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ABSTRACT

This study treats time-invariant control systems, with
aperiodic and stationary random inputs, which are optimum in the
sense that they minimize the expectation of some cost function.

It is limited to the common case where the desired output is equal
to the input signal and where there is no crosscorrelation between
inputs. Wiener systems are the optimum linear systems for any
inputs and a squared error cost function. Pugachev has shown that
the optimum nonlinear system for wide-sense Gaussian inputs and an
arbitrary cost function is a Wiener system plus a bias constant,
which is zero if the criterion is an even function. The bias can
be easily determined. :

Wiener theory has three serious drawbacks: the mathematical
sophistication which limits its audience; the algebraic complexity
which limits its application to simple problems; and the difficulty
of obtaining the required data. This study presents a new approach
-which eliminates the first two drawbacks. It develops a technique
vhich yields a good approximation to the open-loop transfer function
of Wiener systems by inspection, by using physical insight for the
basic structural properties of optimum systems as shown om straight-
line Bode plots. The cases treated are: input signal and noise;
saturation constraints; load disturbances, and non-minimum-phase
fixed elements.

In the following, the terms signal and noise refer to their
normalized and spectrum factored energy or power spectral densities.
Normalized means that the signal and noise cross at magnitude equals
unity. Three new basic concepts are presented. When the signal is
greater than the noise, the optimum open-loop system looks like the
signal. - A signal which is being constrained — transmitted noise
when the noise is greater than the signal, or a signal under a
saturation constraint above the saturation break frequency — has a
minus one slope on a Bode plot. Any required breaks which are not
in the g1ven data are Butterworth.
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Chapter 1
INTRODUCTION

1.1 OPTIMM SYSTEMS

Twenty years ago w1ener23 developed the thecry of optimum.
linear time-invariant systems for arbitrary stationary random inputs
vhich minimize the mean of the square of the error. Various
extensions of this approach have been contributed by other authors.

These systems will be referred to as Wiener éystems°

In o virtuslly unknown but very important paper Pugachevl8

has shown that the optimum nonlinear system for stationary Gaussian
randon inputs, which minimizes the meen of an arbitrary function of
the error, 1s a Wiener system, plus perhaps a "blas"” constant, m,
t
N(r(t)) = / h(t =7 ) r(v) &7 +m
- 0 ‘
and that 1f the error criterion is even the bias constant 1is zero.

(See also Shermanlg)

The blas constant can be easily determined by solving for P

in the following expression,

o) fm c(e) exi) l:-—(e-:——s—ﬁ]de =0

28 2o



where C(e) is the arbitrary cost function, & 1s the mean, and o2
i1s the varlance of the error of the Wilener system. Then the bias

constant is m = 5' ~ B.

In summary, for Gaussian random inputs, a Wiener system is

the best possible under ANY conditions.

1.2 NON~-GAUSSIAN SIGNALS

The random inputs to control systems arevgenerally
approximately Gaussian. .However, it is natural to wonder Just how
ceritical the Gaussian assumption is. A heuristic answer to this
question can be obtaihed by'considerihg zero-mnemory systems; These
systems 1llustrate most of the principles which apply to infinite
memory systems, but are considerably easler to work with. Consider
the example of a signal and poise, each possessing a rectéhgular,
probability distribution. 4 comparison of the performance of'the
optimum linear system (forithe mean-square error criterion) and of
the optimum nonlinear system (for any even nondecfeasing erroy
criterion) ylelds the following result. The maximum performance
loss measured.in terms of RMS error, which 1s a function of the RMS
noise to RMS signal ratio, is only 3.92% and 1t is usually much less.
Th1§~indicates'that signals must be very non-Gaussian in order for
the optimum ﬁonlinear system to perform significantly better than the

optimum linear system.

Reference 24 presents a thorough investigation of performance



3
criterié for thé optimum time response of control systems to step,:
inputs. This report recommends ITAE (integrated time moment of
absolute error) for optimization using analog computers and ITES
(integrated time moment of error-squared) for analytical
investigations. The Wiener system for this case involves a narrow
.sense realizability constraint; therefore, it is the Butterworth
system rather than the IE2 system. The step responses of thesge
systems are shown on pages 48-49, 79, and 84 of that feport, and it
cah be seen that ITAE is only a little better than Butterworth and
ITE2. The transfer functions for these three criteria are shown on
page 51 of that report, and it can be seen that the Butterworth and
ITAE criteris yield very similar open-loop systems. The minimum
mean-square or integrasl-square error criterion,'which results in -
Butterworth systems in this case, yields systems which are optimum.
for their actusl inputs rather pﬁén optimum for an artificial step
input; therefore, 1t 1s a nmch more meaningful criterion. To
summarize, the appropriate criterlion for most control problems is the
minimum mean-square or integral-square error ériterién, and.this

yields Viener systems.
1.3 - SUMMARY

Wiener systems are the best possible time-invariant systems
in nearly all cases. However, Wiener's powerful theory has not been
the practical tool it should be because of two difficulties: 1its

mathematical sophistication which limits its audience, and its



algebralec complexity which effectively limits its application to
simple problems. The obJective of this thesis 1g to remove both

these difficuities.

This thesis develops a practical technique, which applies to
most control problems, for the deslgning by inspection of an excellent
approximation to the open-loop transfer function of optimum linear

time-invariant (Wiener) control systems.

The approach used consists of designing Wiener systems by
having insight for the baslc structural properties of optimum systems

and by‘visualizing or sketching straight line Bode plots.

There are four principic advantages to this technique. The
computation required is easier than that of Wiener theory by a factor
of from ten £o infinity, depending on vhether the broblem is trivial
or very complex. Unlike Wiener theory, 1t can be easily learned and
used by any BSEE control engineer, instead of by only a few
gpeclalists. It glves the designer a great deal of physical insight
for optimum systems. Unlike conventiogal theory, it ylelds the best
possible system and focuses the desigﬂers attention on the fundamental

aspects of the problem which yield ultimate performance limitations.

The dneldisadvantage of this technigque is one which 1s inherent
in Wiener theory. In practiéé, it 1s usually difficult to obtain
records of typical signals, and to process them to obtain their

spectral densities. However, it is reasonable to expect that the
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latter problem will be solved soon. Then, the only difficulty facing

. & desigpner who wants to design the best possible system is the first

problem.

Four new‘and important concepts are introduced in this thesis.

See Section 2.1 for an explanation of notation and Section 3.1.2 for

the statement of the problem. Concepts b. thru d. are excellent

spproximations, which represent basic structural properties of

optimum systems.

Be

Ce

for l8 > §

The design of optimum systems by inspection concept. This
requires the representation of factored power and enefgy

spectra, 8%, on straight line Bode plota.

The matched filter and amplitude normalizstion qoncept.
This states that the optimum open-loop transfer,function,
G, looks like the factored signal density spectrum, 8",
when the signal density spectrum 1is 1érgervthan~the nolse

density spectrum, and when the signal and nolse density

- spectra cross at magnitude equals one. That is

+ +

n’ G = ;:
wvhere ||; (J“%)l .= I Q;»(Jué)l = ]

The -1 constraint concept. This states that the factored

~ density spectra of signals which are to be constrained are

bounded by a -1 slope on a Bode plot. There are two



principle cases.

(1) The factored transmitted noise density spectrum

(2)

should be bounded by a -1 slope when the noise

density spectrum is larger fhan the signal density

, spectru_m. That is

+ + + ‘
for @, < in » slope we, = -1

The factored density spectrum of a signal which is

under a saturation constraint should be bounded by a

-1 slope such that the comstraint on its mean-square or

integral-square value is satisfied. That is

for w> l/p s 8lope 0;' S | ,

50 that  area 4] = J

d. The optimum Buttervorth breaks concept. This states that

any breaks (poles br zeros) in the optimum open-loop transfer

function, which are not in the given data should be Butterworth.

It should be remarked that Pugachev's work, and the fact that

Wiener systems A;e optimum in most situations are essentially new

concepts.

Derivations (Sections 3.2.3, 3.3.3, 3.4.3, and 3.5.3) are for

‘the specialist, and can be omitted without loss of continuity.



Chapter ©
BACKGROUND MATERIAL
2.1 NOTATION

2.1.1  BODE PLOTS

Filgure 2.1-1 Typiczl Bode Plot

Fiiure - 2.1-1 denotes the convention used for a straight line

Bode magnitudc plet. Axes arc not markéd. Horiroﬁtul axis is a;; in
radiens, at magnitude = 1. Vertical axis is magnitude at w = 1.
Scale is log-log, but the velues marked are the actual values.
Horizontal and vertical scales are a2lways eauel. -1, O, %l slopes
are obvious and thérefore, are not indicated. Al) other slopes are

indicated.



2.1.2 CONTROL SYSTEMS

Figure 2.1-2 shows the block dlzgram and symbols used in this

thesis.

L L .
i / _. ,__{ G £ N --_96, L5
. ; .

Figure 2.1-2 Basic Block Diagram

Lower-case letters usuelly denote time functions. Capital
letters usually represent Laplace transforms of time functions.

Signals

5 Input signeal

n Input noise

. d Load disturbance

i Input to setursting element

T System input

c System output

e System error



TransTer functions

W  Closed-loop

G Opcn-loqp, G = GCCf
Gf Fixed plant

GC Componéution network

H Feedback eclements (usuclly H = 1)

C

1

R = T+on - "
A 1-V (Note definition of V) (See p.94)
D 1l + G : '

Saturating element
+ L Lincar range of saturating element
J Allowable mean-square or integral-square value of

saturating signel “(usually J = (L/2)2 )

2.1.3  SCALE FACTORS

The two-gided laplace transformation is used in all

applicutions.

w [ad
u/ﬁ at o°° r(t)

-

L (#(t)se) + L (£(-t); =s)

Ly (£(2))

Therefore, the power spectrzl density used in thils work is 2rx  times
13 15

that used by Korn™~, Lee ), and Ncwtonl7, but iz the same as that used

1 22 5
by Aseltine™, Truxal ~, Chang”, and others.



2.1.4

2
< x

RMS

area

C1e

10

SPECTRAL DENGITIES

Power spectral densily of a random signsal. Energy spectral
density of an aperiodic signal. Subscripts are the same as
signals in Jection 2.1.2.

Superscript plus Qenotcs spectrum factorization. Q; conslsts
of the square root of the goin, and the LAP (left half-plene)
poles and zeros of Qxx' &; can be treated like a transfer
function on a Bode plot.

Denotes the addition of unfactored‘spectra.

+ +
?x <> Qy = Gxx * éyy

> Mean-square value of a random process x. Integral-square
' value of an aperiodic signal.

‘Denotes < x2 >

7

See Table 3.1-1 or Appéndix E.2 of Newtonl or Appendix D of

Changs.

Denotes the ares under wa'

N

(oS N
area 8 = < x2 > = I 1 \/\:f ds & (s)
x n = . XX
2n -§o

Subscript plus denotes the realizability operéticn. For

rational functions, make a partial fraction expansion and

retain only the terms with poles in the left helf-plane. DNote

) @) o=x, [x], + [x. = x



2.1.5 GENERLL

A Normalived complex fresuency, A = s/v. )

' . _ + et
w, Crossover freouency, G(J&é?l = ;, l@s (Jué)‘ = ]Qn (Ju%)l.
slope Refers to Bode plots. Slope ‘=" k denotes a 20k &b per decade
slope.
: k
CY( ) Order, Cy(A) = k 1f 1lim A = Cs ; slope as 8 = @
5=y w .
th .
B n order Butterworth polynomlal.

- NMP Non-minimum phase.
T NMP time constant.
1/p Saturatioﬁ break frequency.
E Approximation error, = e:i - eo where

C
O

e'i is the RMS error of the cystem designed by inspection.

e, 1s the RMS error of the Wiener cystem.

Unnccessary notation ic usually omitted: + signs on vlock
diagfams; the functionul dependence on time, (t), and on the Laplace
transform variable, (c); and labeling axes on Bode plots (See Section
2.¥.1). Although s 1s used fér both the input signal and for the
Laplace transform variable (e.g. O; (s)) no confusion cen result.

The [ and /\ used in the derivations are defined in Sections 5.4,

17

5.5, k.l and 7.3 of Newton's™ ' book. All other notation ic fairly

standard in control theory and is explained as it is used.



2.2 SPECTRAL DENSITIES

bhapterS‘lh and.ls (only 35 puges) of Aseltincl are
recommended as an excellent introduction to random signals, power
spectral density, and rclated toples. Chapter 7 (43 pages) of
'.I‘ruxalg2 is also goodl Because of the importance of these concepts

the following simpllfied explanatlon 1s includéd.

Optimum systems are completely determined by the specification
of thelr inputs and of their fixed elements. Therefore, a sultable
description of their inputs, which are either random or aperiodic
signa;s, is needed. Because the principle tool of the technique
presentéd is that of Bode plots, a descriptlon in the frequency domain

is reguired.

Random signals (Fig. 2.2-1) are slgnals whose future behavior
cannot be predigted exactly, but certain properties of their future
'Sehavior can be described in terms of probabllity theory. (All random
signais are gssumed to be stationary and ergodic, that 1s time and
ensemble averages are enqual.) The property which is needed to describe
this limited knowledge about a random signal 1s lts power spectrsal
density, Qx#' There are three different ngs of interpreting a power

spectral density.

(1) An experimentsl method for measuring a power spectral

‘density, &, is 1llustrated below.



AN x(t)

o A b oSN o o A
y va T VAN ;

Figure 2.2-1 Typlcal Random Process

.
SR | | —
| Y
FUAN NW/I\NVVt

¥ (s) =1 w(t) | 1| x(s) 8 () = 1
: . . ' 1-s

,Figure 2.2-2 Conceptual Model of Random Process

13



1k

x(t) 2 _(w))Aw

Fillter of bandwidth Square and
/\ wcentered at W “| average

The average power disslpated in a l-ohm resister by those frequency
components of a voltage x(t) lying in a band between wand w+ dw 1is

2 ’xx(w )Jdw . See Husgkey and Kornll, Chapter 5, Part 9 for detalls.

_(2), The average value of the product of a random function of
time with the same function displaced T sec 1s called the |
autocorrelation function.

: T
Rxx(r)=<x(t)x(t_+'r)>=11m ;_f_T at x(t) x(t +7)
T->w® 2T
This is "shift, multiply and average"”. The autocorrelation fumction
is qualitatively a measure of the regularity of a function. If the
value 7T sec from now isbclosely dependent upon the present value,
" R(7) will in genersl be large. The two-sided Laplace transform of
the autocorrelatlon function is defined to be the pover spectral

density.

(0. @]

!}xx(s) ==/; aT e 87 vax("f)

The mean-sqﬁare value of the random signsl 1s:

2 o0
<x“>=R-(0) =1 / dwd (w)
XX 2 Jew . X
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(3) The following pﬁysical model is very helpful 4n
visualizing a random signsl. Brilefly, a random signal can be regarded
as being obtained by passing a vhite noise thru an aﬁpropriate shaping
 filter. A good example of white noise, w(t), is a wave formed by
impulées, whose "area" &, is a random verieble with zero mecn end
finite variance, and which occur at the random incidence times ty

detcrmined by the state changes of a Polsson process with mean count

rate @. See Flgure 2.2-2.

wt) = ), ey Bl(b - )
K=}

2
Assume thaot the variance of a , E(ak),.equals 1/a. Then

R, (T) = 8(7)

White nolse has no correlation between samples and has a power
spectral density which is constant for all frequencies (analogy to
white light). The output, »(t), of the shaping filter with an

impulse response, y(t), to this white noise, w(t), is

[=o)

x(t) = Z ay y(t - tk) :

k=1
See Figure 2.2-2. This 1s called impulse noise, and 1t approximates
a Gaussian random process if many pulses overlap (many small impulses

very close together). The power spectral density is
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¢ . (s) =¥(s) ¥( -5 )

where V(s) 1is the transfer function of the shaping filter.
Therefore, a random signal with a power spectral density 'xx can be
regarded as being the output of a filter with the transfer function
¥(s) = Q; (¢) whose input is the white noise described above. See

13

Korn Section 18.11-5. For the special case where ) = 1, see Lee15

Chapter 8, Section 6, and Chapter 13, Scction 7.

A very ilmportant property of power spectral denslties 1s that

the output power spectral density is related to the input power

- spectral density and the system transfer function by

<>
—~
-
S
[}

= W(s) w(-s) &,,(e)"

<»
+
—
[0}
~—r
i

= w(s) 8] (2)

A very useful concept 1is that Q: can be treated like a transfer

function on & Bode plot.

For aperlodic signels the formal substitution in tle
mathematlcs of: aperilodic for random; energy for power (spectral

density); and integral for mean, i.e.

. . .
f at for 1im 1 f at
- T2 2T J-T

is valid for our purposes. Therefore, an aperiodic signal, y(t), has
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an energy spectral density, Oyy(s), vhich is related to its Laplace

transform, Y(s), by
Dyy(s) = Y(s) Y(-s)
2.3 BODE_PLOTS

It 1s assumed that the reader has had- an undergréduate
;ourse in control systems, and understands ﬂow to design with Bode
plots. éhapter 6 of Bower and Schultheissh (47 pages) is an |
excellent introduction of this technique. Becaﬁse straight line
Bode plots are the principle tool used in this work, the following

brief outline of basic points is presented. (See also Section 2.1.1)

For scale plots it 1s convenient to use linear graph paper,»
5 divisions to the inch, and to use a horizontal and vertical scale
of 1" = a factor of 10. The intermediate divisions represent
factors of 1.6, 2.5, 4.0, and 6.3. For greater accuracy use the~
D and L scale of a slide rule. 4 very basic snd important relation
vhich will be used frequently in the next chapter is shown in Figufe
: 2.3-1. A useful approximation for the closed-loop transfer function

is shown in Flgure 2.3-2.

The relationships between the Bode plot of an open-loop
transfer function G and conventional specifications on its closed-

loop behavior are shown in Figure 2.3-3 thru 2.3-5b. The relations
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25 < 'PM < 70

PM = 10 +800 = 70 -P0 o~ 60

[o]
N

3
.

\N

-
o }E
A
=3

(v}
=3

=3

(fictation is defined on Figures 2.3-4,5)

arc the author's. They ure good approximations, and they are much
-more con&cnient than conventionazl relations. Like conventional
rclations.thcy are strictly valid only for second order systems. See
Chapter 2 of WOklOVitChgh end Gibson 8"i‘or details. To briefly
sunmmarize: the low frequchcy asymmptote at w= 1 (in geﬁeral, the
larger the better) is inversély proportionsl to the steady st;té
error and determines its charactcr; the crossover freguency (in
géneral,'the larrer the‘bctter) is inversely proportional %6 the .
time deiay or speed of rcqunse; ané the wider the -1 siope band at
croscover (oﬁc decade 1s usually adequ@te) the better the transient

response.
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N

A 4+ k k

B Mw,) = Blw,)" .

B 4

} + —> ]

Figure 2.3-1 Basic Rglation on Bode Plots
G / :
We= G & G/u
1 +Gl 1/H + G,

1If ¢ /- W= 1/d

1If 6K 1/l WG

Figure 2.3-2

o

Approximation for W



(1) The steady state error is inversely proportional tbvthe "low

frequency asymptote at w= 1.

A
A r(t))/\/.c(t) v
R A =
c .
1+ K
, '\ p
) > N
t
A
r(t)
¥ o= oo _\\\‘ 1
2 : z
_ v
. +1
Lete)
> —>
~/ £
N
-2
MK, =K =oo
v D
g-A
\
\llK V\_»c(t)
a, ~ >
t .

Flgure 2.3-3 Bode Plots and Steady State Error
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(2) The speed of response is inverscly proportional to the

t
"erossover frequency uy

o, ~ M oo L o LS 2% < g 70°
1.5 T T - -
D R
A\ A
G | _wx
N\ DN
S

Figure 2.3-4 Bode Plots and Speed of Response
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(3) The transient behavior is given by the "width of the -1

band at crosaovef" which determines the phase margin.

Phase margin may be determined on a slide rule by:

(a) Conventionsl relations (Ref. &, pp. 83, 86)

PM = 180° + Z B zeros - Z B poles

1

8 = tan "‘é/""l for 1+ s/wl) terms

1y | 2
= tan QC(wc/wn) for [1+2l;§__ +§___2] terns

1 - (°’c/“’n)2 v

tan™t (-x) = x - tan™t x

(b) -1 Band Algorithm

Read directly on slide rule!
ne2 PM= tan™t & - tan™t 1/a

D=3 PM+90 =tan™" a - tan™ 1/a (binomial)
2 B

Example: PM = ’400, n=2
slide { T 65425
rule L .669 a = .33l decades

Figure 2.3-5a Bode Plots and Phase Margin



PO
100

PM & 10 + 800 =~ 70 - PO ~ 60 25° < ™ < 70°
M
P
A
Jw { = cos ©
% '
\ W= 1
2, 2
9‘/\\ o 1+2§s/wn+s/mn
> P
X
h ¢
, e(t)
¢ — — —
1 1 ‘ \\“/////f
C»r(t)
i
/
W

Figure 2.3-5b Phase Margin and Transient Behavior.
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Chapter 3

OPTIMUM CONTROL SYSTEMS BY INSPECTION

3.1 INTRODUCTION

3.1.1 BASIC POINTS

The purpose of this chapter is to develop a practical
technique, which applies to most control problems, to design an
excellent approximation to the open-loop transfer functlion of

optimum linear time-invariant (Wiener) control systems by inspection.

The basic assumptions are outlined below. The standard

assumptions of Wiener theory are used.

a. The control system is optimum in the sense of minimiiing
the mean-square or integral-square error. The systems

are linear and time-invarilant.

In addition the following assumptions, which are satisfied in most

control problems, are made.
b. The desired output is the input signal.

c. There is no crosscorrelation between inputs.

o
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The following "control problem" assumptions are necessary to avoid

meaningless solutions.

d. The RMS error is finite, and 1s less than one half the RMS

value of the signal.
e. OW) <cT(6) < -1
.for W “E ; Slope W 5 -1

The technique which is developed has the following

characteristics.

a. The solutions are obtained graphically by uéing straight
line Bode plots, either accurately plotted, roughly sketched
or merely visualized. This, together with insight for the
basic structural properties of optimum systems, replaces the
usual-dlgebraic manipulation . of w1ené} theory which becomes

virtually impossible in nontrivial problems.

b. The'input nolse problem is divided into three separate
‘; + + + +
problems by frequency ranges: GS >> ’n ’ QS = 'n and
9; << Q; . This division of the problem into three separate
problems by frequency ranges 1ls analogous to the conventional

technique for the design of Class A electronic amplifiers.

c. The various aspects of the problem are considered separately.

It is assumed that for control problems (assumption d) that
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there exists little interaction between the solutions for
input noise, saturation constraints, load disturbances, and

NMP (non-minimum phase) fixed elements.

The order in which the various aspects of the problem are

presented is based upon tutorial considerations. In practice the

order of importance is usually:

3.1.2

Given:

Saturation constraints (always present).
Load disturbances.

Input white noise.

Input colored noise.

NMP fixed elements.

STATEMENT OF THE PROBLEM

?

oss’ an’ dd

Several sets of Gf, 4L, and < 12 >< J

The block diagram of Figure 3.1-1.

Figure 3.1-1 Basic Block Diagram
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Find: Optimum Gc and H to minimize < e2 > with gll < 12 > < J.

Usually J = (L/2)°.

Most control problems can be transformed into this standard

form.

Except in Section 3.5, H = 1. No generéiityvis lost as the
conversion to’H'f 1 can easily be made. See Chapter 8 of Bower and

Schultheissh.

Ong problem constraining n signals is treated as n problems

each constraining one signal.

3.1.3 SIGNAL SPECTRA

The basic data required for inputs 1s the factored power or

energy density spectra, 9;. This can be obtained as follows.

If the input is an aperiodic signal then Q; is the Laplace
transform of x(t). If the input is a random combination of aperiodic
signals Xi(s), each with a probability of occurrence of Pi’ then the

energy spectral density is given by
b = )P X (s) Xy (=0)
and it is factored as shown below.

If the input is a random signal, then 0; is the Laplace

transform of the“autocorrelation function, Rxx(7’), for positive V.
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If the‘power spectrel density Gxx is given by another author,
carefully check bhasic definitions and convert to the system used
here. See Table 3.1-4. Then to obtain Q; from Qﬁx, factor as

shown below.

(a + 55)(& - bs) = ' Example
= a® - b2 I g = 1/(1+ s*), then.

2, 5 a=1, c=1, b2 - 2ac =0
(a +bs + cs“)(a - bs + cs8”) = + 2
= 8% - (b2 - 2ac)e® + 6" wd Ay = V@I

(a + bs + c52 + ds3)(a - bs + c52 - ds3)
d256

= &2 - (b2 - 2ac)s2 + (c2 - 2bd)sh -

The pattern 1s obvious. Thils convenient method of factoring is
- velid because the power density spectrum is symmetrical with both

axes.

Normalizetion is an extremely useful tool, and the control
engineer should bé proficlent in its use. Frequency normalivation
is explained in Sections 2.5 and 4.6 of Ngwtonl7, and the reader is
referred to that presentation for details. The use of A for the
complex varlable instead of s denotes frequency normalization.

' Amplitude normalization applies only inAdetermining the optimﬁm
system, and not in determining the error. The signal and noise
-gpectra are normalized so that the crossover freguency occurs at

amplitude equals unity.



W= ! st
. + -
(st + an) (st + l’nn) +
. | 5
1 ’ss/k .

= z 2 2 2= |
(st/k + gnﬂ./k )+ (’Bs/k + 'nn/k ) +
wbere k= |0 (3 w)| = |0, (0w)

The usefullness of this procedure will become apparent in Sections

3.2 and 3.3."

3.1.%  INTEGRAL TABLES

Mean~aquare or integral-square values must be calculated
analytically. A short table of integrals is given in Table 3.1-l.

17 or Appendix

For a more complete table see Appendix E.2 of Newton
D of Chang’.

< x2 > =1
n

Il and 12 are simple and easy to learm. I3 and Ih can be
used, but I for n > 5 is something to be avolded. The following

approximation technique can be used to reduce the order of_In.

" The mean-square or integral-square value of & signal 1s
the area under the density spectra, Qxx' This can be visualized by
. meking a straight line Bode plot of 0;. There are two important

points, when thinking about "spectrum area"”. First, a spectrum must



Given: I = 1 {OD asd  (s) 30
n “Uss

2n) joo
+ C. + C.8 + +c g8t
8, = 0O 1 ot n-1
n
do + dls + IR + dns_
Then:
o2
R
01
2 2
I, = 2 do + ¢o 45
2dd,d,
2 2 2.
13 . O dgdy #+ (eg® - 2¢4c,) dodq + ey ayd .
2d0d3( - dod3 + dldg)

‘Table 3.1-1 . A Short Table of Integrals.

' ) n-1
Given: e; = ot c,.1(8/0)
: Bn(s/b)
Then:
I = b 0
3
2 2
I, = b (ep” +¢,7)
2 /5-
2 2 2
L -2 2(cy” +¢,7) + (e - 2c4e5)
2
3
| 2 .2, 2 2
I, = b (1 +/2 )(cO +cg ) + (cl - 2coc2) + (c2 - 2clc3
5 .

2«/5 +/Z

Table 3.1-2 A Short Table of Integrals with a Butterworth Denominster.






