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Epoxy-bonding a composite plate to tension face, is an effective technique for repair 

and retrofit of reinforced concrete beams. Experiments have indicated local failure of the 

concrete layer between the plate and longitudinal reinforcement in retrofitted beams. This 

mode of failure is caused by local stress concentrations at the plate end. as well as at the 

flexural cracks. A method has been presented for calculating shear and normal stress 

concentrations at the cut-off point of the plate. Stress concentrations predicted by this 

method have been compared to both finite element method and experimental results. The 

analytical models provide closed form solutions for calculating stresses at the plate ends 

and can easily be incorporated in design equations. 

The ultimate capacity of the reinforced concrete beams strengthened by composite 

plates bonded to the tension face, is controlled by either compression crushing of concrete, 

rupture of the plate, local failure of concrete at the plate end. or debonding of the plate. 

These failure modes have been considered in developing design guidelines for flexural 

strengthening of reinforced concrete beams using fiber composite plates. 

Bonding composite plates ( fabrics) to the web of reinforced concrete beams can 

increase the shear and flexural capacity of the beam. An analytical model has been 

developed to calculate the stress distribution in the strengthened beam, and the shear force 

resisted by the composite plate before cracking and also after formation of flexural cracks. 

Parametric study has been performed to reveal the effect of important parameters such as 

fiber orientation, and plate thickness. The ultimate shear capacity of reinforced concrete 
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beams is also increased by epoxy-bonding composite plates to the side faces of the beam. 

Truss analogy and compression field theory have been used to determine the effect of the 

composite plate on the crack inclination angle and the shear capacity of reinforced 

concrete beams at ultimate state. The effects of important peirameters such as plate 

thickness and fiber orientation angle on the crack inclination angle and the shear capacity 

of the strengthened beam have been investigated through a parametric study. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

In recent years, repair and retrofit of existing structures have been among the most 

important challenges in civil engineering. The primary reasons for strengthening of 

structures include; upgrading of resistance to withstand underestimated loads; increasing 

the load carrying capacity for higher permit loads; eliminating premature failure due to 

inadequate detailing; restoring lost load carrying capacity due to corrosion or other types 

of degradation caused by aging; etc. 

Different techniques have been developed to retrofit a variety of structural 

deficiencies. The traditional methods include steel jacketing of concrete columns, and 

external post-tensioning or bonding steel plates to concrete beams. 

For concrete columns, lateral confinement has been provided by means of steel 

jackets or fiber-reinforced-plastic (FRP) wraps (Priestly, et al., 1991) (Saadatmanesh, et al., 

1993). External post-tensioning has been used since early 1950's (Lee, 1952). The main 

disadvantage of external post-tensioning is required periodic testing and inspection of 

cables and anchorages, as well as transferring high anchorage forces to a relatively small 

area of the anchorage. Flexural and shear strengthening have been also performed by epoxy 

bonding steel or FRP plates to the tension face and the web of the beams, as shown in Fig. 

1.1. Steel plates have been used in many countries for flexural strengthening of concrete 



beams for several years (Dussek. 1980) (Macdonald & Gaidar. 1982) (Swamy, et al.. 1987). 

The main disadvantage of using steel plate is corrosion of steel which adversely affects the 

bond at the steel concrete interface. The problem is more severe for bridges where deicing 

chemicals Eire commonly used during cold seasons. In order to eliminate the corrosion 

problem, steel plate has been replaced by FRP plate. 

Fiber reinforced plastic materials have been used successfully in the aerospace 

industry for several decades. These materials can be made from different types of fibers and 

matrices. Tliey have been used in severjil forms such as rebars. plates, and fabrics, in a 

variety of structural members. FRP plates are not prone to electrochemical corrosion as is 

steel. Furthermore, they can be formed, fabricated and bonded easier than steel plates. 

FRP's generally behave linearly elastic to failure if loaded in the fiber direction. The 

mechanical properties of FRP vary with the type and orientation of the reinforcing fibers. 

Therefore, the fibers can be placed in any orientation to maximize the strength in a desired 

direction. 

1.2 Problem Statement 

In strengthening reinforced concrete beams by bonding plates to the tension face, a 

specific type of failure has been reported. This failure which is generally referred as "Local 

Failure", results from high shear and normal (peeling) stress concentrations at the plate end. 

Local failure initiates by cracking of concrete beam at cut-off point of the plate. The cracks 

eventually propagate through midspan of the beam, leading in complete debonding of the 
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plate (Fig. 1.2). In this way. the strengthened beam can not reach to its ultimate flexural 

capacity, which is generally calculated based on plate rupturing, or crushing of concrete. 

Closed form solutions are required to calculate the stress concentrations, and to provide the 

necessary tools for proper designing of the strengthened beam. 

There has been a large number of experimental and analytical studies demonstrating 

the effectiveness of flexural strengthening of reinforced concrete beams using composite 

plates. However, in order for practicing engineers to be able to use this retrofit system 

design guidelines are required. The second part of this study presents a comprehensive 

design methodology and guidelines for strengthening of concrete beams with epoxy bonded 

composite plates or fabrics. 

Experimental study of reinforced concrete beams strengthened with web-bonded 

FRP plates has shown significant increase in bending and shear capacity of the beam. 

However, application of the method has been mostly limited to research activities. 

Analytical study of this type of strengthening provides the necessary tools for its field 

applications. The method used by American Concrete Institute (ACI) for calculating shear 

capacity of the reinforced concrete beams is based on truss analogy and assuming that shear 

cracks are formed in an inclination of 45 degrees. This assumptions should be modified 

in case of strengthening of the beam. Parameters such as fiber orientation angle and plate 

thickness affect the inclination angle, and must be considered in estimating the shear 

capacity of the beam 
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1.3 Scope of the Study 

Reinforced concrete beams strengthened with FRP plates bonded to the bottom face 

for flexural strengthening, or to the side faces for shear strengthening have been studied, 

throughout the following sections. 

1.3.1 Stress Concentrations in Reinforced Concrete Beams Strengthened with FRP Plates 

hi strengthening reinforced concrete beams with FRP plates, different failure modes 

have been reported (Ritchie, et al.. 1991) (Saadatmanesh. and Ehsani, 1991). TTiese modes 

can be divided into two general categories of "flexural" and "local" failures. "Flexural 

failure" is defined as concrete crushing in compression or plate rupturing in tension. "Local 

failure" is defined as the peeling of the FRP plate at the location of high interfacial stresses 

and shear failure of the concrete layer between the plate and the longitudinal reinforcement, 

as shown in Fig. 1.2. 

Flexural failure has been already investigated analytically (An. et al.. 1991). This 

part of study has been concentrated on analytical modelling of "local failure." Since in 

many cases the failure of retrofitted beams is governed by the "local" failure, the 

investigation of the stresses at the concrete/FRP interface is an important issue in the 

analysis and design of this type of beam. 

Closed form solutions have been presented for calculating the shear and normal 

interfacial stresses. In order to verify this method, the results have been compared to those 

of the finite element and experimental studies. Although the method has been developed 
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based on uncracked beam, its validity for cracked beams has been also investigated. 

1.3.2 Design Guidelines for Flexural Strengthening of Reinforced Concrete Beams Using 
FRP Plates 

The ultimate capacity of the reinforced concrete beams strengthened with FRP 

plates is controlled by either compression crushing of concrete, rupture of the plate, local 

failure of concrete at the plate end, or debonding of the plate. These failure modes have 

been considered in developing design guidelines for strengthening reinforced concrete 

beams using fiber composite plates. The effect of multi-step loading of the beam, before 

and after upgrading, has been also considered. Limit state design procedure has been 

followed in this study. Terms, definitions and notations compatible to ACl design 

guidelines for ordinary reinforced concrete beams have been utilized. 

1.3.3 Analytical Study of Reinforced Concrete Beams Strengthened with Web-bonded 
FRP Plates 

Epoxy-bonding composite plates ( fabrics) to the web of the reinforced concrete 

beams can increase the shear and flexural capacity of the beam. This part of study presents 

an analytical model to calculate the stress distribution in the strengthened beam, as well as 

the shear force resisted by the composite plate, considering orthotropic behavior of the 

plate. 

The method has been developed based on complete bonding, and using 

compatibility of the strains in the plate and the reinforced concrete beam. The validity of 
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the assumptions used in the method has been compared to the finite element method. A 

parametric study has been performed to reveal the effect of important parameters such as 

fiber orientation on the shear force resisted by the composite plate. The method has been 

developed for both uncracked and cracked beams, and it has been used for stress analysis 

of this type of beams. 

1.3.4 Ultimate Shear Capacity of Reinforced Concrete Beams Strengthened with Web-
Bonded FRP Plates 

The ultimate shear capacity of reinforced concrete beams is increased by epoxy-

bonding composite plates to the side faces of the beam. The crack inclination angle is 

changed as a result of bonding the plate. In this part of study truss analogy and 

compression field theory have been used to determine the effect of the plate on the 

inclination of the cracks in the reinforced concrete beams at ultimate case. Subsequent to 

calculation of the crack inclination angle, the equilibrium and compatibility equations have 

been used again to obtain the shear force resisted by the plate. 

A parametric study has been carried out to reveal the effect of important parameters 

such as plate thickness and fiber orientation on the crack inclination angle. The upper 

bound of crack inclination angle found in this study can be used as a conservative value to 

determine the effectiveness of the plate. Knowing the inclination of the cracks, the shear 

force in the composite plate and concrete beam can be calculated and used to design this 

type of beam. 
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CHAPTER 2 

LITERATURE REVIEW 

Reinforced concrete beams strengthened with extemally bonded steel or composite 

plates have been studied both experimentally and analytically by several researchers. 

2.1 Concrete Beams Strengthened with Steel Plates 

MacDonald and Calder (1982) tested 4.9 m and 3.5 m beams with steel plates 

bonded to their tension flange, in four point bending. Significant improvement in terms of 

ultimate load, crack control and stiffness was observed. The effect of several parameters 

such as type of adhesive, multi-layered plates, and plate geometry was investigated. Using 

a stiff adhesive resulted in an increase of about 100% in visible cracking load. In this case 

the crack pattern was changed to develop more cracks with closer spacing. The mean 

increase in the failure load of the beam plated as-cast and plated pre-cracked was 71%. The 

failure modes, were yielding of both internal and external reinforcement, and horizontal 

shear failure occurring in the concrete layer between internal and external reinforcement 

resulting in complete separation of the plate. The recent mode of failure was more often 

observed for cases that thicker and narrower plates were bonded to the concrete beam. The 

shear stress calculated based on maximum strain gradients could not provide a reasonable 

estimate of the shear stress concentration at the plate end. 

The exposure tests were performed for three different climates of high rainfall, 

industrial, and marine environments. A significant amount of corrosion at the steel/resin 
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interface was observed. The interfacial corrosion led to strength reduction in the 

strengthened beam. 

VanGemert and VandenBosch (1985) studied the effects of fatigue, long term 

exposure in the outside climate, and thermal loads on reinforced concrete beams 

strengthened with double layers of steel plates. In all the laboratory experiments and also 

practical applications the method was proven to be a reliable one. The fatigue tests showed 

that no redistribution of stresses took place by deformation in the glue or by any failure of 

the glued connection. Atmospheric conditions had no remarkable. influence on the 

mechanical properties. The fiill-scale thermal loading tests showed that cold-hardening 

epoxy had a poor thermal resistance. For low temperatures there was no decrease in 

ultimate load, however at high temperatures ( about 60°C ) it was unable to transfer shear 

stresses properly, and a crack propagated through the epoxy joint, initiated at the plate cut­

off point. At lower temperatures local shear failure in the concrete occurred at the end of 

the plate. 

Swamy et al. (1987) investigated the effect of bonded steel plate on some of the 

important mechanical properties of the concrete beam such as initiation of cracking, 

postcracking behavior, deformations, and ultimate strength. 

Twenty four beams were tested and the effects of adhesive and plate thicknesses 

were investigated. Several beams with lapped plates, double plates and variable thickness 

of adhesive along the beam were also tested for comparison. The results showed increase 

in flexural stiffness and ultimate capacity and decrease in cracking and structural 
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deformations at all levels of loading. Lapped plates, precracking prior to bonding the plate, 

and variable adhesive thickness had no adverse effect on the structural behavior of the 

strengthened beam. 

Hamoush and Ahmad (1990) performed an analytical study on interfacial failure of 

damaged reinforced concrete beams strengthened with steel plates. They used linear 

fracture mechanics and finite element method to study a simply supported beam under four 

point bending. In order to simulate the damaged beam, they assumed a number of vertical 

flexural cracks in the beam. Furthermore, they assumed that as a result of opening of the 

flexural cracks, interfacial cracks are initiated and extended toward the supports. Eight-

node isoparametric elements together with four node ones were used to model the beam. 

After applying the loads, the stress intensity factors for modes 1 and II. deflection of the 

beam, and strain energy release rate were obtained by using finite element method. 

They also tested six beams, and the results of one of them which experienced 

interfacial failure was compared to finite element results. Based on their parametric 

studies, the length of the interfacial crack which maximized the strain energy release rate 

was obtained to be equal to the length of the flexural crack. They also concluded that 

undamaged strengthened beam has a very small strain energy release rate, resulting in a 

very high debonding load. The existence of large number of flexural cracks was observed 

to reduce the stress intensity factors and energy release rates. The effect of thickness of the 

adhesive layer was observed to be negligible. 

Ziraba et al. (1994) combined principles developed by ACI for design of unplated 
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beams together with experimemal and numerical results to develop design guidelines for 

reinforced concrete beams strengthened with steel plates. They carried out a parametric 

study using finite element method to investigate the possible modes of failure in this type 

of beam, and to develop appropriate expressions for interfacial stresses. They suggested 

using external jacketing in the shear span region to arrest concrete rip-off failure and to 

insure flexural mode of failure. 

2.2 Concrete Beams Strengthened with Composite Plates 

Meier (1987) studied the utilization of carbon reinforced plastic sheets in 

rehabilitation applications. He tested a series of twenty six reinforced concrete beams 

strengthened by CFRP plates bonded to the tension face. He showed that steel plates can 

be replaced by composite plates, which are more economical considering construction 

expenses. The addition of FRP plates doubled the strength of the beam, and reduced the 

deflection to half of the unplated beam. 

Saadatmanesh and Ehsani (1990) studied the effect of chosen adhesive material on 

the performance of the concrete beams strengthened with composite plates. They 

constructed five reinforced concrete beams of 1675 mm length, four of them externally 

reinforced with glass fibers. Four different types of two-component epoxies were used. 

The first beam (A) failed without any significant increase in strength comparing 

to the control beam. The reason of this ductile behavior was high flexibility of the adhesive 

that prevented any load transfer fi-om concrete beam to the composite plate. The second 



beam (B) failed in shear, initiated by peeling off of the concrete bonded to the plate at the 

location of shear cracks. The third beam (C) failed due to horizontal shear failure in the 

concrete layer between longitudinal steel rebars and the plate. The fourth beam (D) failed 

as a result of debonding of the plate following the initiation of the large flexural cracks in 

the concrete beam. They concluded that effectiveness of this technique highly depends on 

the mechanical properties of the adhesive material. 

Saadatmanesh and Ehsani (1991) studied the static strength of reinforced concrete 

beams strengthened with glass fiber reinforced plastic (GFRP) plates bonded to the tension 

flange. Five rectangular beams (A through E) and a T-beam (F) were tested . The beams 

were 4.88 m long, and were tested under 4-point bending. Ready mixed concrete, and a 

two-component epoxy with a lap shear strength of 14-15 Mpa were used in making the 

specimens. The epoxy thickness was maintained on an average of 1.5 mm. The concrete 

compressive strain, plate tensile strain and deflection of the beam were measured during 

the test. 

Failure in beam (A) was caused by crushing of concrete in compression zone. The 

load verses deflection curve showed reduction in stiffness following to the yielding of the 

tensile reinforcement. 

Beam (B) failed as a result of debonding of the composite plate and the beam prior 

to reaching the crushing load of the concrete. The debonding occurred suddenly and in a 

brittle manner. However, there was no major damage in the beam and it could still resist 

loads after debonding of the plate. 
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Beam (C) was cambered before bonding the plate. The beam failed as a result of 

sudden failure of concrete between the plate and longitudinal steel rebars. Measured load-

deflection curve showed some disagreement to the calculated one. which was due to local 

debonding of steel and concrete. 

Beam (D) was precracked prior to bonding the plate. It was also cambered in the 

same manner of beam (C). Due to precracking. the load-deflection curve did not exhibit 

any reduction of stiffness as a result of cracking of concrete. The failure in the beam was 

caused by shear failure of the concrete layer below the steel rebars. 

Beam (E) was reinforced only by composite plate bonded to the tension flange. 

Plating could only slightly increase the load carrying capacity of the beam, and it failed due 

to opening of the large cracks before concrete can reach to its ultimate compressive 

strength. 

Beam (F) had a T-section and the composite plate bonded to the tension flange 

without cambering. It failed by premature separation of the plate and the beam, due to poor 

workmanship in surface preparation and bonding. 

The overall result of their study indicated that significant increase in the flexural 

strength is achieved by bonding GFRP plates to the tension face. The increase is more 

significant for beams with lower steel reinforcement ratios. Plating reduces the crack size 

in the beam, and at the same time ductility of the beam. Their experiments also showed 

that additional analytical and experimental work were required to predict failure of the 

concrete layer between the tensile steel rebars and composite plate. 
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An et al. (1991) developed analytical models based on equilibrium and 

comaptibility of deformations in the strengthened section, to predict the stresses and 

deformations of the strengthened beam. Moment-curvature diagram was developed for the 

strengthened beam and was compared to unplated beam, as well as to experimental results. 

Their model was capable of analyzing strengthened beams with both rectangular 

and T-shape cross sections. The main assumptions in developing their model were: linear 

strain distribution through the fiill depth of the section, small deformations, no tensile stress 

in the concrete, no shear deformations, and no slip between composite plate and concrete 

beam. Furthermore, they assumed that cross section of the plate is small enough to avoid 

shear failure in the concrete layer between the plate and steel rebars. 

A computer program was developed and used through a parametric study. The 

effect of design variables such as steel reinforcement, plate cross sectional area, plate 

ultimate strength and stiffhess, and compressive strength of concrete was studied. Moment-

curvature diagram was generated for strengthened beams with both rectangular and T-shape 

cross sections. The failure of the beam was defined as either reaching the ultimate 

compressive strain in concrete, or the plate tensile strength. 

Their parametric study revealed that this technique is particularly effective for 

concrete beams with relatively low steel reinforcement ratio. Unlike ordinary reinforced 

concrete beams, increase in the compressive strength of concrete could appreciably 

increase the ultimate moment of the section. 
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Ritchie et al. (1991) tested a series of 16 under-reinforced concrete beams 

strengthened with glass, carbon, or aramid reinforced plastic plates. The plates used in this 

study were as follows: 

- A molded standard pultruded fiberglass sheet (four beams). 

- 0/90° molded fiber reinforced plastic (one beam). 

- Molded fiberglass channel, splitted in two angles (one beam). 

- 0/90° 65 percent glass/35 percent carbon reinforced plastic (one beam). 

- A spring-orientation glass fiber reinforced plastic (one beam). 

- 0/±60° carbon fiber reinforced plastic (one beam). 

- 0/90° carbon fiber reinforced plastic (one beam). 

- Unidirectional aramid fiber reinforced plastic (one beam). 

- Mild steel plate (two beams). 

Two of the beams were tested unplated as control specimens. A two-part rubber-

toughened epoxy was used for bonding the plates. The control beams were loaded to 

failure in one cycle, while strengthened beams were cycled up and down several times to 

determine permanent displacements. The loading was force-controlled as long as part of 

steel reinforcement remained elastic. For plastic range, and also for control beam and the 

beams strengthened with steel plates only deflection control was used. 

hi order to shift the mode of failure from local failure to flexural failure, as well as 

to increase the ultimate capacity of the strengthened beam, four types of modifications were 

applied. 
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The first modification was anchoring the end of the plate by using fiberglass angles 

with unequal legs. This method increased the ultimate load, but could not change the mode 

of failure. 

The second method was bonding full-height FRP plates to side faces of the beam 

at the plate ends. They were connected to the longitudinal plate by using fiberglass angles. 

This technique led to higher load carrying capacity, and also shifted the mode of failure for 

one of the beams, while on the other two the failure occurred as a result of debonding of 

the plate followed by the local failure of the beam. 

The third method was replacing the plate with a pair of angles bonded along the 

underside of the beam and extended above the longitudinal steel reinforcement. This 

method was also ineffective in shifting the mode of failure. 

The last method was extending the plate right up to the supports. It was very 

successful in increasing the capacity of the beam, and also shifting the mode of failure. 

This method was more effective for the cases that the ratio of shear to moment was low. 

The cracking pattern in most of the cases was shifted from several widely spaced 

and large cracks to many more closely spaced and narrower cracks. This is very 

advantageous from serviceability point of view. The strengthened beam did not 

demonstrate ductile behavior in the same manner of the unplated beams. However, the 

authors pointed out that ordinary heavily reinforced concrete beams would not be more 

ductile than strengthened beams, hi all cases using FRP plates could appreciably increase 

stiffness and strength of the beam, that indicates the effectiveness of using the plates. 
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Uji (1992) performed experiments on a series of eight concrete beams 

lOOmw X 200mm in cross section and 3000mm long. Two of the beams were used as 

control beams without any plate, the remaining were strengthened with continuous fiber 

sheets wrapped around the beam, bonded to the sides, or passed across the cracks. The 

comers of the wrapped beams were rounded to avoid rupture of the plate. 

The beams were tested in four point bending. Three of the strengthened specimens 

and one of the control specimens (containing stirrups) failed in flexural compression. 

However, the stirrups of the unplated beam yielded, while those of plated ones did not. 

This indicates that carbon fiber sheets have resisted a part of the applied shear force. For 

specimens without stirrups, the performance of the beam was highly improved by using 

composite sheets, however, this improvement was not as high as that resulted from using 

stirrups. In one of the wrapped beams the fibers ruptured at the comer of the beam, 

remarking the importance of rounding the comers with flatter curves before bonding the 

sheets. Debonding of the plate occurred for specimens strengthened with web-bonded 

plates. The resisted load was higher for 45° fiber orientation. Debonding began from 

diagonal shear cracks, and then propagated outward intersecting the edge of the sheet. The 

ratio of the transferred force to the debonded area was determined to be almost constant, 

giving the approximate shear strength of the bonded area. However, this conclusion has 

not been generalized to large beams. 

In the specimens with both composite sheets and stirrups, the shear capacity of the 

beam was reported to depend on thickness and stiffness of the plate, as well as the length 
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of the debonded fibers. 

A method was also developed based on compatibility of deformations between steel 

stirrups and debonded fibers to calculate the shear resisted by the composite sheet. For 

design purposes this method should be used iteratively, to find the debonding length that 

satisfies equilibrium equations, and to analyze the section consequently. 

Triantafillou et al. (1992) bonded pretensioned CFRP sheets to the tension zone of 

concrete beams to study the behavior of the strengthened beam. They tested four plain 

concrete beams of 600 mm length. The specimens were cut out of a one-year-old concrete 

wall. They used driiled-out cylindrical specimens of the same wall to obtain the 

mechanical properties of the concrete. Torsion pendulum tests showed transition 

temperature of 60° C for the epoxy used for bonding the plates in their experiments. 

The FRP ends were clamped by steel plates in order to minimize the stress 

concentrations at those points. The plates were bonded by using high-performance epoxy 

adhesive cured in a hydraulic press under constant pressure and temperature. The CFRP 

plates were pretensioned to the desired load before applying the adhesive on the surfaces 

of the concrete and the composite plate. Thereafter, the concrete beam was placed on the 

sheet. After curing the adhesive for three days, the pretensioning load was released 

gradually ft-om one end, until the first visible cracks were appeared above the concrete-

adhesive interface. In this way, the maximum achievable pretension level was computed 

as the difference between the load corresponding to first cracking, and the initial 

prestressing force. All of their beams failed by localized peeling-off of the plate due to 
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diagonal cracks, followed by slip of the plate. They also developed an analytical model to 

determine the maximum achievable prestressing force in the composite plate. 

Dolan et al. (1993) investigated the effect of composite plates on the flexural and 

shear behavior of T-section concrete beams, when wrapped around the soffit of the beam. 

A series of four T-beams were constructed and kevlar fibers were bonded to three 

of them. The surface of the beams were roughened by wire brushing, but sandblasting was 

reported as a better method to remove the loose surface materials. The composite wrap was 

clamped during the curing process of the adhesive. 

Design equations developed by ACI for contribution of steel stirrups in shear 

capacity of ordinary reinforced concrete beams were modified to incorporate the effect of 

the plate. This modification was performed by replacing strength over spacing of the steel 

stirrups by tensile strength per unit length of the composite fabric. In this way the ultimate 

shear strength of the strengthened beam was approximated. 

The unplated beam failed in flexural shear, while the strengthened beams could 

fully develop the flexural capacity of the beam showing enough shear capacity as a result 

of using the composite wraps. These beams showed higher strength and stiffness than the 

unplated ones, and the moment deflection curve was almost linear which was distinguished 

as a result of linear elastic behavior of the composite wraps. It was observed that 0° plies 

undergo larger strains and this is accompanied by local delamination of the fibers. Sharp 

comers of the beam soffit may lead to air pockets in the adhesive around these points and 

must be considered during the strengthening process. 
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Norris et al. (1994) tested a series of twenty one beams, strengthened with carbon 

fibers bonded by a two-part room temperature cured epoxy resin. The beams were of two 

different lengths of 1220 mm and 2440 mm. The shorter beams were used as shear 

specimens, and the longer ones as flexural specimens. Three different types of FRP 

systems, and four different types of fiber orientations were used. 

The first system consisted of unidirectional continuous fiber sheets adhesively 

bonded to a fiberglass scrim and cross fibers. The bonding adhesive was used to maintain 

the geometry of the product, and not to surround the structural fibers as in a prepreg. The 

second system was a unidirectional stitched fabric with a two-part epoxy. The last system 

was a woven fabric. 

FRP specimens were tested to determine the stiffness and strength of the plates. 

Test specimens were made in fiber orientations of 0°, 90°. and ±45° for unidirectional 

systems (A and B). Since the third system (C) was a balanced weave, three specimens in 

each of the fiber orientations of 0/90° and ±45° were made and tested. The elastic 

modulus in the longitudinal and transverse directions, as well as the shear modulus and 

poisson's ratio were outcome of these tests. 

The composite plates were used to provide both flexural and shear strengthening 

for the concrete beams. Some of the beams were strengthened over the entire length, while 

for others web-strengthening was achieved only near the supports. Strain gages were 

assembled on different points and different orientations to allow better study of the strain 

variations along the beams. Some of the beams were precracked in order to simulate the 



effect of cracks which are initiated due to loading of the beam prior to strengthening 

process. 

They observed that the effect of the plates bonded on the web was not significant 

before yielding of the steel rebars. After that, the plate resisted against opening of the 

cracks and could appreciably affect the stiffness of the beam. 

Different modes of failure were observed. Beams with longitudinal fibers bonded 

to the tension face failed due to local failure in the concrete layer located between steel 

rebars and the composite plate. Some of the beams with [0/90°] fiber orientation failed as 

a result of crushing of concrete or rupture of the plate. Beams with [45/-45°] fiber 

orientation, failed in a ductile manner with least improvement in bending. In all the studied 

cases the bonded composite had a significant effect on ultimate flexural and shear strength 

of the concrete beam. 

Chajes et al. (1996) studied the bond strength and force transfer of graphite/epoxy 

composite plates adhered to concrete blocks. Single-lap shear test specimens were used. 

Composite plate of 25mm width was bonded to a concrete block with a 75mm bond length. 

The force was then applied to the top of the composite plate. 

In the first set of their tests the effect of surface preparation, type of adhesive, and 

concrete strength on average bond strength was investigated. Based on their experiments, 

using a mechanically abraded or sandblasted concrete surface, applying a primer, and 

roughening of the composite plate surface before bonding was recommended. They also 

recommended a specific type of adhesive material that had a better performance. 
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In most of the cases the failure of the bond occurred as a result of shearing of the 

concrete directly beneath the bond surface. In this case the ultimate bond strength was 

observed to be proportional to ( where is the compressive strength of concrete). 

The second set of their tests was carried out to investigate the effect of the bond length on 

the force transfer from the plate to concrete. It was concluded that there is a bond 

development for a joint beyond which no further increase in the failure load is achievable. 

The importance of developing analytical models including the effects of concrete strength, 

adhesive layer thickness, and also mechanical properties of concrete was reminded. 
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COMPOSITE MATERIALS CONSTITUENTS 

3.1 Introduction 

Progressive technology demands high-strength, light-weight and durable materials 

for construction applications. The newly developed composite materials were initially used 

in aircraft technology because of their high specific strength and stiffhess. These materials 

have been used recently in civil engineering applications because of their superior 

mechanical properties as well as their resistance to aggressive environmental factors. These 

characteristics are what makes composites attractive as compared to conventional 

construction materials such as steel. 

In general, a composite can be defined as a combination of two or more materials, 

essentially without any chemical interaction and insoluble into one another, such that some 

specific properties of the combination is better than that of the individual constituent. Fiber 

reinforced composites have a basic advantage in that they can be fabricated from a wide 

variety of reinforcement and matrix materials, so that a designer can choose constituents 

based on specific design considerations. The mechanical properties such as strength, 

stifftiess, toughness and fatigue strength are generally high. 

In the following sections, properties of typical fibers and resins will be discussed. 

This discussion is not exhaustive, but is limited to the types of fibers and resins that have 

potential for application in construction. 
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3.2 Fibers 

The American Society for Testing Materials (ASTM). Committee D30. defines 

fibers as elongated materials with aspect ratio of at least 10:1. maximum cross-sectional 

area of 5 x 10 " mm\ and maximum transverse dimension of 0.25 mm (Gill, 1972). Fibers, 

natural or synthetic, are the fundamental constituent of a fiber reinforced composite. They 

occupy the largest volume and are the major load carrying element of the composite. 

Proper selection of type, amount and orientation of fibers results in a composite with 

desired mechanical characteristics such as tensile and compressive strengths, elastic 

modulus, fatigue strength, and cost. 

Fibers used in tensile elements in structural engineering must meet some basic 

requirements, such as: high strength; high stiffness, sufficient elongation at the tensile 

fracture; high toughness; durability; low cost; and availability in suitable forms. 

Furthermore, the diameter of the fibers must be small enough to provide a high specific 

area to develop the necessary bond for ensuring satisfactory transfer of shear stresses to the 

matrix. Smaller diameter fibers also reduce the possibility of surface flaws. Important 

parameters related to fibers that affect the engineering performance of a fiber reinforced 

composite are: 

Length: Fibers are used in short and long forms. Short fibers are generally randomly 

distributed and oriented to result in almost homogeneous behavior. Long fibers are 

oriented in a specific direction to optimize the structural performance. 

Cross sectional shape: In general, most fibers have circular cross sections. However. 
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hexagonal, rectangular, polygonal, annular (hollow circle) and irregular cross sections are 

used in some cases to improve certain mechanical properties. Circular fibers achieve a 

better interface behavior than the other types. 

Type: The type and chemical composition of fibers affect several properties such as: 

durability, stress-strain relationship, toughness, and fatigue resistance. 

The following sections describe basic characteristics of the most commonly used 

fibers in polymer composites. 

3.2.1 Glass 

Glass fibers are widely used for polymeric (plastic) matrix composites. Molten 

glass can be drawn into fine continuous filaments, which are bundled into yams and 

rovings. These rovings can be fabricated into chopped fibers, continuous strands, chopped 

strand mats, woven fabrics and milled fibers, before using as reinforcement in composites. 

Fiber surfaces are coated during the manufacturing process to improve complete wetting 

by the resin, and provide better adhesion between matrix and fibers. 

The strength reached with glass fiber is highly dependent on the form in which the 

fiber is used. Continuous fibers can reach the highest strength levels, whereas chopped 

fibers, despite easy manufacturing have the lowest specific strength. The average ultimate 

tensile strength of freshly drawn glass fibers may exceed 3500 MPa (500 ksi); however, 

surface flaws tend to reduce it to values in the range of 1750-2100 MPa (Mallik. 1993). 

Strength degradation is increased as the surface flaws grow under cyclic loads. This is one 
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of the major disadvantages of using these fibers in fatigue applications. Sustained loads 

also cause surface flaws to grow, resulting in reduced tensile strength (static fatigue). 

Figure 3.1 shows reduction of strength versus time for E-glass fibers under different 

temperatures (Mallik. 1993). 

The behavior of the bond between glass fiber and plastic matrix highly affects the 

mechanical properties of the composite. The resistance of the composite against 

degradation upon aggressive environmental exposure also depends on the bond. Glass is 

a polar material, so when exposed to moisture, it is coated with a number of molecular 

layers of water that can adversely affect the bond. Coating with a coupling agent will 

provide a flexible layer at the interface. In this way. the strength of the bond is improved 

and the number of the voids in the material is reduced. The strong bond between glass fiber 

and the coupling agent prevents any undesired effect on the interface (Schwartz. 1992). 

Water presence also reduces the strength of fibers by deepening the surface flaws already 

present in the fibers. In spite of the aforementioned disadvantages, glass fibers are 

inexpensive to produce, they have a relatively high strength and good resistance to 

environmental factors when properly protected. 

The internal structure of glass fiber is a three-dimensional network of different 

atoms. Therefore, glass fibers are amorphous and isotropic. The tensile modulus of these 

fibers is less than the other commonly used fibers such as carbon and Kevlar. They behave 

linearly elastic to failure. Glass filaments are typically round, having diameters ranging 

from 5 to 25 microns. 
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A variety of glass fibers have been produced for different applications. The most 

common are E-glass. S-glass, C-glass and D-glass. The following provides a brief 

description of properties of these glass fibers. 

E-glass; 

This type of glass was developed specifically for production of continuous fibers, 

for use in electrical applications. It has good insulation properties, and is the least 

expensive of all glass types. The low cost of this type of glass is the main reason for its 

wide application in fiber reinforced plastic (FRP) industry. It has been used in FRPs 

ranging from decorative to structural products. 

S-glass: 

The tensile strength and modulus of elasticity of this type of glass are about 25% 

and 20% greater than E-glass, respectively. Despite the higher tensile strength and 

modulus, the higher cost of S-glass makes it less popular than E-glass. Typical 

compositions of E-glass and S-glass are listed in Table 3.1 (Schwartz. 1992). Table 3.2 

summarizes the physical and mechanical properties of E-glass and S-glass (Mallik. 1993). 

C-glass: 

This type of glass was developed for applications in corrosive environments, where 

chemical attack can preclude the use of E-glass. It is primarily used where fibers are 
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exposed to acidic environments. 

Table 3.1 Composition of E-Glass and S-Glass Fibers 

Glass Primary Components by Percent Weight 

Type SA AW, CaO MgO B2O5 Na20. 

K,0 

E 52-56 12-16 16-25 0-6 8-13 0-3 

S 65 25 — 10 — ~ 

Table 3.2 Typical Properties of Glass Fibers 

Fiber Virgin Tensile Modulus of Elongation CoeflRcient Poisson's 

Type Strength (GPa) Elasticity at Failure of Linear Ratio 

(GPa) (%) Thermal 

Expansion 

(10^/°C) 

E-Glass 3.45 72.4 4.8 5 0.2 

S-Glass 4.30 86.9 5 2.9 0.22 

D-glass; 

In applications where dielectric properties are important. D-glass is used. The lower 

density and dielectric constant of D-glass make it more attractive for certain applications. 



3.2.2 Carbon 

Although the terms "carbon" and "graphite" are used interchangeably for defining 

these types of fibers, there are some significant differences between these two. The 

difference between carbon and graphite comes ft-om molecular structure. Carbon atoms are 

arranged in crystallographical parallel planes of regular hexagons to form graphite. In 

carbon, the bonding between layers is weak, so it has a two dimensional ordering. 

Carbon and graphite fibers are produced by thermal decomposition of precursors 

such as rayon (cellulose), poly-acrylonitrile (PAN) and pitch (a by-product of petroleum 

distillation or coal coking). PAN type carbon has achieved market dominance due to its 

relatively low product cost and good physical properties. The manufacturing process for 

this type of fiber consists of several stages. These are oxidation (at 200-300°C ), different 

stages of carbonization (at 1000-1500°C and 1500-2000°C ), and finally graphitization 

(2500-3000°C ). Materials with different properties result from different stages of this 

process. Graphite has a higher tensile modulus than carbon. Therefore, high-modulus 

fibers are produced by graphitization. 

Carbon fibers are commercially available in three basic forms: long and continuous 

tow. chopped (6-50 mm long), and milled (30-300 ixm long). The long and continuous tow. 

which is a bundle of 1000 to 160,000 parallel filaments, is used for high performance 

applications (Mallik, 1993), (Schwartz, 1992). The price of carbon fiber tow decreases 

with increasing filament count. Although high filament counts are desirable for improving 

productivity in continuous molding operations, it becomes increasingly difficult to wet 



them with the matrix. Carbon fiber tows can also be woven into two dimensional fabrics 

of various styles. 

For applications in high strength composites, graphite fibers are mainly considered. 

Graphite fibers show very high specific strength and stiffness. Generally as the modulus 

of elasticity increases, ultimate strength and elongation decrease. Therefore, high modulus 

graphite fiber exhibits a lower strain to failure than high strength carbon. The tensile 

strength and modulus of graphite fibers do not vary as temperature rises. They behave 

elastically to failure, eind fail in a brittle manner. Carbon and graphite fibers are highly 

resistant to aggressive environmental factors. Their diameter falls in the range of 5 to 10 

A^m. Table 3.3 shows some physical and mechanical properties for carbon and graphite 

fibers (Shwartz, 1992). 

The most important disadvantage of carbon and graphite fibers is their high cost, 

which is not comparable to glass fibers. They are 20 to 50 times (by weight) more 

expensive than E-glass (Riewald, 1988). (Schwartz, 1992). The high price of raw 

materials, or precursors, and the long process of carbonization and graphitization is what 

contributes to their cost. These fibers (specifically graphite fibers) cannot be wetted by the 

matrix easily, so sizing is necessary before being used in the matrix. The impact resistance 

of these fibers is low. 

Graphite and carbon fibers have been used more widely in aerospace and military 

applications. However, less expensive pitch-base fibers uith improved properties are being 

developed for structural engineering applications. Some effort has also been concentrated 
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on using different types of fibers together to form hybrid composites. 

Table 3.3 Typical Properties of Carbon. Graphite Fibers 

Fiber Type Density Tensile Modulus of 
kg/m^ Strength Elasticity 

MPa GPa 

Carbon: 
Pan based 1700 827 41 
Pitch based 2000 2413-2482 221-234 

Graphite: 
Ultrahigh Modulus 2160 2240-2413 683-854 
High Modulus 2000 1723-2413 342-546 
Ultrahigh Strength 1800 4826-5516 236-287 
High Tensile 1777 2758-4137 226-294 
Strength/Intermediate Modulus 

3.2.3 Aramid Fibers 

Aramid stands for aromatic poiyamide, and is a generic term for a group of fibers 

having the lowest specific gravity and highest specific tensile strength among the current 

reinforcing fibers (Mallik, 1993). The first aramid fiber was introduced commercially 

around 1965, and possessed outstanding heat resistance. TTie first organic fiber with 

advantageous mechanical properties, used as a reinforcing fiber, was introduced in 1970 

under the trademark "Kevlar aramid" (De Wilde, 1988). After that time, due to advantages 

such as high tensile strength and modulus, and high impact damage resistance. Kevlar 

aramid (or Kevlar) fibers have been used extensively for engineering applications. 

Kevlar fibers are produced by shearing a liquid crystalline solution of the polymer 

with partially oriented molecules. In the resulting fibers, rigid molecules are well aligned 
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along the fiber axis with few entanglements, resulting in high strength and high modulus 

(De Wilde. 1988). 

There are several types of Kevlar fibers as follows: 

Kevlar 29: Designed for ballistics, cut and slash resistant protective apparel, ropes and 

cables, coated fabrics, asbestos replacement, and for composites with maximum impact and 

damage tolerance. 

Kevlar 49: Used in reinforced plastics. Its important properties will be described next. 

Kevlar 129 (or HT); Used in ballistic application due to its higher strength and toughness. 

Kevlar 149: Used in airplane, helicopter, and sporting goods applications. This type of 

Kevlar has the highest tensile modulus among all commercially available aramid fibers. 

There are other types of Kevlar fibers such as Kevlar 69 and Kevlar 100. which are 

not commonly used in fiber reinforced plastics. Kevlar fibers have high specific strength 

and stiffhess. Figure 3.2 shows the comparison of Kevlar fibers with other fibers and 

materials on a specific tensile strength specific-tensile modulus plot (De Wilde, 1988). 

(Schwartz. 1992). Kevlar values have been determined from resin impregnated strands 

(ASTM D2343). Specific tensile strength/modulus means tensile strength/modulus divided 

by density. 

The compressive strength of Kevlar fibers is less than 20% of the tensile strength. 

Figure 3.3 shows behavior of epoxy reinforced with unidirectional Kevlau- 49 fibers under 

tensile and compressive loading (De Wilde, 1988). 

It can be seen that Kevlar 49 has brittle behavior under tension. Under 
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compression, it is ductile, metal like with yielding beginning at 0.3-0.5% strain and 

absorbing considerable energy. Also, it shows a high degree of yielding on the compression 

side when subjected to bending. This type of behavior, which is not observed in carbon or 

glass fibers, gives Kevlar composites better impact resistance (Mallik. 1993). 

Kevlar fibers have an excellent tension-tension fatigue resistance and a low creep. 

Kevlar 149 has the lowest creep among all Kevlar fibers. Table 3.4 shows some typical 

mechanical properties of Kevlar aramid fibers (De Wilde, 1988). Fiber properties have 

been determined from untwisted epoxy impregnated strand (ASTM-D2343). 

Kevlar fibers can withstand high temperatures. Kevlar 49 fiber, used most 

commonly for fiber reinforced plastics, does not melt or support combustion, but starts to 

carbonize at about 430°C (Mallik. 1993). The strength and modulus of Kevlar fibers 

decrease linearly when the temperature rises, but they retain more than 80% of their original 

strength at 180°C. 

Table 3.4 Typical Mechanical Properties of Kevlar Fibers 

Fiber Tensile Strength (MPa) Modulus 
(GPa) 

Elongation at 
Failure (%) 

Density 
(kg/m^) 

Kevlar and 
Kevlar 29 

3620 82.7 4.4 1440 

Kevlar 49 3620 124-131 2.9 1440 

Kevlar 149 3450 172-179 1.9 1470 

Kevlar 129 4210 (est.) 110 (est.) ~ 1440 



Kevlar fibers absorb some water. The amount of absorbed water depends on the 

type of the fiber. Kevlar 149 has an equilibrium moisture content of 1.2% at 65% humidity , 

which is the lowest rate among Kevlar fibers. Under similar conditions, equilibrium 

moisture content of Kevlar 49 is as high as 4%. At high moisture content. Kevlar fibers 

tend to crack internally at the preexisting microvoids and produce longitudinal splitting (De 

Wilde. 1988).(Mallik. 1993). 

From a chemical point of view, Kevlar fibers are resistant to most solvents and 

chemicals, but they can be degraded by a few strong acids and alkalies. The chemical 

resistant properties decrease from Kevlar 149 to Kevlar 49 and from the latter to Kevlar 29. 

Ultraviolet radiation can also degrade Kevlar. The problem is less serious when they are 

used in fiber reinforced plastics where the matrix protects the fibers. The degree of 

degradation naturally depends on the thickness of the material. 

3.3 Matrix 

Matrix in a composite material can be regarded as a primary or secondary element. 

As the primary element, it is a structural material that is reinforced by fibers. As the 

secondary element, its major roles are transferring stresses between the fibers, protecting 

fibers against environmental attacks, and protecting the surface of the fibers from 

mechanical abrasion. The latter definition is the traditional one, especially for soft 

matrices. In such cases, the strength of the composite is almost entirely due to the fibers, 

and the fiber content should be chosen as high as possible. 
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The importance of the matrix in a composite is its influence on interlaminar and in-

plane shear strengths. It also provides support against the buckling of the fibers under 

compression loads. If there are broken fibers in the composite, the load is transferred from 

broken fibers to the unbroken ones through the matrix. Therefore, the matrix design is an 

important issue in composite design. Physical and thermal characteristics of the matrix 

affect the processability and mechanical properties of the composite material. Besides 

acceptable mechanical properties, thermal stability and chemical/environmental resistance 

are important parameters in choosing a matrix. Usually the matrix weight in the composite 

is chosen as the minimum required for adequate shear strength and low void content. 

Matrix materials, in the most general sense, can be classified as: polymers, metallic 

and ceramic types. Among these, polymeric matrices have the greatest commercial use due 

to ease of processing. Metallic and ceramic matrices are primarily considered for high 

temperature applications. Only polymeric matrices will be discussed in this paper because 

they have the highest potential applications in the construction industry. 

3.3.1 Polymeric Matrices 

Polymeric matrices are divided into two categories of thermoplastics and 

thermosets. In thermoplastic polymers, individual molecules are in a linear structural form 

and are held in place by weak secondary bonds. Applying heat or pressure to a solid 

thermoplastic polymer temporarily breaks these bonds, resulting in relative movement 

between molecules. Upon cooling, the molecules freeze in their new position resulting in 
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a new solid shape. Therefore, a thermoplastic polymer can be heated, softened, melted and 

reshaped for as many times as desired. 

In a thermosetting polymer, also called resin, the molecules are chemically joined 

together by cross links, forming a three-dimensional rigid structure. These links are formed 

during the polymerization (curing) process, and as a result of the presence of these links, 

the thermosets cannot be reshaped by applying heat or pressure. Figure 3.4 shows the 

schematics of thermoplastics and thermosets (Mallik, 1993). These nvo types of polymeric 

matrices are briefly described here. 

3.3.1.1 Thermoplastic Polymers 

Thermoplastic matrices are amorphous and sometimes partially crystalline. There 

is a glass-rubber transition temperature (Tg) for these materials, at which the mechanical 

properties (such as modulus of elasticity) drop by several orders of magnitude. 

Thermoplastics have higher impact strength, ftacture resistance and microcracking 

resistance as compared to thermosets. They need shorter fabrication time and provide post-

formability. TTiey can be repaired by welding and they are recyclable. 

Thermoplastic matrices have some disadvantages if compared to thermosets. 

Incorporation of continuous fibers to thermoplastic matrices is difficult due to high melt 

or solution viscosities. They exhibit lower creep resistance and thermal stability. These 

properties have limited their application in fiber reinforced composites. They are mostly 

used in automotive industry, appliances and business machine fields. New types of 
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thermoplastics are under survey for further applications in advanced composites. Often, 

short glass fibers are added to these materials for reinforcing and providing an easy way of 

processing. Fillers may also be used to reduce the cost or to make special properties. 

3.3.1.2 Thermosetting Polymers 

Thermosetting polymers have been used as matrix materials more often. These 

matrices provide good wet-out between fibers and matrix, without applying high pressure 

or temperature. Other advantages are thermal stability and chemical resistance, low creep 

and stress relaxation as compared to thermoplastics. The main disadvantages of 

thermosetting polymers are the limited storage life before molding at room temperature, 

long required fabrication time, and low strain-to-failure, which results in low impact 

resistance. The most common thermosetting matrices used in advanced composites are: 

epoxy. polyester and vinyl ester, which are discussed here. 

Epoxy: Epoxy resins are made of low-molecular weight organic liquid resins. These resins 

contain a number of epoxide groups. Each epoxide group contains two carbon atoms and 

one oxygen atom. Other ingredients are mixed to reduce its viscosity and improve the 

impact resistance of the cured epoxy. Just prior to adding fibers, small amounts of reactive 

curing agents are added to liquid resin to initiate polymerization (curing). During that 

process, cross links are formed and epoxy changes to a solid material (Mallik. 1993). 

Epoxy resins have been used largely in high-performance composites. This is due 
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to several advantages such as: ease of processing, excellent mechanical properties, 

excellent resistance to chemicals and solvents, low shrinkage during cure, and good 

adhesion to a wide variety of fibers and fillers. Furthermore, they can be designed to have 

a wide variety of properties, since a large number of possible starting materials, curing 

agents and modifiers are available to make epoxies. Typical properties of cast epoxy resin 

are given in Table 3.5 (Mallik, 1993). 

Table 3.5 Typical Properties of Cast Thermosetting Resins 

Resin Specific 
Gravity 

Tensile 
S trench (MPa) 

Tensile Modulus 
(GPa) 

Cure Shrinkage 
(%) 

Epoxy 1.2-1.3 55-130 2.75-4.10 1-5 

Polyester 1.1-1.4 34.5-103.5 2.1-3.45 5-12 

Vinyl Ester 1.12-1.32 73-81 3-3.5 5.4-10.3 

The main disadvantage of epoxy resins are their relatively high cost and long curing period. 

They must be processed carefully to obtain moisture resistance. The cross links which are 

formed during polymerization (curing) process and change die initial liquid resin to a solid 

epoxy resin play a major role in changing the properties of the solid epoxy. Tensile 

modulus, glass transition temperature (Tg), thermal stability and chemical resistance are 

improved as the density of these cross links increases. On the other hand, strain-to-failure 

and fracture toughness are reduced. The cross-link density is a function of the chemical 

structure of the starting liquid resin, curing agent and reaction conditions such as time and 

temperature. 
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Polyester: The starting material for a polyester matrix is unsaturated polyester resin. 

Unlike epoxy resins, this starting material contains only carbon atoms (without any oxygen 

atoms). Other chemical agents are added to modify the chemical strucmres between cross­

links to reduce its viscosity and to prevent premature polymerization during storage. Small 

amounts of catalyst are required for initiating the curing reaction. Curing temperature for 

polyester is higher than epoxy and it exhibits more shrinkage during cure. 

Polyester resins are manufactured with a wide variety of properties, from hard and 

brittle to soft and flexible. Their advantages are low viscosity, fast cure time and low cost. 

As can be seen in Table 3.5. their properties are generally lower than epoxies. The most 

important disadvantage of polyester resins is high volumetric shrinkage. By adding a 

thermoplastic component this volumetric shrinkage can be reduced. The interface bond 

between epoxy and fiber is better than that of polyester and fiber. 

Cross-link density can change the properties of polyester resins in the same manner 

as explained for epoxy resins. Cross-link density depends on the weight ratio of different 

ingredients used for making unsaturated polyesters. 

Vinyl Ester: In this type of resin, the starting materials are produced by the reaction of an 

unsaturated carboxyiic acid and an epoxy resin. Because, due to the chemical structure of 

these materials, there are fewer cross links, they are more flexible and have a higher 

fracture toughness than polyester resins. Furthermore, they exhibit excellent wet-out and 
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good adhesion when used with glass fibers. Vinyl ester exhibits good characteristics of 

epoxy resins such as chemical resistance and tensile strength, as well as those of 

unsaturated polyester resins such as viscosity and fast curing, but the volumetric shrinkage 

is higher than epoxy. It exhibits only moderate adhesive strength compared to epoxy resins. 

Typical properties of cast vinyl ester resin are also given in Table 3.5. 
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CHAPTER 4 

STRESS CONCENTRATIONS AT THE PLATE END 

4.1 Introduction 

In flexural strengthening of reinforced concrete beams with epoxy-bonded FRP 

plates, local failure in the concrete layer between the steel reinforcement and the composite 

plate has been observed in experiments. This type of failure prevents the strengthened 

beam from reaching its uhimate flexural capacity, and therefore it must be included in 

design considerations. This failure mode is unique to plated beams and is caused by shear 

and normal stress concentrations at the plate end and at the flexural cracks present along 

the beam. Closed form solutions of stress concentrations are developed in this chapter. 

Using these equations, design guidelines for strengthening reinforced concrete beams with 

FRP plates are developed in the next chapter. 

4.2 Analytical Models 

In this section, analytical models are developed for predicting the shear and normal 

stresses at the concrete/FRP interface. The following assumptions are made: linear elastic 

and isotropic behavior for FRP, epoxy, concrete and steel reinforcement; complete 

composite action between plate and concrete (no slip); and linear strain distribution through 

the full depth of the section. The above assumptions do not oversimplify the behavior of 

this system since the plate cut off point is usually taken near the inflection or points of zero 
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moments where the normal stresses are generally low and justify the assumptions of linear 

elastic for the materials. 

4.2.1 Shear Stress 

The interfacial shear stress between FRP plate and epoxy can be calculated by 

considering the equilibrium of an infinitesimal part of the FRP plate, as shown in Fig. 4.1. 

In this figure, and fjx) are shear and normal stresses, respectively. The shear stress 

can be defined by: 

d f {x )  
= (4.1) 

where: fp(x) = tensile stress in FRP plate; and = thickness of plate. 

Assuming linear elastic behavior, Eq. (4.1) can be rewritten as: 

dx t dy dx 
p 

where: u and v = horizontal and vertical displacements in the adhesive layer, respectively; 

= shear modulus of elasticity of the adhesive layer; x and y = measured along the 

longitudinal axis and perpendicular to the longitudinal axis of FRP plate, respectively. 

Differentiating Eq. (4.2) with respect to x, results in: 

dH{x )  G  ( i \  

dx ^ dxdy dx ^ 

The relationship between the bending moment. M. and the flexural deflection is given by; 
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M 
^ ̂ TT 

c  t r  

where: = elastic modulus of concrete in tension; and = moment of inertia of 

transformed section based on concrete. Furthermore, cfu/dxdy can be expressed as: 

d^u  1  .  
7 (4.5) d x  d y  

where: ep and = interfacial strains in the lower and upper faces of the epoxy layer; and 

= thickness of epoxy layer. Therefore, Eq. (4.2) can be written as; 

d H { x )  G e e  \ 4  

p a  a  c  i r  

The magnitude of the third term in the parenthesis is relatively small as compared to the 

other terms and therefore it can be neglected. Eq. (4.6) is then reduced to: 

d X ( x )  G 
TT (S - (4.7) 

d x ^  t  t  ' '  a  p  

where: €p = f^(x)/Ep and = f.(x)/E^., assuming uncracked section and using the 

corresponding stress-strain relationships for concrete and FRP plate; E^ = elastic modulus 

of plate;//x^ = tensile stress in the bottom of the concrete beam. The governing differential 

equation for the tensile stress in the plate can be expressed as: 

d^ 

dx'- 'J, ^ 'J, ^ ^ 



The solution of the above equation is given by: 

f^{x) = C,sinh (v/C4 x) - C, cosh { \ f A x )  • 6, • 6, x -
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(4.9) 

G  
where; A  

t  t  E  p 
ya.E 

and: b, -
'  /  E  

t r  c  

yE 
— (2 a, L • a,) 

t r  c  

6, - E [^— (a, L' • a, L • a,) . 26, -^l J ^ 2o C7 

In developing the above solution, the origin of x  has been assumed at the cut-off point of 

the plate. Furthermore, bending moment can be expressed by: 

M(x^ -- a, Xo" ' flj x^ . a, (4.10) 

where the origin of Xq is arbitrary, and can be assumed at any convenient point at a distance 

L„ from the cut-off point. In other words, x„ = x + ; y = distance from neutral axis of 

the strengthened section to center of FRP plate; and C,, C, = integration constants. 

Substituting the expression for^^^x^ given by Eq. (4.9) into Eq. (4.1). results in: 

T(X) = [ C,/? cosh (/4x) • C^\jA sinh { \ f A x )  • I b ^ x  • (4. 1 1 )  

Constants of integration C, and Q are evaluated using the following boundary conditions: 
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the first boundary condition is evaluated at x = 0 where the plate ends. At this point^^^x; 

= 0. The second boundary condition is evaluated at the point where shear force in the beam 

is zero, i.e.: 

t(L) = 0 or ^ I, = 0 
dx 

where; L, = distance to the point of zero shear force measured from the plate end. 

Using the above boundary conditions the following expressions for C, and C can be 

obtained: 

^ 6, ^ sinh (/? L )  - 2  b ,  L ^  -  b ,  

\[A cosh (/4 (4.12) 
C = - 6, 

A parametric study of variables in Eq. (4.12) revealed that generally. sinh(/7 Z,J and 

cosh(/4 L^) are equal and have very large values compared to the other terms in the 

numerator. Therefore, C, can be simplified to: 

C , - b ,  

Using C| and C, in Eq. (4.11), the shear stress is expressed by: 

T(X) = [6, \fA cosh(/4x) - b^ \[a sinh(/ir) • 2 6, x • (4.13) 

The maximum shear stress occurs at the cut-off point (x = 0): 

(4.14) 
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4.2.2 Normal (Peeling) Stress: 

Considering concrete beam and FRP plate as two isolated beams ("concrete beam" 

and "plate beam") connected together by the adhesive layer as shown in Fig. 4.2. the fourth 

order differential equation for each beam can be expressed as: 

- K (4.15) 
a x  

d \  
-  E  I  ^  -  b  f i x )  
' ' dx* ' (4.16) 

where: Vp and = deflection of FRP plate and concrete beam, respectively; / = 

moments of inertia of plate and concrete beam; = width of FRP plate; q = distributed 

load on the concrete beam; and f„(x) = normal stress in the epoxy layer. Considering 

deformation in the epoxy layer,/iCx> can be expressed as; 

(V;, - v,) (4.17) 

where: K „  = £„ = modulus of elasticity of adhesive; and = thickness of adhesive. 

Differentiating Eq. (4.17) four times results in: 

d '  f i x )  d v *  d v *  
—iJL- . K(-̂  . _̂ ) (4.18) 

dx* dx* dx* 

Solving Eqs. (4.15) and (4.16) for d'v/dx'' and (tv^dx^ and substituting the corresponding 
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values in Eq. (4.18) gives the governing differential equation of the normal stress: 

d j ( x )  K  K  

The solution of this fourth order linear differential equation is the summation of the 

homogeneous and particular solutions as given below: 

fj.x) -- e [D, cos (PJC) - Dj sin (PAT)] 

• [D, cos (Px) - sin(Pj:)] . (4-20) 
bpEJc 

where: p = (K„b/4Eplp)°'^: and Dj to = constants of integration. The term b/EJ^ is 

relatively small compared to b/EpIp and has been neglected in Eq. (4.19). For large values 

of X, i.e.. for the points far from the cut off point, the normal stress and its derivatives 

approach zero. Since P is a positive number, the coefficient of e"* must be zero to satisfy 

the above condition, that is. Dy = D^ = 0. Eq. (4.20) is reduced to: 

fp) - e [D, cos (px) . Dj sin (Px)] - (4.21) 
b  E I  p  c  c  

Constants of integration D ,  and D, are calculated using the appropriate force 

boundary conditions at the plate cut-off point. Differentiating Eq. (4.17) results in: 

d Y ( x )  d ^ v  d ^ v  
—^ = K( ^ -) (4 22) 

d x ^  "  d x -  d x ^  

Considering the isolated "concrete beam" and the "plate beam" and using the moment-

curvature relationships for these beams. Eq. (4.22) can be rewritten as: 
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d ^ i x )  K  K  
— ^  .  - J L  M ( x )  M i x )  ( 4  7 3 )  

d x ^  E I  '  E I  '  ^  p  p  c  c  

where: M ^ f x )  and M j x )  =  bending moments in the "plate beam" and "concrete beam." 

respectively. Differentiating Eq. (4.22) once more, and substituting third derivatives of 

displacements by the corresponding shear forces results in: 

d ' f i x )  K  K  
.. _JL V{x) ^ V(x) (4 74) 

dx' EI ^ EI ' ^ p  p  c  c  

where: V^(x) and Vjx) = shear forces in the plate and concrete beams, respectively. The 

effect of the interfacial shear stress must be considered in defining the bending moment 

and shear forces in the isolated beams. Shear stress given by Eq. (4.13) multiplied by the 

width of the plate can be assumed as a distributed load per unit length (shear flow) along 

the interface of each of the beams with the adhesive layer, as shown in Fig. 4.3(a). The 

static equivalent of these distributed loads at the centroid of the beams are distributed loads 

plus distributed moments as shown in Fig. 4.3(b). Therefore, the equation of bending 

moment in concrete and plate beams due to this distributed loads or shear flow at the 

interface can be written as: 

K'(^) - bp V c  ^3 sinh(/4x) - 6, cosh(v/3i) •  b ^ -  •  •  6,] (4.25) 

M^ix) = - ^ [ 63 sinh(v/^) - 6, cosh(vCix) • by- - b^ • (4.26) 
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where: and M^Ux) = bending moments due to shear flow at the interface of concrete 

and plate beams, respectively. At the end of the plate where a: = 0; both of the above 

moments are zero. Therefore, the bending moment in each of the beams is only due to the 

externally applied loads, and is expressed by; 

M - M 
M  . 0 "  (4.27) 

P  

where: M„ = bending moment in the concrete beam at the plate-end due to externally 

applied load. In the above expressions, it is assumed that the external load is applied to the 

concrete beam only. 

Differentiating Eqs. (4.25) and (4.26), and substituting x = 0, results in the shear 

forces in the isolated beams at the plate end: 

V :  -  - b ^ y ^  (6, ^  .  b ^ )  (4.28) 

-  b ^ t ^ ^  (b ,  U  .  b^)  (4.29) 

where V' and = shear forces at the plate end, in the concrete and plate beams due to 

interfacial shear stresses, respectively. The total shear force in the concrete and plate beams 

are calculated as: 
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V . V . y 

p  P  

where = shear force in the concrete beam at the plate end due to externally applied loads. 

Here, again it is assumed that the concrete beam alone takes the full shear due to the 

externally applied loads. Inserting the corresponding values given by Eqs. (4.27) and (4.30) 

into the right side of Eqs. (4.23) and (4.24). D, and D, are obtained; 

K V K V . 
A = — • — - — • —— (4 3n 

E I  i r  E l  2 P '  

K M 
A = — • — (4 3->) 
' £ /  2P^  

Considering the fact that e"''* approaches zero for large values of x ,  the maximum normal 

stress occurs at the cut-ofT point and is expressed by: 

a: V  K .  PM q E I  
f  -  t .  (  .  p  f  , A  

2 P '  E I  E I  b E I  ^  p  p  c  c  p e c  

Eqs. (4.14) and (4.33) express the maximum shear and normal interfacial stresses, 

respectively, and can provide the necessary tools for designing strengthened beam against 

local failure. The parameters in these equations can be simply calculated based on 

mechanics of materials. 



4.2.3 Effect of Shear Stress Concentration on Flexural Stresses: 

In order to highlight the effect of interfacial shear stresses at the concrete/plate 

interface on the flexural stresses in the concrete beam, the "plate beam" and the "concrete 

beam" are considered without externally applied loads but with self equilibriating 

interfacial shear stresses as shown in Fig. 4.4. 

Isolating elements ABCD from the "concrete beam" and element A'B'C'D' from 

the "plate beam", as shown in Fig. 4.5(a), one can see that for equilibrium of these 

elements, generally the existence of internal forces shown on Fig. 4.5(b) is necessary. 

Writing the equilibrium equation for elements in Fig. 4.5(b) results in: 

The strengthened beam, where the plate is attached to the concrete is shown in Fig. 4.6. 

Considering the equilibrium of this beam, shows that when no external load is applied to 

the beam the internal forces acting on any element of the beam will be zero. In other 

words, the superposition of the internal forces of the concrete beam and the plate beam 

should add up to zero at any location along the beam, that is: 

(4.34) 

(4.35) 

M  •  M  -  0  
P  (4.36) 
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- K - ^  ( 4 . 3 7 )  

Differentiating Eq. (4.36) results in: 

dM dM 
^ ^ . 0 ,4.38) 

Considering Eqs. (4.34) and (4.35). one may write; 

dM dM t 
—^ ^ - {V • V) - - \ b (y ' (4 39) 
dx dx " p 

According to Eqs. (4.37) and (4.38), left-hand side of the above equation is zero, so must 

be the right-hand side. This can only be true if T is zero. This is a trivial solution of the 

above equation, and is not of concern in this analysis. The other approach to look at this 

term is as an error term which must be eliminated. This elimination is performed 

analytically by imposing a shear force at the cut-off point in the opposite direction. 

However, this free body diagram will not be in equilibrium unless we have a set of forces 

as shown in Fig. 4.7. This requires a moment at the cross-section expressed by; 

K - • f) (4.40) 

In Eq. (4.40), the value of T is obtained from Eq. (4.14), and t/2 can be neglected since its 

value is small compared to Therefore; 

K  -  k ' p  ^  ( 4 . 4 1 )  
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This moment is characteristic of the cut-off point in plated beam due to high shear stresses 

at this location. The magnitude of this moment rapidly decreases as the distance from the 

cut-off point increases. This moment is added to the moment from externally applied loads 

for the flexural design of the section at the cut-off point. 

4.2.4 Effect of Flexural Cracks 

Cracks play a significant role in the redistribution of the shear stresses. The same 

procedure to calculate shear stresses can be followed when cracks are present along the 

beam as shown in Fig. 4.8. Using Eq. (4.11) between two successive cracks, and assuming 

axial stresses in the plate at crack locations as known boundary conditions, constants C, and 

C. can be calculated: 

C, (6, X,- . 6, X, - 6, - /,) . (- 6, X,- - 6, X, - 6, . /) 
c, = (4.42) 

5. C, - 5, C, 

f - C S - b X,' - b X  -  b 
C, = ^ L_^ LJ 1 (4 43) 

where: x, and x, = coordinates of two successive cracks; f, and/, = longitudinal stress of 

plate at the location of the cracks; ^ = sinh ( /i x, ).• J, - sinh ( ^/A x, ). 

C| = cosh ( \Ja ); and = cosh ( \fA x^) . 

Defining the origin of x at the first crack. Eq. (4.42) is reduced to: 



where; I = distance between cracks. Generally, C, and Sj are equal and have large values, 

so the final expression for the shear stress at the crack can be simplified to; 

= 'p -/)] (4.45) 

Therefore, by knowing the longitudinal stress in the FRP plate, one can find the shear stress 

in the adhesive layer at the same location. Considering the fact that due to opening of the 

cracks usually there is debonding in the adhesive layer at the crack. Eq.4.45 is an important 

equation from the design point of view. In this equation.// is predominant compared to the 

other terms. In other words, any approximation used in defining the tensile stress at the 

bottom of the concrete beam such as linear elastic behavior, has negligible effect and can 

be ignored. 

4.3 Verification of the Method 

The method has been verified by comparing it to both finite element analysis and 

experimental results. Several researchers have reported local failure in concrete beams 

strengthened with FRP plates (Ritchie, et al., 1991) (Saadatmanesh. and Ehsani. 1991). In 

this study, the beams tested by Saadatmanesh and Ehsani (1991). were analyzed by using 

both the method described in this paper and the finite element method. For brevity, only 

the results of one of these beams which has failed due to local failure of concrete at the cut­
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off point is discussed here. The general view and also the cross section of this beam are 

shown in Fig. 4.9. 

Tlie mechanical properties of the materials used in the construction of the test beam 

are listed in Table 4.1. 

Table 4.1 - Mechanical Properties of Materials Used in the Test Beam 

Material Modulus of Elasticity, Mpa Poisson's Ratio 

Concrete 27,990 0.18 

Steel 200,000 0.3 

FRP 37,230 0.35 

Adhesive 814 0.37 

In order to compare the results of the present method with the finite element and 

experimental results, it is first necessary to calculate the shear and normal stresses at the 

cut-off point for the test beam using the present method. 

Equation (4.13) was used to predict the interfacial shear stress. Based on an elastic 

analysis, which is reasonable for the end regions of the beam, the cross-sectional properties 

were calculated as: 

y = 232 mm , ' 1.77 x !(/ mm* 

The expression for the bending moment at the ultimate load of 100 kN is given by: 

M(xj = 100.000 x„ 
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where the origin of x„ is defined at the left support. Therefore, the coefficients of the 

polynomial given in Eq. (4.10) are: 

a, = 0. a, = 100.000. and = 0 

Using Eq. (4.9) the following parameters are calculated: 

b, = 0. b, = 0.0174. and bj=2.70 

Subsequently, C, and Q are obtained as: 

C, = 2 70, and C, = -2.70 

Knowing = 297 Mpa, = 1.5 mm, and tp = 6 mm, the constant A is calculated: 

A =8.96x 10^ 

The equation of shear stress distribution along the interface can now be e.xpressed by: 

v(x) = 0.4825 cosh (0.0298x) - 0.4825 sink (0.0298x) + 0.1045 

and the tensile stress in the FRP plate can be written as: 

fp(x) = 2.7 sink (0.0298X) - 2.7 cosh (0.0298x) + 0.0174x + 2.7 

The maximum shear stress at the cut-off point is calculated by evaluating shear stress at x 

= 0: = 0.587 Mpa (0.085 ksi). 

The cross-sectional properties of "concrete beam" and "plate beam" are as follows: 

y = 227.5 mm , I = 1.61 x I(f mm^ 
^  c  t  

y = 5 mm, L = 2736 mm"" 
J p p 

The following can also be obtained: 

K„ = 542.3 Mpa/mm, J3 = 0.1192 mm '. 

Therefore, using Eqs. (4.30), (4.31) and (4.32) one can obtain the following values; 
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K = 79.667 kN: yp = - 0.268 kN : 

0 ,=-0 .427  Mpa  ;  D;  =  0 .00656  Mpa .  

The equation for the normal stress is obtained as: 

f/x) = e? 0.427 cos(0. II92x) + 0.00656 sin(0.1192x)J 

At the cut-off point (x = 0) the maximum value of normal stress is obtained as: 

Amor = -0.427 Mpa 

The negative sign shows tensile stress. 

4.3.1 Comparison with Finite Element Analysis 

The "ABAQUS" Finite Element program was also used to analyze the test beam 

(ABAQUS, Version 5.4, 1994). 

Due to the symmetry of the beam, only half of the beam was analyzed with 

appropriate constraints at the centerline, as shown in Fig. 4.10. Rebars were modeled as 

one dimensional bar elements. Different meshes were used for the analysis and the results 

of three typical cases are discussed here. 

Case I: 4-node elements - with one layer of elements in the adhesive. 

Case II: 8-node serendipity elements - with one layer of elements in the adhesive. 

Case III: 8-node serendipity elements - with five layers of elements in the adhesive. 

The mesh definition around the cut-off point for Case III is shown in Fig. 4.11. 

The results of the finite element analysis together with the closed form solution 

(present method) for interfacial shear and normal stresses as well as the longitudinal 



stresses of the plate, are shown in Figs. 4.12(a). 4.12(b) and 4.12(c). respectively. It can 

be concluded that only a very fine mesh can show the descending branch in the shear stress 

very close to the cut-off point. However, the maximum shear stress predicted by this 

method is in good agreement to the results of the finite element analysis. It is also 

concluded that shear stress concentration at the cut-off point rapidly vanishes when moving 

toward the center of the beam. 

The results of the normal stress show more deviation ft-om the finite element results 

at the cut-off point. However, at the location of maximum stresses, which is used for 

design, the agreement between the finite element results and the present method is good as 

can be seen from Fig. 4.13. 

4.3.2 Effects of Flexural Cracks; 

Cracking is one of the major characteristics of concrete that affects analysis and 

design procedures. In order to investigate the effect of large flexural cracks on the 

distribution of stresses in a beam strengthened with FRP plates, the beam was analyzed 

assuming that two cracks were present. Mesh definition and location of the predefined 

flexural cracks are shown in Fig. 4.14. 

Eight-node elements were used, and intermediate nodes of the elements around the 

crack tip were defined at quarter points to simulate the stress singularity at this point (Cook. 

1981). The average plate tensile stress at cracks 1 and 2 was 700 MPa and 726 Mpa based 

on the finite element analysis. Using Eq. (4.44). the calculated shear stresses are 112.50 
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and 116.84 Mpa. respectively. The maximum shear stress in the adhesive layer around 

these cracks obtained by the finite element analysis was 105 Mpa and 112 Mpa. which 

shows a good agreement. Finite element results also showed that there is compressive 

normal stress accompanied by shear stress, but normal stress does not show high 

concentration like that at the cut-off point. According to this analysis the increase in the 

shear stress at the cut-off point due to cracks was negligible. 

4.3.3 Parametric Study for Isotropic and Orthotropic Behaviors of FRP Plate: 

A parametric study was carried out to investigate the effect of unisotropy of the 

plate on the shear and normal stress concentrations. The test beam had unidirectional FRP 

plate which results in orthotropic behavior of the plate. This study showed that the 

variation of elastic modulus in transverse direction does not have a significant effect on 

shear and normal stresses. The variation of the shear modulus of elasticity, however, can 

somewhat change these stresses as shown in Table 4.2. Assuming isotropic behavior for 

the plate (based on longitudinal direction) results in an upper bond on the magnitude of 

shear stress which is a conservative solution. The variation of normalized shear and normal 

stress (with respect to isotropic behavior) against normalized shear modulus (with respect 

to isotropic case) are shown in Table 4.2. Where in this table subscripts I and o refer to 

isotropic and orthotropic. 
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Table 4.2 - Variation of stresses due to orthotropic behavior of the plate 

Normalized Shear Modulus 
(G,/GJ 

Normalized Shear Stress Normalized Normal 
Stress (OfJ 

0.1 0.942 1.07 

0.2 0.967 1.10 

0.4 0.984 1.08 

0.6 0.993 1.05 

0.8 

1 

0.998 

1 

1.03 

1 

4.3.4 Comparison with Experimental Results 

According to the method presented in this paper, the shear and normal stresses at 

the cut-off point of the test beam are calculated as 0.586 Mpa and 0.427 Mpa, respectively. 

The flexural stress in the concrete at the end of the plate, considering the increase in 

moment, A/„, is calculated as 2.545 Mpa. Using these values, the principal stresses are 

obtained as 2.696 Mpa and 0.276 Mpa, respectively. A biaxial failure model for concrete 

(Kupfer and Grestle, 1973), shows a tensile strength oi 3.11 Mpa for the concrete used in 

making the test beam {f\. = 34.32 Mpa). Comparing these results {2.696 MPa vs. 3.11 

MPa) shows 13 percent difference which is due to the approximations made in the model 

as well as the linear elastic behavior assumed in the method presented in this paper. 



72 

CHAPTER 5 

DESIGN GUIDELINES FOR FLEXURAL STRENGTHENING 

There has been a large number of experimental and analytical studies demonstrating 

the effectiveness of bonding composite plates to the tension face of reinforced concrete 

beams, however, in order to enable the practicing engineers to use this retrofitting system, 

design guidelines are required. A comprehensive design methodology and guidelines for 

strengthening of concrete beams with epoxy bonded composite plates or fabrics is presented 

in this chapter. 

5.1 Effect of Initial Stresses on Ultimate Strength: 

The effect of the stresses that the reinforced concrete beam undergoes before 

bonding the plate, must be considered in calculation of the ultimate flexural capacity of the 

strengthened beam. In order to simplify the design process, it is assumed that the strain in 

the plate and the concrete at the interface are equal. However, it is noted that in reality the 

strain in the concrete at the interface is higher due to the initial stresses, hi order to account 

for this discrepancy, the axial strain in the composite plate is reduced to include the effect 

of initial strains , and to allow direct application of linear strain variation along the section 

of the strengthened beam. If the service moment (without any load factors) acting on the 

reinforced concrete beam before upgrading is defined by A/„. then strain at the top of the 

concrete beam can be expressed by. 
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(5.1) 

Where: C0 is the depth of neutral axis (Fig. 5.1 ); I,ro is the moment of inertia of the 

transformed cracked section based on concrete, and Ec is the modules of elasticity of the 

concrete. Considering linear variation of strains along the section of the beam, an 

equivalent uniform tensile strain at the centroid level of the composite plate is calculated 

from: 

h-e 
E = Ec ( __ o} 

Po o e 
0 

(5.2) 

In the above expression, the effect of the thickness of the composite plate has been 

ignored to simplify the design equations. It is noted that the plate thickness is generally 

much smaller than the height of the beam, justifying this approximation. 

In stress calculating the stress in the composite plate, the above strain is subtracted 

from the total strain calculated assuming a linear variations of strains in the cross section. 

Therefore, the actual stress in the composite plate is calculated from: 

/., = E (e - e ) 
P P P Po (5.3) 

Where: /p is axial stress in the composite plate; EP is modules of elasticity of the plate in the 

fiber direction; and EP is axial strain at the level of the plate based on linear strain variation 
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in the strengthened beam. 

Furthermore, in all derivations that follow it is assumed that full composite action exists 

between the composite plate and the beam, i.e., no slip at the interface level. 

5.2 Balanced Plate Ratio for Steel Yielding: 

This ratio gives the maximum cross sectional area of the plate to assure yielding of 

the steel reinforcement at the time of concrete crushing. Under balanced condition, where 

steel yields at the same time that concrete crushes, and based on linear strain variation, the 

balanced plate ratio is obtained from: 

p J; + .85 fc J3 I T] I - p J; 
Pp.b = h- 11 d If compression steel has yielded 

(e 1 -e )E 
u T] I d Po p 

,ld-d , 
{ T] I d ) Es p + .85 fc J3 I 11 I - p J; 

Pp.b = 
h-, d 

(e 1 -e )E 
u T] I d Po p 

In the above equations: 

€ u ,1 =--
€ + € u y 

If compression steel has not yielded 

(5.4) 

(5.5) 

(5.6) 

Where: Eu is the ultimate strain in the concrete ( generally=0.003); Ey is the yield strain of 
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the steel reinforcement;/ is yield stress of steel reinforcement; £, is modules of elasticity 

of steel. / is compressive strength of concrete; and p, is parameter of rectangular stress 

block (Nilson and Winter, 1991). Furthermore: 

Where: : and are the cross sectional areas of the composite plate, tension 

reinforcement and compression reinforcement, respectively. 

In the balanced condition, compression reinforcement will yield provided that the 

following condition is satisfied: 

d ^ ( S L h ) d  ( 5 . 7 )  
e - e ^ ' 

The maximum plate ratio is limited to the following amount in order to avoid over 

reinforcing of the section: 

' -75 (5.8) 

5.3 Yielding of the Compression Steel at the Ultimate case: 

Using linear strain diagram and also the corresponding stress diagram (Fig. 5.2), the 

minimum plate ratio for yielding of the compressive steel is calculated. Based on the mode 

of failure one of the following equations are used to find the critical plate ratio: 
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5.3.1 Composite Plate Rupture: 

.85/p,-.p/-p/ 

J or 

Where: c - ^—— , f^= composite plate stress at rupture, and e, = — is the ultimate 

strain in the composite plate at rupture. 

If the plate ratio exceeds the value of Pp^ the compressive steel reinforcement will yield 

at the ultimate load level of the strengthened beam. 

5.3.2 Concrete Crushing: 

.85XP,T1:^*(P-P) / ,  

£ ( e - e ) 
p  p . '  

Where: and e - e — 
^ e e  p  '  j  

-  V  T )  

(5.10) 

5.4 Ultimate Capacity of the Strengthened Beam 

The failure of the strengthened beam may result form crushing of concrete or 

rupture of the plate. The condition at which the compressive stress in concrete, and tensile 

stress in the composite plate reach their ultimate values at the same time is here referred 

to as "balanced failure". Defining the required plate ratio for this mode of failure as Pp 

and using the linear strain diagram, balanced plate ratio is calculated: 
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(5.11) 

€ 
Where: t')

3 
= " 

€ + € + € 
u r Po 

In the above equation, e)s strain in the compression steel reinforcement and is calculated 

using the following equation: 

(5.12) 

In cases where p ~ p bb , failure of the strengthened beam is caused by rupture of the plate, 
p p, 

otherwise it is caused by crushing of concrete in the compression zone. Based on the above 

failure modes, the nominal flexural capacity of the strengthened beam, Mn , is calculated 

using one of the following equations: 

5.4.1 Rupture ofthe Plate 

- Compression steel will yield at ultimate load ( p ~ p ): p p,cy 

, PIC , PIC pl C· 
M =A f (--d)+ A J: (d--)+ A /., (h--) 

n sy 2 sy 2 ppr 2 (5.13) 

A J:+A /.,-A J: Where: c = s Y P pr s Y 

.ssfc b P. 

- Compression steel will not yield at ultimate load ( p ~ p ): p p,cy 
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M  = (  ̂ ^  ) ( e  - e  ) A  E  {  l - ! — - d ) - A  f i d  -  -  A  f  ( h  -  )  
h - c  p .  ' '  2  •  2  p  f  2  ( 5  1 4 )  

Where depth of neutral axis. c. is calculated using the following quadratic equation: 

A c - ' B c - C - O  (5.15) 

A - .85/ p, b  

B - - ^ 5 f J , h b - ( e ^ ' e J A , E ^ - A J ^ - A ^ f ^  

C  =  ( €  - e  ) E  A  d - ( A  f  - A  f  ) h  ^ r ^ s i  ^ s J  y  p  J  p r  '  

5.4.2. Crushing of Concrete in the Compression Zone 

-  Compress ion  s t ee l  w i l l  y i e ld  a t  u l t ima te  l oad  (  2  Ppc , ) -

p. c . p c u. r P, c 
M  - A  f  {  — - d ) ' A  f  { d - —  - e  ) E A ( h -  —  )  

"  ' '  2  2  c  '  p .  p  p  2  (5.16) 

Where c is found using Eq. 5.15 with following parameters; 

^= .85 / ,P ,6  

5 =  ( A , - A ^ ) f ^ - ( e ^ ^ e J E ^ A ^  

C = - e h A  E  « p p 

- Compression steel will not yield at ultimate load (p^sp^^); 

c  -  d  P , ^ -  h - c  M = (e £ - £ ) E  A  i  —  - d ) ' A  ^ ( d -  —  ) - {  —  e  - e  ) E  A  { h -  —  )  ^  ^  
" " c ' ' 2 ' 2 c - p.' p p' 2 (5.17) 

Where c is calculated using Eq. 5.15 and following parameters: 
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A - . % 5 l ^ , b  
B  =  E e  A  -  A / -  ( e - e  ) E  A  

s  u  s  y  ^  u  P  P  P  

C = - 6 h A  E  -  e  d A  E  
II p  p  u  s  s  

5.5 Local Failure at the Cut-off Point of the Composite Plate: 

The interfacial shear and normal stresses in the concrete beam at the cut-off point 

may lead to premature local failure in the concrete beam and separation of the plate, 

therefore they must be considered in design procedures. The analytical closed form 

solution of chapter 4. is modified for cases that strengthened beam undergoes uniformly 

distributed loads. For this type of loading, the maximum shear stress is calculated using 

the following equation: 

T = T ( 1 . Y ) m** o ^ * o ' 

G  
; y is the distance between the composite plate and 

t  E  V  L  a  
Where: T„ = ^; Y = ^ 

°  H E  "  t  t  E  
t r  c  ^  .  

the neutral axis of the strengthened beam based on elastic analysis of uncracked section; 

L is the length of the beam; q is the uniformly distributed load acting on the beam; L„ is 

distance between cut-off point and adjacent support as shown in Fig. 5.4; and are 

shear modules and thickness of adhesive layer, respectively. 

Under the same type of loading, maximum normal (peeling) stress at cut-off point is 

calculated as: 
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^ ^ a 1- Y ) ' " 2 ^ ^ 
• 4|i> £,/ " £/, <'••'" 

b t E y E Kb 
Where: a = p p p ; ^ = _£ ; p-». —• A is width of the composite plate; /„and / 

IE " t 4E I f r . 
t r  c  a  P  P  

are moment of inertia of the isolated concrete beam and composite plate (Fig. 5.4). and are 

calculated as: 

J b/p /  -M!  
" ' 1 2  " 1 2  

Bending moment in the concrete beam at the cut-off point is magnified as a result 

of shear stress concentration at this point. The amount of this magnification is calculated 

using the following equation: 

a  L  h L q  
M 2 1 . Y ) 

4 ^ ' (5.20) 

This moment is added to the bending moment calculated based on statical equilibrium 

equations. 

It is reminded that the load used in calculation of shear and normal stress 

concentrations, as well as moment magnification amount is only the extra load which is 

superimposed on the beam after strengthening, and includes the corresponding load 

factors. 
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5.5.1 Failure Criterion of Concrete under Biaxial Stresses 

At the cut-off point the concrete beam undergoes biaxial stresses. In this case, three 

components of stress are present: is calculated from flexural analysis, and 

peeling and shear stresses are calculated based on preceding discussion. Only 

superimposed live load is used in calculating and t^, while consists of two 

components. The first component is obtained by considering unretrofitted beam under dead 

and live loads applied on the beam before upgrading. Tlie second component is calculated 

using the magnified moment described above based on superimposed live load. These two 

components are added together to obtain the total axial stress ( oj. 

The failure model presented by Kupfer and Gerstle (1973), for behavior of concrete 

under biaxial state of stresses can be used to check the local failure of the concrete beam. 

According to this model the strength of concrete under different combinations of stresses 

is approximated by; 

a) Under compression-compression 

0| , o. 0-, 
( — • — . 3.65 — = 0 
L fa. L L (5.21) 

b) Under compression-tension 

O7 Oi 
— = 1 .0 .8  — 
L L (5.22) 
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c) Under tension-tension 

o -f -- 0.64 (/ = Constant 2 J at ^-'cii ' (5.23) 

Where: o, and o, are principe stresses in the concrete ( o, ^ oj. positive if tensile: f,^ and 

are ultimate tensile and compressive strengths of concrete ( kg/cm'). The principal 

stresses are calculated using stress transformation relations under plane stress conditions, 

and are compared to the above strengths. 

Shear stress concentration around flexural cracks may also lead to local debonding 

of the plate. Maximum shear stress in adhesive layer ignoring the minor terms is obtained 

from the following approximate equation: 

Where; is the axial stress in FRP plate. This shear stress is compared to allowable 

interfacial shear stress. 

The following design example illustrates the application of the above design 

guidelines for strengthening of a typical reinforced concrete beam using epoxy bonded fiber 

composite plate. 

T 
(5.24) 

5.6 Design Example; 

The reinforced concrete beam shown in Fig. 5.5 has been primarily designed for 



a dead load of 40 kN/m and live load of 75 kN/m. The live load applied on the beam is 

supposed to be increased to 120 kN/m, which equals to upgrading of 60%. The service 

bending moment in midspan of the beam before upgrading is calculated as: /W„=l 80 kN.m 

and A/,=337.5 kN.m. Therefore the total factored moment in the midspan of the beam is 

825.75 kN.m which is close to flexural capacity of the reinforced concrete beam 

(<|) M = 847 kN.m). The factored moment in the midspan of the beam considering the 

superimposed live load is 1170 kN.m which indicates the necessity of strengthening. The 

mechanical properties of the material used in construction of the beam as well as the 

composite plate are listed in Table 5.1. Furthermore, poisson's ratio of the adhesive is 

assumed 0.37, resulting in shear modules {GJ equal to 751 Mpa. 

Table 5.1 - Mechanical Properties of Materials 

Material Modules of Elasticity (Gpa) Other Properties (Mpa) 

Steel 200 /, = 470 

Concrete 27.900 /. = 35 

FRP 37.230 /, = 390 

Adhesive 2.058 /:,=36 

Using an elastic analysis for cracked section of reinforced concrete beam( without 

plate), the location of neutral axis and also moment of inertia of the transformed section 

based on concrete are calculated; 
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c =221.2 mm I = 5.45x10' 
o tr 

Using service loads before upgrading, tensile and compressive stresses in steel rebars and 

also maximum compressive stress in concrete are calculated: 

- 220 Mpa - 121 Mpa ^ = 21.57 Mpa 

It is concluded that both tension and compression reinforcement are not yielded at this stage 

of loading. Using Eq. 5.2 initial strain at the location of the plate is obtained; 

= 1.27x10 '. Assuming = .003 and e^ = .00235, and using Eq. 5.7 indicates that at 

balanced condition the compression reinforcement will yield. Therefore, assuming 

P, = 0.8and using Eq. 5.4 results in: = .0867 , = .065. 

Choosing a plate with nominal dimensions of ^^=10 mm, b='i6Q mm (= .0164), and using 

Eqs. 5. II and 5.12, is obtained a negative number, indicating that crushing of concrete 

is the predominant mode of failure. Since failure of the strengthened beam is resulted from 

crushing of concrete, p^^ is calculated as .0128, when using Eq. 5.10. Comparing the 

recent value to p^ shows that compression steel reinforcement yields at ultimate case. 

Considering crushing of concrete, and also yielding of compression reinforcement, and 

using Eq. 5.15 with corresponding parameters, cis calculated as 238.47 mm. Consequently 

using Eq. 5.16 results in: A/= \29^kN.m and ({>A/= \\6'ikN.m. The maximum moment 

resulted from factored loads, including superimposed live load is 1170 kN.m which is ver>' 

close to the ultimate capacity of the strengthened beam. Therefore using the selected plate 
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is adequate from flexural point of view. 

Local shear failure: 

The properties of the strengthened beam are calculated assuming uncracked section. 

Location of the neutral axis and moment of inertia are calculated as: 

y -2 i3mm I  = 9.75 x 10'mm' IF 

In calculating maximum shear and normal interfacial stresses, only that part of the load 

which is applied after strengthening (superimposed live load) is taken in to account. In 

other words: 

9 = ( 120 - 75 )xl.7 = 76.5A^'/m 

Replacing g  , y , I ^  in Eq. 5.18, and assuming L , = \ O c m  results in: = .371 Mpa. 

Parameters used in Eq. 5.19 are calculated: 

= 1029 , P = .095 — , Y = 3.17 
mm mm 

Consequently the maximum normal (peeling) stress is calculated as: - .72 Mpa. Using 

Eq.5.20 the amount of magnification of bending moment is obtained: - 4 kN.m. 

The bending moment in the concrete beam at the location of the plate-end due to factored 

loads which are applied before strengthening is 76.7 kN.m. Therefore total factored 

bending moment of 80.7 kN.m is used to find flexural stresses in the concrete beam at this 
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point. This moment results in tensile stress of 2.26 Mpa in the concrete beam. The state 

of stresses acting in concrete beam at the plate-end is shown in Fig. 5.6. Using conventional 

stress transformation relations maximum principal stress is calculated 2.35 Kipa. Based on 

Eq.5.23. Ultimate capacity of concrete (/^ - 350 -^) under biaxial tensile stresses is 3.23 
cm' 

Mpa. The resulting strength reduction factor is obtained .72 which provides adequate 

margin of safety. Therefore using the above plate with a curtailment point \Qcm away from 

the support is acceptable. 

Maximum shear stress in the adhesive layer around the flexural cracks is estimated 

by obtaining maximum axial stress in the FRP plate. The depth of the neutral axis and 

moment of inertia of the strengthened beam are calculated, assuming that the section is 

cracked: 

y -- 240 mm = 6. II x 10' mm * 

Axial stress in the FRP plate under superimposed factored live load is 27.33 Mpa. Using 

Eq.5.24 maximum shear stress in the adhesive layer is 8.679 Mpa. This shear stress is 

compared to the interfacial shear strength of the adhesive, which depends on type and 

conditions of the adhesive as well as physical properties of the bonded surfaces. 
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CHAPTER 6 

ANALYTICAL STUDY OF REINFORCED CONCRETE BEAMS 

STRENGTHENED WITH WEB-BONDED FRP PLATES 

This chapter presents an analytical method to investigate the stress distribution and 

the shear force resisted by the composite plate in reinforced concrete beams strengthened 

with web-bonded FRP plates before cracking and also after formation of flexural cracks. 

The next chapter extends this discussion in to post cracking behavior at the ultimate load 

level, where the diagonal shear cracks are formed. The method discussed here, has been 

developed based on strain compatibility between the reinforced concrete beam and the 

composite plate, and considering the orthotropic behavior of the FRP plate. Equations have 

been developed for two different cases of uncracked beam, and the beam with flexural 

cracks. The assumptions made in developing the method have been verified by comparing 

to finite element method. The results of this method have been also compared to 

experimental results. An extensive parametric study has been carried out to show the effect 

of some important parameters such as fiber orientation and geometric properties of the plate 

on the shear force resisted by the plate. 

6.1 Analytical Model 

The stress-strain relationship in an orthotropic lamina (plate) in any arbitrary system 

of coordinates such as jc->' under plane stress conditions is written as (Jones, 1975) (Mallik. 

1993): 



' 

0 et Qu Qn Qn € 
rr 

0 yy = ^ ^ ̂  m 5 

s 
0

 . ^ ̂  ̂  

Where [ Q ]  represents the transformed stiffhess matrix of the lamina, and its elements are 

written as: 

Qn (•5; • c; ). ( . 0^ - 40„ ) S', c: 

_  2 ( 0 , .  2 0,3 )5;c;.0^c; 

Q ,r- ( Q u - Q . - 2 Q , , ) S , C : . ( Q , ^ - Q ^ ^ 2 Q , , ) S : C ,  

% ;  ( Q u - Q n -  2e„) s :  c„ • (0, - 0,. 20„) 5, c, 

Qn'(Q,rQn- 20,: - 20,3 ) q' - Q,, ( 5^ . ) 

In the above expressions, Sp = Sin(d) and €„ = Cos(6), where 6 is the angle between the 

X axis and the longitudinal axis ( fiber direction ) of the composite plate, measured counter­

clockwise as shown in Fig.6.1, Furthermore : 

Qu 
"  L  - V . ,  V  

12 21 

(6.3) 

Qn - — 

Eu 
1 - V V 
'  !2 21 

Q. - g. 

Where: 1 and 2 refer to the longitudinal (fiber) and transverse directions in the composite 
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plate respectively, as shown in Fig.6.1. Therefore. E,, and £„ are the elastic moduli of the 

plate in the longitudinal and transverse directions, Gp is the shear modules of the plate, and 

V is the poisson's ratio. 

In order to show the effect of the plate on the stress distribution in the reinforced 

concrete beam strengthened with web-bonded FRP plates, two different cases of uncracked 

and cracked beam are considered, and equations are developed for each case. 

6.1.1 Uncracked Beam 

The following assumptions are made in developing this method: 

- There is complete composite action between the plate and the reinforced concrete beam, 

that is the strains in the plate and the reinforced concrete beam are identical. 

- Plane sections remain plane after applying the loads. 

- All materials behave linearly elastic both in tension and compression. 

It is also assumed that under pure bending we may write: 

o = 0 
y ^ o  ( 6 . 4 )  
' xy 

Where: x is the longitudinal axis of the beam, and y is perpendicular to the .v in the plane 

of the beam. Therefore and YXV transverse normal stress and shear strain, 

respectively. The validity of these assumptions will be verified by the finite element 

analysis. 
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Expanding tlie second row of Eq.6.1 to find results in; 

^ Q\1 ^rt " Qn ^yv ' Qi3 YIV (6.5) 

According to Eq.6.4 this stress as well as Yn negligible in the plate, therefore is 

written as: 

^yy ' ' -pr- (6.6) 

Replacing e„ from Eq.6.6 and from Eq.6.4 in to the first and the third rows of Eq.6.1 

the stresses in the composite plate are written as: 

= (6.7) 

= q'n (6.8) 

Where, Qs,/ and Qs,j are given by: 
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The cross section of the strengthened beam as well as the assumed linear strain 

variations through the section of the beam are shown in Fig.6.2. The strains in the steel 

rebars located in tension and compression zones ( e, and ). the strain at the top of the 

composite plate ( ep), and also the maximum tensile strain in the concrete beam (e,) can 

be related to the maximum compressive strain in the concrete ( ) using the following 

expressions: 

d - y  
6 = e —^ 

s c ~ 
_ y  
y - d e = e 

s c ^ 

y - d  ( 6 . 1 1 )  
e =e ^ 

p c -
y _  

h - y  

y  

These strains as well as y (location of the neutral axis ) are shown in Fig.6.2. Based on the 

strain variation and using the stress-strain relationship of the materials, the stresses acting 

on the section of the composite beam are calculated. Using the equilibrium equation of the 

horizontal forces resulting from the stresses acting on the section of the strengthened beam, 

and also considering Eq.6.11 to relate all the strains to the corresponding terms including 

e^, the location of the neutral axis is obtained: 

- Qs„t d'-E bh'-2A E d-2A E d-Qs„t h' y ^ P P C S S S S ^ \l P 
2 { d  t  Q s „  -  E  b h -  E  A  -  E  A  - Q s „ t  h )  (6.12) 

^ s I ^ \\ p ^ 
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Where. = summation of the thicknesses of the plates used on both faces of the beam; £ 

= elastic modules of the concrete; b = width of the concrete beam; A, = area of the 

reinforcement in the tension zone of the concrete; and = area of the steel reinforcement 

in the compression zone of the concrete. Tlie bending moment caused by the stress 

distribution about the neutral axis of the beam, is equal to the internal bending moment 

which results in an equation including . Using this equation is calculated from the 

following equation: 

M 

S- (6.13) 

Where: M is the internal bending moment acting on the section of the strengthened beam; 

and S' is defined as; 

S - ~ y ( - Q s ^ , t ^ { d ^ - h ) - E A ^ - E j , - E ^ b h ) . Q s ^ ^ t ^ { d ' ^ - h ' ) - 2 d E A ^ -

2dea,-h'be^-{\qs^^t^{h'-dl)^eaj'-\e^bh'-eaj')\: (6.14) 
i 3 y 

Knowing y and , the normal strain at any point on the plate is calculated from: 

e = - ^ e 
"  y  '  (6.15) 

Where: y is the distance of the point to the neutral axis of the strengthened beam ( positive 

if the point is above the neutral axis ). 

Using Eq.6.15 the shear stress at any point of the plate is obtained: 



Q'n ^ 
(6.16) 

The shear force in the composite plate is calculated by integrating the above shear stress 

over the section of the plate, as given by the following equation: 

V >  ̂  { d ' - h ' - 2 y h - 2 y d )  
2~y ' " (6.17) 

The superscript / has been used to indicate that the above shear force is caused by the 

pure bending of the beam. The conventional positive sign of this force is shown in Fig.6.3. 

Generally, each section of the beam undergoes bending moment and shear force 

at the same time. To find the other part of the shear force in the composite plate which is 

caused by the variations of the bending moment in the beam ( shear force ). we may 

consider two successive sections of the strengthened beam with an infinitesimal distance 

dx as shown in Fig.6.4. The same procedure is followed to find for each of the sections, 

based on the bending moment acting on the section. The free-body diagram for an isolated 

part of the plate between the bottom face and a section at distance fi-om the neutral axis 

is shown in Fig.6.5. The resulting forces applied on the sides this section due to normal 

stresses are shown by F and F+dF. The increment of the force (dF) is calculated by 

integrating the difference of the normal stresses acting on the two sides of the plate over the 

area of this part. Therefore dF is expressed by; 

(6.18)  
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Where. 

y ^ (6.19) 

The horizontal shear stress acting on the plate at distance y from the neutral axis is 

calculated by dividing the above force to the area of the plate, as shown below: 

dF 

(6.20) 

Replacing Eq.6.19 in Eq.6.18. performing the integration to find dF and then substituting 

dF in Eq.6.20, the shear stress in the plate at any point located at distance y from the 

neutral axis is obtained from: 

2 y S  (6.21) 

The total shear force acting on the section of the plate due to unequal bending moments is 

then written as: 

c = / (6.22) J {h > 

Superscript II indicates that this component of shear force is due to increment in the 

bending moment of the beam. Substituting the shear stress given in Eq.6.21 in the above 

equation and integrating, the shear force is obtained: 

rr n  Q ^ \ d p  -  J I , 2  1  ̂ ~ U  \ V p  - y h ^  - y d ^  -  I d ^ y h )  
2^5  3  3  (6 .23 )  
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The conventional positive sign for the above shear force is shown in Fig.6.6. This 

convention is selected for consistency of signs in beam theory and signs assumed for 

developing the stress-strain relationship in the orthotropic composite plate. The total shear 

force in the plate ( ) is the algebraic sum of the forces given by Eqs.6.17 and 6.23: 

(6.24) 

h is noted that generally the numerical value of F^'will be negative according to the 

above assumed sign convention, resulting in addition of vj and v". TTie shear force 

resisted by the reinforced concrete beam alone is given by: 

(6.25) 

6.1.2 Reinforced Concrete Beam with Flexural Cracks 

The procedure explained for uncracked beam, can be followed for the strengthened 

cracked beam. It is assumed that concrete does not resist any tensile stress after cracking, 

therefore the strain and stress diagrams of a typic£il section of the strengthened beam under 

pure bending are as shovm in Fig.6.7. Using a procedure similar to uncracked beam, and 

writing the equilibrium equation of the horizontal forces acting on the section of the beam, 

the following equation for y is obtained: 
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A y '  •  B y  •  C  =  0  (6.26) 

Where. 

A - . - i E b ' - t  Q s „  -j f t ^ ii 2 
B  -  - E  A  - E  A  -  h t  Q s „  si si p is ii 

C ' E A d • E A d' — t Qs,, s s s s ^ p ^ \\ 

, (6.27) 
* » 2 

The parameters used in the above equations have been already defined. Similar to the 

uncracked beam, the maximum compressive strain at the top of the section ( ) is 

obtained by writing the moment equilibrium equation of the section as: 

M e = — 
(6.28) 

Where. 

- \ E ^ b y ^ - i ( E j ^ ( y - d y ^  E ^ A ^  ( d - y f - ^  0 5 , ,  t  (  h - y  f  )  
(6.29) 

Using the procedure same as the uncracked beam, Vj which is the shear force in the plate 

due to pure bending of the beam is obtained from: 

- -  e { h  -  y ) ^  
' 2y (6.30) 

For this case. V' '  is not different from the uncracked beam and Eq.6.23 is still valid. 
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Therefore. Eqs.6.24 and 6.25 are used to obtain the shear force carried by the reinforced 

concrete beam alone. 

The validity of the basic assumptions used in developing this method has been 

verified by comparing its results to the finite element method. Thereafter the method has 

been used in an extensive parametric study to investigate the effects of the important 

parameters such as fiber orientation and the thickness of the plate on the shear force carried 

by the reinforced concrete beam. 

6.2 Verification of the Method 

In order to demonstrate the application of the method and also to verify the validity 

of the assumptions used in this method, a reinforced concrete beam strengthened with FRP 

plates bonded to the side faces was studied. The geometry of this beam and the location 

of the plates are shown in Fig.6.8. The mechanical properties of the materials are given in 

Table 6.1. Furthermore the shear modules of the composite plate ( G, .) was assumed as 

6.3 Gpa. 

Using Eq.6.3 the elements of the stiffness matrix of the plate are obtained; 

Qi,=34664 Gpa: Q,:=\4S4Gpa; Q22=4124 Gpa: Qjj=6300 Gpa. 
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Table 6.1 - Mechanical Properties of the Materials 

Material Elastic Modules (Gpa)  Poisson's Ratio 

Concrete 27.9 0.18 

Steel 200 0.3 

FRP £„ = 34.13 V/; - 0.36 

= 4.06 

6.2.1 Comparison with Finite Element Method 

Finite element analysis ( ABAQUS. version 5.4) was used to verify the validity of 

the assumptions used in developing the analytical model. Considering the lack of the 

external lateral forces, a two dimensional analysis ( plane stress ) was used for this study. 

A mesh of four-node elements was used to model the concrete beam. Rebars were modeled 

as one-dimensional bar elements in the computer program. Four-node composite membrane 

elements were used to model the FRP plate (ABAQUS/Standard User's Manual. 1994). 

The same nodes used for concrete elements were used to define the membrane elements . 

in this way the stiffness of the membrane elements was added to the stiffness of the 

concrete elements appropriately. The mesh definition and the deflected shape of the beam 

under the applied loads are shown in Fig.6.9. 

e o 
Fiber orientation was assumed 45 degrees and the variation of | — | and | | 

e o 
EC or 

along section 2 shown in Fig.6.8 were studied. The node numbering along this section of 

the beam is also shown in Fig.6.8. The finite element results are listed in Table 6.2. 
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€ O 
Table 6.2 - Variation of | — | and | | along section 2 

Node 

Numbers 

o 
| _^ |  

o 
a 

130 0.063 0.058 

230 0.079 0.037 

330 0.059 0.039 

430 0.071 0.043 

530 0.070 0.050 

730 0.070 0.028 

830 0.070 0.034 

930 0.059 0.036 

1030 0.079 0.036 

1130 0.063 0.058 

It is observed that both of the ratios given in table 6.2 are negligible along the 

section, which confirms the accuracy of the assumptions used in developing this method. 

The variation of the maximum compressive strain in the concrete along the beam has been 

also compared to the finite element results in Fig.6.10. This figure shows close agreement 

between the results of this method and the results of finite element analysis. 

6.2.2 Comparison with Experimental Results 

This method has been applied to precracked flexural specimens lA and IIA tested 
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by Norris et. al. (1994). Tlie geometry of these beams is shown in Fig.6.8. The ultimate 

loads of these beams have been reported as P=68.97 kN and 62.29 kN, respectively. The 

fiber orientation angle for both of the beams has been (0). and the thickness of the 

composite plate has been .33 mm and .66 mm. respectively. The mechanical properties of 

the composite used in beam lA are as given in Table 6.1, and for beam IIA are slightly 

different. At ultimate load, the axial strain in the composite plate at the center of the beam 

was calculated .00781 £ind .00608 in beams lA and IIA, respectively. The corresponding 

reported experimental results aiQ .0072 and .0056, respectively. This shows an agreement 

between the experimental and theoretical results. The difference is due to assumptions 

made in analysis, such as ignoring slip and linear elastic assumption. 

6.3 Parametric Study 

The effect of important parameters such as fiber orientation was studied through a 

parametric study. This study was carried out for both uncracked and cracked beams, and 

the variation of the shear force resisted by the composite plate was the main concern. 

6.3.1 Uncracked Beam 

The effect of the fiber orientation was studied for section 1 shown in Fig.6.8. At 

this section of the beam, the shear force and bending moment are V=I36.2 KA': and 

M=54.48 KN.m respectively. It is assumed that the composite plates have a uniform 

thickness of 4 mm and that they cover all the depth of the concrete beam, that is = 0. The 
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variation of the shear force resisted by the plate ( Vp ) against fiber orientation is shown in 

Fig.6.11. It is observed that the maximum shear force in the plate is only about 6% of the 

shear force acting on the section of the strengthened beam. This force is mainly caused by 

the internal shear force (v") and its maximum value occurs when &=0. 

The beam was also studied with four different fiber orientation angles of 0. 45. 90. 

and 135 degrees and different plate thicicnesses. The variation of the shear force in the 

plate is shown in Fig.6.12. As can be seen from this figure, the contribution of the plate to 

the shear capacity of the beam increases almost linearly with the increase in the plate 

thickness. However, the shear force resisted by the plate is not considerable within the 

range of the practical thicknesses. 

The third part of this parametric study was concentrated on the effect of the plate 

height on the shear force in the composite plate. The thickness of the plates was assumed 

4 mm, and two different fiber orientations of 45, and 135 degrees were studied. The effect 

of dp which inversely corresponds to the height of the composite plate was investigated. 

The variation of against is shown in Fig.6.13. As shown in this figure, for both of the 

fiber orientations the maximum shear force occurs when the plate stops at a point near to 

the neutral axis of the strengthened beam. The significant effect of fiber orientation in the 

shear force resisted by the plate is observed in this figure. 

6.3.2 Beam with Flexural Cracks 

The geometry of the beam was assumed the same as the uncracked beam. It was 
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assumed that due to high bending moment in the section there are flexural cracks in the 

reinforced concrete beam. The variation of the shear force against fiber orientation angle, 

as well as the thickness of the plate are shown in Figs.6.I4 and 6.15, respectively. In this 

case concrete does not resist any tensile stress due to cracking, which results in higher 

tensile stresses in the plate as well as steel rebars. Both normal and shear stress in the plate 

Eu-e proportional to the maximum strain in the concrete beam. Therefore shear stress and 

consequently shear force in the composite plate are considerably higher than uncracked 

beam. Furthermore, due to cracking, the relationship between the thickness of the plate and 

the contribution of the plate to the shear resistance of the beam is no longer linear. The 

maximum effect of the plate occurs where fiber orientation angle is about 135 degrees. At 

this angle the two components used in calculating f^^are added, resulting in the highest 

effect of the plate. 
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CHAPTER 7 

ULTIMATE SHEAR CAPACITY OF REINFORCED CONCRETE BEAMS 

STRENGTHENED WITH WEB-BONDED FRP PLATES 

The ultimate shear capacity of reinforced concrete beams can be increased by 

epoxy-bonding fiber-reinforced-plastic (FRP) plates to the side faces of the beam. The 

shear crack inclination angle is changed as a result of bonding the plate. In this chapter 

truss analogy and compression field theory are used to determine the effect of the FRP plate 

on the shear capacity and crack inclination angle of reinforced concrete beams at ultimate 

case. Subsequent to calculation of the crack inclination angle, the equilibrium and 

compatibility equations are used to obtain the shear force resisted by the plate. A 

parametric study has been carried out to reveal the effect of important parameters such as 

plate thickness and fiber orientation on the crack inclination angle and shear capacity. The 

upper bound value of crack inclination angle found in this study has been suggested as a 

conservative value to determine the shear capacity of the retrofitted beam. Knowing the 

inclination angle of cracks, the shear force in the composite plate and concrete beam are 

calculated and used to design this type of beams. 

7.1 Ultimate Shear Capacity of Reinforced Concrete Beams 

Ultimate shear capacity of reinforced concrete beams is calculated based on truss 

analogy developed by Ritter and Morsch about a century ago. The schematics of a small 



104 

part of the reinforced concrete beam with inclined cracks propagated as a result of pure 

shear force is shown in Fig.7.1. Assuming that concrete can resist only compressive 

stresses, the system is replaced by an analogous truss. The truss consists of upper and 

lower horizontal longitudinal chords, representing the compressive strength of the 

reinforced concrete section and the longitudinal steel reinforcement, respectively, and a web 

composed of diagonal concrete struts and transverse steel stirrups. The analogous truss is 

determinate, and the forces and stresses in all the members are calculated using 

conventional truss analysis. 

In most of the well-known reinforced concrete design codes such as ACI. the angle 

of inclination of the concrete struts fdj is assumed 45 degrees, conservatively (Nilson, and 

Winter. 1991). Tension field theory developed by Wagner (1929) provides the necessary 

tools in determining the inclination angle (Collins, and Mitchell. 1980) (Vecchino. and 

Collins, 1988). In studying the post-buckling behavior of plate girders, wagner assumed 

that after buckling, the thin web can not resist compressive stresses . and the shear would 

be carried by a field of diagonal tension. He assumed that the angle of inclination of the 

diagonal tensile members is the same as principle tensile strain. This approach is known 

as tension field theory. Similarly, the compression field theory assumes that after cracking, 

concrete will not carry any tensile stress, and it acts as a series of struts as described earlier. 

Furthermore, the inclination of the concrete struts is the same as the principle compressive 

strain. Using Mohr's circle for strains and assuming that the cracks are initiated and 

propagated perpendicular to the maximum principle stress, the following equation is 



developed to relate the crack inclination angle (0^) to normal strains; 
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e - e, - e 
tan-( 0 ) = ^ —£ ( 7 . 1  

Where; x refers to the longitudinal axis of the beam;y is perpendicular to x; and 1 and 2 are 

principle directions which are perpendicular to the crack and along the crack respectively, 

as shown in Fig.7.1. 

Considering the stresses acting on different parts of the strengthened beam shown 

in Fig.7.2, and using the equilibrium equations, the normal stress in the concrete struts 

) and the axial force generated in the longitudinal steel reinforcement {AN) are expressed 

by; 

/ 
" 6 A sin ( 0 ) cos ( 0 ) 
- V ' (7.2) 

L N -
t an (0^ )  

Where; Vis the internal shear force in the section : and b^. and h^. are as shown in Fig.7.2. 

7.2 Reinforced Concrete Beams with Web-Bonded Plates 

To analyze reinforced concrete beams with web-bonded composite plates, in 

addition to the assumptions used for ordinary reinforced concrete beams the following 

assumptions are also made; 

- Complete composite action between the plate and the concrete beam. i.e. no slip between 
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FRP and concrete. 

- Linear elastic behavior for composite plate. 

- Elastic-plastic steel behavior. 

- No stress concentration effect. 

The stress-strain relationship in a composite plate are expressed by using Eqs.6.1 

to 6.3. The stress-strain relationship of the composite plate in a system of coordinates 

coinciding with the principle directions (/ and 2). can be written by replacing x and v by 

2 and /, respectively. In this case. ^ which shows the angle between x and / axes, should 

be replaced by 0-0^ . as shown in Fig.7.3. Since / and 2 refer to principle axes of strain, 

then y,;, = 0. and Eq.6.1 is simplified to the following equations which are used in order 

to calculate the stresses in the composite plate: 

The vertical force in the composite plate, along the crack is the resultant of the 

shear and normal stresses acting in the plate as shown in Fig.7.4. This force is calculated 

using the following equation: 

® II ^ Qii ^2 * Qu 

® 12 ^ ^13 ^2 ' 023 ^1 

(7.3) 

F = h t ( Q e, • Q,^ e, • 
p p ^ 2 ^23 I 

g.2 ^2 • Qz2 
tan(0_^) 

(7.4) 

Where; shows the total thickness of the composite plates on the two sides of the 
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reinforced concrete beam, a,, and 0,2 are calculated from Eq.7.3. 

Along the same crack, the vertical force carried by steel stirrups is calculated using 

the corresponding stress-strain relationship of the stirrup: 

F ' E € A where e s — il 
' ' ' "1311(0^)5 • £ 

Where: is the cross sectionail area of the two legs of the stirrups; S is the spacing of the 

stirrups; F^. is the yield stress of the steel stirrups; and £, is the elastic modules of the steel 

stirrups. 

The total shear force resisted by the composite plate and the steel stirrups is 

assumed equal to the shear force acting in the section of the strengthened beam. The 

contribution from interlocking of aggregates is ignored. Therefore, the following equation 

is applicable based on the equilibrium of the forces along the crack: 

(7.6) 

Where F, is the total shear force resisted by the composite plate and the steel stirrups. 

7.2.1 The Inclination of the Cracks: 

The preceding discussion provides the necessary tools to determine the inclination 

of the shear cracks in the strengthened beam. The following steps are followed in order to 

obtain the correct inclination angle that satisfies both the equilibrium and compatibility 
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requirements: 

1. Assuming that the internal shear force is given, the crack inclination angle may be 

chosen as any arbitrary value. (Generally d^. is between 20 and 60 degrees.) 

2. The axial force developed in the longitudinal steel reinforcement and the composite 

plate (AM) is calculated using Eq.7.2. 

3. The axial force. A N .  is distributed between the composite plate and the longitudinal 

reinforcement in proportion to their respective stiffnesses. Therefore, the uniform axial 

strain in the composite plate and the longitudinal rebars (ej is calculated using the 

following equation: 

e 
( A  ) E  ' Q , J  h  ^  s  s  '  s  ^ \ \  p  

e ^ N - i A  -  A  ) F  ^ s f y  

LN 

(7.7) 
e otherwise 

Where: A^ and A^ are the cross sectional area of the longitudinal tensile and compressive 

steel reinforcements, respectively. Generally, the effect of the plate is not considerable and 

the above equation can be simplified to: 
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4. The compressive stress in the concrete struts is calculated using Eq.7.2 .The normal 

force resisted by the composite plate bonded to the concrete struts is negligible, if compared 

to the normal force resisted by the concrete struts. This conclusion is reached by 

considering the small cross sectional area of the plate comparing it to the cross sectional 

area of concrete struts, as well as the fact that the composite plate is usually bonded in a 

manner to provide the maximum resistance against opening of the cracks, that is fibers 

perpendicular to the crack. This results in the lowest modules of elasticity (£„) along the 

crack and therefore, minimum stiffness dong the compressive concrete struts as shown in 

Fig.7.5 . Therefore, it is assumed that compressive force is totally resisted by the concrete 

struts. The compressive stress in the concrete struts (/^) is still calculated using Eq.7.2: 

5. The compressive strain in the concrete struts (e,) is determined using the appropriate 

stress-strain relationship of the concrete. The model suggested by vecchino et al. (1986) 

has been used in this study. According to this model, the following equations are used to 

obtain the compressive strain in the concrete: 

Ctl cv 

Where: f i •'c.mix •'c 
.8 - .34 — 

In the above equations, f \ s  the maximum compressive stress of the concrete, and is the 

corresponding compressive strain. 
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6. Knowing and e^. e, and are obtained using the following transformation equations: 

e, ( 1 • tan^ ( e j ) -

' tan* (0 ) 
' , (7.10) 

= e, ( 1 - tan- (0J ) • tan' ( 0J 

7. TTie total shear force resisted by the beam is calculated based on Eq.7.6. 

Steps 1 -7 are repeated for different values of 9^. until a close agreement between V] and 

V is reached. In that case, 6^ is the correct inclination angle of the cracks, and the stresses 

in the stirrups, the composite plate, and the concrete beam are calculated using the 

equations. The strengthened beam discussed before, can be designed to avoid any mode 

of failure. 

7.2.2 Application of the Method and Parametric Study: 

A computer program was developed to analyze the strengthened reinforced concrete 

section and to find the crack inclination angle that satisfies both equilibrium and 

compatibility equations according to the seven steps outlined above. Thereafter the shear 

forces resisted by the plate, steel stirrups, and steel reinforcement and also the compressive 

stress in the concrete struts were calculated. This program was used in performing a 

parametric study which is discussed subsequently. The cross section of the beam used in 

parametric study is shown in Fig. 7.6 . The mechanical properties of the materials used in 

the strengthened beam are as follows: 



Concrete; =39.7 Mpa. = .003. 

Steel reinforcement and stirrups: £, = 200 Gpa. = 470 Mpa. 

Composite Plate: E,, = 3-1 Gpa, £„ = 4 Gpa ( var.), G,. = 6.3 Gpa. v,. = .36. 

The cross sectional area of steel reinforcement both in tension and compression (A, and A^) 

were assumed I42mm'. The cross sectional area of stirrups (two legs) was assumed 

142mm'. The spacing of the stirrups was one of the parameters altered in the study. 

7.2.2.1 Effect of the Plate Thickness and the Applied Shear Force 

The stirrups spacing (5 ) was assumed 100mm. The variation of the crack 

inclination angle versus the shear force acting on the section of the strengthened beam for 

four different plate thicknesses ( 0. I, 2, and 4 mm ) are shown in Fig.7.7 . The initiation 

of the stirrup yielding has been shown by a solid circle in each case. It is concluded that 

the crack inclination angle is constant prior to yielding of the stirrups, thereafter the angle 

drops to provide a longer crack to compensate for the drop in the shear load resulting from 

yielding of the stirrups. The inclination angle prior to yielding of stirrups, however, 

increases as the thickness of the plates increase (Fig.7.8). It is observed that adding the 

composite plate to the reinforced concrete beam, will increase the inclination angle before 

yielding of stirrups £is was shown in Fig.7.8, and after yielding of stirrups as can be seen 

by the reduction in the slope of the curves shown in Fig.7.8a through d beyond the elastic 

limit of stirrup. Therefore, the inclination angle of 45 degrees is conservative only for 
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ordinary reinforced concrete beam = 0 ). It is also interesting to note how the shear 

capacity of the beam increases with the addition of the composite plate, by observing that 

the load causing the first yielding of stirrups increases as the plate is added and its thickness 

is increased, as shown in Fig.7.9. 

The ratio of the shear force resisted by the composite plate to the total shear force 

acting in the section, is shown in Fig.7.10. This ratio is also constant as long as the stirrups 

have not yielded. Following the yielding of the stirrups the relative shear force in the plate 

increases, to compensate the loss of shear force resisted by stirrups. The considerable 

effect of the plate thickness on the shear force resisted by the plate is evident in this figure. 

7.2.2.2. Effect of the Fiber Orientation Angle 

In this part of the study, the total plate thickness was assumed 4mm ( 2mm on each 

side). The stirrups spacing was assumed 100mm, and the shear force of 200KN was used 

in the analysis. The effects of fiber orientation on the crack inclination angle and the shear 

force in the plate are shown in Fig.7.11. It is observed that both the crack inclination 

angle and the relative shear force in the composite plate oscillate as a ftinction of the fiber 

orientation angle. The maximum shear force in the plate occurs at fiber orientation angle 

of 135 degrees. In this case, the crack inclination angle is about 50 degrees, indicating that 

the fibers are almost perpendicular to the crack, and minimizing the shear force resisted by 

the stirrups. The least effective case happens when fiber orientation angle is about 20-30 

degrees, which the fibers are almost parallel to the crack, and the plate resists the minimum 



shear force. 

1.2.1.3 Effect of the Transverse Modules of Elasticity of the Plate 

In this part of study the thickness of the plate, the stirrup spacing, and the shear 

force acting on the beam were assumed as those in part-II above. The effects of transverse 

modules of elasticity on the crack inclination angle and the shear force in the plate for 

different fiber orientation angles are shown in Figs.7.12 and 7.13, respectively. The 

variation of the crack inclination angle 6^ , for fiber orientation angles of 90 and 135 

degrees is not appreciable. However, for 0 and 45 degrees, the transverse modules can 

somehow change the crack inclination. In practical applications, and based on the 

discussion given in the previous part, the plate is usually bonded in a way that the fibers are 

perpendicular to the crack (i.e. ^135 degrees), therefore the effects of transverse modules 

of elasticity on the shear force in the plate and fiber orientation angle are negligible. 

7.2.2.4 Effect of Stirrup Spacing 

Fiber orientation angle was assumed 135 degrees and the effect of stirrup spacing 

was studied. The variations of crack inclination angle and the shear force in the plate are 

shown in Fig.7.14. As expected, by increasing the stirrup spacing crack inclination angle 

decreases, while the shear force in the plate increases. 
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7.2.3 Comparison with Experimental Results 

One of the beams (shear beam IF) tested by Norris, et al. (1996) was used to verify 

the method. The cross section of this beam is shown in Fig.7.7. The fiber orientation angle 

in this beam is 90 degrees. The total thickness of the fabric bonded to the side faces was 

0.66 mm. The mechanical properties of the material are the same as those used in 

parametric study. The cross sectional area of steel stirrups was 56.5 mm' (two legs). The 

crack inclination angle is calculated 38 degrees for the strengthened beam. Assuming that 

steel stirrups have yielded and also ignoring the effect of shear stresses in the plate, the 

following equation can be used to determine the ultimate shear capacity of the strengthened 

beam; 

h u 
V  — F A  .  a  t  

" 5tan0^ ' " tan0 " " (7.11) 

In the above equation, o„ is the ultimate strength of the composite plate in the 

direction normal to the crack. This strength can be approximated by the axial strength of 

the plate when the inclination of the fibers wath respect to the loading direction is 45 

degrees. For the composite plate used in experimental study, this strength has been 

reported 67.78 Mpa (Norris, et al., 1996). Therefore the ultimate shear capacity of the 

strengthened beam is calculated 63.69 kN. The experimental shear capacity of this beam 

has been 68.43 kN. which shows agreement between the experimental and theoretical 

results. The difference between the results is due to approximations such as ignoring the 
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shear force resisted by aggregate interlocking action. 
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CONCLUSIONS 

Shear and normal stress concentrations near the cut-off point of the FRP plate and 

also flexural cracks must be considered in the design of reinforced concrete beams 

strengthened with epoxy bonded FRP plates. These stresses may lead to failure modes such 

as peeling and debonding of the plate or local failure in the concrete layer between the FRP 

plate and longitudinal reinforcements of the beam. The method presented in chapter 4, can 

be used to predict the distribution of shear and normal stress at the interface of the plate and 

the adhesive throughout the entire length of the plate and particularly the location of the 

cut-off point. The maximum values of these stresses which are important from design point 

of view are given by the following simple equations: 

The method was developed based on linear elastic behavior of the concrete. However, the 

effect of flexural cracks has been investigated and included in this study. The effect of 

anisotropic behavior of FRP plate on stress distribution were studied as well. It was 

concluded that the isotropic assumption for the behavior of FRP plate, used in developing 

this method, is acceptable. The method was applied to a beam that had been tested and had 

t max 

( 8 . 1 )  
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failed due to local failure of the concrete layer between the FRP plate and longitudinal 

reinforcement. The results of the presented method indicate a good agreement to both finite 

element and experimental results. 

Design guidelines that can be followed for strengthening reinforced concrete beams 

using fiber reinforced plastic plates have been developed in chapter 5. The effect of the 

stresses that concrete beam undergoes before upgrading was considered. Rupture of the 

plate and crushing of concrete are the major modes of failure which are considered in 

estimating the ultimate strength of the plated beam. Based on modes of failure, and 

condition of the tensile and compressive steel reinforcement at ultimate case, different 

equations were developed to calculate the ultimate capacity of the strengthened beam. 

Local failure of concrete beam at the plate end, and debonding of the plate due to shear 

stress concentration at the flexural cracks were also considered in developing these 

guidelines. 

The effect of the composite plates bonded to the side faces of the reinforced 

concrete beams, on the shear force carried by the concrete beam was studied in chapter 6. 

Closed form solutions were developed based on strain compatibility of the plates and the 

beam, assuming that the materials behave linearly elastic, and there is complete bonding 

between the plate and the beam. The shear force in the plate is composed of two different 

components. The first one is caused due to orthotropic behavior of the plate. This 

component is present even if the beam resists only pure bending. The second component, 

which is caused by variations of the bending moment ( internal shear force on the section). 



1 1 8  

is calculated in a manner similar to the isotropic plate. Two different cases of uncracked 

and flexurally cracked beams were studied. It was observed that for the uncracked beam 

the shear force resisted by the composite plate is negligible. However, for beam with 

flexural cracks this force is considerably higher and depends on the thickness and fiber 

orientation of the plate. In general, the maximum tensile stress in a strengthened reinforced 

concrete beam can be calculated by using the present method and assuming that the 

reinforced concrete beam is uncracked. This stress can be compared to the modules of 

rupture of concrete to investigate if the concrete beam is cracked. Then by using the 

corresponding equations presented in this chapter, maximum compressive strain in 

concrete, stresses acting at different points of the section, and the shear force in the concrete 

beam are calculated. 

The effect of the FRP plate on the ultimate shear capacity of reinforced concrete 

beams was studied in chapter 7. Truss analogy and compression field theory were used to 

develop the necessary equilibrium and compatibility equations. These equations were 

combined to provide the necessary tools for calculating crack inclination angle which is 

different from ordinary reinforced concrete beams. A parametric study showed that several 

parameters such as plate thickness, fiber orientation angle, and stirrup spacing can 

considerably change this angle and the behavior of the retrofitted beam. Following 

determination of the crack inclination angle, the stresses in the stirrups, composite plate and 

concrete struts are calculated using the equations presented in this chapter. These stresses 

can be compared to the ultimate values for design purposes, to calculate the shear capacity 
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of the strengthened beam. 

Assuming that the steel stirrups yield before the failure of the plate, and also 

ignoring the effect of the shear stresses in the composite plate along the crack, the following 

simplified equation can be used to calculate the nominal shear strength of the beam ; 

h u 
V  ^  F A  "  a t  

" 5tan(0J ' tan ( 0J " " 

In the above equation o„ is the ultimate strength of the composite plate in the 

direction normal to the crack. 
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Figure 3.3 Epoxy reinforced with Kevlar 49 under tensile and compressive stresses 



Figure 3.4 Schematic representation of (a) Thermoplastics and (b) Thermosets 
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Figure 4.9 General view and cross section of the test beam 
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Figure 4.10 General mesh definition of the test beam 

Figure 4.11 Mesh definition around the cut-off point (Case 111) 
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Figure 4.14 Mesh definition and the location of the cracks 
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Figure 6.9 Mesh definition and deflection of the beam 
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Figure 6.13 Variation of the shear force resisted by the plate against height of the plate 
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Figure 6.14 Variation of the shear force in the plate against fiber orientation 
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Figure 7.1 Schematics of a small part of reinforced concrete beam with shear cracks 

Figure 7.2 Stresses acting on different components of the strengthened beam 



Figure 7.3 Orientation of the principal axes 
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Figure 7.4 Stresses acting on composite plate along the crack 
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7.6 Cross section of the beam used in parametric study 



154 

50 100 150 
SHEAR FORCE 

200 

tp=1 mm 

100 200 
SHEAR FORCE 

300 

tp=2 mm 

0 100 200 
SHEAR FORCE 

300 

e. 

49.8 

49.6 

49.4 

49.2 tp=4 mm 

100 200 
SHEAR FORCE 

300 
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