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ABSTRACT 

Approximate calculations have shown that a neutron 

star with a strong surface magnetic field is solid at 

extremely elevated temperatures. If the surface is solid, 

then only a few known emission mechanisms exist capable of 

supplying the necessary charged particles which are sub

sequently accelerated by the electromagnetic field near the 

pulsars. The purpose of this work is to refine the calcula

tion of the cohesive energy and melting temperature of the 

surface in the presence of a strong magnetic field for 

materials possibly constituting the neutron star surface 

ranging from helium to iron. The cohesive energy is 

computed using the cellular approximation. The electron 

work function is computed using a method developed by Seitz 

involving the application of Koopmans' Theorem. The ion 

work function is computed using thermodynamic arguments. 

A modification to the Richardson-Dushmann Equation is 

developed for the thermionic emission from solids in the 

presence of a strong magnetic field. Thermionic emission 

is shown to be able to supply copious numbers of ions and 

electrons at least during the early life of pulsars. 

viii 



CHAPTER 1 

INTRODUCTION 

Ever since the discovery of pulsars (Hewish et al., 

1968) and the realization that pulsars are rotating neutron 

stars, it has been assumed that the vehicle for the trans

formation of the rotational energy into the observed pulsed 

radiated power (unpulsed radiation being directly associated 

with the Crab Nebula and Vela X only) is the acceleration of 

charged particles in the very strong magnetic fields 

believed surrounding the pulsar. In essence, then, a 

plethora of theoretical models predict the continuous pro

duction of relativistic particles (usually electrons, al

though ions are used in the theory of Sturrock, 1971) 

supplied from the pulsar itself. Excellent reviews of the 

basic theoretical ideas are given by Ruderman (1972) and 

ter Haar (1972). However, there is virtually no discussion 

in the literature related to the mechanism of the charged 

particle emission from the pulsar surface. Goldreich and 

Julian (1969) showed for the axisymmetric rotator-that if 

one assumes a vacuum in the magnetosphere, large electric 

fields exist in the vicinity of the'pulsar surface, although 

the field must be zero internally. If one assumes a thin, 

gaseous transition region, a region where the field falls 

1 
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from its vacuum value to zero, the electric field in the 

region will be much larger than the gravitational field. 

Charged particles will be torn from the surface which 

reduce the electric field, create a dense atmosphere, and 

act as the source. Cohen and Toton (1971) point out that 

the same arguments leading to a dense magnetosphere apply to 

the oblique rotator. However, in solids and conducting 

liquids other, and potentially much greater, binding forces 

than the gravitational field are present. Ruderman (1971) 

and Chen (1973) have shown that in the presence of a strong 

magnetic field (> 10"^ Gauss) the surface of the pulsar can 

be solid at temperatures far in excess of the usual melting 

temperatures of materials assumed to constitute the surface. 

These materials (which include helium, carbon, oxygen, neon, 

and iron) represent possible end states for the surface 

matter of neutron stars, where the particular end state 

depends on the theory assumed for the formation—in 

particular the scenarios of Colgate (1971) and Ostriker and 

Gunn (1971). 

If the surface is solid, the proposed mechanism for 

charged particle emission no longer applies and a new theory 

must be developed. Ruderman (19 72) has proposed cold (or 

field emission) as a likely mechanism. Such a mechanism 

requires large electric fields and precludes a dense 

magnetosphere. However, ionic cold emission has never been 

observed and only a single charge carrier type, electrons, 
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is emitted. Since a continuous loss of electrons would 

rapidly lead to a cancellation of the field, the electrons 

must flow in giant current loops to resupply the surface. 

However, another charged particle emission mechanism exists 

which requires no electric field and allows a dense magneto-

sphere. The particle emission mechanism suggested by Endean 

(1973) is thermionic emission. Thermionic emission of both 

species—ions and electrons—has been observed in many 

metals (Smith, 1958) at temperatures below the melting 

point. Therefore, we have a source of charged particles of 

both species in the early life of pulsars when the surface 

is at elevated temperatures. The basic purpose of this work 

is to compute the thermionic emission in the presence of 

very strong magnetic fields. 

In Chapter 2 we develop a method to calculate the 

cohesive energy of material in very strong magnetic fields 

(10"^ to 10"^ Gauss), fields consistent with the range of 

surface magnetic fields proposed in a variety of theories 

summarized by Ruderman (1972) and ter Haar (1972). The 

cohesive energy is calculated using the cellular (Wigner-

Seitz) approximation, a method by which the Hartree equations 

can be made separable. The cohesive energy is represented 

by the sum of five terms—the interaction energy of the core 

ion and valence electrons (which is equivalent to the energy 

at the bottom of the conduction band), the self energy of 

the valence (free) electrons, the kinetic energy of the free 
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electrons, the electron exchange energy, and the ionization 

energy. For the ionization energy we use the Thomas-Fermi 

model of Mueller, Rau, and Spruch (1971) in the strong 

magnetic field case defined for isolated atoms in the region 

where the atom retains a spherical shape. When the atom 

loses its spherical shape as a result of the presence of 

still larger magnetic fields, we define this as .the ultra-

strong field regime. In this regime we use an approximate 

form of the ionization energy similar to that given by 

Kadomtsev and Kudryavtsev (1971) and Mueller et al. (1971). 

In Chapter 3 we derive theoretically the thermionic 

emission of the ions and electrons in very strong magnetic 

fields. Thermionic emission is enhanced by the presence of 

the magnetic field, analogous to the enhancement in a para

magnetic material. This occurs because the conduction 

electrons are forced into occupancy of the ground state 

Landau level, arising from the quantization of the magnetic 

field, with spin antiparallel to the field. The proba

bility of occupation of any other level is small because the 

energy difference between Landau levels is so large. The 

result depends essentially on the calculation of the work 

functions of the ions and electrons, if it is assumed that 

the shape of the potential barrier can be taken into account. 

The work function of the electron can be theoretically 

computed by the application of Koopmans1 Theorem, the 

validity of which depends on the assumption that the use of 
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the Fock Hamiltonian is appropriate. All necessary terms 

were calculated previously in Chapter 2 in order to compute 

the cohesive energy except the term related to the Dirac 

exchange operator A, which is calculated from its defini

tion. The work function of the ions is calculated using a 

thermodynamic argument involving the conservation of energy. 

Finally the melting temperature is calculated using 

Lindemann's melting formula and the theory of Brush, Sahlin, 

and Teller (1966), which treats the crystal as the condensa

tion of an ion plasma in a neutralizing electron sea. 

In Chapter 4 we reduce the theoretical derivation 

of Chapters 2 and 3 to practice so that numbers can be 

calculated. All of the various properties of the matter can 

be calculated by using the lattice spacing and the number of 

free electrons per cell. The calculation is based on the 

necessity that the cohesive energy be minimized with respect 

to the independent variables. The expression for the 

cohesive energy is written in terms of several intermediate 

variables to simplify the calculation. The analysis of one 

of the resulting two equations clearly shows that the 

solution is physically acceptable. 

In Chapter 5, the last chapter, we review the 

results of the calculations. We put these results into the 

perspective of an overall speculative picture regarding 

variops evolutionary phases of a pulsar. CGS units are used 

throughout this work unless otherwise indicated. 



CHAPTER 2 

COHESIVE ENERGY OF MATERIALS IN VERY 
STRONG MAGNETIC FIELDS 

In this chapter and in the next chapter we will 

develop a method to calculate some of the properties of 

materials in magnetic fields in the range from lO1^ to 10"^ 

Gauss. This range of fields is consistent with the range of 

surface magnetic fields proposed by several authors 

(Scharlemann and Wagoner, 1972; Michel, 1973; Goldreich and 

Julian, 1969; Ostriker and Gunn,1969; Roberts, Sturrock, and 

Turk, 1973; Sturrock, 1971) to explain the observed pulsed 

spectral properties of rotating neutron stars. The most 

important propert-to be calculated is the cohesive energy 

because it yields the lattice spacing. From the lattice 

spacing many of the important properties of the crystal can 

be calculated. These include the work function of the elec

trons and ions, the melting temperature, and the heat of 

evaporation—essentially many of those properties not related 

to the motion of the ions composing the lattice points. 

The cohesive energy is calculated using the cellular 

(Wigner-Seitz) approximation (Seitz, 1940; Anderson, 1964). 

This is one method by which the Hartree equations, which 

usually can not be separated into one-variable equations, 

can be solved in terms of reasonably accurate central field 

6 
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equations which are separable. In simple solids in which 

ion cores include only closed shells, this field is almost 

spherically symmetric. In the case of isolated atoms in 

strong magnetic fields (but not ultra strong magnetic fields 

9 3 defined by B > 2.35 x 10 N , where B is the magnetic field 

in Gauss and N is the atomic number of the atom) a Thomas-

Fermi model yields a spherically symmetric charge distribu

tion for the ion core (Mueller et al., 1971) and a 

spherically symmetric potential. The ultra strong magnetic 

case is also examined, but calculations in this regime are 

approximate at best. In cubic lattices, such as the simple 

metals, where the crystal has a high degree of rotational 

symmetry relative to the nucleus, the potential of the rest 

of the lattice is nearly spherically symmetric. It will be 

assumed that the atoms in strong magnetic fields arrange 

themselves in monatomic body-centered cubic lattices much 

as found in all the alkali metals. Assuming unscreened 

coulomb repulsion among the nuclei, the body-centered cubic 

is the coulomb lattice with the lowest energy (Ruderman, 

1971; Baym, 1970). The symmetry of the field suggests 

calculating the cohesive energy is possible by adding up 

the contributions of appropriately chosen sections of the 

crystal. The appropriately chosen sections are a set of 

space filling polyhedra, including just one atom in each 

polyhedron, formed by planes bisecting orthogonally the 

lines joining the chosen atom with its nearest neighbors. 
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It may be assumed, for simplicity, that these polyhedra (for 

the body-centered cubic a truncated octahedron) can be 

replaced by spheres of equal volume. The error made is 

negligible in the case of the alkali metals, as is also 

assumed j.n these calculations. Since each of the spheres 

is electrostatically neutral, the coulomb potential in a 

given cell that arises from any other cell is zero. Hence, 

we need only consider the coulomb field arising from the 

charge in a given cell; in a monatomic solid this potential 

is spherically symmetric. The solution of Hartree equations 

for the alkali metals show that they can be approximately 

represented by a relatively simple model. This model (Seitz, 

1940; Anderson, 1964) consists of an unscreened ion core of 

radius R surrounded by a shell of valence electrons of 

uniform density extending to the edge of the Seitz sphere 

(cell). The valence electrons are almost perfectly free, 

and are assumed to be represented by perfectly free 

electrons in a magnetic field, for the purposes of this 

calculation. The only contributions to the cohesive energy 

arises from interactions between the ion core and valence 

electrons, from the self energy of the electrons, from the 

kinetic energy of the electrons, and from the ionization 

energy of the electrons. However, the solution to Hartree's 

equations may differ appreciably from the solution to Fock's 

equation, which includes exchange terms. The exchange term 

can be included simply by adding one electron potential 
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terms in the case of perfectly free electrons or, as is 

shown below, in the case of perfectly free electrons in a 

magnetic field. Finally, it should be mentioned that the 

correlation energy between electrons of antiparallel spin 

need not be considered here since all electrons have spins 

antiparallel to the field. This can be seen by computing 

the energy difference between the two spin states in the 

magnetic field, The en.r^gy difference between energy levels, 

or between spin states for a given energy level for the 

electrons, is given by 

E difference = , (1) yc 

where e is the magnitude of the electronic charge, ft is 

Planck's constant divided by 2ir, c is the speed of light, n 

is the electron mass, and B is the magnetic field. Then 

E diff. - 1 x 10^ electron Volts (2) 

for fields of 1 x 10"*"^ Gauss, the smallest considered in 

this work. The electrons in the Fermi sea are all in the 

ground state with spin antiparallel to the field because the 

Fermi energy is less than the energy required to "flip" the 

spin. Similarly all electrons are in the ground state 

because the first excited state has energy greater than the 

Fermi energy and is therefore empty. We now examine each 
I 

of the five main contributions to the cohesive energy. 
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Ion-Core and Valence Electrons Potential Energy 

We choose a model in which the potential of the ion-

core is the unscreened coulomb potential of charge ze inter

acting with an electron shell of uniform density D and 

charge -Ze distributed over a thickness rs~R and described 

briefly above. The ion core can be shown to be spherically 

symmetrical (Mueller et al., 1971) but with a non-uniform 

charge distribution due to the so-called bound electrons 

for ranges of the magnetic field to be considered here. 

This part of the model is summarized by Figure 1. Such a 

model can be shown to give fairly accurate values of the 

energy associated with the bottom of the conduction band in 

the alkali metals (Seitz, 1940; Bardeen, 1938; Frohlich, 

1937). The charge density of the valence electrons is 

given by 

D = 4 Z! 3 ' <3> 

The potential of the ion-core is given by 

V(r) = ~ / (4) 

where V(r) is the potential and r is a distance restricted 

to values between R and r. The potential energy E^ is then 

given by 
r j 

E = /SD V(r) 47Tr dr, (5) 
° R 

o 
where 4-rrr dr is the volume element in the spherxcally 
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' ion-core 
non-uniform 
charge Ze 

valence electrons 
uniform charge -Ze 

Figure 1, Model for the ion-core and valence electrons *-«" 
The ion core has a radius R and a spherically 
symmetrical but non-uniform charge distribution. 
Its total charge is Ze. The valence electrons 
have a thickness rg-R and a uniformly distributed 
total charge of -Ze. 
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symmetric case. Substituting Equations (3) and (4) into 

Equation (5) gives 

E = -?[Ze\ fSrdr . (6) 
° (r -R ) R 

s 

A simple integration gives 

2 
F = - 2 <Ze> s m 

° 2 rs [l-(^-)3] 
s 

Valence Electron Self Energy 

Using the same model as in the previous section, we 

compute the self energy of a shell of electrons of uniform 

density. Assuming an unscreened coulomb force between the 

electrons, the self energy can be computed from 

l r 
•? 

Eself = f 'Sui<r>d 4'irr dr, (8) 
R 

where U^(r) is the coulomb potential of the valence 

electrons. U-^r) can be computed by integrating the 

electric field obtained from Gauss' law. The electric field 

is given by 4 t i 
dU„ (r) D^TT(r -R ) 

= -* s (9) 
3r 2 ' m 

r 

where r > rg, so that "*'s t^e Potential exterior to the 

charge; and (r) D4 (r3_R3( 
_ 1 = (10) 

dr 2 ' 1 ; 
r 

where rg > r > R. By integrating Equation (8) we get 
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4 3 3 
D^-tt (r^-R ) 

U2(r) = .J . rs . , (11) 

where the integration constant is zero since 

lim U (r) = 0 (12) 

2T->-co ' 

Similarly for r > r , the integration for the potential s 

gives 

2 3 
U^(r) = Djir^- - D + constant, (13) 

where the constant is determined by matching the condition 

at the boundary r = rg. We obtain 

3 4 2 constant = ~-7rr . (14) 
4 J s 

Finally we write 

4 3 
2 D^ttR a O 

U-^r) = Dj'rr— - Djirrs. (15) 

Equation (15) is substituted into Equation (8) to yield 

„ n2 4 ,Sr rz R 3 2, 2, 
self " 2"D I" ! [" T" _ T + 2rslr dr' (16) 

R 

which is easily evaluated as 

,  # 7  , 2  [ 1 "  2 ( Z" )  +  2 ( F" )  1  

E = | _(Ze) s , s , (17) 

seif 5 rs [1_(^_)3]2 

s 
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Kinetic Energy of Valence Electrons 

We assume that the motion of the valence electrons 

is equivalent to the motion of the free electrons in the 

magnetic field. Such a model is consistent with the model 

of valence electrons of the isolated atom in a strong 

magnetic field derived by Mueller et al. (1971) which is 

used later in this work. The assumption also agrees with 

that stated by Ruderman (1971) in which the kinetic energy 

of the electrons in the conduction band of the so-called 

"magnetic metal" is given, but not derived". The number of 

electrons dN in a given volume V, say the volume of a Seitz 

4 3 cell -r-irr , in a differential cross section of momentum «j s 

space dp dp dp (where the subscripts refer to the x,y,z 
x y z 

directions respectively) is given by 

dN = ~f(E)dp dp dp , (18) 
hJ x y z 

where h is Planck's constant, E is the total energy of the 

particle, and f(E) is the Fermi function. A factor 2 need 

not be included on the right hand side of Equation (18) 

because only one spin state is allowed, as explained above. 

However, not all momentum states are continuous even below 

the Fermi energy. If we assume that the magnetic field B 

is uniform and in the z direction, and of sufficient 

magnitude, then the energy levels are quantized orthogonal 

to the field. Equation (18) can then be rewritten 
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dN =-~f(E) 2 Try (~~) dp , (19) 
O \AL, 6 

where 

dp dp = 2TryE,. . (20) 
^x difference 

Equation (19) can be integrated since the energy spectrum 

of the free electrons in magnetic field is known (see 

Appendix A for the derivation of the eigenfunctions and 

eigenvalues from Goldman and Krivchenkov, 1961). Although 

the derivation per se is not new, several interesting 

properties are investigated and are used later in this 

work. This eigenvalue spectrum is 

2 

E = |5|(2n+l±l) + , (21) 

where n = 0, 1, 2, or any integer. The + in the paren

thesis refers to the spin antiparallel or parallel to the 

magnetic field for an electron. The ground state energy is 

then 2 

K " 27 ' (22) 

This can be substituted into Equation (19) to give 

dN = TTT2 (23) 
4?r h 

where the term in brackets is the Fermi function, E^ is the 

Fermi energy, and T is the absolute temperature in °K, and 

k is Boltzmann's constant. Substitute Equation (22) into 

Equation (2 3) to get 
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V eBr ,Pz ,r>.. 
dN = -^T2 ~[eXp(2~kT " kT dpz * (24) 

Equation (24) can only be integrated under the usual 

approximation that the term in brackets is one below the 

Fermi energy and zero above the. Fermi energy. This approxi

mation is valid if E^ >> kT or if T = 0 where it is exact. 

Equation (24) can be integrated between the limits -p^ to 

p^ (where p^ = /2|aE^ and is called the Fermi momentum) to 

give 

N = _V (2p , (25) 

4 ttV C £ 

Finally we can write 

o 4 4 2_2 
Ef = 2 2. ' (26) 

ye B 

where D = ^ is the electron density. For the free electrons 

contained in one Seitz cell, this can be written as 

, 4 4 2 .2 
Ef = ^4 3? * (27» 

ye B j(t rs) 

.A more general derivation is given (in Appendix B) for 

decreasing magnetic fields and increasing number of Landau 

energy levels below the Fermi energy. The general form is 

shown to approach the correct value of the Fermi energy in 

the limit of small fields. The average energy for each 

valence electron in the Wigner-Seitz cell (E^) is given by 

a weighted average of the energy integrated over the number 
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of particles. This can be written as 

- _ /EdN 
f /dN ( 2 8 )  

However, by integrating over a single cell we get 

/dN = Z. (29) 

Substituting Equation (29) into Equation (28), we get 

Ef = | /dN . (30) 

The integral is evaluated by using Equations (22) and (24), 

using the same approximation as in Equation (24) . After a 

little algebra we get 

This result is not unexpected since we are dealing with an 

essentially one-dimensional particle when considering an 

electron in the ground state Landau level with spin parallel 

to the magnetic field. The total kinetic energy E for all 

electrons in a Wigner-Seitz cell is given by ZE^ so that 

4 3 and remembering that V = -j Trrs in order to write 

(31) 

(32) 

(33) _ 2_,2 ,4 3,2 * 
3ye B (j^g) 
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Ionization Energy and Ionic Radius 

We use the results of Mueller et al. (1971) in the 

strong field case, who in turn, used the results of 

Kadomtsev (1970) to argue that the isolated atom retains its 

spherical shape even if its energy levels are affected. 

The essential point in this discussion is that the number 

density of the electrons is a superposition of almost 

completely overlapping ground state Landau wave functions 

for the direction orthogonal to the field (so that the 

density distributions of electrons significantly overlap) 

and hydrogenic wave functions for the direction along the 

field. The number density can be shown to depend only on 

the spherically symmetric potentials so that the atom 

remains spherical. Mueller et al= (1971) determined the 

ionization energy by minimizing the cohesive energy of the 

atom. They chose as the main contributors to the energy 

the kinetic energy of the electrons associated with the 

motion parallel to the magnetic field, the coulomb energy 

associated with the interaction between the electrons and 

nucleus, and the coulomb self energy of the electrons. 

— oiq2 
Since the electron density behaves as e K in the p 

direction (a is some constant unnecessary to define for 

purpose of this discussion), an obvious generalization which 

is spherically symmetric is e . 'To conform with the 

-1/2 usual Thomas-Fermi procedure an r behavior is chosen 

near the origin. The simplest choice which satisfies these 
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conditions is 

/ \ 1 N-Z , r2 ,r.-l/2 
n(r) = —— exp (- —y) (—) (34) 

2Trr(|) R R K 

where n(r) is the electron density, R is the ionic radius, 

N is the atomic number of the atom, Z is the valence, and 

T(x) is the gamma function. Substituting this expression 

into the equation for the cohesive energy gives for the 

g 
total ionization energy in the strong field case E. ^ lomz 

ES . = E B2/5N9/5[1-{1-|(|)2-j(|)3}3/5], (35) 
loniz const 4 N 4 N 

where the ionic radius is given by 

The constants Econst an<3 RConst are 9^ven by 

r<f> 20 3 2tr<|>l2 H V5 
p = 4 riip r_ H I 
const r,5> 2T \1/A 2 , 4 2  J 

" (jj 3 IT ft c e 
(37) 

2 oV4 _2 4 , /K p = RJT 3 C fa -I 1/5 
const 1 2 /r ,5. ,2 4 {r(-j)} ye 

All the symbols in the last two equations have been 

defined previously. The total ionization energy is the 

cumulative sum of the ionization energy for each individual 

electron. (The equations are shown explicitly and 

completely here because the authors included only 

numerically evaluated constants without final results or 

details of the calculation.) 
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The limits of validity of these expressions for a 

given atom, atomic number N, are determined at small 

magnetic fields by the condition that the energy necessary 

to excite the outer electron out of the ground state Landau 

orbital be small compared to the coulomb energy associated 

with attraction of that electron by the nucleus. Or, 

mathematically, 

> Nf!_ (38) 
jjc R(N) 

where R(N) is Equation (36) evaluated for Z = 0. We get 

upon substitution 

> (e£C 5/3 -5/3 4/3 (3g) 
lower h const 

where B, is the lower limit of the magnetic field lower ^ 

strength to which Equation (45) applies. This is equivalent 

to demanding that the ionization energy associated with the 

isolated atom in the absence of the magnetic field be 

smaller than in the presence of the field. 

The upper limit to the size of the magnetic field 

is determined by the condition that the assumption of a 

spherical atom be valid. That is, the radius of the Landau 

orbital associated with the outer electron in the direction 

orthogonal to the field must be larger than the ionic 

radius of the spherical atom. Mathematically we get simply 

PN > R (40) 

where pN is the Landau orbital of the outer electron. .pN 



can be calculated approximately by finding the stationary 

value of the probability distribution orthogonal to the 

field. The probability distribution (P) of the Landau 

eigenfunctions for the outer electron orthogonal to the 

field (the orthogonal direction represented by the co

ordinate p) is given approximately by 

2 
> 

2hc 
^ 2N-1 - , eBp , , .. . 
Pap exp ( ) . (41) 

The stationary value is found by minimizing Equation (41). 

A s'imple differentiation and solution of the resulting 

equations gives 

PN = (2N-1)1/2(~g01/2 • (42) 

Substitute this result into inequality (40) and solve for 

the magnetic field. We get 

B < 32(^0 5 R_1° (1- ^r)5N3, (43) upper e const 2N ' 

where BUpper i-s the upper limit of the magnetic field 

strength to which Equation (35) applies. These limits are 

evaluated below after discussion of the so-called ultra-

strong magnetic field case. The isolated atom in the ultra-

strong magnetic field case is no longer spherical but 

contracts in the direction orthogonal to the field. The 

major axis of the eliptically shaped atom is then parallel 

to the field. Since the ion is no longer spherically 

symmetric, the potential of the ion is not spherically 
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symmetric. The entire framework of the assumption breaks 

down unless the ion is stripped to the nucleus (in which 

case R = 0). However, since the effect of the deep-lying 

energy states related to the magnetic field (Haines and 

Roberts, 1969) changes the ionization energy significantly 

these are examined briefly here. The transition region 

between the two regimes is rather abrupt, so that the 

electrons are suddenly in the deep-lying energy states as 

the magnetic field is increased and are much less readily 

forced into the Fermi sea. (As a result it is expected that 

the number of valence electrons drops drastically, and 

becomes much lower than for the equivalent strong field 

case.) The condition that the deep-lying energy levels 

exist is that < R, the reverse of inequality (43). That 

is, the ionic radius of the spherical atom must be larger 

than the radius of the Landau orbital associated with the 

outer electron in the direction orthogonal to the field. 

We get 

B > 32<^)V«st(l- i)V. (44) 

As a first order approximation we ignore the distortion in 

the ionic shape of the isolated ion and assume that the 

ionic radius is given by Equation (36). However we modify 

the ionization energy to an approximate form similar to 

that given by Kadomtsev and Kudryavtsev (1971) and Mueller 

et al. (1971) for ultrastrong fields: 
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Eioniz = f? 2" <to^nh3> 2 '3N+Z» ' <45> 
8fx y e cN 

where the superscript U means ultrastrong and all the other 

symbols have been defined previously. This equation reduces 

to the result of Haines and Roberts (1969) for the hydrogen 

atom in the case N = 1 and Z = 1. 

We return now to defining the region of magnetic 

field strength to which Equation (35) is applied. This can 

be defined from inequalities (39) and (43) to be 

•io(ti£\5 r"10 n- -L» V > > (euc) 5/3 -5/3 4/3 
32(^> const (1 2N range ( 

h > RconstN ' 

(46) 

where Bs is the range of magnetic field strengths - to range ^ ^ 3 

which Equation (35) is applicable. Equation (46) is 

evaluated to give 

1.17 X 109(1- ̂ )5N3>B^nge>1.17 X 109N4/3, 

(47) 

The.limitation on the magnitude of the magnetic field, 

related to the functional form of the ionization energy 

used in the ultrastrong field case, is given from the 

arguments of the log in Equation (45) as 

B" . H3, (48) 
limit 3 h 

where i-s the limiting magnetic field strength to 

which Equation (45) is applicable. This is evaluated to give 
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Blimit >2-35 x 1q9N3. (49) 

Table 1 shows the classification of magnetic field strength 

regimes for a variety of elements spanning the range of 

magnetic field strengths considered in this work. 

Table 1. Range of Magnetic Field Strengths for Various 
Elements and Magnetic Field Strength Regimes 
Which are Applicable 

Magnetic Field 

Atomic No. 1010 io11 io12 io13 io14 

2 S,U U U u u 

6 N,S S S,u u u 

8 N,S S S,U u u 

10 N,S S S S,U u 

26 N,S S S S S,U 

The symbols in the table correspond to; 

N = normal atom perturbed by magnetic field, 

S = strong field regime. 

U = ultrastrong field regime. 

More than one symbol indicates a transition region 
in which neither approximation is totally valid, 



Exchange Energy 

As pointed out earlier in this work, the term 

involving the exchange energy arises out of Fock's modifica

tion of Hartree's first work on the one-electron approxima

tion to the solution of the many-body problem. Hartree's 

wave function is not intrinsically anti-symmetric under 

permutation of the space and spin variables. Th.e appro

priately anti-symmetrized wave function (Seitz, 1940) can 

be represented in terms of the Slater determinant whose 

elements are the wave functions of the individual electrons. 

This procedure leads to the so-called Hartree-Fock 

equations (or the Hartree-Fock-Slater equations) in which 

the electron-electron interactions give rise to two terms. 

Instead of the electron-electron coulomb term alone, a 

second energy interaction term appears which seems to 

correct for an electron's interaction with itself included 

in the electron-electron coulomb term, and simultaneously 

contains an interaction related to the Fermi repulsion 

between electrons with spin parallel to each other. The 

correlation term which results is the so-called exchange 

energy (electrons of anti-parallel spin do not give rise in 

this modification to any interaction). 

The total exchange energy of the crystal E ^ is 

represented by 

2 >p*(r )iJj^(r„)i)j, (r2)i|j . (rn) 
E  .  =  X  f  1  •  •  ^  -  — ~ 3  ± _  d V 7  d V _  ( 5 0 )  
exch 2 i] , r,„ 1 2 

V1 2 12 
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where and are the wave functions of two typical 

electrons in the system, the summation is over all possible 

pairs of electrons with parallel spin, r^ and r^ are the 

locations of the i and j electrons respectively before 

exchange and the j and i electrons respectively after the 

exchange, dv^ and dV£ are the appropriate volume elements 

necessary for integration over the two equivalent change 

distributions, and r^ is the magnitude of the vector 

difference between r^ and . The integration is over the 

volume of the crystal. In the usual case for simple 

metallic crystals the 4>' s are represented by plane waves— 

the solution for a free particle. The summation is over all 

allowable energy states, those between the bottom of the 

conduction band and the Fermi level. For the strong or 

ultrastrong magnetic field case, the appropriate wave 

functions are those of free electrons in the magnetic field. 

The summation is over all electrons since we have assumed 

that the energy of any electron excited out of the ground 

state is larger than the Fermi energy. The wave function of 

a free electron in a magnetic field in the ground state (see 

Appendix A) is 

. , . 7 1 ,eBx |ml+l 1 ikz imd> 
- fe-w1 

2-wi^re e  

p 

Substitution into Equation (50) yields 

1 eB 2 
4 eft p Iml (51) 


