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Chapter 1 

DESCRIPTION OF HYBRID SYSTEM 

I.I INTRODUCTION 

The Important role o£ differential analyzers in the field of 

computation, system simulation, and analysis is well established. 

Electronic differential analyzers, organized in an all-parallel, 

operational fashion, provide the system engineer or analyst with a 

"live mathematical model." These machines not only aid considerably 

in the reduction of hand computation and analytical effort, but they 

also provide new insight into system operations. 

Electronic analog computers have remained at the forefront 

in those areas where high accuracy is not required, but where their 

flexibility, simplicity, ease of programming, and low cost make them 

a highly useful "every-day tool." 

Of course, there are many cases where a higher computation 

accuracy is required, or where memory and decision-making functions 

predominate; it has normally been necessary to use digital computers 

in these instances. In order to provide machines organized in a more 

useful operational fashion, special purpose digital differential 

analyzers (DDA's) have been developed. 

1 
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While promising a potentially higher accuracy (due to the 

essentially unlimited number of digital bits which can be used to 

represent a variable), the DDA suffers from a number of readily 

apparent disadvantages. The cost and complexity of an all-parallel 

DDA is unquestionably greater than an equivalent analog machine. 

What is even worse from a functional standpoint, the DDA has the 

inherent difficulties of all systems which utilize quantised 

variable representations, that is, truncation and round-off errors. 

Practical fast DDA's use relatively simple integration algorithms, 

usually an open trapezoidal rule (see Eef. 25). To achieve'a 

desired minimum error in the final solution, the DDA programmer must 

often exercise a considerable amount of skill 1$ constructing his 

program. At best, he may be forced to operate at a frustratingly 

slow time 6cale, in order to provide the fineness of iteration 

necessary to achieve a desired degree of accuracy. In many cases, 

this measure alone will not necessarily Insure that some mechanism 

has not yielded an unpredicted error in the result. 

In recent years, considerable effort has been expended 

toward combining the capabilities of digital and analog systems. It 

is relatively easy to provide analog computers with a fair measure of 

memory and decision-making capability. Systems using combined analog 

and digital computing elements with D-A and A-D converters for data 

conversion have been successfully employed in many simulation and 

computation Installations. In these installations, the digital system 

serves for accurate and relatively slow operations most suited to its 
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nature, e. g., coordinate conversions, table look-up, precision 

function generation, data'storage, decisionmaking, etc. The analog 

elements are used to perform linear operations such as integration 

and summation, and wherever greater speed and less accuracy is 

required (Ref. 1, 4, 6, and 17). 

The concept of blending analog and digital elements can be 

extended to a system of true hybrid computing elements. To clarify 

what is meant, consider the possibilities provided by a system 

wherein the values of variables (and parameters) are each represented 

by a combination of a coarse digital word together with a continuous 

analog interpolation voltage. In theory, at least, it would appear 

possible that the accuracy of the analog channel would be improved 

by roughly l/2n, where n is the number of digital bits used in the 

digital representation. For example, using analog components with 

an accuracy of 1 per cent of full scale with a 7-bit digital word, 

the resulting full scale accuracy of the hybrid variables would be 

7 
one part in 100 x 2 , i.e., about 0.01 per cent. A little thought 

will bring to light the obvious restriction that one must trade speed 

(whether viewed in terms of frequency, rise time, or slewing rate) 

for accuracy. This same limitation, of course, applies to DDA's, and 

to some extent, to analog computing systems. The hybrid differential 

analyzer may be regarded as a relatively inexpensive parallel DDA 

whose truncation and round-off errors are essentially eliminated 

through interpolation with analog computing elements. This feature, 

rather than accuracy or speed as such, is considered to be the salient 

advantage of such a system. 
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The successful implementation of a true hybrid system depends 

upon the development of suitable.transducers or data converters between 

the analog and digital interfaces. Basically, the problem is one of 

developing fast comparators and analog switches. 

Under the assumption that the practical problems can be 

solved, it is then a fairly straight forward matter to outline the 

required system interconnections to implement the operational 

elements of a true hybrid system. Considerable work has already been 

done in this area by Skramstad, Schmid, Korn, and others (Ref. 1, 4, 

17, 29, and 31). The purpose of this study was to explore in detail 

the practical aspects of hybrid differential analyzers, and to verify 

experimentally the capabilities and limitations of a typical system. 

In order to be useful in practical application, a hybrid 

differential analyzer system must be capable of performing at least 

those operations now within the capabilities of conventional analog 

and digital systems. One class of problems for which hybrid systems 

should be useful is for space-vehicle trajectory calculations. This 

type of problem involves nonlinear differential equations, and the 

input data normally uiust undergo numerous coordinate transformations. 

It is apparent that a useful hybrid computing system must not only 

contain linear operational elements, such as integrators and summers, 

but also must contain elements capable of performing multiplication, 

division, precise coefficient setting, polar-rectangular conversion 

(resolving), and general function generation. 
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The major portion of the experimental work associated with 

this thesis is devoted to the performance of hybrid integrators. 

However, later sections will discuss the requirements of hybrid 

elements for performing all of the above operations. The actual 

system is designed so as to retain as much flexibility as possible 

in the manner in which these operations are implemented. Figure 1.1 

shows abbreviated block diagrams of typical hybrid computing elements; 

details of the design of these elements appear in subsequent chapters. 

1.2 SYSTEM NOTATION1 

1- 2- 1  HYBRID REPRESENTATION OF VARIABLES; ACCURACY 

Consider a system where each problem variable x is 

represented by a machine variable X •=> axx, appearing in the form 

X - XD + xA 

where X© is a digital word with n binary digits plus sign bit; XA 

is an analog voltage between -E and +E volts. Either 1 binary digit 

or E volts represents 1 machine unit (m.u.). We note that XA is an 

interpolating voltage representing the fractional part of X (Fig. 1.2). 

In this study, n =*3, (2n =» 8) and E =» 10 volts. 

Assuming analog-computer accuracy within p per cent of E, 

2n 

this representation yields 100 ~ distinguishable increments of X 

*The material presented in this section is primarily derived 
from discussions with Prof. 6. A. Korn, whose suggested notation is 
used throughout this paper. For a notation summary, see Table 1.1. 



between 0 and 2n, or a haIf-scale accuracy of 2~np per cent. 

For any analog voltage e between 0 and 0.5 machine unit, note 

that both Xn + e and (Xp -fr 1) + (e - 1) represent the same value of 

the hybrid machine variable X. Although this redundancy halves the 

analog resolution, it permits us to use relatively inaccurate analog 

comparators to generate carries. 

1.2.2 REPRESENTATION OF THE INDEPENDENT OR TIME VARIABLE (Fig. 1.3) 

The range of the independent variable t i 0 is divided into 

equal increments At, so that 

t <=> (k-1) At + t; (k =» 1, 2, ...) (2) 

where t varies periodically between 0 and 0% At as t increases. Each 

interval of length At will correspond to an individual analog-

computing period of duration T, during which 

T = O). - (k-1) Atj > 0; (k o 1, 2 ,  . ..) (3) 

is the computer time (real time); 0% is a time scale factor suitably 

chosen so that 

OT At - T (4) 

After each run, a holding interval of length, TH> is used for 

performing digital updating operations, generating analog carries and 

resets, etc. This is a significant departure from earlier hybrid 

differential analyzer systems. The interruptions in the computation 



complicate the introduction of real-time data Inputs, but otherwise 

does not place any major restrictions on system capabilities. 

1.2.3 VARIATION OF THE MACHINE VARIABLES WITH TIME: THE ANALOG-
COMPUTING PERIOD 

At the start of the k1-*1 computing period £t «• (k-l)At, t ® 0j, 

the digital component Xp and the analog component XA of each machine 

" 1 variable X are reset to their correct values . 

XD - XD [(k-1) At] (k - 1, 2,...) (5) 

«A (0)»XA£(k-l) AtJ (k - 1, 2,...) (6) 

Each digital component XQ remains constant during the entire computing 

period, while each analog component 

XA (t) - XA |~(k-l)At-+ TJ =» \ (r) 

(k m 1/2,... ; T > 0) (7) 

varies as A function of the computer time T as dictated -by the 

computing interconnections for the given problem. 

-1.2.4 THE DIGITAL-COMPUTING AND CARRY-GENERATING PERIODS 

At the end of the k^ analog-computing period, each analog 

voltage is held and generates a positive or negative carry (+ 1 m.u. 

increment) if 

kX. (0^ At) > I m.u. (k » 1, 2,...) (8) 

Note that the actual values of XA and XD do not necessarily 
differ between the end of one run and the beginning of another; they 
will differ only if a carry 16 made. 
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The carries are used as digital + 1-bit increments to update the 

digital components ^XJJ, also new digital components k+1XD are computed 

digitally. 

During the same holding period, the positive or negative 

carry machine units are subtracted from the corresponding analog 

voltages (which can,, therefore, never exceed 1 m.u.); and precise 

k+1 
fractional parts of the digital components Xjj are computed digitally, 

to be introduced into the next analog computation. Note that the 

digital computing elements accept n-digit words, but effectively 

produce longer words. 

1.2.5 COMPUTING SPEED (See Also Section 5 . 2  and Appendices B and E) 

No machine variable X «» X(t) may be allowed to increase or 

decrease by more than 1/2 m.u, (1/2 bit) during any one computing 

period of T seconds; hence we must scale so that 

dx 
dt 

< 1 at . 
- s ° r *•-./«« (9) 

If the computer time T is to represent t on a 1:1 time scale 

(®t 53 1) during each analog computing period, then we have T <=> At, 

and the maximum absolute rate of X is given by 

dX 
dt — 2T m-u"/sec (10) 

We can, in this case, represent a full-scale sinusoid 

X(t) = 2n sin 2jtf t 
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with 

if 

j —I a 2nf . 2n ^ —i m.u./sec 
•| dt I max 2T (11) 

f <1 1 o B CDS 
- 4«T . 2» mBRID (12) 

We will call BJ^BRID t*ie f"ll~scale bandwidth of the hybrid computer. 

A given full-scale bandwidth requires 

T < sec 

4jtBHYBRID2n <13> 

The analog computing elements of the hybrid computer must 

permit the full rate of change 

dX^ q i 

dt" " 2ltBHYBRID2 a jf m*u*/sec 

i.e., the analog computing element must be able to produce a full-

scale analog sinusoid 

XA(t) «• sin 2«BANAL0Qt 

with 

BANALOG - 2" ̂ HYBRID 0 cpS 
(14) 

Mote that increased digital accuracy necessarily requires a 

proportional increase in the required analog bandwidth once %yBRID 

is given. 
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In the system to be described in this paper, a + 10 volt 

analog signal range was selected so that the majority of analog 

operations could be easily implemented with modern fast transistor 

operational amplifiers. The speed of the system is basically 

determined by an estimate of the maximum rate of change of the analog 

variables which could successfully be accommodated by the analog 

computing elements, and by anticipated timing errors in the control 

and read-out equipment. 

As discussed in Appendix B, it was estimated that the analog 

systems should be able to maintain one per cent of half-scale 

component accuracy if the variables have a maximum rate-of-change 

of 4000 v/sec. This corresponds to a full-scale ̂ ANALOG about 

64 eps; this was felt to be a conservative limit on computing speed 

using modern analog computing elements (see also Section 4.2). 

Using the relationship 

jdtl — 2T - 4000 v'sec 

one finds that T must be greater than 1250 microseconds. 
I 

Further considerations associated with obtaining a 

convenient gain constant for the hybrid integrator (see Chapter 2) 

led to a choice of T 1250 microseconds. 

In order to insure ample time for performing digital operations, 

the analog holding interval, Tjj, was made equal to 0.04T => 50 
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microseconds. If were zero, the system could keep up with full-

scale sine waves of angular frequency 50 rad/sec. Inclusion of Tg, 

however, reduces this figure to 48 rad/sec. or about 7.65 cps. 

To keep up with a real-time full-scale sinusoid at f cps with 

n =» 3, requires BjjYgfQp — 1.04f cps, ^ANALOG — 32f cps, if we allow 

0.04T extra seconds per computing period for the digital computation 

and resetting. The speed-accuracy ratio of the hybrid computer is 

100/2pT distinguishable increments/sec. If we reduce this by 1/25 

to allow for the digital-computing periods, we have 625/13pT •» 38,500 

distinguishable increments/sec., which permits a crude comparison to 

modern incremental digital differential analyzers. 

1,3 SEQUENCE OF OPERATIONS (Fig. 1.1. 1.4. 2.6) 

The computing operations involved in a hybrid differential 

analyzer system must be performed in the proper sequence. In the 

present system, the major steps are as follows: 

a* Initial Hold 

Prior to the beginning of a computer run, the INITIAL 

HOLD state (analogous to HOLD in an analog computer) is established 

by putting the proper digital and analog Initial conditions into all 

integrators. At this time, a particular Total Run Time may be 

selected, which will stop computation and command solution read-out. 

b. Run 

When the computer run is initiated, all analog subsystems 

are made operative for the duration of the first computing interval T. 
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A holding interval, TR, is then initiated. During TJJ, all analog 

integrators are in HOLD, and the following operations are performed: 

1. Digital Integration (updating) simultaneously in all 

integrators, and transmission of carries from integrators 

to other computing subsystems. 

2. Digital Summing at the input of all summing devices and 

carry transmission. 

3. Digital Operations in multipliers, coefficient setters, 

function generators, and any other zero-memory devices; 

transmission of carries. 

Some of these operations may overlap in time, but it is essential that 

digital updating in all integrators be performed and the necessary 

carries transmitted to subsequent elements in the computing loop. 

Digital data transfer will normally be incremental ternary transfer 

(carry pulse and DC carry sign signal). All digital operations are 

under the control of a subroutine clock, which can be expanded to 

drive a large number of digital subsystems simultaneously. 

After the digital operations are completed, the new states 

of the digital system will automatically create step transients in 

the analog channels, through their effect on various D/A converters. 

Analog interpolation voltages will also be reset to zero (see 

Chapter II). After these transients subside, another analog computing 

interval, T, may be initiated. 

The above operations are repeated for the desired number of 

computing intervals. Figure 4,1 shows how the analog and digital 
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parts of the solution combine to form the complete variable. 

c. Read-Out 

At the end of the desired number of computing steps, the 

computation is stopped. The present system permits setting the 

total run time from 0.01 to 999.99 computing intervals (total active 

machine time of 999.99 T seconds). When this time is reached, the 

read-out system displays the value of a pre-selected machine variable. 

A high-speed sample-hold system and a digital voltmeter provide a 

digital display of the analog variable at the read-out time. A 

£ 

continuous full-analog signal is also provided for display purposes. 

d. Reset 

Initiation of the Reset interval returns the computer to 

the Initial Hold state described in (a) above. This includes 

resetting all digital variables to zero, and then inserting new 

initial conditions, as desired. 
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TABLE 1.1 

SUMMARY OF NOTATION 

y 
D Digital part of a variable 

^A Analog part of a variable 

E Number of volts io one m.u. 

n Number of bits in Xj) exclusive of 
sign (n = 3 in the system being 
discussed) 

P o/o half-scale analog accuracy 

k Index number for computing 
periods, K =3 1, 2, 

t Independent problem time variable 

At Problem time increments 

T Duration of machine periods 

T Machine time (0< r < T) 

a t Time scale factor 

a„At » T : T » — 
t At 

0 < t < T 

t a (k - 1) At at r =3 0 



Digital 
I.C. 
(DD 

Reset 
(DRS) 

v 

S(&X) 

CARRY 
LOGIC 

C. Comparators 

X 

\\\\ Analog 
Integrator 

Reset(RS) 

Summing 
Amplifier 

Figure 1.1 a 

Hybrid Integrator 
Ln 



S(AX) 
-VA *YA 

2YDAX Add 

Gates 

•2AXAY Clocks-

Add 
Gates 

Reg. 

-WXA 

(Delayed) 

Analog 
Multiplier 

H s(cy > , 

CA 

S(AZ) 

RRY 
LOGIC 

AZ 

•f 

t 

£ 
2 

Comparators 

-£%3-

Summing 
Amplifier 

Figure 1.1 b 

Hybrid Multiplier 



Programmed 
Digital 
Logic 

N 

Oi 

C 9(0 

S(&X) 

,?D Reg. V
 

X
 

o
 CNW^ 

+V Analog 

Function 

Generator 

:*XA Xq 

i 
i 
I 

Logic 

J 

-E +E 

r  R r  

f W6> < 

% 

* D/A 
£ 

S 

% 

* D/A 
£ 

S 

-xA+xA 

JUl 

t 

i 
D/A S 

3 

-*A +*A 

•&DI. 
\ 2 

RH 

S(AC) 

S(AY) 

Carry 
Logic 

X &Y 
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Chapter 2 

HYBRID INTEGRATION PRINCIPLES 

2.1 INTRODUCTION 

A hybrid integrator implements the operation 

mT + T 

X(mT + x) = % + XA(mT + t) ® a J X(att)d(att) + X£ 
o 

where 

T is the minimum time between possible resets of the analog channel. 

The dynamic range of the analog channel is nominally + 1/2 m.u. 

The dynamic range of the digital channel is + (2n-l), i.e., + 7 m.u. 

The full-scale range of hybrid variable is + (2n-l/2)m.u. » + 7 l/2m.u. 

By making T small enough, we ensure that the change in the 

integral of the digital portion of X is less than 1/2 m.u. in 

machine time Q^At « T sec. 

2.2 SCALING 

The magnitude and rate-of-change of X(t) and X(t) are both 

assumed to be limited by appropriate scaling so that: 

< ILL / 1 / _ ^ m.u./sec. =» m.u./sec. dX dX 

d(Ott) 
> 

d(0tdt) 

| X |, | X | < (2N-1/2) S2N 

< 7 1/2 1 8 

20 
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In a time interval T seconds long 

T 

A X ± a / Xd(afct) < a T | X 
0 - max 

But 

Therefore 

And 

Or 

AXI ^ 1/2 m.u. in T sec. 

| AX| < 1/2 

a  T  | X  I  < 1 / 2  
I max — 

< 1 , < .1 L_ 
a ~ 2

n+1T ~ l6T l6atAt 

ensures meeting the scaling conditions above, regardless of | X 

As an example, with n = 3 and T • 1.25 ns., a 5 50 is satisfactory. 

Consider a sample sine loop (Fig. 2.1) solving the 

differential equation 

X = -a1a2X; X(0) » 7.5, X(0) - 0 

Here we have X = 7.5 cos wt 

7.5w 7-5ai 
jx| » "XT sln = (j 8in wt 

Hence we have 

u = \j a La 2  , " £ 1, fl < 1 
I U) 



Thus a) *» a^ = a2 = 50 is maximum for to, a^ or &2 an<* thus we find 

the maximum value of w is 50 rad./sec. or fjiYBRID — 8.0 CPS 

(similarly, for T *» 500 |isec, we have 20 cps). The above 

calculations neglect the digital computing "dead-space" of 50 tisec, 

which slows the real-time computation by 4 per cent below that 

calculated above^ i.e., ^HYBRID 7*65 cps. 

2.3 BASIC OPERATIONS 

Now let us examine integration over a period of m computing 

intervals. For simplicity, we will assume at => 1. 

Then 
mT + r . 

X = a X dt + XQ 
o 

In General Initially 

X - XD + XA k = 1 

X - xD + xA xD = 

X0 = XD0+ XA0 XD ° XD 

Thus 

mT + T . mT + T . 
x a XD0 + a f XD dt + a y XA dt •+ XA0 

o o 

m-1 k. T m. mT + T 
= XD0 + a 2 XDT +„ a y~ XD dt + a y" XA dt + XA0 

k=> 1 o o 

or 

C "!-l k- -) / m- mT + T . 
X = XD0+aI I XD V + < a XD T + a / XA dt + XA0 

** k=>l ' ^ o 



The first bracketed expression is a digital operation with "Digital 

Value" if aT =» (1/2)*. (Note that it contains both an integral and 

fractional part.) The second bracketed expression is an analog 

quantity for general T, and in general may be greater than 1 m.u. 

Figure 2.2 (based on Ref. 31) shows an arbitrary function 

X(t), and illustrates the areas associated with integration. 

The terms XQQ and aT I XJJ are digital in nature if aT = 

(1/2)^ , and thus can be generated and stored with digital 

1 
precision. Area 1 in Figure 2.2 represents 2 XD. 

The term a ""x^ r represents the linear interpolation term 

due to portion of the total integral arising from "bCjjj it must be 

included to obtain a correct value for X during a computer run. 

At the end of an integral number of runs, this term is "reset" to 

zero and XD is absorbed in ZXD„ Area 2 in Figure 2.2 illustrates 

the contribution due to this term. 

The term a jX^dt + X^.0 represents the contribution to the 

total integral from the analog portion of the input (Area 3). So 

long as this term remains less than one-half machine unit, it can 

be represented as a part of the analog output X^. However, it is 

possible for the magnitude of this term to exceed 1/2 m.u. 

^The assumed limitation of aT » (1/2) is no minor 
consideration in designing a general-purpose computer. The problem 
of coefficient changing will be considered later. 
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2.4 METHOD OF APPROACH; "PDA-PLUS-INTERPOLATION" 

The following method which follows closely that of 

Skramstad (Ref. 31) will first be presented without reference to 

errors or other limitations; therefore the equations will be 

exact, and problems of errors, scaling overload, etc., will have 

to be considered separately. Figure l„l(a) shows the system with 

incremental digital data transfer. 

Symbolically, we note that at any instant of time during 

a computer run, we wish the sum of and X^ to form the correct 

value of X. During holding intervals between runs, appropriate 

carry generating and digital updating operations are performed, 

but it is important to note that the total value of X before and 

after the holding interval should remain the same. 

In general, three operations must take place during the 

holding interval following the k-th computer run: 

k° 
1. The value of aT XQ is added to the lower orders of 

the R register. 

2. The analog input representing a T at T ° T is set 

to zero to compensate for the addition performed in 

the above step. These two operations produce no net 

change in X^. 

3. If X^ exceeds 1/2 m.u. in magnitude, it must be 

adjusted by removing or adding 1 m.u. from X^ and 



correspondingly correcting R. Simultaneously, a + 1 m.u. 

increment is Bent to the next computing element (carry 

operation). 

Note that XA is composed of four terms, V^, V2, V3, and V4, where 

» -E Rp, where is the term IX^-N, < 2 m.u. ; 

V£ 0 -a XJJT - this is the interpolation voltage. During a computer 
run, it increases linearly with T, and is reset to zero 
during the holding period (operation 2 above). 

)V21 1 E/2; 

aT f • 
v3 - / XA 4t> I»3| S E'2; 

V4 83 " this is the analog portion of the initial condition on X 

Vi, V 2 >  V3, and V4 are components of the voltage X^, but they 

do not necessarily exist as individual voltages in the system. This 

point will be clarified later. 

2.5 THE DIGITAL SYSTEM 

Figure 2.3 shows the digital portion of the hybrid 

integrator. All digital variables are represented in a 2's 

complement code (see Appendix A). The input register (X) contains 

XQ, the actual digital portion of the input variable in this code. 

The initial value of X is selected manually; as the computation 

proceeds, incremental changes in XQ are made upon receipt of S (AX) 

and AX signals from the preceding computing element. During the 

digital updating period, XQ is serially added to the R-register; 

simultaneously, the R-register is corrected by + 1 m.u., if there 
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is to be a carry. The implementation o£ these operations is 

explained more fully in Section 2.9 and Appendix A. Figure 2.5 

shows the timing sequence. Note that an increment AX, S(Z\X)j, is 

transmitted to the next computing element only if a carry is made 

(the carry transmitting system is also inhibited by the read-out 

command signal RO, to prevent incorrect read-out of the digital 

variables). 

The rest of the digital logic is used to generate the proper 

signals for initiating a carry in the digital section. Flip-flops 

A and B store the states of the Comparators (see Section 2.6) upon 

receipt of the positive-going transition of signal RH. 

2.6 THE ANALOG SYSTEM 

Figure 2.4 shows the analog system which accompanies the 

above digital system; some of the circuit details are discussed 

more fully in Appendix B. Since there is no polarity inversion in 

the term ̂ the D/A converters must operate to -yield a non-

inverted component at the output of the X^ summing amplifier 

(see Appendix B). An optional inverting amplifier provides "XA> 

if desired. Transistors Qi and Q2 are used to put the integrator 

into HOLD; the 6ix-diode bridge is shorted during the RESET period, 

to insure that the proper initial condition on X^. Comparator A 

detects the condition X^ > 5 volts, Comparator B detects X^< -5 volts. 

D/A Converter X is a four-bit bipolar unit which provides the 

interpolation component X]) T. D/A Converter R provides the component 



E.RJJ. Appendix B and References 34 and 36 provide a more detailed 

description of the Comparator and D/A Converter circuits. 

The resistance values in the integrator, summer and D/A 

converters are chosen so that proper scaling is maintained as 

follows: 

a. The voltage at the output of the analog integrator 

should always be less than 1 m.u. in magnitude * In 

the experimental system, it was found that making the 

integrator gain equal to "a" was satisfactory (K=l). 

This is usually sufficient, since in most problems, 
o 

the average value of over several interpolating 

i 
runs is close to zero. 

b. The component of due to a XJJT must be'less than 

+ 1 m.u. 

c. The component of X^ due to E°R]) must be less than 

+ 2 m.u. 

The entire analog system was designed for an overall accuracy of 

1 per cent of half-scale. Calibration tests indicated that the 

errors in the various components of X^ were typically less than 

50 mv., i.e., 1/2 per cent of half-scale. 

Note, however, that in certain pathological cases, e.g., 
integration of a small constant, the integrator gain might have to 
be made much smaller. In the worst case, one might have to use 
K=2(n+2)a 32. This would correspond to a poorly scaled problem. 
K=»l was found to be satisfactory for all experimental problems, 
however, K=*2 or 4 might provide a margin of safety for assuring 
that the analog integrator would not overload £n general use. 
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2.7 POLARITY INVERSION 

The integrator may be operated in the inverted mode by 

using an analog unity-gain inverter to invert and logically 

inverting S(AX); this method is, of course, much simpler than using 

a separate inverting component. 

2.8 INTERPOLATING WAVEFORMS 

• 

The ramp interpolating waveforms used to drive the "X" 

D/A Converter are supplied by a separate waveform generator, which 

can thus service a number of integrators simultaneously. This 

unit is described in Ref. 35. It provides 1 per cent-linear 

positive and negative 10 v ramps which are reset to zero in about 

20 microseconds after the HOLD interval TH begins. 

2.9 TIMING SEQUENCE 

Figure 2.5 shows the timing sequence of the integrator. 

All of the operations during the HOLD interval are controlled by 

a subroutine clock which can drive a number of integrators 

simultaneously. The sequence of operations is as follows: 

a. At the beginning of the HOLD interval, the analog 

integrators are put into hold. This is accomplished 

by the RH signal, which turns on Q2. 

b. Simultaneously, the positive-going transition of RH 

sets Flip-flops A and B to store the states of the 

Comparators. This immediately determines whether or 
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not a carry is to be made, as Indicated by signals C 

and Sc« 

c. Shortly after the HOLD interval begins, timing pulses 
• 

Ti~T^ perform a serial addition of XD into the lower 

four states of the R-register. 

d. Pulses Ttj and Tg simultaneously correct the upper two 

states of the R-register to complete the addition of 

XD and to add or subtract 1, if a carry is required 

(see Appendix A), 

el Pulse transmits a AX signal to the next computing 

element; if a carry is required,. The state of the 

S(£X) line tells the next element the polarity of the 

c a r r y . . .  

The timing pulses Ti to T7 are 5 microseconds apart; thus 

the entire digital operation is completed in about 35 microseconds. 

During this time, the sawtooth waveforms, which are supplied to the 

"X" D/A Converter are resetting to zero (this requires about 20 ̂ sec); 

thus the operations of updating the R-register, resetting the 

interpolation signal, and when required, initiating the carry are all 

completed in about 35 microseconds. Allowing another 15 |isec for 

analog transients to settle, it is possible to use a HOLD interval 

TH of 50 microseconds, or about 4 per cent of the computing interval, 

T. Additional hold time is required for other digital operations 

associated with such elements as summers and multipliers, since they 

must wait for the receipt of carries from integrators prior to the 
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initiation of their digital operations. Therefore, the prototype 

system includes an optional 10 per cent (125 p.sec) holding interval, 

to permit the inclusion of these extra sequences at a later date. 

2.10 CONTROL CLOCKS (See also Ref. 18) 

The computing sequence is controlled by a digital clock 

system which provides the waveforms shown in Figure 2.5. This 

system uses an 80 kc crystal and 1 mc transistorized digital logic 

modules to provide precise timing of the analog computing interval. 

It provides a pre-selectable read-out time, T>p, which may be set 

from 0.01 to 999.99 T. This read-out signal, R0, places the entire 

computing system into a terminal HOLD and also commands read-©aa£ of. 

the analog problem variable (see Section 3.11). Table 2.1 summarizes 

the basic clock parameters. 

2.11 COMPUTER READ-OUT (See also Ref. 37) 

In order to provide a useful read-out of machine variables, 

the hybrid differential analyzer is equipped with a precisely-timed 

read-out system, which performs the following functions; 

a. Upon receipt of a read-out signal (positive-going 

transition of the R0 signal from the master control 

clock), a fast analog sample-hold circuit stores the 

value of the desired analog machine variable. Simul­

taneously, a digital voltmeter is commanded to convert 

this voltage to a digitally displayed value for X^(T.j.). 
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b. During the computer run, the digital portion o£ the 

read-out system has been receiving incremental 

information about the value of a particular digital 

variable, XD. When read-out is commanded, the digital 

system will retain the value of XQ, and display it 

(in this system as a 2's complement binary number). 

c. For diagnostic and display purposes, a full-analog 

read-out of the sum of both XQ and X^ versus either 

real time or machine time is provided. Also Xp and 

X^ may be displayed separately. 

The read-out system used in the prototype system is described 

in Ref. 37. it has accuracy of better than 25 mv on read-out of X^ 

(i.e., 0.03 per cent of half-scale of the hybrid variable). Full 

analog read-out of (Xp + XA) can be made with an accuracy of 1 

per cent of full-scale. Read-out timing accuracy is + 1/4 micro­

second, which provides a negligible effect on the overall accuracy. 
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TABLE 2.1 

CONTROL CLOCK PARAMETERS 
(See Also Ref. 18) 

Analog Computing Interval, T: 

Analog Hold Interval, TH° 

Total Computing Time, T̂ .: 

Time Accuracy 

T 

1250, 12,500, or 125,000 microseconds 

25, 50, 125, or 250 microseconds 

LT 
0.01 T to 999.99 T, Selectable to 

nearest 0.01T 

0.01 Per Cent of Nominal 

0.01 Per Cent of Nominal 



/ 

cgs j j  n=3;  $-§0;  T = 1.25 ms 
«» • 

|x |  =  7.5  ̂  8  

Figure 2.1 Sine Loop Configuration 



X 

z 

X 

Figure 2.2 Graphical Representation 

of Hybrid Integration (from Skramstad, Ref. 31) 



XQ: 

RS >-

> 

to 

R-2 
to 

R.i 

to 
R0 

1/ Xs» 

>1 
> 

{> 

AX : 

S(AX)»-

,FA 

"hp 

rta 

Xo 

i 

to 

X, 

DI-6 

RS > ^ 

\y~ 

i t» 
i i 

N>I 
FA 

& 
DI -6 

x2 

c 

n t_r_ 

^ u y 

[> 
FA 

n 
DI -6 

/u 

Figure 2.3 Digital Section 

RH 

FA 

S(C) = S(AX) 

FA 

Reset »• 

0 NAND Gote 
C C= AB 

Indicator 
•vj-/ Lamp 

Logical "l" = -6 volts 
Logical "0"= 0volts 

AC Gated Flip-Flop 

"d' activates AC gate 

"l" inhibits AC gate 

AC input responds 

to positive transition 

"0" for DC Reset 

Set level-f 
AC set 

AC set 

AC reset 

Reset level 

Set level' 
AC set' 

Set level. 
'Set co"nmon AC\ 

input J 
Reset level 

AC reset 
•Reset Reset level 

•Set 

•Reset 

DC Reset DC Reset 

u> 
Ui 



+ 10 R Circuit 

6-Bit -10 -*» 

± 12 volt 

Symmetrical 

Switch 

Driver 

D/A Converter 

(PNP) RS< 

ER 

lOK 
+ 15 

- + Vi 
X Circuit 

4-Bit 

D/A Conv. 

(PNP) 

-15 
IOK + 

mfd. 

IOK 5K1 

M/V 

K2X/K2P 
-t-io 

Symmetrical 

Switch 

Driver 

2.7K 2.7 K 
RH lOK.IOT 

<- |0  

Drift 

Figure 2.4 Analog Section 

IOK 
vw-

Comparator 

-C-I0 

K2X/K2P 

JI0K,I0T 

Analog I.C. 

«+I0 

s-10 

Comparator 

-Wr-L-WV-
5K IOK 

-* +10 

-O X 
A 

-e> B 

t l %  P r e c i s i o n  c o m p o n e n t s  

* For K= I (Figure I. la ) 

A= "l"(-6v),XA* + 5 

B= " l"(-6^ f  XA^ -5 



37 

Reset Start 
Run 

sf fc-

t i 
t i 
i i 

I ^ s 

Sub-routine 
Clock mm 

)yt 

JIT.' 0 6 

TU 

0 

"6 

0 

"6 

0 

Figure 2.5 Timing Sequence 



Chapter 3 

OTHER HYBRID COMPONENTS 

3 o1 ZERO-MEMORY ELEMENTS 

This chapter describes the general design considerations for 

the zero-memory hybrid operational elements; these include components 

for summing; coefficient changing, multiplying, and function genera­

tion. These elements perform their digital operations subsequent to 

the updating of all hybrid integrators. They are all considered to 

be zero-memory elements, i.e., at any instant, the value of the 

output variable is related to the instantaneous value of the input 

variable(s).^ If several such elements are connected in cascade, the 
t 

digital and carry generating operations should proceed forward from 

the first element following an integrator, until all zero-memory 

elements in a cascade chain have been updated successively. 

3.2 SUMMING 

Figure 3.1 shows a block diagram of a summing component to 

Z W . Z D + , Z A .  

iNote that this is not quite a simple one-to-one mapping, 
since each value of a hybrid variable may be represented in two 
different forms, e.g., X = 6.3 can be represented as « 6, 
Xa a 0.3 or Xd 33 7, Xa a -0.7. 
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In Appendix C, it is shown that the essential digital operation is 

the formation of the digital quantity 

XD0 + YD0 

R „ DU 
2 - ZD0 -N + 1/2 + ®Yd) 

Mote that R is a three-digit number, with a value ranging from 

-1 1/2 to +1 1/2 m.u. It represents the net effect of th« incoming 

increments, + AX^ and + £%, anid the outgoing carries + AZj>. The 

term (XDQ+ YdQ)/2 -Zpo is the fractional part of the initial sum 

(»D0 + YD0>/2« 

Subsequent to receipt of digital increments the state of the 

R-register, together with and Y^may temporarily attempt to cause 

the output of the summing amplifier to exceed 1 a.u. A double-anode 

Zener diode will prevent amplifier overload until subsequent correc­

tion of the R-reglster by a 1 m.u. carry brings the suraning amplifier 

amplitude below 1/2 m.u. Proper scaling insures that no overload 

occurs during an analog computing run. The determination of a 

carry is made at a time when ail analog variables are constant; thus 

no digital storage elements are required following the comparators. 

Timing pulse To initiates the addition or subtraction of 1 m.u. from 

the R-register (a simple three-digit ap-down counter). Note that 

this assumes AX and AY are received fros integrators. If these 

digital increments are from some intervening zero-memory element, 

then the timing of this carry-initiating pulse will follow the 

digital operations in the preceding element. Using the present 



system components, the total time required for performing the carry 

operation in one summer would be about 20 microseconds. 

3.2.1 SUMMING AT INTEGRATOR INPUTS 

Note that digital summation may also be performed at the 

input to an integrator by providing separate inputs for each input 

variable. This requires separate carry-transmitting pulses for 

each incremental digital input. Proper scaling insures that there 

is no need for additional carry operations within the integrator, 

since it is the integral of the input; rather than the value of the 

input that affects the integrator output magnitude. 

3.3 MULTIPLICATION (See Ref. 17. 29. 31) 

coefficient changing are essentially the same, except that in the 

latter case, the coefficient is a fixed hybrid constant C m CQ + C^. 

In the following discussion, the general problem of hybrid 

multiplication will be treated with the implication that if the 

input Y » YD + YA is a simple constant^ equipment simplifications 

then result.^ 

The operation involved in hybrid multiplication and 

Consider the operation 

. (Xp+ xA)(YD+ YA) 

2*1 
S3 1/8(XD+ XA)(YD+ YA) 

1-Note that the complexity of coefficient setting is no less 
of a problem in all-digital differential analyzers. 
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Appendix G presents a derivation of the digital operations required 

to implement multiplication, using incremental digital transfer. 

Figure 1.1(b) is a general block diagram of a hybrid multiplier; 

and it illustrates the basic operations required. 

As in all other hybrid components, there is an R-register, 

which forms a digital remainder to be fed to the analog summing 

amplifier for determination of carries. The R-register forms 

R = l/2n [yjjAXd + IXJJAYD - ZAXUAYQ-N] 

Note that again |R|< 2 M.u. Various digital schemes could be 

used to implement the required operations, depending upon desired 

operating time, number of bits, etc. A detailed discussion of this 

problem is not included in this work. 

Using simple counter-registers with serial information 

drop-in, as in the previously discussed systems, the total updating 

and carry generating time for a four-bit hybrid multiplier would 

be about 100 microseconds (using the same parameters as before). 

The'hybrid multiplier requires a fast analog multiplier 

to form the term X^Y^. Note that its accuracy would not have to 

be high in a hybrid system with a large number of digital bits; 

indeed, the analog multiplier might even be dispensed with. 

However, in a four-bit hybrid system, the analog multiplier is 

required, and it should have an accuracy of better than 8 per cent, 

to maintain consistent accuracy with the other hybrid components 

thus far discussed. 
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3.4 COEFFICIENT CHANGING 

The requirements for a hybrid coefficient-changing 

component follow directly from the above. Some simplifications 

are now possible (see Figure 3.2). Specifically, the analog 

multiplier is replaced by a potentiometer, the register is 

replaced by a manually-settable group of digital lines and the 

0/A converter for XJ)CA now receives only constant analog inputs 

CA and -CA> The R-register is also simpler, since it is now used 

to form 

R » l/2n 2 CjjAXD-N 

since AYjj = ACD is now zero. 

3.5 GENERATING FUNCTION OF ONE VARIABLE 

In Appendix D, some of the requirements for a hybrid 

function generator are discussed, and a brief error analysis is 

made. Considerable prior work has been done in this area, with 

the object of developing hybrid function generators for use with 

conventional analog computing systems (Ref. 1, 4, 17, 28, 29, 30). 

For use in a true hybrid system, using incremental digital transfer, 

the system organization is somewhat different. Figure 1.1(c) shows 

a typical block diagram for a hybrid function generator. Unlike 

all previously discussed components, the choice of the number of 

digital bits determines the complexity of operations. The function 

will in general be generated by performing interpolations about 

digitally located values of the independent variable,, using a 



Taylor's series approximation. If fewer digital bits are used, 

then higher-ordered terms in the approximation may be required to 

achieve a given accuracy. To maintain an accuracy consistent with 

the other computing elements in a four-hit system, second-order 

interpolation terms might be required for some functions. 

Another added ccap lication In function generators is that 

digital functions must be formed with sufficient precision to match 

the full accuracy at the analog system. For example, a system with 

four bits and 1 per cent analog components requires that £F(XD) be 

generated with a precision of 7-8 bits; these lower-order bits are 

converted to an analog signal for the suaaning amplifier. Note that 

it is also not possible to improve the accuracy of function 

approximation by using unequal spacing of digital points, since 

they must be equally spaced in order to agree with the input 

variable coding shown in Figure 1.2. 

Subject to the above considerations, it should be possible 

to develop a hybrid function generator to be used with the type of 

system discussed in this work; considerably snore work should be 

done to determine an optimum method for implementing the required 

operations. 

It is readily apparent that all of the above systems are 

organized on a similar basis. They contain an R-register for 

forming digital increments of the output variable, which normally 



contains digital fractional parts of a machine unit and has 

magnitude strictly less than two. There are also D/A converters 

or multipliers and conventional analog elements. Each component 

contains two comparators and associated logic to perform carries 

by correcting the R-register and transmitting an increment to the 

next computing element. This general organization can be used to 

develop a broad class of hybrid operational elements. Of particular 

interest is a hybrid resolver, which would belong to a class of 

components for generating a factorable function of two variables, 

In the case of the resolver, F(X) •=> R, G(Y) •= cos 0 or sin 0. It 

would probably prove desirable to build a single resolver component 

than to implement the function using a multiplier and three separate 

function generators. 

3-6 HYBRID DIVISION 

Hybrid division of a constant may be accomplished by using 

a special function generating component to generate: 

This would permit dividing a constant by the machine variable X. 

To divide one machine variable by another, one could cascade 

the above operational unit and a hybrid multiplier to form; 

i.e., 
Z - F(X) G(Y) 

(YD + *A> a (XD + XA) 

C(YD + YA) 

(XD+ XA) 
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Chapter 4 

EXPERIMENTAL RESULTS 

4.1 EXPERIMENTAL PROCEDURE 

Two hybrid integrators, with associated control and read-out 

equipment were used in three simple computing configurations; 

a. Free-Fail Parabolic Trajectory (second integral of a 

constant). 

b. Decaying exponential (first-order linear differential 

equation). 

c. Undamped sinusoid (second-order system without damping). 

Each problem was scaled to approach the maximum amplitude and rate 

limitations of the system. 

Figure 4.1 shows an analog display of the three problem 

solutions; also shown are the two solution components, XQ and X^o 

Figure 4.2 shows X^ only, on an enlarged scale. 

The equipment was carefully calibrated prior to the 

experimental computing runs; however, during the experiments, no 

detailed recalibration was performed, with the exception of periodic 

checks of the sample-hold circuit and digital voltmeter in the 

47" 



read-out chassis, and an occasional check of the sawtooth generator 

amplitude. Table A.l summarizes the results of the initial 

calibration tests. 

TABLE 4.1 

Maximum Error in any D/A Converter: 60 mv 

Typical Average Error in a D/A Converter: 20 mv 

Maximum Error in Sawtooth Linearity: 40 mv 

Integrator Drift (with drift-correction adjustment): 10 mv/sec 

Error in Length of Analog Computing Interval, T: 0.01 o/o 

To test the sensitivity of the system to errors, various 

artificial errors were introduced. Table 4.2 and Figures 4.3 to 

4.5 summarize the results of these tests; Figures 4.6 to 4.9 

provided additional insight into the performance of the system. 

4.2 FREE-FALL PARABOLIC TRAJECTORY 

4.2.1. NOMINAL MACHINE SOLUTION 

The first computer problem was the solution of the 

differential equation: 

x(t) o -32.2 ft/sec2; X(0) = 0 ft; X(0) ° 600 ft/sec 



with solution 

x(t) - 600 t - 16.1 t2 ft. 

Maximum Height; 5590.092 ft. 

Time to Impact (zero crossing): 37.267 sec. 

This equation, of course, simulates an elementary flat-earth 

vacuum trajectory problem, and is of interest because it involves an 

open-loop computation, where cumulative errors should become readily 

apparent. 

With X measured in volts and time in units equal to one 

analog computing period, the actual machine equation used was: 

• • • 
X a> -32.2 volts; X(0) => 0; X(0) • 60 volts « 6 digital m.u. 

with theoretical solution 

X - 3.75 k - HI k2 volts 

Maximum Height: 55.9092 volts «• 5.591 m.u. 

Time to Impact: 59.627 intervals ® 0.074534 sec. of 
machine time 

One volt « 100 ft. 

One Computing Interval « 1.25 ms «» 0.625 sec. of problem tima 

at - 500 

Figure 4.3a shows a plot of solution error versus "time" In 

computing Intervals. Some of the more pertinent results were: 

a. Error in impact time: 0.02 per cent 



b. Error in maximum height: 2 ft. (0.04 per cent of 
theoretical value). 

c. Maximum measured machine error: 70 mv (0.09 per cent of 
half-scale machine range). 

4.2.2 ERRORS DUE TO REMOVAL OF SAWTOOTH INTERPOLATION AMP ANALOG 
INTEGRATOR 

Figures 4.4a and 4.5a shows the effect on the computer 

solution caused by removing the sawtooth interpolation and/or the 

analog integrators. When both are removed, a necessarily crude 

digital solution results. The case where the sawtooth only is 

omitted yields a smaller solution error than when the sawtooth is 

included, but the analog integrator is not. This would be expected, 

since when the analog integrators are absent, the analog portion of 

the input constant cannot be introduced into the first integration. 

4.2.3 EFFECTS OF ARTIFICIAL ERRORS 

Figures 4.5b and 4.5c show the solution errors generated by 

various small artificial errors in the analog channel. Note that the 

five different error sources had aboqt the same order of magnitude of 

effect. However, a number of conclusions about open-loop computation 

are suggested: 

a. As expected, a relatively large solution error arises if 

both analog integrators are reduced in gain; however, 

most of the error is generated in the first integration. 

Additional experiments confirmed the fact that out of a 

total solution error at impact of about 1.7 volts, only 
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about 0.5 volts error was caused by the loss of gain in 

the second integrator. 

b. An error in the gain of the summing amplifiers tends to 

produce slightly more error than an equivalent loss in 

sawtooth amplitude. 

c. The error due to the substitution of the finite one-

second Integrator time constant was relatively small, in 

this case, never exceeding 0.57 volt. 

d. The error due to degraded high-frequency response in the 

summing amplifiers appears to be greatest at times when 

the rate-of-change of the problem variable is greatest, 

but the overall error does not seem to be cumulative. 

4.3 DECAYING EXPONENTIAL 

4.3.1 NOMINAL MACHINE SOLUTION 

The first closed-loop problem was the simple first-order linear 

differential equation 

X =» -50 X; X(0) => 60 volts 

with solution 

X - 60 e*50t 

Stated in terms of computing intervals, the problem becomes 

X 
X - 16 ; X(0) =» 60 volts (6 digital m.u.) 



with solution 

X - 60 e"k/16 

One Computing Run 1.25 ms of machine time 

One Time Constant » 16 computing intervals 

Figure 4.3b shows a plot of the nominal solution error; it 

indicates that the maximum error in the solution was 0.05 volt (0.07 

per cent of half-scale). 

4.3.2 COMPARISON WITH STRAIGHT DIGITAL SOLUTION 

Figures 4.4b and 4.5d show the effect on the solution caused 

by removing the sawtooth interpolation and/or the analog integrators. 

Note that the final value of the digital solution is different from 

zero. Maximum solution error was less than 3.34 volts, which 

corresponds to about 1/3 of a digital m.u.# and agreee fairly well 

with what one might estimate on the basis of Section 5.3. Addition 

of the analog integrator reduced the maximum error to 1.9 volts. 

Removing the analog integrator and introducing the sawtooth 

interpolation produced a straight-line-segment approximate solution 

with a maximum error of 4.53 volts, actually slightly more than the 

straight digital solution. 

4.3.3 EFFECTS OF ARTIFICIAL ERRORS 

Figure 4.5e shows the effect of linear gain errors in the 

computing system. The reduction of the summing amplifier gain causes 



considerably more error than reducing either the analog Integrator 

gain or the sawtooth amplitude. Note, however, that none of the error 

curves indicate a net steady-state offset, as produced in a straight 

digital solution, i.e., the solution still eventually decays to zero. 

The error in the summing amplifier gain tended to produce an 

oscillating solution error that alternates in magnitude and polarity; 

a maximum error of 450 mv (0.6 per cent of half-scale) was observed. 

A 10 per cent error in either the analog integrator gain or sawtooth 

amplitude produced solution errors of similar size; in this case, 

never more than 160 mv (0.21 per cent of half-scale). 

Figure 4.5f shows the effects of poor amplifier and integrator 

response. As expected, poor high-frequency response In the summing 

f 

amplifier Introduces a fairly large error (as high as 0.63 volt) during 

the initial part of the solution, when the rate-of-change of is high. 

Interestingly, the effect of poor low-frequency response in the analog 

integrator is not great. The use of a one-second integrator time 

constant produced a maximum error of 0.07 volts, which is less than 

the overall design accuracy of the system. It appears from this 

test (and also from later results) that it is essential to maintain 

good high-frequency response in the system. However, good low-frequency 

response in the analog integrator is not essential, which suggests that 

a passive RC network could be used in place of the active one used in 

these experiments, if less analog accuracy is acceptable. 

Figure 4.6 shows the error resulting from a 10 micro-amp. 

offset current in the analog integrator. The dotted line is the 



theoretically calculated error curve that would result from the same 

offset in an analog integrator. Except for normal random variations 

in solution values due to other effects in the system, the experimental 

error curve is qualitatively the same and indicates a steady-state 

final value of 0.2 v, as predicted. 

4.4 UNDAMPED SINUSOID (Circle or Sine-Loop Test) 

4.4.1 NOMINAL MACHINE SOLUTION 

Two hybrid integrators and an inverter were used to study the 

simple undamped second-order differential equation; 

• * 

X => -2500.X 

with solution 

X = X(0) cos 50 t + X(0) sin 50 t 

Stated in terms of computing intervals: 

- X 
' x - 256 ~ 

with solution 

X - X(0) cos 1/16 k + X(0) sin 1/16 lc 

One Period = 100.26 computing intervals 

One Period =» 0.1253 sec. of machine time 

One Period = 0.1303 sec. of real tima (7.67 cps) 

Most of the experiments were done with either X(0) =» 60, X(0) = 0, 
« 

or X(0) » 0 ,  X(0) => 60; i . e . ,  X = 60 cos 50 t or 60 sin 50 t volts. 
50 
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Figure 4.3c shows that the maximum solution error was 0.13 v (0.17 

per cent of half-scale), but that the errors were typically much 

smaller. The average error over one cycle is 0.017 volt, with an 

rms error of 0.061 volt. 

The nominal solution exhibited a slight exponential build-up, 

which could be measured by observing the solution over several cycles. 

Figure 4.7 shows a plot of the extrema of the solution measured at 

the end of every half-cycle of the cosine waveform for nine full 

cycles. The amplitude of the waveform increased approximately 0.06 

volts/cycle. From the equations derived in Appendix F, it can be 

shown that a ~ 0.0075, or equivalently, a/w = 1.5 x 10~\ The 

zero-crossing time at the end of five complete cycles of the sine 

wave occurred at 502.53 computing intervals (theoretically 502.65 

intervals), indicating that the natural frequency was low by 

-4 
0.02 per cent (2 x 10 ). Thus the overall accuracy of location 

of the system poles in the complex plane was about 0.025 per cent. 

This is considerably better than was originally expected. Note that 

the effect of the error in system pole location causes the absolute 

error in the solution to increase with time, as is the case with 

analog and digital solutions of the same differential equation. 

4.4.2 COMPARISON TO STRAIGHT DIGITAL SOLUTION 

Removal of the sawtooth interpolation and the analog 

integration sections of the system yields a solution with a rapid 

exponential build-up, due to the truncation error in the resulting 



rectangular integration process. Figure 4.4c compares the digital 

solution to the full-hybrid solution; the amplitude of the oscillation 

increases approximately 20 volts/cycle. Also shown is the improvement 

provided by adding the analog integrator (still no sawtooth); in this 

case, the solution still grows about 3 volts/cycle. Adding the 

sawtooth interpolation without the analog integrator yields a worse 

solution, which builds up about 7.5 volts/cycle (not shown). 

4.4.3 EFFECTS OF ARTIFICIAL ERRORS (Root Perturbation) 

In this computing configuration, the effect of various 

artificially-introduced system errors can be readily studied by 

noting the Resultant displacement of the characteristio roots of 

the system (as indicated by changes in the natural frequency and 

exponential build-up of the solution). Using the equations of 

Appendix F, it is possible to estimate the error in root location 

by measuring the solution errors at the extrema and at the zero-

crossings. As a double check, the natural frequency errors were 

studied by two methods; viz„, measurement of solution error at the 

theoretical zero-crossing times and measuring the actual zero-

crossing times of the computer solution., Both methods gave almost 

identical results. 

The data in Table 4.3 resulted from tests made after five 

cycles of computation, where the accumulative errors due to root 

perturbations are sufficiently large to overcome any short-term 

random variations. The real part of the system roots were 
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measured by examining the build-up (or decay) of the amplitude of 

the solution, whereas the natural frequency of the solution was 

examined by the two methods listed above. 

Table 4.4 shows the sensitivity of the root location to 

changes in gain of the summing amplifier and analog integrator and 

changes in the sawtooth amplitude. Note that the natural frequency 

of the computing configuration is relatively insensitive to errors 

in the analog system. The system damping, on the other hand, is 

considerably more sensitive to analog errors. This suggests that 

the various analog errors tend to introduce an equivalent phase 

shift into the hybrid integrator, but do not appreciably affect 

the gain. This is further borne out by additional experiments 

which indicated that increases in the summing-amplifier or integrator 

gains or in the sawtooth amplitude all produced a build-up of the 

solution (positive 01), whereas, corresponding decreases produce 

a decay of the solution (negative a). Figure 4.8 shows the effect 

of + 10 per cent changes in the summing amplifier feedback resistor, 

and illustrates the effect of these changes on the exponential 

build-up or decay of the solution. 

The effect of DC offsets and drifts on the computer 

solution were again similar to those to be expected in a 

conventional analog system. One additional observation is that 

drifts in the analog integrators are not cancelled by the 

computing loop, as they would be in a pure analog system, so that 



they can cause an internal overload of the analog integrators during 

a long computing run. Increasing the factor K (Figure 2.4) would 

provide a means for preventing this effect, if required. 

4.5 EFFECT OF THE HOLD INTERVAL 

Thus far, nothing has been said about the effect of the 

duration of the HOLD interval on the accuracy of the computer. In 

addition to the normal HOLD interval, TJJ, of 50 microseconds, 

intervals of 125 and 250 microseconds were also used in several 

experiments. No noticeable effect on the computer performance was 

observed. Moreover, a smaller value of 25 microseconds caused 
7 

little effect, except a slight disturbance in the read-out system 

due to the fact that the switching transients resulting from the 

digital updating operations occasionally propagate into the 

beginning of succeeding analog computing intervals. Figure 4.9 

shows an expanded view of a typical waveform for XA, and illustrates 

the appearance of the holding and carry resetting operations, 

4.6 COMPARATOR ACCURACY 

Figures 4.2 and 4.9 show that the accuracy of the analog 

comparator is not critical. In fact, since most operational 

amplifiers will not overload until their nominal computing range 

is exceeded by perhaps 10 per cent, a comparator accuracy of + 1/2 

volts would suffice. 
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TABLE. 4.2 

EFFECT OF ARTIFICIAL ERRORS ON COMPUTER SOLUTION: A SUMMARY 
(See Also Figures 4.3 to 4.8 and Tables 4.3 and 4.4) 

Type of Problem Error 
Artificial Falling Body Decaying Sinusoid Remarks 

Error (Parabola) Exponential 

None 0.07 v max. 0.05 v max. 0.13 v max. Normal errors 
0.06 v RMS typically 0.1 v 

Straight 28.7 v error 3.3 v error Computer errors 
Digital at impact in final 20 v/cycle generally 

value build-up larger when 
analog integra­

Sawtooth, No tor is absent, 
Integrator 19.9 v 4.53 v 7.5 v/cycle than when 

sawtooth is 
Integrator, No Small Final, absent 
Sawtooth 7.3 v Large Ini­

tial Errors 3 v/cycle 

Analog. Gain o/o o/o 
Errors AO!/W Aw/w *• 

90 o/o 
Summing Amp. 0. 8 v max. 0.45 v max. 0.44 0.05 Sawtooth 

accuracy 
90 o/o generally less 

Integrator important than 
Gain 1 o7 v max. 0.16 v max. 0.30 0.065 amplifier and 

integrator 
90 o/o gain 

Sawtooth 0.6 v max. 0.17 v max. 0.30 0„ 03 

Poor High-
Freq. Resp. 0.79 v max. 0.34 v max. 0.07 0.02 Good High-

Frequency 
Finite Response 
Integrator more 
Time Const. 0.57 v max. 0.09 v max 0.01 0.055 important 



TABLE 4.3 

SOLUTION ERRORS CAUSED BY ERRORS IN ANALOG CHANNEL: 
SINE-WAVE PROBLEM 

Parameter Damping Effect Frequency Error^ 
Change Per Cent Ato/u>, Per Cent Remarks 

10 Per Cent 
Reduction in 
Summer Gain, 

one: 0.19 -0.01 Average 

both: 0.44 -0.05 

10 Per Cent 
Reduction in 
Int. Gain, 

one: 0.15 -0.007 Average 

both: 0.30 -0.065 

10 Per Cent 
Reduction in 
Sawtooth 0.30 -0„03 

DC Offset Negligible Negligible 

Slow Amplifiers 0.07 -.02 5° Phase 
Shift at 
60 cps 

Lossy 
Integrators, 
1 sec. T. C. 0.01 -0.055 
0.1 sec. T. C. 0.05 

^Frequency Error Measure Two Ways, Average Listed. 



TABLE 4.4 

ROOT SENSITIVITY TO ANALOG CHANNEL ERRORS: 
SINE-WAVE PROBLEM 

Parameter 
Change 

Damping 
Sensitivity^ 

Per Cent/Per Cent 

Frequency 
Sensitivity* 

Per Cent/Per Cent 

Summer Gain 

one: 

both: 

0. 019 

0.044 

-0.002 

-0.005 

Integrator Gain 

one: 0.015 -0.0007 

both: 07030 -0.0065 

Sawtooth 
Amplitude 0.03 -0.003 

Sensitivity Figures are given as a ratio of the per cent change in 
the root location to the per cent change in the nominal value of 
the parameter. 
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Figure 4.9 
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Chapter 5 

COMPARISON OF DIFFERENTIAL ANALYZER SYSTEMS 

5.1 INTRODUCTION 

The inherent differences among analog, digital and hybrid 

differential analyzers make them difficult to compare. This chapter 

presents an attempt at such a comparison in terms of a gross 

accuracy-bandwidth figure-of-merit based on a per cent of half-scale 

accuracy. 

Before going further, it is important to point out some of 

the other considerations in a fair comparison of different system©. 

It should be recognized that analog differential analyzers have 

limited accuracy, but can provide relatively rapid solutions without 

truncation errors. Digital and hybrid systems are potentially 

capable of much higher accuracy, normally at the price of speed and 

at present, complexity and cost. (Digital components will, however, 

become less and less expensive as integrated circuits develop.) 

Moreover, no generally applicable set of techniques for 

predicting differential analyzer errors are available. Useful 

estimates can be made for the class of linear problems, i.e., cases 

where the computer configuration contains only, integrators, summers 
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and coefficient changing elements, (and machine time is the 

independent variable of integration). With the realization that 

the following comparisons cannot be directly extended to the broader 

class of nonlinear problems, the gross characterization of the 

various systems does offer some insight into their relative 

capabilities. 

The accuracy-bandwidth figures are based upon the 

assumption that the total available range of machine variables is 

utilized, regardless of the type of computer system being discussed. 

The term "bandwidth," a® applied to the speed of computers is related 

to the maximum slewing rate, or rate-of-change of variables 

attainable by the computing system,. 

Consider a system with restrictions: 

\ X(t)| £ A; | dX(t)/dt] < R 

Let 
X(t) •=> A sin wt ® A sin 2it f t 

Then It 1 
JdX/dt I =» A wcos cot < Ato =• 2itAf 

We can thus think of a maximum full-scale frequency of operation 

^max 53 R/2?tA 

IdX/dtI 
" | 2*A | 

This frequency will be the upper limit of the bandwidth of operation 

for full-scale sinusoids. 



5.2 ANALOG DIFFERENTIAL ANALYZERS 

Assuming dc drift and offset errors can be neglected in 

high-speed analog computers with chopper-stabilized amplifiers,then 

the principal types of errors in linear computing elements can be 

classified as follows: 

a. Static errors due to errors in the .dc or static values 

of computing elements, imprecise settings of initial 

condition and coefficient potentiometers, noninfinite 

amplifier gain, and other factors affecting the static 

gain constants. 

b. Dynamic errors in computing elements; these include 

any linear frequency sensitive effects in the system. 

Principal sources in linear computations include: 

(1) Dissipation in integrator capacitors. 
f 

(2) Amplifier frequency response, which includes 

effects of stray capacity in patchboard 

Connections, etc., and which manifests itself 

principally as a phase shift error in both 

integrators and summing amplifiers. 

(3) Frequency-dependent terms in the transfer 

impedance of other computing elements, viz., 

resistors and potentiometers, which again 

produce phase shift and introduce extra poles 

and zeros into transfer functions of the 

computer elements. 
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c. Timing errors in the READ-OUT and RUN-HOLD systems, 

which prevent precise measurement of the value of a 

machine variable. In high-speed computation, the 

effect of read-out timing errors can be a limitation 

on useful accuracy. 

The effects of the static and dynamic error sources are 

twofold. First, they cause the characteristic roots of the 

computer system to differ from those of the system or differential 

equation being simulated (root perturbations). Secondly, they cause 

the creation of spurious® roots in the computer system, which make 

the form of the computer solution differ from the desired solution. 

These two types of error effect® are rather similar to the 

difference-equation-approximation truncation errors arising in 

DDA's. The effects of timing errors are, of course, equally as 

important, but in a sense, these errors are not internally generated 

by the operational computing elements, and cannot be related to the 

actual capabilities of the computing elements themselves. 

Figure 5.1 shows a typical estimate of the accuracy-

bandwidth capability of conventional analog equipment (see also 

Ref. 15 Chapter 4 and Ref. 17). To achieve the higher range of 

accuracies, precision components must be used in & controlled 

environment. The curve for repetitive analog systems is also 

shown, since estimates of ultimate hybrid system capabilities should 

be made assuming the analog elements are similar to those found in 



repetitive systems. The accuracies shown are grossly related to 

an absolute half-scale accuracy of the computer. 

Additional information about the performance of analog 

differential analyzers can be obtained by observing the attainable 

accuracy of location of the characteristic roots of a linear system. 

The sine loop (circle test) used in Chapter 4 has been used 

previously to study analog systems (Ref. 15). Obviously, the 

frequency accuracy of a sine loop will essentially depend upon 

the static accuracy of the computing resistors and capacitors, and 

will typically be from 0.1 to 1 per cent. The build-up or decay of 

the solution will depend upon numerous factors, and will vary with 

frequency. Figure 5.2 shows a typical range of damping character­

istics for analog computers. 

5.3 PDA CAPABILITIES 

Considerable work has been done on the analysis of errors 

1 
in digital differential analyzers. Various assumptions have been 

made which lead to somewhat different results. One point that is 

easily overlooked is that parallel-organized DDA's almost 

invariably use incremental data transfer. Moreover, the integrators 

must operate on "stale1" values of the machine variables. Conven­

tional DDA's usually use an open (extrapolative) trapezoidal 

'•For example, see Ref. 8, 9, 11-13, 20-22, and 25. Ref. 
13 is especially comprehensive. 



integration rule. Assuming this type of machine organization, an 

estimate of DDA capabilities can be made (in the case of linear 

computing configurations) which may be used for comparison of the 

DDA to other types of differential analyzers. 

5.3.1 PDA's WITH INCREMENTAL TRANSFER 

Most modern commercial DDA's use open trapezoidal 

integration and incremental' data transfer. The results of the 

analysis of truncation and round-off errors presented in Appendix 

E shows that in precise computations, the round-off errors will 

predominate in this type of system.^ Thus the accuracy-bandwidth 

capability of typical DB>A°s can be characterized by the expression 

- ERROR ^ 200IT TT o/o/cps; (Tt small) 
frequency *• * 

where Tj is the iteration time. Equivalently, DDA's of this type 

have a capability of computing approximately 1/Tj distinguishable 

2 
increments-per-second. 

Figure 5.1 shows the gross accuracy-bandwidth capability 

for a parallel-organized incremental DDA, using trapezoidal 

integration. The machine is assumed to have an iteration time of 

^This conclusion does not hold for general-purpose digital 
computers, where total transfer is used. Truncation errors may 
predominate when general-purpose machines are used as differential 
analyzers, depending upon the type of integration rule used (see 
Section 5.3.2). 

This simple result has been pointed out previously by 
ICorn (Ref. 17). 



Tj seconds. This figure illustrates how the performance ranges of 

analog and digital systems overlap, and also indicates roughly the 

regions where one or the other might be considered distinctly 

superior. Errors due to improper initial conditions and inaccurate 

read-out are overlooked in the above discussions of both the analog 

and digital systems, However, it is felt that the comparison of 

the gross capabilities of the two types of system is generally valid. 

5.3.2 TRUNCATION ERRORS IN TOTAL TRANSFER PDA's 

It is possible to use a general-purpose digital computer as 

a total or full-word transfer DDA, although one is usually forced to 

use serially-organized computation. i„ e., one where each integration 

is performed sequentially, so that the effective iteration time 

increases in proportion to the number of integrations involved. It 

would be possible to construct a parallel-organized total transfer 

DDA, but such a system with a large number of integrators becomes 

considerably more complicated than an incremental machine» In some 

cases, solution speed can be increased by using a variable-increment 

machine which provides a capability for increasing speed and 

decreasing accuracy as needed. 

Nevertheless, it is of interest to compare the capability of 

a total transfer DDA to the other types of differential analyzers 

thus far discussed. In such a system, it may be assumed that 

truncation errors would normally predominate, assuming a sufficient 

number of digital bits were used for variable representation. 



The analysis in Appendix E deals with DDA truncation errors 

in the case of linear computing configurations. The results apply 

to closed-loop configurations, without multiple characteristic roots 

it assumes no errors due to choice of starting formula„ From the 

analysis, one can predict the truncation errors in terms of the 

perturbation of the characteristic roots of the computer system. 

Table 5.1 shows the results for the two cases of rectangular and 

open trapezoidal integration (see also Ref. 21, 22, and 25). In 

general, the magnitude of the (fractional) error in root location 

o 2 
is (STj/2) for rectangular and (5S Tj/12) for trapezoidal 

integration. 

Figures 5.2 and 5.3 show the effect of truncation errors on 

the accuracy of location of the roots of a simple undamped sinusoid 

(harmonic oscillator). The effect will, of course, depend upon the 

iteration time Tj; typical curves are shown for Tj => 1.25 milli­

seconds, and 10 microseconds, (800, and 100,000 iterations-per-

second). The slow rate corresponds to the "iteration" rate of the 

hybrid system; the fast rate corresponds to a fast DDA, such as 

TRICE. 

It is re-emphasized that in a conventional general-purpose 

digital computer, the solution of differential equations must be 

carried out in a serial-organized fashion, so that in a problem 

involving n integrations, the iteration time will be at least n 

times the machine time required to perform the iteration or 

updating of one machine variable. For example, the implementation 
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of the trapezoidal integration rule shown in Table 5.1 requires a 

minimum of two shift and four add cycles per integration, per 

iteration. 

5.4 HYBRID DIFFERENTIAL ANALYZERS; THEORETICAL PERFORMANCE 

The hybrid differential analyzer can be fitted into the above 

analysis quite easily.*" Briefly, one can estimate the gross accuracy-

bandwidth capability of a hybrid system as follows: 

Given the analog computing interval T, estimate the full-scale 

bandwidth 

BANALOG ™ 1/4kT 

Pick the point on the estimated accuracy-bandwidth curve for the 

analog system corresponding to From this point draw a line 

downward along a slope corresponding to a constant accuracy-bandwidth 

product (45° slope in Figure 5.1). The length of the line depends 

upon the number of digital bits. If the system uses n bits plus 

sign, the line should correspond to a reduction in bandwidth and an 

increase in haIf-scale accuracy of 2n. 

In the actual hybrid system studied, only 1 per cent analog 

computing elements were used, and T was set at 1250 microseconds. 

This corresponds to a full-scale analog bandwidth, BANALOG (see 

Section 1-2-5), of about 64 cps, which is considered to be 

conservative, being considerably slower than the maximum speed of 

*This approach follows closely that of Korn, Ref. 17. 



fast repetitive analog systems of 1 per cent of half-scale accuracy. 

For a given T, the rate-scaling limitation precludes computation at 

higher speeds. In Figure 5.1, point Aj corresponds to a 1 per cent 

analog system, with T = 1250 microseconds. Point then shows the 

predicted accuracy of a four-bit hybrid system, which should be 

attainable at all computing frequencies below HYBRID a ^ANALOG^"* 

In this example, ^HYBRID a'30ut ® CPS> an^ the estimated error is 

correspondingly about 1/8 per cent of half-scale (0.125 volts for 

E - 10). 

As pointed out in Chapter 1, the analog HOLD intervals, TH> 

reduce the effective real-time hybrid computing speed by a factor 

T/(T + Th); in this case, this factor is approximately 0.96, so that 

the effective real-time value of BjjybrID about 7.67 cps. 

Point H2 on Figure 5.1 shows the estimated capability of a 

hybrid system using 9 bits (n =» 8) with a 50 microsecond computing 

interval and a 5 per cent-accurate analog channel. Such a system is 

technically" feasible using modern wide-band transistorized amplifiers, 

and would provide an estimated accuracy of better than 0.02 per cent 

of half-scale at a maximum of about 6.2 cps. Note that an 

equivalent incremental DDA would have to have to operate at a 

minimum iteration rate of about 300,000 per second. 

Areas Hi and H2 on Figures 5.2 and 5.3 show the accuracy of 

root location (simple undamped sinusoid solution) that can be 

expected with the two hybrid systems discussed above. 



TABLE 5.1 

ROOT PERTURBATION DUE TO TRUNCATION ERROR IN 
THE DIGITAL SOLUTION OF DIFFERENTIAL EQUATIONS 

Integration Rule Root Perturbation 

Rectangular; 

Xr*l ra"XnTI +Xn (1 + 8^/2) 

Trapezoidal: 

• e 

Xtn-1 " W3 Xn-Xn-i/2) d - 5/12 S2T|) 

Note: S is the desired unperturbed root location 

Tg is the iteration time; for purposes of comparison to the 
notation of Chapter 1? Tj ® T + T^; also Tj » At if GCt « 
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Chapter 6 

CONCLUSIONS; PROJECTED APPLICATIONS AND FUTURE STUDIES 

6.1 SUMMARY OF PERFORMANCE OF THE HYBRID SYSTEM 

The experimental results verify the theoretically predicted 

accuracy of the prototype hybrid system, and demonstrate the 

feasibility of this type of computing technique (at least for 

linear systems). It is felt that the results justify the concept 

that the accuracy of the hybrid system can be directly Improved by 

increasing the number of digital bits, as originally predicted. The 

experimental errors were consistent with the accuracy of the 

individual system components; no unexplainable deviations from the 

anticipated performance were observed. The system appears capable 

of maintaining an accuracy of 0.01 m.u., out of a half-scale range 

of 7.5 qi.u., so long as proper rate-scaling restrictions are 

observed. 

In linear computing configurations, it appears that the 

location of the system roots can be established with an accuracy 

of better than 0.1 per cent. The long-term accuracy of the 

integration process appears to be relatively insensitive to small 

errors in the analog system components. The digital portion of 

the system preserves the static gain of the integrators with 
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surprising precision, and the effect of errors in the analog 

elements normally appears as a phase shift rather than a gain 

error. The effects of random variations in the static values of 

the various computing elements (precision resistors and capacitors) 

thus would tend to cancel in a large system. 

Based on the parameter-Influence studies described in 

Chapter 4, some general conclusions about the different sections 

of the hybrid integrator are suggested; 

a. It is important that the summing amplifier gain be 

accurate; also, its bandwidth should be adequate to 

insure negligible phase shift at the maximum 

computing speed (e.g., less than one degree phase 

shift for sine waves of amplitude E and frequency 

BANALOG>• 

b. It is important that the gain and high-frequency 

response of the analog integrator also be accurate; 

however, the DC or low-frequency response is not 

critical. This suggests that a passive RC network 

using precision elements could be used in place of 

the active operational integrator, particularly for 

systems with a short analog computing interval and 

modest analog accuracy requirements. Note that this 

could save a complete d-c amplifier per integrator. 



The accuracy of the hybrid integrator is less 

sensitive to errors in the sawtooth interpolation 

channel than it is to errors in the summing amplifier 

and analog integrator. This suggests that a hybrid 

system utilizing a large number of digital bits 

(e.g., n >8) would still operate well with only 

5-6 bit D/A converters in the interpolation channel. 

On the other hand, the D/A converter for the R-

register should have sufficient precision to utilize 

the full accuracy of the analog channel (e.g., at 

least 7 bits for n > 4). 

Simple two- or three-transistor comparators could 

replace the seven-transistor units used in the 

prototype system. An accuracy of + 1/2 v at the 

maximum analog speed of the system (in this case, 

4000 v/sec.) would be adequate. 

Since the analog parts of the hybrid machine 

variables normally have an average value close to 

zero, long-term overloading of the analog 

integrators is not a serious problem, except in 

certain pathological problems. Integrator drift 

affects the computer solution in a manner quite 

similar to drift in analog systems but is divided 

by 2n-
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f. The use of a HOLD interval, T^, successfully 

eliminates the problem of accommodating the analog 

transients which accompany the digital operations. 

The HOLD period may be made an appreciable fraction 

of the RUN time, T, without noticeably affecting the 

solution accuracyo This permits using relatively 

slow serial digital arithmetic schemes. 

6.2 FUTURE AREAS OF DEVELOPMENT: PROJECTED CAPABILITIES 

This work has been primarily a feasibility study, with 

experimental verification of the basic operating characteristics 

of the hybrid integrator. The comparative error analysis 

presented in Chapter 5 and Appendix E allows one to estimate the 

effects of changes in the basic system parameters (n, T, and p) 

on speed and accuracy. 

On the basis of the experimental results thus far 

obtained, it appears that the development and testing of 

additional prototype summing, coefficient-setting, multiplying 

and function-generating elements would be useful in deriving 

further information about this type of system. 

In particular, the writer feels that a useful hybrid 

function generator, operating on a principle similar to that 

discussed in Section 3.5 and Appendix D, can be developed along 

with auxiliary analog-hybrid and hybrid/analog conversion 



equipment to permit the use of such a device with conventional 

analog computers. Considerable work in this area has already 

been done, notably by H. Schmid and others (Ref. 1, 4, 28, and 

30). Besides having a potentially high accuracy, a hybrid 

function generator can be designed so as .to be digitally 

programmed by a removable patchboard, punched cards, or tape. 

With hybrid techniques, it should be possible to construct an 

accurate resolver component producing R sin 9, R cos 9 with 

high bandwidth and accuracy (e.g., 0.01 to 0.05 per cent at 

10-100 cps) low drift and high repeatability. 

Through the use of high-speed transistorized operational 

amplifiers, the hybrid differential analyzer system described in 

this work could be given a substantially increased accuracy-

bandwidth capability. It would be feasible to operate with an 

analog computing interval of perhaps 100 microseconds. At this 

rate, timing errors would become more of a problem. Nevertheless, 

an accuracy of perhaps five per cent of half-scale could easily be 

maintained in this type of application. This would permit adding 

more digital bits, while maintaining reasonable computing speed. 

For example, with n 8, T =» 50 microseconds, TJJ » 5 microseconds, 

and a five per cent analog accuracy, it would be possible to 

achieve a hybrid computing accuracy of perhaps 0.02 per cent of 

half-scale, while retaining a real-time computing bandwidth of 

over five cps. Note that such a system would utilize even cruder 

analog components than the present system, particularly in the 
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multiplier and function generator. Moreover, it could be expected 

to maintain its accuracy without any periodic adjustment or 

calibration, and without careful environmental control. A 

parallel-organized incremental DDA using trapezoidal integration 

would have to operate at an interation rate of at least 300,000 

per second to achieve a similar accuracy and speed. Due to the 

absence of truncation and round-off errors, a hybrid system should 

retain this accuracy in computing configurations involving 

coordinate transformation, division, implicit function generation, 

and other nonlinear operations. The ensuring of a similar 

accuracy in DDA solutions involving these operations has proved 

to be no simple matter (Ref. 6, and 32). 

6.3 RELATIVE COST 

This point will only be touched on lightly, since the 

relative costs of modern computing systems depend considerably 

on the quantity produced. Certainly the cost of digital 

components will decrease with time, so as to narrow the gap 

between analog and digital system costs. The hybrid differential 

analyzer appears to lie somewhere between full-analog- and full-

digital systems in cost and complexity, probably closer to the 

DDA at present. A high-speed nine-bit hybrid system would 

probably have approximately the same commercial cost as a fast 

parallel DDA 6uch as TRICE or SPEDAC (Ref. 2, and 20). As of 

this writing, the parts for a hybrid integrator of this type 



would cost about $1,000., Including assembly cost and mark-up, a 

commerical version of a hybrid Integrator might sell for perhaps 

$3,000; which is comparable to commercial DDA's ($4,200 for 

TRICE). Thus cost would probably not be a major factor in 

selection of a hybrid system over a full-digital one; however, 

one would generally not select a hybrid system in cases where an 

analog system would suffice. 

6.4 APPLICATIONS 

Obviously, a hybrid differential analyzer is a special-

purpose computing system, and one may legitimately ask where 

useful applications for a hybrid system might arise. 

One specific area could be the solution of differential 

equations associated with the trajectories, orbits, and impact 

"footprints" of space vehicles. Such calculations usually 

require nonlinear operations, including division, coordinate 

transformations, and the use of nonlinear functions to represent 

effects of gravitational corrections, atmospheric drag, etc. " In 

many cases, a moderately accurate (0.Ol-O-05 per cent) computing 

system might be adequate, particularly if it had a computing 

speed much faster than real-time. Currently, computing 

installations for this type of work often include DDA°s with 

100 or more integrators, multipliers, and servos (Ref„ 23, and 

24), or else a large general-purpose digital computer, or both. 
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Quite often, these systems must be used with considerable 

programming skill to obtain fast computation (Ref. 6).*" 

The use of hybrid techniques might permit increased 

computing speed in such situations; more important, it should be 

considerably easier to program a hybrid machine to ensure a given 

degree of accuracy. 

6.5 CONCLUSIONS 

As a final conclusion, the results of this study confirm 

that the predicted capabilities of this type of hybrid differential 

analyzer system can be achieved in practice; and such a system can 

be used in applications where moderately high-accuracy real-time 

and faster-than-real-time computing is required. A more conclusive 

judgment of the practical advantages of this system can be made 

after the capabilities of hybrid multipliers and function generators 

have been studied. The outlook is encouraging at this point. 

^•Reference 6 cites an example of a lunar orbit calculation 
requiring the use of both a fast DDA (TRICE) and an IBM 7090 to 
obtain an answer accurate to 160 km (0.05 per cent of the earth-moon 
distance), and requiring 5 minutes computing time for one orbit. 



Appendix A 

DESCRIPTION OF DIGITAL SYSTEM, COMPONENTS, CODING 

A. 1 DIGITAL COMPONENTS 

The major portions of the digital systems were constructed 

using Computer Control Corp. 1 MC S-PAC modules. These use 0 and 

-6 v logic levels (-6 for logical "1"); signal rise and fall times 

are less than 0.1 microsecond. Most of the logical operations in the 

actual computing system were implemented using NANB gates and 

asynchronous AC pedestal-gated flip-flops. 

A.2 DIGITAL VARIABLE REPRESENTATION - CODING 

The proper choice of a digital code must, of course, depend 

upon careful consideration of all operations to be performed. In a 

typical differential analyzer, at least the following operations 

involving digital variables are required; 

a. Digital integration of one variable (summation and 

storage). 

b„ D/A and A/D conversion. 

c. Digital summation of several variables (without 

memory). 

d. Digital multiplication. 

e. Digital function generation. 

i, % 
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It is assumed that both positive and negative numbers must 

be accommodated.' In the present case, the digital variable will 

range from -7 to +7, and thus can be represented by 4 binary digits. 

Several codes could be used including: 

a. Simple signed magnitude. 

b. Complementary representation of negative numbers 

(one's or two's complement). 

c. Cyclic (Gray code). 

Other codes could, of course, be used but no others seem to have 

any particular advantages. 

The signed magnitude code, is perhaps easiest to use in 

driving read-out display equipment and also the simplest to work 

with for multiplication and function generation. It is also not the 

best code for easy D/A converson. The complemented codes are the 

best for summation and for digital integration: e.g., using the 

two's complement code and incremental data transfer, a digital 

integrator becomes basically an up-down counter. Using one's 

complement code, due to the dual representation of "zero", a slight 

amount of extra logic is required to handle + and - carries properly. 

Since integration, summation, and D/A conversion are 

anticipated to be the most common operations in a hybrid differen­

tial analyzer, the two's complement code was chosen for the standard 

digital number representation in the system (see Table A.l). 
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A.3 DIGITAL DATA TRANSMISSION 

In principle, it is possible to use either parallel or 

incremental (serial) transmission of the digital variables in the 

system. Scaling considerations will ensure that the change in a 

digital variable will never exceed one machine unit at the end of a 

particular computing interval. This makes incremental transmission 

attractive, since only two signals are required to transmit digital 

information between operational elements, AX and S (AX). ̂ 'Reversible 

counters (registers) are used for generation of each full digital 

variable Xp from its increments, AXQ. 

It should be pointed out that a full-word representation of 

each digital variable always exists in some register, even if 

incremental transfer is used. From an organizational viewpoint, the 

basic difference between an incremental and a parallel transmission 

system is in the assignment of the interface between various 

computing elements. For example, in the discussion of the hybrid 

integrator in Chapter 2 , it is shown that an input register is 

required to store the digital portion of the integrand, X^. In an 

incremental system, this register is physically located in the 
o 

integrator itself, but in a parallel system, the XD register would 

be located in the preceding computing element. 

*In this case, if incremental transfer is used, it must be 
of the ternary form (-1, 0, or + 1), rather than the binary form 
(-1 or + 1), which is sometimes used in DDA systems. 



In the present system, incremental transfer is used with the 

following code: 

AX = Existence of an Increment: Negative (assertion) pulse 

S(AX) = Sign of Increment: "1" (-6 v) for negative 

"0" (0 v) for positive 

A.4 THE DIGITAL INTEGRATOR SYSTEM (Incremental Transfer) 

The digital integrator system shown in Figure 2.3 uses 

standard Computer Control Corporation 1 MC S-PAC modules to perform 

the following operations: 

• • 

1. Accumulation of AXp increments in XQ register. 
« 

2. Digital addition of Xp/16 to RQ. 

3. Digital addition of carry (+ 1) to RD. 

4. Transmission of output increments + -AX to next unit. 

The system uses a two's complement to represent negative 

numbers, both in the Xp and in R-registers. In a two's complement 

system, no end-around carries or borrowing are required; this 

greatly simplifies the timing and logic requirements of the system. 

For n =» 3, the system requires 26 gates and 12 flip-flops (48 

transistors total). 

The sequence of operations is controlled by a series of seven 

timing pulses from the integrator subroutine clock and the RH (Run/ 

Hold) signal (Figure 25); the sequence is as follows: 

a. The positive-going transition of the RH signal at the 
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beginning of the analog holding interval causes the 

carry storage flip-flops (A and B) to be set in 

accordance with the states of the comparators at that 

time; that is: 

1. Flip-flop A is in the "1" or SET state if X^> 5 volts. 

2. Flip-flop B is in the "1" or SET state if XA. -5 volts. 

The auxiliary digital logic then produces the three carry-implementing 

signals C, S(AX); and S(C) as follows: 

1. C = (A + B). 

2. S(C) = A. 

3. S (AX) - A. 

The carry signal, C, is a "1" whenever there is a carry of either 

polarity. S(C) and S(£X) are logical complements. S(£X) is a 

logical "1" when a negative carry is to be transmitted to the next 

computing element; correspondingly, S(C) is a "0" to denote the 

concurrent addition of + 1 n.u. to the R-register. 

b. Clock pulses to T^ cause the addition of Xp to the 

four lower positions of the R-register. This is 
• 

accomplished by sequentially gating each bit of XQ 

into a parallel information drop-in input in the 

corresponding R-register flip-flop, and allowing 

carries to ripple through the register before the next 



bit is transferred. By using a 200 KC pulse rate with 

1 MC logic, more than adequate time for carry propagation 

o 

is assured. Note that if XD has a "1" in the sign-bit 

position, there still remains the need for adding a "1" 

to the upper two orders of the R-register; this operation 

is done simultaneously with the addition of the carry. 

Information is added to the upper two orders of the 

R-register by the action of pulse and Tg. The gates 

controlling this operation receive information about 

the sign of Xp and the sign and existence of a carry, 

and adjust the R-registet by the following rules: 

• • 

1. Add 11 if Xp is negative (XQ sign bit is "1") and 

no internal carry OR if X^ is positive and there is 

a negative internal carry (C = 1, S(C) =» 1). 

2. Add 01 if XJJ is positive, and the internal carry is 

+ 1 m.u. 

* • 

3. Add 00 if Xj) is positive and no carry OR if XQ is 

negative and there is an internal carry of + 1 m.u. 

(00 is 0 or 4, modulo 2). 

• 

4. Add 10 if XD is negative and there is an internal 

carry of -1 m.u. (10 is 6, modulo 2). 



Figure 2.3 shows the required logic elements to perform the 

necessary operations in accordance with these rules. The lines 

PQ and Pg must implement: 

P0 =' T5 <XsC + XSC) 

e 

Ps = T6 (AB + cxs) 

d. T7 transmits a AX pulse to the next computing element; 

the carry sign S(AX) is transmitted as a dc level. 

e. Digital input increments are added or subtracted in 

XD whenever they are received. This is accomplished 

by making the Xu register an up-down counter. The 

proper carry sign signal must occur at least 1 

microsecond before the AX pulse. This signal controls 

the gates on the XD register, making it either an up-

or a down-counter; the AX pulse is then correctly 

accumulated and stored for the next computer run. If 

the input increment comes from another integrator, it 

will occur at time Ty. It may also arrive later, if it 

comes from some other type of computing element. Input 

increments may actually be received from more than one 

source, if staggered timing is used. 

A.5 CHANGING SCALE FACTORS AND NUMBER OF BITS 

l/16th, 

The system discussed above has a digital scale factor of 

e 

i.e., R » 1/16 ZXd - (carries)*, The scale factor 
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cannot be made larger, but it can be made smaller by any desired 

power of two simply by adding more bits to the R-register, and 

introducing XD into the lower-order digits of R. The sign digit of 

Xd should be added into all higher-order locations of the R-register, 

the upper two digits of R being treated as in the above system, and 

any intermediate digits sequentially receiving a "l" if the sign of 
• 
XJJ is negative. For example, to cut the digital gain to 1/64, two 

more digits are required in the R-register^ and two more clock pulses 

are required. 

A hybrid system with additional digital bits could be 

implemented in the same manner. Beyond about 8-10 bits, it might 

be desirable to consider using some form of true parallel scheme to 

conserve time. The equivalent amount of logic equipment includes 

4n + 14 gates, n + 3 dual input flip-flops, and n + 3 single input 

flip-flops (8n + 22 transistors and 2On + 50 diodes). For example, 

a nine-bit (n » 8) system would require about 86 transistors and 

210 diodes. 



TABLE A.1 

FOUR-BIT TWO'S COMPLEMENT CODE (n • 3) 

Binary Number Variable Value 

0111 +7 

0110 +6 

0101 +5 

0100 +4 

0011 +3 

0010 +2 

0001 +1 

0000 0 

1111 -1 

1110 -2 

1101 . -3 , 

1100 -4 
i 

1011 -5 

1010 -6 

1001 -7 

1000 Unused 



Appendix B 

DESCRIPTION OF ANALOG SYSTEM COMPONENTS 
COMPARATORS, DIGITAL-ANALOG CONVERTERS. 

Figures 2.4 and B.l show the analog portion of the hybrid 

Integrator; It Includes two comparators and two D/A converters of 

the type discussed In Ref. 34 and 36. An all-transistor version 

would require about (2n + 30) transistors and 6 diodes. The 

symmetrical switch drivers are discussed in Ref. 35. The purpose 

of this Appendix is primarily to describe the basic operations 

performed in this section of the hybrid integrator in sufficient 

detail to permit a similar system to be designed using different 

available components/ where desired. 

The effective gain of the integrator is 50, i.e., 

t 

X - 50 f X dt + XQ 
o 

This gain constant is consistent with the gain of 1/16 in the 

digital section, and the analog computing interval of 1250 

microseconds. For a different gain, one should use the 

relationship 
2-(n+1) 

a BJ x 

This is the gain of a hybrid integrator using the highest digital 

scale factor for a given n. Note that for a given T, only discrete 

values of a are available. Other values would have to be obtained 

102 



103 

with a coefficient-multiplying component. T was chosen to be 1250 

microseconds in the experimental system in order to yield a gain of 

50, which agrees with the usual choice of operational gains as some 

decimal multiple of 1, 2, or 5. If, for example, T is made 1 

millisecond, then the integrator gain would have been 1000/16, a 

rather odd value for a computing element, although it could be used 

in a general computing system which contained coefficient-changing 

components. 

The gain through each signal path to the summing amplifier 

must be established to give this same gain constant. In particular, 

a. The total gain from the X^ input, through the analog 

integrator, to the output of the summing amplifier 

should be a; to prevent overload of the integrator 

itself, the gain from X^ to the integrator output may 

have to be made less than a; hence the factor K in 

Figure 2.4. In the present system, K => 1 was found 

to be satisfactory. 

b. The signal component due to the linear interpolation 

term aXD T is produced by a D/A converter driven by 

+ 10 v interpolating ramps, +Vj and -Vj. The gain 

through the X converter to the summing amplifier 

output must yield a component; 

+Vj (XJJ) o 1/2 volts; Vj in volts, Xp in m.u. 
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c. Similarly, the gain through the "R" converter must yield 

a component 

n+2 
10 Rg « 1/2 volts 

where RQ is the value of the R-register in m.u. Note 

that the most significant digit of the R-register is 

a sign digit, the next, a units digit, the rest are 

fractional digits. (This statement still holds true 

for systems with more digital bits.) 

D/A CONVERTERS (See Ref. 28) 

Figure B.l shows the two D/A converter networks, with an 

appropriate set of resistance values to achieve the required gains 

for a four-bit system. The complementary logic levels are directly 

obtained from the complementary outputs of the Xp- and R-register 

flip flops,where required. 

COMPARATORS (See Ref. 27) 

The comparators used to sense analog overflows are identical 

units, designed to have a threshold level of zero volts. The external 

voltage dividers provide accurate level translation of the output 

of the summing amplifier, so that comparator A senses when is 

greater than +5 volts, Comparator B senses when X^ is less than -5 

volts. The gate level controls on the flip-flops FFA and FFB are 

controlled by the comparator output signals,, so that, upon receipt 

of a positive-going transition in the RH signal, they are set to 



store the state of the comparators at the end of a computing interval. 

There is actually a timing error of about 1.5 microseconds in this 

interrogating process, which means that the overall error in the 

over-flow sensing operation might be as great as 6 mv, due to the 

timing error. However, the comparator itself is only accurate to 

about + 10 mv, so that the overall error is not appreciably affected. 

Note that the comparator accuracy does not actually have to be high, 

since the rate scaling limitations prevent the analog channel from 

going more than 1 m.u. in two computing intervals. Normally the 

analog channels can exceed 1 m.u. by 0.05 to 0,1 m.u. without 

overloading, so that this much error in the comparator systems can 

be tolerated. Thus, the comparator circuit used in this experiment 

could be replaced by a simple 2-3 transistor Schmitt trigger circuit. 

LINEAR COMPUTING ELEMENTS 

A + 10 volt analog signal range was selected,so that the 

majority of analog operations could be easily implemented with 

modern fast transistor operational amplifiers. The speed of the 

system was basically determined by an estimate of the maximum rate-

of-change of the analog variables which could successfully be 

accommodated by the analog computing components and an estimate of 

the timing accuracy of the clock and read-out systems. 

The use of conventional + 100 v operational amplifiers is 

less desirable for many reasons. The analog switching circuits 

required would be somewhat more complex, require much more power 
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consumption and, worst of all; would be slower than the corresponding 

solid-state circuitry suitable for use with transistorized analog 

systems. Moreover, since all-solid-state digital-logic modules are 

used throughout, the problem of providing level-matching circuitry 

between the analog and digital sections is greatly reduced by using 

low-voltage circuitry in both systems. 

It was estimated that the analog systems should be able to 

maintain 1 per cent of half-scale component accuracy if the variables 

have a maximum rate-of-change of 4000 v/sec. This corresponds to a 

full-scale sine wave frequency of about 63.3 cps, and was felt to be 

a conservative limit on computing speed using modern analog computing 

elements. 

The actual prototype system was constructed before suitable 

+ 10 volt transistor operational amplifiers were locally available. 

The operational amplifiers actually used were a standard Philbrick 

K2-XA/K2-P vacuum tube amplifier. This substitute was found to 

simulate a transistor operational amplifier adequately, and worked 

nicely with low-impedance computing networks. 

The computing networks were selected to be suitable for the 

speed and current capabilities of the amplifiers. Summing and 

feedback resistors can be in the range of lO-lOOK-ohms. Where 

required, 5,000 ohm coefficient potentiometers would be suitable, 

and integrating capacitors can range from 0.01 to 1 mfd. 
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Appendix C 

DERIVATION OF OPERATIONS REQUIRED IN 
A HYBRID SUMMING COMPONENT 

The hybrid summing component shown in Figure 3.1 performs 

the operation 

The digital inputs and outputs are the incremental quantities 

AXj), AYD* and AZQ. To express the required operations mathematically, 

Let XJJQ, and ZQQ be the initial values of the digital machine 

variables; note that ZJJQ actually appears in the input register of 

the next succeeding computing element. During a computer run, we 

want 

Z => ZD + ZA " ZjjQ + ZAZd + ZA 

or 

Zj)q + ZAZj) + Ẑ  

Let ZAZD a N = algebraic sum of all output carries 

Thus Zj) a ZDq + u 
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Then 

ZD + ZA " ZD0 + N + ZA - ZD0 + N + !/2 <XA + YA> 

+ £l/2 (XD0 + Ydo) - ZDQ - N + 1/2 (ZAXD + ZAYd)J 

Thus 

ZA - 1/2 (XA + Ya) +|^/2(Xdo + Ydo) - ZD0 - N + 1/2(ZAXd + 2AYD 

Also 

ZA - 1/2 <XA + YA) + R 

or 

R » (1/2 (XD0 + Ydq) - ZDQ) - N + 1/2 (ZAXd + 2AYD) 

From this it can be seen that the R-register must be a three-bit 

register, which receives the following information: 

a. The initial value 1/2 (XD0 + YD0 - ZD0), note that 

this number is either -1/2, 0, or + 1/2. 

b. N =» ZAZDJ the algebraic sum of all output carries; 

this sum is subtracted from the R-register, one m.u. 

at a time, as the computer run progresses. 

c. 1/2 (ZAXJJ + ZAYj)), the algebraic sum of all input 

increments; this number is accumulated in the 

R-register to keep account of the running sum of 

the digital input variables. 
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Note that the value of the R-register can take on only the 

value -1 1/2, -1, -1/2, 0, 1/2, or 1 1/2; this Is true regardless of 

the number of digital bits in a machine variable. Thus th'e same 

summing component may be used in a system with a different number of 

digital bits. Note also that the scale factor of the summing 

component can be divided by an integral power of two, without any 

significant change in the design, except the addition of more 

low-order digits in the R-register, and appropriate changes in the 

analog channel gain. 

Three input variables can be summed in a similar fashion; of 

course, the summer gain must be changed accordingly. If K variables 

are to be summed in this manner, the summer gain constant must be 

2 k, where k is an integer such that 2L K. 



Appendix D 

MULTIPLYING AND FUNCTION GENERATING WITH HYBRID 
COMPONENTS: ERRORS IN HYBRID FUNCTION GENERATORS 

D o1 HYBRID MULTIPLIERS 

A hybrid multiplier performs the operation 

_1 
Z - ZD + ZA - 2n (XD + XA) (YD + YA) 

D 2n 

Where 

n [ VJ + *DYA + VD + VA] 

ZD 13 ZD0 + 

Yd - Yd0 + 2AYD 

XD " XD0 + ̂ ^D 

Note that A(XdYd) - YJJAXD + XJJAYd + AXAY 

so that XdYd - XdoYdo + ZYJJAXD + ZXJJAYJJ - ZAXAY 

Letting N » ZAZD 

„ . ... . . XDOYDO , «1>*D a S^D S^XAY z = ZD0 + 2AZd + ZA - —— + — + 

xDYA + xAYD XAYA 

- ZD0 -» + 2„ + -̂ R + + > 
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Regrouping, we have 

XD0 YD0 + ̂ V^D + zxlAYD * ZAXAY 
Zqo + ZAZj) + ZA = ZDO + N + 

' ZD0 "N + 

2n 

¥A + VD + XAYA 

2 

Thus 

n 

ZA 33 R + 
X])YA + X, Y„ + X.Y. AD A A 

2n 

or the R-register must represent 

XD0 YD0 + 2YD^D + VD - .7 -N 
— **D0 

2n 

Again, as in the case of the hybrid summing component 

(Appendix C), the R-register performs three principal functions: 

a. Storage of the initial fraction 

XD0 YD0 
2n DO 

b. Accumulation of the incremental values of the product 

of the input digital variables 

l/2n YQAXQ + XJJAYQ - AXAY 

c. Accumulation of -ZAZQ, i.e., subtraction of the 

algebraic sum of all output increments. 



In this case, the R-register is an (n + 2) - digit register, 

with magnitude strictly less than 2 m.u. 

In the case where only coefficient changing is required, 

i.e., Y « C » CD+CA> fche organization of the system is the same, 

except that now, since AYD *» ACD 13 0, the R-register is simpler, 

since the incremental inputs are; 

1/2" 

and thus 

R = 
2n !do] 

- ZD0 + l/2n CDZXD - N 

D.2 HYBRID FUNCTION GENERATORS 

A hybrid function generator forms the function 

zD + zA - F(XD + xA) 

,2 
nxD) + | xA + 1/2 

XD XD 

XA 

+ ... + 1/k! Fk (XD) XAk +Rk(XD,XA); (Fk - ) 

i.e., a Taylor-serie6 approximation to the desired function^*. 

^his development assumes F(X) is an analytic function of 
the real variable X; |x[ < 2n. The approach could be extended to 
Include a discrete number of points of discontinuity in this range 
of X. 



Let 

ZD a ZD0 + 13 ZD0 + N 

Then 

ZD0 + N + ZA - ZD0 + N + J~FD(XD> - ZDQ - N + F'(XD) XA 

+ 1/2 F"(XD) XA2 + 

Thus, to Implement hybrid function generation with incremental 

digital transfer we let 

ZD " ZD0 + 53 ZD0 + N 

Then 

ZD0 + + ZA 53 ZD0 + N + F(Xd) - ZDQ - N 

+ F' (XD) XA + 1/2 F" (XD) XA2 + 

apd 

ZA = F(XD) - N - ZDo + F' XA + 1/2 F" XA2+ ... 

As in the case of the other hybrid computing elements, there are 

scaling restrictions on the function generator, viz.: 

F J _ 2n 

|dx/dt|, jdF/dt | < 1/2T 

Since 
dF/dt a (bF/dx.) (dx/dt) 
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Then dF/dx = F' S 1 insures the satisfaction of the output rate-

scaling limitation. 

Note also that each digital function F^(XJJ) must be generated 

with an accuracy consistent with the accuracy of the analog system. 

Let i^ be the number of bits required in the generation of F^(XJJ) ; 

let p be the accuracy of the analog system in per cent of one m.u. 

Then ik must be greater than the smaller of the two quantities: 

ln2 ( 100/p) or ln2 (100 max/p) 

Similarly, an analysis of the function must be made to 

determine how many terms are required to achieve an accuracy of 

approximation consistent with the rest of the computing system. 

Let k be the number of term required. If the absolute accuracy of 

the system is approximately p/100 m.u., k must be chosen to satisfy: 

Rk ^ p/100 m.u. 

but, assuming F(X) is analytic in X, then for some value of 

XA =XA'; 

Rk (k I D; Fk+1(XD)(XA')k+1; XD - 0, + 1, ... +(2n- 1) 

Since XA < 1 

Then Rk < —I— Fk+1(XD) < 
K — (k+1)! max 100 



116 

Or 

(k+1)! > 100/p (XD); XD - 0, +, + 1, .. -+(2n- 1) 

satisfies the requirement that be less than p/100 m.u. Conversely, 

for a given number of terms in the approximation, this inequality 

places weak bounds on the class of functions that can be accurately 

approximated, viz.: 

FW1 < sjOstll! 
max 100 

Example A: Y ° KX^ 

As an introductory example, consider the generation of the 

2 
function Y » F(X) =» KX . K must be chosen subject to the limitations 

/F / S 2n, j F'/ £ 1, | X | < These restrictions lead to the 

inequalities 

K < l/2n (|F| < 2n) 

K < 1/2 n+1 (|F •/ < 1) 

The latter inequality is obviously the stronger limitation, so that 

the function to be generated in a hybrid system with n bits plus 

sign would be 

„2 
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At the point X = Xp the function has the finite Taylor series 

expansion: 

XD2 XD —L 2 
Y 13 

2n+l + 2n XA + 2n+1 XA 

Thus the error involved in using a linear segment approximation to 

the function is bounded by 

For the case n «= 3, this error is 1/16 i.u. which is probably too 

high (unless the analog system accuracy is worse than 6 per cent). 

Thus for n a 3} the generation of Y = KX2 would require the use of 

parabolic interpolation (squaring of X^) for an accuracy consistent 

with the other computing elements. 

m 
Example B: Y = KX 

The same scaling restrictions again apply; here we have: 

|Yj = |KXm|< 2n; |x| <. 2n; |xD| < 2n-l 

<)Y - mKXm-1 < 1 

dX 

or 

K < 1 

"* m(2n)m-1 m2n(m~l) 

The truncation error to be expected from using analog interpolations 

of order 1, 2, „..k can be estimated from 

< •(-!) (m-k+1) y-k-l 2„ 
(k + 1)! m2n(In-1> D 
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or 

R, < m(m-l) ... (m-k+1) (2n ,^-k-l 

(k+1)! m2n(m~1) 

For n = 3, this becomes 

Rk H 
7m-k-l (m.u > t (m.k) 

8m"1(k+l)! 

Table D.l shows the truncation error to be expected from using a 

k-th-order approximation to KXm for the case n = 3, m =» 1, 2, 3, 

and 4. The above analysis can be easily extended to cover the case 

of a general polynomial of any order. For a given resolution, a 

hybrid function generator with more digital bits and less analog 

accuracy would be simpler, since fewer high-order analog interpola­

tion terms would have to be used. 

Example C: Y a A sin aX 

This example of a common transcendental function will be 

carried out for n => 3 bits. Thus, the scaling limitations lead 

to the following: 

Y| ° | F(x)| a J A sin ax| £ 23 - 8 A < 

f'| e IAa cos aX I < 1 Aa < 1 

8 

To permit coverage of two quadrants (-«/2 < aX< it/2), choose 

a = Then the maximum allowable value of A is 16/fl •» 5.1. 

For simplicity, one would probably pick A =« 5. Thus the function 
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to be generated would be Y = 5 sin (jrX/32)0 The k-th derivative 

of F(X) is thus bounded by 

\ J ^ 
lpk 53 r~k 5 sin JTX/32 < 5(*/16)k 
1 • I dx 

and the resulting truncation error resulting from a k-th-order 

approximation is 

k + 1 k + 1 
Rk < J__ < 5Q/16) -

(k + 1 ) 1  ~  (k + 1).° 

Table Do2 shows the accuracy to be expected from 1st, 2nd, 

and 3rd-order approximations to the function ( n = 3). It shows 

that if the analog accuracy of the hybrid system is 1 per cent of 

a machine unit, then a 2nd-order approximation is required to 

achieve a consistent degree of accuracy in the hybrid generation 

of Y = 5 sin (JIX/16)O 

The above examples indicate that for n «s 3, a hybrid 

function generator using combined linear and quadratic interpola­

tions will generate a relatively broad class of analytic functions 
i • 

with an accuracy of Od per cent of full-scale, or better. It 

should be emphasized that only a relatively crude quadratic 

interpolation would normally be required, utilizing a 2-3 bit 

precision in F^^(XJJ) and an analoe squaring circuit of perhaps 

5-10 per cent accuracy. 

Figure 1.1c illustrates the general organization of a 

hybrid function generator. The digital logic would be relatively 
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complex and would perform the following operations: 

a. Upon receipt of a AX Input pulse, and the DC level 

S(AX), the XB register would be updated. The 

existence of AX would be stored for future use (the 

polarity of AX would also be stored if for some 

reason it were not available throughout the entire 

digital operating cycle). ! 

b. A forward or backward difference AF(XQ, AX) would be 

added to the R-register, depending upon the existence 

and polarity of AX. Some form of parallel or serial 

coding logic would be required to generate AF(XJJ;AX). 

c. Additional coding logic would generate F'(XJJ) and 

F'' (XJJ) (and possibly higher-order derivative values) 

for use in the analog interpolation operations. 

d. Following the above digital operations, the 

comparator states would be interrogated, and if a 

carry were required a + 1 m„u. correction would be 

made to the R-register. 

To simplify the set-up of different functions, some type of 

removable plugboard patching system for programming the digital 

logic operations would be desirable. 
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TABLE D.l 

ACCURACY OF GENERATION OF FUNCTION 

Y - KXm (n - 3) 

m k Accuracy: Per Cent Accuracy;Per Cent 
of 1 m.u. of 16 m.u. 

1 6.7 0.418 

2 0 0 

1 10.9 0.68 

2 0.52 0.032 

3 0 0 

1 14.4 0.9 

2 1.37 0.086 

3 0.049 0.0031 

4 0 0 
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TABLE D.2 

ACCURACY OF GENERATION OF FUNCTION 

Y - F(X) - 5 sin (stX/16); n - 3 

Order of Accuracy'.Per Cent Accuracy:Per Cent 
Approximation of 1 m.u. of Full-Scale (16 m.u. 

k=l (linear) 9.6 0„6 

k=2 (quadratic) 0.63 0.039 

k=>3 (cubic) ' 0o 03'3 0.002 
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ANALYSIS OF ERRORS IN DIGITAL DIFFERENTIAL ANALYZERS 

E.1 TRUNCATION ERRORS: Z-TRANSFORM APPROACH 

A z-transform approach for estimating truncation errors in 

DDA's has been used by several investigators (see Ref. 7, 12, and 

21). It is Important to note that in closed loop computation, the 

integrators cannot use updated values of the input functions (see 

Ref. 25). At the same time, in order to keep the complexity of 

the logic systems in the DDA to a practical level, a relatively 

simple integration rule must be used. The above considerations 

usually make it necessary to restrict the choice of an integration 

rule to either the simple rectangular (Euler) rule or a two-point 

rule which hereafter will be referred to as the Open Trapezoidal 

rule. If xn and ^ are the values of the integrator output and 

input signals, respectively, at iteration times, t => nT, these 

rules may be written: 

x^l «• XJJ + T xn (Rectangular) 

xn+l a xn + T [j*/2 ~ 1/2 (Trapezoidal) 

^In this Appendix, T corresponds to Tj in Chapter 5, i.e., 
it is the DDA iteration time. 
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Using z-transform methods, the sampled-data transfer function 

corresponding to these integration rules are: 

Rectangular Trapezoidal 

X(z) Tz X(z) _ T 3z • 1 

X(z) (z"l) x(z) 2 z(z_1) 

where 

X(z) = z-transform of the function xn » x(t » nT) 

A oo T 
X(z) « Z z n xn; z <=> e8 

o 

The effect of truncation errors due to this sampled-data 

approximation to the desired integrator transfer function may be 

examined with a variety of techniques (see Ref. 10, 11, and 33). 

For the present discussion, a root perturbation method similar to 

that used by Nelson (Ref. 21) is chosen. 

The technique presented here can be applied to any n-th 

order time-invariant linear system representable by the differential 

equation 

^ + «n-l ^ + ••• *laf+«0 - «<t> 
dt dt 

Corresponding to the linear system there will be a 

characteristic equation 

ansn + an_i sn-1 + ... ajs + aQ ™ 0 
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with n roots, sjc; (k = 1, 2 ,  ... n) in the complex frequency 

plane (s-plane). 

If the sk are showft, it is then possible to find the 

location of the perturbed roots from the following procedure: 

a. Given the actual integrator transfer function, 

F^Cz), and the. roots of the desired system, sk, 

solve for the roots of the DDA difference equation, 

in the z-plane given by 

1/FT(Z) » SK 

b. Find the corresponding roots of the difference 

equation in the s-plane, ski from the relationship: 

ski " -i/T 1" zki 

c. The skl are the roots of the actual sampled data 

2 ; system. 

Comparison of the sk̂  to the sk will show how much effect the 

truncation errors have on the natural modes of response of the 

system, and will also show that, in general, spurious modes of 

response are generated. 

•'•This method fails if the system has multiple roots 
(repeated eigenvalues). 

O 
'Moreprecisely, the sk̂  are the roots lying in the infinite 

trip -n/T < Im -f sJ< jt/T, corresponding to the zk£. 
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E.l, 1 RECTANGULAR (EULER) INTEGRATION 

Assuming a DDA which uses integrators with the z-transform 

transfer function 

XIz) Tz 
Ft(Z) » ° = ~T 

X(Z) : 
21 1 

The effect of truncation errors on the characteristic roots 

of a linear system can be analyzed as follows: 

Let 8 be a root of the unperturbed system in question. 

Then l/F^Cz) <a s 

25 •• 1 c 
Or . •£-= 53 

Tz 

Then *(1 - sT) =1 

Or Z(T) - 1/1 - sT 

The Taylor series expansion of Z(T) yields 

z(T) - 1 + sT •+ (sT)2 + (sT)3 + ... (sT)n + ... 

Note that if there were no root perturbation, the Taylor 

series for z(T) would be 

z(T> = e -1 + ST + ̂  + ... +... 
L o n: 

It is then apparent that truncation errors arise from the 

fact that z(T) yf: e8̂  



E.1.1.1 ROOT PERTURBATION: RECTANGULAR INTEGRATION 

It can be shown that 
* 

lnX « (X-l) +  ̂(X-l)2 + I (X-l)3 - R (X-l)4 + ... 
I 3 4 

Substituting 

z(T) ~ 1 + sT + (sT)2 + (sT)3 + (sT)4 

in the above expression, we have 

In z(T) ~ ST + (ST)2/2 + (STJ/3 

Now let 8^(1) be the root in the s-domain corresponding to 

z(T); i.e., 

z(T) » e8!(T)T 

Or 

sx(T) - 1/T In (T) 

Then 

Or 

s j_(T) ~ s + (sT)2/2 + (sT)3/3 

S I(T) ̂ 6^1+ sT/2 + (ST)2/3) 

This last equation shows that the truncation error due to 

rectangular integration produces a shift in the system roots of 

order (sT). 



E.1.2 OPEN TRAPEZOIDAL INTEGRATION 

Assuming a DDA which uses integrators with the z-transform 

transfer function 

F,z) a ra 1 <3z-l) 
T< } X(z) 2 z(z-l) 

The effect of truncation errors on the characteristic roots 

of a linear system can be analyzed as follows: 

Let s be a root of the unperturbed system in question. 

Then 1/F^(z) =• s 

Or z(z-l) 2 a s 

3 z-1 T 

Then 

Or 

1 . z_ -(3 + 2/sT) z + 1 » 0 
T s 

z(T) = 3sT/4 + 1/2 + /9/16(sT)2 + sT/4 + 1/4 

It is already apparent that one effect of the difference-

equation approximation is the creation of two roots in the z-domain 

for each root of the original system. 

The Taylor series expansion of z(T) yields 

Major root: zA(T) ̂  1 + sT/2 + (sT)2/2 - (sT)3/4 - (sT)4/8 

Minor root: zB(T) ~ sT/2 - <sT)2/2 + (sT)3/4 + (sT)^/8 
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Note that if there were no ropt perturbation, we should find 

only one root in the z-domain, viz.: 

z(T) - e8T 1 + sT + (ST)2/2 + (sT)3/6 + (sT)4/24 

It is then apparent that the truncation errors arise for 

two reasons: . 

E.1.2.1 PERTURBATION OF THE PRINCIPAL ROOT: TRAPEZOIDAL INTEGRATION 

It can be shown that 

a. 

b. 

lnX (X-l) - J (X-l)2 + ~ (X-l)3 - £ (X-l)4 

Substituting 

Za(T) 21 1 + sT + (BT)2/2 - (ST)3/4 - (sT)4/8 

in the above expression, we have 

In zA(T) - sT - 5/12(sT)3 + l/4(sT)4 

Now let S2(T) be the root in the s-domain corresponding to z^(T); 

i.e., 

zA(T) = e82T 

Or 

s? - 1/T In zA(T) 
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Then 

S2(T)^S - 5/12 S3T2 + 1/4 s4T3+ ... 

S2(T) ̂  s (l - 5/12(sT)2 + l/4(sT)3) 

This last equation shows that the truncation error produces 

2 
a shift in the system roots of the order (sT) . 

E.1.3 AN EXAMPLE: THE SINE LOOP 

Consider now the simple sine-loop configuration of Figure 

2.1. If ideal integrators are used, the system has the character­

istic equation: 

E. 1. 3.1 RECTANGULAR INTEGRATION 

From the equation derived in Section E.1.1.1, the root 

perturbation caused by rectangular integration can be estimated: 

s2 + u)Q2 = 0; a^a2 =• u)q2 

with corresponding roots: 

S1 3 ± j «o 

(U0T)2 
sl(T)^± j u)0 (1 - ^ 3 + 
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It can be seen that the principal effect on the root location 

is a shift of the system roots into the right half of the s-plane. 

There is also a slight reduction in natural frequency. The 

expressions for the relative errors in the location of the system 

roots are listed in Table E.l. 

E.1.3.2 TRAPEZOIDAL INTEGRATION 

From the equation derived in Section E.l.2.1, the 

perturbation of the principal system roots can be estimated: 

s2(T) ̂  ± j u0 (1 + 5/12 (u>0T)2) + 1/4 u0V 

Here the principal effect on the root location is an 

Increase in the natural frequency. There is also a slight shift 

of the system roots into the right half of the s-plane. The 

expressions for the fractional errors in the location of the 

system roots are listed in Table F.l. 

E.1.4 COMPARISON OF THE TRUNCATION ERRORS: RECTANGULAR AND 
TRAPEZOIDAL INTEGRATION 

Figures 5.2 and 5.3 and Tables 5.1 and E.l summarize the 

effect of the truncation errors in these two integration rules. 

As expected, the truncation errors are greater for the rectangular 

rule. For the case of the undamped sinusoid, the frequency errors 

are about the same, however, the damping error is much higher for 

the rectangular case. Error estimates can be made for system roots 



located elsewhere in the s-plane by the same method. The effect 

of the root perturbations on the actual solution values may be «• 

examined by the use of sensitivity equations similar to those 

developed in Appendix F. 

E. 2 ROUND-OFF ERRORS 

Computing errors due to round-off are not easily estimated, 

but assuming that round-off produces a relatively incoherent 

quantization error with a uniform amplitude distribution, Widrow 

(Ref. 38) has used statistical techniques to show that the 

approximate RMS round-off error is Ax/\/l2 Cr'0.3 AX, where AX is 

the value of the digital quantization level. When the quantization 

interval is small, as would be the case in accurate computation, 

the maximum absolute value of the machine round-off error can be 

estimated to be approximately equal to AX (see also Ref. 9 and 25). 

For purposes of this discussion, a parallel-organized 

incremental PDA is assumed (this class of DDA's includes most 

modern special-purpose machines). In an incremental DDA, the 

maximum rate-of-change of machine variables is AX/Tj. Thus, for a 

full-scale sine wave 

X(t) <= A sin ujt 

dX/dt < A w 

If the round-off error is assumed to be approximately AX: 

round-off error 2? AX < AwTj 



Or 

AX/A > uTj = 2jtfTj 

Thus, for incremental machines, the round-off error (expressed as 

a per cent of half-scale) is 

eROUND-OFF ~~ ^ ° 2 OOitfTj per cent 

Since most modern commercial DDA's use open trapezoidal 

integration and incremental data transfer, it is reasonable to 

assume that in precise computations (Tj <<. 1/co) the round-off 

errors will predominate. Thus the accuracy-bandwidth capability of 

typical DDA's can be characterized by the expression 

—error ^ 2nTT 100 per cent; (Tt« 5/12U>) 
frequency A A 

Equivalently, DDA's of this type have a capability of computing 

approximately 1/Tj distinguishable increments-per-second. 

Figure 5.1 also shows the gross accuracy-bandwidth 

capability for a parallel-organized incremental DDA, using 

trapezoidal integration. 
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Table E.1 

FRACTIONAL ERRORS IN THE LOCATION OF 
THE CHARACTERISTIC ROOTS OF A SINE LOOP45 

Integration Rule A/<»>O> Per Cent AU>/U)Q> Per Cent 

.2 

Rectangular UqI/Z 
(UQT Y 

Trapezoidal 1/4 (WQT)3 +5/12 (UQT)2 

Perturbed solution is assumed to be of the form 

X(t) = A eat cos (wq + Aw)t 

with roots, s *» a + j(wQ + Aw) 



Appendix F 

ROOT PERTURBATION EFFECTS 

F.2 DECAYING EXPONENTIAL 

Consider the time function: 

X(t) - A e"at 

To estimate the effect of a perturbation in the parameter Ct on the 

value of the function X, we differentiate X with respect to CL; 

*x -at 
So = "At e 

At a particular time t = T, 

. -ATe_0T =» -TX(T) 
o C* 

Thus for a small perturbation, AP!, we find the error in the valife 

of X(T) is 

AX = -TX(T) Ml - -TAe_QTAa 

If we consider X as an error in the value of X(T), then we can find 

the time T when the error is greatest 

m . I" Ae"0̂  - AaTe"QT~] AC* 
dl L 

-X(T) [l - OCE Aa 
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Setting 

AX 
aT 

We find that for A f 0, AC* ^ 0 

T = 1/d =« one time constant. 

In words, the error in X(t) is most sensitive to an error 

in Of at t = one time constant. 

AX^ = -A/e (AO!/CI) 

In the decaying exponential problem discussed in Section 4.3, 

A a 60 volts, (X «=s 50: 

AO! 
AXmax = 22 — volts; at T = 1/50 sec 

or k = 16 rms 

or ^ => 0.045 AX 
01 

Thus, in this problem, it is difficult to detect small errors in 

0!, since a 0.45 per cent error in O. is required to cause only a 

0.1 volt error at t = one time constant. The actual error curves 

shown in Figures 4.3b and 4.5d, e, and f did not reveal any 

significant information that could lead to a conclusion that the 

solution errors were necessarily due to an error in a. 



F.2 SINE LOOP 

F.2.1 FREQUENCY ERRORS 

Consider the time function: 

X(t) = A e-0£t sin wt 

To estimate the effect of a perturbation in the parameter on the 

value of X, we again differentiate: 

= A f e03- cos wT + sin wT e°^l 
d W L —' 

This error in X has local extrema after N cycles, that is, at 

T => 2jtN/w; N = 0, 1, 2, ...; at these times 

AX - 2jiAN — 
to 

or 
All! • |̂X . 
(i) 2itAM 

Thus computer solution eirror due to an error in the natural 

frequency of the computer loop can be studied by observing the 

amount of solution error (in volts) which occurs after a solution 

time of N periods. After several cycles, this error will usually be 

large enough to permit detection of even small errors in w. Consider 

the problem of Section 4.4, where A = 60, u = 50, we have after five 

cycles (N = 5): 

— » —; AX measured after five cycles 
w 600n of compUting of X = 60 sin 50t 

(k ® 502.65) 



F.2.2 DAMPING ERRORS 

If the computer solution for the sine loop configuration has 

any exponential decay or growth, this will be most evident at the 

extreme of the solution. Consider the function 

X(t) =» A e"at cos tot 

By a similar analysis to that in Section F.2.1, one finds that after 

N cycles of a cosine function, the solution error is related to Q! by 

AX • 2 it AN -
w 

or 

g ° M 
u 2itAN 

Again, in the problem of Section 4 

— 7̂ - ; AX measured after five cycles of 
w computing X • 60 cos 50t 

( k m  5 0 2 . 6 5 )  



REFERENCES 

1. Bohiij E. V., "A PPM Analog Computer," IRE Trans. PGEC, Vol. EC-9, 
No. 1, Sept., 1960, 256 ff. 

2. Bradley, R. E , and Genna, J. F., Design of a 1 MC Iteration Rate 
PDA, Hazeltine Technical Development Center, Inc., Indianapolis, 
Indiana, circa, 1961. 

3. Brubaker, T. A., "Precision Analog Memory has Estended Frequency 
Response, " Electronics. Sept. 29, 1961, pp. 141-143. 

4. Connelly, M. E., "Real-Time Analog-Digital Computation," IRE 
Trans. PGEC. Vol. EC-11, Mo. 1, Feb., 1962, pp. 31-41. 

5. Fernandez, M., and Macomber, G., Inertial Guidance Engineering;, 
Englewood Cliffs, New Jersey: Prentice-Hall, 1962. 

6. Gibbons, J. P., Experiences With a DDA-GPDC Hybrid System. 
National Aviation and Space Agency, Huntsville, Alabama, 
March, 1962. 

7. Gilliland, M. C., "The Spectral Evaluation of Iterative 
Differential Analyzer Integration Techniques," Proc. West. 
Joint Computer Conference. Vol. 18, May, 1961, pp. 507-518. 

8. Gray, H. J., Jr., "Numerical Methods in Digital Real-Time Simula­
tion," Quar. of Appl. Math.. Vol. 12, No. 2, July, 1954, pp. 
133-140. 

9. Gschwind, H. W., "Digital Differential Analyzers," Electronic 
Computers. Edited by P. Von Handel, Englewood Cliffs, New 
Jersey: Prentice-Hall, 1961. 

10. Gurk, H. M., "The Use of Stability Charts in Synthesis of 
Numerical Quadrature Formulae," Quar. Appl. Math.. Vol. 13, 
No. 1, April, 1955, pp. 73-78. 

11. Hamming, R. W., Numerical Methods for Scientists and Engineers. 
New York: McGraw-Hill, 1962. 

12. Hills, F. B., A Study of Incremental Computation by Difference 
Equations. Electronic Systems Laboratory Report No. 7849-R-l, 
Cambridge, Massachusetts: Mass. Inst, of Technology, May, 
1958. 

13. Hills, F. B., "Characteristics and Limitations of Digital 
Computer Solutions to Differential Equations," Draft Ph.D. 
Thesis, Mass. Inst, of Technology, circa, 1959. 

139 



140 

14. ICoelle, H. H., Handbook of Astronautical Engineering. New York: 
McGraw-Hill, 1961. 

15. Korn, G. A., and Korn, T. H., Electronic Analog Computers. Draft 
3rd Edition, New York: McGraw-Hill, in preparation. 

16. Korn, G. A., "Exact Resign Equations for Operational Amplifiers 
with Four-Terminal Computing networks," IRE Trans. PGEC. 
Vol. EC-11, No„ 1, Feb., 1962, pp. 82-83. 

17. Korn, G. A., "The Impact of the Hybrid Analog-Digital Techniques 
on the Analog Computer Art," Prog, IRE. Vol. 50, No. 5, May, 
1962 Anniv. Issue, pp. 1077-1086. 

18. Maybach, R. L., 0°Grady, E. P., and Wait, J. V., "A Master Control 
Clock for a Hybrid Differential Analyzer," Dept. of Elec. Engr. 
ACL Memo No. 81, Univ. of Arizona, 1963. 

19. Meissinger, H. F., "Parameter Influence Coefficients and Weighting 
Functions Applied to Perturbation Analysis of Dynamic Systems," 
Proc. 3rd Int. Congress on Analog Computation, Opatija, 
Yugoslavia, Sept., 1961. 

20. Mitchell, J M., and Ruhman, S., "The Trice - A High Speed 
Incremental Computer," IRE Nat. Gonv. Record,, 1958, Pt. 4, 
pp 206-216. 

21. Nelson, D. J., "DDA Error Analysis Using Sampled Data Techniques," 
Proc. West. Joint Comp. Conf., 1961. 

22. Nelson, D. J., A Foundation for the Analysis of Analog-Oriented 
Combined Computer Systems„ Radioscience Laboratory Report 
TR 1002-1, SEL-62-069, Stamford, California, April, 1962. 

23. Packard Bell Electronics, "Impact Prediction by Means of 
Incremental Computing,"'Applications Note Prepared by 
Manufacturer Los Angeles, California, circa, 1961. 

24. Packard Bell Electronics, "An Impact Predictor for Ballistic 
Missies," Applications Note Prepared by Manufacturer, Los 
Angeles, California, circa, 1961. 

25. Palevsky, M., "The Digital Differential Analyzer," Computer 
Handbook. Edited by G. A. Korn and H. D. Huskey, New York; 
McGraw-Hill, 1961, Chapter 19. 

26. Peterson, G. R., "A Discussion of Differential Analyzer Arithmetic," 
Ph.D. Dissertation, Univ. of Arizona, 1961. 



141 

27. Schmid, H., A High-Accuracy Partial Analog to Digital Converter, 
Link Aviation Report DLR 557, Binghamton, New York, Aug., 1960. 

28. Schmid, H., High Accuracy, Single-Variable, Linear Segment Hybrid 
Function Generator, Link Aviation Report DLR 558, Binghamton, 
New York, Oct., 1960. 

29. Schmid, H., "Combined Analog-Digital Computing Elements," Proc. 
West. Joint. Comp. Conf.„ May, 1961. 

30. Schmid, H., "Linear-Segment Function Generator," IRE Trans. PGEC, 
Vol. EC-11, No. 5, Dec., 1962, pp 780-788. 

31. Skramstad, H. K., "A Combined Analog-Digital Differential 
Analyzer," Proc. East. Joint Comp. Conf., Dec., 1959, pp 94-
100. 

32. Truitt, T. D., Introduction .to PDA's, Technical Report, 
Princeton, New Jersey: Electronic Associates, Inc., undated. 

33. Vichnevetsky, R., A Spectral Method of Analyzing the Truncation 
Error in the Finite Difference Technique, Technical Report of 
the European Computation Centre, Brussels, Belgium: Electronic 
Associates, Inc., circa, 1961. 

34. Wait, J. V., and Mitchell, B. A., "A Simple Solid-State Digital-to-
• Analog Converter for Hybrid Computing Systems," Dept. of Elec. 

Engr., ACL Memo No. 61, Univ. of Arizona, Feb. 10, 1963. 

I 
35. Wait, J. V., "An Interpolation Waveform Generator for use in Hybrid 

Computing Systems," Dept. of Elec. Engr., ACL Memo No. 64, 
Univ. of Arizona, Feb. 11, 1963. 

36. Wait, J. V., and Hampton, R. L. T., "A Solid-State Analog Comparator 
for Hybrid Analog-Digital Computers," Dert. of Elec. Engr., ACL 
Memo No. 63, Univ. of Arizona, Jan. 20, 1963. 

37. Wait, J. V., "A Read-Out System for a Hybrid Differential Analyzer," 
Dept. of Elec. Engr., ACL Memo No. 80, Univ. of Arizona, May, 
1963. 

38. Widrow, B., "Statistical Analysis of Amplitude-Quantized Sampled-
Data Systems," AIEE Applications and Industry, Vol. 52, 
Jan., 1961, pp. 555-567. 

39. Brubaker, T. A., "The Design, Development and Applications of the 
ASTRAC Computer," ACL Memo No. 76, University of Arizona, 1963. 

40. Schmid, H., "A Hybrid Operational Computing System," Rough Draft 
of Master's Thesis, Syracuse University, 1963. 


