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Chapter 1
'DESCRIPTION OF HYBRID SYSTEM

1.1 INTRODUCTION

The 1m§ortant role of differential analyéers in the fiela of
' computation, syéteﬁ‘simulaﬁion, and analysis is well established.
Electronic diffefential analyzers, organized in an all-parallel,
operational fashion, provide the system engineer or analyst with a
"live mathematical model." These machines not only aid considerably
in the reduction of hand computation and analytical effort, but they

also provide new insight into system operations.

Electronic analog computers have remained at the forefront
in those areas where high accuracy i1s not required, but where their
flexibility, simplicity, ease of programming, and low cost make them

a highly useful "every-day tool."

Of course, there are maeny cases where a higher computaﬁion
accuracy is required, or where memory and'decision-making functions -
predominate; it has normally been necessary to use digital computers
in these instances. In order to provide machines organized in a2 more
useful operational fashion, special purpose digital differential

analyzers (DDA's) have been developed.



While promising a potentially higher accuracy (due to the
‘essentially unlimited number of digital bits which can be used to
represent a variable), the DDA suffers from a number of readily
apparent dipadv;ntages. The cost and complexity of an all-parallel
DDA is unquestionably greater tham an equivalent analog machine.
What is even worse from a functional standpoint, the DDA has the
inherent difficulties of all systems which utilize quantized
variable representations, that is, truncation and round-off errors.
Practical fast DDA's usé'relatively simple integration algorithms,
usually sn open trapezoidal rule (see Ref. 25). To achieve ‘a
desired minimum error in the finmal solution, the DDA programmer must
often exercise a considerable amount of skill in constru#ting his
program. At best, hplmay be forced to operate at a frustratingly
slow time scale, in order to provide the fineness of iteration
necessary to achieve a desired degree of accuracy. In many cases,
this measure alone will not necessarily insure that some mechanism

has not yielded an unpredicted error in the result.

In recent years, comsiderable effort has been expended
toward combining thé capabilities of digital and analog systems. It
is félatively easy to provide amalog computers with a fair measure of
memory and decision-making capability. Systems using combined analog
and digital computing elements with D-A and A-D.converters for data
conversion have been successfuliy employed in many simulation and
computation installations. 1In these installations, the digital system

serves for accurate and relatively slow operations most suited to its



nature, e. é., coordinate conversions, table look-up, precision
function generation, data storage, decision making, etc. The analog
elements are used to perform linear operations such as integration
and_summation,‘énd where?er greater speed and léss accuracy 1is

required (Ref. 1, 4, 6, and 17).

The concept of blending analog and digital elements can be
extended to a system of true hybrid computing elements. To clarify
what is meant, consider the possibilities provided by a system
wherein the values of variables (and parameters) are each represented
by a’combination of a coarse digital wofd together with a continuous
analog interpolation voltage. 1In theory, at least, it would appear
possible that the accura?y of the analog channel would be improved
by roughly 1/2n, where n is the number of digital bits used in the
digital representation. For example, using analog components with
an accuracy of 1 per cent of full scale with a 7-bit digital word,
the resulting full scale accuracy of the hybrid variables would be
one part in 100 x 27, i.e., about 0.0l per cent. A little thought
will bring to light the obvious restriction that one must trade speed
(whether viewed in terms of frequency, riée time, or slewing rate)
for accuracy. This same limitation, of course, applies to DDA's, and
to some extent, to analog computing systems. The hybrid differential
- analyzer may be regarded as a relatively inexpensive parallel DDA
whose truncation and round-off errors are essentially eliminated
through interpolation with analog computing elements. This feature,
rather than accuracy or speéd as such, is considered to be the salient

advantage of such a system.
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The successful impiementation>of a true hybrid system depends

upon the development of suitable. transducers or data converters between
the analog and digital interfaces. Basically, the problem is ome of

developing fast comparators and amalog switches.

Under the assumption that the practical problems can be
solyed, it is tﬁen a fairly straight forward matter to outline the
’required system interconnections to implement the operational
elements of a true hybrid system. Considerable work has already been
done in this area by Skramstad, Schmid, Korn, and others (Ref. 1, 4,
17, 29, and 31). The purpose of this study was to explore in detail
the practical aspects of hybrid differentigl aﬁalyzers, and to verify

experimentally the capabilities and limitations of a typlical system.

In order to be useful in practical application, a hybrid
differential anaiyzer system must be capable of performing at least
‘those operations now within the capabilities of conventional analog
and digital systems. One class of problems for which hybrid systems
should be useful is for space-vehicle trajectory calculations. This
type of problem involves nonlinear differential equations, and the
input data normally must undergo numerous coordinate transformations.
It is apparent that a useful hybrid computing system must not only
contain linear operational>e1ements, such as integrators and summers,
but also must contain elements capable of performing multiplication,
division, precise coefficient setﬁing, polar-rectangular conversion

(resolving), and general function generation.



The major portion of the experimental work associated with
this thesis is devoted to the performance of hybrid integrators.
However, later sections will discuss the requirements of hybrid
elements for performing all of the above operations. The actual
system is designed so as to retain as much flexibility as possible
in the manner in which these operations are implemented. Figure 1.1
shows abbreviated block diagrams of typical hybrid computing elements;

details of the design of these elements appear in subsequent chapters.

1.2 SYSTEM NOTATION!

1.2.1 HYBRID REPéESENTATION OF VARIABLES: ACCURACY

Consider a system where each problem variable x is

represented by a machine variable X = a,x, appearing in the form
X"XD+XA

where Xp is a digital word with n binary digits plus sign bit; Xa
is an analog voltage between -E and +E volts. Either 1 binary digit

or E volts represents 1 machine unit (m.u.). We note that X, is an

interpolating voltage representing the fractional part of X (Fig. 1.2).
In this study, n =*3,(2n = 8) and E = 10 volts.

Assuming analog-computer accuracy within p per cent of E,
n

2
this representation yields 100 P distinguishable increments of X

. lThe material presented in this section is primarily derived
from discussions with Prof. G. A. Korn, whose suggested notation is
used throughout this paper. For a notation summary, see Table 1.1.



between 0 and 2“, or a half-scale accuracy of 27 %p pér cent.

For any analog voltage e between O and 0.5 machine'unit, note

that both Xp + e and (Xp + 1) + (e'- 1) represent the same value of

the hybrid machine variable X. Although this redundancy halves the

analog resolution, it permits us to use relatively inaccurate analog

comparators to generate carries.

1.2.2 REPRESENTATION OF THE INDEPENDENT OR TIME VARIABLE (Fig. 1.3)

The range of the independent variable t 2 0 is divided into

equal increments At;, so that
Ee (kD) At + g1 (k= 1, 2, ..0) @

where t varies periodically between 0 -and O¢ At as t increases. Each
interval of length At will correspond to an individual analog-

computing period of duration T, during which
T = Qg [c - (k-1) At] > 05 (k= 1, 2, ...) (3)

is the computer time (real time); QO is a time scale factor suitably

chosen so that
Q At = T (4)

- After each run, a holding interval of length, Ty, is used for
performing digital updating operations, generating analog carries and
resets, etc. This is a significant departure from earlier hybrid

differential analyzer systems. The interruptions in the computation



complicate the introduction of real-time data inputs, but otherwise

does not place any major restrictions on system capabilities.

1.2.3  VARIATION OF THE MACHINE VARIABLES WITH TIME: THE ANALOG-
COMPUTING PERIOD

At the start of the kth computing period t = (k-1)At, T m‘é],
the digital component Xp and the analog component Xp of each machine

variable X are reset to their correct valuesl.

kxp = Xp [(k-l) At] (k= 1, 2,...) (5)

“%a (0 Ky [ (k-1) ac] k=12, (6)

‘Each digital component Xp remains constant during the entire computing

period, while each analog component

XA (t) = Xp E(k}l)éxt-ﬁ- at']‘ 1‘] = kxA (v)
(kal, 2,...; 7 2 0) (7)

varies as a-function of the coﬁpucef time v as dictated -by the

\

computing interconnections for the given problem.

~1.2.4 THE DIGITAL-COMPUTING AND CARRY-GENERATING PERIODS

At the end of the kth analog-computing period, each analog
voltage is held and generates a positive or negative carry (+ 1 m.u.

increment) if

> kel ?,..) (8)

| %, (o ac)

N =
B
c

INote that the actual values of Xp and Xp do not necessarily
differ between the end of one run and the beginning of another; they
will differ only if a carry is made.



The carries are used as digital 4+ 1-bit increments to update the
digital components kXD, also new digital cdmponents k+1XD are computed
digitally. | ﬁ

During the éame holding period, the positive or negaﬁive
carfy machine units are subtracted from the corresponding analog
voltages (which can, thefefore, never exceed 1 m.u.); and precise
fractional parts of the digital componénté k+1XD are computed digitally, .
to be introduced into the next analog computation. Note that the

digital computing elements accept n-digit words, but effectively

produce longer words.

1.2.5 COMPUTING SPEED (See Also Section 5.2 and Appendices B and E)

No machine variable X = X(t) may be allowed to increase or
decrease by more than 1/2 m.u. (1/2 bit) during any one computing

period of T seconds; hence we must scale so that

1dx | < 1. at '
I-EE ‘ - ZAE T m.u./sec ) (9)

If the computer time 7 is to represent t on a l:1 time scale
(0t = 1) during each analog computing period; then we have T = At,

and the maximum absolute rate of X is given by

) |a‘g IS -2—% m.u./sec (10)

We can, in this case, represent a full-scale sinusoid

X(t) = 2" sin 2xf t



with
'95| = 2xf . 2% < _L ‘
»*Idt max .= 2T m.u./sec (11)
if o
f£< 1 __ = B._. ... cps
~ 4t . 2n HIBRID (12)

We will call Bpyppyp the full-scale bandwidth of the hybrid computer.

4 given full-scale bandwidth Buyprip requires

T < L sec -
—-— n
47ByypRID? | (13)

The analog computing elements of the hybrid computer must

permit the full rate of change

dX, n 1

i.e., the analog computing element must be able to produce a full-

scale analog sinusoid

XA(t) sin 2ﬂBANALGGt v
with
B > on = 1 cps
ANALOG = * BuysRID ® 777 (14)

Note that increased digital accuracy necessarily requires a

proportional increase in thé required analog bandwidth once BuyBRID

is given.
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In the system to be described in this paper, a + 10 volt
analog signal range was selected so that the majority of ahalog
operations could be easily 1mp1§men:ed with modefn fast transiafor
operational amplifiérs. The speed of the system 1s basicaliy
decefmined by an esfimate of the maximum rgﬁe of change of the anélog
variables which could successfully be acconmodated by the amalog
computing elements, and by anticipated timing errors in the control

and read-oué equipment,

As discussed in Appendix B, it was estimated that the amalog
systems should be able to maintain ome per cent of half-scale
component accuracy if the variables have a maximum rate-of-change
of 4000 v/sec. This correspomnds to a full-scale Bamarog °f about
64 epe; this was felt to be a comservative limit on compuﬁing speed

using modern analog computing elements (see also Section 4.2).

Using the relationship

é.X_|<...1.< :
,dt S 3 O 4000 v/sec .

one finds that T must be greater than 1250 microseconds.

Further considerations associated with obtaining a
convenient gain constant for the hybrid integrator (see Chapter 2)

led to a choice of T = 1250 microseconds.

In order to insure ample time for performing digital operations,

the analog holding interval, Ty, was made equal to 0.04T = 50
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microseconds. If Ty were zero, the system could keep up with full-
scale sine waves of angular frequency 50 rad/sec. Inclusion of Ty,

however, reduces this figure to 48 rad/sec. or about 7.65 cps.

To keep up with a real-time full-scale sinusoid at f cps with
n = 3, requires Byyppyp > 1.04£ cps, Banarog 2 8-32f cps, if we allow
0.04T extra seconds per computing period for the digital computation

and resetting. The speed-accuracy ratio of the hybrid computer is

100/2pT distinguishgble increments/sec. If we reduce this by 1/25
to allow for the digital-computing periods, we have 625/13pT = 38,500
distinguishable increments/sec., which permits a crude comparison to

modern incremental digital differential analyzers.

1.3 SEQUENCE OF OPERATIONS (Fig. 1.1, 1.4, 2.6)

The computing operations involved in a hybrid differential
analyzer system must be performed in the proper sequence. In the

present system, the major steps are as follows:

"a, Initial Hold

Priof to the beginning of a co&puter run, the INITIAL
HOLD state (analogous to HOLD in an analog computer) is established
by putting the proper digital and analog initial conditions into all
integrators. At this time, a particular Total Run Time may be
selected, which will stop computation and command solution read-out.

b. Run
When the computer run is initiated, all analog subsystems

are made operative for the duration of the first computing interval T.
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A hdlding interval, Ty, is then initiated. During Ty, all analog

integrators are in HOLD, and the following operations are performed:

l. Digital Integration (updating) simultaneously in all

integrators, and transmission of carries from imtegrators
to other computing subsystems.
2. Digital Summing at the input of all summing devices and

carry transmission.

3. Digital Operations.in multipliers, coefficient setters,

function generators, and any other zero-memory devices;

transmission of carries.

Some of these operations may overlap in time, but it is essential that
digital updating in all integrators be performed and the necessary
carries transmitted to subsequent elements in the computing loop.
Digital data transfer will normally be incremental ternary transfer
(carry pulse and DC carry sign signal). All digital operations are
under the control of a subroutine clbck, which can be expanded to
drive a large number of digital subsystems simultaneously.>

After the &igital operations are completed, the new étates
of thg digital system will automatically create step transients in
the analog channels, through their effect on various D/A converters.
Analog in;erpolation voltages will also be reset to zero (see
Chapter II). After these transients subside, another analog computing
interval, T, may be initiated. |

The above operations are repeated for the desired number of

computing intervals. Figure 4.1 shows how the analog and digital



13

parts of the solution combine to form the complete variable.

c. Read-Out

At the end of the desired number of éomputing steps, the
computation is stopped. The present system fermits setting the
total run time from 0.0l to 999.99 computing intervals (total active
machine time of 999.99 T seconds). When this time is reached; the
read-out systemvdisplays the value of a pre-seleCted'machine variable.
A high-speed sample-hold system and a digitgl voltmeter provide a
digital display of the analog variable at the reéd-out time. A

) 13
continuous full-analog signal is also provided for display purposes.

d. Reset
Initiation of the Reset interval returns the computer to
the Initial Hold stéte described in (a) above. This includes
treeetting all digitAI variaﬁles to zero, and then inserting new

initial conditions, as desired.



TABLE 1.1

SUMMARY OF NOTATION

Digital part of a variable

Analog part of a variable

- Number of volts in one m.u.

Number of bits in Xp exclusive of
sign (n = 3 in the system being
discussed)

o/o half-scale analog accuracy

-Index number for computing

periods, K= 1, 2, ----
Independent problem time variable
Problem time increments

Duration of machine periods
Machine time (0< v X T)

Time scale factor

t=(k-1)At at T =0

14
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Chapter 2.' - o N
HYBRID INTEGRATION PRINCIPLES

2.1 INTRODUCTION

A hybrid integrator implements the cperation
mT + T

X(oT + 1) = me + Xp(mT + t) = a f }.{(C!tt)d(att) + Xo
. o

vhere :

T is the minimum time between possible resets of the amalog chanmnel.
The dynamic range of the analog channel is nominally + 1/2 m.u.
The "dynamic range of the digital channel is 4+ (2-1), i.e., + 7 m.u.

The full-scale range of hybrid variable is + (2"-1/2)m.u. = + 7 1/2m.u.

By making T §ma11 enough, we ensure that the change in the
integral of the digital portion of X is less than 1/2 m.u. in

machine time At = T sec.
2.2 SCALING

The magnitude and rate-of-change of X(t) and ).((t:) are both

assumed to be limited by appropriate scaling so that:

2T

dx _dx | < /2 - —k
W{t?)'l’ld(%dc)' = 7 m.u./sec. m.u./sec.

| X [, |f(| < (2m-1/2) <20
<71/2=% 8
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In a time interval T seconds long
T

A X Za /Xd(att) < aT'X
o

max

But
|AX| S 1/2 m.u. in T sec.
Thereforg
IAXIT < 1/2
And
arT |x|max < 1/2
Or < 1. <« 1 i
& 7 ontlp T 16T 16 At

ensures meeting the scaling conditions above, regardless of IXI .
As an example, withn = 3 and T = 1.25 ms., a < 50 is satisfactory.

Consider a sample sine loop (Fig. 2.1) solving the

differential equation

X = -aja,X; X(0) = 7.5, X(0) = 0

Here we have X = 7.5 cos wt

. 7.5w 7.5a4
lx' = "a, sin wt = " sin wt




Thus w = a; = a; = 50 is maximum for w, aj or a; and thus we find

the maximum value of w is 50 rad./sec. or fyypryp ~~ 8.0 cps
(similarly, for T % 500 psec, we have 20 c¢cps). The above
calculations neglect the digital computing "dead-space" of 50 psec,
which slows the real-time computation by 4 per cent below that

~S

calculated above; i.e., fyypryp — 7-05 ©pPs.

2.3 BASIC OPERATIONS

Now let us examine integration over a periocd of m computing

intervals. For simplicity, we will assume Q. = 1.

Then
mT + 1 .
X = a _/ X dt + X,
o .
In General _ Initially
. 1-
1
Xg = ZXpgt Xao0 Xp = Xp
Thus .
- mT + 1 . mT + 1 .
X’=XDO+8 / XD dt + a f . XA dt:+XAO
o o
m-1 k- T m- . ml + v .
k=1 o o
or

m-1 k. m- ol + T .
Xs{XD0+aT z XD}+{a Xp t+a XAdt+XA0}
k=1 o

22
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The first bracketed expression is a digital operation with "Digital
Value" if aT = (1/2)i° (Note thatlit contains both an integral and
fractional part.) The second bracketed expression is an analog
quantity for general T, and in general may be greater than 1 m.u.
Figure 2.2 (based on Ref. 31) shows an arbitrary function

X(t), and illustrates the areas associated with integration,.

The terms X; and aT % iD are digital in nature if aT =
(1/2)1 , and thus can be generated and stored with digital

precision.1 Area 1 in Figure 2.2 represents I Xp.

The term & min T represents the linear interpolation term
due to portion of the total integral arising from min; it must be
included to obtain a correct value for X during a computer run.
At the end of an integral number of runs, this term is 'reset" to
zero and iD is absorbed in Z)EDn Area 2 in Figure 2.2 illustrates

the contribution due to this term.

The term a }(XAdt + Xp0 represents the contribution to the
total integral from the analog portion of the input (Area 3). So
long as this term remains less than one-half machine unit, it can

be represented as a part of the analog output X,. However, it is

possible for the magnitude of this term to exceed 1/2 m.u.

lThe assumed limitation of aT = (1/2)i is no minor
consideration in designing a general-purpose computer. The problem
of coefficient changing will be considered later.
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2.4 METHOD OF APPROACH: "DDA-PLUS -INTERPOLATION"

The following method which follows closely that of
Skramstad (Ref. 31) will first be presented without reference to
errors or other limitations; therefore the equations will be
exact, and problems of errors, scaling overload, etc., will have
to be considered separately. Figure 1.1(a) shows the system with

incremental digital data transfer.

Symbolically, we note that at any instant of time during
a computer run, we wish the sum of Xp and Xp to form the correct
value of X. Duriné holding intervals between runs, appropriate
carry generating and digital updating operations are performed,
but it is important to note that the total value of X before and

after the holding interval should remain the same.

In general, three operations must take place during the

holding interval following the k-th computer run:

1. The value of aT kXD isnadded to the lower orders of
the R reéister,

2. The analog input representing a kiD T at v =T 1s set
to zero to compensate for the addition performed in
the above step. These two operations produce no net
change in X,.

3. If X, exceeds 1/2 m.u. in magnitude, it must be

adjusted by removing or adding 1 m.u. from X, and



correspondingly correcting R. Simultaneously, a + 1 m.u.

increment is Sent to the next computing element (carry

operation).

Note that X, is composed-of four terms, V,y, V5, V3, and V,, where

V1 = -E RD’ where RD is the tefm ZXD-N, RD < 2 m.u.;

Vo = -a Xpt - this is the interpolation voltage. During a computer

25

run, it increases linearly with v, and 1is reset to zero:

during the holding period (operation 2 above).

’V21ﬁ.E/2;
aT y
V3 = oo+l [XA de, |v3| = E/2;

V4, = Xpp, - this is the analog portion of the initial condition on X.

Vi, V2, V3, and V, are components of the voltage X,, but they

do not necessarily exist as individual voltages in the system. This

point will be clarified later.

2.5 THE DIGITAL SYSTEM

Figure 2.3 shows the digital portion of the hybrid
integrator. All digifal variables aré represented in a 2's
comp lement code (see Appendix A). The input register (X) contains

XD, the actual digital portion of the input variable in this code.

The initial value of i is selected manually; as the computation
proceeds, ilncremental changes in iD are made upon receipt of S (AX)
and Ai signals from the preceding computing element. During the
digital updating period, kD is serially added to the R-register;

simultaneouely, the R-register is corrected by + 1 m;u., if there
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is to be a carry. The implementation of these operations is
explained more fully in Section 2.9 and Appendix A. Figure»Z.S
shows the timing sequence. Note that an increment AX, S(AX), is
transmitted to the next computing element only if a carry is made
(the carry transmitting system is also inhibited by the read-out
command signal RO, to prevent incorrect read-out of the digital

variables).

The rest of the digital logic is used to generate the proper
signals for initiating a carry in the digital section. Flip-flops
A and B store the states of the Comparators (see Section 2,6)”upon

receipt of the positive-going transition of signal RH.

2.6 THE ANALOG SYSTEM-

Figure 2.4 shows the analog system which accompanies the
above digital system; some of the circuit details are discussed
more fully in Appendix B. Since there is no polarity inversion in
the term j’iAP the D/A converters must operate to .yield a non-
inverted component at the output of the X, summing amplifier

(see Appendix B). - An optional'inyerting amblifier provides -X,,

if desired. Transistors Qi and Q2 are used to put the integrator
into ﬁOLD, the sii-diode bridge 15 shorted during the RESEY period,

to insure that the proper initial condition om Xp. Comparator A
detects the condition X, > 5 volts, Comparator B deteéts Xp< -5 volts.
D/A Converter k is a four-bit bipolar unit which pgqvides the

interpolation component Xp 7. D/A‘Converter R provides the component
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E.Rp. Appendix B and References 34 and 36 provide a more detailed

description of the Comparator and D/A Converter circuits.

The resistance values in the integrator, summer and D/A
converters are chosen so that proper scaling is maintained as

follows:

a. The voltage at the output of the analog integrator

should always be-less than 1 m.u. in magnitude. In

the experimental system, it was found that making the

integrator gain equal to '"a'" was satisfactory (K=1).
This is usually sufficient, since in most problems,
the average value of iA over several interpolating
runs is close to zero.,1

b. The component of Xp due to a iDT must be ‘less than
+ 1 m.u.

c. The component of Xp due to E°Rp must be less than

+ 2 m.u.

The entire analog system was designed for an overall accuracy of
1 per cent of half-scale. Calibration tests indicated that the
errors in the various components of X, were typically less than

50 mv., i.e., 1/2 per cent of half-scale.

1

be made much smaller. In the worst case, one might have to use
K=2(0+2)= 32, This would correspond to a poorly scaled problem.
K=l was found to be satisfactory for all experimental problems,
however, K=2 or 4 might provide a margin of safety for assuring
that the analog integrator would not overload jin general use.

Note, however; that in certain pathological cases, e.g.,
integration of a small constant, the integrator gain might bave to
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2.7 POLARITY INVERSION

The integrator may be operated in the inverted mode by

using an analog unity-gain inverter to invert X, and logically

inverting S(AX); this method is, of course, much simpler than using

a separate inverting component.

2.8  INTERPOLATING WAVEFORMS

The ramp interpolating waveforms used to drive the "X"
D/A Converter are‘supplied by a sepafatg waveform generator, which
can thus service a number of integrators simultaneously. This
unit is described in Ref. 35. It provides 1 per cent-linear
positive and negative 10 v ramps which are reset to zero in about

20 microseconds after the HOLD interval Ty begins.

2.9 TIMING SEQUENCE

Figure 2.5 shows the timing sequence of the integrator.
All of the operatioms during the HOLD interval are controlled by
a subroutine clock which can drive a number of integrators

simultaneously. The sequence of operations is as follows:

a. At the beginning of the HOLD interval, the analog
integrators are put into hold. This is accomplished
by the RH signal, which turns on Q;, Qy.

b, Simultaneously, the positive-going transition of RH
sets Flip-flops A and B to store the states of the

Comparators. This immediately determines whether or
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not a carry is to be made, as indicated by signals C
and Sc¢.

c. Shortly after the HOLD interval begins, timing pulses
Ty-T, perform a serial addition of iD into the iower
four states of the R-register.

d. Pulses T5 and Ty simultaneously correct the upper two
states of the R-register to complete the addition of
Xp and to add or subtract 1, if a carry is required
(see Appendix A).

e. Pulse Ty transmits a AX signal to the next computing
element; if a carry is required. The state of the
S(&X) line tells the next element the polarity of the

carry.

The timing pulses T3 to T7 are 5 microseconds apart; thus
the entire digital operation is completed in about 35 microseconds.
During this time, the sawtooth waveforms, which are supplied to the
g D/A Converter are resetting to zero (this requires about 20 péec);
thus the operations of updating the R-register, resetting the
interpolation signal, and whenrn required; initiating the carry are all
completed in about 35 microseconds. Allowing another 15 psec for
analog transients to settle, it 1is possible to use a HOLD interval
Ty of 50 microseconds, or about 4 per cent of the computing interval,
T. Additional hold time is required for other digital operations
associated with such elements as summefs and multipliers, since they

must wait for the receipt of carries from integrators prior to the

b

~
-
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initiation of their digital operations. Therefore, the prototype
system includes an optional 10 per cent (125 psec) holding interval,

to permit the inclusion of these extra sequences at a later date.

2.10 CONTROL CLOCKS (See also Ref. 18)

The computing sequence is controlled by a digital»clock
system which provides the waveforms shown in Figure 2.5. This
system uses an 80 kc crystal and L mc transistdrized digital logic
modules to provide prepise timing_of the analog computing interval.
It provides a pre-selectable read-out time, Tp, which may be set
from 0.01 to 999.99 T. This read-out signal, RO, plaées the entire
computing system into a terminal HOLD and also commands read-emt of-
the analog problem variable (see Section 3.11). Table 2.1 summarizes

the basic clock parameters.

2.11  COMPUTER READ-OUT (See also Ref. 37)

In order to provide a useful read-out of machine variables,
the hybrid differential analyzer is equipped with a precisely-timed

read-out system, which pérforms the following functioms:

a. Upon receipt of a read-out signal (positive-going
transition of the RO signal from the master control
clock), ‘a fast analog sample-hold éircuit stores the
value of the desired analog machine variable. Simul-
taneously, a digital voltmeter is commanded to convert

this voltage to a digitally displayed value for X, (Tp) -
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During the computer run, the digital portion of the
read-dut system has been receiving incremental
information about the value of a particular digitél
variable, Xp. When read-out is commanded, the digital
system will retain the value of Xj, and display it
(in this system as a 2's complement binary number).
For diagnostic and display purposes, a full-anélog
read-out of the sum of both X; and X, versus either_
real time or machine time is provided. Also XD and

X, may be displayed separately.

The read-out system used in the prototype system is described

in Ref. 37.

It has accuracy of better than 25 mv on read-out of X5

(i.e., 0.03 per cent of half-scale of the hybrid variable). Full

analog read-out of (Xp + X,) can be made with an accuracy of 1

per cent of full-scale. Read-out timing accuracy is + 1/4 micro-

second, which provides a negligible effect on the overall accuracy.
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TABLE 2.1

CONTROL CLOCK PARAMETERS
(See Also Ref. 18)

LA

Analog Computing Interval, T: 1250, 12,500, or 125,000 microseconds
Analog Hold Interval, Ty: 25, 50, 125, or 250 microseconds

Total Computing Time, Tp: Ty 0.01 T to 999.99 T, Selectable to
nearest 0.01T

Time Accuracy
T' 0.01 Per Cent of Nominal

Typ 0.01 Per Cent of Nominal
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g, d2 dp X

a=l; n=3; a£50; T=123 ms

-

-
b

Ix|e7.548

Figure 2.1 Sine Loop Cohfiguration



/ -Areq 3\ \ l

Xalf) | | Areq

Area| 1 | ﬂ/

.Xg- axo
1 ) .
I | r : —> ¢
At 2At 34t <4 |kt

" Figure 2.2 Graphical Representation

of Hybrid Integration (from Skramstad, Ref. 31)

e



UF
to to -
R Ro
' i |
' | B
[ ')
'és Po é Ps
Ts TG S
T
Xo :
: :
S
Ts Te
RS »—

HO—]

> ]

RS »

Figure 2.3 Digital Section

RH

ax
-— T?
A FA
e S(C)
- S(C) = S(AX)
A >—
B>—M\FA
(0D F[} ¢
_.
) 4
B >—--.J
Reset >————2te—]

A NAND Gate AC Gated Flip-Flop
B C C=AB "0’ activates AC gate
) “I" inhibits AC gate
Indicator .
. Lamp AC input responds
S to positive transition
Logical | = -6volts ,
Logical "0"= Ovolts “0" for DC Reset
UF
Set level—
Set levelINFA AC set—14/ -+ Set
AC set4/ . Set level |
1+ Set common ACY_|
AC set= input
Reset [evel =T
AC reset = -+ Reset
AC reset=i\  THeset Resetlevel+
Reset level 7
DC Reset DC Reset

99



+|0 —t . .
: ;nrcun - A
- - Bit
+12 volt 10— I I0K* Comparator
D/A Converter AN A
Symmetrical
RS™ auitch (PNP) | A
Driver /\ 10
. _ , ¥R 10KT o
, > Xp
G \_—
K2X/K2P
R,RyR,R Ry R - B
' Comparator
s .
*VI' T % Circuit . o——=+10 B
. 10K Ormmmez _ | O _
NV 4-Bi I0K,IOT , > B
| S : .
. D/A Conv. ) ‘
. Anaiog I.C. )
(PNP) = —ANN—L‘VWP——————< +10
| 5K 10K -
G I O B
Xg Xy Xp Xg
| mfd.™*
1L
1]
+ -
% SK 5k' IoK ' Y% Precision components
A~ v ¥For K=1 (Figure I.1a)
+ 6 volt +10 A="1"(-6v), Xp>+5
. ———
Symmetrical | B= "l"(-GV),Xﬁ -5
RH>—1 Switch S; 10K,10T
Driver (0
Drift

Figure 2.4 Analog Section |

9t



37

Start

0
-6
0
6

Reset
|

b e e s —

—— v — e — et

| AN

Figure 2,5 Timing Sequence



Chapter 3
OTHER HYBRID COMPONENTS

3.1 ZERO-MEMORY ELEMENTS

This chapter describes the general design considerations for
the zero-memory hybrid operational elements; these include components
fbr summing, coefficient changing, multiplying, and function genera-
tion. These elements perform their digital operations subsequent to
the updating of all hybrid integrétors. They are all considered to
be zero-memory elements, f.e., at any instant, the value of the
output variable is related to the instantaneous value of the input
variable(s).1 If severalvsuch elements a?e connected in cascade, the
digital and carry generating operations should pro;eed forward from

the first element following an integrator; until all zero-memory

elements in a cascade chain have been updated successively.

3.2 S UMMING

Figure 3.1 shows a block diagram of a summing component to

form (Xp+Xp )+ (¥pt+¥,)
' Z(t) =y + .z, = —L—A_D_A

‘ INote that this is not quite a simple one-to-one mapping,
since each value of a hybrid variable may be represented in two
different forms, e.g., X = 6.3 can be represented as Xp = 6,

Xp = 0.3 or Xp =7, Xp = -0.7.

38
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In Appendix C, it is shown that the essential digital operation is

the formation of the digital quantity

Xpo + Ypo
R & ——5—==-12py -N+ 1/2 z(me + mYD)
Note that R is a three-digit number; with a value ranging from
-1 1/2 to +1 1/2 m.u. It represents the net effect of the incoming
increments, + AXp and + AYp, and the outgoing carries + AZp. The
term (Xpot+ Ypo)/2 -Zpg is the fractional part of the initial sum

(XDQ + Yno)/2 o

Subsequent to receipt of digital increments the state of the
R-register, together with X, and Y, ,may temporarily attempt to cause
the output of the summing amplifier to exceed 1 m.,u. A double-anode
Zener diode will prevent emplifier overload until subsequent correc-
Eion of the R-register by a 1 m.u. carry brings the summing emplifier
amplitude below 1/2 m.u. Proper scaling insures that no overload
occurs during an analog computing run. The determination of a
carry is made at a time when all amalog variables are comstant; thus
no digital storage eclements are required followimg the comparétors.
Timihg pulse Tg'initiatea the addition or subtraction of 1 m.uw. from
the R-register (a simple three-digit up-down counter). Note that
this assumes AX and AY are received from integrators. 1If these
digital inqrements are from some intervening zero-memory element,
then the timing of this carry-initiating pulée will follow the

digital operations in the preceding element. Using the present
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system components, the total time required for performing the carry

operation in one summer would be about 20 microseconds.

3.2,1 SUMMING AT INTEGRATOR INPUTS

Note that digital summation may also be performed at thg
input to an integrator by providing separate inputs for each inpul
variabie; This requires separate carry-transmitting pulses for
each 1ncremental_digital input. Proper scaling 1nsureéhtﬁat there
is no need for additional carry operations within thé integrator,
since it is the integral of the input, rather than the value of the

input that affects the integrator output magnitude.

3.3 MULTIPLICATION (See Ref. 17, 29, 31)

The operation involved in hybrid multiplication and
coefficient éhanging are essentially the same, except that in the

latter case, the coefficient is a fixed hybrid constant C = Cp +.CA.

In the following discussion, the general problem of hybrid
multiplication will be treated with the implication that 1f the
input Y = ¥p + YA 1s a simple constant, equipment simplifications

then result.1

Consider the operation

(Xp+ Xa) (Ypt+ Yp)
zn

= 1/8 EXDYD. + XpYa + XpYp + XAYAJ

INote that the complexity of coefficient setting is no less
of a problem in all-digital differential analyzers.



Appendix C presents a derivation of the digital operations required
to implement multiplication, using incremental digital transfer.
Figure 1.1(b) is a general block diagram of a hybrid multiplier;
and it illustrates the basic operations required.

"As in all other hybrid components, there is an R-register,
which forms a digital remainder to be fed to the analog summing

amplifier for determination of carries. The R-register forms
R = 1/2° [YDAXD + ZXpAYp - z:AxDAYD-NJ

Noﬁe that again IRJ[S 2 m.u. Various digital schemes could be
used to implement the required operations, depending upon desired
operating time, number of bits, etc. A detailed discussion of this
problem is not includ;d in this work.

. Using simple counter-registers with serial information
drop-in, as in the previously discussed'systems, the total updating
and carry generating time for a four-bit hybrid multiplier would
be abouﬁ 100 microseconds (using tﬂe same paramet;rs as before)i

The "hybrid multiplier requires a fast analog multiplier
to form the term Xa¥s. Note that its accuracy would notAhAVe to
be high'in é hybrid system with a large number of digital bits;
indeed, the‘analog multiﬁlier might even be dispensed with.
However, in a four-bit hybrid system, the analog multiplier is
required, and it should have an accuracy of better than 8 per cent,
to maintain consistent accuracy with the dﬁher hybrid components

thus far discussed.
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3.4 COEFFICIENT CHANGING

The requirements for a hybrid coefficient-changing
component folloﬁ directly from the above. Some simplifications
are now possible (see Figure 3.2). Specifically, the analog
multiplier is replaced by a potentiometer, the Y, register is
replaced by a manuﬁlly-settable gnbup of digital lines and the
D/A converter for XpCp now'receives only constant analog inputs
Cp and -Cp. The R-register is also simpler, sincé it is now used
to form

R = 1/2% 3 CpXp-N
since AYp = ACp is now zZexo.

3.5  GENERATING FUNCTION OF ONE VARIABLE

In Appendix D, some of the requirements for a hybrid
function generator are discussed, and a brief error analysis is
made. - ‘Considerable prior work has been done in this area, with
" the object of developing hybrid function generators for use with
conventional analog computing systems (Ref. 1, 4, 17, 28, 29, 30).
For use in a true hybrid system, using incremental digital transfer,
the system organization is somewhat different. Figure 1.1(c) shows
a typical block diagram for a hybrid function generator. Unlike
all previously discussed components, the choice of the number of
digital bits determines the complexity of operations. The function
will in ééneral be generated by performing interpolations about

digitally located values of the 1ndepenéent variable, using a
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Téylor's_series approximation. If fewer digital bits are used,
ghen higher-ordered terms in the.approximation may be reﬁuired to
achieve a givgn accuracy. To maintain an accuracy consistent with‘
the other computing elements in a four-bit system, second-order

interpolation terms might be required for some functions.

Another added ccuplication in function generators is that
digital functions must be formed with sufficient precision to match

the full accuracy cof the anmalog system. For example, a system with

four bits and 1 per cent analog components requires that AF(Xp) be‘
generated with a precision of 7-8 bits; these lower-order bits are
converted to an 2nalog signal for the summing amplifier. Note that
pic is also not possible to improve the accuracy of funcfion
approximation by using unegual spacing of digital points, since
they must be eqdélky spaced in order to agree with the input

variable coding shown in Figure 1.2.

- Subjegt to the above consideratioms, it should be posgible
to develop a hybrid function generat@; to be used with the type of
system discussed in this work; considerably‘more work should be
done to determine an optimum method for implementing the required

operations.

It is readily apparent that all of the above systemé are
organized on a similar basis. They contain an R-register for

forming digital increments of the output variable, which normally
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- contains digital fractional parts of a machine unit and has
magnitude strictly less than two. There are also D/A converters
or multipliers and conventional analog elements. Each component
céhtains two comparators and assoclated logic to perform carries
by correctingvﬁhe R-reglster and transmitting an increment to the
ﬁext computing element. This general organization can be used to
develop a broad class of hybrid operational elements. Of particular
interest is a hybrid resolver, which would belong to a class of
componénts for generating a factorable function of two variables,
1.e.;

Z = F(X) G(Y)
In the case of the resolver, F(X) = R, G(Y¥) = cos © or sin 8, It
.would probably prove desirable to build a single resolver éomponent
than to implement the function using a multiplier and three separate

function generators.
3.6 HYBRID DIVISION

Hybrid division of a constant may be accomplished by using

a special function generating component to generate: -

C
This would permit dividing a constant by the machine variable X.

To divide one machine variable by another, one could cascade

the above operational unit and a hybrid multiplier to form:

C C(Yp + Ya)

iy + Z ——e . (Yp + Yy) o —
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Chapter 4
EXPERIMENTAL RESULTS

4.1 EXPERIMENTAL PROCEDURE

Two hybrid integrators; with associated control and read-out

equipment were used in three simple computing configurations:

a, Free-Fall Parabolic Trajectory (second integral of a
constant). |

b. Decaying expo;ential (first-order linear differential
equation). |

- ¢. Undamped sinusoid (second-order system without damping).

Each problem was scaled to approach the maximum amplitude and rate

limitations of the system.

.

Figure 4.1 shows an analog display of the three problem
solutions; alsc shown are the two solution components, X and Xpo

Figure 4.2 shows X, only, on an enlarged scale.

The equipment was carefully calibrated prior to the
‘experimental computing runs; however, during the experiments,; no
detailed recalibration was performed, with the exception of periodic

checks of the sample-hold circuit and digital voltmeter in the



read-out chassis, and an occasional check of the sawtooth generator
emplitude. Table 4.1 summarizes the resqlts of the initial

calibration tests.

TABLE 4.1
Maximum Error in any D/A Converter: 60 mv
Typical Average Error in a D/A Converter: 20 mv
Maximum Error in Sawtooth Linearity: 40 mv

Integrator Drift (with drift-correction adjustment): 10 mv/sec

Error in Length of Analog Computing Interval, T: 0.01 o/o

To test the sensitivity of the system to errors, various
artificlal errors were introduced. Table 4.2 and Figures 4.3 to
4.5 summarize the results of these tests; Figures 4.6 to 4.9

provided additional insight into the performance of the system.

4.2 FREE~FALL PARABOLIC TRAJECTORY

4.2.1 NOMINAL MACHINE SOLUTION

The first computer problem was the solution of the

differential equation:

x(t) = -32.2 ft/sec?; X(0) = 0 £t; X(0) = 600 ft/sec

48
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with solution

x(t) = 600t - 16.1 t° ft.

'Maximum Height: 5590.092 ft.

Time to Impact (zero crossing): 37,267 sec.

This equation, of course, simulates an elementary flat-earth
vacuum trajectory problem, and is of interest because it involves an

open-loop computation, where cumulative errors should become readily

apparent.

With X measured in volts and time in units equal to one

~analog computing period, the actual machine equation used was:

X = -32.2 volts; X(0) = 0; X(0) = 60 volts = 6 digital m.u.

with theoretical solution

22
1

(5]

X = 3.75k - k% volts

w
B

Maximum Height: 55.9092 volts = 5.591 m.u.

Time to Impact: 59.627 intervals = 0.074534 sec. of
machine time

One volt = 100 ft.
One Computing Interval = 1,25 ms = 0,625 sec. of problem time

G, = 500

Figure 4.3a shows a plot of solution error versus "time" in
computing intervals. GSome of the more pertinent results were:

a. Error in impact time: 0.02 per cent



50

b. Error in maximum height: 2 ft. (0.04 per cent of
theoretical value).

c. Maximum measured machine error: 70 mv (0.09 per cent of

half-scale machine range).

4.2.2 ERRORS DUE TO REMOVAL OF SAWTOOTH INTERPOLATION AND ANALOG

INTEGRATOR

Figures 4.4a and 4.5a shows the effect on the computer
solution caused by removing the sawtooth interpolation and/or the
analog integrators. When both are removed, a necessarily crude
digital solution results. The case where the sawtooth only is
omitted yields a smaller solution error than when the sawtooth is
included, but the‘anaiog integrator is not. This would be expected,
since when the analog integrators are absent, the analog portion of

the input constant cannot be introduced into the first integration.
4.2.3 EFFECTS OF ARTIFICIAL ERRORS

Figures 4.5b and 4.5c show the solution errors generated by
various small artificlal errors in the analog qhannel. Note that the
five different error sources had aboyt the same order of magnitude of
effect. However, a number of conclusions abput open-loop computation
are suggested:

| a. As éxpected, a relatively large solution error arises if
both analog integrators are reduced in gain; however,
most of the error is generated in the first integration.
Additional experiments confirmed the fact that out of a

total solution error at impact of about 1.7 volts, only
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about 0.5 volts error was caused by the 1085 of gain in
the second integrator.

An error in the gain of the sumning amplifiers tends to
ﬁroduce slightly more error than an equivalent loss in
sawtooth amplitude.

The error due to the substitution of the finite one-
second integrator time constant was relatively small, in
this case, never exceeding 0.57 volt.

The error due to degraded high-frequency response in the
summing amplifiers appears to be greatest at times when
the rate-of-change of the problem variable is greatest,

but the overall error does not seem to be cumulative.

4.3.1 NOMINAL MACHINE SOLUTION

The

first closed-loop problem was the simple first-order linear

differential equation

X = -50X; X(0) = 60 volts

with solution

X = 60e™d0t

Stated in terms of computing intervals, the problem becomes

X

X
= - 76 5 X(0) = 60 volts (6 digital m.u.)



with solution

X = 60 e'k/16

One Computing Run = 1.25 ms of machine time

One Time Constant = 16 computing intervals

Figure 4.3b shows a plot of the nominal solution error; it
indicates that the maximum error in the solution was 0.05 volt (0.07

per cent of half-scale).

4.3.2 COMPARISON WITH STRAIGHT DIGITAL SOLUTION

Figures 4.4b and 4.5d show the effect on the solution caused

by removing the sawtooth interpolation and/or the analog integrators.

Note fhatlthe final value of the digital solution is different from
zero. Maximum solution error was less than 3.34 volts, which
corresponds to a£ou§ 1/3 of a digitai m.u., and agreee fairly well
with what one might es:imate on thé basis of Section 5.3. Addition
of the analog integrator reduced the maximum error to 1.9 volts.
Removing the analog integrator and introducing the sawtooth
interpolation pro&uced a straight-line-segment approximate solution
with a maximum error of 4.53 volts, actually slightly more than the

straight digital;solutionn

4.3.3 EFFECTS OF ARTIFICIAL ERRORS

Figure 4.5e shows the effect of limear gain errors in the

computing system. The reduction of the summing amplifier gain causes
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considerably more error than reducing either the analog integrator
gain or the sawtooth amg;itude. Note, however, that nome of the error
curves indicate a net steady-state offset, as produced in a straight
digital solution, i.e., the solution still eventually decays to zero.
The error in the summing amplifier gain tended to produce an
oscillating solution error that alternates in magnitude and polarity;
a maximum error of 450 mv (0.6 per cent of half-scale) was observed.
A 10 per cent error in either the analog integrator gain or sawtooth
amplitude produced solution errors of similar size; in this case;

never more than 160 mv (0.21 per cent of half-scale).

Figure 4.5f shows the effects of poor amplifier and integrator
respbnse. As expected, poor high-frequency response in the summing
amslifier introduces a fairiy large error (as high as 0.63 volt) during
the initial part of the solution, when the rate-of-change of X, is high.
Interestingly,rthe effect of poor low-frequency response in the analog
integrator is mot great. The use of a one-second integrator time
constant produced a maximum error of 0.07 volts, which is less than
the overall design accuracy of the system. It appears frém this
test (and also from later results) that it is essential to maintain
good high-frequency response in the system. However, good low-freqdency
response in the analog integrator is not essential, which suggests that
a passive RC network could be used in place of the active one used in

these experiments, if less analog accuracy is acceptable.

Figure 4.6 shows the error resulting from a 10 micro-amp.

offset current in the analog integrator. The dotted line is the
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theoretically calculated error curve that would result from the same
offset in an analog integrator. Eucept for normal random variations
in solution values due to other effécts in the system, the experimental
error curve is qualitatively the same and indjcates a steady-state

final value of 0.2 v, as predicted.

4.4 UNDAMPED SINUSOID (Circle or Sine-Loop Test)

4.4.1 NOMINAL MACHINE SOLUTION

Two hybrid integrators and an inverter were used to study the

simple undamped second-order differential equation:

X = -2500X

with solution
X & X(0) cos 50t + X(0) sin 50 t

Stated in terms of computing interxvals:

oe - X
X = 25

with solution

X = X(0) cos ;/16 k + X(0) sin 1/16 k
One Pericd = 100.26 computing intervals
One Period = 0.1253 sec. of machine time

One Period =  0.1303 sec. of real time (7.67 cps)

Most of the experiments were done with either X(0) = 60, X(0) = 0,

‘or X(0) = 0, X(0) = 60; 1.e., X = 60 cos 50 t or 60 sin 50 t volts.
50 ‘ '
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Figure 4.3c shows that the maximum solution efror was 0.13 v (0.17
per cent of half-scale), but that the errors were typically much
smaller. The average error over omne cycle is 0.017 volt, with an

rms error of 0.061 volt.

The nominal solution exhibited a slight exponential build-up,
which could bg measured by obsgfving the solution over several cycles.
Figure.4.7 shows a plot of the extrema of the solution measured at
the end of every half-cycle of the cosine waveform for nine full
cycles. The amplitude of the waveform increased approximately 0.06
volts/cycle. Frém the equations derived in Appendix F, it can be
shown that @ 22 0.0075, or equivalently, O/w = 1.5 x 10°*. The
zero-crossing time at the end of five complete cycles of the sine
wave occurred at 502.53 computing intervals (theoreticaily 502.65
interval?), indicating that the natural frequency was low by
0.02 per cent (2 x 10-4). Thus the overall accuracy of location
of the system poles in the complex plane was about 0.025 per cent.
This 1is considerably better tham was originally eﬁpected. Note that
the effect of the error in system pole location causes the absolute

error in the solution to increase with time, as is the case with

analog and digital solutions of the same differential equation.

4.4.2 COMPARISON TO STRAIGHT DIGITAL SOLUTION

Removal of the sawtooth interpolation and the analog
integration sections of the system yields a solution with a rapid

exponential build—dp, due to the truncation error in the resulting
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rectangular integration process. Figure 4.4c compares the digital
solution to the fuil-hybrid solution; the amplitude of the oscillation
increases approximately 20 volts/cycle. Also shown is the improvement
provided by adding the analog integrator (still no sawtooth); in this
case, the solution still grows about 3 volts/cycle. Adding the
sawtooth interpolation without the amaiog integrator yields a worse

solution, which builds up about 7.5 volts/cycle (not shown).

4.4.3 EFFECTS OF ARTIFICIAL ERRORS (Root Perturbation)

In this computing configuration; the effect of various
artificially-introduced system errors can be readily studied by
noting the resultant displacement of the characteristic roots of
tﬁe system (as indicated by chémges in-the natural frequency and
exponential build-up of the solutiom)i Using the equétions of
Appendix F, it is possible to estimate the error in root location
by measuring the solution errors at the extrema and at the zero-
crossings.  As a double check, the natural frequency errors were
studied by two methods: viz., measurement of solution error at the
theoretical zero-crossing times and measuring the actual zero-
crossing tiﬁes of the computer solution. Both methods gave almost

identical results.

The data in Table 4.3 resulted from tests made after five
cycles of computation, where the accumulative errors due to root
perturbations are sufficiently large to overcome any short-term

random variations. The real part of the system roots were
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measured by examining the build-up (or decay) of the amplitude of
the solution, whereas the natural frequency of the solution was

examined by the two methods listed above.

Table 4.4 shows the sensitivity of the root location to
changes in gain of the summing amplifier and analog integrator and
changes in the sawtooth amplitude. Note that the natural frequency
of the computing configuratiom is relatively inéensitive to errors
in the analog system. The system dambing, on the other hand, is
considerably more sensitive to analog errors. This suggests that
the various analog errors tend to iﬁtroduce an equivalent phase
shift into the hybrid integrator, but do not appreciably affect
the gain. This 1is further borne out by additional'experiments
which indicated that increases in the summing-amplifier or integrator
gains or in the sawtooth amplitude all p;oduced é build-up of the
solution (positive Q), whereas, corresponding decreases produce
a decay of the solution (negative ). Figure 4.8 shows the effect
of + lo'éer cent changes in the summing amplifier feedback resistor,
and illustrates the efféct of these changes on the exponentiél

build-up or decay of the solution.

The effect of DC offsets and drifts on the computer
solution were again similar to those to be expected in a
conventional analog s&stem. One additional observation is that
drifts in the analog integrators are not cancelled by the

computing loop, as they would be in a pure analog system, so that
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they can cause an internal overload of the analog integrators during
a long computing run. Increasing the factor K (Figure 2.4) would

provide a means for preventing this effect, if required.

4.5 EFFECT OF THE HOLD INTERVAL

Thus far, nothing has been said about the effect of the
duration of the HOLD interval on the accuracy of the computer. In
addition to the normal HOLD interval, Ty, of 50 microseconds,
intervals of 125 and 250 microseconds were also used in several
>experiments. No noticeable effect on the computer performance was
observed. Moreover, a smaller value of 2? microseconds cgused
little effect, except a slight disturbance in the read-out system
due to the fact that the switching transients resulting from the
digital updating operations occésionally propagate into the
beginning of succegding analog computing intervals. Figdre 4.9

shows an expanded view of a typical waveform for Xp, and illustrates

the appearance of the holding and carry resetting operations,

4.6 COMPARATOR ACCURACY

Figures 4.2 and 4.9 show that the accuraconf the analog
comparator 1s not critical. 1In fact;, since mostloperational
amplifiers will not overload until their nominal computing range
is exceeded by‘perhaps 10 per cent, a comparator accuracy of + 1/2

volts would suffice.



TABLE 4.2

EFFECT OF ARTIFICIAL ERRORS ON COMPUTER SOLUTION:
. (See Also Figures 4.3 to 4.8 and Tables 4.3 and 4.4)
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A SUMMARY

Problem Exrror

Type of
Artificial Falling Body Decaying Sinusoid Remarks
Error (Parabola) Exponential ' B
None 0.07 v max. 0.05 v max. 0.13 v max. Normal errors
0.06 v RMS typically 0.1 v
Straight 28.7 v error 3.3 v error Computer errors
Digital at impact in final 20 v/cycle generally
value build-up larger when
analog integra-
Sawtooth, No tor is absent,
Integrator 19.9 v 4.53 v 7.5 v/cycle chan when
©  sawtooth is
Integrator, No Small Final, absent
Sawtooth 7.3 v Large Ini-
' tial Errors 3 v/cycle
Analog. Gain o/o o/o
Errors AW Lw/w
90 o/o
Summing Amp. 0.8 v max. 0.45 v max. 0.44 0.05 Sawtooth
: accuracy
90 o/o generally less
Integrator _ important than
Gain 1.7 v max. 0.16 v max. 0.30 0.065 amplifier and
‘ integrator
90 o/o . gain
Sawtooth 0.6 v max. 0.17 v max. 0.30 0.03
Poor High-
Freq. Resp. 0.79 v max. 0.34 v max. 0.07 0.02 "Good High-
‘ Frequency
Finite Response
Integrator more
Time Const. 0.57 v max. 0.09 v max 0.01 0.055 important
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SOLUTION ERRORS CAUSED BY ERRORS IN ANALOG CHANNEL:

SINE-WAVE

PROBLEM

Parameter Damping Effect Frequency Error®
Change @/w, Per Cent Mw/w, Per Cent Remarks
10 Per Cent
Reduction in
Summer Gain,
one: 0.19 -0.01 Average
both: 0.44 ~-0.05
10 Per Cent
Reduction in .
Int. Gain,
one: 0.15 -0.007 Average
both: 0.30 -0.065
10 Per Cent
Reduction in .
Sawtooth 0.30 -0.03
DC Offset Negligiblé Negligible
Slow Amplifiers 0.07 -.02 5° Phase
: Shift at
60 cps
Lossy
Integrators,
1 sec. T. C. 0.01 -0.055
0.1 sec. T. C. 0.05

ﬂFrequency Error Measure Two Ways, Average Listed.
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TABLE 4.4

ROOT SENSITIVITY TO ANALOG CHANNEL ERRORS:
SINE-WAVE PROBLEM

Damping Frequency
Parameter Sensitivity® Sensitivity®
Change Per Cent/Per Cent Per Cent/Per Cent
Summer Gain
one: ) 0.019 - =0.002
both: 0. 044 -0.005
Integrator Gain
one: 0.015 . -0.0007
both: 0.030 ' -0.0065
Sawtooth
Amplitude 0.03 -0.003

ﬂSensitivity Figures are given as a ratio of the per cent change in
the root location to the per cent change in the nominal value of
the parameter.



Figure 4.17 Xy, Xp, and Their Sum
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Figure 4.2 XA Only
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Figure 4.9 . ‘
(a) TH = 50 p sec.

Variation of TH

(b) T
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Chapter 5
COMPARISON OF DIFFERENTIAL ANALYZER SYSTEMS
5.1 . INTRODUCTION

The;inherent differences among analog, digital and hybrid
differential analyzers make them difficult to compare. Thig chapter
presents an attempt at such a Compa:iaon in terms‘of a gross
accuracy-bandwidth figure-of—merit based on @ éer cent of half-seale

accuracy.

Before going further, it is important to point out some of
the other congsiderations in a fair comparison of different systems.
It should be recognized ?hat analog differential analyzers have
limited accuracy; but can provide relatively rapid scluticns without
truncation ervors. Digital and hybrid systems are potentially
capable of much higher accuracy, normally at the price of speed and
at present, complexity and cost. (Digitml components will; however,

become less and less expenszive as iﬂtegrated circuits develop.)

Moreover; no generally applicable set of techniques for
predicting differential analyzer errors'are'available; Useful
estimates can be made for the class of linear problems, l.e., cases

where the computer configuration contains only integrators, summersg

7
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and coefficient changing elements, (and machine time is the
indepeﬁdent variable of integration). With the realization that

the following comparisons cannot be directly extended to the broader
éldss of nonlinear problems, the gross characterization of the
various systems does offer some insight into their relative

capabilities.

The accuracy-bandwidth figures are based upon the
assumption that the total available range of machine variables is
utilized, regardless of the type of computer system being discussed.
The term "bandwidth," as applied to the speed of computers is related
to the maximum slewing rate, or rate-of-change of variables

attainable by the computing system.
Consider a system with restrictions:
| ()] £ A; | axe)/ae] < R

Let :
- ' X(¢) = Asinwt = A sin 2w £t

Then
ldx/dtl = I A weos wt| £ Aw = 2mAf

We can thus think of a maximum full-scale frequency of operation

,_X&_

This frequency will be the upper limit of the bandwidth of operation

for full-scale sinusoids.
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5.2 ANALOG DIFFERENTIAL ANALYZERS

Assuming dc drift and offset errors can be neglected in
high-speed analog computers with chopper-stabilized amplifiers,then
the principal types of errors in linear computing elements can be

classified as follows:

a. Static errors due to errors in the dc or static values:
of computing elements, imprecise settings of initial
condition and coefficient pétentiometers, noninfinite
amplifier gain, and other factors affecting the static
gain constants. |

b. Dynamic errors in computing elements; these include
any linear frequency sensitive effects in the system.
Principal sources in linear computations include:

(1) Dissipation in integrator capacitors.

(2) Amplifier frequency response, whic;’includes
effects of stray capacity in pétchboard
COnnectioné; etc.; and which manifests itself
principally as a phase sghift error in both
integrators and summing amplifiers.

(3) Frequency-dependent terms in the transfer
impedance of other computing elements; viz.,
resistors and potentiometers, which again
produce phase shift and introduce extra poles
and zeros into transfer functions of the

computer elements.
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¢. Timing errors in the READ-OUT and RUN-HOLD systems,
,which}prevent precise measurement of the value bf a
machine variable. 1In higﬁ-speed‘cqmputatioﬁ, the
effect of read-out timing errﬁfa can be'a limitation

on ugeful accuracy.

The effects of the static and dymamic error sources are
twofold. First, they cause the characteristic roots of the
computer system to differ from those of the system or differential
equation being simﬁlated (root perturbationms). Secondly, they cause
the creation of spurious roots im the computer system, which make
the form of the computer solution differ from the desired solution.
These two types of‘error effects are rather similar to the
difference-equation-approximaticn truncation errors‘mrising in
DDA's. The effects of timing errors Are, of course; equally as
~ important, but in a semse,ztheeé errorg are not Internally generated
by the operational computing elements, and cannct be related to the

actual capabilities of the computing elements themselves.

Figure 5.1 shows a typical estimate of the accuracy-
bandwidth capability of conventional analog equipment (see also
Ref. 15 Chapter 4 and Ref. 17). To achieve the higher range of
accuracles, precision components must be used in & controlled
environment. The curve for repetitive analog systems is also
shown, since estimates of ultimate hybrid system capabilities should

be made assuming the analog elements are similar to those found in
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repetitive systems. The accuracies shown are grossly related to

an absolute half-scale accuracy of the computer.

Additional information about the performance of analog
differential analyzers can be obtained by observing the attainable
acecuracy of lécation of the characteristic foots of a linear system.
The sine ioop'(circle test) used in Chapter 4 has been used
previously to study analog systems (Ref. 15). Obviously, the

frequency accuracy of a sine loop will essentially depend upon

the static accuracy of the computing resistors and capacitors, and

will typically be from 0.1 to 1 per cent. The build-up or decay of
the solution will depend upon numerous factors, and will vary with

1frequency. Figure 5.2 shows a typical range of damping character-

istics:fbr analog computers.

5.3 DDA CAPABILITIES

Congsiderable work has been done oﬁ the analysis of errors
in digital differential analyzers.1 Various assumptions have béen
made which lead to somewhat different results. One point thaﬁ is
easlly overlooked is that parallel-organized DDA's almost
invariably use incremental data transfer. Moreover, the integrators

must operate on "stale" values of the machine variables. Conven-

tional DDA's usually use an open (extrapolative) trapezoidal

lpor example; see Ref. 8, 9, 11-13, 20-22, and 25. Ref.
13 is especially comprehensive.
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" integration rule. Aﬁsuming this type of machine organization, an
estimate of DDA capabi}ities can be made (in the case of linear
computing configurations) ﬁhich may be used for comparisoq of the

DDA to other types of differential analyzers.

5.3.1 DDA's WITH INCREMENTAL TRANSFER

Most modern commercial DDA's use open trapezoidal

integration and incremental date transfer. The results of the
analysis of truncétion and rouﬁd-off errors presented in Appendix ‘
E shows that in precise computations, the round-off erfdrs will
predominate in this type of systemn1 Thus the accuracy-bandwidth
capabiiity of typical DDA's can be characterized by the expression:

error - ~_

7~ 200x Ty ofefeps; (U small)
frequency

where Ty is the iteration time. Equivalently, DDA's of this type
_have a capability of computing approximately 1/Ty distinguishable

2
increments-per-second.

Figure 5.1 shows the gross accuracy-bandwidth capability
for a parallel-organized incremental DDA, using trapezoidal

integration. The machine is assumed to have an iteration time of .

lrhis conclusion does mot hold for general-purpose digital
computers, where total transfer is used., Truncation errors may
predominate when general-purpose machines are used as differential
analyzers, depending upon the type of integration rule used (see
Section 5.3.2),

ZThis simple result has been pointed out previously by
Korn (Ref. 17).
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Ty seconds. This figure illustrates how the performance ranges of

analog and digital systems overlap, and also indicates roughly the
regions where one or the other might be considered distinctly
superior. Errors due to improper initial conditions and inaccurate
read-out are overlooked in the above discussions of both the analog
and digital systems. However, it is felt that the comparison of

the gross capabilities of the two types of system is generally valid.

5.3.2 TRUNCATION ERRORS IN TOTAL TRANSFER DDA's

It is possible to use a general-purpose digital computer as
a total or full-word transfer DDA, although one is usually forced to
use geriélly-organized compuﬁation° i. e., one where each integration
is performed sequentially, so that the effective iteration time
increases in proportion to the number of integrations involved. It
would be possible to construct a parallel-organized total transfer
DDA, but such a system wifh a large numbér of integrators becomes
- considerably more complicated than an incremental machinea In some
cases, solﬁtion speed‘can be increased by using‘aAVariabie-inc;gment
machine which provides a capability for increasiﬁg speed and

decreasing accuracy as needed.

Nevertheless, it is of interest to compare the capability of
a total transfer DDA to the other types of differential analyzers
thus far discussed. 1In such a system; it may be assumed that
truncation errors would normally predominate,; assuming a sufficient

number of digital bits wereused for variable representation.
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The analysis in Appendix E deals with DDA truncation errors
in éhe case of linear computing configurations. The results apply
to closed-loop.configurations, without multiple characteristic roots;
it assumes no errors due to choice of starting formula. From the

analysis, one can predict the truncation errors in terms of the

ierturbation of tﬁe characteristic roots of the computer system,
Table 5.1 shows tﬁe results for the two cases of rectangular and
open trapezoidal integration (see also Ref. 21, 22, and 25). 1In
general, the magnitude of the (fractional) error in root location
is (ST1/2) for rectangular and (SS2 T%/12) for trapezoidal

integration.

Figures 5.2 and 5.3 éhow the effect of truncation errors on
the accuracy of location of the roots of a simple undamped sinusoid
(harmonic oécillator). The effect will, of course; depend upon the
iteration time Ty; typical curves are shown for Ty = 1.25 milliT
seconds, and 10 microseconds, (800, and 100,000 iterations-per-
second). The slow rate corresﬁonds to the "iteration" rate of the
hybrid system; the fast rate corresponds to a fast DDA, such as

TRICE.

It is re-emphasized that in a conventional general-putpose
digital computer, the solution of differential equations must be
carried out in a serial-organiéed fashion, so that in a problem
involving n integratioﬁs, the iteration time will be at least n
times the machine time required to perform the iteration or

updating of one machine variable. For example, the implementation
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of the trapezoidal integration rule shown in Table 5.1 requires a

minimum of two shift and four add cycles per integration, per

iteration.

5.4 HYBRID DIFFERENTIAL ANALYZERS: THEORETICAL PERFORMANCE

The hybrid differential snalyzer can be fitted into the above
analysis quite easily;l Briefly, one can estimate the gross accuracy-

bandwidth capability of a hybrid system as follows:

Given the analog computing interval T, estimate the full-scale

. bandwidth

BanaLog = L/4%T

Pick the point on the estimated.accuracy-bandwidth curve for the
analog system corresponding to Byyayop: From this point draw a line
dovnward along a slope corresponding to a constant accuracy-bandwidth
product (45° slope in Figure 5.1). The length of the line depends
upon the number of digital bits. If the system uses 0 bits plus
sign, the line should correspond to a reduction in bandwidth and an

increase in half-scale accuracy of 2PB.

In the actual hybfid system studied, only 1 per cent analog
computing elements were used, and T was set at 1250 microseconds.
This corresponds to a full-scale analog bandwidth, Banapoc (see
Section 1-2-5), of about 64 c¢ps, which 18 considered to be

conservative, being comsiderably slower than the maximum speed of

1This approach follows closely that of Korn, Ref. 17.
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fast repetitive analog systems of 1 per cent of half-scale accuracy.
For a given T, the rate-scaling limitation precludes computation at
higher speeds. In Figure 5.1, point A} corresponds to a 1 per cent
analog system, with T = 1250 microseconds. Point Hj then shows the
predicted accuracy of a four-bit hybrid system, which should be
attainable at all computing frequencies below Byyprip = BANALOG/zn‘
In this example, Byyppyp 18 about 8 cps, and the estimated error is
correspondinély‘about 1/8 per cent of half-scale (0.125 vélts for

E = 10).

As pointed out in Chapter 1, the analog HOLD intervals, TH;

reduce the effective real-time hybrid computing speed by a factor
T/(T + Tg); in this cese, this factor is approximately 0.96, so that

the effective real-time value of Biyprip 1 about 7.67 cps.

Point H? on Figure 5.1 shows the estimated capability of a
hybrid system using 9 bits (n = 8) with a 50 microsecond computing
interval and a 5 per'cent-accuratetanalog channel. Such a system 1is
technically' feasible using modern wide-band transistorized amplifiers,
and would provide an estimated accuracy of better than 0.02 per cent
of half-scale at a maximum Buyprip °f about 6.2 cps. Note that an
equivalent incremental DDA would have to have to operate at a

minimum iteration rate of about 300,000 per second.

Areas H] and H2 on Figures 5.2 and 5.3 show the accuracy of
root location (simple undamped sinusoid solution) that can be

expected with the two hybrid systems discussed above.



TABLE 5.1

ROOT PERTURBATION DUE TO TRUNCATION ERROR IN
THE DIGITAL SOLUTICN OF DIFFERENTIAL EQUATIONS

Integration Rule Root Perturbation
Rectangular:

X1 ;{n T, + Xn , o (; + STI/é)
Irapezoidal:
Xpp1 = XT3 Xy-Xg_1/2) | (- 5/12 s%d)

Note: S is the desired unperturbed root location

Ty is the iteration time; for purposes of comparison to the
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notation of Chapter 1, Ty = T + Ty; also Ty = At if & = 1,
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Chapter 6
CONCLUSIONS: PROJECTED APPLICATIONS AND FUTURE STUDIES

6.1 SUMMARY OF PERFORMANCE OF THE HYBRID SYSTEM

The experimental results verify the theoretically predicted
accuracy of the prototype hybrid system, and demonstrate the
feasibility of this type of computing technique (at least for
linear systems). It is felt that the results- justify the concept
that the accuracy of the hybrid system can be directly improved by
increasing the number of digital bits, as originally predicted. The
experimental errors were consistent with the accuracy of the
individual system components; no unexplainable deviations from the
anticipated performance were observed. The system appears caﬁable
of maintaining an accuracy of 0.0l m.u., out of a half-scale range
of 7.5 m.ﬁ.y so long as proper rate-scaling restrictions are

observed.

In linear computing cdnfigurations» it appears that the
location of the system roots can be establiéhed with an accuracy
of better than 0.1 per cent. The long-term accura;y of the
integration process appears to‘bg relatively insensitive to small
errors in the analog system components. The digital portiom of

the system preserves the static gain of the integrators with
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surprising precision, and the effect of errors in the analog

elements normally appears as a phase)shift rather than a gain

error. The effects of random variations in the static values of

the various computing elements (precision resistors and capacitors)

thus would tend to cancel in a large system.

Based on the parameter-~influence studies described in

Chapter 4, some general conclusions about the'different sections

of the hybrid integrator are suggested:

It is important that the summing amplifier gain be
accurate; also, its bandwidth should be adequate to
insure negligible phase shift at the maximum
computing speed (e.g., less than one degree phase
shift for sine waves of amplitude E and frequency
BaNALOG) *

It is important that the gain and high-frequency
response of the analog integrator also be accurate;
however, the DC or low-frequencf response is not
critical. This suggesis that a passive RC network
using precision elements could be used in place of
the active operatiénal integr#tor, particularly for
systems with a short analog computing interval and
modest analog accuracy requirements. Note that this

could save a complete d-c amplifier per integrator.



The accuracy of the hybrid in;egrator is less
sensitive to errors in the sawtooth interpolation
channel than it is to errors in the summing amplifier
and analog integrator. This suggests that a hybrid
system utilizing a large number of digital bits
(e.g., n > 8) would still operate well with only

5-6 bit D/A converters in the interpolation channel.

On the other hand, the D/A converter for the R-

register should have sufficient precision to utilize
the full accuracy of the analog channel (e.g., at
least 7 bits for n > 4).

Simple two- or three-transistor comparators could
replace the seven-transistor units used in the
prototype system. An accuracy of + 1/2 v at the
maximum analog speed of the system (in this.case,
4000 v/sec.) would be adequate.

Since the analog parts of the hybrid machine
variables normally have an average value close to
zero; long-terﬁ overloading of the analog
integrators is not a serious problem, except in
certain pathological problems. Integrator drift
affects the computer solution in a manner quite
similar to drift in analog systems but is divided

by 20,
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f. The use of a HOLD interval, Ty, successfully
eliminates the problem of accommodating the analog
transients which accompany the digital operations.
The HOLD period may be made an appreciable fraction
of the RUN time, T, without noticeably affecting the
;olution.accuracy° This permits using relatively

slow serial digital arithmetic schemes.

6.2 FUTURE AREAS OF DEVELOPMENT: PROJECTED CAPABILITIES

This work has been primarily a feasibility study, with
experimental verification of the basic operating characteristics
of the hybrid integrator. The comparative error analysis
presented in Chapter 5 and Appendix E allows one to estimate the
effects of changes in the basic system parameters (n, T, and p)

on speed and accuracy.

On the basis of the experimental results thus far
obtained, it appears that the development and testing of
additional prototype summing, coéfficient-éetcing, ﬁultiplying
and function-generating elements quld be useful iﬁ deriving

further information about this type of system.

In particular, the writer feels that a useful hybrid
function generator, operating on a principle similar to that
discussed in Section 3.5 and Appendix D, can be developed along

with auxiliary analog-hybrid and hybrid/anélog conversion
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equibment to permit the use of such a device with conventional
analog computers. Considerable work in this area has already
been done, notably by H. Schmid and others (Ref. 1, 4, 28, and
30). Besides having a potentially»high accuracy, a hybrid
function generator can be designed so as .to be digitally
programmed by a removable patchboard, punched cards, or tape.
With hybrid techniques, it should be possible to construct an
accurate resolver component producing R sin 6, R cos & with
high bandwidth and accuracy (e.g., 0.0l to 0.05 per cent at

10-100 cps) low drift and high repeatability.

Through the use of high-speed transistorized operational
amplifiere, the hybrid differential analyzer system described in
this work could be given a substantially increased accuracy-
bandwidth capability. It would be feasible to operate with an
analog computing interval of perhaps 100 microseconds. At this
‘rate, timing errors would become more of a problem. Nevertheless,
an accuraéy of perhaps five per cent of half-scale could easily be
maintained in this type of application. This would permit adding
more digital bits; while maintaining reasonable computing speed.
For example, withn = 8, T = 50 microseconds; Ty = 5 microseconds,
and a five per cent analog accuracy, it would be possible to
achieve a hybrid computing accﬁracy of perhaps 0.02 per cent of
half-scale, while retaining a real-time computing'bandwidth of
over five cps. Note that such a system would utilize even cruder

analog components than the present system, particularly in the
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multiplier and functidn generator. Moreover, it could be expected
to maintain its accuracy without any periodic adjustment or
calibration, and without careful environmental control. A
parallel-organized incremental DDA using trapezoidal integration
would have to opergte at an interation rate of at least 300,000
per second-to achieve a similar accuracy and speed. Due to the
absence of truncation and round-off errors, a hybrid system should
retain this accuracy in computing configurafions involving
coordinate transformation; division; implicit function generation,
and other nonlinear operatiocns. The ensuring of a similar
accuracy in DDA solutions involving these operations has proved

to be no simple matter (Ref. 6, and 32).

6.3 RELATIVE COST

This point will only be touched onm lightly, since the
relative costs of modern computing systems depend considerably
on the quantity produced. Ceftainly the cost of digital
components will decrease with time, so as to narrow the gap
between analog and digital system costs. The hybrid differential
analyzer appears to lie somewhere between full-analog- and full-
digital systems in cost and complexity, probably closer to the
DDA at present. A high-speed nine-bit hybrid system would
probably have approximately the same commercial cost as a fast
parallel DDA such as TRICE or SPEDAC (Ref. 2, and 20). As of

this writing, the parts for a hybrid integrator of this type

)
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would cost about $1,000. Including assembly cost and mark-up, a
commerical version of a hybrid integrator might sell for perhaps
$3,000; which is comparable to commercial DDA's ($4,200 for
TRICE). Thus cost would probably not be a major factor in
selection of a hybrid system over a full-digital one; however,
one would generally not select a hybrid system in cases where an

analog system would suffice. )

6.4 APPLICATIONS

Obviously, a hybrid differential analyzer is a special-
purpose computing system, and one may legitimately ask where

useful applications for a hybrid system might arise.

One specific #rea could be the solution of differential
equations associated with Ehe trajectories; orbits, and impact
"footprints" of space vehicles. Such calculations usually
require nonlinear operations, including division, coordinate
transformations, and the use of nonlinear functiéns to represént
éffects of gravitational éérrections, atmospheric drag, etc. " In
many cases, a moderately accurate (0.01-0.05 per cent) computing
system might be adequate, particﬁlarly if it had a computing
speed much faster than real-time. Currently, computing
installations for this type of work often include DDA's with
100 or more integrators, multipliere; and servos (Ref. 23, and

24), or else a large general-purpose digital computer, or both.
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Quite often, these systems must be used with considerable

programming skill to obtain fast computation (Ref. 6).1

The use of hybrid techniques might permit increased
computing speed in such situations; more important, it should be
considerably easier to program a hybrid machine to ensure a given

degree of accuracy.
6.5  CONCLUSIONS

As a finé; conclusion, th; results of this study confirm
that the predicted capabilities.of this type of hybrid differential
analyzer system can be achieved in practice; and such a system can
be useQ in applicat%ons where moderately high-accuracy real-time
and faster-than-real-time computing is required. A more concl;sive
judgment of the practical advantages of this system can be made
after the capabilities of hybrid multipliers and function éenerators

have been studied. The outlook is encouraging at this point.

lReference 6 cites an example of a lunar orbit calculation
requiring the use of both a fast DDA (TRICE) and an IBM 7090 to
obtain an answer accurate to 160 km (0.05 per cent of the earth-moon
distance), and requiring 5 minutes computing time for ome orbit.



Appendix A
DESCRIPTION OF DIGITAL SYSTEM, COMPONENTS, CODING

A.1 ~ DIGITAL COMPONENTS

The major portions of the 4igita1 systems were constructed
using Computer Control Corp. 1 MC S-PAC modules. These use 0 and
-6 v logic levels (-6 for logiéal "1"); signal rise and fall times
are less tﬁaﬁ‘o.l microsecond., Most of the logical operations in the
actual computing system were implem?nted-uéing NAND gates and

asynchronous AC pedestal-gated flip-flops.

A.2 DIGITAL VARIABLE REPRESENTATION - CODING

The proper choice of a digital code must, of course, depend
upon careful consideration of all operations to be performed. 1In a
typical differential analyzer;, at least the fdllowing operations

involving digital variables are required:

a, Digital integration of one variable (summation and
storage).
b. D/A and A/D conversion.
" c. Digital summation of several variables (without
memory).
d. Digital multiplication.

e. Digital function generation.

93
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It is assumed that both positive and negative numbers must
be accommodated.’ In the present case, the digital variable will
range from -7 to +7, and thus can be represented by 4 binary digits.

Several codes could be used including:

a. Simple signed magnitude.
b. Complementary representation of negative numbers
(one's or two's comp lement).

.¢. Cyclic (Gray code).

Other codes could, of course, be used but no others seem to have

any particular advantages.

The signed magnitude code, is perhaps easiest to use in
driving read-out display equipment and also the simplest to work
with for multiplication and function generation. It is also not the
best code for eas& D/A converson. The complemented codes are the
best for summation and for digital integration: e.g., using the
two's complement code and incremental data transfef, a digital
integrator becomes basically an up-down counter. Using one';
complement code, due to the dual representation of "zero", a slight

amount of extra logic 1s required to handle + and - carries properly.

Since integration, summation, and D/A conversion are
anticipated to be the most common operations in a hybrid differen-

tial analyzer, the two’s complement code was chosen for the standard

digital number representation in the system (see Table A.l).
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A.3 DIGITAL DATA TRANSMISSION

In principle, it is possible to use either parallel or
incremental (serial) transmission of the digital variables in the
system, Scaling considerations will ensure that the change in a
digital variable will never exceed one machine unit at the end of a
particular computing interval. This makes incremental transmission
attractive, since only two éignals are required to transmit digital
information between operational elements;,; AX and S(AX),l +Reversible
counters (registers) are used for generation of each full digital

variable Xp from its increments, AXp.

it should be pointed out that a full-word representation of
each digital variable always exists in some register, even if
incremental transfer is used. From an organizational viewpoint, the
basic difference between an incremental and a parallel transmission
system 18 in the assignment of the interface between various
computing elements. For example, in the discussion of the hybrid
integrator in Chapter 2, it is shown that an input register is
required to store the digitél bortion of the integrand, iD“ In an
incremental system, fhis reglster 1s physically located in the
integrator itself, but in a parallel system, the iD register would

be located in the preceding computing element.

1n this case, 1f incremental transfer is used, it must be
of the ternary form (-1, 0, or + 1), rather than the binary form
(-1 or + 1), which is sometimes used in DDA systems.
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In the present system, incremental transfer is used with the

following code:

M = Existence of an Increment: Negative (assertion) pulse
S(MX) = 8Sign of Increment: "1" (-6 v) for negative

"Q" (0 v) for positive

A.b4 THE DIGITAL INTEGRATOR SYSTEM (Incremental Transfer)

The digital integrator system shown in Figure 2.3 uses
standard Computer Control Corporation 1 MC S-PAC modules to perform

the following operations:

1. Accumulation of AXp increments in Xp register.
2. Digital addition of Xp/16 to Rp.
3. Digital addition of carry (+ 1) to Ryp.

4. Transmission of output increments + AX to next unit.

The system uses a two's complement to represent negative
numbers, both in the iD and in R-registers. In a two's complement
system, n; end-around carries or borrowing are required; this
greatly simplifies the timing and logic requirements of the system.
For n = 3, the system requires 26 éates and 12 flip-flops (48

transistors total).

The sequence of operatioms is controlled by a series of seven
timing pulses from the integrator subroutine clock and the RH (Run/
Hold) signal (Figure 25); the sequence is as follows:

a. The positive-going transition of the RH signal at the
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beginning of the analog holding interval causes the
carry storage flip-flops (A and B) to be set in

accordance with the states of the comparators at that

time: that is:
1. Flip-flop A is in the "1" or SET state if X, > 5 volts.
2. Flip~flop B is in the "1" or SET state if Xp < -5 volts.

The auxiliary digital logic then produces the three carry-implementing

signals C, S(&X), and S{C) as follows:

l. C = (A+B).
2. S(C) = A.

N

3. S(MX) = A.

The carry signal, C, is a "1" whenever there is a carry of either
polarity. S(C) and S(AX) are logical complements, S(AX) is a
logical "1" when a negative carry is to be transmitted to the next
computing element; correspondingly, S(C) is a 0" to denote the

concurrent addition of + 1 m.u. to the R-register.

b. Clock pulses T; to T, cause the addition of iD to ﬁhe
four lower positions of the R-register. This is
accomplished by sequentially gating each bit of iD
into a parallel information drop-in input in the

' corresponding R-register flip-flop, and allowing

carries to ripple through the register before the next
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bit is transferred. By using a 200 KC pulse rate with
1 MC logic, more than adequate time for carry propagation
is assured. Note that 1if iD has.é."l" in the sign-bit
position, there still remains the need for adding a "1"
to the upper two orders of the R-register; this operation

is done simultaneously with the addition of the carry.

Information is added to the upper two orders of the
R-register by the action of pulse Tg and Tg. The gates.
controlling this operation receive information about
the sign of iD and the sign and existence of a carry,

and adjust the R-register by the following rules:

1. Add 11 if X is negative (Xp sign bit is "1") and
no internal carry OR if Xp is positive and there is

a negative internal carry (C = 1, §(C) = 1).

2. Add Ol if Xj is positive, andthe internal carry 'is

4+ 1 m.u.

3. Add 00 if Xp is positive and no carry OR if Xp is

negative and there is an internal carry of 4+ 1 m.u.

(00 is 0 or 4, modulo 2).

4. Add 10 if Xp is negative and there is an internal

carry of -1 m.u. (10 is 6, ﬁodulo 2).
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Figure 2.3 shows the required logic elements to perform the
necessary operations in accordance with these rules. The lines

Py and Pg must implement:

PO = TS (}HCSC + 5{50)
Pg = Tg (AB + CXg)

d. Ty transmits a AX pulse to the next computing element;

the carry sign S(AX) is ﬁransmitted as a dc level.

e. Digital input increments are added or subtracted in
kn whenever they are received. This is accomplished
by making the in register an up-down counter. The
proper carry sign signal must occur at least 1
microsecond before the Ai pulse. This signal controls
the\gates on the iD register; making it either an up-
or a down-counter; the Ai pulse is then correctly
accumulated and stored for the next computer run. If
the input increment comes from anothér integrator, it
will occur at time Ty. 1t may also arrive later, 1f it
comes from some other type of coﬁputing element. Input

increments may actually be received from more than one

source, if staggered timing is used.

A.5 CHANGING SCALE FACTORS AND NUMBER OF BITS

The system discussed above has a digital scale factor of

1/16th, i.e., R = 1/16 Zﬁp - (carriegs). The scale factor
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cannot be made larger, but it can be made smaller by any desired
power of two simply by adding more bits to the R-register, and
introdﬁcing iD into the lower-order digits of R. The sigﬂ digit of
ip should be added into all higher-order locations of the R-register,
the upper two digits of R being treated as in the above system, and
any intermediate digits sequentially receiving a "1" if the sign of
iD is negative. For example; to cut the digital gain to 1/64, two
more digits are required in the R-register; and two more clbck pulses

are required.

A hybrid system with additional digital bits could be
implemented in the same manner. Beyond about 8-10 bits, it might
be desirable to consider using some form of true parallel scheme to
conserve time. The equivalent amount of logic equipment includes
tn + 14 gates, n + 3 dual input flip-flops, and n + 3 single input
flipuflobé (8n + 22 transistors and 20n + 50 diodes). For example,
a nine-bit (n = 8) system would require about 86 transistors and

210 diodes. -
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TABLE A.1l

FOUR-BIT TWO'S COMPLEMENT CODE (n = 3)

Binary Number . Variable Value
0111 +7
0110 +6
0101 . +5
0100 ' +4
0011 +3
0010 ' +2
0001 | +1
0000 ' 0
1111 | | -1
1110 ) )
1101 ' =3 .
1100 | -4
1011 -5

'IOiO -6
1001 -7

1000 Unusgd



Appendix B

DESCRIPTION OF ANALOG SYSTEM COMPONENTS
COMPARATORS ; DIGITAL-ANALOG CONVERTERS.

Figures 2.4 and B.l show the analog portion of the hybrid
integrator; it includes two comparators and two D/A converters of
the type diséussed in Ref. 34 and 36. An all-transistor version
- would require about (2n + 30) transistors and 6 diodes. The
symmetrical switch drivers are discussed in Ref. 35. The purpose
of this Appendix is primarily to describe the basic operations
performed in this section of the hybfid‘integrator in sufficient
detail to permit a sihilar system to be designed‘using different

available components; where desired.

The effective gain of the integrator is 50, i.e.,

t

X=50 [ Xdt+Xx,
o

This gain constant is consistent with the gain of 1/16 in the
digital section, and the analog computing interval of 1250
microseconds. For a different gain,Aone should use the
relationshi
P o= (n+1)

a wm T

This is the gain of a hybrid integrator using the highest digital
scale factor for a given n. Note that for a given T, only discrete
values of a are available. Other values would have to be obtained
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with a coefficient-multiplying component. T was chosen to be 1250
microseconds in the experimental system in order to yield a gain of
50, which agrees with the usual choice of operational gains as some
decimal multiple of 1, 2, or 5. If, for example, T is made 1
millisecond, ;hen the integrator gain would have been 1000/16, a
rather odd value for a computing element, although it could be used

in a general computing system which contained coefficient-changing

components.

The galn through each signal path tc the summing amplifier

must be established to give this sasme gain constant. In particular,

a. The total gain from the iA input; through the analog
integrator, to the output of the summing amplifier
should be a; to prevent overload of the integrator
itself, the gain from iA to the integrator output may
have to be made less than a; hence the factor K in
Figure 2.4. 1In the present system, K = 1 was found

to be satisfactory.

b. The signal component due to the linear interpolation
term aiD T 1s produced by a D/A converter driven by
+ 10 v interpolatingqrahps, +Vy and -V;. The gain
through the i converter to the summing amplifier

output must yield a component:

+Vy (XD) o 1/2n+2 volts; vy in volts, Xp in m.u.
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c. Similarly, the gain through the "R" converter must yield
a component

‘ n+2
10 RD ¢1/2 wvolts

where Ry 1s the value of the R-register in m.u. Note
that the most significant digit of the R-register is
a sign digit, the next, a units digit, the rest ére
fractional digits. (Thiéjstatement still holds true

for systems with more digital bits.)

D/A CONVERTERS (See Ref. 28)

Figure B.l shows the two D/A converter networks, with an
appropriate set of resistance values to achieve the required gains
for a four-bit system, The complementary logic levels are directly
obtained from the complementary outputs of the iD' and R-register

flip flops,where required.

COMPARATORS (See Ref. 27)

The comparators used to sense analog overflows are identicél
units,.designed to have a threshold level of zero volts. The external
voltage dividers provide accurate level translation of the output
of the summing amplifier, so that comparator A senses when Xy is
greater than +5 volts, Comparator B senses when X, is less than -5
volts. The gate level controls on the flip-flops FFA and FFB are
controlled by the comparator output signals, so that, upon receipt

of a positive-going transition in the RH signal, they are set to
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store the state of the comparators at the end of a computing interval.
There is actually a timing error of about 1.5 microseconds in this
interrogating process, which means that the overall error in the
over-flow sensing operation might be as great as 6 mv, due to the
timing error. However, the comparator itself is only accurate to
about + 10 mv, so that the overall error is not appreciably affected.
Note that the comparator accuracy does not actually have to be high,
since the rate scaling limitations prevent the analog channel from
éoing more than 1 m.u. in two computing intervals. Normally the
analog channels can exceed ! m,u, by 0,05 to 0.1 m,u, without
overloading, so that this much error in the comparator systems can
be tolerated. Thus, the comparator circuit used in this experiment

could be replaced by a simple 2-3 transistor Schmitt trigger circuit.

LINEAR COMPUTING ELEMENTS

A + 10 volt analog signal range was selected;soc that the
ma jority of analog operations could be easily implemented with
modern fast transistor operational amplifiers, The épeed of the
system was basically determined by an estimate of the maximum rate-
of-éhange of the analog variables which could successfully be
accommodated by the analog computing components and an estimate of

the timing accuracy of the clock and read-out systems.

The use of conventional 4+ 100 v operational amplifiers is
less desirable for many reasons. The analog switching circuits

required would be somewhat more complex, require much more power
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consumption and, worst of all; would be slower than the corresponding
solid-state circuitry suitable for use with transistorized analog
systems. Moreover, since all-solid-state digital-logic modules are
used throughout, the problem of providing level-matching circuitry
between the analog and digital sections is'greatiy reduced by using -

. low-voltage circuitry in both systems.

It was estimated that the analog systems should be able to
maintain 1 per cent of half-scale component accuracy if the variables
have a maximum rate-of-change of 4000 v/sec. This.corrésponds to a
full-scale sine wéve frequency of about 63.3 cps, and was felt to be
a conservative limit on computing speed using modern analog computing

elements.

The actual prototype system was constructed before suitable
+ 10 volt transistor operational amplifiers were locally available.
The operational amplifiers actually used were a standard Philbrick
K2-XA/K2-P vacuum tube amplifier. This substitute was found to
simulate a transistor operational amplifier adequately, and worked

hicely with low-impedance computing networks.

The computing networks were selected to be suitable for the
speed and current capabilities of the amplifiers. Summing and
feedback resistors can be in the range of 10-100K-ohms. Where
required, 5,000 ohm coefficient potentiometers would be suitable,

and integrating capacitors can range from 0.0l to 1 mfd.
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Appendix C

DERIVATION OF OPERATIONS REQUIRED IN
A HYBRID SUMMING COMPONENT

The hybrid summing component shown in Figure 3.1 performs

the operation
I+ 2, = %» [}xn + Xp) + (Yp + YAi]

The digital inputs and outputs are the incremental quantities

&Xp, AYp, and AZp. To express the required operations mathematically,

Let Xpg, Ypo, and Zp,y be the initial values of the digital machine
variables; note that an actually appears in the input register of
the next succeeding computing element. During a computer run, we
want

Z ZD+ZA = ZD0+ZAZD+ZA

1
= '21' [XDO + YDO] + _%' [ZAXD + ZAYD] + i‘ (XA + YA)

or

Zpo + ZOZp + Zp

1 L ek , 1

Let INLp = N = algebraic sum of all output carries

Thus Zp ® Zpp + N

108
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Then

zD»+ Zy =Zpg+ N+2, = Zpo+ N+ 1/2 (X, + ¥))
+ [1/2 (Xpo + Ypo) - Zpo - N + L/2 (% + ZAYD)j
Thus
Z, = 1/2 (X, + ¥,) +E./2(XD0 + Ypo) - Zpo - N+ 1/2(2nXy + ZAYD)]

Also

ZA = 1/2 (XA + YA) + R

or

From this it can be seen that the R-register must be a three-bit

register, which receives the following information:

a. The initial value 1/2 (X¥pg + Ypo - Zpp), note that

this number is either -1/2, O, or + 1/2.

b. N = 3AZp, the algebraic sum of all output c&rries;
this sum is subtracted from the R-register, one m.u.

at a time, as the computer run progresses.

c. 1/2 (ZMXp + ZIAYp), the algebraic sum of all imput
increments; this number is accumulated in the
R-register to keep account of the running sum of

the digital input variables.
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Note that the value of the R-register can take on only the

value -1 1/2, -1, -1/2, 0, 1/2, or 1 1/2; this is true regardless of

the number of digital bits in a machine variable. Thus the same

summing compoﬂeht may be used in a system with a different number of
digitgl bits. Note also that the scale factor of the summing
component can be divided by an integral power of two, without any
significant change in the design, except the addition of more
low-order digits in the R-register, and appropriate changes in the

analog channel gain.

Three input variables can be summed in a similar fashibn; of
course, the summer gain must be changed accordingly. If K variables
are to be summed in this manner, the summer gain constant must be

Z'k, where k is an integer such that 2%y g,



Appendix D

MULTIPLYING AND FUNCTION GENERATING WITH HYBRID
COMPONENTS: ERRORS IN HYBRID FUNCTION GENERATORS

D.1 HYBRID MULTIPLIERS

A hybrid multiplier performs the operation
-1
Z = ZD + ZA = o0 (XD + XA) (YD + YA)

1
= n [ XpYp + Xp¥, + Xa¥p + XAYA]

Where
ZD = ZDO + ZAZD

Yp = Ypo + ZAY)

Xp = Xpo + Iy

Letting : N = 2AZ;
XY zY ZXnAY : ZOXAY

20 2n 2n 2“

¥y + X¥p | XY

- ZDO - N + 2“ zn

+ Zpg+ N

111
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Regrouping, we have

Zpo + ZA2p + Zp = Zpo + N + [

A\l 2n

. - Xp¥y + XYy + XAYA]

DO ~ o0
Thus _

XDYA + XAYD + XAYA
ZA = R +
2n

or the R-register must represent

DO
2n

Again, as in the case of the hybrid summing component

(Appendix C), the R-register performs three principal functionms:

a. Storage of the initial fraction

¥po Yoo _,

on DO

b. Accumulation of the incremental-values'of the product

of the input digital variables
172" ¥paXp + XpAYp - AXAY

c. Accumulation of -3AZ;, i.e., subtraction of the

algebraic sum of all output increments.



In this case, the R-register is an (n + 2) - digit register,

with magnitude strictly less than 2 m.u.

In the case where only coefficient chahging~is required,
i.e., Y= C=Cp + Cp, the organization of the system is the same,

except that now, since AYp = ACp = 0, the R-register is simpler,

since the incremental inputs are:

1/2° [CDAXD]
and thus
R = F‘EQ_C-LO - zm;] + 1/2" cpzXp - N
,2n
D.2 HYBRID FUNCTION GENERATORS

A hybrid function gemerator forms the function

OF d%F 2

X Xp
k
0

k k

i.e., a Taylor-series approximation to the desired functionl.

lThis development assumes F(X) is an analytic function of
the real variable X; hq < 2R, The approach could be extended to

include a discrete number of points of discontinuity in this range
of X.

113
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Le§
Zp = Zpg + L0y = Zpg + N
Then
Zpo + N+ 24 = Zpg + N + [jFD(xD) - Zpo - N+ F'(Xp) X,
+ 1/2 F"(Xp) X2 + __g

Thus, to implement hybrid function generation with incremental

digital transfer we let

2, =2+ N = Z  + N

Then
+ F' (Xp) Xa + 1/2 F" (Xp) Xa% + ...

and

Zpo = F(Xp) - N - Zpo + F' Xa + 1/2 F" Xp%+ ...

As in the case of the other hybrid computing elements, there are

scaling restrictions on the function generator, viz.:
|p| < 2@
| ax/ae|, |dF/dt| < 1/2T

Since
dF/dt = (dF/ox) (dx/dt)
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Then 0F/dx = F' < 1 insures the satisfaction of the output rate-

scaling limitation.

Note also that each digital function Fk(XD) must be generated
with an accuracy consistent with thé accuracy of the analog system.
Let ik be the number of bits required in the generation of Fk(XD);
let p be the accuracy of the analog system in per cent of one m.u.

Then iy must be greater than the smaller of the two quantities:

lnp ( 100/p) or 1lny (100 F¥ max/p)

Similarly, an analysis of the function must be made to
- determine how many terms are required to achieve an accuracy of
approximation consistent with the rest of the computing system.
Let k be the number of term fequired. If the absolute accuracy of

the system is approximately p/100 m.u., k must be chosen to satisfy:

R &< p/100 m.u.

but, assuming F(X) is analytic in X, then for some value of

’
XA = XA;

1 kt+1 7 ktl
M= Tr D FOGEDT Xp =0, £ 1, +(2"- 1)

Since X, < 1

Then R < TTSHY F (XD)max < T%E
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Or

> I+l
(kt1)! < 100/p Fmax (Xp); Xp = 0, +, + 2, .o .t(2B- 1)
satisfies the requirement that Ry be less than p/100 m.u. Conversely,
for a given number of terms in the approximation, this inequality
places weak bounds on the class of functions that can be accurately

approximated, viz.:

k+1 '
F +1l < p(ktl)! m

max — 100 -u-

Example A: Y = KX2

As an introductory example, consider the generation of the
function Y = F(X) = KXZ. K must be chosen subject to the limitations
JF/ S 20, /F'/ < 1, ’Xl < 2™l Thege restrictions lead to the

inequalities
K < 1/2m (JF| £ 2@
k 12 grl ¢ 1

The latter inequality is obviously the stronger limitation, so that
the function to be generated in a hybrid system with n bits plué

sign would be
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At the point X = X; the function has the finite Taylor series

expansion:
Xp? ﬁ)_ -1 2
Y o= Tt Jn XA Foanil Xy

Thus the error involved ir using a linear segment approximation to
the function is bounded by
1 2
—_— n+1
RK = Rl = 2n+1 XA < 1/2

For the case n = 3; this error is 1/16 m.u. which is probably too
high (unless the analog system accuracy is worse than 6 per cent).
Thus for n = 3, the generation of Y = kx? would require the use of
parabolic inéerpolation (squaring of X,) for an accuracy consistent

with the other computing elements.

m
Example B: Y = KX

" The same scaling restrictions again apply; here we have:

n n

]Y]=‘Kx"‘/<2; [x] < 2% |xﬁ]< 2"-1

Y = mkx®1 < 1
X .
or

1 1
£ o= 5 ——
K -‘-m(zn)m'l m20(m-1)

The truncation error to be expected from using analog interpolations
of order 1, 2, ...k can be estimated from

R < m(m-1) ...(m-k+1)
“ (k + 1)¢! m2n(m-1)

m- k-1, n
(XD) ; Xp < 27-1
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or

R < m(m-1) ... (m-k+1) (2“-1)m'k'1
(k+1)! m2?(®@=D

For n = 3, this becomes

m-k-1 (u_1) ... (m-k)
gm-Llegy1ye

Rk

Table D.1 sh&ws the truncation errof to be expected from using a
k-th-order approxim#tion to KX® for the case n = 3, me=1, 2, 3,
and 4. The above analysis can be easily extended to cover the case
of a general polynomial of any order. For a given resolution, a
hybrid function generator with more digital bits and less analog
accuracy would be simpler, since fewer high-order analog interpola-

tion terms would have to be used.

Example C: Y = A sin aX

This example of a common transcendental function will be
carried out for n = 3 bits. Thus, the scaling limitations lead

to the following:
|Y| = lp(x)[ - ,}Asinax’f23=8~bAi8
|F'| = |Aa cos aXx <1 Aa <1

To permit coverage of two quadrants (-n/2< aX< x%/2), choose
a = x/16. Then the maximum allowable value of A is 16/n = 5.1.

For simplicity; one would probably pick A = 5. Thus the function
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to be generated would be Y = 5 sin (nX/32). The k-th derivative

of F(X) is thus bounded by

b k

k) | — . k
| ¥ \ = | Jgx 5 sin /32 { 5(x/16)

and the reéulting truncation error resulting from a k-th-order

approximation is

ok + 1 k+1
R, < B < 3(xfl6)
: (k + ! — (k + 1)¢

Table D.2 shows the accuracy to be expected from ist, 2nd,
and 3rd-ordervapproximations to the function ( n = 3). It shows
that if the analog accuracy of the hybrid system is 1 per cent of
a machine unit, then a 2nd-crder approximation is required to
achieve a consistent degree éf accuracy in the hybrid generation

of Y = 5 sin (uX/16).

The above examples indicate that for n = 3, a hybrid
function generator using‘combined linear and quadfatic interpola-
tions will generate a relatively broad class of anaiytic functions
with an accuracy of 0.1 per ;ent of full-scale, or better. It
should be emphasized that only a relatively crude quadratic
interpolation would normally be required, utilizing a 2-3 bit

precision in Fii(XD) and an' analoe squaring circuit of perhaps

5~10 per cent accuracy.

Figure 1l.lc illustrates the general organization of a

hybrid function generator. The digital logic would be relatively
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complex and would perform the following operations:

a. Upon receipt of a AX input pulse, and the DC level
S(AX), the Xp register would be updated. The
existence of AX would be stored for future use (the
polarity of AX would also be stored if for some
reason it were not available throughout the entire

digital operating cycle).

b. A forward or backward difference AF(Xp, AX) would be
-added to the R-register, depending upon the existence
and polarity of AX. Some form of parallel or serial

coding logic would be required to generate AF(Xp,AX).

c. Additional coding logic would generate F“(XD) and
F"'(XD)(and possibly higher-order derivative values)

for use in the analog interpolation operations.

d. Following the above digital operations, the
comparator states wouid be interrogated; and if a
carry were required, a + 1 m.u. correction would be

made to the R-register.

To simplify the set-up of different functions, some type of
removable plugboard patching system for programming the digital

logic operations would be desirable.
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TABLE D.1
ACCURACY OF GENERATION OF FUNCTION

Y=K™® (n=3)

Accuracy: Per Cent ’ Accuracy!Per Cent
of 1 m.u. of 16 m.u.
6.7 0.418
0 0
10.9 - 0.68
0.52 0.032
0 0
14.4 0.9
' 1.37 0.086
0.049 0,0031




.

Order of
Apprqximatipn

k=1 (linear)

k=2 (quadratic)

k=3 (cubic)

TABLE D.2
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ACCURACY OF GENERATION OF FUNCTION

Y=F(X) =5 sin (aX/16); n = 3

Accuracy:Per Cent
of 1 m.u.
9.6 )
0.63

" 0,033

Accuracy:Per Cent .
of Full-Scale (16 m.u.)
0.6
0.039

0.002



Appendix E
ANALYS1IS OF ERRORS IN DIGITAL DIFFERENTIAL ANALYZERS
E.1l TRUNCATION ERRORS: Z-TRANSFORM APPROACH

A z-transform approach for estimating ttﬁncation errors in

DDA's has been used by several investigators (see Ref. 7, 12, and
21). 1t is important to note that in closed loop computation, the
integrators cannot use updated values of the input functions (see
Ref. 25). At the same time, in order to keep the complexity of
thﬁ logic,systéms in the DDA to a practical level, a relatively
simple integration rule must be used. The above considerations
.usually make it necessary to restrict the choice of an integration
rule to either the simple rectangular (Euier) rule or a two-point

, rule which hereafter will be referred to as the Open Trapezoidal

‘rule. If X, and in are the values of the integrator output and
input signals, respectively, at iteration times, t = nT, these

rules may be written:
Rpe1 = X + T ﬁn (Rectangular)

Kbl © X+ T [:3/2 ﬁn - 1/2 ﬁn_i] (Trapezoidal)

11n this Appendix, T corresponds to Ty in Chapter 5, i.e.,
it is the DDA iteration time. ‘
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Using z-transform methods, the sampled-data transfer function

corresponding to these integration rules are:

Rectangular _ Trapezoidal
X(z) _ Tz | X(z) _ T 3z-1
7 2 z(z-1)

=<
~

N
~

i(z) (z-1)
where

X(z) = z-transform of the function Xp = x(t = nT)

-n . sT

FANEN - =]
2§ Z  Rp; Zmoe
o

X(2)
The effect of truncation errors due to this sampled-data
approximation to the desired integrator transfer function ﬁay be
examined with a variety of techniques (see Ref. 10, 11, amd 33).
For the present discussion, a root perturbation method similar to

that used by Nelson (Ref. 21) is chosen.

The technique presented here can be applied to any n-th
order time-invariant linear system representable by the differentiagl
equation

' dx
4+ ... a7 == + m £(t
1 4t 0 (t)

Corresponding to the linear system there will be a

characteristic equation

as" + aj.1 89'1 + ... a8 +ag =0
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with n roots, si; (k =1, 2, ... n) in the complex frequency

plane (s-plane).

If the sy are showh, it is them possible to find the

: o ' . 1
location ‘0of the perturbed roots from the following procedure:

a. Gilven the actual integrator transfer functionm,
Fp(z), and the roots of the desired system, sy,
solve for the roots of the DDA difference equationm,

Zpi, in the zfplane given by

Ep(z) = s

b. Find the corresponding roots of the difference

equation in the s-plane, 8y 4y from the relationship:
ski = "l/T In zki

c. The 8y are the roots of the actual sampled data

system.2

Comparison of the gy to the s will show how much effect the
trunéation errors have on the natural modes of response of the
system, and will also show that, in general, spurious modes of

response are generated.

lThis method fails if the system has multiple roots
(repeated eigenvalues).

2More precisely, the s34 are the roots lying in the infinite
strip -n/T < Im { S}< n/T, corresponding to the Zyy.
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E.1.1 RECTANGULAR (EULER) INTEGRATION

Assuming a DDA which uses integrators with the z-transform

transfer function

X(z) ‘Tz _
Fp(z) = X(2) = z-1

The effect of truncation errors on the characteristic roots

of a linear system can be analyzed as follows:

Let 8 be a root of the unperturbed system in question.

Then 1/Fp(2) = 8
7 .E.:J‘. = 5
Orv‘ Tz
Then Z(1 - sT) = 1
Oor : z(T) = 1/1 - sT

The Taylor series expansion of 2(T) ylelds
z(T) = 1+ 8T .+ (8T)2 + (8T)3 + ... (8T)™ + ...

Note that 1f there were no root perturbaéion, the Taylor

series for z(T) would be

| g ; N
z(T) = e _=1+3T+(9'§)— +(B'g) + eas L——)—gf + ...

It 15 then apparent that truncation errors arise from the

fact that z(T) #: eST



E.1.1.1 ROOT PERTURBATION: RECTANGULAR INTEGRATION-

%

It can be shown that. )
InX = (X-1) + %--v(x-1)2 + -_}: (x-x)_3 - -}; (X-1)% + ...
Substituting
2(T) ™ 1+ 8T + ()2 + (sT)3 + (sT)%
in the above expression, we ﬁave

In z(T) ~ sT + (sTf&Z + (sT§/3

Now let s1(T) be the root in the s-domain corresponding to

z(T); i.e.,
2(T) = eS1(TIT
Or
81(T) = 1/T 1n (T)
Then . :
81(1) 2~ s+ (sT2/2 + (s1)¥/3
Or

(D) 2 s (146172 + (sm?/3)

This last equation shows that the truncation error due to
rectangular integration produces a shift in the system roots of

order (sT).

127



E.1.2 OQPEN TRAPEZOIDAL INTEGRATION

Assuming a DDA which uses integraﬁors with the z-transform
transfer function

- Xz _ T 3z-1
FT(Z) }.((Z) ‘ 2 Z(z"l)

The effect of truncation errors on the characteristic roots

of a linear system can be analyzed as follows:

Let s be a root of the unperturbed system in questiocn.

Then 1/Fp(2) =g
or z2(z-1) 2 . ¢
' 32z-1 'T
) 2 2
Then £ .2 -(34+2/sT)z+1 = 0
T s
Or

2(T) = 3sT/4 + 1/2 + \/9/16(sT)2 4 sT/4 + 1/4

It is already apparent that one effect of the difference-
equation approximation is the creation of two roots in the z-domain

for each root of the original system.
The Taylor series expansion of z(T) yields

| 2 3 4
Major root: 2,(T) 2 1 + sT/2 + (sT)"/2 - (8T)"/4 - (sT) /8

Minor root;: zg(T) X sT/2 - (sT)2/2 + (sT)3/4 + (sT)4/8
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Note that if there were no root perturbation, we should find

only one root in the z-domain, viz.:
2(T) = 8T 2 1 4 8T + (sT)2/2 + (sT)3/6 + (s1)%4/24

It is then apparent that the truncation errors arise for

two reasons: ,

. a. zA(T) 7£ esT

b zy(D) F 0

E.1.2.1 PERTURBATION OF THE PRINCIPAL ROOT: TRAPEZOIDAL INTEGRATION

It can Ee shown that
InX 2~ (X-1) - 51 (x-1)2 +% (x-1)3 - -} (x-1)%
Substituting
24(T) 2 1+ 6T + (sD)?/2 - (sM)/4 - (s1)*/8
in the above expression, we have

In z,(T) ¥ sT - 5/12(sT)3 + 1/4(sT)*

Now let 8,(T) be the root in the s-domain cofresponding to z3(T);

- 1.e.,

ZA(T) = eBZT

Or .
sp = 1/T In zy (T)
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Then

80(T)~’ s - 5/12 8312 + 1/4 s%13 + ..

82(T) =2 5 (1 - 5/12(sT)? + 1/4(81')3)

. .
This last equation shows that the truncation error produces

a shift in the system roots of the order (sT)z.

E.1.3 AN EXAMPIE: THE SINE LOOP

Consider now the simple sine-loop configuration of Figure
2.1. 1If ideal integrators are used, the system has the character-

istic equation:

82 + (A)Oz 2

= 0; aja; = w
with corresponding roots:
g7 =1 3 wg

E.1,3.1 RECTANGULAR INTEGRATION

From the equation derived in Section E.1l.1.1, the root

perturbation caused by rectangular integration can be estimated:

-(on) 2 wozT
81(T)~ + j wg|(1l - 3 + 2
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It can be seen that the principal effect on the root location
is a;éhift qf the system roots into the right half of the s-plane.
There 1is also a slight reduction in natural frequency. The
expressions for the relative errors in the location of the system

roots are listed 'in Table E.1l.

E.1.3.2 TRAPEZOIDAL INTEGRATION

From the equation derived in Section E.1.2.1, the.

perturb&tion of the principal system roots can be estimated:

82(T) ~ + § wy (1 + 5/12 (wgD)?) + 1/% wy*T3

Here the principal effect on the root location is an
increase in the natural frequency. There is also a slight shift
of the system roots into the right half of the s-plane. The
expressions for the fractional errors in the location 9f the
system roots are 1istedtin Table F.1.

E.1.4 COMPARISON OF THE TRUNCATION ERRORS: RECTANGULAR AND
TRAPEZOIDAL INTEGRATION

Figures 5.2 and 5;3 and Tables 5.1 and E.l summarize the
effect of the truncation errors in these two integration rules.
As expected, the truncation errors are greater for the rectangular
rule.. For the case of the undamped sinusoid, the frequency errors
are about the same, however, the damping error is much higher for

the rectangular case. Error estimates can be made for system roots
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located elsewhere in‘the s-plane by the same method. The effect
of the root perturbations on the actual solution vanes may be “
examined by the use of sensitivity equations similar to those

developed in Appendix F.

E.2 ‘ROUND-OFF ERRORS

Compu;ing errors due to round-off are not easily estimated,
but assuming that round-off produces a relatively incoherent
quantization error with a uniform amplitude distribution, Widroq
(Ref. 38} has used statisticalytgchqiques to show that the
approximate RMS round-off error is AX/\/—1—2- 0.3 AX‘, where AX is
the value of the digital quantization level. When the quantization
interval is small, as would be the ﬁase in accurate computation,
the maximum absolute value of the machine round-cff error can be

estimated to be approximately equal to AX (see also Ref. 9 and 25).

For purposes of this discussion, a parallel-organized

incremental DDA is assumed (this class of DDA's includes most

modern special-purpose machines). 1In an incremental DDA, the
maximum rate-of-change of machine variables is AX/TIn Thus, fbr a
full-scale sine wave

X(t) = A sin wt

ldx/dt‘ < Aw

1f the round-off error is assumed to be approximately AX:

reund-off error > AX < AwTg
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Or
OHX/A >mTI = anTI

Thus, for incremental machines, the round-off error (expressed as

a per cent of half-scale) is
eROUND"OFF ~ wl 100 = ZOOﬂfTI per cent

Since most modern commercial DDA's use open trapezoidal

integration and incremental data transfer, it is reasonable to

assume that in precise computations (Ty << 1/w) the rxound-off
errors will predominate. Thus the accuracy-bandwidth capability of
typical DDA's can be characterized by the expression

error

~n 2nT;100 per cent; (Ty<< 5/12w)
frequency

Equivalently, DDA's of this type have a capability of~computing

approximately 1/TI distinguishable increments-per-second.

Figure 5.1 also shows the gross accﬁracy-bandwidth
capability for a parallel-organized incremental DDA, using

trapezoidal integration.
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Table E.1

FRACTIONAL ERRORS IN THE LOCATION OF
THE CHARACTERISTIC ROOTS OF A SINE LOOP®

Integration Rule @/wg, Per Cent ' Mw/wg, Per Cent

2

Rectangular wol/ 2 (wol)
3

Trapezoidal 1/4 (wgl)3 + 5/12 (wgT)?

ﬁPerturbed solution is assumed to be of the form

X(t) = A e% cos (wp+ Lw)t

with roots, 8 = O+ j(wg + Lw)



Appendix F

ROOT PERTURBATION EFFECTS

F.2 DECAYING EXPONENTIAL

Consider the time function:
X(t) A e"Ot

To estimate the effect of a perturbation in the parameter @ on the

value of the function X, we differentiate X with respect to C:

o
e

= =-At e -ac

o
R

At a particular time t = T,

QX

Y -ATe %T = -Tx(T)

Thus for a small perturbation, A®, we find the error in the value
of X(T) is
X = -TX(T) AQ = -The o

If we consider X as an error in the value of X(T), then we can find

the time T when the error is greatest

3_(_A_X_)_ = - [Ae’ar - AOtTe'ar]Aa
dT

X(T) [1-or] a0

135 -
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Setting
B_aéxf - 0
We find that for AF0, @ F0
T = 1/@ = one time constant.

In words, the error in X(t) is most sensitive to an error

in @ at t = one time constant.

MMpax = -Ale (AQ/Q)

In the decaying exponential problem discussed in Section 4.3,

A = 60 volts, O = 50;

Mpax = 22 é% volts; at T = 1/50 sec

or k = 16 rms

or é% = 0.045 AX

Thus, in this pFoblem, it is difficult to detect small errors in
Q, since a 0.45 per cent error in O is required to caﬁse only a
0.1 volt error at t = one time constant. The actual error curves
shown in Figures 4.3b and 4.5d, e, and £ did not reveal any
significant information that could lead to a conclusion that the

solution errors were necessarily due to an error in Q.
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F.2 SINE LOOP

F.2.1 FREQUENCY ERRORS

Consider the time function:

X(t) = A e 9t gin gt

To estimate the effect of a perturbation in the parameter omn the
value of X, we again differentiate:

‘3—1—‘) = A[eo‘T cos wI + sin T ear]

This error in X has local extrema after N cycles, that is, at

T = 2nN/w; N= 0, 1, 2, ...; at these times

OX 27AN S

or
My = _MX
w

Thus computer solution error due to an error in the natural
frequency of the computer loop can be studied by observing the
amount of solution error (in volts) which occurs after a solution
time of N periods. After several cycles, this error will usually be
large enough to permit detection of even small errors in w. Consider
the problem of Section 4.4, where A = 60, w = 50, we have after five

cycles (N = 5):

; X measured after five cycles
of computing of X = 60 sin 50t
(k = 502.65)

AT -
W 600x



F.2.2 DAMPING ERRORS

If the computer solution for the sine loop configuration has
dny exponential decay or growth, this will be most evident at the

extrema of the solution. Consider the function
X(t) = A e ™ cos wt

By a similar analysis to that in Section F.2.1, one finds that after

N cycles of a cosine function, the solution error is related to Q by:

M = 2maN &
W

or .
¢ =
w 25AN

Again, in the problem of Section 4 '

DX
600xn °*

= OX measured after five cycles of
computing X = 60 cos 50t

(k = 502.65)

£1Q
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