg group in SL„(fc) covering (see III.12) 
0 Grobner basis for an ideal 

TABLE LI. Notation used throughout this dissertation. 



27 

II. BACKGROUND ON QUASI-ELLIPTIC CURVES 

11.1. Assumptions 

Let k he a perfect field, and throughout let k denote an algebraic closure. Without 

further context or qualification, use of "Galois" refers to the absolute Galois group 

G k  : =  G a l ( k / k ) .  

A A:-variety is a separated, geometrically integral, finite-type A:-scheme, and a 

curve is a variety of dimension 1. If X is a ^-scheme, and K D k is a field extension, 

then Xk denotes the ii'-scheme 

Xx X Xh K .— X Xgpec(fe) Spec(i^). 

Thus a A:-variety may be defined as a finite-type A;-scheme X such that the base 

change X^ is a variety in the sense of classical algebraic geometry carried out over 

algebraically closed fields. 

Throughout, C is a fc-curve of genus 1, and Jc denotes the jacobian of C. Basic 

facts about curves of genus 1 appear in appendix A. Crucial among them is the fact, 

which follows from Riemann-Roch, that each iiT-rational divisor class of degree 1 

admits a unique if-rational point as representative (for details, see §A.ld); from this, 

we can give an elementary definition both of the canonical group law on an elliptic 

curve (see §A.2) and of the canonical action of on C (see §A.3). Familiarity with 

these facts is assumed. 

11.2. Definition of a quasi-elliptic curve (C, V) 

Recall that an elliptic k-curve is a pair 

{ C , 0 ) ,  
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where C is a A:-curve of genus 1 and O is a A;-rational point on C. A morphism 

of elliptic curves (C, O) —)• {C',0') is a morphism of curves cj): C —> C" so that 

0(0) = O'. In fact, (C, O) can be given a canonical group scheme structure; in 

particular, for any field extension K D k, the set C{K) is a group with identity 

element O, and any morphism of elliptic curves is necessarily a group homomorphism 

on iT-valued points. Associated with (C, O) is the canonical A:-morphism jo'- C Jc 

of degree 1, determined on ^-valued points by 

P ^ [ P - 0 ] .  

Via this map, which evidently takes the group law origin on C to the group law origin 

on J(7, we have: every elliptic curve is canonically isomorphic to its jacobian. 

Note that a given A;-curve C of genus 1 need not occur as an elliptic A;-curve, since 

C need not admit a A:-valued point. 

In analogy with the above, we define a quasi-elliptic A:-curve to be a pair 

(C,P), 

where C is a A;-curve of genus 1 and I? is a A:-rational divisor class on C of positive 

degree. (In §11.4, and throughout chapter III, we'll further assume that V admits a k-

rational representative, but for now it is only the class that is /^-rational.) A morphism 

of quasi-elliptic curves (C, V) —)• (C, V) is a morphism of curves (j)\ C -> C" so that 

= v. We define the degree of {C,V) to be the degree of V. Let n be that 

degree. Associated with (C, V) is the canonical A:-morphism jx): C Jc of degree n?, 

determined on ^-valued points by 

j ^ : C { k ) — ^ 3 c { k ) ,  

P  [ n P ]  -  V .  

Note that each fc-curve C of genus 1 does occur as a quasi-elliptic fc-curve: simply 

define a A:-rational divisor class on C by taking the Galois orbit of any fc-valued point 

of a 



On a curve of genus 1, since each /^-rational divisor class of degree 1 has a unique 

A;-rational point as representative, a quasi-elliptic curve of degree 1 is the same thing 

as an elliptic curve. 

II.2a. Osculating divisors and points of hyperosculation 

On a curve C of genus 1, the canonical action of Jc on C induces, for each integer n > 

1, an action of Jc7[n](^) on C{k). The orbits under this action are called n-torsion 

packets. Here are the basic facts (explained in more detail in §A.3a): 

• An n-torsion packet is a maximal collection of points in C { k )  so that, if P,Q 

are any two of them, then there is a linear equivalence nP ~ nQ. 

• The set of n-torsion packets on C is in one-to-one correspondence with the set 

(C/JcW)(4). 

• Given an n-torsion packet V  C C { k ) , w e  can pick O  E  T  and consider the elliptic 

c u r v e  E  =  ( 0 ^ , 0 ) .  T h e n  V  c o m p r i s e s  t h e  p o i n t s  o f  n - t o r s i o n :  V  =  E [ n ] { k ) .  

Thus an n-torsion packet is a collection of points which would be the (usual) 

n-torsion were we to choose one of them as group law origin. 

® The Galois conjugate of an n-torsion packet is again an n-torsion packet. 

Definition. Let { C , V )  be a quasi-elliptic curve of degree n. A point P  E  C { k )  such 

that nP £ V is called a point of hyperosculation. For each P E C{k), the unique 

d i v i s o r  o f  t h e  f o r m  ( n  —  1 ) P  +  Q  t h a t  l i e s  i n  T >  i s  c a l l e d  t h e  o s c u l a t i n g  d i v i s o r  a t  P .  

The uniqueness is explained as follows: since the divisor class T> — (n — 1)[P] has 

degree 1, it is represented by a unique point Q e C{k). Observe that a point of 

hyperosculation may be characterized as one whose osculating divisor involves that 

point more than usual. 
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Remark. The terms "osculation" and "hyperosculation" have a geometric interpre

tation for n > 3. Identify C with its image in via the embedding given by V 

(see §11.4). Associated with each P e C[k) is the hyperplane meeting C to maximal 

order at P, called the osculating hyperplane. For most P. we have just seen that the 

osculating hyperplane meets C to order n—1 at P. For certain points P, the osculating 

hyperplane meets C to order n at P, and that phenomenon is called hyperosculation. 

A point whose osculating plane hyperosculates is called a point of hyperosculation. 

For a cubic curve in P^^^, the osculating hyperplane at each point is simply the tangent 

line. The 9 points of hyperosculation are simply the flex points—they are the points 

where the tangent line meets the curve to order 3. 

Proposition II.2.1. On a quasi-elliptic curve (C, X>), the points of hyperosculation 

compose an n-torsion packet. There are precisely 7^Jc[rj](^) distinct points of hyper

osculation in C{k). (Therefore, when char(A:) \ n, there are such points.) 

Proof. It is easy to check that the points of hyperosculation are one orbit under the 

a c t i o n  o f  J c [ n ] ( f c )  o n  C ( k ) .  •  

Corollary II.2.2. Every quasi-elliptic curve has at least one point of hyperosculation. 

(It might not be k-rational, but see II.2.3.) 

Definition. The n-torsion packet % comprising points of hyperosculation is called 

the hyperosculation packet. 

Proposition II.2.3. The hyperosculation packet % is Galois stable. 

Proof. If P is such that nP G V, then it is easy to see that P^ has the same property: 

nP'^ = {nPy £ = V. • 

The space of n-torsion packets is (C/JcH) [ k ) .  If C  is an arbitrary fc-curve of 

gemis 1, then C/^cWi not admit a ^'-rational point; but, by 11.2.3, when C 

is part of a quasi-elliptic curve {C,T>) of degree n, then C/Jc[?^] always admits a 
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canonical fc-rational point, namely the hyperosculation packet %. In other words, 

(C/JcM, is an elliptic curve. 

Theorem 11.2.4. The k-morphism jt> of degree v?, given on k-valued points by 

j ^ :  C { k )  3 c { k )  

P  [ n P ]  -  V ,  

descends to a k-isomorphism of elliptic curves 

j v -  C/Jc[n] Jc-

(When n — 1, this is just the usual  i s o m o r p h i s m  C  J ^ . j  

Proof. To see this, observe merely that the map has degree 1, and that the fibers of jp 

are the same as the orbits under the action of JcM; in particular, the hyperosculation 

packet is • 

IL2b. Structure of morphisms 

The definition of a morphism between two quasi-elliptic curves was given in §11.2. For 

there to exist such a morphism, it is of course necessary that the two quasi-elliptic 

curves have the same degree. We will now give descriptions of the set of morphisms 

between two quasi-elliptic curves, of the monoid of endomorphisms of a quasi-elliptic 

curve, and of the group of automorphisms of a quasi-elliptic curve. These particular 

descriptions require the choice of a point of hyperosculation. Since there may be no 

such choice that is /s-rational, these descriptions may not be useful for describing k-

rational homomorphisms, A;-rational endomorphisms, and /c-rat ional automorphisms. 

Proposition II.2.5. Let {C, V) and {C. V) be two quasi-elliptic curves of the same 

degree n. Fix points of hyperosculation O E C{k) and O' E C'(k). Each morphism 

^€Hom({C(,P),(C;-,B')) 
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can be written uniquely in the form 

i p  —  T  o ( j ) ,  w h e r e  r G Jc'[n]{k), (f) G Hoin((Cj:, O), {C'^, O')). 

Moreover, vice versa, each such r o 0 defines a tp. 

Proof, By A.4.1, we certainly can write TJJ — T o (F) with (j) as above and r G Ja'('^)-

Then tp^,(nO) — r^(f)*{nO) = r^{nO') ~ nT{0'), and we have nr{0') ~ nO' if and 

o n l y  i f  n { T { 0 ' )  —  O ' )  ^  0 ,  i . e . ,  i f  a n d  o n l y  i f  r  h a s  o r d e r  n .  •  

Corollary II.2.6. Let (C, V) be a quasi-elliptic curve of degree n. Fix a point of 

hyperosculation O G C{k). Each endomorphism 

VeEiid((C£,P)) 

can be written uniquely in the form 

^  =  R O 0 ,  T  G  J C [ N ] ( F C ) ;  ( ? ! >  G  End((Cfc,0)). 

Proposition II.2.7. Let {C, V) be a quasi-elliptic curve of degree n. Fix a point of 

hyperosculation O G C{k). The automorphism group of {C^,V) has the structure 

Aut { {C i ,V ) )  = Jc[n](*) >) Aut((Cj,0)). 

Proof. As in II.2.5, this time by A.4.5. • 

(n) 
II.3. Quasi-elliptic curves as maps C —> 

Associated with the quasi-elliptic curve (C, V) is the map j-p: P i—)- [nP] — T>, which 

has the property: 

the induced map { j v ) *  :  J(7 — -> Jc is multiplication-by-n. 

We will now classify maps with that property and thereby obtain another description 

of quasi-elliptic curves. 
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To get started, forget V for the time being, and let 0: C —> be any morphism 

whatsoever. For each integer n > 1, we associate with <p the map 

C—>PicS 

whose behavior on ^-valued points is 

4)n'- P ^ unique class Vp so that (l){P) = [nP] — Vp. 

Proposition II.3.1. We have 0* = [n] if and only if (pn is constant; when that is the 

case, 0 is defined over k if and only if the value of the constant map (j)n in PicJ is a 

k-rational class. 

Proof. If0„ is constant, say with value V ,  then ( f ) { P )  —  [ n P ]  — P for all P e C(fc), 

whence 0* is immediately seen to be [n]. Now assume 0* = [n]. Let P,Q ^ C{k) be 

a r b i t r a r y .  T h e n  [ n P  —  n Q ]  =  n [ P  —  Q ]  =  ( p ^ [ P  —  Q ]  =  4 > { P )  —  ( f ' i Q )  —  ( [ ^ - P ]  ^ p )  ~  

{[nQ] -  VQ) ~ [nP -  nQ] - {VP -  VQ), SO VP = VQ. 

Now assume 0(P) = [ n P ]  —  V  for all P  G C { k ) .  Then 4>'^{P) = {<p{P°' — 

([nP'^ — V)'^ = [nP] — V"^ so (f) = (j)" for all a G Gal(̂ /fc) if and only \iV = V'' 

for all a G Gal(^/fc), i.e., if and only if the class V is A;-rational. • 

Let us write 

C ^ JC (II.L) 

for a A;-morphism of A:-curves with the property that the induced map on jacobians 

is multiplication-by-n. Given two diagrams 

C-^Jc and C '-H J C , 

a morphism between them is a curve morphism 4>- C -r C fitting into a commutative 

diagram 
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By the proof of II.3.1, each (II.1) is equal to j-D for a unique V G Pic"(C)(/c), whence 

the two horizontal arrows in the diagram are of the form jt) and jp'. Commutativity 

of the diagram is easily seen to correspond to the condition (p^V = V. 

Thus there is an isoiiiorphisni between the category of quasi-elliptic curves and 

the category of morphisms of the form (II.1), which goes as follows: to a quasi-elliptic 

curve (C, P) we associate the morphism jx>, while to a morphism (II.1), which must 

e q u a l  j t >  f o r  a  u n i q u e  V  e  P i c " ( C ) ( A : ) ,  w e  a s s o c i a t e  t h e  q u a s i - e l l i p t i c  c u r v e  { C , V ) .  

De-emphasizing the divisor class by thinking of a quasi-elliptic curve as being a 

morphism (III) is analogous to de-emphasizing the origin by thinking of an elliptic 

curve as being a curve together with an isomorphism to its jacobian. 

II.3a. Relationship with n-coverings of an elliptic curve 

Let { E ,  O )  be a fixed elliptic A:-curve. Associated with E  is the Kummer sequence 

Elements of the Weil-Chatelet group W C { E )  E { k ) )  are classically 

described as equivalence classes of torsors (= principal homogeneous spaces) over E\ 

a A;-curve C together with a simply transitive action of E on C. Elements of WC(£^) 

may instead be described (see [AKM'^Ol, §4]) as equivalence classes of pairs 

where 3c E is & ^-isomorphism of elliptic curves. 

Elements of (G/;, ,E[n](A:)) are classically described (following [Cas60, §1] and 

[Cas62, §2]) as equivalence classes of ra-coverings: diagrams 

0 E ' i G k ,  E [ n ] { k ) )  E ' { G k ,  E { k ) ) [ n ]  ^ 0. (*) 

( C ,  J c  E )  

C >E (**) 

E 
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in which C  and the morphism C  — ) •  E  are each defined over k ,  but the isomorphism 

C E need not be defined over k. Elements of (Gfc, £'[n](fc)) may instead be 

described as equivalence classes of pairs 

(C Jc, Jc ^ B), 

where C 3C is a quasi-elliptic jt-curve (in the sense of §11.3), and Jc E 

is a A;-isomorphism of elliptic curves; two pairs (C Jci Jc E) and (C 

Jc, Jc —^ E) are equivalent when there is a A;-morphism 0; C —)• C" so that the 

following diagram commutes: 

C ̂  Jc ^ 
<!> 0. 

We now establish this alternate description. Given a pair (C Jci Jc E)^ we 

immediately obtain the corresponding classical n-covering (**). On the other hand, 

given (**), C E induces the pullback morphism J^; —)• Jc whose kernel is J£;[«]. 

Thus Ji;/J£;[n] = Jc, but also J£;/J£:[n] = E, whence there is a canonical 

^-isomorphism ^ E .  

With these descriptions, the first map in (*) sends a point P  E E { k )  to the map 

Q nQ 4- P, or more precisely, 

[ P ]  ( e ^ J e J E - ^ E )  

(Q —> [nQ + P - (n + 1)0], [ P ~ 0 ] ^ P ) ,  

while the second map in (*) is simply the forgetful map 

( C - ^ J c J c - ^ E )  { C , J c - ^ E ) .  

II.4. Mapping a quasi-elliptic curve to projective space 

Consider a quasi-elliptic curve (C, P), of degree n, for which the divisor class V 

admits a fc-rational representative D. Such a quasi-elhptic curve, together with the 
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additional data of the choice of representative, is denoted simply { C , D ) .  Associated 

with (C, D) is the /c-morphism LD of degree n to the canonical projective space bundle 

arising from D, which is given on fc-valued points by 

I d :  C { k )  ^ F { l i ^ C , 0 { D ) ) ) { k ) ,  

P ^ { s e E ' { C k , 0 { D ) )  :  s i P )  =  0 } .  

Remark. For V any A:-vector space, the ^-valued points of the projective space 

bundle P(F) are simply the hyperplanes in the ̂ -vector space V0kk. (See appendix B 

for details on projective space bundles.) The map LD takes a point to the hyperplane 

of sections that vanish at that point, but one must interpret this correctly: 0{D) is a 

subsheaf of the constant sheaf induced by the function field, so it is common to think 

of a section of 0{D) as a rational function /; the section vanishes at P precisely when 

the order of vanishing of / at P is at least one higher than what is allowed/required 

by the coefficient of P in D. 

The map LD is an embedding precisely for n > 3, because that is the precise 

condition for D to be very ample (see [Har77, IV.3.3.3]). We will study such embedded 

curves in chapter III. For now, however, we make no assumption on n. 

By choosing a basis B  — {XQ, ..., } for H°(C, 0 ( D ) ) ,  our map becomes 

P I—> [XO(^') : • • • : 3:„„I(P)]. 

The image of LB is non-degenerate (meaning: it does not lie in a hyperplane), because 

otherwise we would contradict the linear independence of the basis elements. Each 

choice of basis leads to such a map, and two different choices lead to two maps that 

differ by an automorphism of namely by the element of PGL„(fc) induced by 

the change-of-basis matrix. Replacing D  with D '  G [ D ] k ,  and choosing a basis B '  for 

H°(C, 0{D')), we obtain a map lb' • C as before, and it, too, differs from the 

original IB by an automorphism of P^"~^ (To see this, note that 0 { D )  and 0 { D ' )  
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are isomorphic, whence by B.3b we have P(H'^(C, 0 { D ) ) )  =  P(H''(C, 0 { D ' ) ) ) .  Now 

apply [Har77, 11.7.1.1].) 

In short, given a quasi-elliptic curve (C, T>) with the property that V admits a 

^•-rational representative but without the data of a choice of such representative, there 

is a maximal family T of A;-morphisms i\ C of degree n with non-degenerate 

image such that any two members of differ by a fc-rational automorphism of 

Given the pair (C, we recover the pair {C, V) by letting V be the class of divisors 

of hyperplane sections (= pullbacks of hyperplanes) for any (and all) maps in T. 

11.4a. Extending a morphism between quasi-elliptic curves to a morphism between 

projective spaces 

Isomorphisms between quasi-elliptic curves induce compatible morphisms between the 

projective spaces to which they map. More precisely, if (C, D) is a quasi-elliptic curve 

with a A;-rational divisor of degree n, and if (C, D') is a quasi-elliptic curve with a k-

rational divisor of the same degree n, and if we choose a basis B for H° (C, 0(D)] and 

a basis B' for H°(C", and if we have a morphism (/>: C C with ~ D', 

then we can ask about the existence of a map in the indicated position; 

C (*) 

4' ; ? 

c  ̂ p;̂ -̂  

Proposition II.4.1. If 0 is an isomorphism, then the map in question in (*) exists 

( a n d  i s  a n  a u t o m o r p h i s m  o f P j ^ ~ ^ ) .  

Proof. We have 0*D' ~ D. The desired map is obtained by composing the maps in 
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the following commutative diagram: 

C 

c 

I (by B.3b) 

c P(HO(C, 

<P (by B.3a) 

c ^P(H"(C",C(D'))). 

• 

It is natural to wonder, when 0 is not an isomorphism, whether the map in question 

in (*) exists. We now show this is in general not the case. 

Assume it exists. By pulling back 0{1) from the lower right corner of (*) to the 

upper left corner in two different ways, we obtain 0{iD) = (f)*0{D') for some £ G Z, 

which forces i = deg(0), and we have obtained a simple necessary condition: 

Example. The necessary condition need not hold. Let (C, O) be an elliptic curve 

with a fc-rational point P of order 2. Let $ be the subgroup { O, P }. The quotient 

map C Cmay be viewed as a degree 2 morphism between quasi-elliptic curves 

of degree 3: 

Then 0*(3O/<E') = 30 + 3P, while deg(0) • 30 = 60, but [3]0 © [3]P [6]0, whence 

30 + 3P 9^ 60. Therefore, if C and C/$ are embedded in via 30 and 30/#, then 

4> does not extend to a morphism 

(j)*D' ~ deg(0) • D. 

0: (0,30) —^ (0/$,30/<i>). 
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III. PROJECTIVE QUASI-ELLIPTIC CURVES C —> ^ 

In this chapter, we study arithmo-geometric aspects of A:-curves of genus 1 that are 

embedded as non-degenerate degree n curves in where k is & perfect field. 

Obviously n > 3. Such a curve C will be denoted 

Remark. Together with the additional data of a choice of fc-valued point on Jc[n], 

and the assumption char(A:) f n, (III.l) is called an "n-prepared curve" in [O'NOl]. 

When k = C, (III.l) is called an "eUiptic normal curve". 

Let V be the class of hyperplane sections on C. Then (III.l) gives us a quasi-

elliptic curve (C, V) of degree at least 3 and such that V admits a A;-rational repre

sentative. Call such a quasi-elliptic curve projective. Conversely, given a A;-curve C 

of genus 1 and a divisor class I) on C of degree n > 3 that admits a /c-rational repre

sentative D, a choice of basis for H°(C, 0{D)) gives an embedding to projective space 

(cf. §11-4), recovering the description (III.l). In summary, "projective quasi-elliptic 

curve of degree n" means essentially the same thing as "non-degenerate degree n 

curve in of genus 1". 

Note that each A;-curve C of genus 1 occurs as a projective quasi-elliptic curve: 

simply define a A;-rational divisor on C by taking the Galois orbit of any ^-valued 

point on C. 

III.l. Attempting to simplify the description 

In this section, we answer the question: are any of the words in "non-degenerate 

degree n curve in P^"^^ of genus 1" superfluous? After all, we are familiar with 
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the fact: a degree 3 smooth curve in necessarily has genus 1 and necessarily is 

non-degenerate. 

Proposition III.1.1. If X C P^"~^ is a non-degenerate curve, then deg(X) > n — 1. 

Proof. Choosing n  —  1  distinct points in X { k ) ,  there exists a hyperplane H  C P^"~^ 

containing those points. If deg(X) < n — 1, then is contained in H. • 

Proposition. If X C P^""^ is a non-degenerate curve, and D is a hyperplane section, 

t h e n  i { D )  >  n .  

Proof. The dimension £(D) is the same for every hyperplane section, so let D be the 

section determined by Xq = 0. Then 1, Xi/Xq, ..., XN-i/XO lie in H°(X, O(-D)), 

a n d  t h e y  a r e  l i n e a r l y  i n d e p e n d e n t  s i n c e  X  i s  n o n - d e g e n e r a t e .  T h u s  i { D )  >  n .  •  

Corollary. If C C P "̂ 1 ^ non-degenerate curve of genus 1, then deg(C) > n. 

Proof. By Riemann-Roch (see §A.l), we have ^{D) = deg(D) for any divisor of 

positive degree. Now let D be any hyperplane section. Then deg(D) = deg(C). • 

Example. We show that a non-degenerate curve in P^"~^ of genus 1 can have degree 

strictly larger than n. In [Har77, §IV.3] it is shown that every projective A;-curve can 

be embedded in P^̂ .̂ The procedure goes like this: if the curve already lies in P^̂  or 

P^?, we're done; otherwise, we repeatedly project from points off the curve to decrease 

the dimension. We can always get as far as P^^ without introducing singularities. 
5 A A Thus we can start with a projective quasi-elliptic curve C P/ of degree 5 in P^ , 

and then project it to P^^, giving us a non-degenerate degree 5 curve in P^^ of genus 1. 

Example. We show that a degree n curve in P^"~^ of genus 1 can be degenerate. 

Take the non-degenerate degree 5 curve in P^^ of genus 1 from the previous example, 

and inject it into P^'^. This gives a degenerate degree 5 curve in P^"^ of genus 1. 
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Example. We show that a non-degenerate degree n curve in can have genus 7^ 1. 

Consider a rational normal curve (generalization of the twisted cubic) of degree n 

in Pj." and project it to It has genus 0. 

In summary, no words in "non-degenerate degree n curve in of genus 1" are 

superfluous. 

III.2. Basic facts about C P/'""^ 

Let C P^"""' be a projective quasi-elliptic curve. 

Proposition III.2.1. Given n — I points Pi,. . . ,  P„_i € C{k), they lie in the support 

of a unique hyperplane section. 

Proof. By §A.ld, there is a unique Q  G  C { k )  so that Pi -t-.. • + Pn-i +  Q  ^ T > ,  where 

V is the divisor class comprising hyperplane sections on C. • 

Corollary III.2.2. Given n — 1 distinct points Pi,. . . ,  P„_i £ C{k), their linear span 

in is a hyperplane. 

Proof. If their linear span had codimension > 2, then Pi,..., P„_i would be con

tained in more than one hyperplane, contradicting III.2.1. • 

Corollary III.2.3. Any n—1 or fewer distinct points in C{k) are independent. 

Corollary III.2.4. The linear span of any n — 2 or fewer points in C{k) misses the 

rest of C. 

Proof. Let ^ be the number of distinct points in the given collection. By III.2.3, 

they span a If that P^f were to meet C in another point, then, again by III.2.3, 

the points would have to instead span a • 
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III.3. The saturated homogeneous ideal of C 

Prom the scheme viewpoint, our projective quasi-elliptic curve C is a closed subscheme 

of 

= Proj(5), where S  =  k [ X ^ ,  

and thus, by [Har77, II.5.16], we have 

C = Proj(5//), 

where / is a homogeneous ideal in S. However, if I and /' are homogeneous ideals 

of S such that the rings S/1 and S/1' are not isomorphic, it can nonetheless be the 

case (see [Har77, Ex. II.2.14c]) that 

Proj(5//)^Proj(5//'). (III.2) 

Fortunately, by [Har77, Ex. II.5.10], we have (III.2) if and only if I and I' have the 

same saturation. Recall that the saturation of an ideal / is 

I  =  { s  E  S  :  for each i ,  there exists rij so that •  s  E  I } -

We always have Proj(5'//) = Proj(S'//), and the correspondence between closed 

subschemas of and saturated homogeneous ideals in S is one-to-one. Whenever 

we speak of the ideal of C, we always mean the unique saturated homogeneous ideal 

in S that defines C. 

More generally, by [Har77, II.5.9], closed subschemes (of any scheme, not just 

projective space) correspond to quasi-coherent sheaves of ideals. Let Xc denote the 

ideal sheaf of C on It is defined by the exactness of the following sequence of 

1-modules; 

0 —y Xc,—y Opn-i —> i*Oc —^ 0- (III.3) 

The relationship between Xc and the ideal of C is given by [Har77, Ex. 11.5.10c]; 

/=0H«(PrMc(m)). (ni.4) 
meZ 
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It is worth recording that the (saturated homogeneous) ideal of is simply 

4 = / (8>fc k. 

Certainly I f .  is a n  ideal of C^, and one can easily check that it is saturated; alterna

tively, start with the description 

meZ 

and apply [Har77, III.9.3], which tells us 

Jc(m)) k = HO(l^"-Mc;,(m)), for all m € Z, 

whence we recover I ^  —  I  ® k k .  

III.4. Projective normality 

By twisting (III.3), we obtain, for each m G Z, the following exact sequence of 0-pn-i-

modules: 

0 -> Ic{m) —)• 0-pn-\{m) —)• {L^Oc){fn) —)• 0. (III.5) 

Taking global sections, we obtain 

0 ^ -> H°(P^"-\(!?p^n-i(m)) H°(C,Oc(m^)) 

^ H'(P;"-',Xc(m)) Opn- . im) )  -> {C,Oc{ m D ) )  (III.6) 

where D is any choice of ^-rational hyperplane section on C.  (We used the facts 

{L,Oc){m)) = E'^{P^-\u{OcimD))) = E%C,Oc{mD)), which follow 

from [Har77, Ex. III.4.1, II.5.12c].) 

It is of interest to determine for which m the map 

H°(Pt"-',Op^»-i(ro)) -+ H°(C,Oc(mD)) (111.7) 
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from (III.6) is surjective. This gives us information about the dimension of the first 

term in (III-6), which, by (III.4), is information about the mth graded piece of the 

ideal / of C. 

For m < 0, surjectivity of (III.7) follows from £ { m D )  = 0 (see [Har77, IV.1.2]). 

For m = 0, surjectivity follows from the fact that C is connected. 

For m = 1, surjectivity is sometimes called linear normality, and holds because we 

can  v iew ( I I I . l )  a s  the  embedd ing  assoc ia ted  wi th  a  cho ice  o f  bas i s  fo r  H°  (C ,  Oc{D)) ,  

whence the homogeneous coordinates on pull back to that basis. 

We now establish surjectivity for all m, which is sometimes called projective nor

mality (cf. [Har77, Ex. II.5.14]). 

Theorem III.4.1. Let C be a non-degenerate degree n curve in of genus 1. 

For each m E Z, the short exact sequence (III.5) remains exact upon taking global 

sections. In other words, the map (III.7) is surjective. . 

Proof. Since = 0 (see [Har77, III.5.1]), the surjectivity of 

(III.7) is equivalent, by (III.6), to 

H^(P;*-\Jc(m)) = 0, for all rn G Z. 

The cases m < 2 were established preceding the theorem statement. Now we mimic 

the proof in [Hul86]. 

By [Har77, III.9.3], B},Ic{m)) H^(P^"'~^,Xc^-(m)), whence we may 

assume k = k. By Bertini (see [Har77, 11.8.18]), there exists a hyperplane H so that 

the scheme D = C f] I I comprises n distinct points, call them Pi,..., P„-

D — ^ H  

i 

c —> p;^-' 
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We will now consider various sheaves of Opn-i-modules on which fit together 

into the following diagram: 

Cpn-l(m) -> {i^Oc){jn) > 0 

Jc(n^ + 1) -> (9pn-i(m + 1) {L^,Oc){'m + 1) — ^ 0 

0 S' {j*lD/H){m + 1) ^ {j*OH){m + 1) ^ {j*s^OD)i'm + 1) ^ 0 

0 0 0 

Multiplication by the linear form £ G Cp^n-i(l)) that defines H gives the 

exact sequence 

0 —>• Icifn) —>• + 1) {j*XD/H){f̂  + 1) 0, 

where ID/H denotes the ideal sheaf of D on i?. Taking global sections, we obtain 

H>(PrMc(m)) 

-»H'(Pr'.Ic(™ + l)) 

and the theorem is reduced, by induction on m > 1, to establishing 

{j*XD/H){m + 1)) = 0, for m > 1. (*) 

If we now start with the exact sequence of sheaves of C//-modules 

0 —> ID/H S^OD —̂  0, 

we can apply j* and then twist m + 1 times to obtain 

0 + 1) -r { j * O H ) { m  + 1) -4- { j * s » O D ) { m  + 1) 0. 
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Note that j* is exact here because j is a closed immersion (see [Har77,111.3.7, IIL8.1]). 

Taking global sections gives 

. . .  - ^  E " { H , O n { m  +  1 ) )  ( j ; . s ^ C p ) ( m  +  1 ) )  

^ (P,"--', {UXD/H){m + 1)) -> {E, CH(m+l))->.... 

We now claim (i/, Cij(m + 1)) vanishes for m > 1; in other words, since H = 

we are claiming + 1)) = 0 for m > 1. For n > 4, the claim follows 

immediately from [Har77, III.5.lb]. For n = 3, the claim follows from the existence of 

a perfect pairing (see [Har77, III.5. Id]) H" (P^-', O^i {—rn — 3)) x H' (P^?, Op^i {in +1)) —>• 

k and the fact that the first term in this pairing vanishes when m > 1 (see [Har77, 

II.5.13]). Having established the claim, we see that (*) is equivalent to showing the 

map 

I l % H , O H i m + l ) )  ^ H°(P,"-\ i j . s . O D ) { m + l ) )  

to be surjective for m > 1. Since the codomain is simply the direct sum of one-

dimensional skyscraper sheaves supported on the Pi, we are done if we can exhibit 

an {m + l)-form on H that vanishes at all Pi except, say, Pi. Since some projective 

coordinate does not vanish at Pi, we are reduced to finding a quadratic form on H 

that vanishes at all Pi except Pi. 

By lemma III.2.4, the points P^,,... ,Pn span a linear space in P^"~^ that misses 

the rest of C, and thus they define a hyperplane inside H that misses Pi and P2. 

Reasoning instead with P2,..., Pn-i, we obtain a hyperplane that misses Pi and P„. 

The product of the associated linear forms gives a quadratic form on H that vanishes 

at all Pi except Pi. • 
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III.5. The Hilbert function of C 

To describe I explicitly for particular values of n, we will start by determining the 

dimension of each graded piece. Set 

d i { s )  := dim, h  = dim, Jc(,s')). 

By IIL4.1, taking global sections of the exact sequence 

0 —y Xc{s) —^ Gpn-i(^s) —4- y 0 

gives the exact sequence 

0 ^ R%P^~\Opn-i{s)) H°(C,0(.sD)) 0, 

whence 

d i { s )  = dim;t O p n - i { s ) )  - i { s D ) .  

By counting monomials of degree s, and by Riemann-Roch, we obtain 

Recall that the Hilbert function of C  is ( j ) c { s )  d i m k { S / I ) s -  By what we deter

mined above, we immediately obtain; 

( p c i s )  = dimfc S s  -  dim^; 

^n — 1 + 

n - l  
= ns. 

For sufficiently large s, the Hilbert function agrees with a polynomial function (see 

[Har77, 1.7.5]), called the Hilbert polynomial of C. But (j)c{s) is itself polynomial 

i n  s ,  w h e n c e  ( f > c { s )  i s  b o t h  t h e  H i l b e r t  f u n c t i o n  a n d  t h e  H i l b e r t  p o l y n o m i a l .  ( S i n c e  C  

is a degree n curve of genus 1, we can independently see, by [Har77, 1.7.6, Ex. 1.7.2], 

that its Hilbert polynomial is Pc{s) — ns.) We have proved: 

Theorem III.5.1. On a non-degenerate degree n curve in P^""^ of genus 1, the 

Hilbert polynomial and Hilbert function are the same, namely 4>c{s) — Pc{s) = ns. 
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III.6. C is a complete intersection for n = 3 and n — 4 

We ask: for which n is a projective quasi-elliptic curve C a complete intersection? 

Recall, for X a closed subscheme of each generating set for the ideal of X 

has cardinality > n — 1 — dim(X); if there exists a generating set of cardinality 

= n — 1 dim(X), then X is said to be a complete intersection, in which case the degree 

of X is the product of the degrees of the n—1—dim(X) generators (see [Har77,1.7.7]). 

Our curve (III.l), whose degree n is > 3, is a complete intersection if and only if 

its ideal can be generated by n — 2 elements. Since no hyperplane contains C, each 

generator has degree > 2, whence, to be a complete intersection, C must have degree 

> 2""^. Prom 2""^ < n we conclude n < 4. 

Theorem III.6.1. Let C be a non-degenerate degree n curve in of genus 1. 

Then C is a complete intersection if and only if n = 3 or n = 4. 

Proof. We already saw that n = 3 or n = 4 is necessary. Let n = 3. Prom our 

calculation in §111.5, we have 

In particular, d i ( 3 )  = 1, so there is a cubic form F G /. Since ( F )  C /, we obtain 

(F) = / by showing dimfc(F)5 = dim^/s for each degree s. But the dimension of 

(F) in degree s is the same as the dimension of 5 = k[x, y, z] in degree s — 3. Since 

d i m ; t  S s  =  ( ^ 2 ^ ) )  w e  h a v e  d i m / 5 ( F ) s  =  ( ^ 2 ^ ) ,  w h i c h  i s  j u s t  d i { s ) .  

Now let n = 4. Then 

Qi,Q2 G I. As before, we will show dimk IS — d^^K{Qi,Q2)S, and thus obtain 

I = {Qi,Q2). Since there are relations between Qi and Q2, we have to work a 

In particular, rf/(2) = 2, so there are two linearly independent quadratic forms 
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bit harder to determine A \ m k { Q i ^ Q 2 ) s -  Let N  be the free module 5 © 5, where 

S = k[w^x^y,z\. Consider the Koszul complex for (Qi,Q2) ^ N (cf. [Eis95, §17.2]), 

0 — > i V — > 0 ,  

where the maps are just wedge-multiplication on the left by the element (Qi, Q2)- In 

terms of the basis ei = (1,0) and 62 = (0,1) for N, and the basis ei A for /\^ N^ 

the complex is 

F\ ^ Q21Q1) ^ N / \  
0 >S— >3''- >S s-0. (*) 

By [Eis95, 17.5], the complex (*) is exact everywhere except at the right since Qi, Q2 

compose a regular sequence; indeed, since C is not contained in a plane, Qi is irre

ducible whence {Qi) is prime, and since Q2 is not a multiple of Qi, it is nonzero in 

the integral domain S/{Qi). We thus obtain the exact sequence 

0 , 5 52 Q ^ )  ^ 0. (**) 

From this we can determine dimk{Qi.,Q2)s- Since dinik Sg = the dimension of 

the middle term of (**) in degree s is 2(^3^). The map (gi) shifts degrees by 2, whence 

the dimension of the cokernel in degree s is 2 (^3^) — • But the quotient map 

(-<32,Qi) again shifts degrees by 2, so 

(5 — 2) -f- 3\ / { s  — 4) + 3\ 
dimfc((3i,(32)s = 21 

which is the same a s  d i { s ) .  •  

Remark. For n = 4, an alternate argument appears at the end of §18.2 in [Eis95]. 

III.7. Cutting C out by quadrics when n > 4 and char(fc) 7^ 2 

We ask: is C cut out scheme-theoretically by quadrics (equivalently, is I generated by 

quadratic forms)? If so, how many quadrics are needed? In the previous section, we 
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saw that C is not cut out by quadrics when n = 3, while it is cut out by a pair of 

quadrics when n = A. 

Proposition III.7.1. Let C be a non-degenerate degree n curve in P,!'"' of genus 1. 

Then each minimal generating set for I contains n{n — 3)/2 quadratic forms. 

Proof. From our work in §111.5, we have 

dim^:{ quadratic forms in / } = (i/(2) = dim^: H°(P^"~^,Xc(2)) — . 

Since there are no linear forms in /, each generating set for / must contain n(n —3)/2 

linearly independent quadratic forms, whence each minimal generating set contains 

precisely n(n—3)/2 quadratic forms (and possibly also forms of higher degree—indeed, 

such is the case when n = 3). • 

Theorem III.7.2. Assume ch.av{k) 2. Let C be a non-degenerate degree n curve 

in of genus 1. Then C is cut out scheme-theoretically hy quadrics if and only 

if n > A, in which case each minimal generating set for I comprises n{n — 3)/2 

elements, all of them quadratic forms. 

Proof. In light of III.7.1, it remains to show, when n > 4 and char(^) ^  2, that 1  is 

generated by quadratic forms—we do this below, in III.7.4. • 

We recall (cf. [Har77, Ex. 5.12] and [Har95, Lec. 3, Lec. 22]) basic facts about 

quadrics in P^""^ when char(^) ^ 2. Thinking of the variables (Xq, ..., X„_i) as 

a column vector X, each quadratic form Q{X^ G A;[XO,..., X„_I] can be written 

in the form Q{X) = X\AX, where A is an n x n synunetric matrix with entries 

in k. The rank of the quadric defined by Q is, by definition, simply the rank of the 

matrix A. A rank 1 quadric is a hyperplane of multiplicity 2, while a rank 2 quadric is 

a union of two distinct hyper planes. A quadric is irreducible if and only if its rank r 

satisfies r > 3, and a quadric is smooth if and only if r is maximal: r = n. For 

2  <  r  <  n  —  1 ,  t h e  q u a d r i c  m a y  b e  d e s c r i b e d  a s  a  c o n e ,  w i t h  v e r t e x  a  P ^ o v e r  a  
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smooth (rank r) quadric in P^'' Given any two distinct quadrics QA and QB-, with 

(scheme-theoretic) intersection X — QA HQE, each member of the pencil 

>^o Qa  + MQb , where [Ao : Aj] e Pt( k ) ,  (IIL8) 

also contains X. The pencil (III.8) may be recovered by any two distinct members of 

that pencil. The singular members correspond to the roots [AQ : AI] G (^) of the 

equation 

det(AoA + XiB) - 0, (III.9) 

where A and B are the n x n symmetric matrices corresponding to QA and QB-

We return now to our curve C. Since C is non-degenerate, each quadric con

taining C has rank > 3, and we will show that is in fact the (scheme-theoretic) 

intersection of the rank 3 quadrics containing it. (We had to go to k for the following 

reason: since the roots of (III.9) need not be A:-rational, the singular quadrics in P "̂~̂  

c o n t a i n i n g  C g  n e e d  n o t  b e  d e f i n e d  o v e r  k . )  

For n = 4, we already know from §111.6 that C = QA H QB, where QA and QB are 

any two distinct quadrics containing C, and we know from III.7.1 that every quadric 

containing C lies in the pencil (III.8). (Both facts hold even when char(A;) = 2, but 

henceforth we assume char(/j) ^2.) 

We will see later (in §111.13) that there exists a linear change-of-coordinates, de

fined over k, so that the group C GL4(^) of order 64 generated by 

M = 
-1 

—I 

and N = 
1 

preserves in its action on P^^ where = — 1. (We use the notation because, 

in §111.12, we reserve '7/4" to mean the order 64 subgroup of S'L.iik) that has the 

same image in PGL4(^) as H'^.) We assume the change-of-coordinates to have been 

applied. 
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Since preserves C^, it also preserves the set (III.8) of all quadrics that con

tain Cfc. As discussed in [Hui86, §111-2], the i?4-module H°(Pg , 0{2)) can be expressed 

as a direct sum of irreducible submodules in the form 

H°(P|, 0 ( 2 ) )  =  ( V i  ©  1/2) © 1̂ 3 ® ® 5̂, 

where 

= (^0 + 2^2 , + x|), 

V 2  ^  ( X 1 X 3 ,  X 0 X 2 } ,  

^3 = (a^o - ̂2. - ̂3 } ^  

V4 =  ( x q X I  + X 2 X 3 ,  X 1 X 2  +  X 0 X 3 } ,  

V 5  : =  ( X Q X I  -  X 2 X 3 ,  X 1 X 2  -  X 0 X 3 ) .  

One can check that Vi = V2 as i/^-modules, while no other two of the direct summands 

are isomorphic. Therefore, either our pencil (III.8) lies in Vi © V2, or it is equal to 

one of V3, V4,V5. It cannot be V3 since does not lie in a plane, while it can be 

neither nor V5 since those pencils define singular curves. Thus, our pencil lies in 

Vi © 1^2- As an i/4-module, it must be isomorphic to Vi and V2, whence it must have 

a ^-vector space basis on which H'^ acts in the same manner as it does on the bases 

for Vi and V2 exhibited above; in short, our pencil must have a vector space basis 

of the form 

( a ( x Q  + X2) + b ( x i x 3 ) ,  a{xl + xl) + h{xQX2)). 

Some pairs of values for a, b cannot occur, but we need not identify them all: certainly 

(a, 6) (0,0), and it is easy to check that (III.9) has at least two distinct roots. In 

summary, Cg is an intersection of a pair of quadrics of rank 3, whence it is also the 

intersection of all rank 3 quadrics containing it. 

Theorem III.7.3. Assume k ~ k and char(/i:) ^ 2. For n > 4, each non-degenerate 

degree n curve in of genus 1 is cut out scheme-theoretically by the rank 3 quadrics 

containing it; that is, the rank 3 quadratic forms in I compose a generating set for I. 
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Proof. The proof for A; = C in [Hul86, §IV.l] goes through unaltered. For the 

convenience of the reader, we repeat it here. It proceeds by induction on n. The case 

n = 4 was explained preceding the theorem-

Assume n > 5. We shall first show that C is a set-theoretic intersection of rank 3 

quadrics. To do this, let P G \ C{k) be an arbitrary point not lying on C. 

We can choose a point PQ E C { k )  such that the line PPQ is neither a secant nor a 

tangent of C. (Otherwise, projection from P would map C onto a non-degenerate 

curve C C of degree < n/2, so by III.1.1 we would have n/2 > n - 2, which 

is never the case for n > 5.) Projection from PQ maps C onto a non-degenerate 

degree n — 1 curve C C of genus 1, and the image P' of P does not lie on C. 

By the induction hypothesis, there is a rank 3 quadric Q' through C that does not 

c o n t a i n  P ' .  L e t  Q  b e  t h e  c o n e  o v e r  Q '  w i t h  v e r t e x  P Q .  T h e n  C  C  Q  b u t  P  ̂  Q { k ) .  

It remains to show that the intersection is scheme-theoretic-, equivalently, we must 

show that the rank 3 quadrics separate tangents. Let P G C{k) be an arbitrary point 

on C and let L be a line through P that is not tangent to C at P. Next choose a 

point PQ G C{k) that does not lie on L. Projecting from PQ we get a non-degenerate 

degree n — 1 curve C in of genus 1. Let P' and L' be the images of P and 

L. By the induction hypothesis, there is a rank 3 quadric Q' through C such that 

Q' and the line L' intersect transversally at P'. The cone Q over Q' with vertex PQ 

therefore intersects the line L at P transversally. • 

The following corollary to the theorem completes the proof of III.7.2. 

Corollary III.7.4. Assume char(A) ^ 2. For n > 4, each nan-degenerate degree n 

curve in PJ'"^ of genus 1 is cut out scheme-theoretically by quadrics; that is, the 

ideal I of C is generated by quadratic forms. (Moreover, in any generating set for I, 

the subset of quadratic forms is itself a generating set.) 

Proof. By the theorem, certainly 1 0^ k is generated by quadratic forms. Let 

{pi,...,pr} be a finite set of homogeneous forms that generate I. Any element 



54 

o f  I  ® k  k  can also be expressed in terms of the pi. Certainly none of the pi is linear, 

so by degree considerations, elements of a quadratic generatoring set for I ®}.k can 

be expressed in terms of those pi that are quadratic, whence the quadratic pi them

selves compose a quadratic generating set for I ®k k- Multiplying them by all possible 

p o w e r s  o f  t h e  v a r i a b l e s  l e a d s  t o  a  g e n e r a t i n g  s e t  f o r  /  ^  a s  a  v e c t o r  s p a c e  o v e r  k .  

Thus there is a ^-basis for 70^ ^ of vectors that are defined over k, whence, by hnear 

descent (see [Sil99, 11.5.8.1]), the same vectors compose a A;-basis for I. Therefore, 

t h e  q u a d r a t i c  P i  c o m p o s e  a  q u a d r a t i c  g e n e r a t i n g  s e t  f o r  I .  •  

IIL8. Classifying linear automorphisms of C  

Let C  be a projective quasi-elliptic curve of degree n, and let V  be the 

class of hyperplane sections on C .  

The automorphism group of is PGL„(fc). Since elements of PGL„(fc) send 

hyperplanes in to hyperplanes, if such an element also preserves C^, then it 

will induce an automorphism of {Cj^,V). Automorphisms of Cg that are induced by 

automorphisms of the ambient projective space are called linear automorphisms 

of C^. 

It turns out that all automorphisms of {Ck,V) are linear. We saw in II.4.1 that 

each automorphism of (C^,X>) extends to an automorphism of the ambient 

Furthermore, the extension is unique: since each point in is an intersection 

of hyperplanes in an element of PGL„(fc) is determined by its behavior on 

hyperplanes, which are in one-to-one correspondence with hyperplane sections on 

thus, if two elements of PGL„(^) move a given hyperplane to two different places, 

then they move the associated hyperplane section to two different places, and thus 

cannot induce the same automorphism of C^. We have shown: 

Aut( ( C j t ,  V ) )  = { linear automorphisms of } = { 0 G PGL„(A:): (p{ C h )  = }• 
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Note that the isomorphism above is Gal(^/A:)-equivariant. In other words: any group 

of matrix classes in PGL„(A~) that acts on C necessarily does so in a faithful and 

Galois equivariant manner. By II.2.7, the largest such group has structure 

{ 0 e PGL,.(i-) : 0(Cfc) = c,: } - JcN(fc) X Aut((C,-,0)), 

where O  €  C { k )  is a point of hyperosculation. 

Proposition III.8.1. In the above identification, the elements of PGL„(F) that act 

fixpoint-free on C correspond precisely to Jc[n]{k). Thus, when char(/:) { n, there are 

precisely elements o/PGL„(^) that act fixpoint-free on C. 

Proof. The first part is a special case of A.4.3. The second part follows from 

#J(7[n](^) := when char(^) \ n. • 

Corollary III.8.2. Let C be a non-degenerate degree n curve in P^"~^ of genus 1. 

Let Jn C PGL„(^) be the subgroup of elements that preserve C and act fixpoint-free 

on C. Then Jn is a faithful and Galois equivariant representation of the action of 

3 c [ n ] { k )  o n  C .  

III.9. Concerning the [—1]-automorphisms of C 

This section is about those linear automorphisms of that are of order 2 and have 

a  f i x p o i n t  i n  C { k ) .  

Proposition III.9.1. Let (p be an order 2 curve automorphism of that has a 

fixpoint P G C{k). Then <f) is the unique order 2 automorphism of the elliptic 

curve {C^,P), more commonly known as [—1]. Thus the fixpoints of (j) are the points 

o f  2 - t o r s i o n  o n  ( C ^ , P ) ;  f u r t h e r m o r e ,  i f  Q  i s  s u c h  a  p o i n t ,  t h e n  ( j )  i s  a l s o  t h e  [ — 1 ] -

a u t o m o r p h i s m  o n  t h e  e l l i p t i c  c u r v e  ( C g , ( 5 ) .  

Proof. See A.4.8. • 
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Let O  E C { k )  be a point of hyperosculation. By [—1] we mean the unique order 2 

automorphism of the elhptic curve ((7^,0). In the previous section, we identified the 

linear automorphisms of with Jc[n](fc) xi Aut((C^,0)). 

Proposition III.9.2. Inside Jc[n]{k) x Aut((C'^, O)), the order 2 linear automor

phism of Ck with a fixpoint are precisely the elements of the form r o [—1], where 

T  e  J c [ n ] { k ) .  

Proof. Follows immediately from A.4.9. • 

It is easy to verify (cf. the proof of A.4.9) that TQ^Q O [—1] is the unique order 2 

automorphism of Ck that fixes Q € C{k), where the group law is on the elliptic 

curve {Cji,0), and TQ^Q is the translation-by-((5 ® Q) map. We therefore see a 

relationship between points of hyperosculation and fixpoints of order 2 linear auto

morphisms, but due to the presence of Q®Q, that relationship depends on the parity 

of n: 

« Assume n  is odd. For P  E  C { k )  a ,  point of hyperosculation, there is a unique 

point of hyperosculation Q E C{k) so that [2]Q = P. Therefore, for each linear 

automorphism of order 2 with a fixpoint in C{k), precisely one of its fixpoints 

is a point of hyperosculation. 

• Assume n  is even. For P  E C { k )  a point of hyperosculation, either all the 

solutions of [2]Q = P are points of hyperosculation, or none of them are. (The 

two cases are determined by whether P is a point of (n/2)-torsion.) Therefore, 

for each linear automorphism of order 2 with a fixpoint in C{k), either all of its 

fixpoints are points of hyperosculation, or none of them are. 

In either case, we see: each point of hyperosculation occurs as the fixpoint of a unique 

order 2 linear automorphism. 
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III.9a. Procedure for finding the points of hyperosculation 

By the work in §111.8, we may identify the order 2 hnear automorphisms of C that 

have a fixpoint with the elements of PGL„(^) that: act on C, have order 2, and 

admit a fixpoint. In fact, as the following proposition shows, if we find one of them, 

and if we have found all the elements of PGL„(^) that act fixpoint-free on C, then 

this gives us all the order 2 elements with fixpoints. 

Proposition III.9.3. Let C be a non-degenerate degree n curve in P^"~' of genus 1. 

Let T G PGL„(^) be an element of order 2 that preserves C and has at least one 

fixpoint on C. The remaining such automorphisms have the form M ®f, where 

M G PGL„(^) acts on C without fixpoints. 

Proof. If one of the fixpoints of T is a point of hyperosculation, then this proposition 

is just a repeat of III.9.2. In fact, by III.9.2, we know that T = r o [—1] for some 

r G J(7[n](fc). It is clear that each MoT also has that form. • 

To find the points of hyperosculation, we first find all the order 2 elements 

of PGL„(^) that preserve C and have a fixpoint on C. The points of hyperosculation 

lie among the finitely many fixpoints. For each fixpoint, the osculating hyperplane 

can be determined by brute force: parameterize all hyperplanes that go through the 

given point, and then impose the conditions that maximize the intersection multi

plicity of the hyperplane with C. The unique solution is the osculating hyperplane. 

If the hyperplane does not meet C elsewhere, then the point in question is a point of 

hyperosculation. 

Remark. When n is odd, a simpler way for finding the points of hyperosculation is 

given in III.11.8. 



58 

III. 10. The commutator pairing is the Weil pairing 

Let Jn C PGL„(fc) denote the subgroup of elements that act fixpoint-free on C. In 

the previous section, we saw that there is a canonical isomorphism of Galois modules 

J,^Jc[n]{k). (III.IO) 

We will establish that the "commutator pairing" (defined below) on J„ corresponds, 

under (III.IO), to the inverse of the Weil pairing on Jc'[w](^). 

III. 10a. Commutator pairings on abelian projective linear groups 

Consider an abelian subgroup G  C PGL„(fe). For matrix classes [A], [ B ]  G G ,  the 

usual commutator 

is of course trivial. But if we first lift the classes [ A ] ,  [5] to representing matrices 

A,Be. GL„(^), then the commutator [A, B] might be nontrivial, and all we can say 

for certain is that [A, B] lies in . It is easy to check that [A, B] is independent 

of the choice of representing matrices. Thus we obtain a well-defined commutator 

pairing 

G X G —> 

{ [ A ] , [ B ] )  ^  A B A - ^ B - \  

The commutator pairing is immediately seen to be alternating (whence also skew-

symmetric), and can be easily verified to be bilinear. If G is Galois stable, then the 

pairing is a map between Galois modules, and it is easily seen to be equivariant with 

respect to that action. 

Remark. The commutator pairing could easily be degenerate, indeed trivial, as is 

seen by considering the matrices 

"1 0 0" "1 0 0" 
0 Cs 0 and 0 Cs 0 
0 0 1 0 0 Cs. 
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which generate a Z/3Z x Z/3Z in PGL3(Q). 

III. 10b. The Weil pairing on an elliptic curve {E,0) 

Let {E, O) be an elliptic curve, defined over k, and let n be such that char(A;) \ n. 

Then as a group, E[n]{k) = Z/nZ x TjjriL, although as a Galois module the structure 

can be more complicated. The well-known Weil pairing is usually defined by one of 

the procedures for computing it, such as the one in [Sil99, III.8]. We will instead work 

with the description given below in III.lO.l, and connect that with the commutator 

pairing below in III. 10.3. 

Theorem. Assume char(A;) f n. The Weil pairing 

e„: E[n]{k) x E[n]{k) —> 

has the following properties: 

® bilinear 

® alternating, whence skew-symmetric; 

® perfect: E[n]{k) = Horn(£•[«](^),/Lt„(^)), whence non-degenerate and surjec-

tive; 

9 Galois equivariant; 

• compatible: e^„(P, Q) = en{mP,Q); 

® admits dual isogenics as adjoints: en{P,(pQ) = en{4>P,Q). 

Proof. All properties except "perfect" are established in [Sil99, III.8.1, III.8.1.1, 

III.8.2]. As for "perfect", observe that non-degeneracy gives an injection E[rt]{k) ^ 

B.om.[E[n]{k), fjL^{k)), which must be an isomorphism since the two sets have the 

same cardinality. • 
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E [ n ] { k )  admits other pairings with all the properties listed above; simply post-

compose the Weil pairing with an automorphism of Among these pairings, 

it isn't so obvious which of them should be considered the true Weil pairing. For 

example, the pairing as defined in [Sil99, III.8] is actually the inverse of the pairing 

as described in [Mum70]. The latter agrees with the description of the pairing in terms 

of function-on-divisor evaluation given in [Sil99, Ex. 3.16], which we now recall. 

Theorem III.10.1. Assume char(/c) f n. Let {E,0) be an elliptic curve, and let e„ 

denote the Weil pairing on E[n\{k). Given P,Q E E[n]{k), we may compute en{P, Q) 

as follows. Choose divisors Dp and Dq with disjoint support so that Dp ^ P — O 

and DQ Q — O. Choose rational functions FP and fg so that (fp) — nDp and 

(/Q) = UDQ. Then 

Proof. See [Sil99, Ex. 3.16]. • 

Proposition III.10.2. Two points P,Q E E[n]{k) are generators for E[n]{k) if and 

only ifen{P,Q) is a generator for i.e., if and only ifen{P,Q) is a primitive 

nth root of unity. 

Proof. Let the pair (P, Q) generate. Since the Weil pairing is surjective, e„(P, Q) is 

a primitive nth root of unity. Each pair of elements in E[n]{k) can be written in the 

form (aP + bQ,cP + dQ), with a,b,c,d £ Z/nZ. Such a pair generates E[n]{k) if 

and only if there is a group automorphism of E[n]{k) carrying (P, Q) to that pair; in 

other words, the matrix 
a c 
b d 

must lie in GL2(Z/nZ), which is equivalent to the condition: ad—be is a unit in Z/nZ, 

On the other hand, e„(aP + bQ, cP + dQ) is easily seen to be e„(P, which is 

a primitive nth root of unity under precisely the same condition: ad — 6c is a unit 

in Z/nZ. • 
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III. 10c. The commutator pairing on Jn is the Weil pairing 

We return to the subgroup C PGL„(fc) and the canonical isomorphism (III.10). 

Since J„ is abelian, it admits the commutator pairing 

T/JJ X T/JJ ^ H . 

If char(/i;) f n, then Jc[n](^) admits the Weil pairing 

3c[ n ] { k )  X J c [ n ] { k )  — ^  

We ask: in light of (III. 10), what is the relationship between the two pairings? 

The following theorem is sketched in [O'NOl, Thm. 2.5], and appears for the case 

A; = C in [Hul86]. We give here an elementary proof. 

Theorem III. 10.3. Assume char(A:) | n. Let C be a non-degenerate degree n curve 

in of genus 1. Then, under the isomorphism (III.10), the commutator pairing 

on Jn corresponds to the inverse of the Weil pairing on Jc[n](fc). 

Remark. If one defines the Weil pairing as done in [Sil99, III.8], then one must ehm-

inate "the inverse of" from the theorem statement. (Cf. discussion preceding III.10.1. 

Proof. Let P q, . . .  , P N '^-i G C{k) be the points of hyperosculation on C. For each 

Pi, there exists a hyperplane Si meeting C to order n at Pj, and an element Mj G Jn 

whose action on C (given by matrix multiplication) is translation-by-Pj on the elliptic 

curve (C, Po): 

MjPo Pi-

We wish to compute en{Mi, Mj). By III.10.1, we need disjoint divisors Dj and D j  

linearly equivalent, respectively, to Pj — PQ and PJ — PQ. We set 

DI PI — PQI 

D J  { P J  ®  P I )  —  P E ,  
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where 0 denotes addition on the eUiptic curve (C, PQ), and £ is such that 

Pe ̂  { PQ, Pi, QPj, Pi © Pj }• 

This is the precise condition for the divisors to be disjoint, and such £ exists he-

cause n> 3. 

In what follows, the following notation will be useful: Pi^j is the point Pj©Pj, 

is the hyperplane associated to Aej) Mj©j is the matrix class giving translation-

by-A®j-

Now we lift everything to row vectors, column vectors, and matrices: choose 

row vectors Hi representing Hi, column vectors Pi representing Pi, and matrices Mi 

representing Mi. By Pi^j, Hi^j, and we mean the row vector, column vector, 

and matrix chosen to represent Pi^j, HiQj, and Mj©j. 

Observe that H i / H o  is a function on C { k )  with divisor n D i ,  while H j ^ e / H i  is a 

function on C{k) with divisor nDj. By III.10.1, we have 

I M  W H M D j )  H j P m  H „ P ,  
" ' H,P, H„P,^t HjsiP, H,Po' 

Since each vector appears once in the numerator and once in the denominator, ev

erything we have done is independent of our choice of lifts. Since Mj corresponds 

to translation-by-Pi, we see that MjPo represents Pi, but MjPo need not equal P^: 

they differ by a scalar. We can nonetheless apply the substitution Pj -f- MiPo, so 

long as we do so simultaneously in the numerator and in the denominator. We can 

similarly apply H- HQM^^, since H^Mf^ represents Hi. Applying these types of 

substitutions gives us 

e l M  M ) =  H„Mi-^M,P„ 
H„M-'M,P„ H„M7^\M,P„ ' 

Since MiQj and MiMj each represent MiMj, we apply Mi^j 4- MiMj to obtain 

(M I'M H„MiP„ H„Mi'MiP„ 
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By §111.9, the [—1] automorphism of the elhptic curve (C,-PQ) hes in PGL„(^). Let 

T be a matrix representing this automorphism. Then TPQ and PQ differ by a scalar, 

similarly HQT and HQ differ by a scalar, and the same can be said for M^T and 

TM~^. Paying attention that each of the following moves in the numerator is matched 

by a corresponding move in the denominator, the pesky scalars will never make an 

appearance. We insert T appropriately, and then walk it to the left one step at a 

time until it disappears again: 

H , M r ' M j M , P ,  ffpM.Po ^  H ^ M f ' M . M . T P ,  H , M , T PQ  

H^M-^M^Pq HQM^M^PQ H^Mr^M^TPo H^M^M/TPo 

H . M r ' M j T M f ' P o  H p T M j ' P ,  0 

HoMr^TMl^Po H^M^TM^^PQ " H^Mr^TM^^PQ HQTMJ^M^^PQ 

H q M ^ ^ P Q  H ^ M i M j - ^ M l ^ P o  H Q M ^ ^ P Q  

H , T M , M i ' P ,  H . M . ' M i ' P ,  "  H . M f ' M i ' P ,  

Inserting this equation already leads to some cancellation: 

HO M.M^^PQ  HoMj-^M^^PoHoM^^Mr^MiPo' 

Now we would like to swap adjacent pairs of matrices. Although we have not yet 

shown matrix commutators to be the Weil pairing, those commutators nonetheless 

are scalars, so we must merely be careful to match each swap above and below. 

e n { M i , M j )  

. HoMr^MMr^Po r 1, r 

The final equality of commutators holds because the commutator is a scalar. • 

III.11. The configuration of hyperplanes fixed by J„ 

We return to the subgroup of PGL„(fc) that preserves C  (see §111.8), especially the 

s u b g r o u p  J N — c o r r e s p o n d i n g  t o  J ( 7 H ( ^ ) — t h a t  p r e s e r v e s  C  a n d  h a s  n o  f i x p o i n t s  o n  C .  
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The reader may easily verify the following facts about fixpoints and fixed hyperplanes: 

® Let M G PGL„(fe), and let M G GL„(fc) represent M. A fixpoint of M 

corresponds to an eigenvector of M. 

• M fixes a linear subspace of pointwise if and only if the corresponding 

linear subspace of is an eigenspace of M. 

9 For a row vector £ of homogeneous coordinates, let {P E : 

P = 0 } be the corresponding hyperplane. The action of PGL„(^) on points 

is P MP, but its action on hyperplanes is £ iM~^: 

MHi - {MP : £.P = 0} = {P : iM'^P = 0 } = 

• M fixes a hyperplane Hi ii and only if t is an eigenvector of 

Concerning the structure of things related to J„, there are often three cases to con

sider: 

® = m?, which happens if and only if char(A;) \ n, in which case we have 

Jn = Z/nZ X Z/nZ (as Z-modules); 

• H^Jn ~ where p = char(/:) and \ n but \ n, which can happen when 

char(^) I n, in which case we have J„ ^ Z/nZ x Z/{n/p^)Z (as Z-modules); 

• H^Jn = v?/p^^i which is the other possibility when char(A;) | n, in which case we 

have Jn — Zf(n/p^')Z x Z/(n/p®)Z (as Z-modules). 

As we will see, we can often make a general statement—without restricting to a 

particular case above—in terms of an element of ,7„ of order n. Implicitly, of course, 

such a statement applies only to the first two cases given above. 

Proposition III.11.1. Let M G PGL„(fc) be an element that preserves C. For each 

hyperplane H fixed by M, the corresponding hyperplane section H r\C is a union of 

orbits under the action of M on C. 
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Proof. Obvious. • 

Corollary III.11.2. Let M € have order n. Then each hyperplane H fixed by M 

meets C transversally: H nC comprises n distinct points. 

Proof. Each orbit of M on C comprises n distinct points. On the other hand, 

H f]C comprises at most n points. Now apply the proposition. • 

Proposition III.11.3. Assume that n is odd. Let M E Jn have order n. The orbit 

of Q £ C{k) is a hyperplane section if and only if Q is a point of hyperosculation. 

Proof. Fix a point of hyperosculation O  G  C { k )  to obtain a group law. Then 

points of n-torsion coincide with points of hyperosculation. The orbit of Q is a 

hyperplane section if and only if Q + MQ + M^Q + ... + nO. But M 

is just translation-by-P for some point of hyperosculation P. Thus the condition 

is Q + (<5 ® -P) + (Q ® [2]-P) + • • • + {Q ® [n — 1]P) ~ nO, which is equivalent to 

[n]Q 0 [n{n — 1)/2]P = O, which reduces to: Q is a point of hyperosculation. • 

To obtain a version of the proposition for n even, we need the notion of a dyadic 

packet. By the isomorphism C/Jc[n] = from II.2.4, the n-torsion packets on C 

correspond to the valued points on J(7, and the hyperosculation packet on C cor

responds to the origin on J^. We will call an n-torsion packet on C dyadic if it 

corresponds to a point of 2-torsion on J^. 

Proposition III.11.4, Fix a point of hyperosculation O e C{k) to obtain a group 

law on C^. The multiplication-by-n map C —C gives a one-to-one correspondence 

between the dyadic packets and the 2-torsion on {C^,0). Thus the dyadic packets 

partition the (2n)-torsion on {Cj^,0); furthermore, this partition is independent of 

the choice of O. 

Proof. It is easy to check that the group law on Jc is induced by the group law 

on (Cfc, O), where O is any choice of point of hyperosculation. The preimages under 
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multiplication-by-71 of the 2-torsion on (Cj, O) are easily seen to be n-torsion packets, 

with the property that multiplying them by 2 sends them into the hyperosculation 

packet; in short, tliey are the 2-torsion on the quotient Jc- • 

Proposition III.11.5. Assume that n is even. Let M G J„ have order n. Let a point 

of hyperosculation O ^ C{k) define a group law, so that M corresponds to translation-

by-P, whence is translation by [n/2]P, which is a point of order 2 on ((7^,0). 

Then the orbit of Q ^ C{k) is a hyperplane section if and only if [n]Q — [n/2]P, i.e., 

i f  a n d  o n l y  i f  Q  l i e s  i n  t h e  d y a d i c  p a c k e t  c o r r e s p o n d i n g  t o  [ n / 2 ] P .  

Proof. By the proof of III. 11.3, the orbit of Q is a hyperplane section if and only if 

[ n ] Q  ©  [ n { n  —  1 ) / 2 ] P  =  O ,  w h i c h  r e d u c e s  t o :  [ n ] Q  =  [ n / 2 ] P .  •  

Combining III.11.3 and III.11.5, we obtain: if M e Jn has order n, then the orbit 

of Q £ C{k) is a hyperplane section if and only if Q lies in a certain n-torsion packet 

that depends only on M. Prom this we obtain the following result. 

Corollary III.11.6. Let M E Jn have order n, and let M G GL„(A:) represent M. 

® Each eigenvalue of M has a 1-dimensional eigenspace. 

• M has jf^Jn/n distinct eigenvalues. 

Proof. There are only finitely many points in an n-torsion packet, so there can be 

only finitely many hyperplanes fixed by M. If an eigenspace of M were 2-dimensional 

or larger, then there would be infinitely many hyperplanes fixed by M. 

The n-torsion packet has cardinality # J„. That set is partitioned into collections 

of size n by the hyperplanes fixed by M. The fixed hyperplanes correspond to the 

eigenspaces of M, which in turn correspond to the eigenvalues. • 

Corollary III.11.7. Let M G have order n, and let M G GL„(^) represent M. 
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® //char(A;) f n (i.e., ij^Jn — then M has n distinct eigenvalues, whence there 

are precisely n distinct fixpoints of M (not on C), and precisely n distinct fixed 

hyperplanes. The fixed hyperplanes intersect C in the points of either the 

hyperosculation packet (when n is odd) or a non-hyperosculation dyadic packet 

(when n is even). 

® //char(^) I n (i.e., ^Jn — v?jp^ where p = char(fc) and p^ \ n but f n), 

then M has n/p'^ unique eigenvalues, whence there are precisely n/p^ distinct 

fixpoints of M (not on C), and precisely n/p^ distinct fixed hyperplanes. The 

fixed hyperplanes intersect C in the n/p^ points of either the hyperosculation 

packet (when n is odd) or a non-hyperosculation dyadic packet (when n is even). 

• Special case: if n = p is prime and chav{k) = p (i.e., H^Jn — p), then M has a 

unique eigenvalue (algebraic multiplicity n, but geometric multiplicity 1), thus a 

unique fixpoint (not on C), and a unique fixed hyperplane. The fixed hyperplane 

intersects C in the p points of either the hyperosculation packet (when p is odd) 

o r  t h e  u n i q u e  n o n - h y p e r o s c u l a t i o n  d y a d i c  p a c k e t  ( w h e n  p  —  2 ) .  

Remark III.11.8. When n is odd. this gives an easy procedure to find the points of 

hyperosculation on C: find an element of PGL„(^) that preserves C, has no fixpoints, 

and has order n; next, find its fixed hyperplane(s); finally, compute their intersection 

with C. (When char(A;) | n and furthermore /p^'^ where p — chai{k) and 

p® I n but p^'^^ f n, then this procedure can't be used. Instead, one can follow the 

procedure in §111.9a.) 

III. 11a. Hyperplane configurations when char(fc) \ n 

For the rest of this section, we will assume char (A:) \ n, whence = Z/nZ x Z/nZ 

(as Z-modules). Our goal is to describe the configuration of hyperplanes fixed by 

generators for J„. 
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We already know, by III. 11.6, that (a representative for) M G Jn of order n has 

distinct eigenvalues. Now we can say a bit more. 

Proposition III.11.9. Assume chaj(^) \ n. Let M E Jn be an element of order n, 

and let M G GL„(^) be any matrix representating M. If X E is an eigenvalue 

of M, then also (X is an eigenvalue of M for each ^ G In other words, M has 

distinct eigenvalues, and they compose a coset of inside . 

Proof. Since M has order n, there exists iV G Jn so that M and N are generators. 

Let N be any lift of N to GL„(^). By III.10.2 and III. 10.3, MNM~^N "^ is a primitive 

nth root of unity, which we'll call Cn- Now let A G be an eigenvalue of M, and let 

a; be a corresponding eigenvector. Then 

M x  =  X x ,  and M { N x )  —  M N x  = ( n N M x  —  C n ^ N x  —  ((^„A)(iVx), 

so CnA is an eigenvalue of M  (with corresponding eigenvector N x ) .  • 

Proposition III.11.10. Assume char(/c) | n. Let M, N G J„ he generators. Then 

M cyclically permutes the hyperplane sections preserved by N, and vice versa. 

Proof. In the proof of III. 11.9, we saw that if x is an eigenvector of M, also Nx is 

an eigenvector of M. Thus N cyclically permutes the fixpoints of M, whence also N 

cyclically permutes the hyperplanes preserved by M. • 

Theorem III.11.11. Assume chaj(^) f n. Further assume that n is odd. If M, N 

generate Jn, then there is a one-to-one correspondence 

hyperplane sections^ f hyperplane sections^ 
> X < > i—v { points of hyperosculation} 

preserved by M J {preserved by N J 
( H ,  H n  H ' ,  

which is equivariant with respect to the action of Jn," thus, if we fix a point of hyper

osculation as origin to obtain a group law, this correspondence is an isomorphism of 

Jn-modules. 
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Proof. Obvious from the preceding material. • 

Instead of intersecting hyperplane sections to obtain points in C { k ) ,  we could 

instead intersect the actual hyperplanes to obtain points in a Grassmannian. When 

n is even, the hyperplanes fixed by M cover a non-hyperosculation dyadic packet 

on C, while the hyperplanes fixed by N cover a different non-hyperosculation dyadic 

packet on C. There is again an intersection pairing taking values in a Grassmannian, 

but not one taking values in C{k). (In other words, when n is even, the (n — 3)-

dimensional linear space obtained by intersecting a hyperplane fixed by M with a 

h y p e r p l a n e  f i x e d  b y  N  d o e s  n o t  m e e t  C . )  

III.12. Lifting Jn C PGL„(^) to Hn C GL„(^) 

We now consider the problem of lifting the subgroup J„ C PGL„(fc), which cor

responds to Jc[n](A:), from PGL„(fc) to GL„(fe). In other words, we seek a finite 

subgroup Hn C GL„(^) so that, under the canonical projection GL„ PGL„, the 

image of Hn is J„. We furthermore require Hn to be a Gal(fc/A;)-module. 

Of course we would like Hn to be as small as possible; in fact, we would be 

delighted if could be isomorphic, as a Galois module, to J„. Unfortunately, as we 

will see below, this is too much to ask in general. 

Remark. One reason for wanting Hn to be Gal(^/A;)-stable is that it may then be 

viewed as the set of I;-valued points of a finite group scheme defined over k. This 

will be relevant in chapter IV, where we will be interested in computing a quotient 

by J,J, which we will express in terms of invariants of This also explains why we 

would like //„ to be as small as possible: the computational expense for finding the 

elements of Hn and then working out its invariant theory is likely to increase with 

the size of Hn-
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We always have available the following canonical lift: we define by taking the 

preimage of under the canonical projection SL„ PGL„: 

1 >• ——>• SL„(A-) ——5- PGL„(^) > 1 

1 > gj,^{k) ^ Hn ^ Jn ^ 1 

In other words: 

H n  { A  £  G L „ { k )  : A  € J„ and det(A) — 1 }• 

Note #//„, = #/Lt,i(^) • #J„. (Thus, when char (A:) | n, we have #/:/„ = n^.) Since 

the determinant 1 condition is preserved when matrices are moved by elements 

of Gal(^/A:), the canonical lift Hn is Gal(^/A:)-stable. We will see below that 

is always a central extension of J„ by 

IIL12a. Case: char(A;) f n (i.e., = n?) 

We saw that taking commutators of arbitrary lifts of elements in corresponds to 

the Weil pairing (see III. 10.3). Since the Weil pairing is surjective, any lift of 

to GL„(^) must contain the constant matrices 1, Cn, Cni • • • > Cn^^- Therefore, any 

lift of Jn has cardinality > n®, while the canonical lift Hn has cardinality = n^. 

Now that we know lifts of order exist, we can classify them all. Let H^ be a 

fixed but unknown lift of to GL„(fe) of order n^. For M E. Jn, M E Hn and 

M' G H'^ denote a choice of representatives for M. Since both Hn and H'^ admit only 

elements of ^„(^) as scalar matrices, we have (M')" = aM" for some a G and 

Q is independent of our choices. Thus we obtain a well-defined homomorphism 

( f > -  J n  ^ Mn(^) 

M ^ (M')"M-" 

On the other hand, if (p 6 Hom(J,;, /x„(fc)), then we can define a lift as follows: 

t a k e  g e n e r a t o r s  M, N  f o r  J n ,  c h o o s e  r e p r e s e n t a t i v e s  M ,  N  G H n ,  s e t  M '  =  ^ ( p { M ) M  
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and N '  = y ( l ) { N ) N  for some choice of nth roots, and let H ' ^  be the group of order 

generated by M',N'. It is easy to check that we have established a one-to-one corre

spondence between Hom( J„, /Lt„(fc)) and lifts of J„ to GL„(^) of order nP; in fact, the 

correspondence respects the Galois action, in the following sense: if 0 is the homo

morphism associated to H'^, then is the homomorphism associated to [H'^Y. Thus 

the Hfts that are Galois stable correspond to the elements of Hom(j„, fJ'n{k)) that are 

Galois invariant. The canonical lift Hn corresponds to the trivial homomorphism. 

Proposition. Assume char(A-) f n. There exist precisely lifts of to GL„(A^) of 

order rfi. 

Proof. The cardinality of Horn(J„,/x„(^)) is • 

If we fix generators M, iV for Jn, and a generator (n for ^-^d choose rep

resentatives M ' , N '  G then each element of H ' ^  has a unique expression in the 

form 

Q { M ' ) \ N ' y ,  where a, 6, c G Z j u Z .  (III.ll) 

Proposition. Assume char(A:) \ n. Each of the lifts is a central extension of Jn 

b y ^ n i k ) -

Proof. Using commutators, we can express a product of elements in the form (III.ll) 

in the same form. It is easy to check that an element lies in the center if and only if 

6  =  c  =  0  ( m o d  n ) .  •  

III. 12b. Case: char(A:) | n and = n'^/p'^ 

Let p  := char(A;), and define e by | n but f n. Since — n / p ^ ,  the 

canonical lift Hn has order If M, N E //„ are such that M, N generate J„, 

and furthermore M has order n while N has order n/p®, then each element of Hn 

has a unique expression in the form Cn/p»with a G Z/'(n/p'^)Z, b G 'LjuTj, and 

c G 7i/{nlp')7j. We see easily that i/„, is a central extension of Jn by /x„(^). 
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III.12c. Case; char(^) | n and ij^Jn — 

Set p and e as in §111.12b. The canonical lift //„ has order If M, N G are 

such that M, N generate J„, then each element of iJ„ has a unique expression in the 

form with a,6, c € 2i/{n/p^)'Zi. We again see easily that Hn is a central 

extension of ./„ by 

111.13. Schrodinger-Iike representations of Hn when char(^) \ n 

Assume char (A:) \ n. We show in this section that there exist nice matrix represen

tations over k of both the canonical lift Hn C SL„(^) and the non-canonical lifts 

H'n C GL„(^) of Jn C PGL„(fc), which were introduced in §111.12. We will see that 

the classical Schrodinger representation occurs for Hn when n is odd, while it occurs 

for one of the H!^ when n is even. 

We first consider the canonical lift Hn- Fix choices M, iV G and M,N E Hn as 

in the discussion in §111.12a. We saw in III.11.9 that the eigenvalues of M, N are each 

a coset of inside k^. By the definition of the product of the eigenvalues 

is 1. Therefore, when n is odd, both M and N have eigenvalues 

while when n is even, both M and N have eigenvalues 

{ (2n, Cin̂  dm • • • ) Cin  ̂}• 

Over k, we can choose an eigenvector x for M corresponding to the first eigenvalue, 

and then use the basis { x, Nx, N'^x,..., N^^^x } of eigenvectors for M (cf. proof 

of III. 11.9) to obtain a new coordinate system for (Even though, when n is 

odd, x itself can be chosen to be defined over k, the remaining eigenvectors need 

not be defined over k.) For n odd, H„ will then have the classical Schrodinger 
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representation 

M 

while for n even we obtain 

C2; 

M = 

/•2 

An—1 

N 

2n 

/•in 
^2n 
2n-l 

N 
1 

We now consider one of the lifts C GL„(^). For generators M', N' G if we 

define a,l3 E by (M')" ctM" and (A?"')" = (3N'^ (cf. §111.12a), then in terms 

of the same basis used just now above, for n odd we obtain 

M' 

while for n even we obtain 

a 

n—1 

N' 

VP 

M' = 2n 

2n-l 
2n 

, N' 

VP 

VP 
VP 

We could instead scale the basis so that it is { x ,  N ' x , . . . ,  [ N ' Y  }. Then { N ' Y x  

is either Px (when n is odd) or —(Sx (when n is even), so for n odd we obtain 

M' 

while for n even we obtain 

V^C2n 

M' 

n—1 

, N' 

P 

2n 

2n-l 
2n 

N' 

-P 
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Thus, when n is even, we obtain the classical Schrodinger representation for the 

particular corresponding to {a,P) — (—1, —1). 

Our use of a pair a, (3 e to "measure" how a lift deviates from H„ re

quired us to then separately treat the cases n odd and n even in looking at Schrodinger-

like representations. We can treat all values of n simultaneously by instead work

ing with a pair a',P' G measures how far we deviate from the classical 

Schrodinger representation. 

Theorem III.13.1. Assume char (A:) f n. Let a', /3' G Over k, there always 

exists a coordinate system so that the matrix group of order generated by 

1  / -n—l  

and 

1 

1 
/3' 

represents one of the lifts H'^. The classical Schrodinger representation occurs when 

{a', 13') = (1,1). For n odd, it has determinant 1 throughout and thus represents the 

canonical lift Hn', for n even, it has determinant ±1 throughout and thus does not 

r e p r e s e n t  H n -

III. 14. Concerning the Galois module structure of Jc[n] 

Theorem III.14.1. Assume char(A;) f n. If there exists a change-of-coordinates, 

defined over k, in which the canonical lift Hn has a Schrddinger-like representation 

( c f .  ^ 1 1 1 . 1 3 ) ,  t h e n  t h e r e  e x i s t s  a n  i s o m o r p h i s m  J c [ n ]  =  x  Z j n Z .  

Proof. The change-of-coordinates does not affect the abstract Galois module struc

ture, so let Hn be the matrix group of order generated by the two Schrodinger-Iike 

matrices M and N, as in §111.13. (Thus, if n is odd, the diagonal entries of M are 

1, C,2n^ ^2!) • • •' while if n is even, the diagonal entries of M are C2n, C2n, dn^ —) Each 
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element of H n  has a unique expression in the form with a , b , c  E  Z / r i Z ,  and 

each element of 3 c [ n ] { k )  = has a unique expression in the form 

We can write down an isomorphism J„ —> /i„ x Z/nZ on ^-valued points as 

follows: M^N'^ H-)- (Cin^c). We already know this to be an isomorphism of groups; as 

for Galois modules, we need worry only about the first coordinate. The result follows 

easily from the observation that C,2n always the same as the ratio of the first two 

diagonal entries of M^. • 
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IV. AN ALGORITHM FOR THE JACOBIAN 

Let k be a perfect field. As we saw in chapter III, every curve C of genus 1, defined 

over k, occurs as a non-degenerate degree n curve in of genus 1. In this chapter, 

under the assumption c}iav{k) j n (regarding this, see §I.2e), we describe how to find 

equations for the jacobian of C. 

IV.1. An algorithm for the jacobian 

Theorem IV,1.1, There exists an algorithm (described in this chapter) that takes as 

input a finite set of homogeneous equations; the algorithm checks whether the input 

defines a non-degenerate degree n curve in of genus 1, where n — 1 is the number 

of variables and n is coprime to char(A;); if not, the algorithm terminates with an 

error; otherwise, it produces as output: 

® coordinates of the points of hyperosculation on C; 

® equations describing the jacobian Jc; 

® coordinates of the k-rational origin on 3c! 

• polynomials describing the map jv'- C —>• Jc of degree n^ that carries P 

[nP] — V, where V is the divisor class of hyperplane sections on C. 

Proof. The rest of this chapter is the proof. • 

Remarks. 1. To do all of this on a computer, we must of course have an encoding 

for elements of k and have algorithms for the field operations. In other words, 

k must be a computable field (cf. [BW93, §4.6]). In this chapter, we will not 

concern ourselves with such implementation-level details. 
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2. More generally, we could take as input a finite set of homogeneous or inho-

mogeneous equations, not requiring them to define a non-degenerate degree n 

(smooth) curve in or A'^"' of genus 1, and it is clear in principle that we 

would then need to do the following (but it is unclear how practical some of the 

steps are): we homogenize the equations and check that they define a variety of 

dimension is 1; then we blow up all the singularities to obtain a smooth curve 

of some degree n embedded in for some m; we check that the genus is 1 and 

that n is coprime to char(A:); then we intersect with a A:-rational hyperplane to 

obtain a A:-rational divisor D of degree n, then compute the map to projective 

space (cf. §11.4) determined by 0{D). If n = 2, this map gives us a double cover 

of P;;;^, and we apply the formulas from [Wei54] (also in [AKM"'"01]) to output 

everything stated in the theorem (the 4 points of hyperosculation correspond 

to the 4 points of ramification of the double cover, and these are easily deter

mined). If n > 3, the map to projective space gives us a new set of equations 

that meet the conditions of the theorem, and so we proceed with the algorithm 

described in this chapter. 

IV. 2. Vetting the input 

The input to the algorithm is a finite set of homogeneous equations in a finite number 

of variables. There exist algorithms (see, e.g., [BS92]) for determining the dimension, 

genus, and degree of the scheme defined by the equations, as well as algorithms for 

determining whether a variety is smooth (by determining the dimension of the singular 

locus), and they are implemented in Macaulay 2 [GS] (cf. the code in table V.l). 

If the dimension is ^ L then the algorithm terminates with the message "input 

does not define a curve". 

If the genus is ^ 1, then the algorithm terminates with the message "input curve 

does not have genus 1". 
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If char(/c) | n, where n is the degree, then the algorithm terminates with the 

message "degree of input curve is divisible by ground field characteristic". 

If the number of variables in the input equations is 7^ n — 1, then the algorithm 

terminates with the message "input curve is not of degree one higher than dimension 

of ambient projective space". 

If one of the input equations is linear, then the algorithm terminates with the 

message "input curve is degenerate (it lies in a hyperplane)". 

If the curve has a non-empty singular locus, then the algorithm terminates with 

the message "input curve is singular". 

IV.3. Describing all matrices that preserve the curve 

Let I be the ideal generated by the input equations. Our curve is 

but note that I may not be the ideal of the curve because I might not be saturated. 

(There exists algorithms for computing the saturation. We do not care whether / is 

saturated.) Let ® be a Grobner basis for I with respect to some arbitrary (but fixed) 

monomial order on k[xo,..., Xn-i]-

Let ^ be an n X n matrix of variables aij. If x = [a;o : • • • : ICN-I] is a ^-valued 

point of that lies on C, then Ax may or may not lie on C. The condition for 

A to preserve C is that, for each /(x) G /, where x is now a tuple of variables, also 

/(Ax) € I. It is sufficient for this condition to hold on a set of generators for /. The 

ideal membership problem /(Ax) € / is solved computationally using the Grobner 

basis: we have /(Ax) G / if and only if /(Ax) reduces to 0 upon division by 0. 

We proceed as follows: For each of the original generators /(x) of / given to us as 

part of the input, we divide /(Ax) by 0 and, viewing the remainder as a polynomial 

in A:(ajj)[x], set each remainder coefficient equal to 0. This process results in a system 

of equations in the whose solutions correspond to the matrices A that preserve C. 
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IV.4. Finding xi { ±1} 

To the system of equations in the obtained in the last step, add in the additional 

equation det(A) = 1. At this point, the equations define a 0-dimensional ideal. (The 

number of solutions will depend on the number of elliptic curve automorphisms the 

input curve admits over k. When the j-invariant of C is neither 0 nor 1728, then there 

will be 2n^ solutions.) The elements of Hn are then characterized as those solutions 

that act fixpoint-free on the curve (cf. §111.8). The various [—1] automorphisms 

(cf. §111.9) are characterized as those solutions that do have a fixpoint and have 

order 2 (modulo scalars). 

IV.4a. Solving over a field extension 

The 0-dimensional system defining the finitely many matrices must now be solved. 

There exist various techniques for this (cf. [CL098, Ch. 2]). The simplest is elim

ination and extension. Slightly fancier is to obtain a Grobner basis with respect 

to a favorite monomial order, and then use a Grobner basis conversion procedure 

(cf. [CL098, §2.3]) to land in the elimination/extension situation. 

At any rate, a tedious but finite process will construct a normal field extension 

k { 6 ) l k  a n d  a l l  t h e  s o l u t i o n  m a t r i c e s ,  w i t h  a l l  t h e  e n t r i e s  e x p r e s s e d  i n  t e r m s  o f  9 .  

Once the solutions are in hand, we must identify Hn, and when n is even, we 

must also identify the [—1] automorphisms (we'll need them to find the points of 

hyperosculation). Since fixpoints correspond to eigenvectors, we can use linear algebra 

to determine the fixpoints of each matrix, and the equations for C tell us whether 

any of the fixpoints lie on C. 

For Hn, we hold on to the matrices that have no fixpoints, while for the [—1] 

automorphisms, we hold on to the matrices of order 2 (modulo scalars) and have a 

fixpoint. (In fact, by III.9.3, if we find one such matrix T, then they all have the 

f o r m  M T ,  w h e r e  M  G  H n - )  
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Finally, by expanding all possible products of elements of Hn, we can find genera

tors for Hn- In fact, since char(^) f n, we will find two generators whose commutator 

is a primitive nth root of unity (cf. §111.12). 

IV.4b. Practical improvements for finding Hn 

Since char(A) { n, the group Hn is characterized by the following properties: it admits 

a pair of matrices that act fixpoint-free on the curve and whose commutator is a 

primitive nth root of unity. Furthermore, each of the two generators admits n distinct 

fixpoints (not lying on the curve). 

Thus, instead of solving for all matrices that preserve the curve, we need only 

solve for potentital generators of Hn- We can apply the following result to reduce the 

number of solutions, and then simply search for a pair of solutions whose commutator 

is a primitive nth root of unity, and which have no fixpoints on C. 

Proposition IV.4.1. Assume char(A:) f n. If n is odd, and if M ^ Hn is such that 

M E Jn has order n, then M" = 1. If n is even, we instead have M" = — 1. 

Proof. As we saw in III.11.9, the eigenvalues of M are {a,a(n, • • - ,ctCn~^ }i 

some a £ . Thus, both the minimum and characteristic polynomials of M are 

— aQ) = X + (—L)"a" RIJ Cra- But the determinant is 1. Thus, for n 

odd, M satisfies X" — 1, while for n even, M satisfies X" + 1. • 

Remark. In fact, when n is odd, Hn may be characterized as {A G GL„(fc) : 

A ^ Jn and /I" = 1 }• However, when n is even, we know of no such characterization. 

Therefore, when n is odd, if one introduces the condition M" = 1, one could leave 

off the det = 1 condition; however, it is unclear how—or even whether—the running 

time is affected by doing so (cf. V.2.1). 
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IV.4c. Practical improvements for finding the [—1] automorphisms 

When n is even, we will need matrices corresponding to the [—1] automorphisms to 

find the points of hyperosculation on C. 

When n is odd, we won't need (as far as our algorithm for the jacobian is con

cerned) those matrices, but there may be independent interest in finding them. 

We have already seen that the [—1] matrices are characterized by having a fixpoint 

on C and having order 2 in PGL„(^), i.e., modulo scalars. By the determinant 1 

condition, the only possible scalars are elements of ^n{k). 

Proposition. When n is odd, we can choose the [—1] matrices to satisfy = 1. 

Proof. Say we have found a matrix representing [—1] but = Q. If i is odd, then 

we replace A with Then we will have — 1 and detyi = 1. If ws even, 

then we instead replace A with • 

Proposition. When n is even, we can choose each [—1] matrix to satisfy either 

— 1 or = (n-

Proof. Say A^ = Q. If i is even, we 

A  / - ( N + I - 0 / 2  
replace A with Ci" If i is odd, we replace 

• 

IV. 5. Finding the points of hyperosculation 

For this step, what we do depends on the parity of n. 

IV.5a. When n is odd 

The hyperplanes fixed by M will intersect our curve in the points of hyperoscula

tion. (The same is true for the hyperplanes fixed by N. See III.11.11.) 
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The hyperplanes fixed by M correspond to the eigenvectors of (cf. §111.11). 

Thus, for example, if 

M'[ao, • • • 5 Q^n-l] = [ttO) • • • ) CVn-l], 

then 

\oiQj . • . , d/j—i] M [c^O) • • • 1 l] ) 

whence M fixes the hyperplane 

CtO^O + • • • + ttn-lXn-i = 0. 

Tossing the equation of a fixed hyperplane into our equations for I gives a 0-dimensional 

system whose solutions correspond to the points of intersection of the hyperplane with 

the curve. We solve this system by any convenient technique (cf. §IV.4a). 

Repeating this process for each fixed hyperplane, we obtain the coordinates of the 

ri^ points of hyperosculation. We print these out as part of the algorithm's output. 

IV.5b. When n is even 

We find the points of hyperosculation by investigating the fixpoints of the [—1] au

tomorphisms (cf. §111.9a). For each matrix T representing such an automorphism, 

either all of its fixpoints on C (there are four of them) are points of hyperosculation, 

or none of them are. For a given fixpoint, we look at all hyperplanes through that 

fixpoint, looking for the one with maximal intersection multiplicity with C at that 

fixpoint (this is the osculating hyperplane at that point). In fact, it is easy to see that 

the osculating hyperplane must itself be fixed by T, so we can restrict our search to 

the fixed hyperplanes of T. 

If the osculating hyperplane meets C only at the fixpoint in question, then we 

have found a point of hyperosculation, and the other fixpoints of the matrix are also 

points of hyperosculation. 



83 

IV.6. Finding weighted equations for the jacobian 

The action of Hn on the curve is a non-faithful representation of the action of Jc[«] 

on the curve. We have 

Jc = C/JcN = C/H^. 

By basic principles of geometric invariant theory (cf. [Mum70, §11.7, §111.12] and 

[ABD+64, §7]), we have 

j „ = . p r o j i  •  
Hn Gal [ m / k )  

I  k { e ) [ X Q ,  .  .  .  , X n - l ]  

Remark. In fact, since we only need to find Jc up to birational equivalence, we 

really only care that the Proj exhibited above has the correct function field. By the 

universal property of we can easily establish that its function field is 

w h e v e K  = ^ k { e ) .  

We easily check that the Proj above has the same function field. 

The following lemma helps us break the monster Proj expression into bite-size 

pieces. (In the lemma, we are interested in the cases G = Hn ox G — Gal(A;(0)//;;).) 

Lemma. Let G be a finite group acting on a k-algebra R with trivial action on k, 

where k is a field and char(A:) f |(J|. If I C R is an ideal with GI — I (so that G acts 

on R/I), then 

{ R / I F  =  

Proof. The averaging operator 

^ V 1—4 
|G| 

geG 

RP9 

is a homomorphism of i^'^-modules. Taking G-invariants on the short exact sequence 

0—¥l-^R-^R/I —>0 gives the exact sequence 

0 ^ 1 ^  R ^  { R / I F .  
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If / + / e { R / I f ,  then / - /« G / for all g  e  G .  Then ^(E,(/ - P ) )  =  f  -  f *  

also lies in I, whence the coset / + / is represented by f* e R^. Thus we have the 

short exact sequence of i?/-'-niodu]es 

0 i?® -> { R / I f  ^ 0. 

• 

By the lemma, we have 

Jc = Proj — 
Gal(fc(0)/A;) 

{ l k { 9 ) [ x o , . . . , X n - l ] ) ^ "  

(Observe the denominator may not be simply I. Certainly both Hn and Gal(fc(0)/A:) 

preserve the curve, whence I is preserved as a whole, but the individual elements in I 

need not be invariant.) 

By work of Hilbert and Noether, k{9)[xo,..., is finitely generated. There 

exist standard algorithms in the invariant theory of finite groups (see for exam

ple [Stu93]) for finding a system of generators. 

Applying one of these algorithms, we obtain finitely many polynomials Pi in 

k{9)[xo, . . . ,  X n - i ]  s o  t h a t  k { 6 ) [ x Q , . . . ,  =  k { 9 ) \ p i ] .  S i n c e  H n  i t s e l f  i s  G a l ( ^ k { 9 )  /  k ) -

invariant, it is in fact the case that the algorithms cited above will produce pi that 

are themselves Gal (A; (0)/A;)-invariant, and thus 

is simply k [ p i ] .  

We end up with equations for Jc in terms of the generators p, of the ring of 

invariants [k{9)[xo,..., . These actually express Jc as a closed 

subscheme of a weighted projective space, since the new variables Pi need not have 

degree 1. 
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One can work with closed subschemes of weighted projective spaces quite similarly 

to the way one works with them in usual projective spaces (see [Dol82]). However, 

weighted projective spaces do admit some pathologies (cf. [Dol82, §1.5])—for example, 

they can be singular. Following [Dol82, §1.1, Lemma], we formally eliminate all 

common factors from the degrees of the Pi. For example, if we have five generators 

of degrees (3; 6; 9; 9; 15), say, then we instead declare the degrees to be (1; 2; 3; 3; 5), 

but otherwise make no changes. 

Remark. We make this simple formal degree change because much of the theory 

of weighted projective spaces assumes one has done so. One could also attempt to 

further clean up the description of the weighted space, such as by applying [Dol82, 

§1.3.1, Proposition], 

The algorithm now outputs the equations and the (formally adjusted) degrees of 

the variables of the weighted projective space. 

The map jv'- C —)• Jc is simply the map P i-)- \pi{P)]. The algorithm outputs the 

polynomials Pi to give an explicit description of j-D-

The ^-rational origin on Jc is simply the image, under j-p, of any one of the 

points of hyperosculation on C. We determined those points earlier. Picking one, 

and evaluating the pi there, the algorithm outputs the coordinates of the origin of 3c-

IV.7. Obtaining non-weighted equations for 

Using the afhne covering described in [Har77, II.2.5b], we can find an affine patch 

of 3c containing the origin of Jc. Homogenizing the resulting equations leads to 

equations for 3c as a closed subscheme of a (non-weighted) projective space. The 

algorithm outputs these equations and the new coordinates for the origin. 

Remark. An alternate approach is to take the function field of Jc, which can be 

read off from the weighted projective model, and express that field in the form 
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A:(a)[/5]/(/(a,/5)), which leads to a non-weighted plane model of Jc-

Remark. If one's goal is a Weierstrass model for Jc, one could now (or even prior 

to finding a non-weighted model) apply the Riemann-Roch algorithm (cf. §V.7c). 

IV. 8. Algorithm summary 

Let A; be a perfect field. The input to the algorithm is a finite set of homogeneous 

f o r m s  w i t h  c o e f f i c i e n t s  i n  k .  

(They are supposed to scheme-theoretically define a non-degenerate curve of de

gree n in of genus 1, where n — 1 is the number of variables in the input, and 

char (A:) f n. But all of this is verified in the first step of the algorithm.) 

1. Determine the dimension, genus, and degree n of the scheme defined by the 

equations, as well as whether the singular locus is empty. Terminate with an 

error if the scheme does not have dimension 1, or if the curve does not have 

genus 1, or if n is a multiple of char(A:), or if the number of variables differs 

from n — 1, or if the curve is singular, or if one of the equations is linear (whence 

the curve is degenerate). 

2. Let 0 be a Grdbner basis (with respect to some fixed monomial order) for the 

ideal generated by the input equations. Let yi be a generic n x n matrix. For 

each input equation /(x) = 0, divide f{Ax) by 0 and set each coefficient of the 

remainder to 0, thus obtaining a system of equations in the that describe 

which matrices A preserve the input curve. 

3. With the additional equation det(A) — 1, solve for the finitely many solution 

matrices, expressing each matrix's entries as elements in k{9), where k{9) is a 

finite normal field extension of k constructed during the solution process. 
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4. Among the finitely many matrices, find the ones that act fixpoint-free on the 

curve, and find generators for that subgroup of matrices. 

5. If n is odd, determine the hyperplanes fixed by one of the generators, and 

intersect those hyperplanes with the curve to find the points of hyperosculation. 

If n is even, instead find the [—l]-matrices among the solutions found earlier, 

write down all their fixpoints, and then determine which of the fixpoints admit 

osculating hyperplanes that hyperosculate. 

6. Compute yfc-rational generators p i  for the subring k { 9 ) [ x o , . . . ,  X n - i ] ^ " ,  where 

is the matrix group whose generators were found a couple steps ago. Compute k -

rational generators for the ideal (/ k{9)[xo,..., These ideal generators 

serve as equations for Jc in a weighted projective space, whose coordinates are 

the Pi- Evaluating the pi on the points of hyperosculation of C (see previous 

step) gives the coordinates of the origin on J^. 

7. Grab an affine patch containing the origin of Jc and homogenize, thus obtaining 

equations for JQ in a (non-weighted) projective space. 
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V. EXAMPLE; A SELMER CUBIC 

Let A: = Q, and let C C Pq be the curve defined by F{x ,  y ,  z )  — 0, where 

F{x ,  y ,  z )  — 3x^  +  +  5z^ .  

That is, 

C =. P,oi fv 1) 
^ {3x^ + 4y3 + 5^3) • ^ 

In this chapter, we will apply the algorithm from chapter IV to find the jacobian 

of (V.l), as well as related data (such as the points of hyperosculation on C). After

wards, in §V.6, we will find some of the other data discussed in chapter III that was 

not necessary for finding Jc- Finally, in §V.7, we will generalize the results to the 

family 

Proj 
{ax^  +  by^  +  cz^  +  mxyz ) '  

where A: is a perfect field with char (A:) ^ 3. 

V.l. Vetting the input 

It is easy to see that (V.l) is a smooth non-degenerate degree 3 curve in Pq of genus 1: 

we check smoothness by verifying the matrix of partial derivatives of F has full rank 

everywhere on C; non-degeneracy follows because the generator F is not linear; the 

degree can be read off from F; the genus can be read off from the genus formula 

g = [d — l){d — 2)/2 for plane curves. The code in table V.l will give us the same 

information. 
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; i ringP2 = QQCx,y,z] 

2 ; f»3*x~3+4*y"3+5»z"3 

3 ; idealC = ideal(f) 

i ringC - ringP2 / idealC 
f) : C = Proj ringC 

T: : dim C 

7 codim singularLocus idealC 

S degree C 

1 HH"1 OO.C 

TABLE V.l. This Macaulay 2 code vets the input. 

V.2. Finding i/3 

We will now go about finding the 27 matrices that are the Q-valued points of the 

Heisenberg group H3 C SL3, which, in its action on Pq, preserves C and corresponds 

to the action of Jc[3] on C (cf. §111.12). It is characterized by three things: it 

p re se rves  C,  each  ma t r ix  has  de t e rminan t  1 ,  and  i t  a c t s  f i xpo in t - f r ee  on  C.  

First we will find conditions under which the generic matrix 

A 
an ai2 ais 
021 022 0,23 
O31 032 033 

preserves C.  In other words, whenever a point [x  :  y  :  z ]  lies on C, we require 

A[x  \  y  \  z \  — [a i i x  +  012^  +  o- i ^ z  :  a2 i x  +  ̂ 22? /  +  0,23^  '•  +  032^  +  033^]  

to also lie on C, where A denotes the image of A in PGL3(Q). That is, F(^A[x  :  y  :  z ] )  

must lie in the ideal {F{x, y, 2)), where 

F{A[X : y : z ] )  =  

3 (anx  + any  + a i s z f  + 4{a2ix + 022?/ + 023^)^ + ^asix + 032^ + aasz f .  (*) 

This amounts to dividing (*) by F and demanding the remainder to vanish, giving 
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us 9 vanishing conditions on the coefficients of A:  

F ( A [ X  : Y . z ] )  =  (afi + |a|i + |a|i) F { x ,  y , z ) -

(4®ii 3af2 "I" ^*^21 ~ 4a22 + ^^32) V {^^12^13 ^"^^22*^23 15032^33) y z -}-

(9a^2'^i3 + 12a22Q23 + 15032033) yz'^ — — 30^3 + ~ '^^23 + ^*^31"" ^033) 2; + 

(PCIIIA'12 120.21^^22 15*^31^32) ^ Y I2021O23 + 1603^033) X z -{-

(90J^2®12 I2O21O22 + ̂ ^^31^32} "I" I2O21O23 + 15035^033) XZ + 

(180]^j^Oj^2'^13 + 24O2i022'^23 ~I~ 30O31O32O33) xyz. 

1 ring R = (O.ail,al2,al3,a21,a22,a23,a31,a32,a33),(x,y,2) ,dp: 

2 poly F = 3*i"3+4*y"3+5»z"3; 

3 ideal I = F; 

•i I = groebnerd); 

fi matrix A[3][3] = all,al2,al3,a21,a22,a23,a31,a32,a33; 

6 matrix vars[3]Cl3 = x,y,z; 

7 matrix newvars = A*vars; 

>• map substitution = R.newvars[1,1],newvars[2,l].nawvars[3,1]; 

•) ; poly substituted = substitution(F) j 

!0 i poly reduced = reduce{substituted, I); 

1. ! matrix conditions = coef (reduced, x*y*z); 

:'.r^ ' conditions; 

TABLE V.2. This Singular code determines the conditions for a matrix to preserve 
the Selmer cubic. 

We next put these 9 conditions, along with the extra conditions det(A) = 1 and 

= 1 (cf. IV.4.1) into an ideal in Q[ajj] with elimination (lexicographic) ordering, 

and find a reduced Grobner basis. For example, the code in table V.2 finds again the 

9 conditions found previously by hand, and then the code in table V.3 produces the 

equations shown below. 

Remark V.2.1. The = 1 condition turns out to be crucial (this possibility is 

discussed in §IV.4b). Without that condition, the code would need to run an unknown 

amount of time—we gave up after waiting an hour. Even with A® = 1 (a trivial 

condition—for both n even and n odd, we certainly have A" = 1, since A" is a 

scalar matrix), and with or without the det — 1 condition, we again gave up after 
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an hour. But with = 1 in place, with or without det = 1, the code runs almost 

instantaneously. 

4 
^33 <^33 = 0, %2'^33 = 0, 

12503^2° - 64A32 = 0, %1%3 = 0, 

337503^2 + 1728A|3 - 1728 - 0, 031032 = 0, 

12A23 ~ 25A|I = 0, ®23%3 = 0, 

3 
~ %2 == 0, ^23 %2 0, 

3 
®22 "" ®33 = 0, ^22 %2 = 0, 

125(121032 ~ 64021 = 0, <^22^1 = 0, 

1602^ - 15A|2 = 0, ®22®23 = 0, 

121i3 25(L2I(L32 0, '^21<^33 = 0, 

9*^12 20A23A|I = 0, 031031 -= 0, 

2 2 
~ ^22^33 = 0, '^2L'^23 = 0, 

®2L'^22 = 0. 

These equations define a 0-dimensional ideal in QK-]- There exist computer 

algorithms, such as the ones in Singuiar's library zeroset_lib, that will construct 

a field extension containing all solutions and then list the solutions. Waiting on the 

computer to do this exhausted our patience, so we simply solved it by hand. 

Let K = Q(C3, V''3, where (S is a primitive cube root of unity, i.e., +C:i + 

1 = 0, and each of the other symbols satisfies the obvious equation, e.g., (•^)^ = 4. 

A symbol such as -^—4/5 is shorthand for — \/4/ \/'5. 

When we go about finding all matrices in the solution set (the details are left to 

the reader), we discover that there are 9 solutions (modulo cube roots of unity): 1, 
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i;; , ring S = 0, (all,al2,al3,a21,a22,a23,a31,a32.a33) ,lpj 

ideal conditions.ideal; 

Ij int i; for (i = 1; i <= 9; i++) { 

setring R; 

poly condition = conditions[2,i]; 

setring S; 

poly condition_in_S = iraap(R,condition); 

condition_in_S = cleardenom(condition_in_S); 

conditions.ideal = conditions.ideal + condition_in_S; 

> 

matrix AA » ii!iap(R,A): 

poly determinant_ona « 1 - det(AA); 

27 I conditioas^ideal = conditions.ideal + dsterminant.oae; 
29 LIB "matrix.lib"; // Lets us call powerO, xmitmatO, . 

matrix AA.cubed = power(AA,3) - uaitmat(3); 

31 int i; for (i = 1; i <= 3; i++) { 

'!2 [ for Cj « 1; j <= 3; j++) { 
conditions.ideal = conditions.ideal + AA_cubed[i, j] ; 

i > 3^: i } 
option(redSB); // so that ''groebner" returns reduced result... 

conditions^ideal = groebner{conditions_ideal); 

conditions.ideal; 

TABLE V.3. This Singular code (continuation from previous table) determines the 
conditions, in elimination order, for a matrix to satisfy three conditions: preserve the 
Selmer cubic, have determinant 1, and have its cube be 1. 

M, N ,  M N ,  M ^ N ,  N \  M N ^ ,  M ^ N ^ ,  where 

'1 0 0" 0 ^4/3 0 
M = 0 Ca 0 and N — 0 0 </5/4 

0 0 S3 . L{/3/5 0 0 

But we didn't really have to find them all. We merely need to find two generators for 

the Heisenberg group H^. Thus we must find a pair of matrices that act fixpoint-free 

on C and whose commutator is a primitive cube root of unity. 

It is easy to check that the two matrices M and N satisfy the commutator condi

t ion .  The  f ixpo in t s  o f  M and  N i n  IQ (Q )  co r r e spond  t o  t he  e igenspaces  o f  M and  N 

(cf. §111.11). Using standard linear algebra techniques for finding eigenvalues and 

eigenvectors, we determine that M fixes 

[ 1 : 0 : 0 ] ,  [ 0 : 1 :  0 ] ,  [ 0 : 0 : 1 ] ,  
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while N fixes 

[I : i/3ji ; ^3/5], 

(1 : : C^-yS/H], 

[l:tf^/374:C3y^^]. 

Substituting these points into the equation defining C verifies that the action of M 

and N on C is indeed fixpoint-free. 

V.3. Points of hyperosculation and the hyperplane configuration 

The hyperplanes fixed by M and N correspond to the eigenvectors of and 

(cf. §111.11). We determine that M fixes the hyperplanes 

a; = 0, y  — 0 ,  z  — Q,  

while N fixes the hyperplanes 

X + ̂  4/3?/ + Y/hJZz = 0, 

X + (^3^ ^ 4/3?/ + Cs— 0, 

a; + C3\/473y + C3'\/p-2 = 0. 

Intersecting either set of hyperplanes with C produces the 9 points of hyperosculation 

(cf. §111.11.8); 

[ 0 :1 :^=475] ,  [ 0 :1 :  [0 : 1 : C! 

[y=^ :0 : l ] ,  [C3y^ :0 : l ] ,  :  0  :  1 ] ,  

[ 1 : ^ / ^ :0 ] ,  [ l :C3 \ / ^ :0 ] ,  [1  :  C3 ' :  0] ,  
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The rows correspond to the hyperplanes fixed by M, while the columns correspond 

to the hyperplanes fixed by N. We see here the arrangement and intersection pairing 

described in §111.11.11. 

Remark. Classically, the points of hyperosculation on a plane cubic are found using 

the Hessian. We say more about this in §V.6c. 

(*NonomialList generates all monomial exponent 

satisfying the given degree constraints.*) 

MonomialList[varcoimt_» minweight_, maxweight_] := 

Module C 

•£v, i, r, keepgoing>, 

V « Table[maxweight, {varcount}]; 
r = O; 

keepgoing True; 

While[keepgoing, 

If[minweight <= (Plus v) bk (Plus Sa v) <= maxweight, 

r Append Cr, v] ; 

3; 
(• Subtract 1 from first index in varlist v. *) 

(* If result is negative, replace with maxweight, 

and move right. If we run out of variables, quit. •) 
i = 1; 

WhileC—v[[i3] < 0, 

vC[i3] = 1 

keepgoing False; Break[3:3; 

3; 

(•Reynolds averages the value of the function on the matrixgroup orbit of varlist.*) 

ReynoldsOperator[matrizgroup_List, f_, varlist_LiBt3 := 

ApplyEPlus, Map[Apply[f, #.varlist3 Ss, matrixgroup]3/Length[matrixgroup]; 

(*GeneratingInvariants applies Reynolds to all monomials of a given degree.*) 

Generatinglnvariants[matrixgroup.List, varlist_List, degree_Integer] :» 

Modiile[ 

•Cm = MonomialList[LengthEvarlist3 , degree, degree]}. 

TableE 

ReynoldsOperator Cmatrixgroup, 

Function [varlist, Times Apply[Power, {varlist, m[[i333-33 , 

varlist3, 

{i, Length [m3}3 

3: 
InvertedCharPoly Dnatrix.List, var_3 : = 

Det[IdentityMatrix[LengthEmatrix33 - var*matrix3; 

MolienSeries[matrixgroup_List, var_3 :® 

(l/LengthCmatrixgroup3 )*Plus QQ Map[l/InvertedCharPoly[#, var] &, inatrixgroup33 

HeisenbergGroup[m_List, n_List3 

Module[{d = Dimensions[m3[[133, z = m.n.Inverse[m3.Inverse[n3}, 

FlattenETableC 

MatrixPowertz, i3 .MatrixPowertm, j] .MatrixPowerCn, k3 , "(i, d}, <j, 

d>, -Ck, d>3. 233 

TABLE V.4. This Matbematica code defines functions we'll need in the next listing. 
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V.4. The curve underlying the jacobian Jc 

The matrices M and N generate an abelian group J„ C PGL3(/l) whose elements 

co r r e spond  t o  Jc [3 ] (Q) .  Thus  Jc [3 ]  i s  de f ined  ( e l emen t -wi se )  ove r  K.  

The same matrices generate a group of order 27 in SL3(7\). Let H3 C SL3 be the 

subgroup with those if-valued points. By the material in §IV.6, we have 

T Prni JC rroj if^K[x,y,z]H^W 

To determine the latter more explicitly, we start by looking for an explicit de

scription of K[x,y, We know from general principles (see [Stu93]) that there 

will be three algebraically independent invariants (known as primary invariants), and 

possibly some additional dependent invariants (secondary invariants). The Molien 

series. 

27 Y1 det(id-t<7) 
<TEH3(K) 

1 / 1  1  1  2 4  \  +  
' + . ,.0 + ' * -27^(1_^ )3  ( l _ (3 t )3  ( 1 -  (32^)3  1 - t ' J  (1 -^3 )3  

= l + 2t^ + 4:f + 7f + -t- + 22t^^ + 29t^^ + 37^2^ + ... , 

tells us that there are two linearly independent invariants of degree 3, four of degree 6, 

seven of degree 9, and so on. 

(The Matbematica code in table V.5, relying on the functions from table V.4, will 

compute the Molien series above as well as what we are about to calculate.) 

The three possible products of the two invariants of degree 3 do not account 

for all four linearly independent invariants of degree 6. Hence we start by looking 

in degree 3 and degree 6. Applying the Reynolds operator to all degree 3 and all 

degree 6 monomials gives the following list of invariants: 

xyz ,  3a;^  +  4t /®  +  xyz{^x ' ^  +  Ay^  +  bz"^ ) ,  

x'^yh'^, 9x^ + 16/ -F 2bz^, 12x^y^ + 15x^z^  +  20y^z \  
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cuberootl = Root[(#"2 + # + 1), 1]; 

cuberootS = Root[(#"3 -3), 1]; 

cuberoot4 = RootC(#"3 -4), 1]j 

cuberootS = Root[(#"3 - 5), 13; 

vars = {x,y,2}; 
MM ® DiagonalMatrixCMapCCcuberootl"#) &, Range[3333; 

KN = RotateLeftE 

DiagonalMatrii[{cuberoot3/cuberoot5, cubQroot4/cuberoot3, cuberoot5/cuberoot4}33; 

MM // Simplify // MatrizForm 

NN // Simplify II MatrizForm 

h = HeisenbergGrouptMM, NH3; 

ms = Moliei^eriesCh, t3 

ms » SimplifyEms3 

Series[ms, {t, 0, 30}] 

Se : Factor[Unioii[Simplify[GeiiGratingInvariants[h, vars, 33333 

tvi FactortUnionCSimplifyCGeneratinglnvariantstli, vars, 63333 

'.M PI = X y z; 

72 P2 = 3x*3 + 4y"3 + 5z~3j 

7^3 P3 = 9x-6 + 16y-6 + 25z'e; 

7 , ' GroebnerBasis[-CPl-yi,P2-y2,P3-y3}, {x.y,2,yl,y2,y3}, •Cx.y,z>3 

7C ; Siraplify[in3*CCl ~ t"3)Cl - t"3)Cl - t"6))3 

TV : GeneratinglnvariantsCh, vars, 93 // Siii5)lify // Factor U Simplify 11 Union // Factor 

P4 = 27z"9 + 64y"9 + 125z"9; 

GroebnerBasisC-CPl-yl,P2-y2,P3-y3,P4-y4}, {x,y,z,yl,y2,y3,y4}, {x,y,z}3 

P4 = 48x'*3y''6 + 45x'"6z"3 + 100y"3z"6; 

syzygy = GroebnerBasisHPl-yl,P2-y2,P3-y3,P4-y4}, {x,y.z,yl,y2,y3,y4}, {x,y,z}3 

gg = GroebnerBaEisC'CPl-yl,P2-y2,P3-y3,P4-y4}, {x,y,2,yl,y2,y3,y4}] ; 

PolynomialRedluceC3x"3 + 4y''3 + bz'S, gg, {x,y,z,yl,y2,y3,y4}] 

syzygy /. {y2 -> 0} 

TABLE V.5. This Mathematica code (relying on functions from previous table) cal
culates the Molien series, the primary and secondary invariants, and the final syzygy 
that gives the model for J^. 

Two invariants of degree 3 together with one invariant of degree 6 must compose a 

set of algebraically independent invariants. We arbitrarily choose 

Pi := xyz 

P2  + 4y^  +  

P3 •=9x^  +  16y® + 25^® 

We verify their algebraic independence by introducing slack variables Si,S2,S3 with 

an elimination ordering on monomials and compute a Grobner basis for the ideal 

(Pi - Si, P2 - S2, P3 - S3) in V: Z, Si,S2, S3] and then intersect with Q[si, 52,53] 

to read off any syzygies: there are none. In other words, the ring homomorphism 

from Q[5I, S2, S3] to Q[Pi, P2, P3] given by Sj i-> p has trivial kernel. (All of this is 

explained quite nicely in [CL097]. 
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We can furthermore easily see that (0,0,0) is the only solution to Pi = 0, P2 = 

0 ,  P3  =  0 ;  whence ,  by  t he  Nu l l s t e l l ensa t z ,  t he  r ad i ca l  o f  (P i ,P2 ,P3 )  i s  {x , y , z ) .  

Thus K[x, y, z] is integral over /\ [Pi, P2, P3], whence also K[x,y, is integral 

over A'[Pi, P2, P3], and therefore is finitely generated as a module over A'[Pi, P2, P;i]. 

(In fact, as explained in [Stu93], K[x,y, will be free over A'[Pi, P2, P3], since 

the subring of invariants is Cohen-Macaulay.) 

Thus Pi, P2, P3 shall serve as primary invariants. They generate a graded subring 

of the subring of invariants, and their Hilbert series is 

1 1 1 

1 — 1 — 1 — 

which forms the denominator of the Hironaka form of our earlier Molien series: 

1 -4-
( t )  = 

Thus there is one secondary invariant, in degree 9, which we now locate. Applying 

the Reynolds operator to all degree 9 monomials gives us: 

x'^y'^z'^{3x^+Ay^+5z^), 3Qx^y^+80y^z^+75x^z^, 

xyz{9x^+16y^+25z^), A&x^y^-\-Abx^z^-\-lQQy^z^, 

x^y^z^, 27x®+64y®+1252®, xyz{12x^y^+l^x^z^+20y^z^). 

If we compute a Grobner basis for the ideal 

(PI - SI, P2 - S2, PA - S3, 27X^ + 64?/® + 125^® - S4) 

and intersect with Q[si, S j ,  S3, S 4 ] ,  we obtain the syzygy 

—360si + S2 — 3S2S3 + 2S4; 

since this syzygy is linear in .54, it tells us that 27.c''^+64y"' +1253'' is linearly dependent 

on other degree 9 invariants expressible in terms of our previous choices. We next try 

P4 := 48x^y^ + 45x^2:^ + lOOy^z^, 



98 

and this time the syzygy is not hnear in 54: 

259200sf - 960sfs| + + 1440sf - Ssa S3 

+ 3s|s| — + 1440sfs4 — 4s|S4 + 4S2S3S4 + 8s|. 

In other words, 

K[x ,y , z f ' ^ ^ ^  
K[s i ,  S2 ,  S3, S4] 

(|259200sf-960sfs|4-S2®+1440sfs2S3-3s|s3 

+3s2 S3 — S3 +1440s J S4 —4^2 +4s2 S3S4 +8S4 ^ 

where this is an isomorphism of graded rings so long as we keep in mind a weighted 

grading on the right: the variables Si, 52,53,54 have degrees 3,3,6,9 (corresponding 

to our choices of Pi, P2, P3, P4). 

Remark. Although irrelevant to our calculations, it is helpful to understand what 

the primary and secondary invariants have to do with the structure of the ring of 

invariants. As already mentioned, the ring K[x,y, is Cohen-Macaulay, and 

thus it is a finitely generated free module, generated by the secondary invariants over 

the subring generated by the algebraically independent primary invariants; 

Having determined K[x ,y ,  we return to the problem of finding Jo- Ob

serve that our choices are such that the equation of the curve is given by P2 = 0. 

Furthermore, since H^{K) is defined over Q, the Molien series and the invariants 

calculated above were each Gal(ii'/Q)-invariant. Thus we have 

and substituting S2 = 0 corresponds to working modulo J, so that we have established 

K[x ,  y ,  =  K[Pi ,  P2 ,  P3] © PaK[Pi, P2, P3]-

Q[x ,  y ,  z ]  n K[x ,  y ,  =  
Q [ S l ,  S 2 ,  S 3 ,  S 4 ]  

^259200s ®—960sj Sj +S2 +1440sf 

+3S2 S3 —S3+1440sj S4—4^2 •S4+4S2S3S4+8S4 ^ 

(259200sf - s| + 1440sf S4 + 8s|) 
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We have expressed the curve underlying as a curve of degree 18 in a weighted 

projective plane By the general theory of weighted projective planes (see the 

end of §IV.6), we formally relabel the weights to be (1; 2; 3), so that Jc is now a curve 

of degree 6 in 

The Q-rational group law origin on corresponds to the points of hyperosculation 

on C. Since the functions 51,53,54 are invariant on those points, we can obtain 

coordinates for the origin on by picking any one of the points of hyperosculation 

and applying the map (cf. II.2.4) 

j v -  [ x : y : z ] ^  [ P i { x , y ,  z )  : :  P s { x , y ,  z )  : :  P 4 { x , y ,  z ) ] ,  

where we use the notation [•;:•::•] on weighted homogeneous coordinates to remind 

us  o f  t he  unusua l  equ iva l ence  r e l a t i on ;  [x  : :  y  : :  z ]  ^  [Aa ;  : :  X^y  : :  X^z] .  

For example, one of the points of hyperosculation is [0 : 1 : {/—4/5]. Evaluating 

j-p at this point gives us the group law origin on Jc: 

Oje = [0 :: 2 :: 1]. 

Remark. In fact, evaluating [Pi :: P3 :: P4] at each of the 9 points of hyperosculation 

leads to [0 :: 32 :: 64], [0 :: 50 :: 125], and [0 :: 18 ;; 27]. But each of those is just 

[0 :: 2 :: 1], 

In summary, we have determined the jacobian of (V.l) to be 

T ^ Proi Q 1 1 ]  ,  
^ ~ ^ (259200r6 - 5^ + lUQrH + ^ ' 

where variables r, s,t have degrees (1;2;3), and the origin of the group law is the 

Q-rational point [0 :: 2 1]. We obtained Jc as an elliptic curve of degree 6 in the 

weighted projective plane = Proj Q[r, s , t ] .  

V.5. Obtaining a non-weighted model for Jc 

We will now obtain a non-weighted version of (V.2) using the approach from 8IV.7. 
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The weighted projective plane is covered by the following three afiine 

patches (see [Har77, II.2.5b]) 

s  i  
SpecQ[-^, —] = SpecQ[u,v]  (open subset where r  ^0), 

•1 = Spec (open subset where s 7^ 0), 
^  { uw  — v^ )  

V  ̂  O f? /  1 )  l l j \  
Spec Q r—, —, —1 = Spec (open subset where t 0), 

t t {uw — v^} 

where u ,v ,w  are indeterminates. Thus we have three different ways of obtaining an 

afiine model for J(7, but only two of those models (the latter two above) contain the 

image of the Q-rational origin [0 :: 2 :: 1] on J^. 

Let us use the affine patch corresponding to 5 0. Dividing the defining expres

sion in (V.2) through by leads to 

where the Q-rational origin is now (0,0,1/8). We can of course homogenize this if 

we prefer a projective model for Jc. 

We have finished applying the algorithm from chapter IV to F{x , y , z )  =  3a:^ -t-

+ 5z^ = 0. In the next section, we will say some additional things about that 

example. Then, in §V.7, we will tackle the family ax^ -f by^ + cz^ -I- mxyz = 0. 

V.6. Musings 

V.6a. Finding the 2-torsion on (C, O)  

We will determine the matrix T corresponding to [—1] on the elliptic curve (C, O) ,  

where O is the following point of hyperosculation: 

Thus we seek a matrix A of determinant 1 that preserves C and also fixes O,  and 

furthermore its square should be a scalar matrix (so that the matrix has order 2 on 

Spec 
Q[u ,v ,w]  

{uw  — 259200w^ — 1 -t- 1440Mf 4- 8w)  

O = [0 : 1 : V^i/5]. 



101 

the curve). But if, say, = Csi then (Cs^)^ = 1, and det(C3yl) = 1. Thus we can 

find an A that satisfies — 1. To do this, we repeat the calculations from tables V.2 

and V.3. only this time we replace the condition A? — 1 with — 1. To preserve O, 

we discover we must have, among other things, the additional condition 5aj2 = 4ajg, 

which already simplifies matters sufficiently to determine 

The three eigenvalues of T are 1, —1, —1. There is one isolated fixpoint in Pq, and 

one line's worth of fixpoints in Pq, which gives us 3 fixpoints on C. Since T must 

have 4 fixpoints on C, the isolated fixpoint must lie on C. Indeed, by computing 

eigenvectors, we determine that the fixpoint corresponding to eigenvalue +1 is O, 

while the fixed line is spanned by [1 : 0 : 0] and [0:1: yA/h]. That line cuts C in 

the following three points: 

These must be the three points of non-trivial 2-torsion on (C, O) .  Note that they are 

not points of hyperosculation (cf. §111.9). 

V.6b. Obtaining a Weierstrass model for Jc 

As mentioned in §I.lb, once we have a curve of genus 1 together with a rational point 

(i.e., an elliptic curve), we can always apply the Riemann-Roch algorithm to obtain 

a Weierstrass model for that curve (cf. §V.7c). In the present example, it turns out 

there is an easier way. 

At the start of §V.5, we chose an affine patch containing the Q-rational origin 

on Jc. If we instead work with an affine patch that does not contain that point, then 

we will obtain an affine model with the origin "at infinity". 

•-1 0 0 

T= 0 0 ^ 

. 0 ^-4/5 0 

0 

[{/^ : 1 : -C/iTs], |C3i/=873:l: ^1. [Cii'{/=873 : 1 : 
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Dividing the defining expression in (V.2) through by r® leads to the affine model 

Soec c A" 
^ (259200 - + 1440u + 8^2) 

We knew this would give us an affine plane model, but it so happens we already 

e n d e d  u p  w i t h  a  W e i e r s t r a s s  m o d e l !  I f  w e  n o w  a p p l y  t h e  s u b s t i t u t i o n  u  • ( -  2 X ,  

V ^R- ^{Y — 180), and clear off the common factor 2 from the result, we end up with 

= 4^3 _ 97200. (V.3) 

In the cases n = 2,3,4, formulas for a Weierstrass model of Jc appear in [AKM+01]. 

(For n = 5, see [Fis].) If we apply those formulas to (V.l), we also end up with (V.3) 

above. 

V.6c. The classical Hessian 

In §V.3, we found the 9 points of hyperosculation on our plane cubic (V.l) by finding 

the hyperplane sections fixed by a generator for H^. 

Classically (cf. [Sil99, Ex. IIL3.9]), the 9 points of hyperosculation (called flex 

points) on a plane cubic F{x, y,z) = Q are obtained by intersecting the cubic with its 

Hessian H{x, y, z) — 0, where 

d ^ F  d ^ F  Q i p  
d x ^  d x  d y  d x  d z  
d ^ F  02 F d ^ F  

d y d x  d f  d y  d z  
d ^ F  d ^ F  d ^ F  

d z  d x  d z  d y  d z ^  

Even without knowing any of the general theory of the Hessian, we can see quite 

easily that the Hessian in our current example behaves as the theory says it must. 

For our F, the Hessian H is just (a scalar multiple of) of the invariant Py from §V.4. 

In calculating the origin on Jc, we saw that Pi vanishes at the 9 points of hyperoscu

lation; on the other hand, by Bezout's theorem (see [Har77, 1.7.8]), it cannot vanish 

elsewhere on C. 
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In fact, we saw in §V.4 that the space of cubic invariants is 2-dimensional, spanned 

by F and Pi. Therefore, other than scalar multiples of F, any cubic invariant will 

intersect C in the points of hyperosculation. A more enlightening way of seeing this 

goes as follows. 

Invariants of any degree that do not vanish identically on C will necessarily in

tersect C in a union of 3-torsion packets. If the invariant is defined over Q, then its 

intersection with C is also defined over Q. In particular, by Bezout, a cubic invariant 

will intersect C in a single 3-torsion packet defined over Q; therefore, if we can show 

that the hyperosculation packet is the unique such packet, then it follows that any 

cubic invariant must intersect C in the hyperosculation packet. 

A change-of-variables to (V.3) yields Y'^ — 24300. Feeding [0,0,0,0, -24300] 

to mwrank tells us that Jc has rank 0, while feeding 

e=ellinit([0,0,0,0,-24300]);elltors(e) 

to GP/Pari tells us that Jc has a single point of torsion. In short, the hyperosculation 

packet is the unique 3-torsion packet on C that is defined over Q. 

V.7. Tackling the family ax^ + by^ + cz^ + mxyz  =  0 

Let A; be a perfect field with char(A;) ^ 3 (concerning this restriction, cf. §I.2e). Set 

c = Proi (V,4) 
{ax^ + by^ -1- cz^ + mxyz ) '  

where a ,  b , c ,m  & k .  The condition for C to be smooth is abc{27abc  -F m^)  ^ 0. 

V.7a. History 

The family (V.4) has been studied extensively (often without the mxyz  term). It was 

known classically that a A:-rational point on (V.4) leads to a non-trivial /^-rational 
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point on the elhptic curve 

^  = ' ^ ' ° ' (X^  +  Y^Tâ '^\mXYZY ^ ^ 0|- (V-5) 

Formulas for this are attributed to Sylvester in [Cal92, §3] and to Euler in [Sel51, 

§1.2]. See also [Cas91, §18, Lemma 1]. 

That (V.5) is the jacobian of (V.4) has probably been known for a long time—the 

earhest reference I could find, for m == 0 and k — Q(C3), is [Cas91, §20, Ex. 3]. The 

proof outlined there works in general, and goes as follows. Over k{(s, we can 

write down the isomorphism (p :  (V.4) —> (V.5) given by X = - ^x ,  Y  =  and 

Z = Then := 4''^ ° is an element of H^(G^:,£^(fc) x Aut(E,0£;)). 

It is easy to verify that each is a fixpoint-free automorphism of E,  whence ( E 

(Gfe ,  E{k ) ) .  There fo re ,  C  i s  a  p r inc ipa l  homogeneous  space  fo r  E,  and  thus  E =  Jc -

Our algorithm for the jacobian of (V.4) must therefore produce an answer isomor

phic to the E given above, and we will now verify this fact. We will also relate these 

models for Jc to what is found in [AKM+01]. 

V.7b. Finding the jacobian by the algorithm 

To find the jacobian of (V.4), we could, in principle, repeat the earher work in this 

chapter. (In fact, the computer system Singular is capable of performing calculations 

over function fields that are finitely generated over either Q or a finite field of small 

characteristic—for example, line 1 of the code in table V.2 initializes a polynomial 

ring over the function field Q(ajj). Thus, for suitable k, we could view C as a curve 

ove r  k (a ,  b ,  c ,  m ) ,  where  t he  symbo l s  a ,b , c ,m  a re  a lgeb ra i ca l ly  i ndependen t  ove r  k .  

But an attempt to run the code from tables V.2 and V.3, with obvious modifications 

for the present situation, exhausted our patience.) 

We will take a different approach. By glancing at our work in §V.2, we go ahead 

and form the field extension K — k((3, -^0), and then guess that the two 
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matrices 

M -
1 0 0 
0 CS 0 

.3 0 0 c' 

and N — 
0 
0 

0 
0 ^ 

a c 0 0 

will generate H3.  Indeed, this is the case: it is easy to verify that they preserve C,  

have no fixpoints on C, and their commutator is Cs-

The Mohen series is the same as in §V.4, and carrying out a similar pro

cedure as given there (we will omit the details), we choose the primary invariants 

Pi := xyz, P2 ax^ + by^ + cz^, P3 ;= abx^y^ + acx^z^ + bcy^z^, 

and the secondary invariant P4 := ab^x^y^ + a?cx^z^ + bc^y^z^, and obtain 

K[x ,y , z ] ^^ ' ' ^ ^  =  ^2 ,^3 ,^4 ]  
(9a^b'^ sf +abcs^ S2 —Gcibcs^ 32S^+s^+3abcs^ s^—s2s^s^+s^} 

Working modulo the ideal of C corresponds to S2 = —msi, and we obtain 

^[si,-53,54] 
J c Proj 

^o{)c(9a6c—m®)s®+6a6cmsj Sg+Sj+3a&cs ^ 

We find the points of hyperosculation on C, as in §V.3, by intersecting the hyperplanes 

fixed by M or by N with C.  For example, we find the point [0:1: - ^ /—b/c] .  

Substituting the points of hyperosculation into [Pi P3 :: P4] (cf. the end of §V.4) 

gives us [0 :: —6^ :: b^], [0 :: —:: c^], [0 ;: —:: a^], which are all just [0 :: —1 :: 1]. 

In summary, the jacobian of (V.4) is 

k[ r , s , t ]  
J c  =  Proj (V.6) 

(abc{9abc — m^)r^ + Gabcmr'^s + + 3abcrH + mrst + ' 

where variables r,s,t have degrees (1;2;3), and the origin of the group law is the 

A:-rational point [0 :: —1 ;: 1]. We obtained Jc as an elliptic curve of degree 6 in the 

weighted projective plane = Proj k[r, s, t]. To obtain a non-weighted equation. 

we now proceed as in §V.6b. The affine patch 

k[u ,  ?; ]  
Spec 

-|- muv + 3abcv + + Qabcmu -|- abc{9abc — m )̂) 

gives us a Weierstrass model for Jc-

C A? (V-7) 
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V.7c. Applying the Riemann-Roch algorithm 

We will now apply the Riemann-Roch algorithm (which we learned from an example 

in [Con92]) to put the eUiptic curve (V.5) into Weierstrass form, so that we may 

compare it with (V.7). 

We must find functions px, Py with poles of order 2, 3 at P = [1 : — 1 : 0] and no 

poles elsewhere on E: abcz^ + mxyz — 0. We go to the affine patch where 

cc 7^ 0. Set Y  =  y l x , Z  =  z j x .  Then we are looking at the point P  —  (—1,0) on 

E: 1 + Y^ + abcZ^ + mYZ ~ 0. We determine Z to be a uniformizer at (—1,0), and 

1/2" to be a uniformizer at the three points on E where x — 0. Thus we must have 

quadratic polynomial in Y  and Z  cubic polynomial in Y  and Z  
— __ ____ ^ — — .  —. 

The bound on the numerator degree comes from looking at the pole behavior of Y  at 

points where x = 0: the denominator Z^ contributes a zero of order 2 at those points, 

so the numerator can contribute a pole of order at most 2, since the end result should 

be regular at those points. 

Since L(2F) = (1, px), we can adjust px by a scalar multiple of 1 = Z'^/Z^; that 

is, the coefficient of Z^ in the numerator of p^ can be taken to be 0. We also need 

t h e  n u m e r a t o r  o f  p ^  t o  n o t  v a n i s h  a t  P ,  y e t  v a n i s h  a t  t h e  o t h e r  t w o  p o i n t s  Q i , Q 2  

on E where Z vanishes. These conditions immediately give some relations on the 

coefficients of the numerator of px, and tell us the Y"^ coefficient is nonzero. Scaling, 

we assume it to be 1. If we then use the equation of E expressed locally at Qi,Q2, 

we can expand the numerator of px in a series in Z to obtain the condition for the 

numerator to vanish twice at those two points. We ultimately determine; 

Y ^  +  r ^ Y Z  - Y  + ^ Z  + 1  
P- = ^2 • 

As for p y ,  the equation of E  itself allows us to eliminate the Y ^  term from the 

numerator, and L(3P) = {l,px,py) tells us we can eliminate the Z^ term and the 
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Y'^Z term (by subtracting off a multiple of px)- Repeating the previous work, this 

time requiring triple vanishing at (5i,(52, we obtain: 

+  ̂ Y Z  - Y  +  ̂ Z  +  1  +  ̂ z ^  
Py- • 

Riemann-Roch tells us that £(6P) = 6, yet certainly { 1, p x ,  p y ,  pj, p x p y ,  P x >  P y  }  

lie in L(6P), and by comparing with L(5F), we conclude that we can express py as 

a linear combination of the rest. That is, there exist a,- satisfying: 

P y  +  O ' l p x p y  +  O - S p y  —  C l Q P x  +  +  0 ,4PX + CQ. 

This equation must hold identically on so if we expand this using our expressions 

fo r  px ,  py  and  use  t he  equa t ion  o f  E r epea t ed ly  t o  e l imina t e  a l l  t e rms  con ta in ing  Y^ ,  

then the coefficients we end up with must all be 0. From this we easily determine: 

P y  -  f p x p y  +  a b c p y  Ip^ + ̂ px + - 27abc). 

This is E in Weierstrass form. We eliminate the denominators with a linear change-

of-variables to obtain 

E\  — mxy  +  9abcy  =  +  9abcmx  +  {ahem?  — 27a^b ' ^c^ ) .  (V.8) 

If we now apply the substitution x ^ u and y <— {v — 3abc), then we obtain (V.7). 

V.7d. Comparing with result from classical invariant theory 

If, in addition to our standing assumption char(fc) / 3, we also assume char(A:) 2, 

then we can compare (V.7) with what we would obtain from the formulas in [AKM'' 01]. 

There it is shown that Jc has equation 

y^ = 4x^ + 108^2; - 27T, (V.9) 

where 

S = ̂ abcm — and T — o?b^(? — ^abcm^ — 
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If we scale the linear term of (V.9) by 6^, and the constant term by 6® (cf. [Sil99, 

§111.1]), then we obtain 

= Ax^ + 108(216a6cm — m^)x — 216(5832a^6^c^ — 540a6cm^ — m®). (V.IO) 

If we instead start with (V.7), and complete the square and the cube (cf. [Sil99, 

§111.1]), then after cleaning up the denominators we also end up with (V.IO). 
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VI. EXAMPLE: A PAIR OF QUADRICS 

In the previous chapter, we worked through an example of using our algorithm in the 

case n = 3. In this chapter, we work through an example for n = 4 far enough to 

find the Heisenberg group H4 and the points of hyperosculation, which demonstrates 

the following points; 

® The ideal of our curve is no longer principal. Thus, whereas before with / = (F) 

we put the condition F{Ax) = 0 modulo F(x) to find matrices that preserve 

the  cu rve ,  now we  mus t  f i nd  a  Grobne r  bas i s  (5  fo r  / ,  and  fo r  each  gene ra to r  F 

of J, we require F(Ax)/0 = 0, where -/(S denotes the canonical form obtained 

by reducing modulo 0. 

• Since the parity of n  is different, we must use a different method for finding the 

points of hyperosculation (cf. §IV.5). 

« In the previous chapter's example, the Heisenberg group H4 admitted a Schro-

dinger-like representation in the given coordinate system. That will not be the 

case presently. 

In contrast to the previous chapter, this time around we will rely more on the com

puter, and we present computer code that, although more abstract, has the advantage 

o f  be ing  eas i l y  adap ted  t o  d i f f e r en t  va lues  o f  n .  

VI. 1. The curve 

Let C be the intersection of the two quadrics in Pq defined by the matrices 

"1 0 0 0" "1 0 0 0" 
0 1 0 0 

and 
0 2 0 0 

0 0 1 0 
and 

0 0 3 0 
0 0 0 1 0 0 0 4 
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That is, 

C = Proj 
q[w ,x , y , z \  

+ 2x^ + 3j/^ + Az^)) 

Note that C has no Q-rational point: it does not even have a point over R. We 

will now apply our algorithm to find the points of hyperosculation, the hyperplane 

configuration, and the jacobian J^. 

The code in table VI. 1 confirms that (7 is a smooth degree 4 curve in Pq of genus 1. 

It is non-degenerate because none of the ideal generators is linear. 

n=4 

iiMinusOne=D.-l 

ringPnMinusOna = QQ[w_0..w.nMinusOne] 

fl=w.0"2+w_l'"2+w_2"2+w_3"2 
f2=w_0*2+2*w_i~2+3*tf_2'"2+4*w.3"2 
idealC « ideal{fl,f2) 

ringC = ringPnMinuBOne / idealC 

C = Proj ringC 

dim C 

codim singularLocus idealC 

degree C 

HH"1 00_C 

TABLE VI. 1. This Macaulay 2 code vets the input. 

Remark. We didn't really need the computer: since the two matrices are diagonal, 

and their A-equation (as in (III.9)) has distinct roots, the two quadrics intersect in a 

smooth curve of genus 1 (see [Eis95, §18.3, Example, p.463]). 

The code in table VI.2 works out the conditions for a matrix 

ai 0-2 03 0.4 

05 Q jQ a7 as 

ag <^10 ail «12 

Ol3 ai4 O'lb 

to preserve the curve, have determinant 1, and satisfy A" = —1. (Thus, by §IV.4b, we 

are describing potential generators of H4, not itself.) Note that, for sake of speed, 

the code uses a non-elimination term order for the initial computations, and then 

uses a Grobner basis conversion process (cf. [CL098, §2.3]) to obtain a description 
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of the ideal in elimination term order. We end up with the following conditions: 

^16 + *^16 

3^15 + <^15 

3a d lA  — 14 "-14 

0,1^ — 3af^ + Sa-i^c; + afa + 1 '•14 ^ ^ "16 

12 

^12 

*^11^16 ® 11 

TTII  a^6 

aioOxa 

OlO 0,12 

Qjq 

Oq — 3a 

Qig 

a«a 8"12 

ag + 3ai4 = 

*^7*^14 

^13 

<^15^16 ~ 0 

^14'^15 — 0 

^13^15 ~ 0 

*^12^16 ~ 

^12^^13 ~ 0 

<^11^14 ~ 0 

<^11^12 0 

^lo'^is — 0 

a^o^ii — 0 

^9*^15 0 

^9^12 — ^ 

%®15 ~ 0 

agOn ^ 0 

a^aig 

<^7^12 

a^ag = 0 

'^14%6 0 

*^13^16 "" ^ 

%3®14 — 0 

^^12^14 ~ 0 

®11%5 ~ 0 

•^11^13 ~ 0 

<^10^6 "" 

^10'^14 ~~ 0 

*^9^16 ~ 0 

%®13 " 

OgOii = 0 

'^8*^16 0 

*^8^13 " 0 

%®10 ~ 0 

<^7^15 ~ 0 

^7^11 — ^ 

ayttg = 0 
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= 0, agOig = 0, ^6*^14 = 0, 

^ 0 ,  agCj^s = 0, ^6^12 = 0, 

3^5^15 % - 0 ,  agflio = 0, agCg = 0, 

a| + Safg = 0, agag = 0, a^ttj = 0, 

- 0, %^16 = 0, aga|4 = 0, 

= 0, = 0, = 0, 

«2 + %ai2ai5 = 0, QgOlO = 0, agOg = 0, 

ai — = 0, OgOg = 0, a^a^ j  = 0, 

a^Cg 

0
 II 

To solve the system, let K = Q{Cs: v^)) where (g is a symbol satisfying = — 1 and 

is a symbol satisfying — 3. Modulo the 4th roots of unity { 1, Q, Q }, 

we find 12 solutions (the signs must be assigned so that the determinant is 1): 

"0 0 0 iCs" 0 0 ±ci/^ 0 
0 0 ±C8 0 0 0 0 
0 iCs 0 0 0 0 0 

Cs 0 0 0 _ 0 l/</3 0 0 

' 0 iCs' /</3 0 0 • 
0 0 0 

0 0 0 
0 0

 

0
0
 0^

 

0 

Their squares are the elements of order 2 in PGL4 (the signs must be assigned so 

that the determinant is 1 and so that the matrix is not a scalar): 

•±C| 0 0 0' 
0 iCs' 0 0 
0 0 ±Cl 0 
0 0 0 >8 , 

We arbitrarily choose two matrices of order 4 whose commutator is a primitive 
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4th root of unity; 

M = 

0 0 0 
0 0 Cs 
0 Cs 0 

CR 0 0 

0 
0 
0 

N = 

0 
0 

0 

0 

0 

0 
1 /^  

We have M N M ^ = Ci- The Heisenberg group is 

C i /n  0  
0 Cs'^ 
0 
0 

0 
0 

H 4  =  {  :  a ,  b , c e  Z/4Z }. 

VI.2. Finding the [—1] matrices 

By running code similar to before, but replacing the condition =  — 1  with —  1  

and also trying again (cf. §IV.4c) with or simply = —1, and then checking 

that each matrix has 4 fixpoints on C, we find the following 16 matrices (the signs 

must be assigned so that the determinant is 1): 

0 0 iCsV^ 0 • r 0 ±ci/<^ 0 0 ' 
0 0 0 ±c/^ ±Ci^ 0 0 0 

iCs"^ 0 0 0 1 0 0 0 
0 Cs/^ 0 0 0 0 1/^ 0 

"0 0 0 ±C|" 

1 

o
 

o
 

0" 
0 0 ±C/ 0 

o
 

-H o
 0 

0 iCs' 0 0 ? o
 

o
 

0 

.CI 0 0 0 _ 0 0 0 Cs. 

VI.3. Finding a point of hyperosculation 

Since n  is even, the points of hyperosculation are the 16 fixpoints of 4 of the [—1] 

matrices (cf. §111.9a). We simply take each matrix, look for a fixpoint, look for the 

osculating hyperplane at that fixpoint, and check whether it hyperosculates; if not, 

we move on to the next matrix. 
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Let us look at the matrix 

-(s 0 0 0 
0 Cs 0 0 
0 0 Cs 0 
0 0 0 Cs 

It fixes the isolated point [1:0:0:0] (which is not on C) and fixes every point in the 

eigenspace spanned by [0 : 1 : 0 : 0], [0 : 0 : 1 : 0], and [0:0:0: 1]. That eigenspace 

is just the hyperplane w = 0, which intersects C in the 4 points 

[0 :1 :  ±v^  :  ±1] ,  

Let 

O = [0 : 1 : \/^ : 1]-

It is easy to see that the hyperosculating hyperplane at O (assuming it exists) must 

be fixed by T. The hyperplanes fixed by T correspond to the eigenvectors of We 

determine that T fixes the isolated hyperplane w — Q (which we just saw cannot be 

the hyperosculating hyperplane at O), and T also fixes all the hyperplanes spanned by 

a; = 0, y = 0, z = 0 (these are all the hyperplanes containing the point [1 : 0 : 0 : 0]). 

We thus look at hyperplanes corresponding to ̂  = [0 : * : * : *]'^ that go through O, 

i.e., the hyperplanes sx ty — {1 + ty'''^)z = 0, where [s : t] G PQ(Q). We look 

for [s : t] values that maximize the number of times the hyperplane meets the curve 

at O. We eventually discover, for [s : i] = [1 : 2\/^], the hyperplane meets C only 

at O. Thus O is a point of hyperosculation. 

VI.4. The invariant theory of H4 

To eventually describe 

J  C ^ P  • Q[w, X ,  y ,  z ]  n Klw,  X ,  y ,  
^  ^  I  n  K [ w ,  x , y ,  
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which we will not do here, we would first need to get our hands on K[w,  x, y ,  

We will now indicate how that calculation commences. The Molien series 

^nAt )  =  ̂ 4^2  de t ( id  -  t r )  
TeHi{K)  ^  '  

l ~ t ^  +  8 t ' ^  -
~ - l)4(t4 + 1) 

= 1 + + 12t^ + 29t^^ + 63t^® + 112t^° + 186^^'' + 283t^® + ... 

tells us there are two linearly independent invariants in degree 4, twelve in degree 8, 

and so on. We can verify that the following four polynomials, 

Pi  =  wxyz ,  

Pa = 3w^ -x'^ + y^- 3z\ 

P3 = x^y'^ + 9w^z'^, 

P4 = {x'^y'^ + 2>'w^z^){'u?y'^ + x^z^), 

are algebraically independent invariants with (0,0,0,0) being the only solution to 

Pi = 0, P2 = 0, P3 = 0, and P4 = 0. Thus they serve as primary invariants, and we 

rewrite the Molien series in the form 

1 + + ^20 
' ^HAt )  -  ^4)2 (1  _^8 )2  •  

We see that there are 7 secondary invariants in degree 8, 7 in degree 12, and 1 in 

degree 20. We have not carried out the calculation to find those secondary invariants. 



1 i // Lines marked "//[••]'' axe specific to the parity of n, 

•J; i // or to the particular value of n, or to the particular equations 
; // being used in this example. Adjust these lines as necessary. 

o int n = 4; //[»•] 

7 ring ring.PnMinusOne « 0,(xCO..(n-1))),dp; 

& i poly fl « x(0)-2+x(l)-2+x(2)-2+x(3)-2; //[»•] 

P ; poly f2 = x(0)-2+2*x(l)-2+3*x(2)-2+4*x(3)*2; //[*»] 

iO I ideal ideal.C = fl.f2; //[*•] 

option(redSB); // Now "groebner'' will reduce result... 

13 ideal.C = groebner(ideal_C); 

15 int n.sqviared = n*n; 

io ring ring_combined = (0,a(l..n_squared)),(x(0..(n-1))),dp; 

17 ideal ideal_C_coiabined = imap(ring_PnMinusOne,ideal.C); 

:iS // Singular nmst be reminded it is groebner: 

ly ideal.C.combined = groebner(ideal_C_combined); 

23 matrix ACn][n] = a(l..(n.squared)); 

2;; matrix vars[n3[l] = x(0..(n-l)); 

; matrix nevvars = k * vars; 

2;:i : newvars; 

24 ; map iaap_A = ring_corabined,newvarsCl,l] ,netfvar8C2,l] ,newvars[3,i] ,newvarsC4,l] ; //[**3 

25 ideal_C_combined; 

poly varprod = 1; 

2S ^ int i; 
.';Ci for (i = 0; i < n; i++) { 

31 varprod = varprod • x(i); 

32 > 
, ring ring_coefficients = 0, (a(l.. (n.squared))) ,dp; 

3> ideal ideal_conditions; 

3 ' matrix AA ® imap(ring_combined,A); 

poly determinant.one = 1 - det(AA); 

ideal^conditions = ideal_conditions + determinant_one; 

// Extra (optional) conditions: (n)th power should be +1 or -1. 

'"/y. // Note: For n even, we won't get a group, but we'll find generators... 

4;' LIB "matrix.lib"; // Lets us call powerO, unitmatO, ... 

<:'!• matrix AA_nth_power ~ power(AA,n) + (-D'n • unitmat(n); 

•t'.- int j; 
j  for (i = 1; i <= n; i++) { 

47 for (j = 1; j <« n; j++) { 

-3 I ideal.conditions = ideal_conditions + AA^nth.power[i,j]; 

^9 i > 
LO I } 
52 setring ring.combined; 

int eqn.count = ncols(ideal_C_combined); 

S4 for (i = 1; i <» eqn.count; i++) { 

5o setring ring.combined; 

5G poly generator = ideal_C_combined[i]; 

b'f poly mapped.generator » map_A (generator); 

[••o mapped_generator; 

Tu;? : poly reduced = reduce (mapped.generator, ideal.C.combined); 

60 i reduced; 

3'. matrix coefficients = coef (reduced,varprod); 

62 int coef.count = ncols(coefficients); 

53 for (j = 1; j <= coef.count; j++) { 

G4 setring ring.combined; 

poly coefficient = coefficients[2, j] ; 

setring ring.coefficients; 

57 poly mapped.coefficient = imap(ring_combined,coefficient); 

^ mapped.coefficient = cleardenom(mapped_coefficient); 

65 ideal.conditions = ideal.conditions + mapped_coefficient; 

vo } 
; } 

7̂ :. setring ring.coefficients; 

74 ideal.conditions = groebner(ideal_conditions); 

?> ring ring.coefficients.lex = 0,(a(l..(n.squared))),lp; 

I ideal ideal_conditions_lex = fglm(ring_coefficients,ideal.conditions); 

'7 i ideal_conditions_lex; 

TABLE VI.2. This Singular code find equations describing generators of H4 
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A. FACTS ABOUT CURVES OF GENUS 1 

In this appendix, we review facts concerning A:-curves of genus 1, where k  is a perfect 

field. Our results are mostly obtained from the theory of elliptic curves, as presented 

in [Sil99], by separating an elliptic curve into two aspects: the underlying curve of 

genus 1, and the curve's jacobian. 

A.l. Consequences of Riemann-Roch on curves of genus 1 

We recall the Riemann-Roch theorem for a curve of arbitrary genus. 

Theorem (Riemann-Roch). Let X be a k-curve of genus g, let K be a canoni

ca l  d i v i sor ,  and  l e t  D  be  a  k - ra t iona l  d i v i sor  on  X .  Le t  i k { - )  =  d imfcL i t ( - )  =  

dim;fcH°(X,0(-)). Then 

i k {D)  -  ik iK  -D)=  deg(D) +  l - g .  

Proof. Combine [Har77, IV. 1.3] with [Sil99, II.5.8.1]). • 

We now return to the context of C being a curve of genus 1, and explore the 

consequences of the above theorem. 

A. la. The canonical divisor and differential forms 

Substituting D = 0 and D — K into Riemann-Roch gives 

i k {K)  = 1 and deg(ii') = 0, whence K ^  0 .  

In words: there exist global differential forms, any two differ by a scalar multiple, and 

they are nowhere vanishing. 
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Any choice of nonzero global differential form is usually called "the invariant 

differential", referring to the fact that they are invariant under translation by the 

action of the jacobian Jc on C: this follows from [Sil99, III.5.1]. 

A.lb. Dimension of complete linear systems 

Corollary (Riemann-Roch on curves of genus 1). Let C be a k-curve of genus I, 

and D a k-rational divisor. Then: 

4( i^ ) -4( - i? )  =  deg(D) .  

The relationship between the degree and dimension may be summarized as follows. 

The first three statements hold for all curves, the last two for curves of genus 1: 

• If deg(Z)) < 0, then i-k{D) — 0. 

• If deg(i:') = 0 and D 9^ 0, then ik{D) = 0. 

• If deg(D) = 0 and D ~ 0, then ik{D) = 1. 

• If deg(D) > 0, then £ k { D )  —  d e g { D ) .  

• If D is effective, then £k{D) > 1-

A.lc. No two points are hnearly equivalent 

Let PiQ E C{k) be two distinct points. If we had P  ^  Q ,  then P  —  Q  would be 

the divisor of a function, implying the existence of a non-constant function in L(Q), 

contradicting — 1. 

A.Id. Effective representatives 

For D a /c-rational divisor, the fact 

deg(i:») >0 ==^ £ k i D )  =  d e g { D )  
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tells us that the complete linear system \D\k (which comprises effective ^-rational 

divisors linearly equivalent to D) is nonempty whenever deg(D) > 0. In other words: 

if D has positive degree, then the class [D] has an effective k-rational representative. 

Thus, if D  has degree 1, then the class [ D ]  is represented by a A;-rational point. 

But, by A.lc, no two distinct points are linearly equivalent. Thus: if D has degree 1, 

then the class [D] has a unique k-rational point as representative. 

The last statement is true more generally. We no longer require D to be k-

rational, but we do require the class [D] to be fc-rational, which means D for 

all Galois automorphisms a. Temporarily taking our ground field to be fc, the previous 

paragraph tells us that [D] has a unique ^-rational point P as representative. But 

then A:-rationality of [P] implies P'^ ^ P, and uniqueness forces P'^ = P. Thus P is 

/j-rational. In short: each k-rational divisor class of degree 1 has a unique k-rational 

point as representative. 

Warning. It is in general not the case that the divisor class group Cli:(C) comprises 

A:-rational divisors modulo linear equivalence. An element of C1A;(C) is a fe-rational 

class, i.e., a class [D] so that each representative D satisfies ^ D; such a class 

need not admit a ^-rational representative. However, as we saw above, on a curve of 

genus 1, each A;-rational class of degree 1 does admit a fc-rational representative. 

A.2. The group law 

The set C { k )  of A:-rational points on C  may be empty. When it is nonempty, then 

c h o o s i n g  a n y  O  G  C { k )  l e a d s  t o  t h e  f o l l o w i n g  c o m p o s i t i o n  r u l e :  f o r  P , Q  E :  C { k ) ,  

define P © Q to be the unique A:-rational point (see A. Id) linearly equivalent to the 

degree 1 A;-rational divisor P Q — O. 

The calculation 

{ P ® Q ) e R ^ { P ® Q )  +  R - 0 r ^ { P  +  Q ~ 0 )  +  R - 0  =  { P  +  Q  +  R ) - 2 0  
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renders moot the order in which P , Q , R  appear and the order in which they are 

combined, showing the binary operation to be both commutative and associative. 

It is furthermore immediate that O is an identity element for this operation. Finally, 

g i v e n  P  G  C { k ) ,  l e t  © P  b e  t h e  u n i q u e  A : - r a t i o n a l  p o i n t  l i n e a r l y  e q u i v a l e n t  t o  2 0  —  P .  

Then ©P is the additive inverse of P: 

P © (©P) ~ P + (©P) - O ~ P + (20 - P) - O - O. 

Thus the operation "©" defines an abelian group law on the set C { k )  with O  as 

identity element. 

In summary; when C(k) is nonempty, each choice ofOE C{k) leads to an abelian 

group law on C{k) with O as identity element. 

This abstract description of the group law is intrinsic to the curve. The reader 

may be familiar with the extrinsic "chord-and-tangent law" defined on nonsingular 

cubic curves in P;;?. (A description, along with pictures, appears in practically every 

b o o k  o n  e l l i p t i c  c u r v e s . )  T h a t  l a w  h a s  t h e  f o l l o w i n g  d e s c r i p t i o n :  f i x  a n y  O  G C { k )  

to be the identity element, and then agree that three points in C{k) sum to 0 if and 

only if they are collinear. Not every curve of genus 1 occurs as a cubic in But for 

the ones that do, we have the following result: 

Theorem A.2.1. The intrinsic and extrinsic laws agree. 

Proof. Fix O  G C { k ) .  For P,Q e C{k), their intrinsic sum is the unique point 

linearly equivalent to P + Q — O. Now let "©" denote the extrinsic law. If we show 

P®Q^P + Q — then we have shown the two laws to agree. 

Let R  G C { k )  be such that P , Q , R  are collinear. (In other words, take the line 

through P and Q and find its third point of intersection with the curve. If P — Q, 

then use the tangent line.) The extrinsic law says P Q) Q ® R = O. Thus R is the 

inverse of P © Q- Let S E C{k) be such that O, R, S are collinear. Then S must be 
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P © Q. The two lines define a rational function that gives P  +  Q  +  R ' ^ O  +  R  +  S ,  

w h e n c e  P  +  Q  —  O ^ S  =  P ® Q .  •  

A. 2a. Isogenies 

When C { k )  is nonempty and O  G C { k )  has been fixed, the pair (C, O) is called an 

elliptic curve. A curve morphism 

(C, O) —> (C, o ' )  with 0 ^ 0 '  

is called an isogeny. The trivial isogeny is the constant map with value O'. Non-

trivial isogenies are finite morphisms and thus have a degree. Two elliptic curves 

are isogenous if there exists a non-trivial isogeny between them. 

Theorem A,2.2. Every k-isogeny C ^ C is necessarily a group homomorphism 

C { k )  C ' { k ) .  

Proof. Let P, Q G C { k ) .  Then P  ®  Q  i s  the unique point linearly equivalent to 

P + Q — 0. Since takes principal divisors to principal divisors, we have 4>{P®Q) ~ 

(i){P) + (j){Q) - 0(0), whence 0(P ® Q) = 4>{P) ® ^(Q)- • 

Corollary A.2.3. Any k-morphism C C with a fixpoint O E C{k) is automatically 

a  g r o u p  e n d o m o r p h i s m  C { k )  — > •  C { k )  o f  t h e  e l l i p t i c  c u r v e  ( C ,  O ) .  

The above result is an ingredient into the structure theorem for morphisms of 

curves of genus 1. (See A.4.1.) 

A.3. The jacobian action 

Recall that a ^-rational point on the jacobian Jc is the same thing as a ^-rational 

divisor class on C of degree 0. In other words, Jc(^) = Cl2(C), and Jc(^) = Cl|(C). 
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There is a canonical action of Jc on C, whose behavior on fc-valued points is; 

J c { k )  X  C { k )  — ^ C { k ) ,  

([Z], P) I—^ unique point linearly equivalent to [ Z  +  P ] ,  

Proposition A.3.1. The action of Jc on C is simply transitive (and thus faithful 

and fixpoint-free). 

Proof. Let P,Q & C{k). The action is transitive since [ Q  —  P ]  6 J c { k )  sends P  to Q .  

L e t  [ Z ]  E  J c ( k )  a l s o  h a v e  t h a t  p r o p e r t y .  T h e n  Z  +  P  ̂  Q ,  w h e n c e  [ Z ]  =  [ Q  —  P ] .  •  

Thus Jc comprises a part of the group of curve automorphisms of C. The precise 

structure of that group is explained in A.4c. 

A.3a. Torsion packets on curves of genus 1 

Since Jc acts on C, for each n > 1 also JcM acts on C, where Jc[?^] is the kernel of 

multiplication-by-n; 

J c [ n ] { k )  =  J c ( ^ ) N .  

Definition. An n-torsion packet on C is a collection of points in C { k )  that com

prises one orbit under the action of Jc[n](^). 

Thus we see: the set of n-torsion packets is in one-to-one correspondence with 

{ C / J c [ n ] m .  

l{ P,Q G C{k) lie in the same n-torsion packet, then P  —  Q  defines a class 

in Jc{k)[n], whence nP ~ nQ. Thus another description: an n-torsion packet is 

a maximal collection of points in C{k) so that if P,Q are any two of them, then 

nP ~ uQ. 

Anotlier way to think about n-torsion packets is as follows. Let T  C  C { k )  be an 

n-torsion packet. Choosing any O ET, we get the elliptic curve (0^,0). Then T is 

simply the n-torsion on that curve, i.e., T — {C^, 0)[n](k), and the other n-torsion 
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packets on C  are the cosets of T  in {Ck, 0 ) { k ) .  In summary, talking about an n -

torsion packet on C is tantamount to saying, "here is a collection of points which 

would be the n-torsion were we to choose one of them as group law origin". 

Proposition A.3.2. The size of each n-torsion packet is the constant |Jc[n](fc)|. In 

particular, if char(/;) | n, then each n-torsion packet comprises n^ distinct elements 

o f C { k ) .  

Proof. The first statement follows from the action of on C being simply transitive. 

The hypothesis char(A:) \ n guarantees that 3c{k)[n] has order n^. (As a group, it is 

isomorphic to Z/nZ x T^jnlL, but as a Gal(^/A:)-module, its structure can be more 

complicated.) • 

Proposition A.3.3. The Galois conjugate of an n-torsion packet is again an n-

torsion packet. In other words, each n-torsion packet is either permuted among itself 

or swapped as a whole with some other n-torsion packet. 

Proof. Any point in an n-torsion packet determines the packet by taking that point's 

orbit under the action of JcW- Since JcM and the action of on C are both defined 

over k, what happens to an n-torsion packet is entirely determined by what happens 

to one of its representative points. Such a point either stays within the packet or 

moves to a different packet. The rest of the packet follows along. • 

A. 4. Morphisms 

A.4a. Morphisms between curves of genus 1 

In A.3, we saw that J q  acts simply transitively on C .  Thus each [ Z j  E  J c ( ^ )  gives 

rise to a distinct fixpoint-free curve automorphism of C. Applying this to two curves 

C and C of genus 1, we obtain the following description of Hom(C;ti C'k)-
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Theorem A.4.1. Fix choices of O E C{k) and O' G C'{k). Then each curve 

morphism ^ can be decomposed uniquely in the form r o 0, where (j) G 

Hom((Cfc, O), (C^, O')) and r G Jc'(^)- In other words, every morphism is a ho-

momorphism followed by a translation. 

Proof, Call the morphism rj. For existence of the decomposition, write rj = [r]{0) — 

O'] o (JO' — r]{0)] o rj). Since [O' — ri{0)] o ri sends O i-> O', it is a homomorphism 

from the elliptic curve {C,0) to the elliptic curve {C',0'). (That was A.2.2.) For 

uniqueness, say r o 0 = r' o 0'. Then (p = or' o (j)'. Thus O r' fixes O'. By the 

simple transitivity of the Jc-action, we must have r = r', whence also (f) = (j)'. • 

Remark. Instead of post-translating on C after applying (f), one might hope to 

instead pre-translate on C. That works only if the morphism C —> C" is assumed 

non-constant. 

One might ask: what about morphisms C C that are ^-rational? Is it neces

sarily the case that (j) and r in the theorem will also be A;-rational? The answer is no: 

we have ro0 = {TO(J)Y — o0^^, but (J)'^ need not take O O'. But if O and 0' are 

A;-rational, then does take O O', whence 0 = 0'^ and r = t"'. We have proved: 

Theorem. Fix choices of O G C{k) and O' G C'{k), assuming they exist. Then each 

k-rational curve morphism C C can be decomposed uniquely in the form r o 0, 

where 0 G Hom/t((C,O), (C,O')) and r G In other words, every k-rational 

morphism is a k-rational homomorphism followed by a k-rational translation. 

A.4b. Endomorphisms of curves of genus 1 

By the above results, we obtain the following description of morphisms -4 C^, i.e., 

of End(C^). 

Theorem A.4.2. Fix a choice of O G C{k). Then each curve morphism Cj: -> Cj. 

can be decomposed uniquely in the form r o cf), where (p G End(C\:, O) and r G 
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Proof. Follows immediately from A.4.1. • 

Remark. It would be nice to better elucidate the structure of the monoid End(C^) as 

some kind of product between End(Cjt, 0) and Jc(k). Unfortunately, the composition 

law appears to have no simple description. Given t4> and r'0', how does one write 

T(f)T'(j) in the desired form? As we'll see in the next section, when we restrict attention 

to automorphisms, we'll obtain a semidirect product. 

Concerning A;-rational morphisms C —> C, similar to before we can say: 

Theorem. Fix a choice of O G C{k), assuming one exists. Then each k-rational 

curve morphism C C can be decomposed uniquely in the form r o (f), where (j) G 

E n d ^ ( C , 0 )  a n d  r e  J d k ) .  

To finish the story, we need to understand the structure of the endomorphism 

ring End(C^,(9). Lying in there are the multiplication-by-n maps [n], thus putting 

Z  C E n d ( C f c ,  O ) .  W h e n  t h e r e  i s  m o r e  t h a n  t h i s ,  w e  s a y  t h a t  t h e  e l l i p t i c  c u r v e  ( C ^ ,  O )  

has complex multiplication. The possibilities are as follows. 

Theorem. Fix O G C{k). Then End(Cfe, O) is one of the following: 

1. Z; 

2. an order in the ring of integers of an imaginary quadratic extension of Q; 

3. an order in a definite quaternion algebra over Q. 

If k is a finite field, then the first possibility is ruled out. If k has characteristic 0, 

then the third possibility is ruled out. 

Proof. See [Sil99, III.9]. • 

A morphism decomposed as above as ro0 is called a pure translation 

when (f) = id. Thus Jc(^) is the group of pure translations of C. 
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Theorem A.4.3. A non-identity morphism Cg —)• is fixpoint-free if and only if it 

is a pure translation. 

Proof. That non-identity pure translations are fixpoint-free was explained in sec

tion A.3. For the other direction, we will establish the contrapositive. Assume that 

r o ^ is a morphism with (j) ^ Id. We must show that the morphism has a fixpoint. 

The elliptic curve endomorphism id — 0 of (C^, O) is non-constant whence surjective. 

Furthermore, the map r corresponds to a translation map on (0^,0), say by the 

point P. Since \d — (j) is surjective, there exists Q E C{k) with Q — (j){Q) — P. Then 

we have (r o 4>){Q) = P + ^(Q) = Q, showing r o 0 to have a fixpoint. • 

Corollary AAA. A fixpoint-free morphism is an automorphism. 

Remark. Fixpoints are discussed further in section A.4e. 

A.4c. Automorphisms of curves of genus 1 

Now we specialize to the case of isomorphisms —> C^, i.e., we describe Aut(Cfc). 

Theorem A.4.5. Fix a choice of O E C{k). Then the curve automorphism group 

o f C k  i s  

Aut(C,-) = JcWxAut(C',-,0). 

Proof. The unique decomposition aspect follows immediately from A.4.1. The semidi-

r e c t  p r o d u c t  s t r u c t u r e  i s  e v i d e n t  b y  c o m p u t i n g  t h e  g r o u p  l a w :  g i v e n  r  o c p  a n d  r '  o ( p ' ,  

their composition may be written T{(j)T'(l)^^)(f)(f)', and now we merely have to 

convince ourselves that (pr'cf)^^ is a pure translation. In other words, we must convince 

ourselves that Jc(^) is a normal subgroup of Aut(C^). 

Let [ Z ]  6 Jc(^) and 0 € Aut(C^). The action of [ Z ]  on C { k )  is to take any point 

P E C{k) to the unique point representing the divisor Z-{-P. What does do? 

First P  goes to (f) ~ ^ { P ) ,  then [ Z ]  carries that to the unique point linearly equivalent to 
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Z  +  ( f >  ^ { P ) ,  and thus cj) carries it to the unique point Hnearly equivalent to (f)^{Z) + P. 

In short, 0 o [Z] o 0"^ is the same as [(p^Z]. • 

Remark A.4.6, As described in the proof, the semidirect product structure tells us 

how to combine two automorphisms: 

Concerning A;-rational isomorphisms C C, similar to before we can say: 

Theorem. Fix a choice of O G C{k), assuming one exists. Then the group of k-

rational curve automorphisms of C is: 

Autfc(C) = Jc(^) X Autfc(C,0). 

To finish the story, we need to understand the structure of the automorphism 

g r o u p  A u t ( C f c ,  O ) .  

Theorem A.4.7. The structure of Ant{Ck,0) depends on the j-invariant of C and 

the characteristic of k: 

i f  j i C )  7^ 0,12^ and char(/(;) ^ 2; 

f i ^ i k ) ,  i f  j { C )  —  12^ and char(fc) ^ 2,3; 

l j L Q { k ) ,  i f  j { C )  = 0 and char(A:) ^ 2,3; 

C2, if j{C) ^ 0 (= 12^) and char(A;) = 2; 

C4 K C3, i f  j { C )  = 0 (= 12^) and char(A;) = 3; 

IX Q s ,  i f  j i C )  =  0(=  12^)  and char(A:) = 2. 

Aut(C^, O) = < 

Remark. Here C„ denotes a cyclic group of order n, and Qs a quaternion group of 

order 8. We use fJ.,Xk) in place of C'„ in the first three cases, as this furthermore 

indicates the Galois module structure of the group. But when char (A:) = 2,3, that 

structure depends on more than just the j-invariant, and is not given here. 

Proof. See [SiI99, III. 10.1, III.10.2] and the proof of [Sil99, A. 1.2c]. • 
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Corollary A.4.8. Each elliptic curve (0^,0) admits a unique automorphism of or

d e r  2  (usually denoted [—1]). Its fixpoints are the points of 2-torsion {C^,0)[2]{k), and 

ifQ is one of those points, then the same automorphism is also the [—1]-automorphism 

of the elliptic curve (C^,<5). 

Proof. The first statement follows from the theorem. The second statement follows 

from uniqueness. • 

Theorem A.4.9. Fix a choice of O G C{k). In Aut(Cfc) = Jc(^) x Aut((Cj, O ) ) ,  

the order 2 automorphism of with a fixpoint are precisely the elements of the form 

T o [—1], where r e JcH(^), and [—1] is the unique order 2 automorphism of the 

e l l i p t i c  c u r v e  { C ^ ^ O ) .  

Proof. By A.4.5, our automorphism is of the form r o 0 for some r 6 Jc(^) and 

some (j) ^ Aut((Cfc, O)). Prom the semidirect product structure (cf. A.4.6), it is easy 

to see that r o 0 having order 2 implies 0 itself has order 2. Therefore, by A.4.8, our 

automorphism is of the form TO [—1]. 

It remains to show that every r e can occur. In other words, for an 

arbitrary such r, we must show that r o [—1] has order 2 and a fixpoint. Now r = Tp 

(translation-by-P) for some P G C{k). Let Q G C{k) be such that Q= P, where 

the group law is on {CK, O). Then (ro[—1])(Q) = PQQ = Q, and rpo[—l]orpo[—1] = 

Tp o ([-1] OTpO [-1]) O ([-1] O [-1]) = Tp o TQP = id. • 

A.4d. Separable and inseparable degree of a morphism 

Theorem A.4.10. Let 0: C —> C be a finite morphism of curves of genus 1. Then 

f o r  a l l  Q  e  C ' { k )  a n d  a l l  P  G  C { k ) ,  

=  s e p d e g c f ) ,  

e ^ { P )  — insepdeg0. 
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Proof. Fix arbitrary O  G  C { k )  and set O' — 4>{0). Then ^ is a non-constant isogeny 

(C, O) (C, O'). Now apply [Sil99, III.4.10a]. • 

A.4e. The degree and fixpoints of a curve endomorphism 

For any morphism ?]: C -> C, let #Fix(?]) denote the number of fixpoints of r] 

lying in C{k). In A.4b we saw that, after fixing a choice O G C{k), each morphism 

r}\ C C has a unique decomposition as an endomorphism of (C, O) followed by a 

pure translation: 

rj = r o where 4> G End(C, O) and r G Jc(^)-

How this decomposition relates to the existence of fixpoints was given in A.4.3. 

Theorem A.4.11. In the above decomposition, we have: 

deg(r o 0) = deg(0), 

^ Fix(r o  ( f ) )  —  <  
#Fix((^), ifcf)^ 
o o ,  i f ( j )  =  

0, i f ( f )  =  

d; 

d and r = id; . 

d and r ^ id. 

Proof. Since pure translations have degree 1, we have deg(T o (j)) — deg(0). The 

rest of the proof concerns fixpoints. Letting "©" refer to subtraction on the elliptic 

curve (C, O), we can certainly say that 7^Fix(r o 0) is the same as the number of 

points in C{k) sent to O by the map (r o 0) © id. 

Lemma. The map (r o 0) 0 id is finite precisely when 0 ̂  id. Otherwise (r o 0) 9 id 

i s  t h e  c o n s t a n t  m a p  w i t h  i m a g e  r { 0 ) .  

Proof. Observe that the action of r is simply addition by the point r(0) G C { k ) \  

that is, T(P) = P © T(0). 

If 0 = id, then (r o 0) 0 id takes P P © T{ 0 )  © P, so that (r o 0) 0 id is constant 

with image T(0). 
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If 0 7^ id, then there exists a P G C { k )  with P ^ 4>{P)- Then {T  o (f)) Q id takes 

P (J){P)(BT{0)QP, while it takes O M- r(0). The two images are distinct precisely 

because (p{P) Q P ^ O. Thus (r o 0) Q id is non-constant, whence finite. • 

We now continue with the proof of the theorem. Agreeing that constant maps 

have degree 0, the number of points in C{k) sent to O by the map (r o 0) © id is the 

same as its separable degree so long as the map either is finite or is constant with 

image away from O. But it is constant with image O only when (r o 0) = id. Thus 

we have shown: 

# Fix(T 0 0)= Sep deg((T o 0) © id) if r o 0 ̂  id. 

By observing that (r o 0) © id carries P (-)• (p{P) © T{ 0 )  © P, we see that the 

"ffir(O)" part does not affect the degree, whence 

# Fix(T o  ( p )  —  sep deg(0 © id) if r o 0 / id. 

Of course, we also have #Fix(0) = sepdeg(0 © id) so long as 0 7^ id, and thus our 

final conclusion is 

# Fix(r o  ( f ) )  —  Fix(0) if 0 id. 

Of course, when (f) — \d, then r o 0 is a pure translation, so # Fix(r o <p) is either 00 

or 0, according as whether r = id. • 

A.4f. Correspondence between morphisms and subgroups of Jc 

Let { E ,  O )  be an elliptic A'-curve, where k  is a perfect field. For each finite subgroup 

K C E(k) that is Gal(^/A:)-stable, there is the non-constant separable ^-isogeny 

_ E 
VK- .E - , - .  

These are essentially the only non-constant separable isogenics with domain E, in 

the following sense. Let {E', O') be another elliptic A;-curve. Every non-constant 
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separable A:-isogeny 

r ] - . E — ^ E '  

factors as the following composition of non-constant separable A;-isogenies: 

^  K e x { r ) ) { k )  

(See [Sil99, III.4.9, III.4.12].) 

Of course, two different isogenies can have the same kernel (for example, consider 

\d: E E and [—1]: E E), so one must be cautious in formulating the above in 

terms of a one-to-one correspondence. We see that non-constant separable ^-isogenies 

E E' are in one-to-one correspondence with pairs {K,E/K E'), where K is a 

finite Gal(fc/fc)-stable subgroup of E{k), and E/K E' is a /^-isomorphism. 

We can eliminate "perfect" and "separable" from this correspondence by appealing 

to the language of schemes. Let (E, O) be an eUiptic A:-curve, where k is now an 

arbitrary field. For each finite subgroup /s-scheme K <Z E, there is the non-constant 

/j-isogeny 

If (£", O ' )  is another elliptic k-cmve, then every non-constant A:-isogeny 

T ] :  E  — >  E '  

factors as the following composition of non-constant A;-isogenies: 

Ker(?7) ^ ' 

We can generalize this correspondence to curves of genus 1 as follows. Let C be 

a k-cmve of genus 1. For each finite subgroup A:-scheme K C Jcj there is the finite 

A:-morphism 
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If C is another ^-curve of genus 1, then every finite /s-morphism 

r j - . C ^ C  

factors as the following composition of finite A-morphisms: 

Here Ker(^*) is the finite subgroup A;-scheme of Jc whose ifc-valued points are 

Ker(77*)(^") =  { [ P  -  Q ]  e  J c W  :  P , Q  e  C { k )  and ri{P) - r?(Q) }. 

Under the action of Jc on C, this subgroup acts simply transitively on each fiber of rj ;  

in particular, one can compute Kev{ri*){k) by focusing on one fiber: 

K e v { f i * ) i k )  - { [P - g] G 3 c { k )  : P , Q e  rj-\R) }. 

Since \r ) ' ' ^{R)\  = sepdeg{rj) ,  the number of closed points in JaN is sepdeg(r7). Mul

tiplicities account for the inseparable degree contribution. 

Just as, with a non-constant A;-isogeny i ] :  E  E '  o f  elliptic A;-curves there is 

a natural isomorphism KeT{r]){k) = Ant[k{Ek) jr)*k{E'^)), with a finite /c-morphism 

7]: C C of k-cmves of genus 1 there is a natural isomorphism 

KerW)(*) Aut(S(Cj)/,-t(Ca). 

Finally, the following statements are equivalent for a finite A;-morphism r j :  C —)• C" of 

A:-curves of genus 1 (cf. [Sil99, III.4.10]): 

• Tj is separable; 

• 7] is unramified; 

• #Ker(^*)(^) = deg ?/; 

• The field extension k [ C { ) / r f k { C ' A  is Galois. 
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This leads to the following Galois correspondences when k is perfect: 

• Finite subgroup fc-schemes of Jc are in inclusion-preserving correspondence with 

Gal(^/A;)-stable finite subgroups of Aut(fc(Cfc)/^). 

» Either of the above sets is in inclusion-reversing correspondence with finite-index 

Gal(^//!;)-stable subfields of k{Ck)-

A.5. Consequences of Riemann-Hurwitz on curves of genus 1 

We recall the Riemann-Hurwitz theorem for curves of arbitrary genus. 

Theorem A.5.1 (Riemann-Hurwitz). For a finite separable morphism (p: Xi X2 

between smooth projective curves, 

2 genus(Xi) - 2 = deg(0)(2 genus(X2) - 2) + deg(i?), 

where R is the ramification divisor of (f) on Xi, which, if the ramification is tame, 

looks like: 

R  =  ' £ ( e 4 P ) - l ) F .  
P e X i ( k )  

Proof. See [Har77, IV.2.4]. • 

Theorem A.5.2. If there exists a finite and purely inseparable morphism Xi —>• X2 

between smooth projective curves, then genus(A"i) = genus(X2). 

Proof. See [Har77, IV.2.5]. • 

Corollary A.5.3. If <j)\ X\ —> X^, is a finite morphism between smooth projective 

curves, then 

2 genus(Xx) — 2 < sepdeg((;A)(2 genus(X2) — 2). (A.l) 

Proof. The morphism can be factored into a purely inseparable morphism followed 

by a separable morphism. Now apply the previous two theorems. • 
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Theorem A.5.4. The existence of a finite morphism Xi —> X2 between smooth 

projective curves implies genus(Xi) > genus(X2). 

Proof. If genus(X2) = 0, then there is nothing to prove. Otherwise, the right-hand 

side of (A.l) is non-negative, so we can eliminate sepdeg(</>) to obtain 2 genus(Xi) — 

2 > 2 genus(X2) — 2, which immediately gives the desired result. • 

We can draw three consequences from Riemann-Hurwitz for curves of genus 1: 

1. The only finite morphisms with domain a smooth projective curve of genus 1 

are: 

• finite maps between curves of genus 1, and 

• finite maps to P^, i.e., non-constant rational functions. 

2. Separable finite morphisms between smooth projective curves of genus 1 are 

unramified. 

3. More generally, the total ramification of a separable finite morphism from a 

curve of higher genus to a curve of genus 1 is independent of the degree of 

the morphism; however, at least with tame ramification, lower degrees force a 

higher number of branch points. 



135 

B. MAPS TO PROJECTIVE SPACE: A COORDINATE-FREE APPROACH 

Let X be a scheme over a ring A, and let £ be an invertible sheaf on X. 

As described in [Har77, §IL7], if C is generated by global sections, then to each 

finite ordered collection B = (sq, ..., s„) of global generators corresponds a unique 

morphism 

(B.l) 

with the properties ^^(^(l)) = £ and = Sj, where the Xi are the homogeneous 

coordinates on PJ^. If the collection B is linearly independent, then the image of (B.l) 

is non-degenerate, meaning; it does not he in a hyperplane of 

By the universal property of the fibre product P^ := P^ X, each mor

phism (B.l) factors canonically as a morphism 

(B-2) 

followed by the canonical projection Pj^ —)• Pj'. 

Our goal is to give a coordinate-free description of the map X —> Pj^ and of 

the composed map X To do so, we will require X and A to be noetherian, 

and we will furthermore require H°(X, C) to be a free vl-module of finite rank, or at 

least require a submodule of H°(X, C) that generates C to have those properties. (By 

[Har77, n.5.19], these requirements are met if ^ is a field and X is projective over A.) 

B.l. Background material 

B.la. Projective space bundles 

Let X be a noetherian scheme. Associated to each locally free colierent sheaf £ on A" 

is the projective space bundle 

TT:  P i £ )  X .  (B.3) 
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Let us recall its definition and properties (cf. [Har77, §11.7, p.162]). The sheaf 

S := Sym(£)  ;=  ̂  Sym' ' ( f )  
d>0 

is a quasi-coherent sheaf of graded O^-algebras, where each homogeneous part Sd 

is coherent, SQ = Ox, and S is locally generated by Thus we are in the 

situation denoted "(f)" in [Har77, §11.7, p. 160], and by definition 

P(£) :=Pro j («S) .  

In other words, for each affine open U  C  X ,  w e  have 

n-\U) ^ Proj(H°([/,<S)) = Proj(Sym(H°(C/,^))). 

Furthermore, P { S )  comes equipped with an invertible sheaf 0 { 1 )  and there is a canon

ical surjective morphism 7v*{£) —> C(l), thus exhibiting 0{1) as a "rank 1 quotient" 

of Finally, if everywhere on X we have Rank(5) > 2, then TT^[0{d)) ^ Sd] in 

particular, 7r*(0(l)) ^ S. (See [Har77, 11.7.11].) 

Points correspond to rank 1 quotients One way to think about P(<6^) is in terms of 

its T-valued points, which turn out to correspond to certain rank 1 sheaf quotients. 

Let g: T X he Bk T-valued point of X, which will remain fixed 

throughout this paragraph. If /: T —>• P(^^) is a T-valued point P(^) 
/ 

over X (i.e., tt o / = y), then /* carries the exact sequence / 
T - ^ X  

TV* ( S )  0 ( 1 )  —^ 0 

to the exact sequence 

j - (£ )^ r (o( i ) )^o^  

Note that f* is not only right-exact: it also preserves invertibility. Therefore, each 

T-valued point of P(f) over X gives rise to a rank 1 quotient of £ on T, and this 
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turns out to be a one-to-one correspondence (see [Har77, 11.7.12]), which is easily 

verified to be functorial. In particular, when we exhibit a rank 1 quotient 

g*i£)  0, 

the corresponding T-valued point /: T —> P(£^) has the property 

r (0 ( l ) )S!£ .  (B.4)  

Change of base Projective space bundles behave well under change of base. Let 

h: X' —> X be a morphism of noetherian schemes, and let be a locally free coherent 

sheaf on X. We will now establish a morphism P{h*S) —> P(£) so that the dia

gram shown here commutes. One way to describe a morphism 

of schemes is to view the schemes as functors (assigning to P(^') ^ P{h*£) 

each T the set of T-valued points) and then to describe a 

natural transformation of those functors. Thus, for each T-

valued point / ; T —> P{h*£), which immediately gives us the 

T-valued point tts o / 

of X' and the T-valued point ho-n2of of X, we must produce (in a functorial fashion) a 

T-valued point of P(£^) lying over hoTv^of. By our correspondence between T-valued 

points and rank 1 quotients, / corresponds to 

feo / ) - ( f t - f )^ / - (0 ( l ) )—>0.  

Since the left term is isomorphic to { h o  7 ^ 2 0  f ) * { £ ) ,  the exhibited rank 1 corresponds 

to a T-valued point of P(£). It is furthermore not difficult (but left as an exercise for 

the reader) to establish that the diagram is cartesian: 

P { h * £ )  = P(£) xx A''. (B.5) 

Coordinates If £ has finite rank everywhere on X, then the projective space bun

dle P(^) may be locally coordinatized as follows. Let U C X be an open set on 
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which 8 is free and has constant finite rank, and set n so that the rank is n + 1. Let 

Ou denote the restriction of Ox to U. Let B — { sq, • • • i ^n,} be a basis of global 

sections estabUshing the isomorphism 8\u ^ 0" Oy • Observe that Sym(£^|c/) is iso

morphic, via the association SI -H- XI, to the polynomial ring OU[XQ^ ..., a:„]; thus, 

P(8\u) — Pf/, and the structure map tt: P(^|f/) -> U is then simply the canonical 

projection —)• U. Of course, if 8 is globally free, then a single such coordinatization 

works for the entire projective space bundle. 

B.lb. Starting with a free ^-module 

Let X be a noetherian scheme over a noetherian ring A. If V is a free module of finite 

rank n + 1 over A, then 8 :=V <8*A OX is a locally free coherent sheaf of rank n + 1 

on X. Here V <8ia Ox denotes the sheaf whose sections over an open set U C X are 

V ®A ^^{U,Ox)- (We view H°({7, Ox) as an ^-module as follows: via restriction it 

i s  c e r t a i n l y  a  m o d u l e  o v e r  H ° ( X ,  O x ) ,  a n d  t h e r e  i s  a n  o b v i o u s  m a p  A  - >  H ° ( X ,  O x )  

a s s o c i a t i n g  t o  e a c h  a  E  A  t h e  c o r r e s p o n d i n g  c o n s t a n t  f u n c t i o n . )  S i m i l a r l y ,  V  0 ^  OA 

is a locally free coherent sheaf of rank n + 1 on Spec(yl). Observe 

V^aOx^s*(V^AOA),  (B.6)  

where s: X ^ Spec(/1) is the structure map. 

In fact, both V0AOA and V<S>AOX are globally free, whence they may be globally 

coordinatized. They can both be coordinatized simultaneously by choosing a basis 

B = {sq, ... ,Sn} for V. Then the symbols Sj <8) 1 compose a basis of global generators 

b o t h  f o r  V  0 A  O a  a n d  f o r  V  ( g ) ^  O x -

In summary, we always have the commutative diagram 

X P{V 0A Ox) Fx 
s  

Spec(A) ^ PiV ®A Oa) PX, 
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where indicates the isomorphism associated to a choice of basis B for V. By 

(B.6) and (B.5), describing an X-morphism X P(y <S>A OX), i-E., a section of TT, 

is equivalent to describing an A-morphism X —)• P(y (gi^ OA)-

B.lc. When the base is a field 

When the base ring A is a field k, and K is a field extension of k, the following nice 

description of K-valued points of P(l^) is useful. (Since Spec(A;) has just a single 

point, the sheaf V Ospec(k) is just the constant sheaf associated to V, so we might 

as well use V to denote both the vector space and the sheaf.) 

Let X be a noetherian scheme over k. Let V be as before: a free fc-module of 

finite rank n + 1. Fix a field extension K D k] in other words, choose a iiT-valued 

point g: Spec{K) Spec(fc). We already know that a i^-valued point of P(y) lying 

over g is nothing other than a rank 1 sheaf quotient of the sheaf g*V. But Spec(K) 

has a single point, so such a quotient amounts to a rank 1 vector space quotient of 

the vector space V K. This puts us squarely in the realm of linear algebra. By 

considering the kernel of a rank 1 quotient map, we see that rank 1 quotients are 

in one-to-one correspondence with hyperplanes. In summary, the K-valued points 

ofP{V) are the hyperplanes in V K. 

B.2. Coordinate-free version of X —> P^ 

Let X be a noetherian scheme over a noetherian ring A, and let L be an invertible 

sheaf on X that is generated by global sections. Viewing H°(X, £) as an A-module, 

let V C H°(X, C) be a submodule with the following properties: 

® V generates £; 

• V is a free A-module of finite rank. 
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We claim that, under these assumptions, the projective space bundle 

TT:  P ( y 0 A  O x )  ̂ X .  

has a canonical section 

( j )v :X-^PiV®AOxy,  (B.7)  

furthermore, there is a canonical isomorphism 0^(0(1)) = £, and if we choose a 

basis S = { So,..., Sn } for whence P(y OX) — P?) then we obtain the original 

map (B.2) described at the outset. 

Before estabUshing the claim, let us remark on consequences. If we compose (B.7) 

with P(V (giA Ox) P(V' (gi^ OA), we end up with 

(l)v: X —^F{V ®aOA). (B.8) 

Under the basis B, (B.8) recovers the original map (B.l). Since (B.l) pulls back an 

^-basis of H°(PJ|', (9(1)) to an i4-basis of H°(X, £), pullback must give a canonical 

isomorphism of A-modules 

H°(P( \ /®^C^) ,C(1) )  ^H0(X,£) .  (B.9)  

In particular, the image of (B.8) is non-degenerate, meaning: it does not lie in a 

h y p e r p l a n e .  T h a t  i s ,  n o  n o n z e r o  g l o b a l  s e c t i o n  o f  0 ( 1 )  v a n i s h e s  i d e n t i c a l l y  o n  X .  

Example. When A is a field k, X is a curve, and (pv is the map associated to 

V — H°(C, 0{D)), where D is a divisor on X, (B.9) says: equations for hyperplanes 

in P(V) are in one-to-one correspondence with { / e k{X) : (/) -i- D > 0 }. This 

leads to a familiar fact: if we remove 0 from each vector space in (B.9) and then 

work modulo , classes on the left correspond to hyperplanes, while classes on 

the right correspond to hyperplane sections: effective divisors linearly equivalent 

to D. In short, (B.9) estabhshes a one-to-one correspondence between hyperplanes 

and hyperplane sections. When (pv is an embedding, the correspondence is simply 
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i? (-> n X; in general, one must instead choose an equation i defining if, pull back 

£ to obtain a rational function on X, and finally take the divisor of (f)yE. 

Proof of claim. We start by describing (B.7). Given a T-valued point g: T —> X, 

we must produce (in a functorial fashion) a T-valued point T P{V (g)^ Ox)- We 

saw earlier that this is the same as producing a rank 1 quotient of g*{V OX)-

To do this, we simply apply g* to the given rank 1 quotient V 0yi Ox —> £ 0 

on X. (The map V (g)^ Ox JC is described as follows. To each global section 

s G y corresponds the morphism Ox -> jC defined by / H- / • s. Given a pair (s, /), 

w h e r e  s  e  V  a n d  /  G  H " ( L ^  O x ) ,  w e  " ' e v a l u a t e "  s  o n  /  t o  o b t a i n  f  •  s  E  E ^ { U , C ) .  

This pairing is bilinear and thus gives the map in question. It is surjective precisely 

because V generates £.) 

Having described (B.7), we now establish ( j ) y [ 0 { l ) )  =  C .  To do so, we again 

appeal to the description of (pv as a natural transformation of scheme functors. For 

each T-valued point g: T X, we must establish an isomorphism of sheaves 

The map ( p v i d )  corresponds to the rank 1 quotient g*(V 0A OX) —> ff*(^) —> 0, and 

thus, by (B.4), the pullback of 0(1) is indeed isomorphic to g*(jC)-

Finally, to see that a choice of basis = { Sq j  • • • ? } for V leads to our original 

map (B.2), it remains to verify, by the characterizing properties stated after (B.l), 

that the sections in 0(1) on PJ^ pull back to the sections s, on X. We are looking 

at the composition 

X Proj(Sym(y 0^ Ox)) -A Proj(Ox[xo,x„]) = PJ 

Under pullback, Xj on Py corresponds to Sj 0 1 on Proj(Sym(V' 0^ Ox)), which in 

turn corresponds to Si on X. • 

When A is a field k, (B.8) has an elegant description in terms of if-valued points, 

where A' is a field extension of k. We already know that a fixed il-valued point 
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g: Spec{K) —)• X goes to the rank 1 quotient 

9 * { V ^ k  0 x ) - ^ g * c - ^ 0 ,  

which gives a point on P(V ^ x ) -  Under P(V' O x )  —> P(V'), that point goes 

to the rank 1 quotient 

( sos ) - (V)^S-£^0 ,  

which is a point on P(^), where s is the structure map X Spec(fc). Since Spec(/c) 

h a s  a  s i n g l e  p o i n t ,  t h e  d a t a  o f  ( s  o  g y { V )  i s  s i m p l y  t h e  X - v e c t o r  s p a c e  V  ® k  K .  

(Cf. B.lc.) The kernel of 

V ® k K — >  g * C  

is the hyperplane of all elements i n V  that map to 0 in the fiber of C  above the 

point of X hit by g. In short, (pv carries the K-valued point g to the hyperplane of 

sections of C that vanish at g. Therefore, it is not uncommon to see (B.8) described 

solely in the following terms: 

( P v : X { K ) - ^ P i V ) { K ) ,  

P I—)> {s e V iSik K : sp = 0 }. 

B.3. Mapping properties 

Perhaps surprising at first, it is in general difficult, as we'll see below, 

morphisms between schemes or between sheaves to morphisms between 

space bundles. 

B.3a. Morphism of schemes 

Let /: X' —> A' be a morphism of noetherian schemes over a noetherian ring A. If C 

is an invertible sheaf on X that is generated by global sections and such that H°(X, £) 

is a free yl-module of finite rank n + 1, then f*C is an invertible sheaf on X' that is 

to extend 

projective 
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generated by global sections, but H°(X', f * C )  could have much larger rank. It would 

be nice if there existed maps /* giving a commutative diagram; 

A" P(HO(X', f * C )  0 A  O x ' )  r O  O a )  

X  — ^  P ( H O ( X ,  £ )  O x )  ^  P ( H O ( X ,  £ )  0 ^  O A )  

But there do not exist non-constant morphisms from a higher-dimensional projective 

space to a lower-dimensional one (see [Har77, Ex. 11.7.3a]), whence a necessary con

d i t i o n  f o r  t h e  e x i s t e n c e  o f  i s  t h a t  H ° ( X ' ,  f * C )  b e  a  f r e e  A - m o d u l e  o f  r a n k  n  +  1 .  

By applying the correspondence between T-valued points and rank 1 quotients, one 

can check that existence of the /* follows if the map 

r (H°(x, £) O x )  ̂  H°(X', r £) Ox' 

of sheaves on X' is surjective. This gives a sufficient condition. 

The one easy thing we can say is this: if / is an isomorphism of schemes, then we 

do obtain the maps /*, and they will then also themselves be isomorphisms. 

B.3b. Morphism of sheaves 

Here it turns out, again, that we can't make a useful general statement. Let X 

be a noetherian scheme over a noetherian ring A. Let /;£->£' be a morphism of 

invertible sheaves on X, where both sheaves are generated by their global sections, and 

where both H°(X, C) and H°(X, C) are free A-modules of finite rank (not necessarily 

the same rank). It would be nice if there existed a map f* giving a commutative 

diagram: 

X->P(H"(X,£)  0A OA)  

"f/* 
X^P(HO(A- ,£ ' )  0^  O a )  

To be able to define such a map /*, we would need the induced map H°(X, £) 

H''(X, £') to be surjective; otherwise we cannot guarantee that rank 1 quotients go 
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to rank 1 quotients. But then / itself would be surjective, so by [Har77, Ex. 11.7.1], 

/ was an isomorphism to begin with. In summary, all we have been able to say here 

is the following: if f: C ^ C is an isomorphism of sheaves on X, then there is an 

induced commutative diagram as shown above, where f* is an isomorphism. 

B.3c. Different subspaces of H°(X, C) 

Let X be a noetherian scheme over a noetherian ring A, and let £ be an invertible 

sheaf on X. If we have submodules V CV' C H°(X, £), where V generates C (whence 

also V generates C), and both V and V are free and of finite rank (generally not the 

same rank) as modules over A, then the inclusion map V V leads to a projection 

map 

P{V' OA )  OA ) .  

Note that the projection is not defined everywhere; however, it is defined at all points 

in the image of (pv'- If is a basis for V and B' a basis for V such that B C B', and 

we use these bases to coordinatize the projective space bundles, then the projection 

displayed above becomes a usual projection between projective spaces in which certain 

homogeneous coordinates are simply dropped. 

X ) P(F') 

X — ^ P(V) ^ pR^iik(F) 

B.4. Very ample invertible sheaves 

Let X be a noetherian scheme over a noetherian ring A. To each invertible sheaf C 

that is generated by global sections and such that H°(X, £) is a free A-module of 

finite rank n + 1, we have associated the map 

cfr. X O A ) .  
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We say that C is very ample relative to A when (p is an immersion. (Note that 

the map to P(H°(X, £) OX) is always an immersion, so £ is always very ample 

relative to X itself.) 

If we forget about C and instead start with an immersion 0: X —> Pj', then 

0*(C(1)) will be an invertible sheaf on X that is very ample relative to A. (After all, 

the map to projective space associated with (f)*[0{l)) is easily seen to be (j) itself.) 
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