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ABSTRACT 

This study involves two phases: (a) the theoretical study 

of the penetration of a static electric field into a metal film; 

and (b) the construction of a spatial modulation reflectometer. 

An equation is derived for the interaction of a strong elec­

tric field with the free electrons in a metal film. The penetration 

depth reduces to the Thomas-Fermi screening length for films with a 

large number of free electrons. When the number of carriers in the 

film is near the number of fixed charges which cause the electric 

field, then it is shown that the field will penetrate into the film 

to a depth on the order of that probed by a light wave. The use of 

strong electric fields generated by the polarization of a ferroelectric 

ceramic substrate is considered for impressing an electric field on 

a metal film. 

A reflectometer utilizing the principles of spatial modulation 

and all-reflective optics was built and tested. It measures the dif­

ferential reflectance of the two halves of a sample film deposited on a 

ferroelectric substrate. By applying different static electric fields 

on each half of the film, it is possible to maintain equal free elec­

tron densities, but different field strengths, in the sample halves. 

This could lead to unambiguous detection of the band structure infor­

mation without the detection of the large free electron effects which 

are normally superimposed on such spectra. 

x 



xi 

No structure was observed in the electroreflectance spectrum 

of bismuth. The cause of this was likely due to the shielding of the 

electric field by the film which poled the ceramic. 

Suggestions for improvements to the apparatus are given, and 

directions for further work are proposed. 



CHAPTER 1 

INTRODUCTION 

The spectroscopy of non-interacting atoms and molecules has 

provided experimental information of extraordinary wealth and quality. 

When the quantum theory of atoms and molecules was devised, it was 

applied to assess numerous families of spectral lines, each classi­

fied with respect to shift, splitting, and state of polarization in 

magnetic and electric fields. This theory related spectroscopy and 

the electronic structure with dramatic success by interpreting emis­

sion and absorption of light as transitions of an electron between 

energy states of the system of which they were a part. 

Radiation incident on a solid induces similar transitions, 

and, in principle, proper interpretation of the optical spectra of 

solids should reveal characteristic parameters of their electronic 

structure. The interpretation of the static spectrum of solids is 

not so straightforward as that for atoms and molecules, however. 

Instead of being sharply localized on an energy scale as is the case 

for atoms and molecules, the initial and final states of an electronic 

transition in a solid are arranged in quasi-continuous energy bands 

extending throughout the three-dimensional Brillouin zone (BZ) in 

momentum space. Discontinuities in the energy profile of the density 

1 
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of these states in certain parts of the zone introduce characteristic 

features into the optical spectrum. However, the contributions of 

these transitions to the shape of the spectrum must be added to those 

produced by all other energetically possible and allowed transitions 

in other parts of the zone. These latter transitions have little 

intrinsic information about the band structure since the initial and 

the final states of the transition could be buried in the middle of 

some allowed band; in a static measurement, there is no way of dif­

ferentiating this pair of states from any other pair with a similar 

energy separation. The sum of all allowed transitions produces an op­

tical spectrum which lacks the contrast seen in the lines of atomic and 

molecular spectroscopy. 

The task, then, is to separate these contributions to the 

optical spectrum and to extract only those which supply data charac­

teristic of the band structure of the material. This is accomplished 

by the methods of modulation spectroscopy which utilize synchronous 

detection techniques to mask out the unwanted transitions; only band-

edge to band-edge transitions in certain parts of the BZ are thereby 

observed. A spectrum produced by this technique shows no response over 

large ranges of photon energy, and the structure that does appear has 

a spectral width much smaller than that which appears in the usual 

static reflectance spectrum. This is interpreted as meaning that the 

modulation which is applied to the sample affects only limited areas 

of the BZ. This structure can be associated with features of the BZ 
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known as critical points (CP), and this gives the information re­

quired by the theorist to perfect his theories and adjust his semi-

empirical computer calculations. 

A large amount of the credit for the rapid progress made in 

the study of the band structure of dielectrics and semiconductors in 

recent years is due to the analysis of the data obtained from modula­

tion spectroscopy, and, in particular, from the specific technique of 

electroreflectance (Seraphin, 1972a, 1972b). Electroreflectance (ER) 

spectroscopy has established itself as a powerful diagnostic tool in 

the exploration of the band structure of these materials. Unfortunate­

ly, electroreflectance has not been unambiguously applicable to the 

study of the metallic band structure because the method requires the 

penetration of an electric field into the material. For metals and 

good conductors this electric field is screened out by free electrons 

within one atomic layer of the surface. This thin layer of material 

cannot be expected to be representative of the metallic structure; 

therefore, to a great extent the results represent surface interfacial 

effects combined with the free carrier effects. 

Since ER has been instrumental in the rapid progress of the 

study of the band structure of dielectrics and semiconductors, and 

since the band structure of conductors should be qualitatively similar, 

a technique for the measurement of the ER spectra of metals should 

prove to be a very useful tool. In order for such a technique to suc­

ceed, it is necessary to devise a means whereby an electric field can 
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be made to penetrate significantly deeper into a metal; then the 

band structure information could be obtained from the ER spectrum. 

This study has therefore focused on developing a method and 

the equipment with which to observe the ER spectrum of metals. In 

particular, an equation which describes the penetration of an electric 

field into a metal film has been derived and solved numerically. Ex­

amination of the result leads to a sample configuration in which the 

free electron effects are eliminated. The band structure of a layer 

of material which interacts with the probing light is then influenced 

by the perturbing electric field without the complicating effects of 

the free electrons. The overlap of the field and the light profiles 

leads to an observable change in the reflectance of the affected film 

as compared to a film with a negligible field. A spectrometer was 

built which compares the reflectance of these two film halves in the 

manner of spatial modulation. We thereby try to observe unambiguous 

interband transition spectra. Finally, we discuss the problems en­

countered and suggest directions for future efforts. 

The importance of this work derives from the fact that very 

little data is available on the band structure of metals. Other types 

of studies, such as DeHaas-van Alphen techniques, probe the metallic 

band structure only in the vicinity of the Fermi level. Optical 

studies such as those discussed in this work offer an opportunity to 

probe to much deeper energies into the band structure. The superior 
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diagnostic capabilities of electroreflectance would thereby yield 

valuable information for the theorists and extend our knowledge of 

the band structure of metals and conductors. 



CHAPTER 2 

PRINCIPLES OF MODULATION SPECTROSCOPY 

In this chapter, we briefly review the band theory of solids 

as it applies to modulation spectroscopy. The connection between the 

experimentally observed reflectance spectrum and variation of the di­

electric constant (dielectric function) is examined. Reflectance and 

transmission spectroscopy are compared and it is found that modulated 

reflectance measurements are more easily obtained than modulated trans­

mission ones. Modulation of the reflectance is associated with the 

differential of the dielectric function and the latter is discussed 

in terms of critical points. Finally, electroreflectance spectroscopy, 

a particular technique of modulation spectroscopy, is explained in terms 

of the band structure. 

Insulators, Semiconductors, Semimetals, and Metals 

When 1023 atoms are brought together into a cube 1 cm on a 

side, it is a well-known fact that due to the Pauli principle the 

energy levels of the atoms are going to change. In effect the levels 

divide into quasicontinuous bands instead of producing sharp lines. 

These bands consist of allowed and forbidden regions on an energy scale. 

At 0 K, the electrons of the atoms completely fill these levels up to 

an energy called the Fermi level. At higher temperatures, some of the 

6 



electrons may occupy higher levels and vacate some lower lying ones. 

Whether they do or not depends on there being enough energy available 

to make an otherwise allowed transition energetically possible. 

The complete description of a band structure of a crystal 

requires a four dimensional space, where three of the axes are momen­

tum coordinates and the fourth represents energy. A projection of the 

surfaces in this space onto the energy axis gives rise to the common 

band structure diagram shown schematically in Fig. 2.1. There is no 

abscissa in this diagram; the regions on the energy scale have been 

spread out horizontally for ease of visualization. This figure also 

shows the various locations at which a Fermi level could be found in 

the band structure of different materials. There is only one Fermi 

level for a given crystal, of course. In the case marked (a) the 

Fermi level falls in a forbidden gap where the gap width is around 5 

electron volts (eV). Thermal energy added to the material cannot cause 

a transition across the gap since kT for room temperature is only of 

the order of 1/40 eV. The conduction of an electric current results 

from an excess of electrons with momentum in one direction over those 

in the opposite direction. In the case of level (a), all states in 

the lower band are filled so an imbalance in momentum cannot occur. 

The upper band has no electrons and cannot conduct without carriers. 

This material is therefore an insulator. A photon in the visible 

region of the spectrum has an energy on the order of 3 eV and it does 

not have enough energy to raise the electron to a higher band. Since 
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Fig. 2.1. Fermi Levels and the Band Structure at 0 K 
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the photon is not absorbed, the material is transparent in this 

spectral region. An example of such a material is diamond. 

Next, we consider case (b) where once again the Fermi level 

is in a gap, but this time the gap is narrower, say of the order of 

1 eV. Some electrons can be thermally excited into the upper level 

where they can change momentum states and give rise to an electric 

current. We can now state that the major difference between an insu­

lator and a semiconductor is that the width of the forbidden gap is 

smaller for a semiconductor so that some electrons have enough thermal 

energy to cross it and occupy states in the conduction band. 

Case (c) has the Fermi level in the middle of a band so that 

many electrons and many states are readily available and conduction 

can take place. In case (d) the Fermi level is within a band, but 

there are few electrons available to carry out the conduction process 

though many states are accessible. A similar but reversed situation 

is true with the level in (e) where there are many electrons available 

but few states are accessible. Materials with the Fermi level as in 

case (c) are considered to be metals while those with levels as in (d) 

and (e) are called semimetals. 

Interband transitions occur when an electron acquires or loses 

enough energy to cross an energy gap so that it ends up in a band dif­

ferent from the one it started out in. This is generally the type of 

transition in which we are interested in modulated spectroscopy. Un­

fortunately for band structure studies, interband transitions are 
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swamped by intraband transitions which are much more favorable 

energetically. Furthermore, since we are interested in studying 

materials which have states available for conduction, there will be 

conduction if an electric field is applied with a potential source 

such as a battery. We will deal with this problem later. 

Band Structure Analysis from Modulation Spectroscopy 

Before we discuss modulation spectroscopy (MS), we must first 

take a look in more detail at the elementary optical absorption process. 

The electromagnetic field of the incident light wave stimulates the 

transition of an electron from an initial state with energy E^ and 

wave vector k into a final state of energy E^ and wave vector k1. 

The interaction between the electrons and the electromagnetic field 

of frequency to and polarization e is described as a time-dependent 

perturbation to the Hamiltonian of the system. The number of transi­

tions between initial and final states per unit time and volume is given 

by 

^ - / |e-fi.£|2 6(Ef - E. - -fiaO dt, (2.1) 

where is the matrix element of the momentum operator. The dot 

product e'M^£ is given with respect to the wave functions of the 

initial and the final states: 

e*^if = J (£'» r)e«Vi|K (1c, r) dr. 
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The probability of finding the electron in the excited state is 

proportional to the square of the matrix element of the perturbation. 

The delta function in Eq. (2.1) makes the absorption process 

a probe for energy differences in the band structure. It stipulates 

that no transitions can occur unless the photon energy matches the 

energy difference between the initial and the final states. We have 

made the implicit assumption that and E^. are not changed by the 

transition. This is the so-called one-electron approximation and it 

holds well in covalently bound materials with high mobility of the 

carriers, and wave functions that spread through correspondingly large 

regions of the crystal. 

The matrix element offers a similar diagnostic potential with 

—y 
respect to the momentum vector k. Transitions between states in the BZ 

are classified into two groups. "Direct" transitions involve no change 

in momentum thereby connecting states located vertically above each 

other in the conventional (E,k) diagram. Transitions classed as 

"indirect" involve a change in momentum; the initial and final states 

of such a process can lie anywhere in the BZ. The momentum of an op­

tical photon (k = 2ir/A-4TTxl06m"1) is small on the scale of the 

BZ (k = 2ir/lattice constant~5irxl0®m-1) and is usually ignored. 

Such a photon cannot induce an indirect transition without the emis­

sion or the absorption of a phonon. This type of transition is ex­

pected to have a much lower probability of occurrence than a direct 

transition. This probability is given by the matrix element in Eq. 

( 2 . 1 ) .  
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This concept relates simply the optical absorption process 

to the band structure in a straightforward manner. The analysis can 

rely on a simple counting throughout the BZ of states that meet the 

requirements of energy and momentum conservation. The density-of-

states function obtained by this counting process for all of the 

energies of the spectral range then establishes a significant band 

structure parameter which correlates to the macroscopic quantity £2, 

the imaginary part of the complex dielectric constant e. On the basis 

of the assumptions described above, an experimentally determined 

spectrum can then be expected to provide a replica of the energy pro­

file of the joint density-of-states function (JDS) in the band structure. 

The correlation between e2 and band structure parameters is 

established by assuming that absorption is the sum of the transitions 

between electronic states of the same k vector and separated by the 

energy difference E^ - E^ = AE: 

e2(o>)~ 
BZ (2ir)3 

^ 1 26 (AE-,fito)d3k. 

If we further assume that the matrix element is the same for all 

direct transitions, regardless of their location in the BZ, i.e., 

le'^L^I2 is not a function of ?, we can define the joint density of 

states function J (AE) as 

2d3k J(AE) = 6(AE-hu). (2.2) 
BZ (2ir)3 
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Since all pairs of states that meet the requirements of energy and 

momentum conservation are admitted to the integral with the same 

weight, the joint density of states function represents the simple 

counting of states in the BZ on which the analysis relies. The 

spectral profile of an experimentally determined is expected to 

reflect the features of this sum and, therefore, the features of the 

energy structure. This is the working hypothesis of band analysis. 

A transformation of the volume integral in Eq. (2.2) into a 

surface integral over the surface AE=constant shows the properties 

of the JDS function more clearly. This gives 

2 
J CAE) = 

(2TT)  3 AE=constant |V, (AE)| 

ds (2.3) 

k' 

where ds is the surface element on the isoenergetic surface AE=co'nstant 

and (AE) is the gradient of the separation of initial and final states 

with respect to lc. Energy conservation requires that "fuu be exactly the 

vertical separation of a pair of states. If the energy bands are near­

ly parallel at some given point, the energetic separation changes little 

over a finite 5 interval. States are spaced equidistantly on the 1( 

coordinate, and such an interval of near parallelism offers a large 

number of allowed transitions to photons of this energy range. Hence, 

the area makes a large contribution to the absorption, as described by 

the small value of the gradient V^(AE) in the denominator of the inte­

grand in Eq. (2.3). If on the other hand, the bands spread apart, 
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few transitions are resonant with the light, and the corresponding 

absorption is small (large V^(AE)). 

Points for which V^(AE) = 0 are particularly important and 

they are called "critical points" (CP). This condition can be satis­

fied in two different ways. First, the energy bands can be parallel 

but not horizontal. This can occur anywhere in the BZ and such CP's 

are therefore called "general" CP's. Second, both gradients can vanish 

separately so that their difference is also zero. This is a necessary 

condition at the center and certain other points of the BZ for reasons 

deriving from the symmetry of crystal structure. Furthermore, a BZ 

connects with other identical zones which surround it in momentum space. 

Since the energy bands must connect smoothly to the corresponding bands 

in the next zone, the slopes at the zone edges are zero. Such a CP is 

called a "symmetry" CP. 

Critical points introduce slope discontinuities into the JDS 

function, and, subsequently, into These slope discontinuities cor­

relate to the band separation at points of high symmetry in the BZ, 

such as the center or the edges. 

A classification of symmetry critical points into four groups 

can be made. A Taylor series expansion about some critical point lo­

cated at ko in (E,lc) space gives (Seraphin, 1972b, p. 180; Wooten, 

1972, p. 119) 

3 

E - E = AE * AEQ + I a (k - k )2, 
j=l J J ° 



where 

o, = 1/2 — (AE(tc)). 
3 8k? 

J 

From the definition of a CP, the first derivative is identically 

zero in this expansion. Since we are considering only what happens 

in the immediate vicinity of a CP, we choose to ignore the third 

and higher order terms. 

The band separation can either be at an extremum in which 

case all derivatives (a's) are positive (absolute minimum) or nega­

tive (absolute maximum). Since AE increases or decreases in all three 

k directions at such a point, this kind of CP is called "parabolic." 

When one or two of the derivatives are of one sign, the CP is called 

"hyperbolic." The critical points are normally labelled as , where 

j = 0, 1, 2, or 3. The value of j is obtained by counting the number 

of negative derivatives in the expansion. Integration of the Taylor 

series expansion given above, gives the functional dependence of the 

JDS function for a small region about the CP. The expected slope 

discontinuities are of a square root nature and are plotted in Fig. 

2.2 which is reproduced from Seraphin, 1972b, Fig. 4.3. 

Optical Constants, Dielectric Function, and Reflectance 

In this section we show how the reflectance is related to the 

band structure by the dielectric function. 
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J ( A E )  

Fig. 2.2. Joint Density-of-States Function J(AE) Near 

Critical Points of MQ, Mj, M2, and M3 Types 
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On a macroscopic basis the effects due to optical transitions 

are summed up in a parameter called the dielectric function, £. In 

general, this function is complex and it is related to the complex 

index of refraction N: 

£ = £l + is2 = N2 = (n + ik)2 

where is the real part of e, Eg is the imaginary part of e, n is 

the index of refraction, and k is the extinction index. We immediately 

see that ej and E2 
are related to n and k by 

ei = n2 - k2 and e2 = 2nk. (2.4) 

The reverse relation can be shown to be 

n = (l/2[(ei2 + ez2)1^2 + ej]}1^2 

and 

k = {1/2[(E1
2 + E22)1/2 - El]}1/2. 

Absorption measurements are the most direct to determine £2-

In fact, eg is shown to be proportional to the absorption of energy 

from the light wave by differentiating the time averaged Poynting 

vector (Stone, 1963, p. 384): 

6W = E2^|E0|26z 

where SW is the energy lost by a plane wave in traversing a thin slab 

6Z thick, EQ is the electric field strength of the plane wave, and 

u = 2irc/X. The spectrally dependent features of E2 thus reflect 

the features of the energy band structure in which we are interested. 



These measurements are accurate in spectral regions 

in which enough light can penetrate a bulk sample. Unfortunately, 

these transparent regions are of little use to band structure analy­

sis since the very fact that little absorption takes place implies 

that there are few interband transitions in this spectral region. In 

general, reflectance measurements are much more practical when we are 

studying spectral ranges where the photon energy is sufficient to lift 

electrons between band states. 

The complete description of the reflectance process involves 

two functions as given by the complex reflectivity 

, n , i<J>(w) n'-n+ik 
r(o)J = p(co)e : tt-, 

K J  n'+n-ik' 

where the primed quantities refer to the incident medium and the 

u 
unprimed quantities are for the absorbing medium, p(aO = R(io) , 

R(OJ) is the reflectance, and is the phase shift introduced in the 

light wave by the reflection. Reflectance depends on both parts of the 

dielectric function. This can be seen by substituting the dielectric 

function into the Fresnel reflection equation for an interface (normal 

incidence): 

R . 1R|2 . + ** . 
(n'+n)2 + k2  

The result is 

e1 - {2e ,[ei + (ej2 + e22)Js]}3i  + (ei2 + ea2)^ 
R = 

e' + {2e'[ei + (ci2 + e2
2)'S3}'S + (e^2 + ea2)^ 
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or, 

R = (ej - e')2 + €2
i  

[e' + {2E,[G1 + (-ej2 + E2
2)^]) + (EJ2 + E2

2) "* ]2 

where e' = (n*)2, and n1 is the index of refraction of the nonab-

sorbing incident medium. A similar relation can be written for the 

phase shift: , , 
2n'k {2e1[(ei2 + e2

2) - ej]}'5 

1 • •  . . .  •  I  •  .  .  —  •  • —  .  •  I .  I I  I  <j> = tan"1 = tan 

n2 - n'2 + k2 (e^2 + E22)35 - e' 

These two results can be inverted to give the dielectric function in 

terms of the two observable quantities R and <(> (Weiss, 1971, Table I): 

. (1 - R)2 - 4Rsin2^ tn, . 

(1 + R - 2R cos<j>)2 

and 

e2 - 4R^(1 - R)sinj> 

(1 + R - 2R 2cos<f>)2 

The phase shift upon reflection <J> is a rather difficult quan­

tity to measure experimentally; fortunately, R and <f> are not independent 

functions. As a consequence of the causality principle, they are re­

lated by Kramers-Kronig (KK) relations (Wooten, 1972, p. 182; Stern, 

1963): 

In P(WQ) = ~ P f 
T  J .  a ,  U - C  

dti) 
-UO 

and 
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+ C«0)  P f l n  P ( h > )  dco, (2.5) 
IT I ? 2 ;  oj^-aiQ 

0 

where P indicates that the Cauchy principal value of the integral is 

used. A similar relation holds between the real and the imaginary 

parts of the dielectric function: 

ei(u>0) = 1 + |  P 
a)62 (w) du 

0 (O2-O)0
2 

and 

£2("o) = 
2wo el (<•>) " e0 °0 

da) + 

u>2-u>02 <*>oeO 

where ao is the d.c. conductivity and eo is the permittivity of free 

space, which has the MKS value of 8.85 x 10"12 C2/(N • m2). Kramers-

Kronig analysis can be cast into a form of the ubiquitous Fourier 

analysis, as shown by Sceats and Morris (1972) and then later by 

Peterson and Knight (1973). 

If the reflectance of a material can be measured over a suf­

ficiently wide range of energy, <J> does not have to be determined 

experimentally but can be evaluated by using Eq. (2.5). Since the 

integral has to be taken from zero to infinite energy, extrapolation 

of the reflectance curve is necessary. This is fraught with diffi­

culties since oscillator models are postulated to account for the 
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behavior of the reflectance at the energy extremes. These are gen­

erally adjusted empirically until a reasonable result is obtained for 

the correlated function. This was the way most optical constants were 

obtained from optical measurements. From these, correlations with band 

models were attempted; the results of these studies were rather indefi­

nite (e.g., Ehrenreich and Philipp, 1962). In the next section, we 

see how the methods of modulation spectroscopy enabled the observation 

of hidden or weak structure in the optical response. With this new 

information more precise correlation to the band structure was possible. 

Modulation Spectroscopy 

The basic objective of modulation spectroscopy as it applies 

to band theory consists of separating the critical point contribution 

to the optical spectra from that due to the non-critical point back­

ground, and subsequently identifying the position of the critical point 

in the BZ. 

The separation can be demonstrated on the basis of the square 

root dependence of the absorptive part of the dielectric function near 

a CP of photon energy AEQ (Wooten, 1972, sec. 5.3): 

e2
a (E - AEQ)** + constant (2.6) 

where E = "Ku is the incident photon energy. Differentiation of this 

with respect to some parameter x of the electronic structure gives 

d&2 e*S._ 1 d(E - AEQ) d(e«fj._) , 
EC II + — (E - AEQ) . (2.7) 

dx 2 (E - AEQ) dx dx 



Note that the constant in Eq. (2.6) that takes in all of the non-

critical point effects disappears upon taking the derivative. Thus, 

MS eliminates the static background response and allows the measure­

ment of the locations and the shapes of critical points on an energy 

scale. In an oversimplified manner this describes the advantage of 

modulated spectroscopy over static spectroscopy. The various terms 

in Eq. (2.7) define several classes of modulation spectroscopy. 

a. Modulation of the incident photon energy (dE/dx) leads 

to wavelength modulation. This is an "external" modulation in that 

the parameters intrinsic to the material under study are unchanged, 

and the modulation acts externally to the sample. This technique en­

hances the resolution of a static reflectance measurement and allows 

the observation of structure that is too weak to be resolved in a 

standard spectral measurement. It adds no new information that was 

not already in the static spectrum. The interpretation of the re­

sulting spectra is straightforward since it involves only the theory 

of the optical constants. Therefore, it is subject to the same prob­

lems encountered in analyzing the static spectrum as previously 

mentioned. 

The interpretation of spectra resulting from internal modu­

lation requires an additional knowledge beyond that needed to analyze 

static or externally modulated spectra. The applied modulating param 

eter that perturbs the optical constants makes the analysis more com­

plicated, but conversely, the diagnostic capability of internal 
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modulation is much greater than that of external modulation. The 

following two classes are of the internal modulation type. 

b. If the modulation affects either the position of the 

critical point AEQ on the spectral scale or the separation of the 

bands, we have "gap" modulation (dAEg/dx). Typical examples of this 

effect are piezo- and thermoreflection. 

c. A modulation mechanism could also alter the probability 

of a given transition [d(e»M^)/dx]. Electroreflectance is an exam­

ple of such a mechanism and is the one of interest here. It is dis­

cussed in a later section. 

We now consider the effect of differentiation on the macro­

scopic observable, R, and see how it can be related to the band struc­

ture through 82• 

When the Fresnel equation for reflectance at an interface is 

differentiated, the result has the functional form 

AR 
-rT = aCei,e2)Ae1 + $(e1,e2)Ae2, (2.8) 

where AE = AEI + IAE2- The coefficients OT and $, known as the Sera-

phin coefficients (Cardona, 1969), are functions of photon energy 

through their relation with and e2. Their sign and relative magnitude 

determine the outcome of an analysis of the modulated spectrum in the 

different spectral regions. The line shape of a reflectance response 

can be discussed only after its composition is analyzed in terms of 

AEJ and AE2- In a AE2 dominated region, for which |@|»|a|, an ab­

sorptive line shape is preserved in the reflectance response. If, 

however, the KK relation must be applied to such an absorptive line 
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shape in a Aei dominated region (|ot |>> | (31), the reflectance response 

consists of an up-down sequence of two peaks of opposite sign. Frac­

tional admixture will result in reflectance responses with line shapes 

anywhere between these two extremes; Similarly, the sign, magnitude, 

and spectral position of a response with respect to the correlated 

CP is strongly influenced by the size and sign of the two coefficients. 

From this we see that it is not sufficient to consider only one part 

of the complex differential dielectric function for the description 

of a modulated reflectance spectrum. 

In order to separate out the two components Ae^ and Ae2 from 

the AR/R spectrum [Eq. (2.8)], a second equation is necessary. In 

principle, the differential KK relation could be used: 

2 /•" a)Ae2(w) 
Aei (OIQ) = — du. 

TT I oj2 - w0
2 

Substitution of this into Eq. (2.8) gives 

AR(ojq) 2 r°° UAE2(OJ) 

= a(ei,e2) - do) + 0(ex ,e2)Ae2(io0) • 

R 7T U)2 - U)Q2 

The mathematical difficulties encountered in attempting to solve this 

for Ae2 in terms of AR/R are formidable, so an alternative approach 

is used. 

The wavelength dependence of AR/R can be obtained from experi­

ment. A second function can be found through the dispersion relation 

that connects the real and the imaginary parts of the complex reflec­

tion coefficient previously given as 
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Differentiation of this and using the Fresnel relations gives 

(Seraphin, 1972a, p. 14) 

Aei 
r AR ... 
2 "R " 

(2.9a) 

Ae2 (2.9b) 

where 

r (n/no)(n2 - 3k2 - n0
2) 

and 

6 = (k/n0)(3n2 - k2 - n0
2). 

If AR/R is known for a sufficiently large range of photon energies fiu), 

the KK dispersion relation gives for the differential A(j> 

thus allowing the calculation of AEJ and AE2 through Eqs. (2.9a) and 

to spectral regions in which the modulation affects E2. This is of 

considerable practical value, since extrapolation outside the region 

of measurement is less critical. In most cases, the denominator in 

the integrand increases so rapidly that even the neighboring structure 

of a spin-orbit split transition can be ignored. Also, since modulation 

spectra are generally zero except for some relatively narrow structure, 

there is usually no problem encountered in the extrapolation of the 

integrand as is the case with static analysis as previously mentioned. 

A<{> (IOQ) ( 2 . 10 )  

(2.9b). 

Contributions to the integral given in Eq. (2.10) are restricted 
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Electroreflectance 

In electroreflection, the electric field not only produces 

interband effects that are common to all other types of internal 

modulation, but it also modifies the transition probability matrix 

element and the JDS function. The symmetry-breaking effect on the 

matrix element is found in all vectorial modulation techniques. In 

a cubic crystal, for example, the optical isotropy is destroyed under 

the action of the electric field or the uniaxial stress of piezomodu-

lation, a preferred direction is established, and the tensorial character 

of the dielectric function becomes important. 

Inserting the potential energy term (-Ex) into the one-electron 

Hamiltonian of the unperturbed crystal breaks up the invariance to 

lattice translation in the direction x of the electric field E. As a 

consequence, the component k^ of a wave vector is no longer a valid 

quantum number. Block functions are the eigenfunctions of the wave 

equation for a perfectly periodic potential. Using these functions 

we can build the field-perturbed wave functions from linear combinations 

of the unperturbed Bloch functions with wave vectors parallel to the 

field direction. Aspnes, Handler and Blossey (1968) have worked out 

the theory of this situation and show that for the small fields which 

are typically present in such an experiment the field-perturbed function 

can be obtained by convoluting the zero field function with an Airy 

function. 
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Aspnes (1973) gives a good phenomenological description of 

the physical model of ER and its effect on the optical transitions. 

Figure 2.3 is taken from this work and shows the change in the tran­

sitions which are allowed in the two cases. In the first case, the 

bands are approximately parabolas, and the transitions are strictly 

vertical since there cannot be a large momentum change. In such a 

transition we have what is known as a first derivative modulation 

process since shifts induced in the band spacing by the modulation 

process are small on the scale of the energy gap. 

In the case where the modulation is produced by varying an 

electric field, the electron accelerates, and momentum is no longer 

a valid quantum number in the field direction. The one-electron 

Bloch functions become mixed and this is equivalent to spreading the 

formerly sharp vertical transitions over a finite rang* of initial 

and final energy and momentum states, as shown in the bottom half of 

the figure. This smears out the structure in the unperturbed dielec­

tric function and gives a more complicated difference spectrum. This 

difference is approximated by higher order derivatives, and the third 

derivative is characteristic of these spectra. A rigorous theoretical 

derivation of this is also given in this paper by Aspnes. 

The third-derivative characteristic of ER spectra provides 

optimum sensitivity for the detection of weak critical points. This 

is certainly true for the present study since the electric field is 

greatly attenuated by the electrons in the metal. Typically, it has 
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Fig. 2.3. First and Third Derivative Modulation 

Top: a schematic diagram of the change in the imaginary part of the 
dielectric function expected for a first derivative modulation process 
where the lattice periodicity is preserved. Bottom: similar diagram 
for electric field modulation where lattice periodicity is not pre­
served. The effect of the perturbation on the energy band structure 
and the optical transition is shown at the left in each case (from 
Aspnes, 1973, Fig. 1.). 
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been possible to observe structure in ER spectra as small as a 

few parts per million in AR/R. 

From this type of analysis it is possible to draw some 

conclusions about the type of critical point one expects to see in 

an experiment. Unfortunately, line shape analysis still is not com­

pletely understood and is just on the verge of producing results. 

Insufficient knowledge of the effective field is probably the most 

important cause for the failure of line shape interpretation in pro­

viding one, and only one, answer. Unless the modulating voltage 

variation about the D.C. operating level is known, the relationship 

between electrical and optical modulation cannot be established. 

Aspnes and Frova (1969) have shown that the shape of the lines can 

take on rather different appearances when we apply an inhomogeneous 

field rather than a homogeneous one. Figure 2.4 is a figure reproduced 

from their paper. This graphically shows the error that could arise 

from using the uniform perturbation approximation indiscriminately. 

As we will see later in Chapter 4, the experimental configuration 

discussed in this paper creates a particularly simple field profile 

from which it should be possible to calculate the exact effect produced 

by the inhomogeneous field. 

In this chapter we have tried to show, albeit in a qualitative 

manner, the process of modulation spectroscopy. We have touched upon 

possibilities of its potential as a probe of the band structure of 

solids. It is interesting to compare the capabilities of modulated 
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Fig. 2.4. Homogeneous and Inhomogeneous Modulation 

Changes in the (a) real and (b) imaginary part of the dielectric func­
tion at the fundamental edge of intrinsic germanium, as induced by a 
homogeneous electric field (top row) and space-charge fields of a value 
Fg (from Aspnes and Frova, 1969). 



spectroscopy with other ways of studying solids, in particular, 

metallic conductors. Most of these other methods, such as the 

deHaas-vanA]phen techniques, probe only the region around the Fermi 

surface. They cannot get down deeper into the band structure. Until 

the advent of modulated spectroscopy, theorists had only this data 

to use to check their calculations of the entire structure of a given 

material. Unfortunately, the Fermi surface is rather insensitive to 

the details of a given model of the band structure so that the agree­

ment of a particular model with experimental Fermi surface data is 

not an exacting test of the model's accuracy. 

Hopefully, the methods developed here will provide more data 

for a deeper understanding of these materials. 



CHAPTER 3 

ELECTROREFLECTANCE SPECTROSCOPY OF METALS 

In this chapter we review the work done by others in their 

attempts to measure the electroreflectance of metals. The experi­

mental and the analytical difficulties are discussed, and this gives 

us a vantage point from which to view the work reported in subse­

quent chapters. 

Electroreflectance (ER) has established itself as a powerful 

diagnostic tool in the exploration of the band structure of dielectrics 

and semiconductors. Unfortunately, for all its potential, it has not 

been applied unambiguously to metals. The reason for this is that 

the method relies on the penetration of a perturbing electric field 

into the material. For metals and good conductors in general, this 

modulating field is screened out within the Thomas-Fermi screening 

length (Kittel, 1966, p. 235). On the other hand, the light wave 

might penetrate into the material to a depth an order of magnitude 

or more larger than the screening length; thus, most of the material 

interacting with the probing light wave is in a field-free region. In 

copper, for example, the field penetration depth of 0.5 X should have 

little effect on the band structure of the material with which the 

light wave is interacting to a depth of about 100 R (Born and Wolf, 

1970). Thus, most reliable data we have to date on the band struc­

ture of metals come from studies of the Fermi surface. 

32 
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Early Work 

Electrolytic ER 

Considering what has just been said, one would not expect to 

be able to observe any electroreflectance of a metal sample, especially 

one with a very small screening length. In 1966, Feinleib (1966) 

published results showing that indeed he did observe an effect with 

his apparatus. Briefly, his method consisted of a metal sample 

immersed in an aqueous potassium chloride electrolyte. The sample 

served as one electrode while a second electrode, made of platinum, 

was situated remotely. The modulating voltage was applied to the 

electrode and the light which was reflected from the sample-electrolyte 

interface was directed into a monochromator and analyzed using stan­

dard modulation spectroscopy techniques. The dipole layer that was 

formed at the interface gave rise to a large potential gradient at 

the sample surface. 

In his paper Feinleib himself expresses some surprise at his 

results. Identical results were obtained by P. Grant (Seraphin, 

1972a, p. 145) and by B. J. Parsons (Seraphin, 1972a, p. 145) but 

these remain unpublished. Upon and following the publication of 

Feinleib*s results, several criticisms were advanced concerning the 

analysis. Feinleib (1966) stated that there might be an added com­

plication since the method measured the reflection from a thin film 

of metal in intimate contact with another material, the electrolyte. 
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The index of the electrolyte in the neighborhood of the surface might 

be changed by the same process that changes the metal film reflectance. 

On the other hand, he goes on to point out that if the change in the 

index of the electrolyte is ignored, one could obtain reasonable 

results from calculations based on the bulk optical constants. 

Another effect which clouds the picture is that no precautions were 

taken to avoid the formation of surface films or of soluble 

metal-chloride complexes at the interface and thus the entire results 

are put into doubt (Mclntyre, 1973a, p. 121). 

Basing their calculations on a simplified model of the 

metal-electrolyte interface, Prostak and Hansen (1967) argued that the 

observed effect could not be introduced by a change in the index of 

the space charge layer of the electrolyte. They in turn proposed a 

so-called rigid-shift theory which states that the ER effect observed 

by Feinleib and others can be accounted for by a rigid shift to 

lower photon energies of the entire dielectric function of the 0.5 X 

thick metal surface layer. This amounts to changing the optical con­

stants by an amount proportional to their first derivative. This 

theory seems to work well for gold, but for silver and copper the 

results are not at all in agreement with carefully done experiments. 

When this model was refined by Hansen and Prostak (1968), they found 

that including free electron effects shifted the curve to higher 

energies. They then proposed that the Fermi level in the conduction 

band is modulated by the field-induced free electron concentration 
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change but that other bands involving bound electronic states are 

unaffected by the field. This theory predicts a result similar to 

the rigid-shift, but now the translation along the energy axis is not 

uniform. This latter model has also proved unsatisfactory since the 

predictions for copper and silver do not agree with the experimental 

data (Parsons, 1969). It is also physically unrealistic because it 

assumes a low-frequency modulation of the Fermi level of the metals 

(Mclntyre, 1973a, p. 127). 

Stedman (1968) agrees with Prostak and Hansen (1967) in that 

the modulation of the ionic double layer is only of secondary impor­

tance. She later (Stedman, 1970) suggested that possibly compression 

in the dipole layer gave rise to a sort of piezomodulation effect, 

but this has been discounted on the basis that it is a quadratic effect 

and that it should be negligible when operating with a bias close to 

the point of zero charge (Mclntyre, 1973a, p. 124). 

Ferroelectric ER 

Ishibashi and Stadler (1969) investigated the reflectance 

modulation of evaporated gold films. The modulation was obtained by 

reversing the polarization of the ferroelectric substrate. The metal 

film was affected and a response similar to that obtained by Feinleib 

was observed. Though the authors claim to show that they have elimi­

nated the possibility that what they observed might be due to modulated 

piezoreflectance effects, not everyone is convinced that the analysis 

is as simple as they make it out to be (Seraphin, 1972a, p. 145). 
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Thus, though some effect has been observed and has been attri­

buted to true electroreflectance, many doubts remain about this early 

work. 

Recent Work on the ER of Metals 

Recently, two new theories have been put forth that claim to 

explain properly the physics of the electrolytic measurements of ER. 

Both are based on free electron effects and are similar in some ways. 

Cheyssac et al. (1973) suggest that the observed ER response 

is correlated with the surface itself. They assume that the electric 

field gives rise to excess free electrons AN, which in turn give rise 

to a surface current under the action of the electric field of the 

incident light wave. By modifying the usual boundary conditions used 

for solving Maxwell's equations for a light wave at an interface, they 

arrive at a fractional change in the reflectivity 

AR AN 
"R = F TT 

where N is the unperturbed free electron concentration, 

np
2 + k2 - (p+n)2 

F = -4npp , 

[n 2 + k2 - (p+n)2]2 + 4k2(p+n)2 

C 

n^ is the index of refraction of the electrolyte, n and k are the 

h 
optical constants of the metal, p = (yo/£o) °, and a is the surface 

conductivity of the metal and is related to the bulk value, aq, by 

a = aod, d being the penetration depth of the modulating electric field. 
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Figures 3.1(a,b,c) are reproductions of their comparison 

between the theoretical and experimental ER spectra of bulk gold, 

silver, and copper samples (Garrigos, Kofman, and Richard, 1973). 

The agreement between the calculated and the observed spectra shows 

that their simple theory can account reasonably well for the observed 

results. Extension of the theory to include more sophisticated 

expressions for parameters such as conductivity (Mclrvine, 1966a,b) 

might lead to even better agreement. Of course, more data with which 

to compare this result would be useful in determining the suitability 

of the model in the general case. 

In the model proposed by Mclntyre and Aspnes, (MA) (Mclntyre, 

1973a,b) a transition layer is assumed between the electrolyte and 

the metal surface. The electrolyte and the metal both have their 

respective bulk optical constants, and these connect smoothly from one 

to the other through the transition region. The only requirement on 

the thickness of the region is that it be much less than the wavelength 

of the light. A linear approximation is made for the ratios of Fresnel 

coefficients for a three phase system given in terms of (d/A) where 

only the first order terms are kept. From this model, and on the 

basis of experimental results of the ratio of the reflectance of the s 

and p polarized components at an angle of incidence of 45°, it can be 

argued that the modulation takes place in the optical constants of the 

metal and not in that of the electrolyte (Mclntyre, 1973a). It is not 

necessary to assume any specific model for the form of the field-induced 
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Fig. 3.1. Comparison of Experimental (AR/R) and Calculated (F) ER 

Spectra of Gold, Silver, and Copper 

(From Garrigos, Kofman, and Richard, 1973} 
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shifts to draw this conclusion. The physical reason for this is that 

45° is very near Brewster's angle for the experimental conditions con­

sidered, and the equations simplify a great deal to give this result. 

The dielectric constant of the metal can be resolved into two 

components--the free-electron intraband transition term, and the inter­

band transition contribution 

e,. . = er + £, 
tot f b 

where e is the complex dielectric function, and tot, f, and b refer to 

the total, free electron, and bound electron parts, respectively. If 

we set the interband part, equal to zero, in other words we assume 

that the only factor contributing to the optical constant of metal is 

that due to the free electrons, we get the interesting result that the 

model predicts no ER effect, to first order in d /A, (Mclntyre, 1973a, 

p. 131) when the index of the incident medium is unity. 

It is assumed that interband transitions do exist in addition 

to the free electron effects, but are not affected by the externally 

applied field; thus, 

= constant. 

This now modifies the results derived for the first case; Mclntyre and 

Aspnes show that the results of this theory tend to follow the general 

trend of the experimental data (see Fig. 3.2) for gold, silver, and 

copper. 

Mclntyre and Aspnes argue that field assisted interband transi­

tions would result in either a lowering of the Fermi level or a 
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raising of the energy levels of the lower level states in the surface 

atom layer. In either case, this would result in a large positive peak 

in the ER spectrum of silver near 4 eV. They conclude that the absence 

of such a peak in the experimental spectrum, which is everywhere nega­

tive, indicated that is not modulated to any great extent by the 

external electric field. On the other hand, there is some evidence 

that some such transitions have been seen in gold (Mclntyre, 1973b, 

p. 678). 

It should be noted that nowhere in their discussion do MA con­

sider a specific shape for the spatial profile of the dielectric func­

tion in the transition layer. 

Comparing the theories of MA and Cheyssac et al., we note that 

the MA model assumes a three phase system, while the other only assumes 

a two phase interface. While the MA model is well-suited to the case 

where electrolytic experiments are being analyzed, we must remember 

that similar results have been obtained in air by Ishibashi and Stadler 

(1969). Another difference between the two theories is that in the 

one of Cheyssac et al., there is an adjustable parameter, namely, the 

thickness of the surface layer in which the electron density was changed 

by the modulating field. No such parameter exists in the MA model. The 

result of adjusting this thickness value is of the same order of magni­

tude as the Thomas-Fermi length. 

In summary, it is apparent that there are still many different 

ideas as to what is occurring in the ER of metals. Up to now, results 



have been obtained on three materials with large free electron concen­

trations. Some theories seem to work remarkably well with the results 

measured on some materials, while others agree more poorly with all 

three. There is obviously a dire need for more results to give the 

theoreticians more data to work with. 



CHAPTER 4 

PENETRATION OF AN ELECTRIC FIELD 
INTO A THIN METAL FILM 

In this chapter we consider the effect of an externally applied 

electric field on the charge distribution within a thin conducting 

metal film. An equation is derived which gives the profile of the 

electric field under various boundary conditions. With these results 

we evaluate classes of conductive materials in order to determine which 

might be most suitable in terms of field penetration. Further discussion 

includes the band structure of the selected sample material and the 

structure which might be observed in its ER spectrum. 

Field Equation Derivation 

Several different approaches are possible to derive the 

equilibrium distribution of carriers in a film which in turn gives us 

the electric field. Among these are (a) the minimization of the total 

energy of the electron-ion core system of charges, and (b) the balancing 

of the forces on a charged test particle. Unfortunately, though the 

physics of these approaches is correct, the mathematics of both soon 

proves to be rather formidable. 

43 
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Professor Rolf Enderlein of Humboldt University in East 

Berlin suggested the following method which is elegantly simple in 

comparison to the other methods. Rather than balancing forces, we 

evaluate electron currents and set their sum equal to zero for the 

steady state solution. With this approach, the mathematical obsta­

cles are neatly circumvented. The rationalized MKS system of elec­

trical units is used in expressing all derivations and equations. 

Let us assume that we have a film as shown in Fig. 4.1, with 

an arbitrary electric field E which has yet to be defined. We will 

develop the normalized and the unnormalized field equations in parallel. 

Since the equation is nonlinear, it will be seen that though the nor­

malized form can be more easily solved numerically, its results are 

more difficult to interpret. We have also plotted qualitatively in 

Fig. 4.1 the charge distribution for the arbitrary E given in the 

figure. 

We further assume that the charge carriers are electrons and 

are mobile while the ionic cores, consisting of the atomic nuclei 

and the tightly-bound inner electrons, are rigidly fixed at the lattice 

sites. 

The charge carriers in the film will have in general a nonuni­

form distribution so that diffusion occurs. This can be described by 

Fick's law, (Kittel, 1958, p. 155): 

XD = -D grad n, 



(a) unnormalized 
coordinates 

Fig. 4.1. Geometry for Derivation 

(t>) normalized 
coordinates 

of the Field Equation 



where is the particle diffusion current density, n = n(x,y,z) 

is the number density of the particles, and D is the diffusion 

constant. Since the particles are charged, Fick's law can be converted 

to electric current density by multiplying each side by the electric 

charge on each particle. 

We now make the assumption that our film is very large 

in extent in both y and z directions in comparison to the x direc­

tion; we can therefore ignore edge effects and the problem is reduced 

to a one dimensional one. Thus we can drop the vectorial nature of 

Fick's law and consider the diffusion to take place only along the x 

coordinate. We can write 

i  =  e i  =  -De  — = D d p  ( x )  
3 D Ue dx U dx 

where -p(x} is the charge distribution of the negative carriers, and 

j is the electric current density. 

Since we expect that some sort of nonzero electric field will 

be present in the final solution, we must consider the effect of this 

on the charged particles. Ohm's law describes the effect'. 

j£(X) = acE(x) = WgP (x)E(x) 

where is the electric current density, oc  is the electrical conduc­

tivity, -yg is the electron mobility = -ye, y is the mobility given as 

drift velocity per unit force, and -p(x) is the electron density func­

tion. Now we can write the total current density as 



•'tot • VW"^1' 

In the steady state situation, an equilibrium must exist between the 

two currents so that the total current is zero: 

jtot = ° = VWEW + D 

The macroscopic form of one of Maxwell's equations relates the elec­

tric field and charge density: 

V • 5 • PTOT (4.1) 

where D = e,.E. e.. is the dielectric constant in the film, and . is 
M M tot 

the total charge density in the film, is not the usual tabulated 

dielectric function since in our approach we account explicitly for 

the polarization due to the free electrons. Thus, the dielectric func­

tion we have to use is that which arises from the polarizability of 

the inner electrons and the nucleus. Since the binding between these 

electrons and the nucleus can be expected to be tight, the relative 

dielectric constant will be approximately unity, so that - EQ, 

where EQ is the dielectric constant of free space. 

The total charge in the film can be broken down into two parts: 

(a) that due to the free electron carriers, and (b) that due to the 

fixed ionic cores and their tightly bound inner electrons. We can re­

write Eq. (4.1) as 

dE _ ftot "O-'W 
dx ~  EQ EQ ' 
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where PQ is the charge density due to the fixed ionic cores and 

includes the tightly bound electrons. Differentiating this once 

with respect to x we get 

d2E 1 dp (x) 

dx2 EQ dx 

PO is constant since we have assumed a uniform lattice throughout our 

film. 

Combining these results we get 

dE \ d2E 
V e

E M ( -e°  + P° )  -De 0  

dx2 

= 0 

or 

d2E p dE up 
+— E -g-2-E = 0. (4.2) 

dx2 D dx DEQ 

For a classical gas having a Boltzmann distribution yj and D 

are related by an equation first deduced by Einstein (Feynman, Leighton, 

and Sands, 1963, p. 43-9): 

a = _i_ 
D kBT 

where kg is the Boltzmann constant and T is the absolute temperature. 

Electrons in a metal behave like a degenerate Fermi gas and 

therefore are described by Fermi statistics. An expression will be 

derived for p/D for this case. 
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Under equilibrium conditions, a distribution of particles 

in a one dimensional box can be expressed as [Feynman, Leighton, 

and Sands, 1963, Eq. (43.36)]. 

= nyF (4.3) 

where F is the force on the particles and n = n(x) is the particle 

concentration. This is obtained by equating the diffusion current 

and the current due to the force on the particles. This differs from 

the previous result in that the electrostatic nature of the particles 

is not considered since Fermi particles do not necessarily have to be 

charged. Rewriting Eq. (4.3) we have 

y (dn/dx) (  

D nF • L J  

The Fermi energy for a free electron gas is given by [Kittel, 

1971, Eq. (7.21)], 

b f  . E f(x) . K^-f3 

where V is the volume of the box, m is the mass of the particle, and 

•fx = h/2ir. Note that Ep is a function of position through its dependence 

on n. Taking the natural logarithm of both sides of this equation 

makes differentiation simple: 

and, 

2 
In Ep = y ln(n) + constant, 

1 dE„ 2 dn 
F 

En dx 3n dx 
F 



so 

or, 

1 dn 3 dE 

- (4.5) 
n dx 2En dx 

Another expression can be obtained for 1/n • dn/dx by using 

the Fermi distribution function in its low temperature, high density 

limit (Huang, 1963, p. 227): 

n 
o 

n = 

exp{[eU(x)-Ep(x)]/kBT} + 1 

where U(x) = /E(x)dx and no is the total number of particles in the 

box and kg is the Boltzmann constant. Again taking the logarithm 

before differentiating, we can write directly 

1 dn eE(x) - (dE /dx) 
r 

n dx kgT [exp{Cell(x) - Ep(x)]/kBT} +l] 

Using Eq.(4.4),and rearranging, we get 

dEp 2Ep eE(x) - (dEp/dx) 

dx 3 k T [exp{[eU(x) - E„(x)]/k_T} + l] 

and, 

dEp eE(x) 

dx 1 + |[3kBT (exp{[eU(x) - Ep(x)]/kBT} + l)]/2Ep| 

The second term in the denominator can be shown to be negligibly 

small in comparison to unity: for T =300 K, kDT = 1/40 eV, E_ -10 
B F 

eV, and the exponential term will have a value close to zero when 

ell(x) < E„(x), so we can write 
r 
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3(1) „ _1_ . 
2(40)(10) " 800 

Therefore, dEp/dx = eE(x). Combining this with Eqs. (4.4) and 

(4.5), we get the result 

£ - JL 
D ' 2E f  

after identifying the force F in Eq. (4.3) as eE(x). 

We can now eliminate the ratio p /D from Eq. (4.2) and get 
0 

d2E 3 e dE 3epg 
+ E 0. (4.6) 

dx2 2 E_ dx 2E„EA 
F F " 

A length (Kittel, 1971, p. 279) can be defined which is called the 

Thomas-Fermi screening length or the Debye length depending whether 

we are talking about a metal (Fermi distribution) or a semiconductor 

(Boltzmann distribution) (Jackson, 1962, p. 342): 

d2 = 
2e0E

F 

3ep0 

Using this in Eq. (4.6), we have 

d2E EQ dE 1 
+ E E = 0. (4.7) 

dx2 Pod2 dx d2 

The screening distance d is a function of x through its de­

pendence on Ep. We now put in this dependence explicitly: 
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EpW = |£ ̂ mOO ̂  2/3 = ^2/3 ̂ p(x)^2/3 

f f  P 0 /P(X)\2/3 
F 

where E ® is the unperturbed Fermi level given by 
r 

<fi2 /3irp0\ 2/3 

2m y Ve 

Using p(x) = Po - eoE'» we find 

/PO - e0E'(x)\2/3 / eg \ 2/3 
E (x) = E ° = EF I 1 "  ~  E ' W  F F V " ) \ »o 

Substituting this into the expression for the screening distance, 

we get 

d0
2 / e„ \ 2/3 
- E |  
0 F 

d2 = — En(x) = d0
2 (1 - — E'(x) 

V \ po 

n h  
where do is the unperturbed screening distance given by (2eoEp°/3epo) . 

Putting this into Eq. (4.7) we have 

1 EQ E E / e0 \ 
E» + — — EE' = E" (1 - — E'] 

d2 po d2 d2\ Po / 

E /  e0 \l/3 
= E" - |1 E'J =0. (4.8) 

d02 \ Po / 

This equation describes the electric field within a thin sheet of 

material under the assumptions that we made of the problem's being 

limited to one dimension. 

We can now write the corresponding equations for the electric 

potential U, and for the charge density, p. Since 1: = -VU and V • 1: 



S3 

= P/EQ, we have 

dx3 do2 dx 

d3U 1 dU 
1 + 0 (4.9) 

and 

dp 1 p(x) 1/3 
Jp(x)dx = 0 . 1 (4.10) 

dx dg2 PO 

The three labeled equations (4.8) to (4.10) all represent 

the same physics stated in different forms. The next task is to solve 

one or more of these for particular boundary conditions which obtain 

from the experimental configuration. 

Since the potential equation is a third order differential 

equation, three constants of integration are required to get a com­

plete solution. The electric field equation requires two, while the 

charge distribution requires only one. In the latter case, however, 

there is an integral appearing twice and this integral also requires 

a constant of integration, so we need to specify a minimum of two 

boundary conditions in any case for a complete solution. 

The equation for the electric field appears to be the most 

tractable one of the three: (a) it is only of the second order and 

it therefore requires only two boundary conditions; (b) it is not a 

mixed integral-differential equation; (c) as we will see later, its 

boundary conditions are known from consideration of the experimental 

arrangement; and (d) it can be normalized easily for mathematical 



convenience. A further reason for concentrating on the field 

equation as opposed to the other two is that the band structure 

changes are usually discussed in terms of the action of an elec­

tric field on the optical transitions. From this point of view, 

it is the most important of the three forms. We therefore con­

fine our attention for the moment on the equation given in terms 

of the electric field. 

If we write Eq. (4.7) in the following way, we can get 

some insight as to the origin of each term 

0. (4.11) 

The first term is proportional to the diffusion current. The current 

due to the electric field comes in as the factor (3e/2E )E. This 
r 

factor is modified by a coefficient made up of two terms. The first, 

P()/e0» is ionic core restoring force. The second has the same 

sign as the diffusion term and is due to the electric repulsion be­

tween the charge carriers. 

To study the behavior of this equation from a mathematical 

point of view, we can normalize it as follows. The circumflex over 

variables indicates normalized quantities: 

E(x) dE 1 dE d2E 1 d2E 

d^E / p o dE 

E(x) = 

EQ dx EG dx dx2 EQ dx2 

where EQ is defined as the value of the electric field at x = 0. 
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Next, we normalize the spatial coordinate x to values between zero 

and 1.0: 

x  d  d x  d  1  d  d 2  I d 2  

^ ~ ** ~  i  
L dx dx dx L dx dx2 L2 dx2 

where L is the thickness of the metal film. We also define the 

following quantities 

L a a = T , B = 
d ' p0L ' 

a = 1/d, and B = EQ/PO 

where a is the surface charge which generates the external electric 

field and is equal to EQEQ. With these definitions we can write, after 

appropriate algebra, 

d2E A „ .  dE \1/3 

or simply, 

E" - a2E (1 - BE')1/3  = 0 (4.12) 

where the primes indicate differentiation with respect to the 

normalized x. Equation (4.12) can be reduced to 

1 .2 f ^ 
2 a ~ 1/3 

'(1-Bp)1/6  

by the substitution p = dE/dx and dp/dx = (dp/dE)/(dE/dx) = p (dp/dE). 

If we look at the equation in which the variation of the screening 
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length with x is ignored [Eq. (4.7)], the result corresponding to the 

above is 

i  a2E2 = -4- (1 - BE1 - ln|l-BE'|) + constant. 
^ B 

This equation is a first order transcendental equation which can 

be shown to belong to a class that has no solution in closed form (Stav-

roudis, 1973). Because of the apparent mathematical obstacles, it was 

thought that either linearization of the equation or numerical integra­

tion would prove to be more fruitful than further attempts at direct in­

tegration. Before looking at the numerical solution, we will consider 

some approximations that linearize the equation. 

A few words are in order here on the physical significance of the 

ratio B. The denominator is the total number of atoms that have given up 

an electron to the free electron gas per unit area of the sheet. The 

numerator, on the other hand, is the surface charge density necessary to 

fully compensate the external field. Thus, we see that the value of B 

can range from zero for the case where there is no applied field, to one 

where the field is so large that all available free charges in the sheet 

A 

can only partially compensate it. The parameter a is the thickness of 

the film expressed in units of the screening length d. 

Two Sets of Boundary Conditions 

In general, an electrostatic problem with specified Neumann 

boundary conditions over a closed surface results in a unique stable 

solution (Jackson, 1962, pp. 5, 16-17). The Neumann boundary conditions 

specify the electric field (normal derivative of the potential) 
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everywhere on the surface (corresponding to a given surface charge den­

sity) ; the closed surface may, in whole or in part, be at infinity. We 

can specify ^ on two surfaces, which reduces to specifying E(x) at two 

points for our particular one-dimensional case. Alternatively, we could 

specify E and E' at any point. This is consistent with what is to be 

expected of a second order ordinary differential equation, i.e., there 

will be two constants of integration. 

The first condition is easily specified: at x = x = 0, the left 

side of the sheet, we can specify an electric field, EQ, which might be 

due, for instance, to a specified and fixed external surface charge den­

sity a. To simplify this conceptually, we can suggest two ways to ob­

tain this experimentally: (1) a ferroelectric material with a bound 

surface charge density a is used as the substrate of our thin sheet; (2) 

our sheet is self-supporting and it is suspended between the two plates 

of a plane-parallel capacitor in a vacuum. In the latter case, the volt­

age on the capacitor can be adjusted to give the desired electric field 

Eo in the vacuum space. At this point, we introduce a very useful result 

of Gauss' law, which states that 

<F E • nda = 0 
's 

if there is no net charge inside the surface S (Jackson, 1962, p. 5). 

Another way of writing this for our particular case is 

r B  
E(x)dx = E(B) - E(A) = 0 

JA 

if there is no net free charge between A and B. Applying this to the 

case of the vacuum capacitor just mentioned, the vacuum space does not 
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attenuate the electric field and can be made arbitrarily small. This is 

very convenient in considering an isolated sample as we now do. 

If we consider the sample to be completely electrically insulated 

by surrounding it on both sides with a perfect vacuum, for example, and 

then place it between the plates of a capacitor, there will be no net 

electric charge in the sheet. Since there is charge neutrality within 

the film, the electric films at both surfaces of the film are equal; 

E(0) = E(l) = 1 

or, 

E(0) = E(L) = E0. 

A second boundary condition which is realizable consists of 

connecting the right surface of the sheet to ground potential so that 

charge may flow into the sheet. We now have a plane parallel capac­

itor with the sheet now forming one of the plates. In such a case, 

the current flow through the ground wire will correspond to that 

which will give a surface charge, a, equal to that which gives rise 

to the electric field EQ. In such a case, we have a zero electric 

field at the right surface 

E(l) = E(L) = 0, 

and we specify the potential to be zero at x = 1. This condition will 

have to be modified later for the case where all of the free electrons 

are depleted by a strong negative electric field. 

In either case, it now remains for us to discover how the 

charge, whether it be the intrinsic free electrons or these electrons 
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plus some charge from the outside, distribute themselves as a function 

of x. 

Approximate Solutions 

We now look at various approximations which can be made. We 

will consider both the normalized and unnormalized forms of the equa­

tion in this section; it is shown that care should be exercised in 

interpreting and in applying the normalized results directly to the 

physical situation because of the type of normalization used and the 

fact that the basic equation is nonlinear. 

Negligible Diffusion Term 

Using Eq. (4.12), we let |E" |  « ]ct2E(BE» - 1)1/3 |  so that 

A A A  A  A  A  A  

gEE1 - E = (BE' - 1)E = 0. 

This leads to two solutions 

A  A  A  

E = 0 and (BE' - 1) = 0. 

Integrating the second, we get for the pair of solutions 

(a) E(x) = 0, and (b) E(x) = x/B + c. 

We will now determine the regions over which each is valid. Besides 

the boundary conditions, we have one other fact which will enter the 

discussion: there is no limit on the negative charge density attain­

able, but the positive charge density has a maximum value given by 

the ion core density, PQ. Taking first the case of the insulated 



sample with a positive field, we find that at x = 0 the (b) solu­

tion does not have a proper slope. Solution (a) leads to a step in 

E which requires an infinite negative charge density. This is compati­

ble with our assumptions. On the right boundary, this solution would 

not be acceptable because it would require an infinite positive charge 

density to bring the field back up to the boundary value. The constant 

in solution (b) can be evaluated to give 

E(x) = 1 + (x - 1)/B 

for the right side of the interval. The dividing point between the 

two solutions is given by 

1 + (x - 1)/$ = 0 or x = 1 - 3. 

The solution for positive field and grounded sample is given 
/ V  A  

by E(x) = 0 over the entire region. The results are different when 

the applied field is negative. Using arguments similar to those 

above, we find a reversed result for the insulated sample. The re­

sult for the grounded sample is different in that the two solutions 

are required. Near the left boundary we use solution (b): 

A  A  A  A  

E(x) = x/$ - 1 0 < x < 3 

/ S  A  

For the rest of the interval we use E(x) = 0. The field and the 

charge profiles of these solutions are given in Fig. 4.2 and are 

summarized in Table 4.1. Repeating this for the unnormalized equation, 

we have 
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Insulated Case 

+  +  +  + +  +  +  +  
x = 0 x  =  L  

pdx = 0 

slope = — 

*• x 

PO 
o 

-PO 

• • tot 

f 
PO. 

0 

tot 

Grounded Case pdx ^ 0 

slope = — 

tot P O  
0 

tot 

Fig. 4.2. Solutions of Field Equation When Diffusion is Ignored 
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MP(x)E(x) = 0, 

and using 

^ dE 
p(x) = PO - E0 dx 

we get the differential equation 

dE 
PO " e0 ^ yE(x) Po - £(I T1 = 0 

with solutions 

E(x) = 0 

and 

PO 
E (x) = — x + E0. 

e0 

At this point we can see one of the difficulties that can arise 

in trying to apply the normalized results directly to the real situa­

tion. The slope of the field profile, dE/dx, appears to be a function 

of a, the applied field, since 3 = O/PQL in the normalized case. On 

the other hand, the derivation using the unnormalized equation shows 

no such dependence--only material parameters enter into the result. 

The results obtained from this approximation give us a quali­

tative feel for the way the charges will distribute themselves under 

the influence of the external field. Inclusion of the diffusion term 

will tend to smooth out the results, but it should not change the over­

all trend of the separation of the charges. 
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Table 4.1. Characteristics of Solutions when Diffusion is Ignored 

Solution E E' P tot  = PO-PW POO 

(a) 0 0 0 PO 

(b) 
X 
— + c 

3 

1/3 PO 0 

Negligible $E' Term 

The normalized form of the field equation is (Eq. 4.12) 

A  A  A  1  / " T A  A  

E" - (1-3E*) a2E = 0. 

The product 3E' derives from the mutual electrostatic repulsion of 

the charged carriers, and we now assume that this term is negligible 

with respect to unity. This approximation can be effected in several 

ways. The applied field can be made small so that a and 3 are small. 

Conversely, the gradient E1 can be made small, since 

"tot P0"PO° 
E' = = , 

eo e0 

and this means that p(x)~pQ. This can be interpreted another way by 

rewriting the condition: 



If the field is of such a magnitude that only a very small percentage 

of the available charge is required to compensate it, then the ratio 

p(x)/p0 will be small and our assumption will be valid. This case 

will later be seen to obtain for the case of bulk metals. 

We will treat the normalized form here and, with this assump­

tion, it reduces to 

d2E „ „ 
-r- - a2E = 0. 

dx2 

The general solution of this is the sum of two particular solutions 

(Nelson, Folley and Coral, 1960, Chapter 4): 

/S A A 

£ ax -ax 
E = a^e + a£e 

Boundary conditions for the insulated sample give us the result 

cosh aOs-x) 
E = 

cosh ha 

while the set for the grounded sample gives 

sinha(1-x) 
E = 

sinha 

Plots of these curves along with the first derivative and the first 

integral are given in Fig. 4.3 for various values of the parameter 

A  

a. 

Bearing in mind the cautions in the interpretation of the 

results of the normalized curves indicated below, we convert these 

solutions to the unnormalized form and calculate the first derivative 
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Insulated Sample Grounded Sample 

Fig. 4.3. Field, Charge, and Potential Profiles When $E' Term Can Be 
Neglected 
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Insulated cosh (L-2x)/2d 
case E = EQ 

Grounded 
case E = E f  

cosh L/2d 

sinh (L-x)/d 

sinh (L/d) 

-EQ sinh (L-2x)/2d 

d cosh (L/2d) 

-EQ cosh (L-x)/d 

sinh (L/d) 

The slopes at the origin for the two boundary value cases are given by 

E L 
Insulated case E'(0) = - — tanh — (4.13) 

d 2d 

Grounded 
case E* CO) = 

E L 
— ctnh — 
d d 

These slopes are plotted in Fig. 4.4 as a function of a = L/d. When 

the sample is sufficiently thick, the boundary condition at the second 

surface does not affect the curve near the first surface. This is of 

practical value when we discuss the possible experimental configurations. 

The asymptotic value which both cases approach in the limit can be com­

pared to the slope obtained in the first approximation where diffusion 

Was ignored. There, the slope was given by PO/EQ and was therefore in­

dependent of the applied field. Under the present assumption, however, 

the starting slope is now dependent on the size of the field at the ori­

gin. We will return to this point in the discussion of the numerical 

solution of the equation where no physical approximations are made. 

Figure 4.4 shows an interesting result as a->0. In the case of 

the isolated film, the slope of the field goes to zero, i.e., the field 

does not get attenuated, which is hardly surprising. On the other hand, 



-E* CO) in units of E./d 

2 

Grounded Boundary Condition 

- -rO ctnh(L/d) 

1 

Insulated Boundary Condition 

tanh(L/2d) 

a = L/d 
0 

1 2 3 4 

Fig. 4.4. Slope at Origin as a Function of Film Thickness 
o 
vl 



68 

in the case of the grounded sample the slope goes to infinity. The 

interpretation here is that as the film is removed, for example, the 

free charges which originally came from external sources remain behind 

in an infinitely thin sheet. Of course, such a limit cannot be reached 

in practice with a thin self-supporting film, but the concept has valid­

ity when we consider the case of a film deposited on a ferroelectric 

substrate, as we will do later. 

In each of the approximations used above, important aspects 

of the problem were ignored in the attempt to arrive at a mathematically 

tractable solution. Let us look at the validity of these approximations. 

In the first case we let ]E"] << ]a2E(3E*-l)^ /'^|. We have no 

way of assuring a priori that 3E1 will not be on the order of unity, 

thus requiring rather large values of c*2E to make the assumption valid. 

As a matter of fact, in the process of generating a solution with the 

A A 

assumption of no diffusion, we set gE' equal to 1! Thus we should not 

emplasize the results based on this assumption. 

A A A 

In the second approximation we let |0E'| << 1. E' takes on 

its steepest value of x = 0, so we can easily determine some limits 

on B from values of E'(0). In the case of the insulated sample, the 

worst case occurs for values of L/d which will make the hyperbolic 

tangent in Eq.(4.13) approximately one. A film with a thickness of 

at least three screening lengths satisfies this condition. This yields 

dE/dx = Ej)/d and the assumption, in physical units, becomes 

E(J E(J 



The largest fields which one can expect to get in a laboratory would 

not exceed 108V/cm. A highly conductive metal, e.g., copper, has 

PO - io23 carriers per cubic centimeter and d - 0.5R. This gives 

gq E0 

—  —  =  0 . 1 .  

PO d 

Thus, if a field of 108 V/cm is attainable, the approximation which 

neglects the nonlinear term is almost valid. By the same token, a 

field of 106 V/cm will reduce the contribution of this term to 0.1% 

or less at most. In the case of a material with significantly lower 

carrier density, this term is again seen to be important through the 

reduction of PQ in the denominator. 

For very thin samples the factor corresponding to the field 

gradient becomes smaller since the hyperbolic tangent is zero when 

the argument is zero [Eq.(4.13)3• This is another situation where the 

nonlinear term might be neglected. Unfortunately, the hyperbolic tan­

gent function becomes negligible only for values of L which are much 

less than the screening length d (see Fig. 4.4). 

In the case of the boundary conditions for the grounded sample, 

the thinner the sample is made, the more significant this term becomes. 

In a reasonably thick sample, the same conditions as the insulated case 

obtain. 

In summary we state that none of the approximations are very 

satisfactory in providing a solution. 



Numerical Solution of Equation 

Given a well-behaved differential equation, it is possible 

to use the fundamental definition of a derivative and go from a con­

tinuous function to a discretely sampled one, the sampling depending, 

of course, on the steepness of each differential involved. In partic-

At A 

ular, for our equation we could start at x = 0 with a value for E and 

A A A, A 

E', calculate E", and from this calculate new values for E!  and E at 

x = Ax. This process is repeated as often as necessary to proceed 

across some given interval. The size of the step increment Ax taken 

must be such that the true value for E is accurately approximated by 

the calculated value. This is the basis for numerical solutions of 

differential equations. As we have already seen in the precleding sec­

tions, the behavior of the equation is sensitive to all of the terms 

and therefore rather small steps in x will have to be used to achieve 

the desired accuracy. Fortunately, we know from physical considerations 

that all of the derivatives are well behaved, so we do not have to worry 

about any discontinuities. 

The boundary conditions, however, do pose a problem. As pre­

viously mentioned, there are two ways of specifying them for our equa­

tion: (1) the field E is given at two points; (2) the field and its 

derivative are given at some point. This latter case would be ideal, 

for if we knew E and E' at x = 0, we could simply apply the algorithm 

given above to calculate E from x = 0 to x = L. Alas, we know the field 

at two points, x = 0 and x = L, and we have no a priori knowledge of 
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the exact starting slopes. Therefore, we must adjust E' (0) until 

the curve passes through the point E(L). Since the procedure is a 

rather lengthy one, the only way of finding the solution is to program 

a computer to select a starting E'(0), evaluate the solution and then 

adjust E'(0) appropriately. After a certain number of iterations a 

satisfactory solution should result. Due to the steep curves and the 

large numbers which are sometimes added to smaller ones, it is necessary 

to have a large number of significant digits, especially when evaluating 

some curves which have large values for pg, a, and 3. 

The program which was written to accomplish this is listed in 

Appendix A along with a short user's description and a block diagram 

of the logic flow. 

Results and Discussion of Numerical Solution 

Plots of the numerical integration of the normalized equation 

are given in Fig. 4.5. Along with the solution to the electric field 

equation are plots of the electric potential and the charge distribution. 

There are several interesting features of these solutions which 

merit comparison with the results obtained in the approximations pre­

viously tried. First, there is an obvious asymmetry of the curves which 

was previously seen in the first approximation. The mathematical origin 

of this is the nonlinear term that disappeared when we ignored 6. The 

physical explanation for this comes from the fact that the positive 

carriers (the ionic cores) are not mobile, while the negative carriers 

(the free electrons) are capable of moving from one part of the sample 

to another under the influence of the field. 



Charge Density 

Electric Field 

Potential 
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A second feature that becomes apparent for certain ranges of 

parameters is that the E curve is very close to a straight line. 

On one side of the sample the electric field profile initially 

decays almost exponentially, while on the other side, the field initial­

ly decreases almost linearly. The linear behavior is advantageous if 

line shape analysis is to be done on the resulting spectra. The shape 

of the spectral ER line can be theoretically evaluated for such a simple 

case of inhomogeneous modulation. The electric field is known quite 

accurately so that the change in reflectance can be put on an absolute 

basis (Seraphin, 1967, discussion). 

In the discussion above we have been considering light incident 

on a film with a positive electric field as shown in Fig. 4.6(a). A 

change of the polarity of the field then presents the exponentially de­

creasing side of the field curve to the light [Fig. 4.6(b)]. If the 

light is somehow allowed to probe the film from the substrate side as 

shown in (c) of the same figure, the result is the same relative orien­

tation of the light and the field vectors as was the case in (a). In 

other words, reversing the polarity of the field will not simply reverse 

the polarity of the linear region. The only way to get the light to 

penetrate into a region where a negative field exists over a depth com­

parable to that probed by the light is to make the sample so thin that 

the field does not decrease very much throughout the thickness of the 

film. Since ER is a quadratic effect, the response is independent of 

the sign of the field. This minimizes the problem caused by the in­

ability to reverse the relative polarities in the linear region. 
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In our earlier discussion on the results of the two approxi­

mations we noted that a different type of slope was obtained for each 

case. It is now seen that they both appear in the numerical solution. 

In the region where we have depleted all of the electrons we have the 

same result as when we ignored diffusion. In the region where we have 

a large charge density, we have a result similar to the other case where 

we assumed the field term to dominate the electrostatic repulsion term. 

Not all mathematical solutions of the field equation are valid 

physical solutions. This may most easily be illustrated by an example. 

Let us assume values for a and 3 of 5 and 2, respectively. This means 

that the number of external fixed charges which generate the field is 

twice as large as the number of free electrons in the metal film. Gauss' 

law predicts that the field will decrease by a factor of two through 

the thickness of this film. This result is shown in Fig. 4.7.and is 

labeled A. Curve B is that which we get when the film is insulated. 

Curve C, which is dashed, is a possible mathematical solution. This 

latter result is unphysical, however, because the normalized charge 

density cannot rise above 0.5. If it did, this would mean that we are 

taking out of the film more negative charges than are available from 

the free electrons. This could only come about by removing inner core 

electrons, and this is contrary to the working hypothesis that these 

electrons are tightly bound in comparison to the fields we are applying 

externally. Thus the shaded region is the only one in which physical 

results are possible for negative fields. 
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Fig. 4.7. Physically Allowed Solutions to the Field Equation 
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This is not the case with positive fields, since in this 

case we can easily get external negative charges to flow into the 

film in the grounded case, and they can find a place in the band struc­

ture as long as there is no gap in the conduction band. 

Elimination of Free Electron Effects 

One of the most serious objections to the results obtained 

in past studies of the electroreflectance of metals is that the free 

electron effects may dominate as discussed in Chapter 3. The equations 

developed here are consistent with these views. The solutions to the 

field equation and the corresponding charge density plots, however, 

point to a way to overcome these objections. Figure 4.8 is a plot of 

the electric field profile, the charge distribution, and the light 

field profile. If we now vary the electric field to the extent shown 

by the three curves, we find that the charge density in the region sam­

pled by the light does not change. Therefore, the interaction between 

the light wave and the solid will be independent of any free electron 

effects. 

The physical explanation for this effect lies in the fact that 

we have a large region in which the free electrons are completely de-

a 

pleted. The slope of the field in the normalized case is 1/B, while 

in the unnormalized case it is PQ/EQ. It is significant to note here 

that this applies only to the case where the sample is electrically 

insulated. 

When the sample is connected to ground, in general, there is 

no way of eliminating the free electron effects. As the electric field 



.5 
0 

- 6  

1 

0 

Light 
Intensity io 

0 

Fig. 4.8. Profiles of the Electric Field, the Charge Distribution, 

and the Light Wave in an Insulated Sample 



79 

is varied, charges flow into and out of the film. The light meanwhile 

probes the tail of the electric field profile from the other side, where 

for all practical purposes, the electrons are always at their bulk value 

(see Fig. 4.9). If the sample is such that the two profiles overlap, 

the varying charge distribution will also reach into the region probed 

by the light, thus giving rise to free electron effects. Furthermore, 

this will happen only if the sample is made exceedingly thin (lOOX for 

the case of copper), in which case it is doubtful whether we are actual­

ly observing the band structure of the metal or whether we are seeing 

something else, such as some interface reaction between the substrate 

and the first few molecules, or even the electroreflectance of the sub­

strate itself. This discussion is valid for the general case of metals 

with large free electron densities; in the particular case of bismuth, 

it is shown in another section that it is indeed possible to obtain ER 

because of its low free electron concentration. 

Real Materials 

In this section we consider real metals and the possibility 

of their being used as sample materials. Table 4.2 lists the physical 

parameters of some metals whose band structure has been calculated by 

various investigators. Since we would like the slope of the field to 

be as small as possible in the region where the field is nearly linear 

for the insulated case, we should consider metals with low carrier den­

sities. This leads to those materials in the semimetal group: bismuth, 

antimony, and arsenic. Of these, bismuth is the best candidate, both 



Table 4.2. Optical and Physical Constants of Selected Materials 

Ge Bi Sb Cs Fe Ag Au Cu 

n(a) 4.5 1.79 2.6 0.264 1.51 0.18 0.47 0.44 

k 1.7 3.46 4.19 1.123 1.63 20.6 6.02 7.4 

X(jjm) 0.6 0.6 0.6 0.578 0.589 0.589 0.589 0.65 

195 96 26 283 199 15.8 54.0 48.5 

EF(eV) -- 9.97(b) 11.04(c) 1.58(d) 2.8(e) 5.5(d) 5.5(d) 5.5(d) 

nu (cm-3) 2.4E13(d) 2.75E17(f) 5.54E19(f) 0.91E22(d) 1.7E22(e) 5.76E22(d) 5.90E22(d) 8.50E22(d) 

d$) 2442 366 27.1 .80 0.78 0.59 0.58 0.55 

a(m-1) 4.095E6 2.735E7 3.69E8 1.240E10 1.283E10 1.695E10 1.724E10 1.818E10 

6 (m2/V) 2.305E-12 2.011E-16 9.98E-19 6.507E-21 3.254E-21 9.603E-22 9.375E-22 6.507E-22 

t, = depth at which light intensity is reduced 
to h surface intensity 

= (X0 In 2)/(47rk) 

/2£0EF\>i /eoVN's 
d = screening length « for Ge 

fermi energy a = 1/d 

Ca) 

(b) 

(<0 

(d) 

(e) 

n 0 = free electron concentration 6 = efl/po = eo/noe (f) 

Optical constants from Ge to Fe are from AIP 
(1972); those from kg to Cu are from 
Chemical Rubber Company (1961) 

From Golin (1968) 

From Falicov and Lin (1966) 

From Kittel (1971), p. 248 

From Sze (1969) 

From Dresselhaus (1971) 
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from the theoretical and from a practical standpoint. It has the 

lowest free electron density and its band structure has been calculated 

(Golin, 1968). Experimentally, it is easy to evaporate and it forms 

good thin film samples. In the linear field region of an isolated 

sample we calculate for dE/dx the value of 5.4 x 1011 V/cm2. If the 

applied field is 106 V/cm, we can immediately get a rough estimate of 

the penetration depth of the field by assuming that the linear portion 

extends all the way to zero field. We then find that the profile reaches 

to a depth on the order of 200 8. This is twice as deep as the depth at 

which the light is attenuated to one half of its surface value. Since 

the field never actually gets to a zero value in the insulated case, our 

assumption is pessimistic, so the result is on the conservative side. 

Thus, it would seem that the semimetals, and bismuth in particular, 

would be appropriate materials with which to start. 

The numerical solution was evaluated for several thicknesses of 

a bismuth film for both the insulated and the grounded cases. The 

results for a 1000 X thick Bi film are shown in Fig. 4.10. It is seen 

that the electric field on the right hand side for the insulated case 

remains relatively large in the 200 X thick region probed by the light 

wave. 

The linear approximation suggested above can be applied to the 

true metals as well; in this case the penetration depth in gold is on 

the order of 0.1 R. Thus it is seen that it will be very difficult to 

get an electric field inside such a material. The Thomas-Fermi distance 

for the noble metals is about 0.5 X, not in bad agreement with the rough 

approximation. Diffusion effects contribute to make the region wider. 
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Numerical integration using the parameters for gold confirms 

this; in fact, the field drops to 10% of its initial value within 1.5&, 

and to 1% within 3$. On the opposite side of the sample, the behavior 

of the field is the same, since we are in a situation where & is negli­

gible and we have the symmetric solution given by the hyperbolic cosine. 

ER of Bismuth 

It should be possible to observe ER spectra for 500X thick 

bismuth films even though they are not insulated. In this method, the 

free electron effects would be eliminated by ensuring that both halves 

of the sample on the ceramic are fully depleted of free electrons. It 

would only be possible to do this with one polarity of the electric 

field; but since ER is a quadratic effect, this should not be objection­

able. 

In terms of the normalized equation, the proposal is to make 

6 equal to unity on one half, while on the other half it would be made 

closer to 45. In the first case, the field would just deplete the free 

electrons, while in the second, a large field would exist with the same 

charge density in the metal. Comparison of the two reflectances would 

lead to seeing the change introduced in band structure by the large dif­

ferences in the electric field. 

In terms of real numbers, a fully polarized ceramic's field of 

3 x 1010 V/m would be attenuated to 2.975 x 101® V/m at the free side of 

the film. On the other half, the ceramic needs to be polarized to only 

0.25yC/cm2; this will give rise to a field of about 2.5 x 108 V/m which 



will just be completely attenuated by the charges in the bismuth film. 

This is shown in Fig. 4.11. 

The large difference in the electric field between the two 

sample halves is of the order of magnitude previously discussed for 

observing interband transitions in metals. It would be necessary to 

eliminate the poling electrode for this experiment since the equations 

show that very thin layers of metals with large free electron densities 

can obliterate the field. It would not be possible to use the bismuth 

directly as the poling electrode since this would produce different 

strains in each half, and this would interfere with the ER response. 

Cardona and Greenaway (1964) measured the static reflectande 

of bismuth and their static spectrum is reproduced in Fig. 4.12. The 

band structure of bismuth was calculated by Golin (1968) and his results 

are reproduced in Fig. 4.13. As a result of these studies, it becomes 

easier to estimate where to look for structure in the ER spectra. It 

is expected that features in the static spectrum will be reflected in 

the modulated ER spectrum, although the inverse is definitely not true. 

On this basis, it is therefore predicted that strong structure should 

be found in the near infrared region around 0.75 and 1.0 micrometers, 

and in the violet at about 4000 X. 
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CHAPTER 5 

EXPERIMENTAL APPROACH TO THE ER OF METALS 

In this chapter, the experimental aspects of the measurement 

of the electroreflectance of metals are considered. The feasibility 

of constructing various sample configurations which attempt to approxi­

mate the models presented in Chapter 4 are discussed. The techniques 

of preparing the samples are then covered, followed by a description 

of the construction of the instrument which measures small differences 

in reflectance (reflectometer) and its electronic and optical systems. 

Finally, the results obtained with this apparatus are compared to pub­

lished results of other similar apparatus. x 

Material Choice and Sample Configuration 

The results obtained in Chapter 4 are used as a guide in select­

ing materials and in designing the sample. The choice of material and 

the experimental arrangement are interrelated since some materials are 

incompatible with the preparation of some sample configurations. There­

fore, these two aspects of the ER of metals have to be considered together. 

Actually, a choice of two materials is necessary. The first mate­

rial used should be one whose ER response is relatively large and well 

known. This sample will not be a metal since metallic ER responses 
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are still rather indefinite as discussed in Chapter 3. This material 

is used to calibrate and to "fine tune" the apparatus, since the 

wavelengths at which a response should be seen are known. The second 

material is a metal whose ER spectrum is unknown; its selection is 

such as to simplify the observation of the spectrum. 

We have previously seen that the difficulty involved in ob­

serving the ER spectrum of a metal is in a sense proportional to its 

free carrier density pg. It is prudent, therefore, to select materials 

with low carrier concentrations. A semiconductor is adequate for the 

calibration phase, while a semimetal is a suitable starting point for 

the metal studies. With these thoughts we now consider the experimental 

arrangement. 

The difficulties encountered with the electrolytic method were 

discussed in Chapter 3. This method was not considered for this study 

because of the indefinite results of the extensive studies already made 

by other researchers. A popular technique, called the "Seraphin method" 

(Cardona 1969, p. 206), has been usr:1 extensively for the measurement of 

the ER of semiconductors. This uses a field effect sandwich structure 

and was first described by Seraphin (1964 and 1967). Unfortunately, 

two drawbacks, which stem from the fact that the grounded boundary con­

ditions hold in this method, prevent the use of the technique for most 

metals: (1) The results of the numerical integrations show that the 

electric field is shielded within a few Angstroms of the surface. (2) 

The free electron effects are not eliminated. The two effects can be 
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overcome by completely insulating the sample from its conductive 

surroundings. 

A self-supporting thin metal film (Hunter, Angel, and Tousey, 

1965) placed in an electric field in a perfect vacuum would be a close 

approximation to the mathematical model (Fig. 5.1). Unfortunately, 

such a film is in unstable equilibrium in the electric field, since 

any unevenness in the film would allow charge to accumulate at that 

point. This would cause large forces to act at those points and there­

by cause even larger distortions. The result is ah avalanche effect 

which would lead to a rupturing force on the film. 

Replacement of the vacuum by a solid insulator produces a 

configuration which encapsulates the metal as shown in Fig. 5.2. This 

structure which resembles a "ravioli" is reminiscent of the Seraphin 

method, except that now the sample is electrically "floating." The 

electrodes are placed directly on the insulator surfaces; this struc­

ture can be constructed in a straightforward way using standard thin 

film evaporation techniques. The film thicknesses are made thin enough 

to preclude optical interference effects in the wavelength region of 

interest. 

Many benefits accrue from such a structure, although there are 

some drawbacks as well. The worst of the drawbacks is the fact that 

the field is now limited by the physical parameters of the insulating 

film. Thin films of Si02 and AI2O3 are about equal in this regard in 

that the dielectric breakdown strength of each is in the range of 106 
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to 107 V/cm. Si02 is by far the easier to evaporate and is the 

choice for that reason. 

This configuration also closely approximates the mathematical 

model with the insulated boundary conditions discussed in the previous 

chapter. It is easy to construct and since it can tolerate elevated 

temperatures, this allows the use of germanium as a sample material. 

A thin film of Ge has to be heated to at least 450°C to convert it 

from the amorphous phase to a polycrystalline one. The ER response 

of Ge has been extensively studied and its spectrum is well known 

(Seraphin and Hess, 1965). Such a material would be very useful to 

fine-tune and to calibrate the apparatus before making measurements 

on a material whose ER response is totally unknown. Insulator break­

down would be readily apparent with this structure since the modulating 

voltage can be monitored with an oscilloscope. When this occurs, the 

metal film is no longer electrically isolated and the field in the 

metal is difficult to calculate, since the boundary conditions are 

uncertain. 

A third configuration involves the deposition of the sample 

film on a ferroelectric substrate. This is similar to the approach 

taken by Ishibashi and Stadler (1969); in this case, however, the po­

larization of the ceramic is not changed during the measuring process. 

The basic structure of this type of sample is given in Fig. 5.3. This 

approach is an attempt to take advantage of the surface charge produced 

through the polarization of the ferroelectric. The ceramic PZT-5H has 

a polarization charge density of about 30 yCoulomb/cm2. Let us assume 
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for the moment that we can instantaneously polarize an unpoled 

ceramic (e.g., by using a noncontacting electrode) and also keep it 

insulated. An electrical surface charge of 30 yC/cm2 would appear 

at the surface and give rise to an electric field just outside the 

ceramic of a/tQ, or about 3 x 10® V/cm (Reitz and Milford, 1967). 

This is one to two orders of magnitude larger than that possible with 

the ravioli structure discussed previously. The ER response scales as 

the square of the applied electric field in the low field regime. The 

present approach would then produce a response 102 to 101* times larger 

than what is possible with the ravioli configuration. 

The 30 yC/cm2 of charge on the surface of the ceramic tend to 

attract an equal and opposite charge to the surface. A 1000 % thick 

film of a semimetal such as bismuth has a free electron density of 

about 1017/cm3. If all of these electrons are concentrated at the sur­

face of the film which is closest to the ferroelectric substrate (clearly 

an unlikely situation when Coulomb repulsion, diffusion, and the ion 

cores left behind in the film are considered), the electric field is 

not completely compensated by this layer of charge, and the field pene­

trates into the film. A 1000 R high column of Bi film above a square 

centimeter of ceramic can supply at most 1017/cm3 x 1cm2 x 1.6 x 10"19 

C x 1000X - 0.2 yCoulomb of charge. This is only 0.6% of the charge 

required to shield the field, so a very strong electric field penetrates 

through this sample. The same calculation made for a noble metal film 

which is 10 times thinner than the previous one and which has a free 

electron density of about 1023/cm3, gives 1023/cm3 x 1cm2 x 1.6 x 



10"19C x 100X - 2 x 10~2 Coulomb of charge. It now takes only 0.1% 

of the charges in this rather thin film to completely shield the field. 

It is therefore apparent that it will be very difficult to observe an 

effect for the noble metals with this type of experiment. 

As discussed above, the ferroelectric ceramic substrate approach 

provides the largest electric field. The next aspect to consider is 

the feasibility of constructing such a sample. One source of difficulty 

is that a ferroelectric material is also piezoelectric so that the pro­

cess of polarizing the substrate will produce large lateral surface 

strains. This was ignored in the discussion above, but since unambig­

uous results are desired, differential strains in the film must be 

avoided. The solution to this is to deposit the film after the sub­

strate has been poled. 

With one half of the substrate poled and the other half unpoled 

and by sampling alternate halves, the change in the reflectance of the 

sample film under the influence of the electric field can then be mea­

sured. The details of an apparatus which measures this will be given 

below. 

One configuration which was tried for the polarization of the 

ceramic was the evaporation of a very thin film of chromium in two 

sections on the substrate. The choice of Cr was based on the fact that 

it forms a conductive film when its thickness is on the order of 20 X. 

It was hoped that this thickness of film would not be large enough to 

shield the field. The Cr film was used as an electrode to pole one 

half of the substrate and then a sample film was evaporated on both 



halves. The boundary conditions of this configuration are those of 

the grounded film; this is the less desirable of the two cases. 

Sample Preparation 

Two types of samples were prepared in this study and the 

preparation of these is described in this section. 

Sample and Oven Construction 

The samples deposited on the ceramic substrate were prepared 

in a vacuum chamber. An oven is needed to hold the ceramic and to heat 

it to at least its Curie temperature. The particular ceramic used is 

known as PZT-5H and has a Curie temperature.of 193®C. It is necessary 

to make electrical contact with the heated ceramic in order to measure 

the film resistances and to apply the poling voltage. These require­

ments are met by the oven outlined in cross-section in Fig. 5.4. 

The ceramic substrates were approximately 1 x 2 x 0.2 cm in 

size so that two areas about 1 cm2 served as the poled and the unpoled 

halves. The side of the ceramic onto which the film was to be deposited 

was polished, while the opposite side of the slab had a silver film 

fired into it. Small conductive pads were placed in the four corners 

of the polished side in order to make contact between the evaporated 

film and the oven contacts. These pads were made in either of two ways; 

they were, a. painted on with silver paint; b. made of relatively thick 

evaporated Cr films. External contact is made to these through the use 

of small stainless steel set screws which are part of the oven assembly. 
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An iron-constantan thermocouple is wedged in a space between 

the teflon holder and the ceramic to measure the temperature. It is 

completely shielded from the direct rays of the heater lamp and is at 

what is one of the cooler points. We are thereby assured that when 

the indicated temperature is above the Curie point, no part of the 

ceramic is below the Curie temperature. The thermocouple and meter 

circuit was checked at 0°C and at 100°C and was found to be accurate 

to within a few degrees; this is sufficient for this use. 

The lamp used as a heater was a 45 watt quartz iodine unit 

which was intended for operation at 6.5 volts and 6.6 amps. A vari­

able autotransformer operating from the power lines supplied the 

primary of a 6.3 volt filament transformer with a variable voltage. 

In this way the heater power could be varied so that a maximum tempera­

ture of about 230°C (indicated) could be reached. 

The poling voltage could be transmitted into the vacuum 

chamber through either of two connectors. One was a standard high 

voltage feedthrough for operations such as glow discharges, so that 

several kilovolts could be used if necessary. The other feedthrough 

was a multipin ceramic header through which up to about 300 volts per 

pin could be passed into the vacuum chamber. The voltage was applied 

while the sample temperature was above the Curie temperature; the 

heater power was then turned off while the high potential remained on 

until the sample cooled to room temperature. 

If a film is used to pole the ceramic, it has to be conductive 

yet be as thin as possible. The reason for the latter is that we want 



to minimize any effects this film might have on the sample film. 

During the evaporation process the resistance of the deposited film 

is monitored with an ohmmeter and the run is terminated when a resis­

tance of several megohms is reached. It is necessary to monitor the 

resistance for a while after the evaporation is completed to ascertain 

that the film remains sufficiently conductive after it has cooled. 

The ceramic substrates were first cleaned with demineralized 

water and detergent, followed by successive washes in acetone, abso­

lute ethanol, and finally distilled water. No glow discharge was used. 

This process, though crude by some thin film technique standards, proved 

adequate for our needs. As an example of the adhesion obtained between 

the chromium film and substrate, it was sometimes necessary to resort 

to a polishing compound to remove a film from the ceramic after we were 

through with a particular sample. 

The other sample is as shown in Fig. 5.2. The substrate is 

a 1 x 3 inch microscope slide; it is cleaned in the same manner as the 

ceramic substrate. The bottom electrode was an aluminum film, although 

any good conductor is suitable. Next, a layer of SiC>2 was evaporated 

so as to cover most of the A1 layer except for a small area which was 

used to make electrical contact. A mask was then used to limit the 

extent of the bismuth sample film; in fact, five sample areas of about 

0.5 by 1.5 cm were made on one slide. An overcoat of Si02 was then 

evaporated, followed by the top electrode. This latter film was a 

transparent layer of Cr evaporated through the mask used previously 
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to define the active areas, except that it had slightly enlarged 

apertures so that electrical contact could be made without covering 

any part of the active sample. 

Material Evaporation 

All materials were evaporated by resistively heating them in 

a vacuum of about 10"5 torr until the desired thickness was deposited 

on the substrate. Initially, alumina-coated tantalum boats'were used 

for the evaporation of Cr, but this proved to be unsatisfactory, since 

the temperature of the Cr could not be raised high enough for it to 

evaporate at a reasonable rate. Later, tungsten rods with a chromium 

electroplate were obtained from commercial sources and subsequent 

chromium evaporations with these sources were very successful. 

Germanium was easily evaporated from tungsten dimple boats, 

although the two materials alloyed and after a few runs the boat had 

to be replaced. Due to its lower melting and boiling points, bismuth 

was even easier to evaporate than germanium and it did not alloy with 

the boat. 

No monitor equipment was used to control the evaporation of 

the Bi or Ge. The substrate was always cold and since we desired films 

which were just opaque, we could judge when to stop the evaporation by 

watching the film deposited on the bell jar. A witness substrate was 

usually placed where part of the supporting structure would cast a 

shadow on it. After the chamber was opened, this test slide was placed 

in another chamber where an overcoat of aluminum was evaporated onto 
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the entire slide. The step formed by the edge of the shadow could then 

be measured with a Fizeau interferometer. 

The evaporation of silicon dioxide was done in a third chamber 

where it was possible to monitor optically the film thickness. This 

system, which consisted of a bell jar eighteen inches in diameter and 

a 6" diffusion pump, had an ion gauge pressure measuring system along 

with a needle valve which allowed us to maintain manually a residual 

pressure in the chamber of about 10-*1 torr. This pressure is required 

in order to get good films of Si02, rather than a mixture of SiO and 

Si02 (Hahn, 1973). The monitor system measured the reflectance from a 

sample slide and displayed it on a strip chart recorder. The reflectance 

of the monitor slide is not only a function of the index of refraction 

of the incident medium and of the glass but also of the index and the 

thickness of the film deposited on it (Heavens, 1965). The value of 

the extrema which appear at a given wavelength as a function of film 

thickness is related to the difference between the indices of the sub­

strate and the film. When the two indices are nearly equal the ex­

trema are weak and broad. This is the case with silicon and glass 

(n = 1.45 and 1.52, respectively). The monitor slide was therefore 

precoated with a quarter wave optical thickness film of zinc sulphide 

(n = 2.3), This formed a two layer interference film stack which was 

much more sensitive to the thickness of the silicon dioxide film. This 

made the point at which to stop the evaporation much easier to deter­

mine. A wavelength of 5461 X was used, thus the quarter wave layers 

had an optical thickness of 1365 X. 
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Ferroelectric Studies 

The original samples of ferroelectric ceramic were obtained 

through the courtesy of Dr. Cecil Land of Sandia Corp. Later, samples 

of the same composition, known as PZT-5H, were obtained commercially 

from the Vernitron Corp. of Cleveland, Ohio. The manufacturer gives 

50 V/mil (20kV/cm) as the room temperature dielectric breakdown strength 

for this material. This drops to about 35 V/mil (14kV/cm) at 100°C. 

Jaffe, Cook, and Jaffe (1971) state that it is generally necessary to 

use a voltage close to the breakdown voltage in order to pole a ferro­

electric material. Since the samples used in this study were about 

2mm thick, this required the application of a potential of about 4 

kilovolts at room temperature, and about 3 kV at 100°C. No data was 

available for higher temperatures, and in particular, at the Curie 

temperature. An attempt was made to apply about 2kV at a ceramic 

temperature of about 200°C; the results were catastrophic and the 

sample was completely ruined. The currents which flowed in the film 

when the breakdown occurred were very apparent since the film was va­

porized in a fern-like pattern. The capacitance of the structure was 

approximately 

AE (1cm2)(3000EQ) 
C = — - - 1.4 nanofarad. 

d 2mm 

The charge stored by this capacitor at 2000 volts flowed through the 

point of breakdown, and since the circuit had very little resistance 
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or inductance, the power density in the arc was enough to melt parts 

of the ceramic. 

The question was now raised as to what voltage was required 

to polarize fully the ceramic at the Curie temperature. It was de­

cided to try to measure the polarization charge during thermal depoling. 

A Keithley model 610B electrometer which could measure up to lOy 

coulomb full scale with less than lO-14 coulomb/second drift was used. 

Since the expected charge was 

q = Aa - (1 cm2) (30yC/cm2) = 30JJ Coulomb, 

it appeared as though it would not be possible to measure the entire 

charge. A test of the electrometer showed that it indeed did have 

negligible drift. Thus it was decided that it would be possible to 

zero the instrument by first disconnecting the charge source and dis­

charging the integrating capacitor in the electrometer. If this was 

done as it approached full scale, the charge source could then be re­

connected and the measurement continued. The instrument effectively 

grounded the front surface of the ceramic; during the time it took to 

discharge the electrometer capacitor the potential built up on the 

surface of the ceramic, and it was desirable to rezero as quickly as 

possible. It was generally possible to do this in 2 to 10 seconds, 

while the overall discharge operation took on the order of 30 minutes, 

thus making negligible the error from leakage due to a potential ap­

pearing on the surface. In this way, we were able to measure reason­

ably reproducibly the polarization charge in spite of the fact that 

the literature states otherwise (Fatuzzo and Merz, 1967). 



104 

A second way was used to ascertain that the ceramic was po­

larized. The capacitance of the plane parallel capacitor formed by 

the sample configuration was measured with a bridge. The values of 

the dielectric constant could then be calculated for both the poled and 

the unpoled sample halves. These values agreed well with those sup­

plied by the manufacturer of commercial pieces as shown in Table 5.J. 

It is not surprising to see a difference between the two values in 

view of the fact that these ceramics are formed by hot pressing in 

special atmospheres and therefore variations in the exact process used 

could result in the differences. Another source of error is the fact 

that our configuration is not an ideal plane parallel capicator. 

Figure 5.5 shows the results obtained when the polarization 

surface charge was measured as a function of the poling voltage. In 

every case, the maximum temperature was well above the Curie tempera­

ture before the voltage was applied and the heater power turned off. 

Table 5.1. Relative Dielectric Constant of PZT-5H 

poled unpoled ratio 

average of 
measured values 3803 2537 .666 

commercially 3400 2040 .60 
available values 

Not all of the data points at 300 V are shown since experimental 

difficulties caused the discarded points to fall well below what they 

should have been. The cause of this problem was apparently a poor 



105 

M A 
T 

,/40 r 
cmv 

T > T, 
max c 

10 -

200 400 600 8 0 0  |Vp| 

(Volts) 

S.5. Polarization of 2mm Thick Sample of PZT-5H vs. Poling Voltage 



106 

contact, most likely that between the pads on the ceramic and the 

contact screws in the Teflon holder. The point of this study was to 

determine the minimum poling voltage for which we could obtain a 

satisfactory polarization; the answer can be obtained from the curve 

and is about 300 volts. 

The curve in Fig. 5.6 gives the result of an experiment which 

varied the maximum temperature of the sample at which point the poling 

voltage of 300 volts was applied. In all of these cases, the heater 

power was turned off promptly after the voltage was applied, and the 

voltage was removed as soon as the sample reached room temperature. 

Undoubtedly, time enters into these curves, i.e., if the heater had 

been left on for a longer period after the voltage was applied, it 

is likely that a larger polarization would have been measured. Though 

such a study could prove to be interesting, it was not the subject 

of the present project, so once the pertinent answers had been obtained, 

the subject was not pursued further. 

The stress effects which arise from the piezoelectric effect 

which is always present in ferroelectric materials could be seen 

plainly on the surface of the ceramic. Since only certain discrete 

regions were actually polarized, the boundaries between the poled and 

the unpoled areas were marked by a rise or swelling in the surface 

topography, so that the poled areas were elevated above the unpoled 

regions. Since material is conserved, there is a compensating con­

striction in the plane of the surface. This gives rise to surface 
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strains and ultimately to the piezoreflectance effect which can con­

fuse the study of the electroreflectance effect. 

Optical Configuration 

In this experiment we are comparing the difference in reflec­

tance between two states of the sample, one with and one without an 

electric field. For the case of the ceramic-based sample, this has 

to be done in a spatially sensitive manner since the polarization of 

the substrate is not going to be changed during the measurement process. 

This type of measurement is known as "spatial modulation" (McNatt and 

Handler, 1969) and there are two basic ways in which this can be ac­

complished: 1) move the light beam from one side of the stationary 

sample to the other half; 2) keep the light path fixed and move the 

sample laterally in the beam so that the two halves are exposed alter­

nately. 

Moving Beam 

The moving beam approach was tried initially by using a chopper 

wheel situated immediately next to the exit slit of a monochromator. 

Hummel, Dove, and Holbrook (1970) tried a similar system for their 

compositional modulation studies, although they later changed their 

system to use a vibrating mirror to move the light beam (Hummel, Hol­

brook, and Andrews, 1973). It alternately opened the top and bottom 

halves of the slit; the slit was imaged on the sample so the result 
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was to illuminate sequentially the two halves of the sample. The re­

flected beams were then directed to the photocathode of a photomulti-

plier (PNTT) . 

The basic difficulty with this approach is that the two beams 

could not be precisely recombined on the photocathode surface. The 

result of this is that while the intensity difference between the two 

beams can be balanced to a null at any given wavelength, this zero 

balance changes as a function of wavelength. The null sought here is 

on the order of one part in 105 in the measurement of AR/R. It was 

found impossible to adjust the system so that the zero point did not 

change for even a limited spectral range of a few hundred Angstroms. 

Results of studies (Birth and DeWitt, 1971; Ballik, 1971; and Sommer, 

1973) of the spectral as well as the spatial (areal) response charac­

teristics of photocathodes show that the variations in these parameters 

within a particular unit can be on the order of tens of percent; the 

null sought here is many orders of magnitude smaller than that. An 

adjustable vee-shaped mirror, a ground quartz diffuser, and a mask 

over the photocathode were all tried in an unsuccessful attempt to 

minimize the effects of the nonuniformities. As long as the two beams 

are not coaxial, there will always be a keystone shape in the beams as 

they are recombined; it is not possible to make them coaxial with all-

reflective optics. 

An all-reflective optical system is desirable in order to have 

the capability to operate over a large spectral range, from the near 
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infrared to the near ultraviolet. The simplest way of covering this 

wide region of the spectrum is to use mirrors. No problems are there­

by incurred from surface reflection losses, absorption in the elements, 

or variations in the focal point with wavelength. 

Another problem was associated with the use of the chopper 

wheel to open the upper and the lower halves of the monochromator slit. 

It was desired to minimize the number of transmissive elements in the 

optical system, so the wheel was an aluminum disk with slots machined 

in it. Even though great care was used, the hole spacings were not 

uniform, nor were the slots of the optimum shape. These problems 

combined to add a significant amount of jitter to the system. It is 

possible that a quartz disk with a photographically formed pattern 

would have been more successful in this regard, but the time and effort 

required to produce such a chopper did not seem to be warranted, espe­

cially in view of the other problems associated with this particular 

approach. 

Moving Sample 

In the second way of accomplishing spatial modulation, the 

optical path is kept constant and the sample is moved back and forth 

in the beam so that each half is sampled alternately. This motion 

can be obtained in either of two ways: a. The sample is mounted on 

a structure which is driven in a nonresonant manner. Such a system 

includes Beaglehole's method (1968) as well as an arrangement where 

the sample is attached to a loudspeaker coil driven by a hifi amplifier. 
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These have the advantage that the modulation frequency can be easily 

changed and optimized to avoid natural resonances of the supports, 

b. The sample is part of a mechanical resonator and its oscillations 

provide the necessary reciprocating motion. This approach has the 

advantage that a much larger amplitude than that possible with a loud­

speaker type of arrangement can be easily obtained. This in turn 

means that a larger surface area of the sample is used, thereby averag­

ing out effects from dust and other imperfections on the sample. 

The reflectometer described here used the approach of a moving 

sample mounted on a resonant mechanical oscillator. The ceramic sub­

strate was glued to one tine of a tuning fork and the amplitude (peak 

to peak) obtained was about 0.5 cm at about 70 Hz. 

Ideally with this arrangement there would be no motion of the 

light beam at the photomultiplier. However, if the sample is mounted 

so that its surface is not exactly parallel to the plane of vibration, 

a translation of the beam at the photocathode can occur. Similarly, 

if the tip of the tuning fork tine moves in an arc rather than stays in 

a plane, the beam will have an angular deviation and a consequent mo­

tion at the photocathode. This problem could be overcome to a certain 

extent if the pupil of the system could be positioned at the sample. 

Unfortunately, this is not possible becuase a sharp image of the slit 

is needed at the sample to allow discrimination between the two halves 

of the sample. The only other alternative, and that which was used, 

is to ascertain that the beam at the PMT is not an image of the sample. 
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The moving sample optical arrangement always has the light 

path reflecting from the same parts of each mirror, thus eliminating 

spurious signals which could arise if the reflectances of the mirrors 

were not uniform. Scattered light should be less of a problem with 

the moving sample arrangement since the light entering the reflectom-

eter box is not modulated while that with the chopper wheel arrange­

ment is. In the moving beam reflectometer any light which is scattered 

also has the proper modulation impressed on it for detection by the 

lock-in amplifier. In the former case, scattered light is not modulated 

(in general) and is therefore not detected. With the lock-in amplifier 

configuration used in this experiment, constant light levels or even 

wavelength independent modulated signals are tolerable so long as their 

level is not so great as to overload the amplifier circuits or exceed 

the offset capability of the lock-in amplifier. 

The optical system will be described in more detail later. 

Suffice it to say here that with the moving sample and resonant oscil­

lator system we were able to achieve the goal: to get a null balance 

which would stay constant as a function of wavelength over a significant 

range of photon energies. 

Present Apparatus 

The ER measurement system, as presently constructed, can be 

discussed as separate units such as optical, electrical, and mechanical. 

Figure 5.7 shows the inter-relationship between the optical and the 

electrical components. Each of these will be discussed in detail. 
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Optical 

Two basic light sources are used which provide coverage of 

the optical spectrum from the near infrared to the near ultraviolet 

(UV) . For the infrared and the visible portions of the spectrum, a 

100 watt quartz-halogen lamp is used. The power source can be either 

a regulated DC supply or a set of storage batteries. The batteries are 

electrically quieter than the regulated DC source hence these are used 

when an accurate spectral scan is made. In the UV, a 100 watt high 

pressure xenon or mercury-xenon arc source is used. The arc source 

has a much higher brightness than the tungsten source; consequently, 

we get more light energy onto the sample and this tends to increase the 

signal to noise (S/N) ratio. Unfortunately, the noise introduced by 

the arc fluctuations and the radiated spike noise from the lamp power 

supply tend to offset the gains made in the S/N ratio. It was therefore 

decided to use the arc source only in spectral regions where the fila­

ment source was not bright enough. 

The monochromator does not have to have a very high resolution 

for the ER spectroscopy of interband transitions. The structure in 

such a spectrum is usually on the order of hundreds of angstroms wide, 

so that it is obvious that the resolution requirements are very mode&t. 

The monochromator used in this apparatus was a Jarrell-Ash f/3.6 Ebert 

grating instrument. Its nominal resolution with a pair of 100 micrometer 

slits was about 5 X. Normally, a pair of 250 um slits was used in order 

to increase the light throughput. The manufacturer gave no data on the 
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instrument's resolution when these latter slits are used, so the res­

olution was assumed to increase linearly and was estimated to be about 

15 K. 

The optical arrangement is shown in Fig. 5.8. The location of 

the chopper wheel C is given for reference purposes, but it is no longer 

used. There are only two components which are not reflective: 1) the 

quartz lens Q is a collimator that focuses the source onto the entrance 

slit of the monochromator; and 2) the ground quartz diffuser-D further 

reduces the spatial sensitivity of the photocathode. The lens does not 

form an especially sharp image of the filament on the entrance slit so 

chromatic aberration in this element is negligible. It will only alter 

the overall amount of light entering the monochromator, thereby changing 

only the average intensity of light reaching the detector. The quartz 

diffuser accounts for some light loss, but it does not change the observed 

signal. 

The mirror M is. a weak toric and could just as easily have been:: 

a spherical mirror. Its purpose is to image the exit slit of the mono­

chromator onto the sample. The slit has an illuminated height of about 

2.5 cm which is imaged onto the sample at approximately unit magnifica­

tion. Since the active area of the sample is about 0.6 cm, a mask must 

be used to cut out the unused portion of the slit. In practice a pair 

of masks is necessary. One is placed at the exit slit of the monochroma­

tor and it cuts out the majority of light which would miss the sample. 

Due to the aberrations incurred by using the focusing mirror off axis, 
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the image on the sample is astigmatic. The tangential image is used, 

and thus the vertical extent of the image is not very well defined. 

A second mask is therefore placed immediately in front of the sample 

to define the vertical extent. This mask also serves to cut out any 

light which might be modulated by reflection from the tuning fork.-

Studies were made of various ways of improving the optical 

efficiency of the system. The wasting of about three quarters of the 

light by masks appeared to be an area where a great deal of improve­

ment could be made. An optical system which demagnified the exit slit 

by a factor of four seemed to be what was necessary, and the system 

might be able to feliminate the aberrations of the focusing mirror as 

well. Such a system would reduce the f/number of the beam from f/3.6 

to f/0.9, and this was the problem. A fast system is more susceptible 

to focusing errors, and, if used off-axis it would require expensive 

optics. Furthermore, this created the problem of collecting the fast 

light cone reflected from the sample. The most likely system which 

resulted from these considerations required an ellipse whose cost turned 

out to be prohibitive (see Fig. 5.9a). Another system which uses a 

folding flat and a spherical mirror is shown in Fig. 5.9b. The only 

other solution was to try to find a light source with a smaller filament 

and the same power input, i.e., a source with higher brightness. Arc 

lamps were not considered because of the noise they introduce. Of the 

convenient incandescent sources, the quartz halogen one has about the 

highest brightness available. Thus the only alternative was to use a 

similar lamp with a lower power rating and a correspondingly shorter 
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filament and operate it above its rated power. This approach cannot 

yield a great increase in overall efficiency, but it seemed to be the 

best course of action, short of finding a continuously tunable laser 

which would cover the range of our interest. 

Several types of detectors were considered and tested. The 

RCA 7265 phototube was the workhorse detector for the visible portion 

of the spectrum. We have already discussed the problems associated with 

the non-uniformity of the photocathode surface. A photomultiplier does 

have an advantage over almost all other detectors in that its gain is 

easily and continuously variable by the use of feedback circuitry. 

In this way, the D. C. output of the PMT can be kept constant, so that 

the A. C. output is proportional to AR/R. This ratio, which is the 

quantity of interest (see Chapter 2), can also be obtained by using 

an analog divider circuit or module to divide a voltage proportional 

to AR by one proportional to R. The analog divider is not necessary 

with the use of a variable gain PMT circuit and the range of light in­

tensity over which the circuit is linear is larger than that which is 

attainable with the analog divider. The use of the variable PMT supply 

effectively puts the division process ahead of the lock-in amplifier 

without introducing excessive noise. Such a system was not generally 

used in this experiment, and a plan is given in a later chapter for the 

implementation of such a system with off-the-shelf items at one half the 

price of a comparable commercial system. 
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The usual precautions were taken when using and handling 

the photomultiplier. It was magnetically shielded with mu-metal, 

was handled only in very subdued incandescent lighting, and was never 

exposed to strong light. Fluorescent lighting is especially detrimen­

tal since the ultraviolet light from these lamps causes an increase 

in the tube noise due to phosphorescence in the glass envelope of the 

photo tube (Radio Corporation of America, 1972). The electron transit 

time of the tube is small enough (about 50ns when the tube is operated 

at 800 to 1200 volts) so that the changes caused by varying the voltage 

did not affect the phase setting of the lock-in amplifier. 

A second detector, the PIN diode, was tried in the visible and 

near infrared portions of the spectrum. The response of these diodes 

extends out to 1.1 micrometer in the IR and out to 0.35 ym in the UV. 

The noise figure (NEP) of these detectors is about 4 x 10"13 W/Hz'5 for 

a 1 cm2 active area detector at 20°C, and their dynamic range extends 

from 10_llt  watt to 10"2 watt of incident light flux. Furthermore, they 

can be exposed to room light with or without power applied to them with 

no detrimental effect. Unfortunately, they appear to have the same bad 

spatial spectral sensitivity characteristics as the photocathodes. Also, 

their gain cannot be adjusted as easily as a photomultiplier can, hence 

the divider circuit had to be used in this case. 

A third detector used was a lead sulphide photoconductive cell 

operated at room temperature. Its spectral range is given in the litera­

ture as about from 1.0 to 2.5 ym for operation at 300 K (Wolfe, 1965, 

p. 474). In terms of range, it is seen that the two solid state detectors 



complement each other very nicely. One serious drawback with the 

PbS detector is that it is extremely temperature sensitive and pro­

vision must be made to compensate in some way for the thermal drift. 

Though little use was made of this detector in this part of the ex­

periment, thought was given to ways of surmounting this problem and 

these are given in another section. When the apparatus was used with 

this detector, the final folding flat which directed the beam to the 

detector was replaced by a short radius cylindrical mirror. This had 

the effect of focusing the beam in the vertical direction while not 

appreciably changing the horizontal size. Of course, the aberrations 

introduced by this were rather atrocious by diffraction limited stan­

dards; however, this helped spread the light over the entire detector 

so that the spot size was well matched to the detector size of about 

4 mm diameter. At this point in the optical system, the optics only 

serve as an energy collection system; no image is formed; and aberra­

tions are inconsequential. 

Electronics 

Figure 5.7 outlines the electronic circuitry involved in the 

system. Another mode is possible in which the photomultiplier is 

supplied by a variable output high voltage supply which eliminates 

the need for a divider circuit. 

The basic element in attempting to detect the very small sig­

nals encountered in electroreflectance is the phase sensitive detector, 

also known as a lock-in amplifier. In a mathematical sense, such an 
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to both frequency and phase. In contrast to a tuned amplifier which 

responds to all components at a given frequency, regardless of phase, 

the lock-in amplifier needs a reference signal from which to obtain 

the phase and frequency information. The particular unit used in this 

experiment was an Ithaco, Inc., model 391. It operates on a heterodyne 

principle which makes it totally insensitive to any harmonics of the 

basic signal. This eliminates the need for a "front end" bandpass fil­

ter as used in the Princeton Applied Research Corp. model 124 and there­

by increases its dynamic range and its capability to reject unwanted 

components in the input signal without overloading. Munroe (1973) 

presents a good description of the circuits and their functions in 

heterodyne lock-in amplifiers. 

Despite the large dynamic range of the lock-in amplifier, it 

was necessary to add a low pass filter between the photomultiplier and 

amplifier input. The need for this comes from the fact that a very 

large signal is produced by the strip of bare ceramic between the two 

sample halves. This signal appears at twice the frequency of the de­

sired modulation signal and can be as much as five orders of magnitude 

larger. This problem was solved with an eight pole Chebyschev low pass 

filter with a response as shown in Fig. 5.10. The filter was ordered 

with a cutoff at 80 Hz; the normal operating frequency of the tuning 

fork was around 70 Hz. Thus, the 140 Hz component was attenuated by 

a factor of greater than 1000, which then allowed the lock-in amplifier 
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to operate with a minimum of extraneous noise signals. The cutoff 

frequency of 80 Hz was chosen to avoid large phase changes with fre­

quency which occur near the cutoff point of this kind of filter. Since 

the lock-in amplifier has a broadband response and can track a signal 

which is drifting in frequency, a frequency dependent phase shift in­

troduced by the filter could affect the output. 

The output of the analog divider is a voltage which is propor­

tional to the ratio of the two input voltages. It is used here to elimi­

nate the common factor in the modulated signal and the average reflec­

tance and thereby gives the ratio AR/R. The common factor includes 

such items as the lamp intensity and its spectral dependence, the mono-

chromator response, and the detector spectral sensitivity. Any constant 

component added to either the numerator or the denominator will cause 

difficulties; for example, if the D.C. offset feature of the lock-in 

amplifier is used to adjust finely the zero setting, this will produce 

a wavelength dependent result even if AR/R is constant: 

I (A)AR + C AR C AR 
divider output = = — + = — + f(A) 

I (A)R R I(A)R R 

where 1(A) is the system response as a function of wavelength. On 

this basis, it is preferable to place the divider in the circuit be­

tween the output of the PMT and the lock-in amplifier. This location 

is undesirable for other reasons, however. This is where the signal 

is the smallest; any noise introduced here could obliterate the signal. 

A second problem is the limited dynamic range of the divider. To keep 



the S/N ratio at an acceptable level, a large numerator voltage is 

necessary (1 to 10 volts). On the other hand, whenever the denomi­

nator voltage drops below the numerator's, the divider output saturates. 

These requirements can be met by placing appropriate operational am-

Pl ifiers with adjustable gains in this part of the circuit, but unless 

they are extremely quiet ( and therefore expensive), they add too much 

noise to the signal. It was finally decided to do the division after 

the phase sensitive detection. 

The voltage to be used for the denominator of the divider is 

the average D. C. value of the PMT output. This output cannot be used 

directly by the divider because of an impedance mismatch. A field 

effect transistor input operational amplifier was added between the PMT 

and the denominator input of the divider. This had a twofold function: 

1. the gain is adjustable through the selection of different feedback 

resistors so the input of the divider can be kept within the required 

range; and 2. it serves as a buffer amplifier to match the impedance 

of the PMT to that of the divider. The circuitry for this is shown in 

Fig. 5.11. Figure 5.12 shows a plot of the linearity of the divider 

circuit. 

A time lag occurs in the signal which goes through the AR branch 

of the processing electronics. The output time constant of the lock-in 

amplifier was often set at 1.25 or 4 seconds, and this introduced a sub­

stantial time delay before the AR signal reached the divider as compared 

to the R signal which had no delay. Therefore, it was necessary to in­

troduce a similar time delay for the R signal; this was accomplished 
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with the RC circuitry shown in Fig. 5.11. Without the delay, what 

should be a constant divider output would show transient voltage swings 

whenever an abrupt change occurred in both R and AR, such as could be 

caused by fluctuations in the lamp intensity or gain changes. 

The tuning fork had 4 drive coils already incorporated in its 

mount. There was no feedback mechanism for an oscillator, and the use 

of an external oscillator to drive the fork proved unsatisfactory due 

to the fork's very high Q. A feedback mechanism was obtained by mount­

ing a recording head from a tape recorder such that a tine of the tuning 

fork induced a signal in it. The position of the head had to be offset 

from the center position of the tine; a centered position produced a 

feedback signal at twice the required frequency. The pickup coil was 

connected to an amplifier as shown in Fig. 5.13. The output of the 

amplifier was fed to the coils which were connected in series-parallel. 

A phase shifting circuit was added between the two operational amplifier 

stages to fine tune the circuit. The output power of the 741 op amp is 

sufficient to drive the fork. The oscillator is self-starting and pro­

duces approximately a ±15 volt square wave at equilibrium. Part of 

the output is attenuated to produce a four volt peak to peak reference 

signal for the phase sensitive lock-in amplifier. When initially con­

structed, the circuitry tended to oscillate at several kilohertz; this 

was presumably due to some mechanical resonance or possibly even fring­

ing magnetic fields linking the driving coil and the feedback pickup. 

The problem was remedied by adding some bypass filter capacitors to pro­

vide an AC short circuit to ground for the higher frequencies. 

\ 
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Mechanical 

The tuning fork is the basic resonating element in the sys­

tem; the electronics simply add energy to overcome the mechanical losses 

in the system. The ceramic sample is attached to one tine with water 

soluble adhesive, thus making a strong yet easily removable bond. The 

mass of a ceramic substrate was about 3 grams. Attaching such a mass 

to only one tine would unbalance the two tines; the resulting system 

would still oscillate, but it would be in a complicated mode involving 

the supporting structure as well. Some of the oscillating energy would 

thus go into making the entire experimental setup oscillate and this 

would give rise to spurious signals. The first step to bring the two 

tines into tune again consisted of mounting a second ceramic substrate 

on the other tine. While this did bring the two halves of the fork 

closer in tune, it was not close enough and one tine still would exe­

cute a large amplitude oscillation while the other remained almost at 

rest. The solution to this problem consisted of attaching small alumi­

num masses to the tines. These could be adjusted along the length of 

the tines to fine tune the mechanical oscillator so that almost all of 

the energy stayed in the fork and very little could be felt in the sup­

porting structure. 

The balance between the reflected light intensities of the two 

halves of the sample was accomplished by moving the sample perpendicular­

ly in the light beam. The tuning fork and its mount were bolted to a 

translation stage. The micrometer screw on the stage was used to position 
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the fork assembly so that each half was exposed to the light beam 

for an equal amount of time (assuming equal reflectances for each 

side of the sample). At that position, the lock-in amplifier had a 

zero output. 

The entire experiment bench was supported on inflated inner 

tubes to minimize any external vibrations from reaching the apparatus. 

Originally, a DC motor was used to drive the wavelength shaft 

of the monochromator, and a toothed timing belt connected the monochro­

mator shaft to a potentiometer. Since the shaft rotation was propor­

tional to the wavelength, the output of the potentiometer served to 

drive the x axis of a Hewlett Packard 7000AM flatbed x-y recorder. 

The DC motor drive system was scrapped after a great deal of 

work had been expended on it. A mechanical clutch which allowed the 

manual setting of the wavelength as well as prevented damage when the 

wavelength limits were reached gave a great deal of difficulty. Later, 

the DC motor started to produce noise spikes in the output cable of the 

photomultiplier. The decision to use a variable speed D. C. motor to 

turn the wavelength drive of the monochromator had been based upon the 

possible use of an arc lamp which would have sharp intense lines in its 

spectrum. It was thought desirable to scan through these lines slowly 

due to the large time constants in both the divider and the lock-in 

circuits. Conversely, in those sections of the spectrum where there 

was little structure, the scanning speed could be increased. Eventually 

the decision was made to use a tungsten filamant lamp; then, it became 
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possible to continue the work without the variable speed feature of 

the D. C. motor because of the smooth spectrum of such a lamp. 

A synchronous motor and gear train built specifically for the 

monochromator was obtained and with this arrangement, the elaborate 

x-y recorder is no longer necessary since a recorder with a time axis 

serves the purpose as well. The scanning speed is not continuously 

variable, but it can be adjusted in steps by changing gear sizes or by 

using different motors which are commercially available. 



CHAPTER 6 

RESULTS AND DISCUSSION 

The results obtained with the reflectometer described in the 

previous chapter will now be discussed. The performance of the instru­

ment is analyzed and suggestions are given for further improvements. 

Alternative sample configurations are also discussed. 

Reflectometer Sensitivity and Stability 

The sensitivity and the stability of the reflectometer were 

tested by using an opaque aluminum film deposited on a glass substrate. 

Stability is defined for our purposes here as the change in the zero 

point as a function of wavelength when both halves of the sample are 

equal. Under these conditions, there should be no modulation detected 

at any wavelength. 

Room was available on the tuning fork to mount the aluminum film 

on a glass substrate sample adjacent to the ceramic substrate. The alu­

minum had been evaporated without a mask so it covered the entire sub­

strate. This continuous film eliminated the contribution at the second 

harmonic frequency. A difficulty arose with this arrangement in that 

there was no gap to help in achieving a balance of the intensity reflected 

during each half cycle. Actually, a balance should be obtained for any 

position of the beam on this particular sample. This was not the case 

and dust and surface imperfections caused a signal to be observed at 

133 
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some settings. A position was finally found at which there was a 

satisfactory balance for a given wavelength; a spectral scan was then 

made from 0.4 to 0.725 micrometer. 

Except for what appeared to be a transient near the start of 

the scan, the noise level was about 3x10"^ peak to peak in AR/R, while 

the overall flatness of the spectrum seemed to be better than this by 

a factor of about two. This performance is better than the arrangement 

reported by Holbrook and Hummel (1973) by about two orders of magnitude. 

Subsequently, attempts were made to obtain the ER spectrum of 

bismuth. The resulting spectrum was basically a straight line with a 

slope. The change in level from one end of the scanned range to the 

other was on the order of 10_l+ in AR/R. No structure in the form of 

spectral lines was observed. One immediate conclusion can be drawn from 

this, however; if any sharp ER effect exists for this sample in this 

spectral region, it has to produce a response considerably smaller than 

10"11 in AR/R. 

It was suspected that surface imperfections were probably the 

cause of the observed response, although there were no visible ones on 

the surface of the Bi film. The film was several weeks old and imper­

ceptible deterioration could certainly have taken place even though the 

samples were handled with care. A repetition of the stability run with 

the aluminum film (which also had no visible defects) some few days after 

it was prepared also produced a similarly tilted spectrum. Since no por­

tion of the A1 film could be found which produced a null balance over 
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an extended wavelength range, and since no change was made in the 

instrumentation, it was concluded that imperceptible degradations of 

the films caused the observed response. It is therefore necessary to 

use only freshly deposited metal films for spatial modulation since 

unequal surface ageing and tarnishing as well as microscopic dirt and 

dust contamination give rise to spurious responses. 

A modulated thermoreflectance (TR) spectrum of a Bi sample 

prepared in a manner similar to the ER samples on the ceramic substrates 

showed no structure in the spectral region where the ER spectrum was 

measured. Thermoreflectance structure was detected near 2400 and 2800 

K. These TR measurements were carried out at 136 K on a separate re-

flectometer (Kottke, 1974). 

Somewhat surprisingly, no structure was observed in those areas 

where there are steep slopes in the static reflectance curve (see Fig. 

4.12). The static curves were measured for the Bi films prepared in 

this laboratory and these differed somewhat from that obtained by Car-

dona and Greenaway (1964) (CG); ours were rather flat with no signifi­

cant structure in the range from 3500 X to 2.5 micrometers. The dis­

crepancy between the two results is most likely due to the fact that 

CG's results were obtained on a cleaved single crystal sample, while 

the crystalline state of the thin film samples used in these measure­

ments is unknown. 

This is probably one reason why no structure was seen in either 

modulation spectroscopy spectrum. Future work will have to consider 
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this discrepancy. An absorbing layer sometimes formed on the surface 

of our Bi films after they had been exposed to air for a while. This 

tarnish could be removed by gently wiping the film with a bare finger 

(at the expense of leaving a streaked surface). The tarnish film did 

not affect the shape of the static reflectance curve other than to lower 

it uniformly over the spectral range which was examined. 

Another source of difficulty which may be responsible for the 

negative results obtained in the ER measurement is the poling electrode. 

The samples used a thin Cr film to polarize the ceramic. As previously 

discussed in Chapter 4, an extremely thin film can shield the electric 

field if the material has a large free electron density. The electrons 

in the chromium film could well have prevented the electric field from 

penetrating beyond the poling film. 

There is a need to determine why no spectrally dependent response 

was observed in the ER studies of bismuth. The most important parameter 

that should be verified is the shape of the electric field profiles. A 

sample configuration and a material with a known ER response have to be 

integrated into a geometry which will allow an experiment to measure the 

electric field distribution. 

Problems Encountered with Spatial Modulation 

As previously mentioned, one of the most serious problems en­

countered was the change in the balance of the reflected light inten­

sities from the two sample halves as a function of wavelength when the 
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two halves are supposed to be identical. Several sources were found 

to be the cause of this. One point should be emphasized here. In 

order to be detected a signal at the output of the photomultiplier 

must have two qualities: 1) it must have a modulation with the right 

frequency and phase; and 2) it must be a function of wavelength. These 

requirements on what is a valid signal make the experiment a great deal 

simpler, so long as the size of the undesired components do not cause 

an overloading of the electronic circuits. 

Photocathode Nonuniformities 

It is a well known fact that photomultiplier photocathodes 

have a sensitivity which varies with the position of a beam of light 

on its surface. A second, but not so well known fact, is that the 

spectral response varies from point to point on the photocathode as 

previously mentioned. Thus, one must be very careful to ascertain that 

the same area is always used when two beams are compared. In particular, 

great care must be exercised in this experiment since we are trying 

to detect such small signals. 

Scattered Light 

Scattered light is a problem with most optical systems. It can 

be especially severe in this experiment because of the small size of the 

signals being measured. In the alternating beam configuration, all light 

coming out of the monochromator is chopped. Any light which is scattered 



138 

inside the box containing the optics is suitably modulated for de­

tection by the lock-in amplifier which processes the output of the 

photomultiplier. This problem was eliminated to a great extent by 

switching over to the moving sample constant optical path configuration. 

This did not completely eliminate the scattered light, though. It 

was discovered that there was still a residual signal even after the 

new arrangement was installed; worse, it was wavelength dependent. 

Had it not been a function of wavelength, it could have been nulled 

out when the balance was made between the two sample halves. The 

problem was finally localized to light reflected by the reddish tine 

of the tuning fork. Though the exit slit of the monochromator had been 

masked to keep the image from overfilling the sample, aberrations in 

the optical system allowed enough light to spill over the edge of the 

sample to cause a spurious signal. This signal was large enough to cause 

a shift in the spectral baseline on the order of 10"1* in AR/R. Once 

it was discovered, this problem was easily remedied with suitable masks 

near the sample plane. 

Sample Nonuniformities 

Since two distinct areas are being compared, they should differ 

only in that one half is under the influence of an electric field, while 

the other is not. Any surface defects could give rise to a response, 

especially if the response of these nonuniformities is a spectrally de­

pendent function. To ascertain that both halves are identical is by no 
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means an eas/ task, and this is expected to be the limiting aspect 

of spatial modulation. 

Considerations for Future Work 

Calibration Phase 

The first aspect which must be examined in the next phase of 

this research is the establishment of the validity of the equations 

developed in Chapter 4. This seems to be most easily accomplished 

through the use of germanium, whose ER response is well known from 

studies using the field effect structure. It would be expected that 

Ge would respond in a similar manner if it were used in the ravioli 

structure, where it is electrically floating instead of being grounded. 

A temperature of at least 450°C is needed to crystallize a Ge 

film, and this is attainable with the materials used in forming the rav­

ioli structure. It is not possible to use a ferroelectric substrate 

since none is available which has a Curie temperature above 450°C. It 

is necessary for the substrate to maintain its original poled condition 

during the film deposition and all subsequent processing, otherwise there 

will be different strains induced by the substrate in the two sample 

halves and these could give rise to spurious results. This structure 

could be made in two halves only one of which would have a field applied 

to it. In this way, the spatial modulation spectrometer could still be 

used and thereby be calibrated at the same time. 



140 

Some modifications might have to be made to the equations in 

order to take into account the hole nature of conduction process in the 

semiconductor. The equations would be verified by comparing the ob­

served spectral line shape with that calculated from inhomogeneous 

modulation theory using the inhomogeneous field profiles obtained from 

the equations given in Chapter 4. 

Sample Preparation 

It appears that there are two viable sample types: (a) the 

ravioli structure, and (b) the negatively charged surface of a ceramic 

substrate. The former utilizes known thin film technology and no problems 

are foreseen in constructing such samples. Such a sample meshes nicely 

with another modulation spectrometer available in the laboratory (Kottke, 

1974) so the thermo- and the electro-reflectance spectra can be measured 

on the same specimen. While this other spectrometer does not have the 

capability to make spatial modulation measurements, it does allow the 

sample to be cooled down to 77 K. This second spectrometer is not a 

necessity since standard ER can be measured with the apparatus described 

in Chapter 5, although the measurements could then only be done at room 

temperature. The same sample can be configured to be suitable for both 

types of measurement by evaporating the sample film onto two areas on a 

common substrate. 

Another sample configuration which was proposed during the course 

of this work can be shown to be impractical for a variety of reasons. 
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This suggestion would have the metal film deposited on the ceramic 

and subsequently covered with an insulating overcoating to try to pre­

serve the charge so that the insulated boundary conditions obtained 

(Fig. 6.1). The charge on the surface tends to leak off over a period 

of time; the potential at which this charge is stored can be easily 

calculated. Assuming a plane parallel capacitor configuration and 

ignoring the fringing fields we have 

Ae 
q = CV and C = — 

d 

so that we can write 

v = a = asL = 0i 
C Ae e ' 

where C is the capacitance of the structure, q is the charge, and 

d is the separation of the plates. For a ceramic substrate 2mm thick, 

a surface charge of 30yC/cm2, and a relative dielectric constant near 

3000, V = 20,000 volts. The external electric field is about 3x10s 

V/cm and the internal field is on the order of 105 V/cm. It is at once 

apparent that a capacitor with a potential of 20 kV will not maintain 

that charge for an indefinite length of time. Secondly, the dielectric 

breakdown of the insulating overcoating will be on the order of 10® 

V/cm (Si02) so that it will not sustain the electric forces and will 

leak charges into or out of the film. Any instrumentation used to 

monitor the state of charge of the film, e.g., an electrostatic volt­

meter, would further compound the problem rather than help since it 

would supply an additional leakage path. 
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In the case of the sample film deposited on the ceramic, 

some modifications to the poling procedure will be necessary, since 

one half of the sample will have to be only partially polarized, while 

the other half is polarized to saturation. A further complication is 

that the poling film has to be eliminated because of the free electron 

screening problem. The solution could be the use of a noncontacting 

poling electrode such as a wire mesh. If it were placed sufficiently 

far away from the front surface of the ceramic to prevent shadowing 

during the evaporation process, it would not have to be removed during 

the process. The evaporant source size can be made large enough so 

that neglible shadowing takes place. The limiting factor involved in 

the substrate-electrode spacing is the maximum value of the poling po­

tential which can be safely introduced into the vacuum chamber. On 

the other hand, the limitation on the source size is not significant 

since multiple sources could be used. 

A moveable electrode is another possibility; it could be moved 

out of the way during the evaporation process. In either case, pro­

vision should be made to ground the metal film after the evaporation 

process to ascertain that no residual charge remains on the surface. 

In both of these ferroelectric samples, no gap is necessary 

between sample halves. The elimination of the gap removes the large 

signal which appears at the second harmonic frequency. The low pass 

filter is therefore not necessary between the PMT and the lock-in 

amplifier, and one more possible source of noise is eliminated. 
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The omission of the gap could prove disadvantageous when either the 

photovoltaic or the photoconductive detector is used since there is 

then no signal directly proportional to R. Balancing the reflected 

intensities will be difficult since the dividing line between the two 

halves will not be readily apparent. 

To prevent ions of the opposite sign from being attracted to 

the surface, the metal will have to be evaporated soon after the poling 

process is completed. It takes only a third of a monolayer of appro­

priately charged ions to completely neutralize all of the surface charge. 

When the sample film is subsequently evaporated, no field will penetrate 

through it. It is important to note that it takes a third of a mono­

layer of charged ions, and that uncharged particles will not affect the 

result so long as ionization doesn't take place upon collision of the 

particle with the surface in the presence of the strong electric field. 

The factor of one third comes from the fact that 30yC/cm2 is equivalent 

to the loss of one unit of electronic charge per three surface lattice 

sites. Ions which arrive after the film has been deposited will not 

affect the penetration of the field into the film. 

The exact method by which the polarization of the substrate 

will be attained is not yet clear. It might be necessary to use an 

ultrahigh vacuum system or else to find a conductor which has a very 

small free electron density and which will form a conductive film for 

a very small film thickness. The figure of merit to be used in the 

search for such a material would be t»n , where t is the minimum thickness 
e 
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for a conductive film and ng is the free electron density. The value 

of this figure should be as small as possible since it represents the 

number of screening carriers per unit area in the poling film. 

As previously mentioned, the question of the discrepancy be­

tween the Bi spectrum measured by Cardona and Greenaway and that ob­

tained for thin films will have to be investigated. The Hall coeffi­

cient for thin Bi films is not necessarily in agreement with that of 

bulk samples (Kittel, 1971, p. 289; Jeppesen, Flagg, and Rancourt, 

1963). X-ray diffraction may well be necessary to determine the crys­

talline structure, and Hall effect measurements used to obtain the 

free carrier concentration. 

Instrumentation 

As mentioned in Chapter 5, one of the deficiencies of the re-

flectometer is the low efficiency of the optical system. That chapter 

also included suggestions for the construction of an improved system 

to be placed inside a larger light-tight enclosure. This would improve 

the optical system as well as allow more "elbow room" in the vicinity 

of the sample mount than there is in the present enclosure. 

When the tuning fork executes large amplitude oscillations, the 

motion cannot be expected to be simple harmonic motion. The excursions 

to either side of the center position are probably not symmetric, though 

this has not been verified. A change in the amplitude of the oscillation 

would then result in a change in the relative amounts of time that each 

half of the sample is exposed to the light beam. This is equivalent to 



a change in the zero point relative to the optical axis. In turn, 

this leads to an imbalance between the two halves which can be de­

tected by the lock-in amplifier. Due to the sensitivity of the appara­

tus, a slight change iixJ^he balance can be detected. There are many 

sources which could cause a change in the amplitude; an example is a 

possible beating of the two tines against each other. Narrowing the 

gap between the two sample halves will not solve this problem. A nar­

rower gap would mean, however, that a smaller amplitude could be used, 

but this would be at the expense of the averaging effect which takes 

place when a large area of each sample half is used. 

Another solution to this problem is the use of a forced oscil­

lator instead of a resonant one. In such a configuration, the sample 

is regidly connected to a loud-speaker coil. This can be driven very 

conveniently with any common hi-fi amplifier and the amplitude can be 

easily adjusted. In this way, any frequency can be selected; with the 

tracking feature of the Ithaco model 391 lock-in amplifier, frequency 

modulation could be used to further discriminate against noise. This 

would remove problems associated with resonances in the supporting 

structure. 

Figure 6.2 gives a circuit diagram which will keep the D.C. 

level of the PMT output constant by varying the high voltage applied 

to the tube. The A.C. signal from the PMT is then directly proportional 

to AR/R and this goes to the lock-in amplifier. This eliminates the 

problems involved in dividing the voltage proportional to AR by the one 
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proportional to R after the synchronous detection. Such a circuit 

was not assembled during the course of this part of the study because 

of the lack of the high voltage operational amplifier. The alter­

native approach to the division problem is to obtain a quiet divider 

that could be placed between the PMT and the lock-in amplifier. 

For photovoltaic detectors, a circuit such as given by N. R. 

Comins and P. D. Grant (1973) is probably the most useful, while for 

photoconductive detectors, a second modulating frequency is essential 

to obtain a voltage proportional to R. If the second harmonic of the 

signal is not available, a suitable signal can be obtained by chop­

ping the light before it enters the reflectometer and then using a 

tuned or a lock-in amplifier to detect it and produce a D.C. output 

proportional to R. Only a portion of the light needs to be modulated 

at this second frequency, so a penalty in the form of light loss 

need not be paid. 



CHAPTER 7 

CONCLUSION 

The objective of this study was to lay the groundwork for a 

novel technique for measuring the electroreflectance spectra of metals. 

This was accomplished by a theoretical investigation of the penetration 

of an electric field into a metal film and the construction of optical 

instrumentation to measure the effect. 

The theoretical studies showed that it would be very difficult 

to obtain an electric field in a metal film that has a very high free 

electron concentration, such as is the case with noble metals. In such 

a case the film has to be so thin that the observed spectrum would not 

be representative of bulk material. On the other hand, it was shown 

that for materials that have a lower free carrier density, such as bis­

muth and the other semimetals, it is possible to have an electric field 

penetrate to a significant fraction of the depth that is probed by the 

light wave. However, as the free electron density increases, the elec­

tric field penetration decreases so that it becomes progressively more 

difficult to observe the effect of the electric field on the reflected 

light from samples with larger free electron concentrations. 

Means of bypassing the difficulties caused by the free electrons 

were discussed and two basic sample configurations were considered that 

allowed an overlap between the probing light wave and the electric field 

149 
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profile. The use of the large surface charge of a polarized ceramic 

substrate and a grounded thin film sample was a means of eliminating 

the free electron difficulties. The film was made so thin that the 

number of charges needed to compensate or shield the externally applied 

field was a large fraction of the total number available in the film. 

The alternative approach encapsulated the sample film in a dielectric 

insulator; unfortunately, the magnitude of the usable electric field 

had to be reduced significantly from that obtainable with the ceramic 

sample because of the dielectric breakdown of the insulating film. It 

was finally decided that the most promising configuration was one where 

the surface of the ceramic substrate was negatively charged. 

A modulation spectrometer was constructed and tested that has 

a sensitivity two orders of magnitude better than one described in a 

recently published article in the literature. Ours uses the concept of 

spatial modulation and is designed to keep the optical path in the in­

strument constant. It uses only reflecting optics to eliminate chro­

matic aberrations. Improvements to the instrument are proposed that 

should improve its signal-to-noise ratio even more. 

Preliminary attempts were made to observe the electroreflectance 

spectrum of bismuth without success. It was theorized that the chromium 

poling film used in those particular samples completely attenuated the 

electric field before it was able to penetrate into the bismuth film. 

This led to the consideration and development of the alternative sample 

designs. 
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These accomplishments have advanced us along the path towards 

the eventual detection of unambiguous electroreflectance spectra. The 

significance of the work reported here lies in the fact that for the 

first time a means has been developed to observe the ER spectra of metals 

without the complicating effects of the free electrons. The way to suc­

cessful observation of these spectra has been pointed out, and the means 

by which such goals will be attained have been developed and built. Con­

tinuation of these studies is necessary to reach the ultimate goal of the 

successful interpretation of ER spectral structure as particular transi­

tions between states in the metallic band structure. Certainly interband 

transitions exist in metallic band structure, and this apparatus and 

technique have a good chance of being able to measure them. 



APPENDIX A 

NUMERICAL INTEGRATION AND PLOTTING COMPUTER PROGRAMS 

The main program DIFFEQ is a general routine written in Fortram 

that affects the numerical integration of a general ordinary differential 

equation of up to eighth order as specified in the subroutine Z. The 

user can direct that program to use either a Runge-Kutta (RK) method, or 

one known as the "predictor-corrector" method (pc). The pc method re­

quires a knowledge of the function and its derivatives at two equally 

spaced points just preceding the point at which these are to be evaluated 

anew. Since this method is not self-starting given some conditions, the 

RK method is used to obtain these, and then the pc method can continue 

the integration. The integration step, Ax, is adjusted to be as large 

as possible while keeping the error in the integrated functions within 

a user-specified tolerance. 

The overall process consists of calculating the desired function 

by using the definition of the derivative to go from a continuous curve 

to one consisting of many small discrete steps. Starting at a given 

value for XQ, the derivatives are calculated and a new value is found 

for the function. The value of x is then incremented and the process 

is repeated until the integration interval is covered when x is equal to 

the limiting value 

In our particular case, the starting derivative is not known; 

instead, our second boundary condition is the value of the function at 
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the second edge of the integration interval. The program therefore 

searches until it finds a starting slope such that has a value 

close to the desired one. Due to the large range of the numerical 

values that can occur in this type of equation, a two stage search 

process was put into the program. In the first stage, large changes 

are introduced in the starting slope of E until the correct solution 

is bracketed. The slope at XQ is adjusted in the subroutine CHECK by 

multiplying or dividing it by a constant factor G during the coarse 

adjustment phase. This factor can be specified by the user; a default 

value of 10 is used if it is not given on an input card. Subsequently, 

a binary search procedure is used in which the slope error is divided 

by two at each iteration. The number of iterations used in this search 

is also user specified. 

The accuracy of the final result is difficult to predict due to 

the nonlinear nature of the equation. The fractional error in the 

starting slope can be written as 

y<5 

where y^ is the true starting slope, y^ is the starting slope found 

by the search process, and n is the number of the iterations in the 

binary search mode. 

The logical function subroutine CHECK has two tasks to perform. 

First, it checks to see if the latest value calculated for the E field 



is within the expected bounds as given by the initial and the target 

values specified by the user. It also checks to make sure that the 

E field does not change sign. If it determines that the value of E 

is appropriate, it returns control to the calling program with the 

value of CHECK as FALSE. If the value of E is out of bounds, or if 

the end of the interval has been reached, it calculates a new starting 

slope for the next iterations, as indicated above, and a value of TRUE 

is returned to the calling program. This routine is called each time 

a new set of values is calculated in the integration loop. 

The main integration program has two modes of operation. When 

the number of binary iterations to be performed is given as positive, 

the program iterates the specified number of times to find an approxi­

mate solution; after it has finished, it does one more integration and 

prints out the values as it progresses. Based on the previous number 

of steps taken, it might skip the printing of some points in an attempt 

to limit the number printed to between 100 and 200. 

In the second mode, which is specified with a negative value 

for the number of binary iterations, no iterations are performed. 

Instead, a single integration pass is made across the domain of inte­

gration and every |n|th point is printed. This second mode is required 

when plotting. All points will be plotted regardless of the paramr 

eter n. 

A word of caution should be added; because of the large range 

of values that enter into the calculation of this equation, care 
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should be exercised to ascertain that the finite number of significant 

figures available in the computer arithmetic is not introducing sig­

nificant errors in the integration. In some cases it might be nec­

essary to use double precision arithmetic. This was not necessary on 

the computer used for the calculations in this paper since it has a 

60 bit word size (CDC 6400). The program was written with the possi­

bility in mind that double precision might be necessary. 

The program is mostly self-explanatory and includes many 

comment cards. For more information of the integration algorithms, 

see Ralston and Wilf (I960), Chapters 8 and 9, and McCracken and 

Dorn (1964). 

The input card formats are 

a,3 

J, G, x0, AX0, xUm, £L, TPC, TRK 

y, y', y", etc. at x0 

y, y', y", etc. at x l im 

n, m, p, m 
' ' v' max 

where J is the order of the integration, z\ is a dimensionless quantity 

with values between zero and one that defines the minimum step size 

allowed through Axm^n = - xo)ei> TpC 
an<* are the tolerances 

used in the tests on the accuracy at each integration step, m is the 

number of gross iteration steps allowed (default value = 10), p is 

TRUE if plotting is desired, and m is the number of iterations 
r  max 

allowed in the pc method. If m is negative, the pc method is r  m a x  o r e  

Card 1: (2E10.0) 

Card 2: (I5,E5.0,7E10.0) 

Card 3: (8E10.0) 

Card 4: (8E10.0) 

Card 5: (2I5,L5,15) 
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bypassed and only the RK method is used. If no value, or zero, or 

a number greater than 10 is entered in this field on the card, a value 

of 10 is used. 

Figures A.l to A.3 give the logic flow through the program. 

The core requirements for the CDC 6400 computer are under 35K0 words, 

and the time required for an average solution is about 10 seconds, 

if a solution is to be found in a reasonable time. In some cases, the 

choice of values for a and B makes the solution very sensitive to the 

choice of E'(0)„and the time required to solve such cases becomes 

quite large unless the starting slope is known accurately. 

The program PLTDEQ plots the output produced by program 

DIFFEQ. Figure A.4 gives the logic flow for this program. Parts of 

the input and the plotting are overlapped to save time. 
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Fig. A.l. Overall Logic Flow of Program DIFFEQ 
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read and print the 
plot scaling limits 

calculate scale fa ctors for each plot 

initialize plot roi itine and draw axes 

read x record 

yes terminate 
plotting 

—»^to^ 

read U record 

• 

start reading E record + zz 
loop to scale x and plot U 

I 
wait for end of E record reading; 

start reading R record 

I 
loop plot E 

1 

wait for end of R record reading 

—I 
loop to plot R 

Fig. A.4. Logic Flow of Plotting Program PLTDEQ 
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PROGRAM OIFFEQ (INPUT = 1011rj,OUTPUT, TAPE10=10IB, TAPE1=INPUT» 
C 

COMMON Y(8,2031 »YTARG(81,YO(8»,X(203»,YY(8»,ZZ(8»,RK1(8>,RK2(8>, 
$ RK3(8), RKb(8),YP(8,13) 

C 
COMMON/LOGIC/START,LAST,ILG,YS,YT,IMX,LIMFLG,I9CN,GRAOJ, J 
LOGICAL START,LAST,LIMFLG 

C 
COMMON/AB/ ALPHA2.BETA 
COMMON/LIMITS/ YLL,YUL,H,IGCNT 

C 
LOGICAL FLG,L0G,RKFLG,LAST2,PLTFLG 

C 
LOGICAL CHECK 
EXTERNAL CHECK 

C 
C INTERNAL STATEMENT FUNCTION TO GET AROUND CHANGE TO DOUBLE EASILY 
C 

BBS(X)=A8S(X I $ ZIGN(X,Y)=SIGN(X,Y> 
C 
C 
C FLG=.TRUc. IF HE ARE CALCULATING THE LAST POINT IN THE INTERVAL 
C WITH AN H ADJUSTED TO GET US TO THE END EXACTLY 
C 
C LIKFLG=.TRUE. IS A FLG WHICH TELLS THE CHECK ROUTINE THAT ME HAVE 
C MADE IT TO THE ENO OF THE INTERVAL 
C 
C LOG IS A DUMMY LOGIC VARIABLE. 
C 
C RKFLG IS A FLAG WHICH FREVENTS THE RUNGE-KUTTA SECTION FROM GOING 
C INTO AN INFINITE LOOP WHNE THE MINIMUM STEP SIZE IS USEO. 
C 
C LAST2 IS SET TO TRUE DURING THE LAST PASS BY FLAG LAST 
C 
C START IS TRUE DURING THE COARSE ADJUSTMENT PHASE. 
C 
C 
C RKTOL IS USEO AS A TEST VALUE IN THE R-K SECTION TO CHECK THE STEP 
C SIZE. VALUE OF 5 PERCENT WAS OBTAINED FROM KAREL REKTORYS, 
C SURVEY OF APPLICABLE MATHEMATICS, M.I.T. FRESS, CAMBRIDGE PRESS 
C , CAMBRIDGE., MASS., 1969, PAGE 1076. 
C 
5 CONTINUE 

Q 
C READ IN EQUATION PARAMETERS 
C 

REAO 991,ALPHA,BETA 
IF(EOF (l).NE.OI GO TO 900 
PRINT 996,ALPHA,BETA 
ALPHA2=ALPHA»ALPHA 

C 
C J IS THE OROEK OF THE EQUATION 
C XU IS" THE BEGINNING OF THE INTEGRATION RANGE 
C XLIM IS THE UPPER LIKIT (OF X) FOR THE INTEGRATION RANGE 
C H IS THE INITIAL INTEGRATION STEP 
C EPS1 IS THE MINIMUM STEP SIZE ALLOWED AS DEFINED BY 
C DX/(XLIH-Xm> 
C TOU IS THE TOLERANCE FOR THE PREDICTOR-CORRECTOR TESTS 
C GRAOJ IS THE SEARCH FACTOR OURING THE COARSE ADJUSTMENT PHASE. 
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C 
c 

READ 990,J,GRAOJ,XI»,H,XLIM,EPS1,TOL1,RKTOL 
XSTPL=XLIM-X<» 
H=ZIGN(H.XSTPL) 
IF(RKTOL.LE.O.O» RKTOL=0.05 
IF(TOLl.LE.O.C) TOU1=C.01 
IF(EPS 1.LE•0•C) EPS1 = 0.001 
IF(GRAOJ.LE.l.G) GRADJ=10.0 
PRINT 997 
PRINT 999,J,X<»,H,XLIM,T0L1«RKT0L,EPS1,GRA0.J 

C 
C REAO IN THE BOUNDARY VALUES FOR THE LEFT SIOE OF INTEGRATION RANGE 
C 

READ 991, (Y(I, it) ,1=1, J) 
C 
C READ IN THE TARGET VALUES FOR THE RIGHT SIOE OF INTEGRATION RANGE 
C 

READ 991, <YTAI<G<I),1=1,J> 
C 
C IMX 13 THE NUMBER OF ITERATIONS IN THE BINARY SEARCH MOOE 
C IGRLM IS THE NUMBER OF ITERATIONS ALLOHEO IN THE GROSS SEARCH MOOE 
C PLTFLG IS TRUE WHEN PLOTTING IS TO BE OONE (ONLY WHEN IMX.LT.O) 
C 

REAO 983,IMX,IGRLM,PLTFLG,MMAX 
IF(MM4X.GT.10.OR.MMAX.EQ.0) MMAX=1Q 
IF (I P.X »GT • 01 PLTFLG = .FALSE. 
PRINT 985 
N=1 
PRINT 993, <Y<I,i»> ,1 = 1, Jl 
PRINT 995 
EP=B3S<EPS1*XSTPL) 
IF (IGRLM.LE.0 I IGRLH=1Q 
PRINT 982,IMX,IGRLM,MMAX 
PRINT 99i»,EP, <YTARG<I> ,1 = 1,J) 
IGCNT=Q 
NP=0 
N0 = 0 
N = «» 
X<(»>=X<i 
YS=0.0 
YT=0.0 
ILG=0 
LAST2=.FALSE. 
START=.TRUE. 

C 
C SET UP LIHITS FOR CHECK ROUTINE 
C 

TA=YTARG<J-1» 
TB = Y(J-1,^1 
YLL=YUL=0•0 
IF(YLL.GT.TA) YLL=TA 
IF <YLL «GT•TBI YLL=TB 
IF<YUL.LT.TA) YUL'TA 
IF(YUL.LT.TB) YUL=TB 

C 
C IF IfX IS NEG, 00 NOT LOOP ANO PRINT EVERY IABS<IMX) VALUE. 
C 

IF(IKX.LT.O) GO TO 120 
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C IMX IS POSITIVE OR ZERO 
C 

LAST = .FALSE. 
GO TO 125 

C 
C IMX IS NEGATIVE 
C 
120 LAST=.TRUE. 

NPRNT=IA0S(IMX) 
C 
C SET UP ORIGINAL CONOITIONS 
C 
125 IBCN=0 

IRKCNT = 0 
HO =H 
00 6  1=1,J  
YC (I> = Y(I,M 

6 CONTINUE 
IF(LAST) GO TO 126 
PRINT 987 
GO TO 127 

C 
C RESTART WITH NEW INITIAL CONOITIONS 
C 
7 H=H0 

00 8  1=1,J  
Y(I,(t)=YO(I> 

8 CONTINUE 
127 PRINT 988,NO,X(N>,mi,N>,I = l,J),YS,YT,(YOm,I = l,JI 

IF(IRKCNT.GT.G) PRINT 984,IRKCNT 
IF(.NOT.LAST) GO TO 130 

126 PRINT 989 
LAST2=.TRUE. 
N0 = 1 
PRINT 998,N0,H,X*,(Y(I),1=1,J) 

130 X(M=X<» 
FLG=.FALSE. 
LIKFLG=.FALSE. 
RKFLG=.TRUE* 
N=5 
NO=2 
IRKCNT = 0 
GO TO 11 

C 
C HALVE THE STEP SIZE FOR THE R-K APPROXIMATION. 
C 

Ik H=H2 
IF(B9S (Hl.GT.EP.OR.FLGI GO TO 129 
H=ZIGN (EP.Hl 
IRKCNT=IRKCMT*1 
RKFLG-.FALSE. 

129 FLG= ."FALSE. 
C 
C RUNGE-KUTTA (STARTER)• 
C 

11 X(Nl=X (N-lItH 
IF(H) 112,930(110 

110 IF(X(N).LE.XLIM) GO TO 117 



GO TO 273 
112 IF(X<N).LT.XLIM> GO TO 270 
117 H2=H/2.0 

H6=H/6.0 

CALCULATE RUNGc-KUTTA TERMS 

119 00 13 1=1,J 
RKKI) =Z(I,X(N-1) ,Y(1»N-1I ) 
YY(I)=Y(I,N-1)+H2»RK1<I) 

13 CONTINUE 
00 131 1=1,J 
RK2(II=Z(I,X(N-1)*H2»YY(1I ) 
11 II) = Ya,N-l) +H2*RK2CI) 

131 CONTINUE 
00 132 1=1,J 
RK3(I)=Z(I,X(N-1I+H2,ZZ(1)) 
YY(I) = YU,N-1)+H»RK3(I> 

132 CONTINUE 

BEFORE CALCULATING <*TH TERM, CHECK TO SEE IF WE ARE USING A 
STEP HHICH IS TOO LARGE 

00 133 1=1,J 
IF(.N0T.RKFLG.0R.RK2(I).EQ.O.O) GO TO 16 
IF(BBS((RK2(I)-RK3(U)/RK2(I)).GT.RKT0L) GO TO l«i 

16 RKMII =Z(I,X(N-1)+H,YY(1M 
133 Y (I, N) =Y(I,N-1)+H6» (RK1 (I > +2.0»RK2 (I) +2.0*RK3( I ) *RK<» <111 

IALP=2HRK 
RKFLG=.TRUE. 

1»»0 IF(.NOT.LAST) GO TO 150 
NP=NPH 
IF(NP.LT.NPRNT) GO TO 150 
NP = 0 
PRINT 992,IALP,N0,H,X<N), (Y(I,N>,1 = 1,J) 

150 IF(CH£CK(NI) GO TO 610 
IF(MMAX.LE.l) GO TO 250 
N=N*1 
N2=N-2 
N0=N0«-1 
IOIRsl 
IF <N-2 34) 17,31,15 

17 X(N)=X<N-1)»H 
IF(H) 16J,800,155 

155 IF(XLIM.GT.X(N)) GO Ta 19 
GO TO 270 

160 IF(X(M).GT.XLIM) GO TO 19 
GO TO 270 

PREDICTOR-CORRECTOR KETHOO (CONTINUATION). 

PREDICT VALUE AT X(NI 

19 IF(MMAX.LE.l) GO TO 119 
00 20 1=1,J 
YY(I)=Z(I,X(N-1)«Y(l,N-ll) 
YP(1,1) = YII,N2)•2«0*H*YY (I) 
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20 CONTINUE 
IALP=1H 
H= 1 

C 
C ITERATE PREDICTION .UNTIL ERROR IS SMALL ENOUGH. THIS IS LIMITED 
C TO 10 TRIES BEFORE THE STEP IS HALVED. 
C 
205 H=MH 

IF(M.GT.MMAX) GO TO 1 <* 
DO 22 1=1,J 
YP(I»M)=Y(I,N-1)+H2MYY(II»Z(I,X(N),YP(1,M-1>I) 

22 CONTINUE 
OO 23 1 = 1,J 
IF(BBS <(YP<I,h)-YP(I,M-l)>/(YP(I,MUYP(I,M-im.GT.TOLll GO TO 205 

23 CONTINUE 
DO 27 1=1,J 
Y(I,N>=YP(I,MJ 

27 CONTINUE 
IF(M-2 > 15•133,140 

C 
103 IF(.NOT.LAST) GO TO 360 

NP=NP+1 
IF(NP.LT.NPRNT) GO TO 360 
NP=0 
PRINT 99S,NO,H,XINI, (Y(I,N>,1=1,J) 

360 IFICHE CKIN)) GO TO 810 
C 
C X-INTERVAL (H) OOUBLER 
C 
250 H=H+H 

H2=2.0*H2 
H6=2.0 *H6 
N = Ntl 
NO=NO+1 
IDIR=2 
IF(N-20t») 39.31.15 

30 X(N)=X (N-l»«-H 
IF(H) 260,600,255 

255 IF(X(N).LT.XLIH) GO TO 19 
GO TO 270 

260 IF(X(N).GT.XLIH> GO TO 19 
270 IF(FLG) GO TO 800 

C 
C ON THE LAST STEP HE USE THE RK METHOD 
C 

H=XLIM-X(N-l) 
FLG=.TRUE. 
GO TO 11 

C 
C 
31 X(2)=X(N2> 

X(3MX (203) 
N=N"*i 
IF (PLTFLGI BUFFER OUT(10 . 1MXUI. X (N11 
OO 320 1=1,J 
IF{.NOT.PLTFLGI GO TO 316 
IF(UNIT(10)) 311,920.920 

311 OO 313 K=<»,N 
X(K)-Y(I.K> 



166 

313 CONTINUE 
BUFFER OUT(10,1MX(<»),X(N) ) 

316 Y(I,2)=Y(I,N2> 
* (1,3)=Y (1,203) 

320 CONTINUE 
IF(UNIT(10)) 325.920,920 

325 N=i» 
N2=2 
GO TO <17,30>,IOIR 

C 
C INTERNAL ERROR STOP 
C 
15 STOP 6666 

C 
C ITERATION DONE - FIND OUT WHAT TO DO NEXT 
C 
8JO N=N-1 

IF(LAST) GO TO 820 
LIMFLG=.TRUE. 
LOG=CHECK(N) 
IFdGCNT.GT. IGRLM) GO TO 910 

805 IF (.NOT.LASTI GO TO 7 
C 
C CALCULATE PRINT INTERVAL - ABOUT 100 VALUES MILL BE PRINTED 
C AT VARYING SPACINGS HHICH OEPENO ON THE BEHAVIOR OF THE CURVE 
C 

NPRNT=NO/100 
GO TO 7 

C 
C HAS THIS CHECK ERROR GENERATEO ON THE LAST TIME AROUND 
C 
810 IFdGCNT.GT. IGRLM) GO TO 910 

IF(.NOT.LAST2) GO TO 805 
C 
C PRINT OUT LAST VALUE 
C 
820 IF(IRKCNT.NE.O) PRINT 986.IRKCNT 

C 
C DUMP OUT THE LAST BUFFER TO TAPE IF REQUIRED 
C 

IF(.NOT.PLTFLG.OR.K.LT.<»l GO TO 5 
BUFFER OUT(10,1MX(4),XCNI» 
IF(UNIT(10 )) 830.920,920 

830 OO 8l<0 1 = 1.J 
00 835 K=<» »N 
X(K)=Y(I.K) 

835 CONTINUE 
BUFFER OUT (10.1) (X(<*).X(N)) 
IF (UNIT (10)) 8<t0 ,920 ,920 

8<*0 CONTINUE 
GO TO 5 

C 
900 CONTINUE 

STOP 7777 
C 
C TOO MANY TRIES IN THE GROSS ITERATION MODE 
C 
910 PRINT 981 

GO TO 5 
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c 
C ERROR ON OISK WRITE 
C 
920 PRINT 903 

STOP 6666 
C 
C X INCREMENT EQUAL TO ZERO 
C 
930 STOP 5555 
C 
C 
980 FORHAT(5X19HERR0R ON DISK WRITE10(1H»>» 
981 FORMAT(5X25HT00 MANY GROSS ITERATIONS 5X10<1H»H 
982 FORMAT(5X20HBINARY ITERATIONS = 13,7X19HGR0SS ITERATIONS = 13, 

$ 7X17HP-C ITERATIONS = 13) 
9d3 FORMAT(215,L5,15) 
9e<» FORMAT (8X9HIKKCNT = 15) 
985 FORMAT (//13X<)HY ( Q U1X5HYP (0 )) 
986 FORMAT<//5X28HRUNGE-KUTTA MIN. STEP TAKEN 15.7H TIMES.//) 
987 FORMAT (//2X2HN09X 1HX11X6HYCI,N)8X6HY(2,N)10X2HYS12X2HYT 

2 11X5HY0(1) 9X5HY0(2)//) 
989 FORMAT (1H15X1HN9X1HH1I»X1HX11«X2HY112X2HY2) 
995 FORMAT(///) 
997 FORMAT (8X1HJl<*Xi»HX (0 ) 15X5H0X (0 ) 15X4HXLIM15X«»HTOL110X5HRKTOL11X 

S '•HEPSl 8X5HGRADJ) 
C 
C THE FOLLOWING NcEO TO 3E CHANGEO WHEN GOING FROM SINGL TO 
C DOUBLE PRECISION 
C 
988 FORMAT (1X15,1P9E1<». 5) 
990 FORMAT (15,F5.0,7E10.0) 
991 FORMAT(8E10.0) 
992 FORMAT(1XA2,2X15,1P8E15.6//11X8E15.6) 
993 FORMAT(1H05X1F8E15.5) 
99<» FORMAT (//5X17HMIN. STEP SIZE = 1PE15.5// 

$ 5X17HTARGET VALUES ARE //5 (1P5E15.5/)) 
996 FORMAT(1H15X8HAL°HA = 1PE13.6,5X7HBETA = £13.6//) 
998 FORMAT (5X15,1POE15.6/11X8E15.6) 
999 FORMAT (1M05XI5,1P3E20.5,0P3F15.5,F12.31 
C 

END 
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LOGICAL FUNCTION CHECK(N) 
C 

COMMON/LIMITS/YLL,YUL,OX, IGCNT 
COMMON/LOGIC/ START,LAST,ILG,YPU,YPL,IMX,LIMFLG,IBCN,GRAOJ,J 
LOGICAL START,LAST,LIMFLG 
COMMON YY(8« 2G 3), YTARG(8),YSTRT(8» 

$ ,X ( 203) »YTEMP (81 »ZTEMP(8) ,RK1(8) ,RK2( 8) ,RK3 (81,RK<»(8> . YP< 8,10) 
C 

Y=YY(J-i,NI 
IF(Y.LT.YLL.OR.Y.GT.YUL.OR.LIMFLG» GO TO 30 
CHECK=.FALSE. 
RETURN 

C 
C GROSS ADJUSTMENT (START=TRUE) OR BINARY SEARCH (START=FALSE> 
C 
30 YP0=YSTRT(J) 

Yl = YT ARG(J-l) 
CHECK=.TRUE. 
IF((Y.GE.YUL.0R.Y.GE.Y1). AND.OX.GT.0.0) GO TO 200 
IF((Y.LE.YLL.0R.Y.LE.Y1).ANO.OX.LT.O.O) GO TO 200 

C 
C LOWER LIMIT EXCEEDED OR ENO OF INTERVAL AND TOO LOH 
C 

YPL=YP0 
IF (.NOT.START) GO TO 300 
IGCNT=IGCNTfl 
IF(ILG.GT.Q) GO TO 290 
ILG=-1 
IF(YPO.GT.O.O) GO TO 230 

130 YSTRT(J)=YP0/GRADJ 
RETURN 

C 
C UPPER LIMIT EXCEEDED OR ENO OF INTERVAL ANO TOO HIGH 
C 
200 YPU=YP0 

IF(.NOT.START) GO TO 300 
IGCNT=IGCNT*1 
IFULG.LT.0) GO TO 290 
ILG= *1 
IF(YPO.GT•0.0) GO TO 130 

230 YSTRT(J)=YP0*GRAOJ 
RETURN 

C 
C ENO OF THE GROSS ADJUSTHENT PHASE 
C 
290 START=.FALSE. 

C 
C BINARY SEARCH MODE 
u 
3C0 YSTRT<Jt=<YPU»YPL>/2.0 

IBCN=IBCN*1 
C 
C HAVE HE T*IEO ENOUGH TIHES. 
C 

IF(IBCN.GT.IMX) LAST=.TRUE. 
RETURN 
ENO 
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F U N C T I O N  Z I I . X U . V I  
C O M M C N / L O G I C / S r A R T . L A S r . I U G , Y S , Y T , I M X , L I H F L G , I 9 C N , G R A 0 J , J  
. O G I C A L  S T A R T , L A S T » L I H F L G  
O I M E N S I O N  Y ( 8 )  
COMMON/AB/ ALPHA21 BET A 

C 
C INTERNAL STATEMENT FUNCTION TO GET AROUNO CHANGE TO 00U9LE EASILY 
C 

BeS(A)=ABS(A) S ZIGN(A,B)=SIGN(A,B) 
C 

IFU.EQ.3) GO TO ICO 
GO TO (1•2 > * I 

1 Z=Y(2) 
RETURN 

2 T=1.0-BETA*Y(2 I 
Z=ALPHA2*Y(1)*ZIGN(BBS(T)••(1.0/3.0)fT) 
RETURN 

C 
C 
100 GO TO (101,102,103)«I 
101 Z=-Y(2) 

RETURN 
102 Z=Y(3) 

RETURN 
103 T=1.0-BETA*Y(3) 

Z=ALPHA2*Y(2)*ZIGN(BBS(T)#*(1.0/3.0)»T) 
RETURN 
ENO 
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PROGRAM PLTDFQ(INPUT = 1011BTOUTPUT-19118,TAPEI0 = 1008TTAPEI»91 
C 
C THIS PROGRAM PLOTS THE OUTPUT PROOUCEO BY PROGRAM OIFFEQ 
C 

COMMON X(200!,£(200I,U(200),R(200! 
INTEGER UP,ON 

C 
DATA ON,UP/2,3/ 
OATA LFN/10/ 

C 
C SL- SCALE LENGTHS 
C --SP SEPARATION BETWEEN EACH PLOT 
C XLM DISTANCE FROM LEFT LIMIT (LEFT MARGIN! 
C 
C READ IN LIMITS FOR THE PLOTS 
C 

READ 999,XMIN,XMAX,UMIN,UMAX,EMIN,EMAX,RMIN,RMAX 
READ 999,SLX,SLU,SLE,SLR,UESP,ERSP,XLM 

C 
C PRINT PLOTTING PARAMETERS 
C 

PRINT 995 
PRINT 996,XMIN,XMAX,UMIN,UMAX,EMIN,EMAX,RMIN,RHAX 
PRINT 993,SLX»3LU,SLE,SLR,UESP,ERSP»XLM 

C 
C SET STARTING POINT FOR EACH PLOT IN INCHES 
C 

US=0.0 
ES=USTSLU«-UESP 
RS=ES+SLE*ERSP 

C 
C CALCULATE SCALE FACTORS 
C 

XSCL=-SLX/(XKAX-XMINI 
USCL=SUU/(UMAX-UMINI 
RSCL=SLR/(RMAX-RMIN1 
£SCL=SLE/(EMAX-EMIN) 

C 
C INITIALIZE FILES 
C 

REMINO LFN 
CALL INITIAL (8H9701512M.«»9,0.0,0) 

U 
C /•» 

ORAM AXES - FIRST GET AHAY FROH INITIAL SOX 
W 

CALL PLOT(o.o,12.0,-UP! 
c  

CALL PLOT(0.0,-XLK,-UP) 

C ORAM X AXIS FOR U 
V 

CALL PLOT(0.0,-SLX,ON! 

/* 

CALL PLOT(US,0.0,UP) 
V 
c 
f *  

ORAH Y AXES - U FIRST, FOLLOWED BY E AND R 
C 

CALL PLOT(US+SLU,0.0,DN1 
CALL PLOKES,0.0,UP) 
CALL PLOT(£S+SLE,0.0,DN! 
CALL PLOT(RS,O.O.UP) 
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CALL PLOT(RS*SLR,0.0,ON) 
C 
C CALCULATE PLACE FOR R ZERO AND PLOT X AXIS 
C 

ROF = RS-RSCL*RMIN 
CALL PLOT(ROF,0«0,UP) 
CALL PLOT(ROF,-SLX,ON) 

C 
C E X AXIS 
C 

CALL PLOT(ES,-SLX,UP) 
CALL PLOT(ES,C.3,DN) 

C 
C 
C START TO READ OATA - SOME OF THE OPERATIONS ARE OVERLAPPED WITH 
C EXECUTION 
C 
20 BUFFERIN(LFN,1)(X(1),X(200)) 

IF (UNIT(LFN)> 30,300,900 
30 N=LENGTH(LFN) 

SUFFER IN(LFN,1) (U(1),U(NI) 
X(l) = (X(U-XhIU)*XSCL 
IF(UNIT(LF N)) 40 ,910,900 

»»G SUFFER IN <LFN,11 (E(1),E(N) ) 
CALL PLOT((U(1)-UMIN)*USCL+US,X(1),UP) 
DO 50 1 = 2, N 
X(I)=(X(I»-XH1N)»XSCL 
CALL PLOT((U(II-UMINI»USCL+US,X(I),ON) 

50 CONTINUE 
IF(UNIT(LFNI) 60,910,900 

60 SUFFER IN (LFN,1)(R(1t,R(N)I 
CALL PLOT((E(1)-EMIN>*ESCL+ES.XID,UP) 
DO 70 1=2,N 
CALL PLOT((E(I)-£MIN)*ESCL+ES,X(I),ON) 

70 CONTINUE 
IF (UNIT(LFN)I 80,910.900 

60 CALL PLOT((R(i)-RMIN)*RSCL*RS,XI1),UPI 
•O 90 1=2,N 
CALL PLOT!(R(I)-RHIN>*RSCLtRS,X(I).ON) 

93 CONTINUE 
60 TO 20 

C 
C DONE - NORMAL EOF 
C 
800 CALL PLOT(0.0,0.0,999) 

PRINT 99<» 
STOP 7777 

C 
C PARITY ERROR ON REAO. 
C 
900 PRINT 997 

CALL PLOTIO.O.J.0.999) 
STOP 6667 

C 
C UNEXPECTtO EOF 
C 
910 PRINT 998 

CALL PLOKO.O.O. 0,999) 
STOP 6666 
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993 FORMAT (///i»2XlHXli»XlHUl<»XlHEl.<tXlHR/ 
$ 5X22HAXIS LENGTHS IN INCHES 3XUF15.3/ 
$ 5X16HPLOT SEPARATIONS *»0XF6. 3,9XF6.3/ 
$ 5X12HLEFT MARGIN llXF6.3//> 

9°<* FORMAT <///45X»P cOTTING DON E*) 
995 FORMAT (1H15X*FL0T DIFFERENTIAL EQUATIONS»///i«fXi»HXMIN12X«»HXMAXi2X 

$ <»HUMIN12X<«HUMAX12X«fHEMIN12X<»HEMAX12Xi»HRMIN12X«tHRMAX> 
996 FORMAT(1P5X8E16.3) 
997 FORMAT(5X25HPARITY ERROR ON OISK READ 5X10<1H»I> 
998 FORMAT(5X27HUNEXPECTED EOF - CHECK PLOT 5X10(1H*)» 
999 FORHAT(8E10.0) 
C 

E N D  
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