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ABSTRACT 

This study treats time-invariant control systems, with 
aperiodic and stationary random inputs, which are optimum in the 
sense that they minimize the expectation of some cost function. 
It is limited to the common case where the desired output is equal 
to the input signal and where there is no crosscorrelation between 
inputs'. Wiener systems are the optimum linear systems for any 
inputs and a squared error cost function. Pugachev has shown that 
the optimum nonlinear system for wide-sense Gaussian inputs and an 
arbitrary cost function is a Wiener system plus a bias constant, 
which is zero if the criterion is an even function. The bias can 
be easily determined. 

Wiener theory has three serious drawbacks: the mathematical 
sophistication which limits its audience; the algebraic complexity 
which limits its application to simple problems; and the difficulty 
of obtaining the required data. This study presents a new approach 
which eliminates the first two drawbacks. It develops a technique 
which yields a good approximation to the open-loop transfer function 
of Wiener systems by inspection, by using physical insight for the 
basic structural properties of optimum systems as shown on straight-
line Bode plots. The cases treated are: input signal and noise; 
saturation constraints; load disturbances; and non-rminimum-phase 
fixed elements. 

In the following, the terms signal and noise refer to their 
normalized and spectrum factored energy or power spectral densities. 
Normalized means that the signal and noise cross at magnitude equals 
unity. Three new basic concepts are presented. When the signal is 
greater than the noise, the optimum open-loop system looks like the 
signal. - A signal which is being constrained — transmitted noise 
when the noise is greater than the signal, or a signal under a 
saturation constraint above the saturation break frequency — has a 
minus one slope on a Bode plot. Any required breaks which are not 
in the given>data are Butterworth. 
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Chapter 1 

INTRODUCTION 

1.1 OPTIMUM SYSTEMS 

23 
Twenty years ago Wiener developed the theory of optimum 

linear time-invariant systems for -arbitrary stationary random inputs 

which minimize the mean of the square of the error. Various 

extensions of this approach have been contributed by other authors. 

These systems will be referred to as Wiener systems« 

l8 
In a virtually unknown but very important paper Pugachev 

has shown that the optimum nonlinear system for stationary Gaussian 

random inputs, which minimizes the mean of an arbitrary function of 

the error, is a Wiener system, plus perhaps a "bias" constant, m, 

t 
N(r(t)) = f h(t - T ) r(-Y ) dT + ro 

'-co 

and that if the error criterion is even the bias constant is zero. 

/ 19\ 
(See also Sherman ) 

The bias constant can be easily determined by solving for 0 

in the following expression, 

00 

*(3 ' 
d_ / C(e) exp 

\J — ( 

-(e - P)2 

2 cr2 
de = 0 

1 



where C(e) is the arbitrary cost function, is the mean, and cr2-

is the variance of the error of the Wiener system. Then the bias 

constant is m = - p. 

In summary, for Gaussian random inputs, a Wiener system is 

the best possible under ANY conditiono. 

i.2 NON-GAUSSIAN SIGNALS 

The random inputs to control systems are generally 

approximately Gaussian. -However, it is natural to wonder Just how 

critical the Gaussian assumption is. A heuristic answer to this 

question can be obtained by considering zero-memory systems. These 

systems illustrate most of the principles which apply to infinite 

memory systems, but are considerably easier to work with. Consider 

the example of a signal and noise, each possessing a rectangular, 

probability distribution. A comparison of the performance of the 

optimum linear system (for the mean-square error criterion) and of 

the optimum nonlinear system (for any even nondecreasing error 

criterion) yields the following result. The maximum performance 

loss measured in terms of RMS error, which is a function of the RMS 

noise to RMS signal ratio, is only 3*92# and it is usually much less. 

This indicates that signals must be very non-Gaussian in order for 

the optimum nonlinear system to perform significantly better than the 

optimum linear system. 

Reference 2k presents a thorough investigation of performance 



criteria for the optimum time response of control systems to step 

inputs. This report recommends ITAE (integrated time moment of 

2 
absolute error) for optimization using analog computers and PTE 

(integrated time moment of error-squared) for analytical 

investigations. The Wiener system for this case involves a narrow 

3ense realizability constraint; therefore, it is the Butterworth 

2 
system rather than the IE system. The step responses of these 

systems are shown on pages U8-49, 79, and 8k of that report, and it 

can "be seen that ITAE is only a little better than Butterworth and 

2 
ITE . The transfer functions for these three criteria are shown on 

page 51 of that report, and it can be seen that the Butterworth and 

ITAE criteria yield very similar open-loop systems. The minimum 

mean-square or integral-square error criterion, which results in 

Butterworth systems in this case, yields systems which are optimum 

for their actual inputs rather than optimum for an artificial step 

input; therefore, it is a much more meaningful criterion. To 

summarize, the appropriate criterion for most control problems is the 

minimum mean-square or integral-square error criterion, and this 

yields Wiener systems. 

1.3 • SUMMARY 

Wiener systems are the best possible time-invariant systems 

in nearly all cases. However, Wiener's powerful theory has not been 

the practical tool it should be because of two difficulties: its 

mathematical sophistication which limits its audience, and its 



algebraic complexity which effectively limits its. application to 

simple problems. The objective of this thesis is to remove both 

these difficulties. 

This thesis develops a practical technique, which applies to 

most control problems, for the designing b̂ r inspection of an excellent 

approximation to the open-loop transfer function of optimum linear 

time-invariant (Wiener) control systems. 

The approach used consists of designing Wiener systems by 

having insight for the basic structural properties of optimum systems 

and by visualizing or sketching straight line Bode plots. 

There are four principle advantages to this technique. The 

computation required is easier than that of Wiener theory by a factor 

of from ten to infinity, depending on whether the problem is trivial 

or very complex. Unlike Wiener theory, it can be easily learned and 

used by any BSEE control engineer, instead of by only a few 

specialists. It gives the designer a great deal of physical insight 

for optimum systems. Unlike conventional theory, it yields the best 

possible system and focuses the designers attention on the fundamental 

aspects of the problem which yield ultimate performance limitations. 

The one disadvantage of this technique 1b one which is inherent 

in Wiener theory. In practice, it is usually difficult to obtain 

records of typical signals, and to process them to obtain their 

spectral densities. However, it is reasonable to expect that the 



latter problem will be solved soon. Then, the only difficulty facing 

a designer who wants to design the best possible system is the first 

problem. 

Four new and important concepts are introduced in this thesis 

See Section 2.1 for an explanation of notation and Section 3-1-2 for 

the statement of the problem. Concepts b. thru d. are excellent 

approximations, which represent basic structural properties of 

optimum systems. 

a. The design of optimum systems by inspection concept. This 

requires the representation of factored power and energy 

Bpectra, §*, on straight line Bode plots. 

b. The matched filter and amplitude normalization concept. 

This states that the optimum open-loop transfer function, 

G, looks like the factored signal density spectrum, #+, 

when the signal density spectrum is larger than the noise 

density spectrum, and when the signal and noise density 

spectra cross at magnitude equals one. That is 

for |+ > #+ , G « }+ 
s n- s 

where 
*s (jwc} I = I fin I " 1 

c. The -1 constraint concept. This states that the factored 

density spectra of signals which are to be constrained are 

bounded by a -1 slope on a Bode plot. There are two 



principle cases. 

(1) The factored transmitted noise density spectrum 

should be bounded by a -1 slope when the noise 

density spectrum is larger than the signal density 

spectrum. That is 

for 9+ < $+ , slope Wf+ = -1 
s n n 

(2) The factored density spectrum of a signal which is 

under a saturation constraint should be bounded by a 

-1 slope such that the constraint on its mean-square or 

integral-square value is satisfied. That is 

for w> l/p , slope » -1 

' ^ 

so that area = J 

d. The optimum Buttervorth breaks concept. This states that 

any breaks (poles Or zeros) in the optimum open-loop transfer 

function, which are not in the given data should be Buttervorth. 

It should be remarked that Pugachev's work, and the fact that 

Wiener systems are optimum in most situations are essentially new 

concepts. 

Derivations (Sections 3.2.3, 3.3.3, 3.4.3, and 3.5.3) are for 

the specialist, and can be omitted without loss of continuity. 



Chapter 2 

BACKGROUND MATERIAL 

2.1 NOTATION 

2.1.1 BODE PLOTS 

-p 

Figure 2.1-1 Typical Bode Plot 

Figure-2.1-1 denotes the convention used for a straight line 

Bode magnitude plot. Axes are not marked. Horizontal axis is <*)>, in 

radians, at magnitude = 1. Vertical axis is magnitude at to =1. 

Scale is log-log, but the values marked are the actual values. 

Horizontal and vertical scales are always eoual. -1, 0, +1 slopes 

are obvious and therefore, are not Indicated. All other slopes are 

indicated. . 

7 



2.1.2 CONTROL SYSTEMS 

Figure 2.1-2 showu the block diagram and symbols used in thi 

thesis. 

n ~ /i 

±L 
\/ 

-X> 

H 

<$-c e 

Figure 2.1-2 Basic Block Diagram 

Lower-case letters usually denote time functions. Capital 

letters usually represent Laplace transforms of time functions. 

Signals . 

s Input signal . 

n Input noise 

d Load disturbance 

i Input to saturating element 

r System input 

c System output 

e System error 



Transfer functions 

W Closed-loop 

G Open-loop, G = G^G^ 

G^ Fixed plant 

Gc Compensation network 

H Feedback elements (usually H = l) 

- = —-—- = w 
R 1 + GH 

^ PTT = 1 - V (Note definition of v) (See p.94) 
D J. + u 11 

Saturating element 

+ L Linear range of saturating element 

J Allowable mean-square or integral-square value of 

saturating signal "(usually J = (L/2) ) 

2.1.3 SCALE FACTORS 

The two-sided Ia.pla.co trans formation is used in all 

applications. 

dt eSt f(t) 
^ - CD 

- X. (f(t)j = ).+ iC(f(-t); -s) 

Therefore, the power spectral density used in this work is 2n time 

i r 17 
that used by Korn , Lee J, and Newton „ but is the same as that u 

1 22 5 
by Aceltine , Truxal , Chang , and others. 
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SPECTRAL DENSITIES 

Power spectral density of a random signal. Energy spectral 

density of an aperiodic signal. Subscripts are the same as 

signals in Section 2.1.2. 

Superscript plus denotes spectrum factorization. 4^ consists 

of the square root of the gain, and the LHP (left half-plane) 

-f 
poles and zeros of 5 .4 can be treated like a transfer 

XX X 

function on a Bode plot. 

Denotes the addition of unfactored spectra. 

4+ (+) 4+ 4 + 4 
x ^ y ^ xx yy 

Mean-square value of a random process x. Integral-square 

value of an aperiodic signal. 

Denotes -J< x^ > 

17 
See Table 3-1-1 or Appendix E.2 of Nevrton or Appendix D of 

5 Chang . 

Denotes the area under 4 
xx 

• + - 2 T 1 H°° ^ * t \ 
area 9 = < x > = I = 1 / ds J (s) 

x n oT? / • ** 2nj 

Subscript plus denotes the reallzability operation. For 

rational functions, make a partial fraction expansion and 

retain only the terms with poles in the left half-plane. Note 

(x)+  (x)~ = x ,  [x]+  + [x]_ = X 



- 11 

2.1.5 GENERAL 

X. Normalised complex frequency, X = s/v. 

10^ Crossover frequency, 
c ' ' s c 

(jto) = 1, • («jo>) = ML (jOJ ) 
n c 

slope Refers to Bode plotc. Glope = k denotes a 20k db per decade 

slope. 

& ( ) Order, = k if lim A - Cr,k; slope, as s oo 

ij —^ CO 

Bn n^*1 order Buttcrworth polynomial. 

•IMP Non-minimum phase. 

T NMP time constant. 

l/p Saturation break frequency. 

E Approximation error, = e - e where n x 7 o r\ 
O 
O 

e is the RMS error of the system designed by inspection.. 
8. 

eQ is the RMS error of the Wiener system. 

Unnecessary notation is usually omitted: + sighs on block 

diagrams; the functional dependence on time, (t), and on the Laplace 

transform variable, (c); and labeling axes on Bode plots (Gee Section 

2.1'.l). Although s is used for both the input signal and for the 

Laplace transform variable (e.g. (s)) no confusion can result. 

The P and A used in the derivations are defined in Sections 
17 5 - 5 #  and 7 - 3  of Newton's book. All other notation is fairly 

standard in control theory and is explained as it is used. 



2.2 SPECTRAL DENSITIES 

Chapters 14 and 15 (only 35 pages) of Aseltinc"*" are 

recommended as an excellent introduction to random signals, power 

spectral density, and related topics. Chapter 7 (^3 pages) of 

2? 
Truxal is also good. Because of the importance of these concepts 

the following simplified explanation is included. 

Optimum systems are completely determined by the specification 

of their inputs and of their fixed elements. Therefore, a suitable 

description of their inputs, which are either random or aperiodic 

signals, is needed. Because the principle tool of the technique 

presented is that of Bode plots, a description in the frequency domain 

is required. 

Random signals (Fig. 2.2-1) are signals whose future behavior 

cannot be predicted exactly, but certain properties of their future 

behavior can be described in terms of probability theory. (All random 

signals are assumed to be stationary and ergodic, that is time and 

ensemble averages are equal.) The property which is needed to describe 

this limited knowledge about a random signal is its power spectral 

density, $ . There are three different ways of interpreting a power 
XX 

spectral density. 

(1) An experimental method for measuring a power spectral 

density, i , is illustrated below. ' xx' 



t x(t) 

Figure 2.2-1 Typical Random Process 

k 

t 

/ 

k 

t 
* 

1 

1 ' 
* 1 t 

A x(t ) 

v(t) 1 x(t) 
1 + s 

Figure 2.2-2 Conceptual Model of Random Process 



lU 

Square and 
average 

Filter of bandwidth 
A centered' at u). 

a
n(»i)Ai» 

> 

The average power dissipated in a 1-ohm resister by those frequency 

components of a voltage x(t) lying in a band between u) and tu + dw is 

2 I)du» . See Huakey and Kom11, Chapter 5, Part 9 for details. 

(2) The average value of the product of a random function of 

time with the some function displaced f sec is called the 

autocorrelation function. 

r> T 

R ( T) = < x(t) x(t + T ) > = lim 1_ 
** T 2T 

dt x(t) x(t + T) 

This is "shift, multiply and average". The autocorrelation function 

is qualitatively a measure of the regularity of a function. If the 

value T sec from now is closely dependent upon the present value, 

B(Y) will in general be large. The two-sided Laplace transform of 

the autocorrelation function is defined to be the power spectral 

density. 

9 (s) = 
XX 

CO 

- oo 
dT e"8T R (r) 

XX 

The mean-square value of the random signal i3: 

oo 
< x > * R_(0) =1 I dw8 (a) ) 

AA a I XX 
2tt J - oo 



(3) The following physical model is very helpful in 

visualizing a random signal. Briefly, a random signal can be regarded 

as being obtained by passing a white noise thru an appropriate shaping 

filter. A good example of white noise, w(t), is a wave formed by 

impulses, whose "area" is a random variable with zero mean and 

finite variance, and which occur at the random incidence times t̂  

determined by the state changes of a Poisson process with mean count 

rate Ot. See Figure 2.2-2. 

co 

v(t) = \ ̂ ̂ 
k = i 

2 
Assume that the variance of â , E(â ), equals l/a. Then 

R™('T»- so-) 

•„>> -1 

White noise has no correlation between samples and has a power 

spectral density which is constant for all frequencies (analogy to 

white light). The output, x(t), of the shaping filter with an 

impulse response, y(t), to this white noise,' w(t), is 

CO 

x(t) = Y1 ak * V 
k « i 

See Figure 2.2-2. This is called impulse noise, and it approximates 

a Gaussian random process if many pulses overlap (many 6mall impulses 

very close together). The power spectral density is 



16 

Ws> = y(g) Y( "s ) 

where V(s) is the transfer function of the shaping filter. 

Therefore, a random signal with a power spectral density 9 can he 
xx 

regarded as being the output of a filter with the transfer function 

X(s) = 5* (r-) whose input is the white noise described above. See 

13 15 
Korn Section 18.11-5. For the special case where â  = 1, see Lee 

Chapter 8, Section 6, and Chapter 13> Scction 7. 

A. very important property of power spectral densities is that 

the output power spectral density is related to the input power 

spectral density and the system transfer function by 

®00(s) = W(s) W(-s) î Cs) 

*+Q (s) = W(s) #+ (s) 

A very useful concept is that can be treated like a transfer 

function on a Bode plot. 

For aperiodic signals the formal substitution in the 

mathematics of: aperiodic for random; energy for power (spectral 

density); and integral for mean, i.e. 

r dt for lim 1 T T dt 
V-cd T-J-ot 2T.. J - T 

is valid for our purposes. Therefore, an aperiodic signal, y(t), has 



17 

an energy spectral density, # (s), which is related to its Laplace 
yy 

transform, Y(s), by 

8 (s) = Y(s) Y(-s) 
J <J 

2.3 BODE PLOTS 

It is assumed that the reader has had an undergraduate 

course in control systems, and understands how to design with Bode 

plots. Chapter 6 of Bower and Schultheisŝ  (̂ 7 pages) is an 

excellent introduction of this technique. Because straight line 

Bode plots are the principle tool used in this work, the following 

brief outline of basic points is presented. (See also Section 2.1.1) 

For scale plots it is convenient to use linear graph paper, 

5 divisions to the inch, and to use a horizontal and vertical scale 

of l" = a factor of 10. The intermediate divisions represent 

factors of 1.6, 2.5, U.O, and 6.3. For greater accuracy use the 

D and L scale of a slide rule. A very basic and important relation 

which will be used frequently in the next chapter is shown in Figure 

- 2.3-1. A useful approximation for the closed-loop transfer function 

is shown in Figure 2.3-2. 

The relationships between the Bode plot of an open-loop 

transfer function G and conventional specifications on its closed-

loop behavior are shown in Figure 2.3-3 thru 2.3-5b. The relations 



18 

25° < PM < 70° 

PM ^ 10 + 80 C ^ 70 - P0 «J 60 
w p 

W ™ I ~ 111 
1-5. Td ~ Tn 

(dotation is defined on Figures 2«3-^>5) 

are the author's- They are tjood approximations,, and they are much 

more convenient than conventional relations. Like conventional 

relations they are strictly valid only for second order systems. See 

2k . 8  
Chapter 2 of Woklovitch and Gibson for details. To briefly 

summarize: the low frequency asymmptote at CO = 1 (in general, the 

larger the better) is inversely proportional to the steady state 

error and determines its charactcr; the crossover frequency (in 

general, the larger the better) is inversely proportional to the 

time delay or speed of response; and the wider the -1 slope band at 

crossover (one decade is usually adequate) the better the transient 

response. 



/N 

B -• 

*<0,/ . B(u,b)* 

H > 
CO Q 60, a b 

Figure 2.3-1 Bacic Pelation on Bode Plotr. 

'J 

•V  

w G/ l i  
1 + GU 1/H + G. 

If G » 1/11 HS 1/H 

If G «. 1/H W ̂  G 

Figure 2.3-2 Approximation for W 



(l) The steady state error is inversely proportional to the "low 

frequency asymptote at ui= !•" 

t 

+1 
- c(t) 

od 

c(t) 

Figure 2.3-3 Bode Plots and Steady State Error 



(2) The speed of response is 

"crossover frequency 

inversely proportional to the 

c(t) 

t 

Figure 2.3-^ Bode Plots and Speed of Response 
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(3) The transient behavior is given by i;he "width of the -1 

band at crossover" which determines, the phase margin. 

Phase margin may be determined on a slide rule by: 

(a) Conventional relations (Ref. 4, pp. 83, 86) 

PM = 180° + p zeros - P poles 

p = tan"*"'" to,/ufor (l + s/ŵ ) terms 

tan"1 2 £ (u)Jw n) for 

1  -  (w<Ju> n f  

tan"1 (-x) = jr - tan"1 x 

1 + 2 Tj S_ + 

tii 2 
n wn . 

terms 

(b) -1 Band Algorithm 

A 

% >r J1-

-r\ 
V 

Read directly on slide rule.' 

n • 2 PM •= tan"1 a - tan 1 l/a 

n " 3 PM + 90 = tan"1 a - tan"1 l/a (binomial) 

Example: PM 1*0 , n = 2 
slide f T 65125 1 
rule t L .669 J a » .331 decades 

Figure 2.3-5a. Bode Plots and Phase Margin 



FM 10 + 8O£ ~ 70 - PO - 60 25° < PM < 70 
M 

A 

© z 
Jta) 

cr 

-> 

5 = cos © 

w = 

1 + 2 £ s/w Q + B2/ a) n2 

PO 
100 

t 

J 

Figure 2.3-5t> Phase Margin and Transient Behavior 



Chapter 3 

OPTIMUM CONTROL SYSTEMS BY INSPECTION 

3.1 INTRODUCTION 

3.1.1 BASIC POINTS 

The purpose of this chapter is to develop a practical 

technique, which applies to most control problems, to design an 

excellent approximation to the open-loop transfer function of 

optimum linear time-invariant (Wiener) control systems by inspection. 

The basic assumptions are outlined below. The standard 

assumptions of Wiener theory are used. 

a. The control system is optimum in the sense of minimizing 

the mean-square or integral-square error. The systems 

are linear and time-invariant. 

In addition the following assumptions, which are satisfied in most 

control problems, are made. 

b. The desired output is the input signal. 

c. There is no crosscorrelation between inputs. 

2h 



25 

The following "control problem" assumptions are necessary to avoid 

meaningless solutions. 

d. The RMS error is finite, and is less than one half the RMS 

value of the signal. 

e. & ( v ) < C f ( G f )  <  -1 

for w> U) , slope W < -1 c = 

The technique which is developed has the following 

characteristics. 

a. The solutions are obtained graphically by using straight 

line Bode plotB, either accurately plotted, roughly sketched 

or merely visualized. This, together with insight for the 

basic structural properties of optimum systems, replaces the 

usual algebraic manipulation of Wiener theory which becomes 

virtually impossible in nontrivial problems. 

b. The input noise problem is divided into three separate 

+ + + + 
problems by frequency ranges: 9  » 9  , 9  ^  i  and 

s n s n 
•f "f 
®s <<: ̂ n " "̂ is division of the problem into three separate 

problems by frequency ranges is analogous to the conventional 

technique for the design of Class A electronic amplifiers. 

c. The various aspects of the problem are considered separately. 

It is assumed that for control problems (assumption d) that 
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there exists little interaction between the solutions for 

input noise, saturation constraints, load disturbances, and 

NMP (non-minimum phase) fixed elements. 

The order in which the various aspects of the problem are 

presented is based upon tutorial considerations. In practice the 

order of importance is usually: 

a. Saturation constraints (always present). 

b. Load disturbances. 

c. Input white noise. 

d. Input colored noise. 

e. NMP fixed elements. 

3.1.2 STATEMENT OF THE PROBLEM 

Given: 4 , t , • 
ss' nn' dd 

Several sets of Q̂ t +L, and < i > < J 

The block diagram of Figure 3*1-1. 

+L 

_ a 
G 
c 

i 
) s G 

c A 

H 

n 

Figure 3-1-1 Basic Block Diagram 
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2 2 

Find: Optimum Gc and H to minimize < e > with all < i > < J. 

Usually J = (L/2)2. 

Most control problems can be transformed into thiB standard 

form. 

Except in Section 3«5> H «=» 1. No generality is lost as the 

conversion to H / 1 can easily be made. See Chapter 8 of Bower and 

1| 
Schultheiss . 

One problem constraining n signals is treated as n problems 

each constraining one signal. 

3 .1 .3  SIGNAL SPECTRA 

The basic data required for inputs is the factored power or 

energy density spectra, S*. This can be obtained as follows. 

If the input is an aperiodic signal then is the Laplace 

transform of x(t). If the input is a random combination of aperiodic 

signals X̂ Cs), each with a probability of occurrence of P̂ , then the 

energy spectral density is given by 

'xx - T. pi V"1 X1("b) 

and it is factored as shown below. 

If the input is a random signal, then is the Laplace 

transform of the autocorrelation function, Rxx(7')> for positive T'. 
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If the power spectral density & is givien by another author, 
XX 

carefully check basic definitions and convert to the system used 

here. See Table Then to obtain from 9 , factor as —» V vv' 

shown below. 

x XX' 

(a + bs)(a - bs) 

2 ,2 2 = a - b s 

2* 2 
(a + bs + cs )(a - bs + cs ) 

2 / 2 0 * 2 2 U 
= a - (b - 2acjs + c s 

Example 

If $ = 1/(1 + 3*). then 
XX * 

2 a =» 1, c = 1, b - 2ac a 0 

. o 
and $ <* 1/(1 + J 2 s  + s ) 

2 *3 2  ̂
(a + bs + cs + ds )(a - bs + cs - ds ) = 

2 / 2 _ A 2 / 2 . li- 2 6 
= a - (b - 2ac)s + (c - 2bd)s -de 

The pattern is obvious. This convenient method of factoring is 

valid because the power density spectrum is symmetrical with both 

axes. 

Normalization is an extremely useful tool, and the control 

engineer should be proficient in its use. Frequency normali7ation 

17 
is explained in Sections 2.5 and U.6 of Newton , and the reader is 

referred to that presentation for details. The use of \ for the 

complex variable instead of s denotes frequency normalization. 

Amplitude normalization applies only in determining the optimum 

system, and not in determining the error. The signal and noise 

spectra are normalized so that the crossover frequency occurs at 

amplitude equals unity. 
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1 

9 /k2 
ss 

(•siA2 + «nn/k2)+ l/^2 + + 

where k' 
2 

WJ <%>| - Ks<H> 

The usefullness of this procedure will beccane apparent in Sections 

3-2 and 3»3« 

3.1.4 INTEGRAL TABLES 

Mean-square or integral-square values must be calculated 

analytically. A short table of integrals is given in Table 3.1-1. 

17 
For a more complete table see Appendix E.2 of Newton or Appendix 

D of Chang"*. 

2 < x > = I 
n 

1̂  and Ig are simple and easy to learn. and 1̂  can be 

used, but IQ for n > 5 is something to be avoided. The following 

approximation technique can be used to reduce the order of 1̂ . 

The mean-square or integral-square value of a signal is 

the area under the density spectra, 9 . This can be visualized by 
XX 

malting a straight line Bode plot of •*. There are two important 

pointst when thinking about "spectrum area". First, a spectrum must 



r aoo 
Given: I = 1 ds» (s) 30 

5iTT I ' ® ® <fir j vy _ j a> 

n-1 ,+ C-. + c, s + . . . + c .8 
3 = 0 1 n-1 
x 

~ . n 
drt + d. b + . . . + a s. 
0 1 n 

Then: 

ri 

2 
I, = C0 

2dodi 

Ig = °1 d0 + C0 d2 

2d0dld2 

I = c2 d0dl * ̂ C1 " 2c0cĝ  dQd3 * CQ dgd3 
3 ~~ 2d0d3( - d0d3+ d!d2̂  

Table 3*1-1 A Short Table of Integrals. 

ft X 
Given: «+ = c0 * ' ' ' + Cn-1UM " 

X " B (s/b) 

Then: 
2 

I. - b c0 
2 

L - b * 'I'' 

2 yr 

I, - b 2'°0 * c2 ' + 'C1 ' 2c0c2' 

5 3 

\ = b  ̂̂  ̂°Q2 * °3̂  * ̂ Cl2 " 2c0G2̂  + ̂ c22 " 2cIc3̂  

2 

Table 3*1-2 A Short Table of Integrals with a Butterworth Denominater. 
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be bounded by A/(l + s/v) for some A and v in order to have a 

2 
finite < x >. Second, for the spectra shown in Figure 3.1-2 the 

 ̂ 2 tt ti * 
area of § is A v times the area of ? . The spectrum area is 

x y 

concentrated towards the upper right. The second point leads to the 

useful approximation technique shown in Figure 3-1-3- Often $ has 

a Butterworth denominator. Then the expression for I can be 
n 

simplified as shown in Table 3*1-2. 

3-1.5 INTUITION 

Intuitively one recogni-es that for frequencies where the 

signal is much greater than the noise>.the optimum cloeed-loop 

transfer function should equal the desired transfer function which 

equals unity, i.e. for , W = 1 ; and that for frequencies 

+ + 
where the signal is much smaller than the noise, for $ « • , the 

s n 

optimum closed-loop transfer function, W, should attenuate the 

transmitted noise making its power finite. 

Because Butterworth polynomials provide the "optimum" 

maximally flat frequency response, it is not very surprising that 

they are also optimum, or almost optimum, for the crossover region 

breaks necessary to provide adequate phase margin. 

Consider the factored transmitted noise spectrum, W , and 

frequencies where the noise is much larger than the signal, 

If Ĉ (w S*) >0, then the transmitted noise power is.infinite* If 


