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ABSTRACT 

This dissertation studied complex social systems that have large number of individ­

uals and compUcated functional relations among individuals. Prisoner's Dilemma 

(PD) including Social Dilemmas (SDs) is a type of problem arising from collective 

actions in social systems. Previous PD studies have hmitations and are not suitable 

for the study of collective actions in complex social systems. The large number of 

individuals and the complexity of the models made the development of theoreti­

cal, analytical studies impossible. An agent-based computer simulation is used in 

this dissertation for investigating A^'-person Prisoner's Dilemma (NPD), and its new 

extensions. 

My research can be divided into three chapters (three appendixes in this dis­

sertation). In the first problem, the classical NPD model is considered, a much 

faster algorithm was developed, and the long term behavior of Pavlovian agents is 

examined. In this study, the main feature of the classical PD model was kept by 

restricting the state space into two possibilities: cooperation and defection. In most 

social situations the state space is much more complicated. In the second study, 

NPD was introduced with continuous state space. A continuous variable described 

the cooperation level of the participating individuals. A stochastic differential equa­

tion models state change of individuals. Public media and personal influence were 

first introduced in the study of NPD. In the third model, we analyzed the dynamic 

process of fund raising for a public radio station. This model is a combination of 

the other two models; discrete in the sense that donating or not in a time period is 

discrete variable; however the amount the individuals can pledge to the station is a 

continuous variable. 

In all three models, individual personalities are considered and quantified. Ma­

jor personality types that might affect the possible cooperation or defection of the 
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agents were captured in the continuous NPD simulation; major motivations that 

might affect the probability of pledging at a certain time period and the pledged 

amount were captured in the fund raising case. During the computer simulation, 

the behavior of each agent and the behavior of the entire society can be monitored. 
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CHAPTER 1 

Introduction and Literature Review 

1.1 Introduction 

The goal of this dissertation is to analysis complex systems, in which a large number 

of individuals make personal decisions, and their actions from the collective action of 

the society. Social society has a complex structure and consists of a large number of 

interacting individuals. Each individual has its own characteristic, knowledge, and 

decision-making ability. As stated in Goldspink (2002), social systems can be seen 

as complex systems. A complex system is a system with a large number of interact­

ing elements or individuals. It has the fundamental property that the interaction 

and relationship among individuals can emerge into macro behavior of the complex 

systems, and this social behavior cannot be simply derived from the summation of 

individuals' behaviors. Due to the complexity of the systems and nonlinear interac­

tions of individuals, traditional analytical mathematical models are not adequate to 

model and study the complex social systems. Laboratory experiments are usually 

expensive and involve a large number of people. The control of the experiment en­

vironments is a very difficult task. The ideal tool to analyze complex social systems 

is computer-based simulation. 

Computer simulations can be divided into three major types of approaches 

(Gilbert and Troitzsch, 1999). Two types are macro level simulations: systems 

dynamics originate from diflPerential equations and model the social system as a sin­

gle entity; microsimulation and queuing models originate from stochastic processes 

and analyze existing data. These two types of simulations are used to find the 

solutions. As stated in Goldspink (2002): 

Turning to the complex character of many social phenomena, the analyti­

cal intractability of complex systems clearly renders traditional reductive 
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methods of little value. While mathematical and statistical modeling 

can assist with the understanding of the macro behavior of such sys­

tems these methods are not well suited to understanding the process of 

emergence-how micro order gives rise to macro order. Hence they can 

aid with description of phenomena but not explanation. 

The third type of approach is multi-agent based simulation (Davidsson, 2000; 

Davidsson, 2002; Gilbert and Troitzsch, 1999; Srbljinovic and Sjunca, 2003). Agent-

based social simulations started in the 1990s, and are still growing significantly. 

Some major advantages in using agent-based simulation methodology in social sci­

ences are: modeling of bottom-up effects, simulating heterogeneous persons with 

different characteristics, modeling processes out of equilibria, and simulating agents 

with learning capabilities. Most of the agent-based social simulations are used to 

study artificial societies (see Epstein and Axtell, 1996) for emergence of groups with 

common attributes or social segregation. For example, culture, wealth, common 

opinion (Gilbert and Troitzsch, 1999), and agents' negotiating and trading strate­

gies are studied. One example of this kind of agent-based simulation is Sugarspace, 

in which agents with limited life time have internal states, behavioral rules, and they 

interact with the environments. Prices are negotiated between agents for bilateral 

welfare. 

In the social society, we usually confront Social Dilemmas (SDs) typically arising 

in collective actions, which describe situations when there are conflicts between 

individual benefits and collective benefits. The importance of SDs lies in that they 

display collective action problems and the study of it helps us to better understand 

and manage many serious problems the society is facing. Prisoner's Dilemma (PD) 

is a typical example of SDs and this is the model which has been examined most 

frequently in the literature. As our basic model we selected the PD, therefore we will 

be able to compare our model, methodology and results to those obtained by other 

researchers. PD also has the advantage that it can be easily extended to study more 

complicated phenomena. Classic PD describes the players as self-interested; the 

players decide whether to optimize personal payoff in competition with others or to 
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work cooperatively for the common goods. The studies of SDs are mainly limited to 

the study of group-shared property called the public goods. While some differences 

should be noticed between SDs and PD, SDs can be seen as general cases of PD, and 

SDs are usually illustrated by the problem of PD. Hence PD is the most intensively 

studied model type.There are some other situations, for example. Chicken Game, 

Assurance Game, and Tragedy of Commons. However, the first two situations can 

be seen as variants of the PD when its payoff matrix changes, while the Tragedy of 

Commons is an instance in SDs when players are rational. Hence extension of some 

models and methods of PD and SDs can be applied to the analysis of these three 

situations. 

Both PD and SD are non-zero-sum games in the terms of Game Theory, and 

in these situations one player's gain is not the loss of the others. As reported in 

(http://www.worldhistory.eom/wiki/N/Non-zero-sum.htm), as the society becomes 

more complex, specialized, and interdependent, it becomes increasingly non-zero-

sum.The application of agent-based simulation in PD and SD is mainly concentrated 

in the area of reciprocal altruism in PD (Gotts, et. al., 2003). 

This dissertation will only focus on the studies of non-zero-sum social situations: 

PD, and a crucial example of SDs-public goods. The following literature review is 

mainly focused on various versions of PD, and Public Goods. 

1.2 Prisoner's Dilemma 

Prisoner's dilemma was first introduced by Albert Tucker in the 1950's when he 

presented the unpublished works of his colleague, Merrill Flood. As time passed, 

the two-person dilemma game attracted widespread interest in many disciplines 

including economics, game theory, biology, and it has evolved into a variety of 

versions. The basic form of the two-person prisoner's dilemma game is described in 

the form of a payoff matrix shown in Table 1.1. 

In this form, both players have only two choices: cooperation or defection. T is 

the 'temptation' payoff when the player defects and the other cooperates, R is the 

http://www.worldhistory.eom/wiki/N/Non-zero-sum.htm
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Table 1.1; Payoff matrix of prisoner's dilemma. 

Player2 
Defect Cooperate 

^ Defect 
Flayer!  „  

Cooperate 
{R,R)  (S ,T)  
{T,S)  {P,P)  

'reward' when both cooperate, P is the 'punishment' when both defect, and S is 

the 'sucker' payoff when a player cooperates and the other one defects. 

The game models a real 'dilemma' by satisfying the following conditions: 

1. The scores of payoff have the inequality o i T > R > P > S .  This condition is 

to ensure that defection is a dominant action. 

2. The scores of payoff satisfy the inequality o f  R  +  R > T  +  S .  This condition 

is to ensure players earn more for mutual cooperation than to choose different 

moves and then share the total payoff. 

With these two conditions, the players will be better off by defection than by 

cooperation, no matter what the other player chooses. However, they will gain 

the most if both cooperate. Consequently, this game captures a conflict between 

individual and group benefit. For similar two by two matrix games, in which the 

values of parameters in the above Table change and do not satisfy the above two 

conditions, the games may turn into other types of games (Brams and Kilgour, 

1988). A payoff matrix of Chicken with values (from Brams and Kilgour, 1988) is 

shown in Table 1.2. Chicken game named after car racing in which two cars drive 

toward each other and it has been applied to national security. Cooperation is to 

avoid the crash (or not to attack in national defense); defection is to keep going (or 

to attack in national defense). 

The PD game was originally studied with two important assumptions: first, 

the two players are rational, and second, both have complete information. Having 

complete information means that each player is knowledgeable of the exact payoff 
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Table 1.2; Payoff matrix of Chicken. 

Player2 
Defect Cooperate 

r,, . Defect 
Playerl  „  

Cooperate 
(3,3) (2,4) 
( 4 , 2 )  ( 1 , 1 )  

matrix (including both player's strategy sets and the corresponding payoffs) and 

knows that his/her opponent is also a rational player, nationality implies that the 

individuals want to satisfy their objectives at the highest possible level. In terms of 

payoff, a rational player will seek to maximize his/her own payoff. In later studies, 

these assumptions have been relaxed to some extent; for example, rationality is 

relaxed to bounded rationality, or complete information is relaxed to incomplete 

information. 

The above described two-person PD is a one-shot game, whereby the game is 

played by the two people only once. In many versions of the PD game, games are 

played repeatedly by the same players, and accordingly are called repeated prisoner's 

dilemma (RPD) games. A RPD game can be repeated finitely or infinitely many 

times, depending on whether its end is known by players or not. Also in some 

versions, the number of players can be larger than two. Such games are called 

A^-person's dilemma (NPD). 

In the RPD, if the players make decisions simultaneously, it is a simultaneous PD 

game; if players make decisions alternately, it is a sequence PD game. Furthermore, 

these game versions may have the assumptions of either pure rationality or relaxed 

bounded rationality, perfect information or incomplete information. Under certain 

assumptions the players use other strategies than optimizing their own payoffs; the 

strategies may be deterministic or stochastic. 

The A^-person PD game, which is also called the multi-person PD game, has two 

distinctly different ways to play. The first is the round-robin game, in which each 

player plays N — 1 paired games (two-person games) against all the other players 
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in one round, with the payoff decided according to the payoff matrix. The second 

version is the one group game, in which each player interacts with all other players 

at the same time, with payoff determined by payoff functions. These features will 

be explained in greater detail in the remaining part of this chapter. 

As mentioned previously, a very large body of literature exists in the area of 

PD. The different versions of Prisoner's Dilemma can be classified in a number of 

ways, with perhaps the most important classification being the one-shot or repeated, 

finite or infinite, 2-person or A^-person, deterministic or stochastic, simultaneous 

or sequential game. Section 1 will review the 2-person PD games; Section 2 will 

discuss A^-person PD games, including the pair-wise A-person game and the one 

group A'-person game. These two sections will cover the most important work in 

PD literature. Problems and limitations associated with this work will be listed 

and new features that enrich the study of PD games will be presented the end of 

Section 2. There have been a few studies that address the new features, and they 

will be reviewed in Sections 3 and 4. Lastly, section 5 will introduce a special social 

dilemma, which is closely related to PD games. The new concepts and methodology 

developed during this research will be introduced in the next chapter. 

1.2.1 Two-person PD 

In the one-shot two-person PD described by Table 1, the game is initially played 

once, and hence its name, as opposed to the repeated version. The now famous 

equilibrium concept was first developed for the two-person prisoner's dilemma.The 

self-interested well-informed player knows that no matter what the opponent's choice 

is, he/she is better off choosing defection; hence the player's dominant strategy in 

the two-person one-shot game is to defect, and the from the four outcomes (Coop­

erate, Cooperate), (Cooperate, Defect), (Defect, Cooperate), (Defect, Defect), the 

outcome (Defect, Defect) is the game's only Nash equilibrium. Note that this Nash 

equihbrium is Pareto dominated by mutual cooperation. In Chicken game, the worst 

case for the players occurs when both players defect. There are two Nash Equilibra 

at the game, they are (Defect, Cooperate) and (Cooperate, Defect). 
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As we will see in the next subsection, players may have other motivations that 

affect their decisions. Ahn (2001) borrowed an idea from Rapporport for his one-shot 

game experiments, in which players make decisions based upon certain incentives 

as Greed, Fear, and Cooperators' Gain. He refers to Greed as the payoff gain 

g = T — R when the other player cooperates, and hence by defection, he/she will 

gain more than by cooperation. Fear is referred to as the loss I = P — S incurred 

when the other player defects, and hence by defection, he/she will lose less than 

by cooperation. The 3rd incentive, R — P, is referred to as Cooperators' Gain. 

Defection is motivated by Greed and Fear. 

Ahn's experiments of non-repeated PD game used functions as the payoff struc­

ture, and he studied the impact of the level of Greed and Fear on the result of the 

one-shot game. In his work, the payoff parameters were varied to test the rela­

tionship between Fear and Greed, and it was found that normalized payoff values 

of Fear and Greed are good predictors of players'behavior in PD games. Further, 

normalized Greed measurement was found to have a larger impact on the players' 

behavior than Fear. 

In real life, players usually face similar situations repeatedly, so it is more realistic 

to model repeated PD games. In the one-shot game, there is no communication 

between players. However, if the game is played repeatedly, the players have some 

opportunity to communicate in order to establish a reputation and to learn the 

opponent's tendencies based on their past choices. Therefore, it is possible for the 

players to develop mutual cooperation. 

In one of Ahn's (2001) experiments, players play several two-person one-shot 

games in which they may encounter the same person a number of times. He finds 

out that a player's game history has a strong effect on the game's outcome when 

players encounter the same opponents. In this particular situation, the players 

repeatedly play one-shot games, and gain experience from them. This should be 

regarded as a repeated game. 
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Finite RPD Game 

In the repeated version of the two-person dilemma game, the same payoff matrix 

of Table 1.1 is used in each round and maintain the assumptions of rationality and 

complete information. Many efforts had been devoted to finding the equilibrium 

of the finite RPD games. Equivalent to the Nash equilibrium of one-shot games, 

there is a subgame-perfect equilibrium for finite RPD by applying the 'backward 

induction' method. Backward induction begins from the last iteration of the game, 

with the assumption that the player does not know what the opponent will choose 

and assumes that he cannot influence his opponent anymore. No matter what the 

opponent chooses, the best reply for the player in the last iteration is defection, and 

hence mutural defection is the Nash equilibrium for this subgame. With the same 

logic, by using 'backward induction', the best reply for a player in every iteration 

is defection. The outcome of defection in all iteration is called subgame perfect 

equilibria. 

It has been shown, however, that subgame perfect equilibria are rarely played in 

the PD environment (Sally 1995; Andreoni and Miller, 1993), and is not consistent 

with human intuition. Actually, in backward induction, the finite game is seen as 

a sequence of one-shot games, and the players do not learn anjrthing from previous 

rounds. There is no dynamic process involved in these kind of repeated games, 

hence players' decision are not affected by previous actions. However, players should 

learn from the past in accordance with the opponent's previous choices and adapt 

more complex strategies. Backward induction, therefore, cannot explain the finite 

repeated games. 

To explain the cooperative behavior in the experimental results, some questions 

arise about the game: 

1. players in the laboratory experiment were not certain about the end of the 

game (Hardin, 1982). It is implied that if players know how many finite times 

the game will be repeated, the only equilibrium is mutual defection in every 

round. Some researchers pursued infinitely RPD games hoping that when the 
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end of the game is unknown, cooperation emerges during the game. 

2. players have incomplete information, for example, they are unaware of or 

ignore the opponent's payoff function. In this case, the players cannot make 

decisions accurately. 

3. Other explanations take players' motivations into consideration: such as al­

truism, reciprocal altruism, indirect reciprocity (Nowak and Sigmund 1998). 

These motivations actually challenge the assumption of rationality. We have 

seen this case in the one-shot game experiment (Anh, 2001), when players 

have incentives or motivations, and the experimental results may differ from 

the theoretical predictions. 

Finite RPD games with incomplete information or with bounded rationality will 

be reviewed in the following. 

Incomplete Information 

In reality, players have limited ability to obtain complete information. It was hoped 

that the introduction of incomplete information into game theoretical models would 

provide a way to explain mutual cooperation in the laboratory experiments. In the 

simple 2-person repeated game, information of the game should include both play­

ers' strategy sets and corresponding payoffs, both players' actual choices. If one or 

more of the above information is not knowledgeable to the player, then the player's 

information about the game is regarded as incomplete. In Harsanyi (1967-1968), 

a player's incomplete information of the game is studied in the form of incomplete 

information with respect to opponent's strategy sets and it is interpreted as igno­

rance of the opponent's payoff matrix. Miller (1996) treats incomplete information 

as not knowing opponent's actual choice by a noise level of a%. At a% of the time 

a player receives incorrect information, the opposite of what the opponent actually 

did, or payoff information received is delayed. 
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Relaxation of the Rationality Assumption 

The rationaUty assumption makes every player maximize his/her utility, but in real­

ity, not every human acts like this. Experimental results on PD (Dawes and Thaler, 

1988; Clark and Sefton, 2001) do not support the assumption of rationality nor 

maximizing self-reward. Players should be motivated for other reasons than pure 

rationality (self-interest). Some researchers relaxed the rationality assumption by 

considering players' motivation like altruism, reciprocal altruism, fairness concern, 

reputation, etc. Some studies showed that with morality, a player pursues self-

interest subject to moral constraints. Kreps and Wilson (1982) and Kreps et al. 

(1982) show that cooperation might emerge in RPD if players pay to earn reputa­

tions. In the model, players also use previous plays to update his/her beliefs of the 

opponent's incentive. 

Similarly, in an alternating game, Camerer (1996) notices that the players could 

establish reputations by signaling his/her likely behavior. Sugden (1965, 1991) intro­

duces motivation of players to his theory. Clark and Sefton (2001) investigates the 

effect of a player's fairness concern on his/her behavior in sequential RPD games. In 

their 2-person PD experimental results, they found that cooperation is conditional 

on the first-mover's choice. This result supports the theory that reciprocation, rather 

than unconditional altruism, lead to cooperation in RPD. Clark and Sefton (2001) 

also relates motivation components to players' beliefs. Reciprocity, pure altruism, or 

some other motivations can be reflected by the way the payoff table is treated. For 

example, if a player is altruistic and places some weights on the other player's payoff, 

he may choose to cooperate. A reciprocator's choice is also conditionally based on 

the other's choice, particularly in a sequential game, where he/she responds with 

cooperation if the other player cooperates. Rabin (1993) describes the reciprocation 

model in detail, where the fairness component is independent of the scale of the pay­

offs. In other models, utility may be monotonically increasing with the other player's 

payoff. Falk and Fischbacher (1998) and Dufwenberg and Kirchsteiger (1998) ex­

tend Rabin's analysis to sequential games, and Clark and Sefton (2001) conducted 
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experiments to support these models. Levine's model (Levin, 1998) contains both 

altruism and reciprocation. In all these models, beliefs about an opponent's choice 

are important determinants of the player's choice. 

Another relaxation of rationality is bounded rationality proposed by Simon 

(1982), in which players use simple decision making procedures, for example, imita­

tion or trial and error experimentation. Players have limited ability to collect and 

process information, but have the ability to learn. Imitation and trial and error ex­

perimentation are examples of learning. Experimentation is based on small changes 

in the strategy, where a better performing new strategy will replace the old one. In 

one of the bounded rationality models, called the satisfying model (Radner, 1986), 

it is assumed that players will be satisfied with payoffs within small distances from 

the best replies, as opposed to optimizing the payoffs. Another example of bounded 

rationality is the finite automata, which was first introduced by Aumann (1981). An 

automata has an initial state and it can generate a new state according to the op­

ponents' previous moves (as input). Aumann's automata has a one-round memory, 

the opponent's last move. It was a round robin game among eight pure strategies 

including TFT. Only TFT survives. Later, Neyman (1985), Rubinstein (1986), Bin-

more and Samuelson (1992), and Nowak (1995) all studied finite automata. Mutual 

cooperation could be the resulting automata equilibrium. 

Recent research is more focused on modelling learning processes in the game, 

which is called the evolution PD. 

Infinite RPD Game 

As explained in the last subsection, cooperation might emerge if the game is repeated 

infinitely many times. The analysis method for an infinite RPD game is the Folk 

Theorem. The logic of backward induction is based on a known last round. If 

the game is infinitely repeated or the last round is unknown, then the argument no 

longer applies. Folk Theorem (Fudenberg and Maskin, 1986) asserts that discounting 

outcomes of mutual cooperation are possible in the infinite RPD. 



19 

Strategies lead to cooperation 

The bounded rationahty identifies strategies that allow the evolution of cooperation. 

Axelrod and Hamilton (1981) try to understand which strategies are the best when 

the game is repeated. Their work resulted in the now-famous strategy TFT. TFT 

starts by cooperating at the first iteration, and then in the later iterations, the 

player simply repeats the opponent's last move. Since the player can only use 

the opponent's last choice, it is said that the agent has a memory length of 1 

iteration. TFT is simple and successfully leads to cooperation. TFT has established 

a reputation on both experimental and theoretical grounds as being particularly 

robust (Axelrod 1980a, 1980b, 1984; Axelrod and Hamilton 1981). However, TFT 

may encounter the situation in which both players have the TFT strategy, but if 

one of them accidentally defects, they never conclude a cooperation situation again. 

Nowak and Sigmund (1992) overcame this situation by introducing two parameters 

in the game: Pc and pd, which are the probabilities of cooperating following the other 

player's cooperation or defection, respectively. This strategy is called generous TFT, 

and it can lead to a stable state. 

When considering the player's own previous state, with four probability parame­

ters, Nowak and Sigmund (Nowak and Sigmund, 1993) further developed a win-stay 

lose-shift strategy, which is actually a Pavlovian strategy. The Pavlovian player, 

first used by Kraines and Kraines (1989), could learn to cooperate more rapidly 

than by selecting the TFT strategy. With any initial probability of cooperation, 

Pavlovian players will increase the probability of cooperation by a fixed increment 

if they receive a reward for the mutual cooperation outcome and will decrease it if 

they receive a punishment. 

The above described strategies can be classified as follows: 

1. Pure simple deterministic strategy without memory, for example, always defect 

(allD) or always cooperate (allC). The player with these strategies does not 

remember his/her opponent's previous actions, and his/her current decision is 

deterministic and is not based on past rounds (i.e. history). 
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2. One round memory deterministic strategy, for example Tic-for-Tat (TFT), 

TRIGGER. The player's current action depends on his/her opponent's last 

move. The player with TFT strategy will start with cooperation, then copy 

his/her opponent's last move. The TRIGGER player also begins with coop­

eration and continues to cooperate unless the opponent defects. 

3. Strategy with more than one round but finite memory, where the player re­

members two or more previous results. Axelrod (1987) and Lindgren (1991) 

studied the effects of different memory lengths on the results. 

4. Stochastic strategy, for example generous TFT, and Pavlovian. Stochastic 

learning of players was introduced by Rapoport and Ghammah (1965), and 

later, Kraines and Kraines (1989, 1993)'s Pavlovian strategy generated a prob­

abilistic outcome based upon the outcome of the last iteration. 

5. Finite Automata. A strategy described by a finite automata has finite number 

of internal states, and it can generate output based on its current state and 

input. 

1.2.2 A?^-person PD 

In later works, the prisoner's dilemma was studied as an A^'-person one-shot or 

iterated Prisoner's Dilemma. The iV-person game has the same properties as the 

2-person game; 

1. players also have two choices: cooperation or defection; 

2. a player will receive higher payoff for defecting than for cooperating, regardless 

of what his/her opponent does; 

3. players will receive lower payoffs if all defect, as opposed to the case when all 

cooperate. 

The game can be described as follows: 
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1. Players' set N = 1,... ,n; 

2. player has strategy set Si = 0,1, where 0 or 1 represents defection or cooper­

ation; the strategy that player i chooses is denoted by Sj. 

3. player i  has the payoff function Ui{si,s-i), where s_i = 

(si,..., Si-i, Sj+i,..., s„) is the strategy vector of the other players. 

This description is similar to the normal-form representation of A'^-person noncoop-

erative games. 

One-shot game 

Similar to two-person PD, by knowing what the other players' strategies are, player 

i  maximizes  h is /her  payoff  wi th  the  bes t  rep ly ,  s* ,  such  tha t  Ui{s* ,  s^i )  >  Ui{s i ,  s_ j ) .  

With the assumptions of rationality and availability of complete information, the 

One-shot A''-person Prisoner's Dilemma game has one equilibrium point, in which 

all players defect. But for repeated games, it is impossible to have one equilibrium, 

and therefore cooperation may emerge. 

There axe two variants of the A^-person PD: one is pair-wise PD and the other 

is group N-person PD. In pair-wise A^-person PD, the players play a round robin 

tournament with each of the other players. The ways to calculate payoffs for the 

two versions of NPD are different, and they will be introduced next. 

Pair-wise A'^-person PD 

The pair-wise A''-person PD's payoff is easily determined from the matrix table if 

N people are paired and play round robin PD. The matrix is the same as shown in 

Table 1.1. A cooperator will receive R points for each opponent's cooperation, and 

S points for each opponent's defection. A defector will receive T points for each 

opponent's cooperation and P points for each opponent's defection. The payoff is 

the total points the player gained from the paired game with N — 1 opponents. 

The parameters T, S, R, P must satisfy the two conditions discussed previously; 
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T  >  R >  P  >  S  and 2 R >  T + S ,  and the payoff is decided based upon the previous 

moves. When the player makes decisions based upon his and/or the opponent's 

previous moves (except the simplest strategies, allD and allC), the player has only 

one length of memory. Cases of more than one length of memory have also been 

studied (Hauert et al., 1997). 

Pair-wise NPD games are mainly studied for evolving models to find conditions 

such that cooperation could emerge and to examine the process of equilibrium selec­

tion. John Maynard Smith is the first scientist to utilize the evolutionary approach. 

He developed a game theoretic approach to animal contest, where animal strategies 

are not optimizing responses, but rather are genetic transmitted behavior patterns. 

In the evolutionary version of PD proposed by John Maynard Smith (1982), there 

are n pairs (pi, si),..., (p„, s„), where Pi, - • • ,Pn are the proportions of the popu­

lation playing strategies 5i,... ,s„. Assuming that the number of players is fixed, 

strategies that are successful in the pair-wise games are more likely to be adopted 

by players in subsequent generations. Hence the number of players who have more 

successful strategies will increase while that of the less successful strategies will 

decrease. 

The evolving simulations are primarily used to model conflicts among animals. 

Because animal use simple pure strategies like TFT, allD, allC, etc., these simple 

strategies were first studied. When simple strategies without memory play with each 

other, allD will dominate, but spatial effect will make it possible that two strategies, 

allC and allD, coexist for some parameters (Nowak et al. 1993). When players use 

pure strategies in playing with each other in spatial model, conditional strategies 

such as TFT (Axelod and Hamilton's, 1981) can propagate in the population, be­

cause TFT can achieve high payoffs when played with cooperators and can avoid 

exploitation when played with defectors. 

Smith investigated the conditions that a strategy population could not be in­

vaded by a mutant strategy. The uninvadable strategy is called the evolutionary 

stable strategy (ESS). Unfortunately, in the population of strategies, no pure strat­

egy can be evolutionary stable (Boyd and Lorberbaum, 1987), but they are subject 
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to drift. Drift occurs when the alternative strategy performs as equally well as 

the indigenous one. Hence, one goal in the study of ESS is to identify the condi­

tions for establishing evolutionary stability. In the work of Sugden (1986) and Boyd 

(1989), when noise is introduced into strategy transmission (agents make mistakes 

in playing), their evolutionary strategies generate stable cooperative behavior (also 

see Lofmorg, 1996; Miller 1996). 

Binmore and Samuelson (1992) investigates another way to overcome the phe­

nomenon of drift by introducing complexity cost. The complexity cost is the cost of 

the complexity of the strategy or that of mental effort, and complexity cost can gen­

erate fitness differentials between strategies in coexistence. Farrell and Ware (1989) 

investigated whether mixtures of strategies can constitute an ESS. They concluded 

that for any finite strategy mixture to be evolutionary stable, it is necessary that 

every possible finite history of the game must occur with positive probability. Not 

only must mutual cooperation be in an equilibrium, but equilibria may also include 

defection. Hence, there may be multiple equilibria. Moreover, without noise and 

complexity cost, no strategies exist which can repel invasion by mutants. 

The evolutionary principle provides a convenient way to model learning under 

bounded rationality. In the analysis of the evolution of behavior, by imposing evolu­

tionary dynamics, each player is assigned a strategy which is represented by a string 

of code. The player's current move is a deterministic mapping of his and the oppo­

nent's previous moves (Axelrod, 1987), or the change in the form of a finite state 

machine (Fogel, 1993). The evolution of strategies is represented by the changing 

of the coded structures (or strings) using various methods, such as genetic algo­

rithms (Marks, 1989), evolutionary programming (Fogel 1993), or other simulation 

methods. It is hoped that over time the population might converge to cooperation. 

Hoffmann (2001) discusses some prevaihng conditions of interaction and learning 

that affected the evolution of different strategies. In his simulation study, a strategy 

or a player is called an agent, and initially, there are 21 agents. With bounded 

rationality, the agents play pair-wise RPD with each other in every time period. 

An agent will have a strategy encoded as a 5-bit binary string, with 0 representing 
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defection and 1 representing cooperation. The strings correspond to 32 possible 

one-state Moore machines. In his work, agents play with each other but will evolve 

their strategy (the coded string) by Genetic Algorithm (GA) learning. The initial 

strategy an agent has is a random selection from the set of 25 possible strings. 

The agents payoff in a round robin tournament is used as fitness at the end of one 

time period (or generation) of GA. GA modifies the agent's strategies toward those 

with higher fitness by the process of selection, crossover, and mutation. The set 

of 25 strategies include allD, FTF, allC, etc. Hoffmann showed that in RPD, only 

allD, TRIGGER, and TFT are capable of supporting the population's convergence. 

However the convergence might drift if alternative best replies exist. The study 

considered the problem of finding which type of strategy is able to converge. Hoff­

mann also explained the drift of convergence between alternative attractors, when 

the strategies are able to neutrally coexist in the converging population. 

Many computer simulations are performed for the learning processes. Most of 

the works are based on GA. Axelrod (1987) uses GA to simulate the emergence of 

robust cooperative behavior in a group of interacting PD players. Miller (1996) uses 

GA to evolve finite state machines. In the learning process for the NPD by using GA, 

there are three steps: 1. learningby imitation (reproduction), 2. communication and 

exchange of strategic information (crossing over coded strings), 3. experimentation 

(mutation of the strategies) (Bragt 2001). 

A stochastic strategy with more than one length of memory is proposed by 

Hauert and Schuster (1997), which is an extension of Nowak and Sigmund's Pavlo-

vian study (1993) for two players with two steps of memory into N players and 

M > 2 memory lengths. The probabilities of cooperation (or defection) are repre­

sented in a transition matrix. Since the strategy space increases exponentially, they 

only hmit N and M to be no larger than 6. The same payoff matrix as Table 1.1 is 

used. Players make decisions simultaneously, and their payoff is decided in the same 

way as in a round robin tournament. The player remembers the last M moves and 

plays a strategy consisting of 2^ conditional probabilities. In this model, the play­

ers only remember the number of cooperators, and each element in the transition 
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matrix represents the probabihty for a player to cooperate given a certain history. 

This can be considered a stochastic and M > 1 extension of TRIGGER strategy. 

The payoff of a player is a mean value, in which the corresponding payoff value of 

each pattern is multiplied by its relative frequency, and these products are added 

together for all possible patterns. 

It is also shown that spatial structure can help to evolve cooperation choices 

(Nowak and May 1992, Killingback et al. 1999a). A spatial PD adds a geographical 

feature to the game. Each cell in the space actually is a player with an initial 

strategy. With n immediate neighbors, the cell plays n PD games with each of its 

neighbors and obtains n payoffs, with the sum of the n payoffs representing his/her 

total payoff at this iteration. The player compares his/her total payoff with his/her 

neighbor, if no neighbor has a higher payoff, the player retains his/her original 

strategy; otherwise the strategy in this iteration will be replaced with that of the 

neighbor who has the highest payoff. The game is deterministic, and it has been 

demonstrated that spatial effect can change the ratio of the number of cooperators 

and defectors, and that strategies could coexist. Many strategies in the Spatial 

Prisoner's Dilemma evolve in the manner of a cellular automata (Nowak and May, 

1992, 1993; Mar and St. Denis, 1993; Grim 1993). Nowak et al. (1994) further 

extends the spatial games, and used stochastic transition rules such that a cell will 

be occupied by a strategy with a probability Pj, which is the ratio of the strategy's 

payoff to the total payoff of all neighbors. This is given as 

= ̂ ^ 
2-j ieNj  

where denotes the payoff of cell i ,  and Sj is 0 if cell z is a defector and 1 if cell i  is 

a cooperator. Parameter m gives more weight to the cell's most successful neighbor. 

Nowak primarily studied the spatial effect and tried to show that without re­

membering of the players' past moves or without other elaboration of strategies, 

cooperation still emerges by spatial effects with very simple strategies (allD, allC). 

Nowak et al. (1995) studied the dynamic behavior based upon the value of T in the 
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payoff table. However, Lindgren and Nordahl (1993) and Axelrod (1984) studied 

evolution of strategies by using spatial effect and memories of past moves. Axelrod 

(1984) uses strategies like TFT and allD. Herz (1994) uses a threshold in his spatial 

games. If the payoff is below a threshold value, then its state will change, otherwise 

it will not. This is similar to the win-stay lose-shift idea of Nowak and Sigmund 

(1993). Before Nowak's spatial game, most studies of evolution of strategies were 

focused on players who remember past moves or have discounting of future payoflFs, 

and who use these facts to choose strategies of cooperation or defection. 

Mixed strategies were used in computer simulation by Nowak and Sigmund 

(1989). Under some conditions both players do better by adopting a mixed strategy 

of  coope ra t ing  w i th  p robab i l i t y  p  and  de fec t ing  w i th  p robab i l i t y  {1  — p ) .  

In many human games, 'mixed' strategies are optimally effective ... there 

exists a large class of games in which the optimal strategy is not only 

mixed, but also in which the mixture itself is achieved by random meth­

ods, so that an opponent can neither detect nor exploit any strategically 

predictable pattern of play. Animal behaviour is highly purposive ... 

animals do not make use of decision theory. Marinoff (1990) 

In many types of noncooperative games, there is no pure Nash equilibrium, 

however there are mixed strategy equilibria. 

Hauk (2003) studies a NPD pair-wise game with voluntary interaction, where 

players play several multiple PD games simultaneously. He points out that many PD 

games have a voluntary interaction structure, and human beings often play several 

PD games at the same time. His multiple game experiments show that subjects 

behave probabilistically and probabiUstic behavior does not disappear over time. 

NPD 

One strategy of the group NPD model is TRIGGER strategy, in which a player 

decides to defect or cooperate according to the number of cooperators in the group. 

The player with TRIGGER strategy has one length of memory; he/she remembers 
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the number of cooperators in the last round. There is a threshold value k ,  whereby 

more than k other players cooperate, this player will also cooperate. There is no 

payoff matrix related to the player's decision, and it is not a round robin game. This 

strategy model is deterministic. 

For group NPD, payoff functions are used instead of a payoff matrix. Payoff 

functions specify the reward or penalty for a cooperator or defector. Equivalent to 

the 2-person PD, A'^-person PD has two constrains on its payoffs such that there is 

a conflict between individual and group benefit (Hamburger, 1973). There are two 

payoff functions: C{x) for cooperator and D{x) for defector, and they are modelled 

as functions of the number i of cooperators (or the ratio of cooperators i/N). The 

constraints are as follows: 

D( i  - 1) > C{i ) ,  l< i<N 

D{0)  >  C{N)  

The difference g  =  C{N)  — D{0)  is the gain and t  =  — — 1  <  i  <  N  i s  the 

temptation that reflect the degree an individual can increase its reward regardless 

of the others' choices. 

The payoff functions can characterize different situations of NPD. Choices of 

different functions can model a wide range of NPD situations, and they can be 

linear and/or nonlinear in the form. 

In Komorita (1980), the payoffs of cooperation and defection in A'^-person's PD 

are modelled as functions of the ratio of the number of people who cooperated: 

C{i )  ^ kc{ i /N)  +  Co  i  =  l , 2 , . . . ,N  

D{ i )  =  kd{ i /N)  +  Do i  =  - 1  

The constants kc and k^ are the slopes of the two payoff functions. The difference 

d = Do — Co reflects the incentive of the choice of defecting. This model has been 

intensively studied by Nowak et al. in the two persons case. 

One of the concerns in the A/'-person Prisoners Dilemma is the size of the group. 

Daews (1974) shows that the A'^-person PD is identical to a Social Dilemma or a 
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public goods. Olson (1965) concludes that in public goods, cooperation decreases 

with the increasing size of the group because each individual receives a smaller share 

of benefits when group size increases. However, Bonacich (1976) performs experi­

ments to find the relationship between cooperation and group size. By manipulating 

the parameters of the reward, he defines 9 ways that group size might affect coop­

eration. In the 9 ways, there are three ways that temptation and gain are affected 

by group size: increase, remain the same, or decrease. In his work, the group sizes 

changes from 3 to 6 to 9, and players played 15 trials of NPD. They did not know 

each player's particular responses, but knew the number of cooperators after each 

trial. Under the rule that when temptation is constant but gain increases with group 

size, cooperation increases with the increase of group size. He also found that an 

increase in the number of noncooperators in the group will reduce the probability 

of other members to continue cooperating; communication among players by us­

ing trials might be less effective when group size increases, and hence cooperation 

decreases. 

Computer simulation 

After the wide theoretical study of PD, some researchers began to turn to computer 

simulation to handle difficulties faced by theory. For example, they wanted to study 

dynamics and complexity. More realistic social systems are N agent systems who 

do not interact in the form of a pair-wise form, and hence, the situation becomes 

more complicated. With computer simulation, however, it is feasible to investigate 

complicated behavior. 

Some simulation tools for PD include formal models (Oliver, 1993), stochastic 

learning models, and agent-based models. In a formal model, specific theories or the­

oretical approaches are transformed into a formal model; parameters are classified 

as significant in regard to the model's behavior. Most formal models are developed 

for two player iterated PD, where the players cannot learn. In a stochastic learning 

model, threshold effects may cause the shifting of the system from a defective equi­

librium to a cooperative one. Multi-agent based simulation is not used so frequently 
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in PD as it is used in artificial life. The reason for this is that PD is usually studied 

as a 2-person game, and even though there are a lot of claims in the literature about 

the study of A/^-person PD, most of these models are based on pair-wise PDs. 

In agent based computer simulation, agents capture the behavioral assumption. 

Axelrod (1984) generates heterogeneous players with different types of bounded ra­

tionality. Some simulation also used the finite state machine to represent strategies, 

where the machine is usually represented by binary strings. The automata gener­

ates moves deterministically based upon the opponent's previous moves (Lomborg, 

1993) or the history of previous several rounds (Axelrod 1987). Others use Moore 

machines with a different number of states or with different lengths of memory for 

the players' moves (Andreoni and Miller, 1993; Kirchkamp, 2000) 

Szilagyi and Szilagyi (2000) presents a new agent-based model, which can model 

a large number of agents in a stochastic environment. An agent is a cellular automata 

with stochastic learning ability, and an agent's behavior depends on both its own 

and its neighbor's choice or states. The agents in the model could be heterogeneous 

(have various personalities). The combination of personality and stochastic learning 

makes it more convenient to model human behavior in PD games. Payoff is the 

function of the agent's own choice and its neighbor's choice. The learning process 

is based on adjusting action probabilities p, where the updating scheme depends on 

personality. Personalities decides the way agents react (i.e. chose to cooperate or 

not). With different personality types, a broad variety of players could be considered 

in the model, including those with different rationality range. 

In all the above mentioned works, the player's main concern is in its immediate 

neighborhood in space version of NPD. 

In Szilagyi's (2003) agent-based model, the environment is extended from the 

immediate neighborhood to any layer neighborhood to the entire population. He 

also defined five types of pure personalities: Pavlovian, stochastically predictable 

(include allD p = 0, allA p = 1), unpredictable {p =random number), accountant, 

conformist, and greedy. Accountant is the type whose probability of cooperation 

depends on the average of its previous actions so it learns from its past. Conformist 
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is the one who imitates the majority. Greedy imitates the neighbor with the high­

est reward, and is equivalent to players in Nowark's spatial version. Neighborhood 

depth is defined as the maximum distance between the agent and its farthest neigh­

bor. Agents take action according to p, changes in time based on both the agent's 

and other's actions as well as the agent's personality. Agents with different person­

alities will update p differently. Agents with different personalities (motivations) 

can interact with each other in the same game. 

There are some important aspects of the above described studies of A'^-person 

PD: 

1. Players have only two choices: cooperate or defect. There is no intermediate 

choice. 

2. The players are homogeneous. 

3. Players use pair-wise interaction in space PD. 

4. Evolution is a kind of imitation of those with the highest payoff. 

5. In spatial version of PD, players interact only with their neighbors, it is only 

a local interaction. 

6. In spatial PD, player will remain with his/her own strategy, or will replace it 

by one of his/her neighbor's with the highest payoff. In reality, it is not con­

ceivable that the players will completely replace their strategies with another 

instantly. 

7. All models consider a small number of players in the experiments. 

The first aspect can be studied further by introducing the degree of cooperation. 

Only very few psychologists performed some experiments to examine the effect of 

differences of players in the outcome. At times, the term 'strategy' can elicit confu­

sion, as it can alternately refer to a state, choice or a sequence of choices. To resolve 

any possible confusion, I will use 'state' rather than 'choice,' while strategy will not 
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be a sequence of choices but the way a player reacts. The degree of cooperation will 

be introduced in section 4 and the effects of different personalities of players will be 

introduced in section 5. 

Degree of cooperation 

In the previous discrete PD, players have only two options. Degree of cooperation 

has been introduced recently into PD by some researchers, and was first studied 

in 2-person PD games. Frean (1996) allowed agents to have 0 to 100% degree of 

cooperation, and interpolated the payoffs of the players with different degrees of 

cooperation from the discrete PD payoff matrix. If x and y denote the degrees of 

coope ra t ion  o f  t he  two  p laye r s ,  t hen  the  payof f  i s  wr i t t en  a s  G{x^  y )  =  Rxy - \ -Tx{ l  — 

y) + 5(1 — x)y + P(1 — x){l —y). The strategies Prean used is a continuous version 

of all-or-nothing strategy, which is specified by parameters pcc, PCD, PDC, and PDD, 

where the first index refers to the opponent's choice and the second index refers to 

the player's own choice. Similar to the payoff, these parameters are the four values 

on the four corners; a players' current choice is an interpolated value of the four 

corner values. For example, y' — xy + x{l — y) -I- (1 — x)y -I- (1 — a;)(l — y). Prean's 

continuous version of TFT is obtained when PCC = PCD = ̂  and PDC = PDD = 0-

In Harrald and Fogel (1996)'s continuous behavior model, defection and cooper­

ation are described in the continuous range (—1,1), and the player's strategies are 

more complex and represented by a three layer feed-forward neural network. The 

inputs of the neural network are the previous choices of the player and his/her oppo­

nent. The output of the network is a continuous value within (—1,1) representing 

the player's current choice or the degree of cooperating or defecting. Hence the 

player's current choice is a continuous function of previous moves. The traditional 

payoff matrix was replaced by a payoff function, which is a continuous function of 

the two players' current moves. In the simulation, a population of networks was ini­

tially generated with the same structure (3 layers and a certain number of input and 

hidden neurons) but different values of weight and biases. The networks are actually 

representations of strategies, where the players play round-robin PD game with each 
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other. The weights of the neural network 'evolved' such that higher payoffs could be 

generated. The evolution of strategy or network is the evolution of neuron weights. 

The network with high fitness will survive and then create offspring whose weights 

are mutations of its parent's weights. They demonstrated that continuous behavior 

and chosen payoff function requires a minimum complexity strategy for evolution 

of mutual cooperation. While cooperative behavior was never observed with simple 

networks, level of cooperation could be generated with more complex networks but 

never converges to the steady state conditions. 

In addition to the above theoretical model, Feeley et al. (1997) did an experiment 

to study the cooperation when players have infinite choice. In their experiments, 

48 players were formed into 24 pairs, comprising 24 individual 2-person PD games. 

Players could update their decisions, not necessarily simultaneously, but in contin­

uous time. Their choices assume continuous values between 0 and 100. The ex­

perimental results show that players displayed matching behavior of the opponents 

but at differing levels, and infinite-choice PD provides a more realistic paradigm for 

decision making. 

Killingback et al. (1999a,b) modelled a spatial continuous prisoner's dilemma 

for a A^-person game. Each of the players chose to make an investment I between 0 

and an upper limit Imax, where payoff is a function of the investment I. The invest­

ment, which assumes continuously varying values, actually represents the degree of 

cooperation. The game's spatial structure is a two dimensional square lattice with 

each lattice cell occupied by an individual making investments. In each iteration, 

each cell plays a 2-person PD with its eight neighbors and its fitness is the sum 

of payoffs it receives when it interacts with its neighbors. The cell adapts strategy 

(or investment value) that provides the highest fitness in the cell's neighborhood 

(including the cell itself). Updating of investment is deterministic. 

In one of their simulations, the system started from an extremely low level of 

investment, but mutations were allowed occasionally to change the investment level. 

The results show that significant high levels of investment can be evolved. The 

investment was based on the opponent's previous investment. Killing and Doebeli 
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(2002) extended this continuous version. In their new model, current investments 

depended on previous payoffs which were functions of both players' previous invest­

ments. In round A; -f- 1, the player's investment was updated as Ik+i = a + PPk, 

where  a  i s  t he  p l aye r ' s  i n i t i a l  i nves tmen t  and  Pk  i s  payof f  i n  round  k .  

In the above games, players use only one memory length. Current degrees of 

cooperation depend either on previous payoffs or the opponent's previous move. 

Wahl and Nowak (1999) modelled a continuous PD model in an alternating game, 

in which cost and benefit of cooperation were considered to vary continuously. In 

their alternating game, the player's cooperation degree is within an interval [0,1]. 

The second player's cooperation degree is a function of the other player's previous 

cooperation degree. This function is used as the strategy, and it can be nonlinear. 

If one player responds with a cooperation degree of y {y E [0,1]) to another player's 

degree x, its strategy is a function y = S{x). Hence, Wahl and Nowak's defined 

cooperation strategies are those strategies when S{x) > x for all x, and defective 

strategies are those when S{x) < x for all x. The payoff function F{S,S') of 

strategy S played against S' is based on parameters of the function S{x) and the 

initial degree. The evolution of strategy is to introduce a stochastic element into 

pa rame te r s  o f  t he  o r ig ina l  s t r a t egy  S ,  where  S  wi l l  be  r ep laced  by  S '  i f  F{S ' ,  S )  >  

F{S,S). The authors showed that the initial degree, xq, is a decisive factor in the 

continuous Prisoner's Dilemma, as for most strategies, xq decides payoffs. They 

also demonstrated that 'generous' strategies (those S{x) > x) can lead the game 

to cooperation. If the 'generous' strategy is very optimistic, they could first offer 

xo = 1, and if the opponent responds with a low degree of generosity, the player can 

similarly reduce its degree to a lower level. Wahl and Nowak's strategy increases 

the degree gradually, and has the feature of uncompromising, that is, offering full 

cooperation as the opponent does the same. In Wahl and Nowak (1999 II), they 

added effects of 'noise' into their previous general model. The noise was used to 

consider the player's occasional misinterpretation of the opponent's move. With 

p robab i l i t y  p  of  an  e r ro r  occu r r ing ,  t he  p l aye r  w i l l  r e spond  acco rd ing  t o  y  =  S  (u ) ,  

where  w i s  a  r andom va r i ab le  ( i n s t ead  o i  y  =  S{x ) ) .  
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Wahl and Nowak found that cooperative strategies that can resist invasion by 

defectors are optimistic (make high initial offers), generous (always offer more co­

operation than the partner did in the previous round), and uncompromising (offer 

full cooperation only when the partners do). In addition, they found that XQ is a 

critical factor. Cooperation can only emerge if the probability of making a mistake 

is below a critical value, and that cooperation in a continuous PD with noise is not 

evolutionary stable. The noise model used here has an extreme case, where the 

players have no information about the opponent's move. The system outcome has 

several possibilities: it will cycle among cooperative strategies, it will have more 

cooperative and defective strategies, it will reach an interior stable equilibrium, or 

it will have a mixture of the three strategy types. 

Motivations 2ind Personalities 

Most studies about the Prisoner's Dilemma focused on the evolution strategies of 

cooperation, but seldom examined the reasons that determine the strategy choices. 

One weakness of the economic theoretical models is that they assume that the 

players are homogeneous. Some studies allowed players different initial states, but 

the players only use the same strategy or a few given strategies only. Few researchers 

studied the effect of personality differences (Boone et al. 1999), culture differences 

(Cox et al. 1991), and gender (Mason et al. 1991) on choices in Prisoner's Dilemma. 

Rapoport assumed that there are two basic motivational pressures in PD: greed 

and fear to be a sucker. He assumed that the two motivational forces were equal. 

Komorita et al. (1980), in their A''-person PD experiment, found out that greed 

is a more important factor than fear in influencing player's choice. He also found 

out that feedback regarding other people's payoffs and choices increase competitive 

tendency. 

Boone et al. (199 ) conducted an experiment to study the effect of four personal­

ity types on cooperative behavior in Prisoner's Dilemma games. The four personality 

types are: locus of control, self-monitoring, type-A behavior, and sensation seeking. 

They also took players' experience in economics into consideration. Locus of control 
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considers the way people believe in the control of their life, 'internals' believe that 

they have capability to control their fate, and 'externals' believe that external forces 

control their fate. People with high self-monitoring find it easy to adjust themselves 

to desired public behavior, while people with low self-monitoring are concerned less 

with others. 

Type-A people are aggressive, impatient, and are competitive. Sensation seek­

ing people are risk seekers and require variant stimuli. In their experiments, Boone 

et al. first measures the degrees of the players' four type personalities. All play­

ers in the experiments were students of business administration or economics at the 

University Maastricht Netherlands. Consequently, some of them had more economic 

training than others. Players were asked to fill out a questionnaire and their person­

ality type degrees were then measured using physiologic translation or scales. After 

measuring the personality structures, five PD games were conducted, including 2 

one-shot games and 3 repeated games. By using statistical analysis, they concluded 

that differences in personality types do affect the average cooperation behavior, and 

"internal locus of control, high-self monitoring and high sensation seeking are sys­

tematically associated with cooperative behavior". They also found that a type-A 

personality has a high correlation with gender, and it has negative contribution to 

cooperation, where other variables, especially gender, have the opposite effect. 

1.3 Public goods 

Prisoners' Dilemma can also be extended to a wide range of social dilemma when 

the two restrictions of payoff functions are relaxed, and any functions can be used. 

Oliver (1993) described that the problem of collective action can be analyzed as 

a PD game. Szilagyi (2000) quantitatively analyzed the relationship between the 

collective action problem and PD, and he pointed out that PD has more degrees of 

freedom, and that it should be used to investigate collective actions. Public goods 

is a special social dilemma, and consequently, Prisoner's Dilemma can be extended 

to model Public goods. 



36 

Up until now, there are three main mechanism theories developed to study public 

goods: traditional utility theory (free-riding theory), altruism and impure altruism 

theory, and reciprocity theory. The traditional utility theory is based on the assump­

tion of rationality. Public goods experiments (Ledyard, 1995) show that individual's 

behavior is not consistent with rational assumption, hence motivations, such as al­

truism, have been extensively studied in Public goods experiments. Similar to the 

study of PD games, economists and sociologists usually study public goods and 

examine motivations by offering certain theories and performing public goods ex­

periments. Pubhc goods experiments are used to test the correctness of theories, 

the effects of model variables, and to find phenomena or behavior that need to be 

explained. The public goods experiment should be conducted in a controlled envi­

ronment with designed institutions (Kagel and Roth, 1995), where the number of 

participating people cannot be very large. At the beginning of the experiments, the 

participants receive a certain amount of tokens (usually the same amount), and they 

have to choose how much they want to put into their own accounts or into a pool 

account. The experiments are usually conducted in a laboratory. 

The free-riding behavior is usually a fundamental problem in traditional public 

goods utility theory, in which purely self-interested rational individuals try to maxi­

mize their own utilities (Daews, et al., 1997). Free-riding theory is inconsistent with 

reality and also with the results of economic experiments (Croson, 1996; Marwell 

and Ames, 1979). Free-riding theory predicts that nobody would contribute any­

thing under the assumption that all players are 'rational.' Equivalently, the rational 

player in reality is 'egoistic.' According to the free-riding theory, if everybody in 

the community is pure egoistic, then nobody will contribute. Free-riding theory of 

public goods is not convincing when explaining public goods motivation, but the 

free-riding behavior cannot be eliminated in public goods if the public goods is 

nonexclusive and involves a large number of people. 

Except for the traditional public goods utility theory, the motivations in pub­

lic goods are also analyzed as special decision mechanisms such as pure altruism 

(Becker, 1974), impure altruism (Andreoni, 1989; Andreoni, 1990) and reciprocity 



37 

(Sugden, 1984). All these models describe voluntary contribution mechanisms 

(VCM). In the pure and impure altruism theories, welfare levels of others are in­

cluded as an argument in the individual's utility function. In these models, each 

individual is endowed with a certain amount of money, Ei. The individual can chose 

an amount gi < Ei to contribute into the public account, and put the remaining 

Xi = Ei — gi into his/her own account. Pure altruism assumes that the individu­

als maximize their utilities Ui{xi,Y), where Y is the total supply of public goods, 

which is a function of the total contribution. Impure altruism theory assumes that 

individuals have a trade off between private and public goods, so it is a combination 

of 'egoistic' behavior that generate free-riding and pure altruism (Andreoni, 1989). 

Each individual looks for the maximum of his/her utility Ui{xi, Y,gi). 

In reciprocity theory, certain constraints are defined on the utility function re­

quiring that individuals must contribute more when others contribute more. Ex­

perimental results reported in Croson (1996) support reciprocity theory, but not 

altruism and impure altruism theory. 

In all these mechanisms, the pure public goods problem is modelled as an N-

player simultaneous game. Utility functions are introduced, and it is assumed that 

every individual knows the total contribution of others. The endowments and utility 

functions of different individuals might be different, but the individual's character­

istics are homogeneous and their contributions are selected as their optimal choices. 

Most earlier works are based on modelling the problem as a one-shot game, where 

the donations are given simultaneously. The study of sequential public goods games 

assumes that information is released repeatedly during the sequence. In Silverman et 

al. (1984), it is reported that announcing individuals' names and their contribution 

amounts can efficiently increase the amount of total contributions. Vesterlund (2003) 

proposed a model to explain that the announcement of the first stage contributions 

helps to reveal the quality of the public goods when the players do not have perfect 

information on its quality at the beginning of the game. This kind of sequential 

fundraising is actually a two-stage game. 

Another way of classifying public goods is based on the divisibility of public goods 
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and contributions. Croson (1998) classified the public goods studies into four major 

types according to continuous or discrete public goods and continuous or discrete 

individual contributions. In voluntary contribution mechanisms (VCM), the public 

goods are provided as continuously divisible quantities, and individual contributions 

are also given in continuously divisible quantities. Another type of mechanism is the 

provision point mechanism (PPM). In PPM, the pubhc goods and the individual 

contributions are both binary (Goren, et.al., 2003). Each individual contributes all 

or none of his/her endowment, and if the sum of all contributions reaches a certain 

known threshold then the public goods is provided, otherwise it is not. Croson 

and Marks (2000) reported an experiment of threshold public goods including both 

binary and continuous contributions. Most recent studies have also examined the 

effect of seed money and refund in charitable giving (Bagnoli and Lipman, 1989; 

Bagnoli and Mckeo, 1991; List and Reiley, 2002). In charitable giving, seed money 

has a positive effect on the total pledged amount (List and Reiley, 2002); refund can 

also increase contributions but not significantly (List and Reiley, 2002). Public radio 

campaign, as a particular charitable giving, is a continuous contribution threshold 

pubhc goods. 
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CHAPTER 2 

Present Study 

This dissertation mainly reflects the research of the candidate. All modeUing ef­

fort was conducted together with the advisors. We had a large number of meet­

ings discussing details, options, and solutions. The construction of the simulation 

methodology and its computer implementation were developed by the author of this 

dissertation, who was also responsible to provide the numerical results. 

This chapter is an overview of our agent-based methodology, including a new 

algorithm of discrete A''-person PD with Pavlovian agents, the continuous iV-person 

model that is an extension of the discrete A'-person model, and a pubhc goods 

simulation model that is the apphcation of the continuous model into a special social 

dilemma. The agent-based methodology is originally developed for the simulation 

of social dilemma that involves a large number of individuals. The methodology can 

model and consider the individuals' heterogeneous personality types and different 

decision-making rules in the situation of a large number of individuals. 

In agent-based models, each person in the society is regarded as an agent whose 

state is defined as its behavior. Let A be the number of agents in the society under 

consideration. The dynamic PD game is divided into T time periods (or iterations), 

and the state of each agent at time period t{t = 0,1, 2,...) is characterized by a 

variable Si{t). The variable Si{t) is updated at each time period, depending on the 

history of the game and the agent's personality. The detailed agent-based models 

will be explained in the following sections 

2.1 Agent-based discrete A-person PD 

In the discrete A-person PD model, agents have only two states-cooperation or 

d e fection, hence agent i's state is Si{t) G {0,1}. The agent cooperates if Si{t) = 1 
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and defects if Si{ t )  = 0. Let Pi{ t )  be the probabihty of cooperation of agent i  at 

iteration time t\ x{t) the ratio of cooperators at time C{x{t)) and D{x{t)) are the 

reward and penalty at iteration t, which are functions of the ratio of cooperators 

x{t). The state Si{t + 1) is updated based on the agent's previous history of the 

game: Pi{t), C{x{t)) and D{x{t)), and the agent's personality. In the following par­

ticular discrete model, Expectation Algorithm, only the Pavlovian type personahty 

is considered. 

As explained in Szilagyi and Szilagyi (2002), Pavlovian (Kraines and Kraines, 

1989) agents are the most realistic types in the investigation of the evolution of 

cooperation in A'^-person PD. Pavlovian agents modify their behavior according to 

the law of conditioning: if an action is followed by a satisfactory state of affairs, 

then the tendency to produce that particular action is reinforced. Szilagyi (2001) 

proposed an Exponential Algorithm model for making accurate long term predic­

tions of A'-person PD solutions for Pavlovian agents. The Exponential Algorithm 

can accurately compute the value of the ratio of cooperators x{t) up to 20 iterations 

for an infinite number of participating agents, however the computation time expo­

nentially increases with the number of iterations. Hence for iterations above 20, the 

Exponential Algorithm takes a very long time to run. The new algorithm. Expec­

tation Algorithm, that was developed by myself and my coadvisors, overcomes this 

difficulty and can be used for any number of iterations. The Expectation Algorithm 

consists of the initialization states, updating of cooperation probabihties, updating 

of states, updating of cooperators ratio, and deciding on the simulation length. 

Assume that all agents have the same initial cooperation probability Pi(0), which 

is given before the game begins. The initial state of agent i, Si{0), is generated 

by comparing the agent's probability of cooperation with a uniformly distributed 

random number u e [0,1]. li u < Pi{0) , then ^^(O) == 1, otherwise, 5i(0) = 0. The 

initial ratio of cooperators x(0) then is calculated by 

^(0) = 

After the game begins, the agents update their states after each iteration accord­
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ing to the same rule. At time ^ +1, (i = 1,..., Ti), the probability of cooperation of 

agent i, Pi{t + 1) , is updated based on Pi{t), the payoff (reward/penalty) functions 

C{x{ t ) )  or  D{x{ t ) ) ,  and  the  s t a t e  S i { t )  of  t he  agen t  i  a t  t ime  t :  

pu + 1) = / ^ 
\ Pi{ t )  -  A •  D{x{{ t ) )  if S , { t )  =  0; 

where 0 < a < 1 and 0 < /3 < 1 are learning coefficients. If the calculated values of 

Pi{t + 1) is larger than 1, then it is forced to be equal to 1; if it is less than 0, then 

it is forced to be equal to 0. The proportional terms aC{x{t)) and PD{x{t)) are 

the amounts that the agent learns from its reward/penalty for its previous action. 

Pi{t+ 1) will increase if its previous cooperation was rewarded, and will decrease if 

its previous defection was rewarded. C{x{t)) and D{x{t)) can be modelled as second 

degree polynomial functions; 

C{x{ t ) )  =  a2  • x ' ^ { t )  +  a l  •  x { t )  +  aO 

D{x{ t ) )  =  b2  •  x ' ^ ( t )  +  b l  •  x { t )  +  bO 

The state S i { t  +  1) of agent i  at time t + 1 is again randomly generated by 

comparing Pi{t + 1) with a uniformly distributed random number u G [0,1]: 

1 if u  <  Pi{ t  + 1) 

0 if u  >  Pi{ t  + 1). 

Hence, Si{ t+  1) = 1 with probability of Pi{ t  +  1) and Si{ t+  1) = 0 with probability 

of 1 — Pi{t + 1). 

The ratio of cooperators is then calculated by 

+ = 

It is a random variable with expected value E[x{ t  + 1)] and variance Var[x{ t  + 1)]. 

The expectation E[x{t + 1)] can be approximated by sample means by repeating 

the simulation process R times with the Expectation Algorithm. The expectation 

of 2; (t + 1) is calculated by using the R simulated data: 

Si{t + 1) — < 
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The variance of x { t  + 1) can be estimated by the sample variance of 

X i { t ) , X 2 { t ) , . .  . , X R { t ) :  

R — 1 

By the Chebyshev Inequality, the probability that the estimation error is less 

than a given threshold £ is 

2 
The probability that the error is below e is at least 1 — p if 1 — > 1 — P which 

occurs if and only if 

The above inequality can be used to decide the necessary number of runs. If a 

relative error k = s/a is specified, then from the above inequality we have 

as a simulation stopping rule. 

2.2 Agent-based continuous A^-person PD 

In the continuous A-person PD model, spatial effect will be considered. Agents will 

be placed on a 2-dimensional lattice, which represents the environment. An agent's 

neighborhood is the sites in all directions within a certain distance around the agent. 

The neighborhood depth or layer is denoted by Di and is defined as the maximum 

distance from agent i to his/her farthest neighbor in horizontal or vertical directions. 

The shorter the distance between two agents, the closer the relationship the agents 

have. For simphcity, an agent's neighborhood with a given neighborhood depth Di 

is referred to as 'neighborhood.' Let the neighborhood of agent i be denoted by 

Ui, with \Ui\ being the number of agents in the neighborhood. We can distinguish 

between 'local' and 'global' neighborhood. The local neighborhood of an agent is 

determined by a flexible distance that can be defined by the simulation users. The 

global neighborhood is the entire 2-dimensional lattice. 
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The state of an agent is a representation of the agent's attitude with certain 

degrees, and is characterized by a real value Si{t) G [0,1]. Zero value corresponds 

to complete disagreement, unit value corresponds to complete unconditional agree­

ment, and the value of 0.5 corresponds to the neutral state. 

Assume that the agents have the ability to collect global and local information 

(cost of information gathering will not be considered in this research). Global in­

formation has no related lattice distance; it could be the average value of all states 

in the society. It also includes all common information that agents access about the 

whole society. Local information is from the agent's neighborhood. For example, 

other agents' states in the neighborhood, the average value of agents' states in the 

neighborhood (local average state), the state that is rewarded by the highest reward 

in the last iteration, and some agents' persuasion in the agent's neighborhood. Ex­

cept local and global information, an agent has his/her own history record within a 

certain memory length, including his/her past states and past rewards/punishments. 

Most of the theoretical basis regarding personality types and attitude change 

was previously developed in Szilagyi (2003). The four typical personality types 

include conformist, Pavlovian, greedy, and accountant. A conformist agent will 

follow the majority, a greedy agent tries to maximize his/her own reward, and an 

accountant will adapt the state that gave him/her the most reward in the past. 

The Pavlovian has been already explained in the last section. In addition to these 

four personality types, two other personality features will be included in this study 

of continuous PD: wiUingness to accept other agents' persuasions, and willingness 

to accept public mass media's information. The personality type with the former 

wiUingness is represented by the term 'persuasion,' and the personality type with 

the later wiUingness is represented by the term 'propaganda.' When considering 

the influence of agents, the agents are divided into two classes: those that influence 

others and those that are influenced. Assume that an agent can belong to only one 

of these classes. 

An agent's personality is a combination of the above six personality types and 

indifference. 'Personality coefficients' are used to quantify the degrees of the differ­
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ent personality types that an agent has. Let ^2(2), k3{ i ) ,  k4{ i ) ,  k5{ i ) ,  k e { i )  

denote the personality coefficients of conformist, Pavlovian, persuasion, propaganda, 

greedy, and accountant, respectively. If the sum of these coefficients is less than one. 

means that Agent i  completely has the j t h  personality type, and k j { i )  = 0 means 

that the Agent does not have the jth personality type at all. A mixed personality 

occurs when at least two of its personality coefficients are nonzero. A higher value 

of coefficient kj{i) {j = 1,..., 6) means the agent has a higher degree of that per­

sonality type. An agent could have an extreme personality like a pure Pavlovian 

when k2{i) = 1 and kj(i) = 0 for all j ^ 2. 

In order to formulate the mathematical model the following notations are intro­

duced. For each agent i let 

denote the average state of all agents in the neighborhood Ui. The reward or penalty 

of any agent at time period t depends on its current state and the average state of 

all agents in its neighborhood. Let C {Si{t)) and D {Si{t)) denote the reward and 

penalty function. When Si{t) = 1, the reward of agent i is C[Si{t)), and when 

Si{t) = 0, its penalty is D(^Si{t)). However the state Si{t) of agent i is usually 

between these extreme values, so a linear interpolation formula is used to compute 

its reward (or penalty in case of a negative value): 

For any agent i ,  let j i { t )  be the agent from the neighborhood of agent i  who 

receives the largest reward 

then the agent is indifferent to the degree of 1 — k i { i ) .  The value k j { i )  = 1 

Ri{ t )  =  D {Si{t)) + {C {Si{ t ) )  -  D [Si{ t ) ) )  Si{ t )  

R j i i t )  =  max { R j { t ) \ j  e Ui} 

and let Ri{ t )  denote the average past reward of agent i  

T=0 
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A conformist agent collects the local information of the neighborhood average 

state Si{t) and follows the tendency of the average behavior of its neighbors, so it 

tends to move its state in the direction of the difference Si{t) — Si{t). Since every 

agent's adjusting speed may be different, the updating value of a conformist agent 

is modelled by the function 

where li{li > 0) is the speed of adjustment showing how fast the Agent adjusts 

his/her state in the direction of the average neighborhood state. 

A Pavlovian agent moves in the direction of rewarded. This tendency can be 

modelled similarly to the A''-person discrete Pavlovian case, however, there are the 

following major differences: 1) The reward or penalty is not global, it is a local re­

ward/penalty, hence and are replaced by Ri{Si{t), Si{t)); 2) agents' 

s t a t e s  a r e  n o t  b i n a r y  1  o r  0 ,  t h e y  h a v e  c o n t i n u o u s  v a l u e s .  W h e n  S i { t )  >  0 . 5  a g e n t  i  

is regarded as a partial cooperator, his/her way of adjusting Pi{t+ 1) is modelled in 

the same way as that of the cooperator in the discrete model; when Si{t) <0.5 agent 

i is regarded as a partial defector, his/her way of adjusting Pi{t + 1) is modelled in 

the same way as that of the defector in the discrete model. In the case of Si{t) = 0.5, 

then approximately half of the agents will adopt partial cooperator's strategy, and 

half of the agents will adopt partial defector's strategy. Hence the updating of the 

probability of cooperation Pi{t + 1) is modelled as 

Pi{t + 1) — < 

Pi{ t )  + ai • Ri{Si{ t ) ,  Si{ t ) )  if Si{ t )  >  0.5; 

or Si{ t )  = 0.5 and u l  <  5; 

Pi{t) - A • Si{ t ) )  if Si{ t )  <  0.5; 

or Si{ t )  =  0.5 and u \  > 5. 

Here ui G [0,1] is a uniformly distributed random number assuring the randomness 

of Pi{t + 1) for Si{t) = 0.5. 

One of the advantages of the continuous model is that agents' states can be 

updated gradually by a relatively small amount. For a Pavlovian agent, the amount 
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his/her state is updated by 

f A if u2  <  PAt  +  1)  
AS , i t  +  l )={  ^ 

[ -A if u2>Pi{ t  +  l ) ,  

where 0 < A < 1 is a constant, «2 G [0,1] is a uniformly distributed random number. 

Overall, we can say that the updating amount of a Pavlovian agent is modelled 

as a function f2{Ri{Si{t), Si{t))) that has the above two cases as special forms. 

Denote the individual persuasion effect by agent k  to agent i  Ik j { t ) -  Agent i  

will then change his/her attitude state by an amount that is a function f3{Ii{t)) 

of the total effect Ii{t) = The persuasion effect usually depends on the 

relationship between the two agents, hence Ikj{t) also depends on the distance d^j 

between agents k and I. 

At time period t ,  let M{t )  denote the influencing effect of the media. An agent 

will change his/her attitude state by the amount that is the function of 

M{t ) .  

A greedy agent follows the behavior of the agent from his/her neighborhood who 

received the largest reward. Therefore he/she adjust his/her state in the direction 

An accountant agent monitors his/her average past reward and moves his/her 

state into the direction it was paid for in the past. The accountant agents update 

their states in a way that is very similar to Pavlovian cases, except that their own 

past average rewards are used instead of the current rewards: 

Si{t + 1) — < 

and 

Si{ t )  + A if u3 < Pi{t + 1) 

Si{t) — A if u3 > Pi{t + 1) 

Piit + 1) — < 

Pi{ t )  + cti •  Ri{ t )  if Si{ t )  >  0.5; 

or Si{t) = 0.5 and u\ < 5; 

Pi{ t) - Pi • Ri{t) if Si{t)0 < 0.5; 

or Si{ t )0  =  0.5 and u l  >  5; 

where Ofj and are appropriate normalizing constants. 
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Based on the above formulation we assume that the state transition relation of 

agent i can be given as follows: 

S i { t  +  1)  =  S i { t )  +  h i i )h{S i { t ) , S i { t ) )+k2{ i )h (R i {S i { t ) , S i { t ) ) )  

+ h i i )  •  h  ( h i t ) )  +  •  h  

+^5(^ )  •  f b  {Gi { t ) )  + kQ{ i )  •  f e  S i { t ) )  .  

During the updating process, if the right hand side of this equation becomes 

greater than 1, then Si{t + 1) is forced to be equal to 1; if the right hand side of this 

equation becomes less than 0, then Si{t + 1) is forced to be equal to 0. 

2.3 Public goods model 

Public goods are typical examples of a large variety of social dilemmas. A special 

public goods problem, the membership campaign of public radio stations, will be 

modelled. However, it has some special properties distinguishing itself from PD 

games: 1) consuming the goods by one individual will not detract others from con­

sumption opportunities; 2) once the public goods is provided, it is provided to all 

individuals and no one can be excluded from enjoying it; 3) Donating to the cam­

paign is voluntary to all hsteners and there is no punishment for not contributing; 

4) There is a certain threshold, if the accumulated amount reaches a certain thresh­

old then the pubUc goods wiU be provided, otherwise the pubhc goods will not be 

provided. Except in these special properties, the model is very similar to the Contin­

uous Prisoner's Dilemma, in which agents have continuous states of cooperation or 

defection degree, but in public goods models pledging or not is a binary variable and 

the contributors' pledges are in a continuous range. Hence a modified continuous 

PD model will be applied to model Radio Station Campaign. 

Our approach will be based on modelling the different types of motivations of 

individuals in a radio station membership campaign. The model can be extended 

for broader use in examining other types of pure public goods, which are similar in 

many aspects to public radio membership campaigns. The campaign process will 
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be divided into a large number of time periods and at the end of each time period 

each agent will make a decision whether or not to pledge. The model will divide 

the agents' decision process into two stages: first they decide whether to pledge or 

not based on their motivations, and then they decide on the amount they pledge 

based on their wealth and motivations. Agents repeatedly make decisions (play the 

game), until they make a contribution or the campaign process terminates. After 

the time period when an agent makes a contribution, he/she will retreat from the 

game. The campaign process will be simulated as a dynamic process during which 

certain information will be announced repeatedly to the players and the agents' 

states will be updated continuously. 

In the model, any individual who represents a household will be considered 

an agent. One household may have more than one individuals who would like to 

pledge, but in the model they pledge together as a single household. An agent 

actually represents a head of a household who has the decision on donations. Eight 

new personality types will be introduced and used in the pure public goods model 

that were not considered earlier in examining PD models. The reward of the agents 

for donations is called the 'benefit' that can be received only after the successful 

campaign is performed. There is no punishment to those who do not pledge. 

Consider the situation when a radio station holds a membership campaign with 

a specific goal (denoted by Goal) of total contribution planned for a specific time 

period L. An individual modelled as an agent can donate in the form of a member­

ship pledge. In addition, some companies contribute by giving money directly to the 

station or by matching their employees' pledges. Assume that if the goal is achieved 

earlier than planned, then the campaign will end earlier than scheduled. Otherwise, 

the campaign will continue and only a partial regular program will be broadcasted 

un t i l  t he  goa l  i s  r eached .  The  number  o f  agen t s  i s  deno ted  by  n .  For  any  agen t  i ,  

he/she has a certain household wealth and therefore there is a maximum amount 

W(i) that the agent could pledge. Assume that each agent's personality remains 

constant throughout the entire campaign period, while his/her probability of pledg­

ing will change or be updated at each simulation iteration. The personality of each 
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agent is a combination of several major motivations to pledge. We will consider the 

following possible reasons for pledging: 

1. Agents will benefit from the radio program if the campaign is successfully 

completed. 

2. Agents are more willing to help the station to reach short-term (hourly or 

daily) smaller goals than the overall larger goal of the entire campaign. 

3. Agents feel guilty by enjoying a service that others are paying for. 

4. Agents value their reputation, and thus, they would like their names to be 

mentioned in the program among other people pledging to the station. 

5. Agents feel good by contributing to public interest. 

6. The agent's company has a matching contribution. 

7. There is a "challenge" that somebody has promised the station to double all 

contributions raised during a certain time period. 

8. There is a gift given away to people pledging above a certain amount. 

Assume that any agent who might pledge has at least one of the above 1-8 

motivations. We use characteristic coefficients to represent the single or mixed 

motivation for the agent's contribution. Denote the characteristic coefficients of 

agent i by a vector a{i) = (ai(i),..., Q!8(i))^, where < 1. If agent i has 

the k th{k  = 1,2, ...,8) motivation, then 0 < c>Lk{i) < 1. The particular coefficient 

otk{i) is the degree that agent i has the kth motivation. The state of the agent 

is modeled by a vector p{i,t) = ... ,ps{i,t))^ of probabilities, where the 

element Pk{ ' i ' , t )  represents the probability that agent i  pledges to the station at 

time period t based on reason k. The probability is a function of the total 

campaign duration L ,  the amount still needed to be raised during the remaining 
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duration of the campaign, and time elapsed: 

P i i i . t )  
if t < L  

i f  t > L  

where g{ t  — 1) is the ratio of the total contribution received up to time period t  — 1  

compared to the entire campaign Goal. Pi{i,t) is proportional to 1 — g{t — 1), and 

when t is in the normal campaign time period, pi{i,t) increases with t, while when 

t  i s  i n  t he  ex tended  campa ign  t ime  pe r iod ,  p i { i , t )  dec reases  w i th  t .  The  t e rm t /L  

captures the tendency that if the agents recognize there is still a gap between the 

campaign goal and the total amount being pledged as time is passing, then they 

might try to help by pledging. Term L/t, when t > L, models the tendency that 

when the original campaign deadline is passed and still the goal is not met, the 

agents start losing their confidence in the value of the public goods and therefore 

the probability to pledge decreases in time, since they do not want to waste their 

money on a possible unsuccessful campaign and on a worthless public goods. 

The probability P2{i,t) of pledging as the result of a reasonable short-term 

smaller goal is calculated as 

The whole campaign period L  is divided evenly into K  smaller intervals. In 

e a ch short-term period k {k = 1,... ,K), there is a short-term goal Goals{k), and 

gs{k,t — 1) shows the proportion of the A:th short-term goal being achieved up to 

time period t — 1. The starting time of the A;th short-term period is denoted by 

Lso{k) = ^ • {k — 1) -\- 1. At the starting time of a short-term period, each agent 

has an initial probability p%{i, k) to pledge. In the later iterations, the probability of 

agent i to pledge will depend on the degree that shows in which level the short-term 

goal is achieved. The short-term goal is given by 

P2{ i , t )  
p l { i )  if t  =  Lso{k )  

min{p^(2), (1 - gs{k ,  t  -  1))} if t  i -  Lso{k )  
k  =  l , . . . , K .  


