
INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, begiiming at the upper left-hand comer and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 

photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly to 

order. 

UMI 
A Bell & Howell Infoimatioa Company 

300 North Zeeb Road, Ann Aibor MI 48106-1346 USA 
313^61-4700 800/521-0600 





DYNAMIC OPERATION OF A RESERVOIR SYSTEM 

WITH DISCONTINUOUS AND SHORT-TERM DATA 

by 

Cheng-shuang Peng 

A Dissertation Submitted to the Faculty of the 

DEPARTMENT OF HYDROLOGY AND WATER RESOURCES 

In Partial Fulfillment of the Requirements 
For the Degree of 

DOCTOR OF PHILOSOPHY 
WITH A MAJOR IN WATER RESOURCES ADMINISTRATION 

In the Graduate College 

THE UNIVERSITY OF ARIZONA 

1 9 9 8  



DMI Ntunber: 9912102 

UMI Microform 9912102 
Copyright 1999, by UMI Company. All rights reserved. 

This microform edition is protected against unauthorized 
copying under Title 17, United States Code. 

UMI 
300 North Zeeb Road 
Ann Arbor, MI 48103 



2 

THE ONIVERSITY OF ARIZONA « 
GRADUATE COLLEGE 

As members of the Final Examination Committee, we certify that we have 

read the dissertation prepared by Cheng-shuang Peng 

entitled DYNAMIC OPERATION OF A RESERVOIR SYSTEM 

WITH DISCONTINUOUS AND SHORT-TERM DATA 

and recommend that It be accepted as fulfilling the dissertation 

requirement for the Degree of Doctor of Philosophy 

Donald R. Davis 

SoD^sh Sorooshian 

Lucien DucksteXn 

Date 

OCT I ^ 
Date 

Date 

Final approval and acceptance of this dissertation is contingent upon 
the candidate's submission of the final copy of the dissertation to the 
Graduate College. 

I hereby certify that I have read this dissertation prepared under my 
direction and recommend that ic be accepted as fulfilling the dissertation 

requirement. 

JZ/3/9S' 
Dissertation Director Nathan Buras Date 



STATEMENT BY AUTHOR 

This dissertation has been submitted in partial fulfilhnent of requirements for an 
advanced degree at The University of Arizona and is deposited in the University Library 
to be made available to borrowers under rules of the Library. 

Brief quotations from this dissertation are allowable without special permission, 
provided that accurate acknowledgment of source is made. Requests for permission for 
extended quotation from or reproduction of this manuscript in whole or in part may be 
granted by the head of the major department or the Dean of the Graduate College when 
in his or her judgment the proposed use of the material is in the interests of scholarship. 
In all other instances, however, permission must be obtained from the author. 

SIGNED: 



4 

ACKNOWLEDGMENTS 

I would like to express my gratitude to my advisor Dr. Nathan Buras for his 

guidance and encouragement throughout this research. It has been a great pleasure 

working with him. 

I am grateful to my committee members Dr. Donald D. Davis. Dr. Soroosh 

Sorooshian, and Dr. Lucien Duckstein for their constructive suggestions. 

Thanks are also due to Dr. Emmanuel Fernandez, Dr. Suvrajeet Sen, and Dr. 

Julia L. Higle for the instruction in the field of optimization and stochastic control. 

I thank my father Hsin-hsi Peng and my father in law Chang-long Chu for their 

moral and financial supports during my study. The financial supports from the University 

of Arizona and the Great Northern Paper Company are also gratefully acknowledged. 

Finally, my deepest appreciation belongs to my wife. Hui-ping Chu. for her 

sacrifices and understanding over the years. Thanks are also extended to my son Darwin 

and my daughter Ellen for the cheerflil moments 1 enjoyed with them. 



5 

In Memory of 

my mother Deng Ying-mei Peng 

and 

my father in law Chang-long Chu (ik a ft) 



6 

TABLE OF CONTENTS 

LIST OF TABLES 8 
LIST OF FIGURES 9 
ABSTRACT II 

1. INTRODUCTION 13 
1.1 On Reservoir System Operation 13 
1.2 Research Objective 16 
1.3 Organization 17 

2. LITERATURE REVIEW 18 
2.1 General 18 
2.2 Large-scale Reservoir System Operation 19 
2.3 The "Curse of Dimensionality" 27 
2.4 Nonlinear Programming Applications 30 

3. PROBLEM FORMULATION AND SOLUTION PROCEDURE 33 
3.1 Problem Description 33 
3.2 Problem Formulation 36 

3.2.1 Notations 36 
3.2.2 The Objective Function 37 
3.2.3 Constraints 40 

3.3 Solution Procedure 47 

4. SYNTHETIC STREAMFLOW GENERATION 50 
4.1 Introduction 50 
4.2 Univariate Time Series Analysis 51 

4.2.1 Data Transformation 51 
4.2.2 Model Identification 58 
4.2.3 Parameter Estimation and Model Selection 61 
4.2.4 Diagnostic Checking 62 

4.3 Multivariate Time Series Analysis 64 
4.3.1 Model Identification 64 
4.3.2 Parameter Estimation 65 
4.3 3 Diagnostic Checking 68 

4.4 Synthetic Streamflow Generation 70 
4.4.1 Random Number Generation 70 
4.4.2 Streamflow Generation 72 



7 

TABLE OF CONTENTS—Continued 

5. DYNAMIC PROGRAMMING SOLUTION PROCEDURE 73 
5.1 Introduction 73 
5.2 Single Reservoir Operation 74 
5.3 Multiple Reservoir Operation 77 

6. NONLINEAR PROGRAMMING SOLUTION PROCEDURE 80 
6.1 Introduction 80 
6.2 About MINOS Package 81 
6.3 Comparison of Solutions of DP and NLP 84 
6.4 Simulation 86 
6.5 Statistical Test 89 
6.6 Data Presentation 97 
6.7 Applications 110 

7. INFORMATION UPDATING AND RELIABILITY ANALYSIS 112 
7.1 Updating Synthetic Streamflows 112 
7.2 Updating Targets and Parameters 113 
7.3 Updating the Objective Function and Constraints 114 
7.4 Reliability Analysis 115 

8. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 118 
8.1 Summary 118 
8.2 Conclusions 120 
8.3 Recommendations 124 

APPENDIX A Canada Falls Lake Water Management Plan 126 
APPENDIX B Seboomook Lake Water Management Plan 127 
APPENDIX C Caucomgomoc Lake Water Management Plan 128 
APPENDIX D Ragged Lake Water Management Plan 129 
APPENDIX E Power Production Curve 130 
APPENDIX F Elevation-Storage Relationships 131 

REFERENCES 132 



8 

LIST OF TABLES 

Tabie3.I Storage Capacity of Lakes and Ponds 35 
Upstream from Ripogenus Lake, Maine 

Table 3.2 Selected Points on Power Plant Production Curve 40 
Table 4.1 Characteristics of Theoretical ACF and PACF for Stationary Processes 
Table 4.2 Parameter Estimations for AR(1) Models 61 
Table 4.3 Parameter Estimations for MA(1) Models 62 
Table 4.4 The Results of Box and Ljung's Lack of Fit Test on AR(1) Models 63 
Table 4.5 Starting Seeds for Generating Uniform Random Numbers 72 

Based on Equation (4-34) with a=l6807, b=0, c=2^'-l 

Table 5.1 Objective Values and CPU Time of Three Types of Discretization 78 
Solved by an Original Discrete DP Algorithm 

Table 5.2 Objective Values and CPU Time of Three Types of Discretization 79 
Solved by an Improved Discrete DP Algorithm 

Table 6.1 Comparison of Objective Values and CPU Time for Example 6.1 84 
Table 6.2 Comparison of Objective Values and CPU Time for Example 6.2 84 
Table 6.3 Expected Values of Decision Variables 87 
Table 6.4 Standard Deviations of Decision Variables 88 
Table 6.5 Asymptotic Critical Values of Kolmogorov-Smimov Test 94 
Table 6.6 The Kolmogorov-Smiraov Two-sample Test on Releases, 1000 Runs 96 
Table 6.7 The Kohnogorov-Smimov Two-sample Test on Releases, 500 Runs 96 

Table 7.1 Numbers of Failures Out of 1000 Runs by the Simulation Model 115 
Table 7.2 Monthly Averages of Historical Inflows 117 
Table 7.3 Monthly Standard Deviations of Historical Inflows 117 



9 

LIST OF FIGURES 

Figure 3.1 Lakes and Ponds in the Watershed of the 34 
West Branch Penobscot River. Maine, USA 

Figure 3.2 Schematic Representation of the Hydrosystem 36 
Figure 3.3 Power Plant Production Curve 41 
Figure 3.4 Water Head Correction Factor for Turbine Performance 41 
Figure 3.5 Elevation-Storage Curve, Canada Falls Lake 43 
Figure 3.6 Elevation-Storage Curve, Seboomook Lake 43 
Figure 3.7 Elevation-Storage Curve, Caucomgomoc Lake 44 
Figure 3.8 Elevation-Storage Curve, Ragged Lake 44 
Figure 3.9 Elevation-Storage Curve, Ripogenus Lake 45 
Figure 3.10 Problem Solution Procedure 49 

Figure 4.1 Normal Probability Plots of Historical Monthly Inflows 52 
Figure 4.2 Hydrographs of Historical Monthly Inflows 54 
Figure 4.3 Normal Probability Plots of Transformed Monthly Inflows 56 
Figure 4.4 Hydrographs of Transformed Monthly Inflows 57 
Figure 4.5 Autocorrelation Plots and Partial Autocorrelation Plots 60 
Figure 4.6 Cross-Correlation Plots 66 

Figure 5.1 Single Reservoir Operation 74 

Figure 6.1 Average Releases in April, Simulation 1 90 
Figure 6.2 Standard Deviations of Releases in April, Simulation 1 90 
Figure 6.3 Average Releases in April, Simulation 2 91 
Figure 6.4 Standard Deviations of Releases in April, Simulation 2 91 
Figure 6.5 Frequency Histograms of Releases, Canada Falls Lake, Simulation 1 92 
Figure 6.6 Frequency Histograms of Releases, Canada Falls Lake, Simulation 2 93 
Figure 6.7 Frequency Histograms of Releases, Seboomook Lake 98 
Figure 6.8 Frequency Histograms of Releases, Caucomgomoc Lake 99 
Figure 6.9 Frequency Histograms of Releases, Ragged Lake 100 
Figure 6.10 Frequency Histograms of Releases, Ripogenus Lake 101 
Figure 6.11 Normal Probability Plots of Elevations, Canada Falls Lake 102 
Figure 6.12 Normal Probability Plots of Elevations, Seboomook Lake 103 
Figure 6.13 Normal Probability Plots of Elevations, Caucomgomoc Lake 104 
Figure 6.14 Normal Probability Plots of Elevations, Ragged Lake 105 
Figure 6.15 Normal Probability Plots of Elevations, Ripogenus Lake 106 
Figure 6.16 Normal Probability Plots of Power Generation 108 



10 

LIST OF ABBREVIATIONS 

ACF Autocorrelation Function 
AMPL A Modeling Language for Mathematical Programming 
AR AutoRegressive (model) 
ARMA AutoRegressive and Moving Average (model) 
BCF, bcf Billion Cubic Feet 
BSDP Bayesian Stochastic Dynamic Programming 
CFS, cfs Cubic Feet per Second 
CONOPT OPTimal CONtroI (code name for a famous NLP solver) 
CPU Central Process Unit (of a computer) 
DP Dynamic Programming 
DDDP Discrete Differential Dynamic Programming 
DDP Differential Dynamic Programming 
DPSA Dynamic Programming with Successive Approximation 
FT, ft Feet 
GAMS the General Algebraic Modeling System 
GDP Gradient Dynamic Programming 
GNP Great North Paper company 
GUI Graphical User Interface 
IDP Incremental Dynamic Programming 
IMSL International Mathematics and Statistics Library 
KW Kilo Watt 
LP Linear Programming 
LSGRG Large-Scale Generalized Reduced Gradient 
MA Moving Average (model) 
MB Mega Byte 
MHz Million Hertz 
MW Mega Watt 
MINOS Modular In-core Nonlinear Optimization System 
MPS Mathematical Programming System 
NEOS Network-Enabled Optimization System 
NLP Nonlinear Programming 
OLS Ordinary Least Square 
PACF Partial Autocorrelation Function 
PC Personal Computer 
PCA Principal Component Analysis 
SDP Stochastic Dynamic Programming 
SSDP Sampling Stochastic Dynamic Programming 



11 

ABSTRACT 

The objective of this study is to develop a practical mathematical model to 

determine optimal operating rules for the reservoir system of the West Branch Penobscot 

River in the State of Maine of the US. This system is composed of five major lakes and it 

has three objectives. The hydro logical data are not available in winter in the upstream 

four lakes due to freeze and the length of flow data is less than 25 years. 

Dynamic programming (DP) has been used extensively for solving reservoir 

operation problems. One major drawback of DP for multiple reservoir operation is the 

"curse of dimensionality". Many variations of the original DP have been proposed to 

ease this problem, for example, incremental DP, discrete differential DP, differential DP. 

gradient DP, and spline DP. 

Instead of a DP approach, this smdy proposes using a nonlinear programming 

(NLP) approach to solve the multi-reservoir system. NLP has been developed 

extensively in the field of operations research but not yet widely used in reservoir 

operations. A distinct advantage of using an NLP model is that it can avoid the 

dimensionality problem because it solves directly the problem without discretizing the 

decision variables. 

To use the NLP approach, a real time operation model is specified at first. Then, 

a multivariate first-order autoregressive model is used to generate a large number of 

future inflow sequences. The MEMOS software package is then used to optimize the 

problem with each inflow sequence. MINOS can be implemented seemly in the 
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simulation process and can solve the problems without starting values of variables. The 

number of runs in a simulation is determined by a statistical model, which shows that 

500 runs are sufficient. Finally, the expected values and standard deviations of decision 

variables are tabulated and the distributions of decision variables are plotted. 

The proposed real time operation model runs once every month. An information-

updating scheme is embedded into the simulation and optimization models. For each 

month, the synthetic streamflows are updated to reflect the most recent hydrological 

conditions. Besides, the objective function and constraints can be modified if the 

situation of the system changes. 
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CHAPTER 1 

INTRODUCTION 

1.1 On Reservoir System Operation 

A reservoir system operation problem is usually a complex problem. The 

complexities may arise from several aspects: the objective domain, the uncertainty 

domain, the time domain, and the space domain. 

A reservoir may serve for one purpose or for many purposes, which include 

irrigation water supply, municipal and industrial water supply, hydropower generation, 

flood control, navigation, recreation, fish and wildlife maintenance, water quality 

management, downstream low-flow augmentation, etc. Some objectives often conflict 

with the others. For example, hydropower requires higher surface water elevation to 

provide larger water head for power generation but flood control requires lower surface 

water elevation to provide more storage for flood control. For some objectives, it is hard 

to measure their benefits in a quantitative manner. For example, the benefits derived 

from recreation have been extremely difficult to quantify. Multiple objectives also mean 

that there are often different groups involved in the overall operation. In addition to a 

(economical) benefit-driven operation, any alternative solution must be assessed with 

respective to environmental, political, and social feasibility. The more objectives 

involved with a reservoir, the more difficulties are in its operation. 
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The uncertainty that affects the performance of a reservoir system may be present 

in many ways, such as water demand for the future, inflows to the reservoir, the change 

of users and/or regulations, etc. Among them the uncertainty of the inflows is extremely 

important and is regarded as the major issue in reservoir system operation. There are 

many ways to deal with the uncertainty of inflows. The simplest way is to replace the 

uncertain inflows by their expected values, and then proceed with a deterministic 

approach. However, this approach is unacceptable when there is a large variation in the 

inflow time series. Besides the deterministic approach, there exist several stochastic 

approaches which can be classified into two major categories: "implicit" and "explicit". 

In the implicit stochastic approach, many synthetic inflow sequences are generated by a 

time series model. The system is then optimized for each inflow sequence, which is 

considered deterministic. The operating rules are derived by using multiple regression on 

the optimized operation sequences. On the other hand, the explicit stochastic approach 

assumes that the probability distributions of future inflows are known, which are usually 

estimated from historical records, and optimize the expected value of the objective 

function with respect to the distributions of inflows. 

Time is continuous and is extended to infinity. Two questions arise immediately 

within the time domain: How often will decisions to be made? How far will it be 

included in the operating problem? In literature, the first question was referred to the 

"time period" or "stage" of the operating problem and the second question was referred 

to the "planning horizon" of the problem. The time period may range from a day, a 

week, to a month. The planning horizon may range from 1 year, 10 year, to a maximum 
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(the life expectancy of a reservoir). Generally speaking, a reservoir operation problem 

can be categorized into a planning problem or a real-time operation problem. The former 

has longer time horizon and larger time periods while the latter has shorter time horizon 

and smaller time periods. The optimal operating rules derived from a plarming model 

usually are steady-state policies, that is, the operation policies for a given period will not 

change from year to year. On the contrary, the optimal operating rules derived from a 

real-time model can be adjusted in accordance with the latest hydrological condition. 

A reservoir system may consist of many reservoirs. These reservoirs may be 

either located in series on a river, or distributed in parallel on different rivers, or both of 

them. In principle, multiple reservoir operation is an extension from a single reservoir 

operation: the releases at a time period are dependent on the storage levels of the 

reservoirs and the possible future inflows to each of them. In practice, the operation of a 

multiple reservoir system is much more difficult than that of a single reservoir. On one 

hand, to use the traditional dynamic programming (DP) technique to deal wdth a multiple 

reservoir operation problem would result in the so-called "curse of dimensionality". On 

the other hand, to use the stochastic dynamic programming (SDP) to deal with the 

uncertainty of inflows, the probability distributions of inflows and their correlation to 

each other have to be defined and evaluated, which are extremely difficult for a multiple 

reservoir system. Therefore, the use of SDP for multi-reservoir systems usually assumes 

that the various natural inflows into the system are not cross-correlated. 
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1.2 Research Objective 

The objective of this study is to develop a practical mathematical model to 

determine optimal operating rules for a real-world reservoir system. The study area is the 

reservoir system of West Branch Penobscot River in the State of Maine of the US. This 

is a multi-objective multi-reservoir problem. There are five major lakes in this system. 

The objectives of the system include (1) generating desired hydropower at the power 

station, (2) maintaining desired water elevation in the upstream lakes, and (3) ensuring 

releases from the lakes greater than minimum requirements. 

Through the review of literature, researchers relied heavily on DP techniques to 

solve reservoir operation problems. The major difficulty to use DP on multiple reservoir 

operation is the "curse of dimensionality", which is caused by the discretization of the 

state variables. Many variations of the original DP had been proposed to ease this 

problem. Instead of using a DP solution approach, this study will propose using a 

nonlinear programming (NLP) solution approach to deal with the multi-reservoir system. 

NLP has been developed extensively in the field of operations research but not yet 

widely used in reservoir operation. NLP, unlike DP, does not discretize the decision 

variables and thus can avoid the dimensionality problem. 
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1.3 Organization 

In addition to this chapter, seven chapters are included in this dissertation. 

Chapter 2 reviews some recent papers that focused on large-scale reservoir systems 

operation. Some efforts to ease the '"curse of dimensionality" are included. Chapter 3 

describes the reservoir system to be studied in this dissertation. The problem is 

formulated in detail and the proposed solution procedures are outlined. Chapter 4 

presents a time-series model for synthetic streamflow generation. It covers model 

identification, parameter estimation, and model diagnostic checking. Chapter 5 presents 

an improved DP algorithm with coarse discretizations to solve the problem formulated in 

Chapter 3. The solution could serve as the starting values for an NLP model. Chapter 6 

presents an NLP solution procedure. The formulated problem is read and modified from 

a main program and is solved by calling an NLP solver—the MINOS software package. 

The simulation examples and statistical tests are also presented. Chapter 7 describes an 

information-updating scheme for synthetic streamflows, the objective function, 

constraints, and parameters in the problem formulation. The reliability analysis of the 

NLP model is illustrated by more test examples. Chapter 8 siunmarizes and concludes 

this study. Some recommendations are made for future studies. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 General 

A large number of publications on applying systems analysis techniques to 

reservoir operations have appeared in the literature during the past 30 years. Yakowitz 

(1982) gave a comprehensive review of DP models for water resources problems. 

Marino and Loaiciga (1983) presented a literature review on large-scale reservoir 

operation optimization models. Yeh (1985) presented a state-of-die-art review of 

reservoir management and operation models, which includes extensive lists of 

references. Wurbs et al. (1985) provided a state-of-the-art review and an annotated 

bibliography of system analysis techniques applied to reservoir operations, which cites 

over 700 references. Esogbue (1989) presented an overview of various aspects of DP 

and their applications in the water resources systems analysis. Wurbs (1991) presented a 

state-of-the-art review of modeling and analysis approaches for reservoir system 

operations, in which a broad range of modeling and analysis methods was covered. 

This Chapter will focus on some recent applications on large-scale reservoir 

system operation and some important techniques that were developed to ease the "curse 

of dimensionality". The applications using NLP solution approaches are also included. 
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2.2 Large-scale Reservoir System Operation 

Tai and Goulter (1987) presented a heuristic stochastic dynamic programming 

approach for the development of a monthly operating policy for a multi-reservoir 

system. The approach utilizes the basic stochastic dynamic programming formulation 

for single reservoir problems. The linkages between the reservoirs within the system are 

provided by means of a "policy target" approach. The approach is demonstrated by 

application to a three-reservoir system on the Laurie River in Manitoba, Canada. 

Trezos and Yeh (1987) developed an optimization model, which takes into 

consideration the uncertainty of forecast at the time a policy must be established. The 

uncertainty is expressed in term of the second moments of the forecast probability 

distributions. The proposed methodology is applicable to constrained stochastic system 

with quadratic objective functions and linear constraints. It uses the decomposition 

principle of dynamic programming without discretizing the state or control variable and 

therefore the method can be used for large-scale systems. 

Georgakakos and Marks (1987) presented a method for real-time operation of 

reservoir systems. The system is represented by a set of stochastic differential equations 

describing the reservoir and river dynamics in state space form. The formulated reservoir 

operation problem calls for finding policies which maximize the expected benefits of 

one of system's objective while satisfying the remaining objectives at pre-specified 

reliability levels. The solution is obtained by a method named extended linear quadratic 

Gaussian controller. It is a trajectory iterative algorithm theoretically expected to exhibit 

reliability and computational efficiency. 



Saad and Turgeon (1988) presented a procedure for the case where a high 

correlation exists between the reservoirs' trajectories and hence between the state 

variables. The procedure consists of performing a principal component analysis (PCA) 

on the trajectories to find a reduced model of the system. The reduced model is then 

substituted into the operating problem and the resulting problem is solved by stochastic 

dynamic programming. The reservoir trajectories on which the PCA is performed can be 

obtained by solving the operating problem deterministically for a large number of 

equally likely flow sequences. They applied this model to the Quebec's La Grande 

River, which has five reservoirs. 

Foufoula-Georgiou and Kitanidis (1988) presented an algorithm, named gradient 

dynamic programming (GDP). The main irmovations over conventional discrete DP are 

in the functional representation of the cost-to-go flmction and the solution of the single-

stage problem. The cost-to-go function was approximated by the lowest-order 

polynomial. The improved accuracy of this interpolation scheme reduced the effect of 

discretization error and allowed the use of coarser grids, which reduced the 

dimensionality of the problem. Results for a four-reservoir example were presented. 

Kelman et al. (1990) developed the sampling stochastic dynamic programming 

(SSDP), a technique that captures the complex temporal and spatial structure of the 

streamflow process by using a large number of sample streamflow sequences. The best 

inflow forecast can be included as a hydrologic state variable to improve the reservoir 

operating policy. A case study using the hydroelectric system on the North Fork of the 

Feather River in California illustrates the SSDP approach and its performance. 
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McLaughlin and Velasco (1990) described a real-time optimal control approach 

for operating a large hydropower reservoirs system. The stochastic operating problem is 

first formulated in general terms and then simplified to allow the use of classical linear-

quadratic stochastic control concepts. The solution to the simplified control problem is 

implemented by combining a linear deterministic control law with a linear estimation 

algorithm. The resulting stochastic controller was applied to a two-reservoir system in 

the Caroni River basin of Venezuela. 

Paudyal et al. (1990) addressed an optimal model of a system with two storage 

reservoirs and a run-of-river plant in series. The problem was dealt with by formulating a 

two-step model. In the first step, DP has been adopted as the primary tool for the 

optimization. To cope with the problem of dimensionality, the incremental DP technique 

is applied with the objective of maximizing monthly benefits derived firom energy from 

the system as a whole and ignoring streamflow stochasticity. In the second step, 

stochastic DP has been used to derive a long-term joint operation policy of the system of 

reservoirs in the configuration selected from the first step. 

Braga Jr. et al. (1991) developed a DP model for optimization of hydropower 

production of a multiple storage-reservoir system with correlated inflows. The model 

consists of two parts: An off-line program and an on-line program. The off-line 

deterministic dynamic program computes the values of the stored water through the year. 

The on-line program is formulated in terms of a stochastic dynamic program and 

conducted in real time for operation use. Each month a multidimensional search is made 

for the optimal set of reservoir releases that maximize system benefits. 
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Johnson et al. (1991) provided a theoretical justification for several heuristic 

operating guidelines, including the widely used space rule. The guidelines were 

expressed as a mathematical objective function and combined with constraints on system 

operation to yield one-period optimization submodels that can be used to determine 

releases within a simulation. The model was used to improve the simulated operation of 

the Central Valley Project in California over the critical period of record. 

Valdes et al. (1992) presented a group of optimization models for the real-time 

operation of a hydropower system of reservoirs. The dimensionality problems usually 

found in DP formulations are solved by a space-time aggregation/disaggregation 

procedure that combines stochastic dynamic programming and linear programming 

techniques. The aggregated policy obtained is used in the real-time operation of the 

system to determine the recommended daily releases and power production from each 

reservoir of the system. The proposed methodology is applied to a case study, the Lower 

Caroni system in Venezuela, Which is composed of four reservoirs in series. 

Karamouz et al. (1992) presented an implicitly stochastic optimization scheme 

for multiple reservoir systems. The scheme comprises a three-step cyclic procedure that 

attempts to improve the initial operating rules for the system. The system requires two 

sets of contemporaneous streamflow series to be used in the simulation model and 

synthetically generated series are required for this purpose. The three-step cycle begins 

with an optimization of reservoir operations for a given set of streamflows. The optimal 

operations from the solution are then analyzed in a regression procedure to obtain a set 

of operating rules. 



23 

Karamouz and Vasiliadis (1992) proposed a model, called Bayesian stochastic 

dynamic programming (BSDP), to generate optimal reservoir operating rules. This 

model includes inflow, storage, and forecast as state variables, describes streamflows 

wdth a discrete lag-one Markov process, and uses Bayesian decision theory to 

incorporate new information by updating the prior probabilities to posterior probabilities. 

This continuous updating can significantly reduce the effects of natural and forecast 

uncertainties in the model. The rules generated by the BSDP model are applied in an 

operation simulation model and their performance is compared with an alternative 

stochastic DP and a classical stochastic DP model. 

Mizyed et al. (1992) developed an operation model for the Mahaweli system in 

Sri Lanka. The model is to minimize a hydroelectric energy shortage and to satisfy 

prespecified irrigation demands. They compared two approaches for this system. The 

first involved monthly application of the optimal-control algorithm to find an optimal 

policy for the next year. The second was an implicit stochastic approach, in which linear 

operating rules are derived using deterministic optimal control. The implicit stochastic 

optimization approach had a great advantage regarding computer time and storage. 

Johnson et al. (1993) demonstrated that the computational effort required to 

develop numerical solutions to continuous-state dynamic programs can be reduced 

significantly when cubic piecewise polynomial functions, rather than tensor product 

linear interpolations, are used to approximate the value fimction. Tensor product cubic 

splines, represented in either piecewise polynomial or B-spIine form, and multivariate 

Hermite polynomials are considered. Computational savings are possible because of the 
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improved accuracy of higher-order function and because the smoothness of higher-order 

fimction allows efficient quasi-Newton methods to be used to compute optimal 

decisions. 

Tejada-Guibert et al. (1993) compared two approaches for implementing 

reservoir operating policies using stochastic DP models. These two approaches are: (1) 

the traditional approach of determining release by interpolating in the policy tables 

produced by the SDP and (2) a reoptimized policy, which uses the cost-to-go function 

generated by the SDP to estimate the optimal release in each period. Reoptimizing the 

policy when a decision is made within the simulation resulted in better system 

performance, particularly when severe penalties were incurred for water and power 

shortages and coarse discretizations were employed in the SDP. The Shasta-Trinity 

system in Northern California is used as a case study. 

Crawley and Dandy (1993) developed a monthly planning and operational model 

for the Adelaide headworks system in South Australia. The system comprises ten major 

storages and three major supply pipelines. The objective of the model is to achieve a 

maximum yield for a given level of reliability and to reduce pumping cost. The model 

used linear goal programming to identify optimal operating policies for the system. The 

results obtained indicated that 5% to 10% saving of pumping cost could be achieved. 

Sadd et al. (1994) described a nonlinear disaggregation technique for the 

operation of multi-reservoir systems. The disaggregation is done by training a neural 

network to give the storage level of each reservoir of the system. The training set is 

obtained by solving the deterministic operating problem of a large number of equally 
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likely flow sequences. The aggregated storage level can be determined by stochastic 

dynamic programming in which all hydroelectric installations are aggregated to form 

one equivalent reservoir. The results of applying this technique to Quebec's La Grande 

river are reported. 

Lund et al. (1996) described the application of deterministic optimization to the 

main stem of the Missouri River reservoir system and the development and testing of 

inferred optimal operating rules from these model results. An implicit stochastic 

optimization approach is taken and tested using a simplified simulation model. This 

work illustrated the applicability and limitations of applying deterministic optimization 

to develop strategic operating rules for large-scale water resources system. 

Archibald et al. (1997) presented a method of determining an operating policy for 

a multi-reservoir system in which the operating policy for a reservoir is determined by 

solving a stochastic dynamic programming model consisting of that reservoir and a two-

dimensional representation of the rest of the system. They applied the method to 

examples of multi-reservoir system with between 3 and 17 reservoirs and showed that 

the operating policies determined were very close to optimal. 

Oliveira et al. (1997) used the genetic search algorithms to derive operating 

policies for a multi-reservoir system. The genetic algorithms used real-valued vectors 

containing information needed to define both system releases and individual reservoir 

storage volume targets as functions of total storage in each of multiple within-year 

periods. The proposed algorithm was applied to reservoir systems used for water supply 

and hydropower. 
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Nalbantis and Koutsoyiannis (1997) formulated a parametric rule for multi-

reservoir system operation. It was a generalized of the well-known space rule of 

simultaneously accounting for various operating goals and the goal of avoiding 

urmecessary spills. The rule is parameterized so that it contains two parameters for each 

reservoir. The rule derived a simulation model of the reservoir system, which is 

embedded in a scheme that optimizes the ruler's parameters. The rule tested on the case 

of the multi-reservoir water supply system of the city of Athens, Greece. 
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2.3 The "Curse of Dimensionality" 

Dynamic Programming has been used extensively for solving reservoir operation 

problems. DP technique is a very efficient solution procedure for dealing with a single 

reservoir problem. When dealing with a multiple reservoir system, an increase in the 

number of discretization and/or state variables would increase the number of evaluations 

of the recursive formula and of core memory requirement per stage. This problem of 

rapid growth of computer time and memory associated with multiple state variable DP 

problems is referred to as the "curse of dimensionality" (Bellman, 1961). 

To ease the problem of dimensionality, many modifications to the original DP 

technique have been proposed. The following lists some important ones. 

Bellman and Dreyfus (1962) suggested the dynamic programming successive 

approximation (DPSA) technique. It decomposed an original multiple-state variable DP 

into a series of subproblems of one state variable. In an iteration, only one of the state 

variables Is allowed to change while the other variables were kept constant. This 

provides a considerable reduction in computation because the computations increase 

linearly instead of exponentially as the number of state variables of the DP increases. 

Mayne (1966), and Jacobson and Mayne (1970) developed a technique known as 

Differential DP (DDP). It was a successive approximation approach that started from an 

initial control strategy supplied by the user. The objective fimction was approximated at 

each stage by a quadratic polynomial through a truncated Taylor series formulation. This 

objective function was then optimized through a quadratic programming process to 

produce a new control policy, and the whole procedure was iterated until convergence. 
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Larson (1968) introduced a technique call incremental DP (IDP). Heidari et al. 

(1971) systemized it and referred it as Discrete differential DP (DDDP). In DDDP. the 

first step is to assume a trial sequence of admissible decisions called the trial policy and 

the state vectors of each stage are computed accordingly. This sequence of states within 

the admissible state domain for different stages is called the trial trajectory. The state 

space was discretized into uniform increments, called the state increments. Several states 

that around the trial trajectory form a band called a corridor. The traditional dynamic 

programming approach is applied within the corridor to find an improved trajectory. 

Then a new corridor is formed around the improved trajectory. The process is called an 

iteration. This procedure is repeated to some iteration k, which produces a difference in 

system retiun, fk - fk-i, less than a specified tolerance. At this point, the size of the state 

increment can be reduced to set up a narrower corridor around the improved trajectory 

from die last iteration completed. The iterations continue until a specified minimum 

corridor size is reached. 

Kitanidis and Foufoula-Georgiou (1987) and Foufoula-Georgiou and Kitanidis 

(1988) proposed the Gradient DP algorithm (GDP). It uses cubic Hermite polynomials to 

approximate the future value flmction between grid points. Thus, for the same number of 

discretization levels, GDP should yield more accurate solutions. The improved accuracy 

of this Hermitian interpolation scheme reduces the effect of discretization error and 

allows the use of coarser grids which reduces the dimensionality of the problem. They 

found that the GDP solutions were of equivalent accuracy to those of an algorithm that 

used linear interpolation and had over tvdce the number of discretization levels. 
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Similar to GDP, Johnson et al. (1993) proposed using cubic piecewise 

polynomial functions to approximate the value functions. It is possible to save more 

computation time because of the improved accuracy of higher-order functions and 

because the smoothness of higher-order function allows efficient quasi-Newton methods 

to be used to compute optimal decisions. The test results showed that the use of the more 

efficient piecewise polynomial form of the spline was slightly superior to the use of 

Hermite polynomials. Besides, the programming of a spline piecewise polynomial 

approximation is easier than that of a Hermite polynomial approximation. 
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2.4 Nonlinear Programming Applications 

Literature in the past thirty years does not contain much on the use of nonlinear 

programming (NLP) techniques in reservoir systems operation. Lee and Waziruddin 

(1970) compared two NLP techniques, the gradient projection method and the conjugate 

gradient method, on a theoretical system of three reservoirs in series. The model had a 

quadratic function, 15 linear equality constraints, and 90 linear inequality constraints. 

Gagnon et al. (1974) presented a penalty function technique to an optimization 

for a large scale hydroelectric system encompassed by the Columbia river basin. The 

largest numerical case involved approximately 6000 variables, 4000 linear equations, 

11000 linear and nonlinear inequality constraints and a nonlinear objective function. 

Chu and Yeh (1978) applied Lagrangian procedures to solve real-time operations 

for a single reservoir system. The problem had a nonlinear concave objective flmction 

with nonlinear concave and linear constraints. The minimization of the Lagrangian was 

carried out by a modified gradient projection technique. 

Simonov and Marino (1980) presented a NLP model, which included reliability 

constraints. A three-level algorithm was proposed to solve this problem. The first two 

levels consist of a two-dimensional Fibonaccian search procedure and the third level is 

an optimization scheme using the gradient projection method. 

Rosenthal (1981) presented a nonlinear network flow algorithm for maximization 

of benefits in a multi-reservoir hydroelectric power system. The proposed algorithm was 

based on a reduced gradient methodology (with some nonstandard modifications) and on 

primal linear network flows (with simplifications from the special structure of network). 
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Lall and Miller (1988) formulated an NLP model to determine a set of storage 

capacities for the candidate set of reservoirs that maximized the expected net armual 

benefit from the construction of reservoirs and hydropower generation facilities. The 

generalized reduced gradient algorithm and the penalty success linear programming 

algorithm were used to solve the problem. 

Recently, Sylla (1994) provided a general formulation of water resources 

allocation problem with explicit engineering details and investigated several solution 

procedures for their applicabilities. The author developed an efficient algorithmic 

framework exploiting the special network structure to solve the problem occurred by a 

large number of linear equality constraints. 

Throughout the literature review, we see that DP dominates the optimization 

market of reservoir systems operation but why not NLP? In his review paper, Yeh 

(1985) said: 

''Nonlinear programming (NLP) has not enjoyed the popularity that LP 
and DP have in water resources systems analysis. This is particularly due 
to the fact that the optimization process is usually slow and takes up large 
amounts of computer storage and time when compared with other 
methods. The mathematics involved in the nonlinear models is much 
more complicated than that in the linear case, and NLP unlike DP can not 
easily accommodate the stochastic nature of inflows to the system." 

"NLP does offer, however, a more general mathematical formulation and 
may provide a foundation for analysis by other methods. NLP can 
effectively handle a nonseparable objective fionction and nonlinear 
constraints which many prograrrmiing techniques carmot. ... For a system 
of reservoirs, the number of constraints is large because they deal with 
similar subsystems, repeated in time or location. Therefore NLP will gain 
its practical importance in water resources systems with the development 
of computer technology and effective algorithms for large-scale, multi-
objective optimization." 



32 

In recent years, the computer technology advanced dramatically. We now have 

much faster computers with huge storage and memory. A 300 MHz Pentium II CPU 

IBM-compatible PC, a model of 1997, runs about 2000 times faster than a 4.77 MHz 

8088 CPU IBM PC, the first generation PC in 1981 (Mueller, 1998). The field of 

operations research also made fast progress. More and more mathematical programming 

packages were developed (NEOS Guide, 1998); some of them aimed at solving large-

scale problems. The NLP codes are faster and more reliable than the past. Thirteen years 

have passed since Yeh's prediction but there were still few applications using NLP on 

reservoir systems operation. The most distinct difference between an NLP model and a 

DP model is that NLP solves directly the problem without discretizing the decision 

variables. Therefore, for multi-reservoir systems operation, NLP could avoid the "curse 

of dimensionality". In Chapter 3, the author will propose using an NLP approach to deal 

with the multiple reservoir system specified for this study. 



CHAPTER 3 

PROBLEM FORMULATION AND SOLUTION PROCEDURE 

3.1 Problem Description 

Figure 3.1 shows lakes and ponds in the watershed of the West Branch Penobscot 

River in the State of Maine of the U.S. There are many lakes and ponds in this 

watershed, some are big and the others are small. 

All the parties interested in this hydrosystem formed an informal Storage Project 

Stakeholders Group composed of representatives of the Great Northern Paper, Federal 

and state regulatory agencies, native American tribes, private camp owners, fishermen, 

and other interested parties. The members of the Stakeholders Group do not have a 

common objective. The Great Northem Paper (GNP) is primarily concerned about the 

hydropower generation at the Ripogenus Lake. Other members of the Group have goals 

related to providing and maintaining an adequate habitat for fish and wildlife, to 

recreation and to other purposes. The members of the Group had revised a draft of water 

management plan in 1997 (parts of it are shown in Appendices A, B, C & D). 

The objective of this study is to produce a framework for the optimal operation 

of the hydrological system upstream from and including Ripogenus Lake, for fishery, 

wildlife, and hydropower generation. For fishery, the main concern is the controlled 

outflows from lakes and ponds during the period from mid-July to October. For wildlife. 



Figure 3.1 Lake and Ponds in the Watershed of the West Branch Penobscot River, Maine, USA 
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the primary concerns are the control of water levels of the lakes and ponds that will 

promote nesting opportunities for waterfowl during the period from mid-April to mid-

July. For the hydropower generation, the objective is not only to maximize total 

electricity generated but also to supply it when it is needed during the yearly cycle. In 

the winter, from November to mid-April, the gates of lakes upstream Ripogenus Lake 

are fully open and neither lake levels nor outflows are controlled. 

There are 32 lakes and ponds in this area but most of them are very small. Only 

11 of them have measured hydro logical data. Table 3.1 shows the storage capacity and 

drainage area of these 11 lakes and ponds. The largest five lakes (Canada Falls, 

Seboomook, Caucomgomoc, Ragged, and Ripogenus) contain 95.5% of the total storage 

capacity. It is reasonable, therefore, to analyze the hydrological system comprised of 

these five lakes and to develop an operational model for them and neglect the other six 

lakes and ponds which have less than 5% of the total storage capacity in the watershed. 

Table 3.1 Storage Capacity of Lakes and Ponds Upstream from Ripogenus Lake, Maine 

Lake or Pond Drainage Area 
(mile^)* 

Capacity 
(BCF)* 

Capacity 
Percentage (%) 

Penobscot Lake 15.75 0.352 0.86 
Canada Falls Lake 165.67 0.944 2.30 
Long Pond 14.40 0.131 0.32 
Dole Pond 28.35 0.168 0.41 
Seboomook Lake 301.80 5.100 12.41 
Loon Lake 59.90 0.459 1.12 
Caucomgomoc Lake 117.61 1.852 4.51 
Umbazooksus Lake 25.68 0.412 1.00 
Ragged Lake 40.09 1.328 3.23 
Harrington Lake 39.64 0.335 0.82 
Ripogenus Lake 613.01 30.00 73.03 

Total 1421.9 41.081 100 
* Imile =2.59 km 
** 1 Billion Cubic Feet (BCF) = 22,957 acre-feet = 28,317,000 cubic meters 
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3.2 Problem FormuJation 

3.2.1 Notations 

A schematic representation of the hydrosystem that is the major contributor to 

the Ripogenus Lake is shown in Figure 3.2. The notations used in this figure are Q = 

uncontrolled flows contributed by the watershed, S = storage volume. R = water 

releases, O = excess release from Ripogenus other than for hydropower generation. 

Figure 3.2 Schematic Representation of the Hydrosystem. 
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The notations used to define the objective function and constraints are as follows: 

t : index for time period, t = 1,2,...., 12 
I=January, 2=February,...., I2=December. 

j : index for storage site, j = 1, 2, 3,4, 5 
l=Canada Falls lake 
2=Seboomook Lake 
3=Caucomgomoc Lake 
4=Ragged Lake 
5=Lake Ripogenus. 
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Q,' : inflow to sitej in period t; j=l,...,5; t=l,...,12 
Hj., : elevation at site j at the end of period t; j=l,...,5; t=l....,12 
Sj.t : storage at sitej at the beginning of period t; j=l,...,5; t=l,...,12 
h' : release from sitej in period t; j=l,2,3,4; t=l,...,12 
Rs., : release through turbines at Ripogenus in period t; t= 1,..., 12 
Os, : release other than that which passes through turbines in period t; t=l 12 
n nun 
Rj. '  : minimum release fi-om sitej in period t; j=1.2,3.5; t=l 12 

Kj : maximum storage capacity of site j; j=l. ..5 
^min : dead storage of site j; j=l,...,5 

: the elevation of water surface at site j when the storage is dead storage; j=l. 5 

Ps., : power generation in period t; t=l,....12 
yjmax : maximum turbine flow 
T,. : target of lake elevation in sitej at the end of period t, j=1.2.3,4; t=l 12 

Tu : target of power generation in period t; t=l,...,12 
pmin : minimum power generation in period t; t=l,...,12 

utility function at sitej in period t,j=l,2,3,4;; t=l,...,12; Uj,, e(0,l) 

Us.iPs.,)'. utility function for power generation in period t; t=l,...,12; Us,, e(0,l) 

kj,i : utility scaling constants; j=l ,2,3,4,5; t=4,.. .,9 

3.2.2 The Objective Function 

As mentioned in Section 3.1, the three objectives of the system are (1) 

hydropower generation at Ripogenus Lake, (2) to maintain the water elevation in the 

four upstream lakes, and (3) to ensure releases greater than minimum requirements. 

Since there are no common dimensions for the measurement of the performance for 

these three objectives, they need special treatment before they can be grouped together. 

First of all, the minimum release component can be added to the constraint set, thus 

simplifying the problem. This means that the minimum-release targets will be achieved 

all the time. Next, since the elevation targets have been specified in the draft of GNP 

Water Management Plan (GNP, 1997), a good measurement for the performance of this 
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component of the objective is how close to a target is the solution. If we achieve a target 

then we are most satisfied. On the contrary, if we are far fi-om the target, we are least 

satisfied. The closer to the target, the more satisfaction we have. Mathematically, the 

satisfaction can be expressed as a utility function, that is. 

In equation (3-1), the utility Ujj refers to the four lakes upstream from Ripogenus 

and for the seven non-winter months, from t=4 (April) to t=9 (September). If the 

elevation of water in these lakes reaches its target, we are 100% satisfied and the utility 

is "1". If, on the contrary, the reservoir is empty, we are not satisfied at all and the utility 

is "0". Because the gates are fully open at the end of October, the targets of elevation are 

equal to the minimum elevations. Therefore, Equation (3-1) is not applicable. Under this 

situation, the elevations are set as minimum elevations and are put in the constraint set. 

In a similar way, once the targets of power and the minimum power at Ripogenus 

are specified, we can construct a utility fimction for the objective of power generation, 

that is. 

Tj —LL 1±. i=I2 3 4- t=4 5 9 
( T . - H , . y  

(3-1) 

f J -p y 
^ 5.1 ^5.1 t=l,2,...,12 (3-2) 

In Equation (3-2), if the power generation reaches the target {P5,t=T5,,), the utilit>' 

is "I", that is, we are 100% satisfied with the result. If the power reaches only minimum 

level {Pj.t= ), the utility is "0", that is, we are not satisfied at all. 
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Finally, one can put the utilities for these five lakes in a single objective function, 

that is. 

Maximize J]U, , {P. ,) + X C)} + Z^5., (A.,) + ̂ i.finai 
f = l  1=4 j = \ (  =  1 0  

(3-3) 

Equation (3-3) is a multi-attribute utility fimction, in which kj,, are the scaling 

5 

constants for these utilities, where = 1 V t=4,...,9. In general, the scaling constants 
;=i 

are assessed in accordance with the preference of a decision-maker. Since there are 

different parties represented in the stakeholder group, no one can decide the value of 

these constants independently. For the sake of equal importance, one can put an equal 

weight on each lake, that is, 

kjj = Q2 Vj=l,...,5;t=4,...,9 (3-4) 

l^sftnai is the remaining value of the system. The remaining value of the system 

after the end of the twelfth month may be considered as the amount of water in storage 

remaining at Ripogenus Lake. It is expected that there will be as much water as possible 

remaining for power generation for the following year. Similar to the elevation utilities, 

one can define a utility fimction for the value of storage at the Ripogenus Lake, 

^max final 
^ i .final ~ 1 rrmax rymin 

V " s  " 5  J  
(3-5) 

where ///""' is the final elevation at Ripogenus Lake at the end of the 12-month time 

horizon. 
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3.2.3 Constraints 

(1) Power Generation Function: 

Appendix E shows the turbine production curves for the hydropower plant at 

Ripogenus Lake, which were supplied by the GNP. For the purpose of calculation, 

several points on the curves are selected, listed in Table 3.2, and used for curve 

fitting. 

Table 3.2 Selected Points on Power Plant Production Curve 

Flow Rate (cfs) Production Flow Rate (cfs) Production 
(Kw/cfs) (Kw/cfs) 

400 12.00 1800 13.00 
500 12.55 2000 12.70 
600 13.05 2060 12.60 
720 13.30 2200 12.65 
830 13.20 2400 12.62 
900 13.35 2600 12.50 
960 13.38 2800 12.27 
1000 13.30 3000 11.90 
1100 13.05 3200 11.42 
1200 12.60 3400 10.90 
1400 13.00 3450 10.78 
1600 13.15 

Because the minimum required release during a year is 1300 cfs, only the points 

with flow rate greater than 1300 cfs are used for curve fitting. Figure 3.3 shows the 

fitted curve and its equation. 

Figure 3.4 shows the water head correction curves and their regression equation, 

which were supplied by the GNP. 
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Figure 3.3 Power Plant Production Curve 
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Figure 3.4 Water Head Correction Factor for Turbine Perfomnance 
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The generated power rate (KW) equals to the flow rate (cfs) through turbines 

times the turbine production (KW/cfs) times the water head correction factor. That 

is, 

Py, =^5., X(I1.4105 + 1.9724X10-'(^5,)-6.17248X10-'(/?5,)-) (3-6) 
f u ^ u ^ H,,., + //s., 

-758.0-1.6 xlO-''(/?5,)' /186.0 
V - / 

(2) Elevation-Storage Relationship: 

Appendix F shows the elevation-storage relationships for the five major lakes. 

For the purpose of computation, these relationships are approximated by nonlinear 

curves, such as the curves shown in Figures 3.5 to 3.9. The equations for the fitted 

curves are, 

H„ =1226.03+ 27.9519(5,,)-25.7418(5,,)'+10.0815(5,,)" (3-7) 

//,, =1047.48+ 10.4522(5,,)-1.5590(5,,)- +0.0964189(5,,)' (3-8) 

^ 3 ,  = 990.09 + 4.52151( 5 3 ,  )-0.140144( S 3 , ) '  (3-9) 

=1120.94+ 14.8072(5,,)-3.32646( ^ 4 , ) '  (3-10) 

^ 5 ,  = 912.492 + 1.38892( 5 5 ,  )-0.0114883( 5 5 , ) '  (3-11) 
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Figure 3.5 Elevation-Storage Curve, Canada Falls Lake 
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Figure 3.6 Elevation-Storage Cun/e, Seboomook Lake 
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Figure 3.7 Elevation-Storage Curve, Caucomgomoc Lake 
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Figure 3.8 Elevation-Storage Curve, Ragged Lake 
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Figure 3.9 Elevation-Storage Curve, Ripogenus Lake 
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(3) Mass Balance Equations: 

•^1./ ~ 
(3-12) 

'^2.1 "^Ql.t "^^1./ ~ ̂ 2.t*l (3-13) 

Qi.l ^3.f ~ (3-14) 

•^4,/ Qaj ^i.i ~ (3-15) 

^5., +Q5.1 +^2.f +^3,/ "••^4., -^5.1 ~Osj (3-16) 

The available hydrology data include actual elevation of the surface in the lake, 

the volume of water stored in the lakes, and the releases from the lakes. The inflows to 

lakes are calculated by the mass balance equations. Therefore, the evaporation and 

seepage losses are already included in the estimated inflows and do not appear in the 

mass balance equations (3-12) to (3-16). 

(4) Minimum Releases: 

(3-17) 

(5) Storage Bounds: 

57" < < K (3-18) 

(6) Maximum Release Through the Power Plant at Ripogenus: 

(3-19) 
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3.3 Solution Procedure 

The uncertainty of inflows plays a big role in reservoir systems operation. The 

two major approaches to deal with the inflow uncertainty are an explicit approach and an 

implicit approach. The explicit stochastic model usually gives a steady-state solution as 

the optimal operating policy. The steady-state solution implies that if the conditions of a 

system will not change, then, for a long run, the given operating policy will be optimal. 

In the reservoir system in this study, the available hydrological data are short and 

discontinuous in the winter. Also, the GNP water management plan is still under 

negotiation and the targets for releases and elevations of surface water are tentative. An 

implicit stochastic model allows the use of new information obtained during each time 

period. Thus, an implicit stochastic model is proposed for this system. The implicit 

stochastic model requires a time series model to generate a large numbers of future 

inflows for the purpose of simulation. 

In order to avoid the "curse of dimensionality", a nonlinear programming (NLP) 

approach will be adopted to solve problem formulated in previous section. However. 

NLP solvers usually require a set of "good" initial values for the variables. For a large-

scale problem, it is difficult to obtain a set of good initial values. Intuitively, die 

solutions obtained by a dynamic progranuning (DP) model may be seen as sub-optimal 

solutions to the original problem yet could be good starting values to the NLP model. 

At the begiiming of a month, the initial storage is observed and the inflows 

during the previous month are calculated. Then, a time series model is used to generate a 

large numbers of sequences of future 12-month synthetic streamflows based on the 
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historical data. A discrete DP algorithm is used to solve the problem and give a set of 

initial solutions to the NLP model, which employs a nonlinear solver to solve the 

problem. For each set of the synthetic inflows, both the DP and the NLP models are 

considered as deterministic. In order to decide how many runs in the simulation are 

sufficient, two simulations with the same runs are performed independently. The results 

of these two simulations are compared and tested for the shapes of their distributions. 

The simulations are terminated if the test reveals that there are no significant differences 

between these two simulations. Finally, the means and standard deviations of the 

decision variables are tabulated and the distributions of the decision variables can be 

presented graphically. 

A time horizon of 12 months was considered in the formulation of the problem. 

In other words, the decision made at present is based on the current storage in lakes and 

on the streamflows forecast for the next twelve months. As time advances, one will have 

new observed storage data. This storage does not necessary equal to the number decided 

by the optimization and simulation models because the forecasting can not be very 

precise. It is beneficial, therefore, to use the new information to update the optimal 

operating policies for the current time period. In addition, one can extend the historical 

streamflow data and use them to update the forecast synthetic inflows. This will improve 

the operating policies. Furthermore, the targets of elevations, the targets of power 

generation, and the parameters used in the problem formulation may change over time. 

All these can be updated in the future. 

The overall solution procedure is shown in Figure 3.10. 
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Figure 3.10 Problem Solution Procedure 
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CHAPTER 4 

SYNTHETIC STREAMFLOW GENERATION 

4.1 Introduction 

Time-series analysis has been an important tool in stochastic hydrology. It is used 

to build mathematical models for generating synthetic streaflows, forecasting future 

hydrologic events, detecting trends in hydrologic records, filling missed data, etc. The 

basic assumption of the synthetic streamflow generation is that the streamflow 

population can be described by a stationary stochastic process, that is, a process v^^hose 

parameters do not change over time. Then, a statistical model may be fitted to the 

historic streamflows and used to generate synthetic streamflows. 

Because the hydrologic data for the four upstream lakes in the winter are not 

available due to freeze, the inflows to these lakes are assumed to be zeros. In order to 

perform a continuous time series analysis, the interrupted periods are patched with flows 

artificially by the streamflow measured at a nearby flow-station, the Nine-Mile Bridge on 

the St. John River, where the streamflow data are available all year round. The 

streamflows at Nine-Mile Bridge are prorated to the four upstream lakes by the ratios of 

their respective drainage areas. 
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4.2 Univariate Time Series Analysis 

4.2.1 Data Transformation 

Most probability theory and statistical techniques applied to hydrologic time 

series analysis are developed assuming that the variables are normally distributed. 

Therefore, we need to test the data for normality before further analysis. A commonly 

used method for judging whether a set of data is normally distributed is to plot the 

empirical frequency distribution of the data on normal probability paper. A straight-line 

probability plot indicates that the data are normally distributed. Other tests for normality 

include the Chi-square test and the Kolmogorov-Smimov test. 

Figure 4.1 shows the normal probability plots of the historical monthly inflows 

using the Weibull plotting positions. Obviously, they are not normally distributed. 

Therefore, a transformation is needed to make them normal. Some widely used methods 

for transforming data to normal include the logarithmic transformation, the power 

transformation, and the Box-Cox transformation (Box and Cox, 1964). The Box-Cox 

transformation was found to be a powerful way to transform data to normal distributions. 

The Box-Cox transformation for a batch of data x/, x?,..., is defined by 

if 5^0 (4-1) 

= hi(x,) i f X  =  0  (4-2) 

in which the parameter A, can be estimated by the maximum likelihood method. 
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Figure 4.1 Normal Probability Plots of Historical Monthly Inflows 
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If it is assumed for some value of X that x{''\x3''\...,.r^'^'are independent noraial 

with mean fj. and variance cT, then the log likelihood function for the parameter A. can be 

written as (McLeod and Hipel, 1998) 

hi(Z(/l)) = Inf- )1 + (/I - 1)X ) (4-3) 2 v«v ) tr 
where 

= -5-2]^'" (4-4) 

The function hi(L(A,)) can be tabulated or graphed to determine the value of "k 

which maximizes the likelihood. This gives the maximum likelihood estimate of X 

which is denoted by A. The estimator A may also be determined by a numerical 

optimization method, for example, the golden section method. 

Figure 4.2 shows the hydrographs of historical monthly inflows. It shows that the 

inflows happened periodically thus are nonstationary. The Box-Cox transformation given 

in Equations (4-1) and (4-2) cannot remove periodicity from a time series. However, the 

following equation can be employed to deseasonalize the given data (Hipel and McLeod, 

1994), 

where m is the index of month, m= 1,2,..., 12 

y is the index of year, y=l,2,...,n 

and am are the fitted mean and standard deviation for the m'*' month. 
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Figure 4.2 Hydrographs of Historical Inflows 
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The fitted means and standard deviations can be estimated using the formula. 

1 ^ 

cr„ = 
n-\^x 

0 5 

(4-6) 

(4-7) 

The deseasonalized variables Zym are normally distributed with zero-mean and 

unit standard deviation. Figure 4.3 shows the normal probability plots of the transformed 

inflows while Figure 4.4 shows the hydrographs of the transformed inflows. 
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Figure 4.3 Normal Probability Plots of Transformed Monthly Inflows 
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